21 M Loughborough
7 University

Loughborough University
Institutional Repository

Parallelism and the
software-hardware interface
in embedded systems

This item was submitted to Loughborough University’s Institutional Repository
by the/an author.

Additional Information:

e A Doctoral Thesis. Submitted in partial fulfilment of the requirements for
the award of Doctor of Philosophy of Loughborough University.

Metadata Record: |https://dspace.lboro.ac.uk/2134,/14467

Publisher: © V. A. Chouliaras

Please cite the published version.

https://dspace.lboro.ac.uk/2134/14467

B Loughborough
University

This item was submitted to Loughborough University as a PhD thesis by the
author and is made available in the Institutional Repository
(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence
conditions.

@creative
ommon

COMMONS D EE D

Attribution-NonCommercial-NoDerivs 2.5
You are free:
» to copy, distribute, display, and perform the worl

Under the following conditions:

Attribution. vou must attribute the work in the manner specified by
the authar or licensar,

Noncommercial. vou may not use this work for commmercial purposes.

Mo Derivative Works. vYou rnay not alter, transform, or build upon
this work,

« For any reuse or distribution, vou must make clear to others the license terms of
this work.

o Any of these conditions can be waived if you get permission from the copyright
holder.

Your fair use and other rights are in no way affected by the above.

This is a human-readable summary of the Legal Code (the full license).

Disclaimer £

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

L Loughborough
University

University Library

...

Class Mark /r ...

Please note that fines are charged on ALL
overdue items.

E‘\\CE) “\ﬂi |

0403191653

A

Parallelism and the Software-Hardware Interface
In

Embedded Systems
By

Vassilios Apostolos Chouliaras

A Doctoral Thesis submitted in partial fulfilment of the requirements for the award of Doctor

of Philosophy of Loughborough University

June 2005
© V., A, Chouliaras

E Loughborough
i University

Pilkington Library
Class T

'r:ff 04-0319 1653

ACKNOWLEDGMENTS

I would deeply like to thank my wife, Nantia, for continuous support throughout the long
process of conquering the Knowledge. Her support, understanding and Love, kept me focused
and composed throughout the years of working professionally away from the Mediterranean.
It was her who decided that I should accept the academic post in the Midlands, instead of the
industrial post in downtown San Jose and I have to admit, three years after that extremely

difficult decision, that she was right and I was wrong,

I deeply acknowledge the support of my family in Athens throughout all my 35 and half
years. Without their clear vision, and persistence in pursuing the Knowledge, I would have

never been able to understand the ways our world is working.

I gratefully acknowledge the support of my colleague, Dr. Jose Luis Nunez-Yanez. Jose was
the sole microelectronics engineering expert I could rely on for bringing our research to life
and the accomplishments and success of the microelectronics research group were also due to

his hard work and dedication.

I most sincerely thank Dr. David Mulvaney for being alWays available, always technically
sound, always listening and giving solution to most problems, trivial or otherwise. David

provided much assistance in the group and was an excellent academic probation adviser.

Finally, I would like to sincerely thank all my academic colleagues and friends here in
Loughborough. In particular, I would like to mention Professor Roger Goodall for being an

academic raw model to me and one that I simply am unable to reach.

This Thesis is dedicated to the Memory of my Dear Friend,

Dimitrios Daniolos

Who left us so suddenly

12 June 1969 — 11 June 2004

ABSTRACT

This thesis by publications addresses issues in the architecture and microarchitecture of next
generation, high performance streaming Systems-on-Chip through quantifying the most

important forms of parallelism in current and emerging embedded system workloads.

The work consists of three major research tracks, relating to data level parallelism, thread
level parallelism and the software-hardware interface which together reflect the research

interests of the author as they have been formed in the last nine years.

Published works confirm that parallelism at the data level is widely accepted as the most
important performance leverage for the efficient execution of embedded media and telecom
applications and has been exploited via a number of approaches the most efficient being
vector/SIMD architectures. A further, complementary and substantial form of parallelism
exists at the thread level but this has not been researched to the same extent in the context of
embedded workloads, For the efficient execution of such applications, exploitation of both
forms of parallelism is of paramount importance. This calls for a new architectural approach
in the software-hardware interface as its rigidity, manifested in all desktop-based and the

majority of embedded CPU’s, directly affects the performance of vectorized, threaded codes.

The author advocates a holistic, mature approach where parallelism is extracted via automatic
means while at the same time, the traditionally rigid hardware-software interface is optimized
to match the temporal and spatial behaviour of the embedded workload. This ultimate goal
calls for the precise study of these forms of parallelism for a number of applications executing
on theoretical models such as instruction set simulators and parallel RAM machines as well
as the development of highly parametric microarchitectural frameworks to encapsulate that

functionality.

Table of Contents

ACKNOWLEDGMENTS 4
ABSTRACT e aeSerNeEsN NS Ebsasseseres buSIENNORES ISR bt Err st rertesRTRRRORSNeSbEesRRE 6
TABLE OF CONTENTS v " 7
CHAPTER 1 10
1.1 THEMATIC AREAS veecvviterserrsessnorsserssnsesisssarsariestesssosnessnesstsressesssessassses sasasssssssseessessnsersessttssstrnesanstasatosss 11
LLT Dat@ Level PArQIIElISMccocvcicoriiiiiiiiieiiiiiitiiiiseisesnasssaesssesessessesasesssssesssmrssasseasessssssssessaneseton 11

LL2 Thread Level ParalleliSH...... . ciiiiiiiiiiiiiiiesssisessesssnseesssssssssssesssns restesesssssasensasesnessisss 13

113 The SOftware-Rardware IIEITACE.comveveeieseniinmms s isniniessersessss s insssesesssassresmssarsonssssaens 14

114 Instruction Level ParQlleliSi..... ..ot csst easssasessssstssstssnes sesesssessesteassssstsnsesesn i4

1.2 METHODOLOGY 1evrerervsrsssrersrensreressiss sssertorssastesnstorssnssssasssesersrasssssesessesssssassse rassssssasessnsesssnsssonsassresnsserees 15
1.3 FURTHER WORK ...v.eovieriuireninneeriensessasnessaoresssssssssnsssesssesseeseessesssesssssnessnesssesesstossssssntonsasass snesssssnnatossaesss 16

1.3.1 Advanced software Optimization t00I5cccevieeeciiievensscainininernsserinsssssossesesssssssrnssssssesss 40

1.3.2 The System Desighn FYAMEWOIK.........ccccviciiimeerriieecsenis s sriss st s sesaesses surssnanariossasstsssssreses 17
1.3.3 Fault-Tolerant Parametric Multiprocessor Kernel for mission-critical applications................os 18
1.3.4 The Ultimate ASIC CPU approach: The SS_SPARCcveieiioiiieinessisisrasessssssssss e 9
1.4 AUTHOR CONTRIBUTIONS IN THE PUBLISHED WORKS w1.vevsrimmenrirnsemssnissssessmssssaseresissnssssssersissatasisssses 19
PAPEE PJL ..o s e snss e s assas st en e ek a1 b a4 et aaaa bbb en b pa st e RS e AT e 1R ShaReen s babe b pEen A e EereS 19
PAPEF PJ2...oii i es s et sar s s e etk et h e e et s e e e en R er e R R e RO e AR e The R s R e e Rb bR sa e nee e 19
PaAPEF PJ3..ooooieceis s sstess e s st skt s b4 r e bbb e sR s e eeeA bR bt s e shasneberee b e bt n e enea 20
PAPEF PJ4c.cooeeeeee sttt b s saasas s et e e bR s ae e e R e b e e sene e R b ahs 20
PAPEE PJJ oottt b s 44 b e et R e e bbbt R r bbb 20
PaPEF PO ooeoreveirceivairmes it sss s rersssns s seseas s ar e s e snb e s s e as e sa s s e s abnRe st Erassanessae st sanasrrrspoats 21
PAPEE P2 ..ot scecvin et st st ss s s s s et e en s s s ara s s et e var e s g b ek e ke ne b et n et st eanananabnbeae e nrrats 21
PAPEF PCJ vttt crars e e sasa st sb s s st sa st s r e st 4Rt e bt e sttt bR r et eana s e e e R ne R Es 21
PAPEE PCH..ooovorrerescesrvssnssensssissssssessarsis s sssssss s ssssssssassasssssassssssmssssssssmnssssssassssnsossossssssssnssssssasnsss 20
PAPEE PO ..o ctsceenmnester e rsse s saes st e sesns b st sasas e s s as e et as s eabsba et e ve s A vaeat e varesasanatasarons B 22
PUPEE PCB ...ttt st assa s ase s s s ses s e b ar e e s s ea e s esaen et eRe s b0 s b e R e et b ereentaseranstateseraes 22
Paper PO7 ...o.oiiiiiiieesen et e ves s st sns e nen s 14t s st b sa s et sa e R saa e et eneneatener e neniat 23
PAPEE PO .c.ooeeessrsae sttt an s e asas s rer e s b bbbt bbb beas b e b s e b esaen st ars SRR oA eaeabasar bt ereeatobgneeaee 23

PAPEF POttt e e sa st sttt b s ek sta a8 s h e bt a4 e Rt et sa s s R e T eR et e R e e R TR e R e e bes e e R ar e sapat et enes D)

GROUP PJ: PUBLISHED JOURNAL PAPERS ON PARALLELISM AND THE
SOFTWARE/HARDWARE INTERFACE IN EMBEDDED SYSTEMSccconumanersssnscssseressronsssnens 24

PAPER PJl: V. A. CHOULIARAS, J. L. NUNE?Z, ‘SCALAR COPROCESSORS FOR ACCELERATING THE G723.1 AND
G7294 SPEECH CoDERS’, IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, VOL, 49, ISSUE 3, AUG. 2003,
PG TUFTHE et vreseissss e rassasssnsaesssmsaeresassertsasastrsn s ntot sasenerssasnanassaasara st shsntesaentss sases rassassnetsshssnsrevaseness 26

PAPER PJ2: V, A. CHOULIARAS, I, L, NUNEZ, K. KOUTSOMYTI, S. R. PARR, D. J. MULVANEY, S. DATTA, ‘ON
THE DEVELOPMENT OF A CUSTOM VECTOR ACCELERATOR FOR HIGH-PERFORMANCE SPEECH CODING', 1EE
ELECTRONIC LETTERS, VOL. 40, ISSUE 24, 25 NOV. 2004, PG 1559-1561 ...ocvovverencmrvensrmsenssesssrsssssrssensssssssins 35
PAPER PI3: V. A. CHOULIARAS J. L, NUNEZ, D. J. MULVANEY, F, ROVATI, D. ALFONSO, ‘A MULT/-STANDARD
VIDEQ CODING ACCELERATOR BASED ON 4 VECTOR ARCHITECTURE', IEEE TRANSACTIONS ON CONSUMER
ELECTRONICS, VOL. 51, ISSUE 1, FEB 20035, PG 1607187 «.covmrretrececenrnmnsnssissssssermssessinrisssessssssssonsnssses sassesesene 49
PAPER PJ4: J. L. NUNEZ, V. A. CHOULIARAS, 'HIGH PERFORMANCE ARITHMETIC CODING VLSI MACRO FOR THE
H264 VIDEO COMPRESSION STANDARD’, IEEE TRANSACTIONS ON CONSUMER ELECTRONICS VOL. 51, ISSUE 1,
FEB 2005, PG 144-151...ccinmsisssnnnrissssssiisnssnsnssesrassossssnsens e en b e St e reasaneee e T 58
. PAPER PJ5: GRECOS, C., SAPARON, A. AND CHOULIARAS, V., ‘THREE NOVEL LOW COMPLEXITY SCANNING
ORDERS FOR MPEG-2 FULL SEARCH MOTION ESTIMATION ', REAL TIME IMAGING, 10, FEBRUARY 2004, PP 53-65
... ettt b sae st raearteses8t b vnesasterntsnararncnsnssrsrannsesnesass O T

GROUP PC: PUBLISHED NATIONAL AND INTERNATIONAL CONFERENCE PAPERS ON
PARALLELISM AND THE SOFTWARE-HARDWARE INTERFACE IN EMBEDDED SYSTEMS.....81

PAPER PCl: V., A. CHOULIARAS, J. L. NUNEZ, ‘4 SC4LAR COPROCESSOR FOR ACCELERATING THE G723.1 AND
G7294 SPEECH CODERS', PROCEEDINGS OF THE, IEEE INTERNATIONAL CONFERENCE ON CONSUMER
ELECTRONICS (ICCE 2003), L0S ANGELES, CALIFORNIA, USA, ISBN:0-7803-8838-0 ..ccvcvevrinnresrnssereneareanna 86
PAPER PC2: V. A, CHOULIARAS, J. L. NUNEZ-YANEZ, S. AGHA, ‘SILICON IMPLEMENTATION OF A PARAMETRIC
VECTOR DATAPATH FOR REAL-TIME MPEG2 ENCODING', PROCEEDINGS OF THE IASTED (SIP) 2004,
HONOLULU, HAWAIL, USA, ISBN: 0-88986-442-X.....ooccecirrrmrisrmmcessansesrmmmrereosirreassssssarmmssnsnistimsssssassssssas sessssans 89
PAPER PC3: V. A, CHOULIARAS, J. L. NUNEZ, FABRIZIO. S, ROVATI, DANIELE ALFONSO ‘A MULTI-STANDARD
VIDEO CODING ACCELERATOR BASED ON A VECTOR ARCHITECTURE, PROCEEDINGS OF THE IEEE INTERNATIONAL
CONFERENCE IN CONSUMER ELECTRONICS (ICCE 2005), LAS VEGAS, NEvADA, USA, ISBN: 07803-8839-9.96
PAPER PC4: V. A. CHOULIARAS, J. A, FLINT, Y. L1, ‘PARAMETRIC DATA-PARALLEL ARCHITECTURES FOR TLM
ACCELERATION’, PROCEEDINGS OF THE 3% INTERNATIONAL CONFERENCE ON COMPUTATIONAL
ELECTROMAGNETICS AND ITS APPLICATIONS (ICCEA), NOV, 1-4 2004, BEITING, CHINA .vesrvmeecmsnescnensrsnsssesans 99
PAPER PC5: V. A. CHOULIARAS, J. L. NUNEZ-YANEZ, T, R. JACOBS AND ASHWIN K, KUMARASWAMY,
‘CONFIGURABLE MULTIPROCESSORS FOR HIGH-PERFORMANCE MPEG-4 vIDEQ CODING’, PROCEEDINGS OF THE
TEEE ANNUAL SYMPOSIUM ON VLSI, MAY 11-12 2005, TAMPA, FLORIDA, USA .oiiivriinirennnneninsrsaseases 105
PAPER PC6: ASHWIN K. KUMARASWAMY, V. A. CHOULIARAS, T. R. JACOBS, AND J, L. NUNEZ-YANEZ,
‘SYSTEM-ON-CHIP DESIGN FRAMEWORK (SDF} UNIFYING SPECIFICATION CAPTURE AND DESIGN MODELLING',
PROCEEDINGS OF THE 2005 ELECTRONIC DESIGN PROCESSES (EDP) WORKSHOP, APRIL 6-8, MONTEREY
BEACH HOTEL, MONTEREY, CALIFORNIA, USAcvveenieiirinsnmmersreroirsmsimnermmntstsssirrssarststomessassmsssesss st e srssns 108
PAPER PC7: VM DWYER, S AGHA AND V., CHOULIARAS, ‘LOW POWER FULL-SEARCH BLOCK MATCHING USING
REDUCED BIT SAD VALUES FOR EARLY TERMINATION’, PROCEEDINGS OF MIRAGE 2005 INTERNATIONAL
CONFERENCE ON COMPUTER VISION/COMPUTER GRAPHICS COLLABORATION TECHNIQUEScocrvvsneenn. peerbrrens 115
PAPER PC8: TOM R. JACOBS, VASSILIOS A. CHOULIARAS AND JOSE L. NUNEZ, ‘A THREAD AND DATA-PARALLEL
MPEG-4 VIDEO ENCODER FOR A SYSTEM-ON-CHIP MULTIPROCESSOR ', ACCEPTED FOR ORAL PRESENTATION AT
THE IEEE 16TH INTERNATIONAL CONFERENCE ON APPLICATION-SPECIFIC ARCHITECTURES AND PROCESSORS
(ASAP 2005), SAMOS, GREECE, JULY 23-25 2005 ... oiiriiriiinnsessinnnnsssnressssessesmesssivarsssssressasresaasnrssssseses 122
8

PAPER PC9: 8. R. PARR, K. KOUTSOMYTI, V. A. CHOULIARAS, J.L. NUNEZ, D. J. MULVANEY, ‘CONFIGURABLE

SCALAR AND VECTOR COPROCESSORS FOR ACCELERATING THE G.723.1 AND (G.729.4 SPEECH CODERS', ACCEPTED

FOR ORAL PRESENTATION AT THE IASTED INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING
{ACIT-SIP), NOVOSIBIRSK, RUSSIA, JUNE 20-24, 2003 .coovivierrnisincecrerinersrinsssssssessssinssssssssssersresssnsesssrssssssssss

Al
A2
A3
Ad
AS

GROUP RJ: UNDER-REVIEW JOURNAL PAPERS

APPENDIX A: COMPLETE LIST OF AUTHOR PUBLICATIONS

ACADEMIC JOURNAL PUBLICATIONS (PUBLISHED) 1svuessveormmesssssnrsseresseenssssssssssssesssssssanseassassssssarerases

ACADEMIC JOURNAL PUBLICATIONS (UNDER REVIEW/ACCEPTED FOR PUBLICATION} 1ouicvvasensressssasnes

REFEREED CONFERENCE PUBLICATIONS (PRESENTED/ACCEPTED) ...vvvseerseesesassressessrssssssassisnssssssesaes

PATENT APPLICATIONScvenvuress

..

..

129

135

138

138
138
139
143
144

Chapter 1

Introduction to the Thesis

The term ‘embedded systems’ typically refers to non-visible, programmable computers that
control a particular function in a higher order system. Examples of such systems are
automobile Engine Management System (EMS), controllers embedded within household
appliances, distributed arrays of sensors, programmable baseband processors in mobile
terminals and chip-multiprocessors (CMP) in PCI-X add-on cards for scientific computing,
The range and diversity of embedded systems is enormous and there are very few (if any)
application domains where embedded ‘intelligence’ is not needed. Embedded systems are
implemented in a number of technologies ranging from printed circuit board (PCB)-based
systems to single-die and multi-die (stacked) Systems-on-Chip (SoCs). In this thesis, the term

embedded system is considered synonymous to high-performance systems-on-chip.

Parallelism is a common characteristic of modern media and telecom applications in the
embedded domain. It comes in a number of forms, expressed either by the human
programmer or automatically exposed by the high-level language compiler. There are four
universally accepted forms of parallelism namely, Justruction Level Parallelism (ILP), Data
Level Parallelism (DLP), Thread Level Parallelism (TLP) and Process Level Parallelism
(PLP). The distinction amongst these forms of parallelism relates to the fraction of the
software application that can be executed in parallel (PLP and TLP), the spatial arrangement
of the data items processed by the application as well as their dependencies (DLP) and finally,
the register operand and ¢xecution resource requirements of the application binary (JLP). This
thesis elaborates on thread level and data level parallelism as these have been found to be the
most relevant to the application domain of interest, and discusses mechanisms around a non-
rigid software-hardware interface for the benefit of exploiting these most important forms of

parallelism.

The thesis consists of three groups of papers. The first group includes five published journai
papers and the second group includes nine accepted/presented national and international
conference papers. Both groups consist of contributions which belong to one of three thematic

areas namely, data level parallelism, thread level parallelism and the software-hardware

interface. A final group includes references to other journal publications by the author and his

research group, currently under review or in the final acceptance phase.

1.1 Thematic Areas

This section elaborates on the three major thematic areas covered by the published works. A
reference is also made to instruction level parallelism but the thesis does not substantially
address this as the principal benefits in theoretical performance and thus, execution time, are

realized primarily via the exploitation of TLP and DLP.

I1.1.1 Data Level Parallelism

This thematic area includes contributions found in papers PJ2, PJ3, PC2, PC3, PC4, PC8 and
PC9. DLP extraction and exploitation is a well studied subject in the domain of scientific
computing, computational fluid dynamics (CFD), financial analysis and more recently,
genome modelling. It has become a potent performance leverage in feature-rich, SoC-based
consumer products over the past few years as the media content processed by such appliances
and transmitted over existing and emerging wired and wireless networks, has increased

dramatically.

The unwillingness of industry to shift to a programming paradigm that explicitly exposes
parallelism (resembling the unwillingness of the same industry to adopt a self-timed design
methodology as a superior design paradigm from the power management and timing-
independence perspectives) initially led to limited exploitation of DLP and, where it was
explored, that was using ad-hoc, manual methodologies. This rigidity can be primarily
attributed to the software engineering establishment which uses well known high-level-
languages (HLLs) such as C and C++ which simply don’t provide the necessary semantics. In
fact, both C and C++ rely heavily on constructs such as pointers which are potentially
detrimental to the automatic detection of thread and data parallelism. It is interesting to point
out that the scientific community has long identified DLP as being capable of significantly
improving performance and has developed FORTRAN vectorizing compilers to automatically
take advantage of vector floating-point hardware. In the consumer electronics area, there are
few high-level language compilers capable of exposing DLP and these come from established

vendors such as Tensilica and dynamic start-ups such as the Philips spin-out SiliconHive. In

11

the latter case, I believe that the compiler transforms the DLP to ILP in order to schedule the
very wide Avispa+ family of Ultra Long Instruction Word (ULIW) CPUs, A number of recent
microprocessor start-ups acknowledge the benefit of automatically exploiting such
parallelism; however they remain suspiciously cryptic as to their technology’s ability to

automatically uncover that parallelism.

To address these issues and exploit DLP, the Electronic Systems Design Group at
Loughborough University embarked in an initially manual process of quantifying the amount
of data parallelism in media and telecom workloads. Our studies characterized precisely the
theoretical performance benefit of vectorized media, telecom and scientific workloads and
resulted in a systematic methodology for developing vector instruction set architecture (ISA)

extensions for established architectures.

The results of this work have shown benefits in media and telecom applications when the
starting points are the publicly-available implementations such as the MPEG-2 TMS, the
open-source MPEG4 XViD and the open-source X264 codes. Communication with industry
has established that the algorithms that are suitable for SoC-based products are highly-
optimized and assembly-recoded versions of such publicly available codes. An industrial
colleague, Mr. John Edwards from Motorola UK, quantified the performance improvement
going to hand-coded, optimized assembly versions from publicly available codes to be within
an order of magnitude (factor of ten). As we don’t have access to such optimized
implementations, we postulate that the algorithmic benefit achieved in our studies will be
achievable on the hand optimized codes as well. It is interesting to state that we realized
tremendous benefits in highly regular scientific applications such as 3D transmission line
modelling (TLM) codes. These are short codes (kernels) that are characterized by high spatial
and temporal regularity in data accesses as well as very high floating-point computational

requirements.

To harness DLP within the constraints of an SoC embedded system, we architected and
currently develop a number of data-parallel accelerators for media, telecom and scientific
workloads with a clear focus on tightly integrating such coprocessors to an open-source,
configurable 32-bit Sparc V8 compliant RISC CPU core, developed for the European Space

Agency by Gaisler Research in Sweden.

12

1.1.2 Thread Level Parallelism

Thread-level parallelism refers to the parallel execution of parts of the control flow graph
(CFG) of the software application via a collection of processors (processor contexts) typically
(but not necessarily) in a shared memory configuration, while fully observing sequential
execution semantics (data dependencies). Typical SoC architectures that can exploit and
benefit from this form of parallelism are chip-multiprocessors (CMP), multi-threaded
processors (MT) or multithreaded chip-multiprocessors (CMP-MT). A very dramatic example
of the later architecture is the ‘Niagara’ CPU under development by Sun Microsystems. The
processor includes eight scalar Sparc V9 CPU ‘cores’, each being a 4-way MT-processor in a
shared memory configuration. As a result, a single device accommodates 32 CPU contexts
allowing for the dramatic improvement in the execution performance of threaded server
codes. Though not an embedded system in its truest sense, such CMP-MT configurations are

expected to become dominant in 90nm silicon nodes and beyond.

This thematic area, in the contexts of current and emerging video coding standards, is
discussed in contributions PC5 and PC8. In addition, the Electronic Systems Design Group is
transforming the high performance H264 standard and its X264 open-source implementation
to a thread-parallel version. The potential of TLP is evident from the already published
research as well as our ongoing efforts in the field. In fact, data suggest that under ideal
communications (execution on a PRAM model), the thread-parallel MPEG-2 TMS

implementation provides significantly beiter performance than the data-paraltel version.

Finally, we observe in the video coding subset of the workloads that TLP is a complementary
form of parallelism to parallelism at the data level (typically available at inner loops) and can
be found at the outer loop levels of the compute-intensive areas of the application. This
observation suggests that a SoC chip vector multiprocessor (multi-vector computer) in a
shared memory configuration is a very potent engine for the real-time execution of such
codes. I have worked independently and for a number of years in the arca of vector
multiprocessors and the outcome is the SS_SPARC project which is briefly discussed in the

‘future research’ section.

3

1.1.3 The software-hardware interface

This thematic area, covered in PJ1, PJ2, PI3, PJ4, PC1, PC2, PC3 and PC4 is probably the
most conceptually difficult area to appreciate for established software developers who
normally deal with fixed ISAs. Qur research has extended these ideas by proposing vector
ISA extensions, primarily designed around a private (non-architecturally-specified) register
file. These data-parallel extensions are encapsulated within a generic microarchitectural
framework (coprocessor) that is closely-coupled to the 32-bit Leon-2 CPU. Nowadays, these
ideas are becoming more widespread and we witness the emergence of an increasing number
of CPU intellectual-property (IP) start-ups that advocate ISA extensibility. In particular,
Stretch Inc. has produced an application-specific integrated circuit (ASIC) which includes a
modified Tensilica Xtensa Core and an uncommitted (embedded) field-programmable gate
array (FPGA) fabric. The device is complemented by automatic tools (including a C compiler,
and it appears, a vectorizer) which, given the target application, will automatically compile,
profile, and generate data-parallel datapaths and scalar custom instructions in the
reconfigurable fabric with the remainder of the application running on the Xtensa core. This is
a level of automation previously unheard of (perhaps with the exception of the latest Tensilica
C compiler and FLIX execution semantics) which can potentially provide tremendous power

to system developers, without the need to go the ASIC route.

I strongly advocate the route taken by Stretch with the exception that automation should be
applied at ‘design time’. This would provide much improved performance, both from a
microarchitecture as well as from a performance point of view, but at the expense of having to
produce an ASIC. This is the route followed by Tensilica and currently looked at by ARC
International. The Electronic Systems Design Group will focus on automatic ISA Extension

development in the coming months.

1.1.4 Instruction Level Parallelism

Microprocessor manufacturers have strived to extract as much ILP as possible from sequential
applications in programmable, pipelined architectures. ILP is a low-level form of parallelism

in the sense that, unless the human programmer is willing to code an application explicitly in

14

assembly, ILP can’t be controlled and is thus left to the capabilities of the compiler to expose

it and that of the underlying ILP microarchitecture to execute it.

We have witnessed an explosion in the capability of ILP architectures in desktop and large-
scale systems. Taking as an example the largest microprocessor vendor, the first major
attempt to exploit ILP was with the Pentium P5 microarchitecture; a dual-issue, statically-
scheduled CPU with a high performance Floating Point Unit (FPU). A number of other
microprocessor vendors have produced similar microarchitectures the most striking of which
was the Alpha architecture whose first implementation, the 21064, shattered the clock
frequency records when it was first introduced in 1992 at an operating frequency of 200 MHz.
Subsequent implementations of the X86 and Alpha architectures materialized, each
increasingly more complex and using more sophisticated dynamic features for exposing and

exploiting the limited ILP available in desktop workloads.

In the embedded domain however, there have been few significant attempts in developing
ILP-capable architectures. This is primarily attributed to the perceived lack of ILP and the
abundance of other forms of parallelism such as TLP and DLP in the target application area as
well as the very limited power budgets of battery-powered embedded devices. I do however
believe that within their organizatiénal constraints and engineering budgets, embedded CPU

vendors could still extract performance benefits by implementing low-order ILP pipelines.

Théugh not directly presented in fhis thesis, the author is working in a high-performance ILP,
DLP and TLP-capable RISC-based ASIC processor architecture which is highly

parameterized in both the architecture and microarchitecture axes.

1.2 Methodology

The methodologies followed across all three research themes originate from established
industrial practice that I was exposed to when I was working as a professional engineer for
ARC International and as an ASIC designer for INTRACOM. One of the major issues at that
time, and an issue I am confident applies to most major embedded CPU IP providers, was the
lack of precise data on the potential benefit of exploiting the forms of parallelism discussed
above, Clearly, techniques such as profiling are well established, however at the time, ARC

did not address the issues of vectorization, manual or automatic vector ISA design, threading

15

and execution on a parallel-RAM (PRAM) model. To the best of my knowledge, these issues
were not being addressed at ARM, MIPS and Tensilica at that time.

After joining the Department of Electronic and Electrical Engineering at Loughborough
University, I focused on developing the infrastructure that I deemed important in an effort to
quantify and exploit parallelism at all levels. This has led to two major contributions in the
domain of architectural simulators (ISS) for embedded CPUs. Starting with the publicly
available Simplescalar computer architecture research tools, 1 developed a systematic
methodology for adding additional programmer-visible state to the default ISS (sim-profile).
This led to the development of a new simulator known as sim-vector which has become the
standard tool by which the Electronic Systems Design Group at Loughborough has been
studying vectorized workloads. Subsequently, T re-architected the sim-profile simulator, part
of the simplescaldr tools which resulted in a second-generation simulator known as sim-
system, Sim-system can be considered as an Exclusive-Read, Exclusive-Write (EREW)
Parallel RAM (PRAM) simulator and has been utilized very successfully in studying
statically-threaded workloads. It is interesting to note that the threading and execution

methodologies are interoperable with the shared-memory OpenMP API,

In addition, I developed most of the scripting support infrastructure to run the newly
developed simulators and automatically collect the results and trained all my Ph.D. students
and senior researchers to actively study DLP and TLP. The simulators and the collection of

scripts are used continuously within the Electronics Systems Design Group.

1.3 Further work

This section briefly presents ongoing and near-future research initiated and managed by the

author:

1.3.1 Advanced software optimization tools

The issue of automatic software optimization, which includes vectorization along the inner

loops, threading across the outer loops, compiler-directed prefetching for hiding memory

16

latencies, automatic data alignment for multi-banked on-chip memory hierarchies and custom
ISA extensions constitutes what many CPU architects would consider to be the Holy Grail of
Computer Architecture. Research in the past thirty years has established solutions to some of
these issues however, 1 strongly advocate a holistic approach, one that would be independent
of ISA and application domain. Such tools, if they existed, would assist next-generation SoC
designers in precisely studying, profiling, parallelizing and optimizing their codes, in a
generic way, to match a generic and highly scalable, programmable, SoC platform.
Subsequently, co-simulation of the generic platform and the optimized software and design
space exploration would yield the final optimization parameters that would lead to a near-

optimal, software-based solution.

1.3.2 The System Design Framework

The System Design Framework project has been designed to give the Electronic Systems
Design Group a powerful tool to probe the microarchitecture space of next-generation
streaming Systems-on-Chip. The SDF is the cycle-accurate back-end to sim-system and will
permit the modelling of emerging (5-10 years projection) microarchitectures with near-RTL
accuracy. Our studies on vector and threaded workloads were carried out with sim-system
(and its predecessor, sim-vector) which gave us confidence that exploitation of parallelism at
all levels is the way to approach the development of VLSI systems of substantial processing
capability and complexity. We are actively pursuing this research project and currently we are
in talks with BAE Systems to finalize support and commitment to our approach. The
successfully blending of object-oriented system design methodologies as advocated by my
colleagues Dr. David Mulvaney and Mr. Ashwin Kumaraswamy has opened the door to many
exciting possibilities for the particular work. This area appears to be of great importance and
this is reflected on the Gatsbir Grant, awarded to the Group as pathfinder funding to further
develop this technology. In addition, we are completing the patent application process for the
Universal Modelling Language (UML)-to-SystemC part of the flow and we target the United
States Patent and Trademarks Office (USPTO).

17

1.3.3 Fault-Tolerant Parametric Multiprocessor Kernel for mission-critical applications

This is an active project with my colleagues, Dr. James Flint and Mr. Emmanuel Touloupis.
Over the past two years, we developed a unique, fault-tolerant version of the Leon-2 CPU
system that shows substantial tolerance against single-event and multi-event upsets. The
microarchitecture is based on the triplication of the execution pipeline which differentiates
our method from other techniques which involve triplication of the microarchitecture state
flip-flops. The pipeline is characterized by a distributed voting scheme for the per-cycle
validation of all microarchitecture state across all three pipelines. During normal operation,
the system executes the application software on all three pipelines but with only one pipeline
committing architecture state (register file and memory values). On detection of a single or
multi-bit error, the distributed control logic automatically re-configures the triplicated
pipeline by taking out the particular datapath that developed the fault and entering a special
pair mode of operation, This operation takes only one cycle. Subsequently, the faulty pipeline
is re-introduced after a programmable number of cycles at which point the system enters
again TMR mode of operation. If a further fault is detected during operation in pair mode, the
system enters an automatic restart procedure which leads to a sofiware reset and the rebooting
of the CPU.

We have successfully developed the architecture, implemented the microarchitecture,
produced ASIC macros of the CPU and collected a significant number of simulation results
when executing the automotive subset of benchmarks in the MiBench benchmark suite. Our
findings have been reported on national and international conferences [7 15 17] and are the
subject of an ongoing patent application. In addition, our industrial collaborators, MIRA Ltd,
have expressed interest to develop this idea further into automotive X-by-wire and they
currently champion the patenting process. Dr. Flint and Mr. Touloupis have agreed to pursue
this further through the development of a configurable, SoC execution kernel and associated
infrastructure for such systems. We are drafting an EPSRC proposal for this system and a US

Patent for the existing multi-pipeline, single-context, fault-tolerant CPU.

18

1.3.4 The Ultimate ASIC CPU approach: The S§_SPARC

This is a major effort to develop a very high performance configurable, extensible CPU
system that efficiently handles all the forms of parallelism as discussed in this chapter. I have
been working on this over a number of years and the current state of the design is satisfactory.
The CPU is a multi (five)-issue, in-order-dispatch, out-of-order commit, Sparc V8 compliant
microarchitecture parameterized as to the number of CPU contexts, memory hierarchies, and
DLP infrastructure. 1 envision this design as a replacement for the arbitrary choice of
microcontroller/CPU/DSP combinations in current and next generation SoCs due to its unique
parameterization, streaming and execution bandwidth, and configurability and extensibility
options. The licensing model of the design is yet to be finalized and the route by which it will

be made available is also not clear at present.

1.4 Author Contributions in the published works

This section discusses in detail my contribution to each of the published works.

Paper PJI

The process of developing two scalar ISA extensions to cormplement the Simplescalar and
Sparc V8 ISAs along with the embodiment of the first ISA in the newly-developed sim-vector
ISS was my responsibility. Dr. J. Nunez provided assistance in the development of the private
register file solution and its subsequent benchmarking. In addition, I developed the scripting
infrastructure to automatically run the workloads over all configurations and established the
methodology by which research in ISA design is carried out in the Electronic Systems Design
Group.

Paper PJ2

The engincering methods of developing a custom vector ISA and subsequently, a vector
accelerator for the ITU-T G.729.A and G.723.1 speech coding algorithms were my primary

éontributions in this work. The whole concept originated after long conversations in 2002
19

with one of the senior software experts at ARC International’s DSP group, Dr. Dariush
Baghbadrani, during which we sought ways of addressing the limitations of the dual 16-bit
ARC Tangent A4 CPU DSP engine. The methodology followed since then led to the
development and continuous enrichment of ‘sim-vector’, the group’s proprietary ISS. In
addition, I developed the scripting infrastructure to automatically run the workloads over all

configurations and collect the simulation results,

Paper PJ3

My contributions in this work related to the development of the vector ISA for the
acceleration of MPEG-2, MPEG-4 (XViD) and H264 (proprietary ST Microelectronics
implementation), the update of sim-vector and subsequent collection of results, the
development of the common vector coprocessor for accelerating the inner loop of motion
estimation (ME) in all algorithms, the development of the processot-coprocessor interface,
RTL coding, front-end synthesis and back-end implementétion. Dr. Nunez provided

significant help in the vectorization process of the MPEG-4 (XViD) workload,

Pdper PJ4

This contribution was in a slightly different area to my direct research interests. As a result,
my contributions in this work were primarily around the processor-coprocessor interface, the
precise eXception mechanism and ways to introduce both programmer (visible) and
microarchitecture (invisible) state in a side-pipeline, running in parallel to the main CPU. In
addition, I performed the ASIC synthesis front-end tasks and all associated back-end

operations including physical synthesis and detailed routing.

Paper PJ5

My contributions to this work related to input to the concept of different scanning-orders and
methods of minimizing the (expected) very high cache misses ratios and associated latencies,

the setting up of the simulation infrastructure based around sim-vector and the automatic

20

collection of results over a period of time. My results were subsequently compared to those
collected by the other two researchers which used both abstract performance metrics as well

as real-time measurements and correlated reasonably well.

Paper PCI

This paper preceded contribution PJ1 and discusses the development of one scalar accelerator
for the G.729.A speech coding standard, My contributions were in the development of that
scalar ISA, its introduction in the sim-vector ISS and the definition of the microarchitecture
and means of introducing a side-datapath to the default Leon-2 CPU. I also developed the
scripting infrastructure to automatically run the workloads over all input vectors and collect

the results

Paper PC2

Algorithmic profiling, vector ISA definition, parameterization, microarchitecture specification
and implementation were my responsibility in this work. Mr. Sharukh Agha developed 14
sub-sampling (fast) ME algorithms which were subsequently studied, in the context of a
parametric vector architecture. These results were not published in this conference but are
under scrutiny by Dr. Vince Dwyer, Mr. Agha and the author and scheduled to be submitted
to the IEEE 2006 International Conference on Consumer Electronics (ICCE 2006).

Paper PC3

In this paper, I contributed to the algorithmic profiling, vector ISA definition, the
parameterization, microarchitecture specification and ASIC implementation of the combined

32-bit RISC CPU and the parametric vector accelerator.

21

Paper PC4

My contribution in this work was in the specification of the way the code should be
(explicitly) vectorized, the vector floating point ISA, microarchitecture (floating-point
datapath), the combined pipeline and its communication mechanism with the scalar 32-bit
RISC CPU. Dr. James Flint provided the initial 3D TLM kernel which was jointly re-written
to expose the DLP (in the inner loops) and the TLP (in the outer loops).

Paper PC5

The design and implementation of both the multi-threaded instruction set simulator (MT-ISS),
the barrier mechanism and the synchronization principle were my contributions in this work.
In particular, the simplescalar toolset was re-engineered to include a (configurable) number of
extra CPU contexts, additional state was added to each context to facilitate synchronization
(hardware-like barrier mechanism) as well as a number of machine states (sleep modes) were
introduced. Sim-system proved to be an invaluable tool in all out studies in threaded
consumer and scientific codes and has eventually become our mainstream simulator. A
further, ongoing effort involves the production of a single static and multiple dynamic
execution fraces from sim-system which are consumed by a cycle-accurate back-end. This
effort will allow us to model arbitrary System-on-Chip multiprocessors (CMP), multithreaded
processors (MT) or multithreaded multiprocessors (CMP-MT) as well as arbitrary memory

hierarchies and interconnect.

Paper PC6

My contribution in this work was twofold: Firstly, in the refinement and ‘industrialization’ of
the core tool developed by Mr. Ashwin Kumaraswamy, I proposed a different ESL target
(SystemC) after extensive experimentation with an industrial-strength SystemC
compiler/synthesizer. As a result, the flow was streamlined and the loop was closed, from
system level specification capture in UML, all the way down to GDS. The second
contrtbution was in the design and implementation of the multithreaded instruction set

simulator used to collect the theoretical results from the MPEG-4 video encoder. The

22

combined effort of specification capture and SoC modelling has lead the Electronic Systems
Design Group to proposed a holistic approach to the grant challenge of specification capture,
all the way to silicon, of highly complex, next generation SoC platforms for media and

scientific workloads.

Paper PC7

My contribution was in the deployment of custom vector ISA extensions for the efficient
execution of a number of algorithmic (sub-sampling) ME algorithms developed by Mr.
Sharukh Agha. The theoretical study on the RBSAD was performed by Dr, Vince Dwyer. In
particular, Mr. Agha developed a substantial number of sub-sampling ME algorithms and
variations which were profiled and evaluated for the vector ISA extensions identified in PC2.
A larger number of results are available which will be published at a future IEEE Consumer

Electronics Conference.

Paper PC8

Algorithmic profiling, scripting support, implementation of the PRAM simulator and overall
guidance were my responsibilities in this work. Mr. Tom Jacobs very meticulously
parallelized the convoluted video coding workload and Dr. Nunez worked on the

vectorization aspect of the coder.

Paper PC9

My contribution in this work related to the setup of the scripting infrastructure, the
development of the simulators, the profiling and evaluation processes and the overall

guidance and supervision of the two researchers, Mr. Simon R, Parr and Mrs. K. Koutsomyti.

23

Group PJ: Published Journal Papers on Parallelism and the Software/Hardware

Interface in embedded systems

PI1:

V. A. Chouliaras, J. L. Nunez, ‘Scalar Coprocessors for accelerating the G723.1 and G7294

Speech Coders’, IEEE Transactions on Consumer Electronics, Vol. 49, Issue 3, Aug. 2003,

pg. 703-710, ISSN:0098-3063
This paper discusses a number of scalar ISA extensions developed to accelerate the
ITU-T G.723.1 and G.729.A speech coding standards. In particular, results are
presented for two scalar coprocessors, one with and one without a private, scalar
register file, which are tightly attached to a 32-bit RISC CPU. The results demonstrate
that the coprocessor employing a private register file achieves superior performance
due to relieving the pressure on register allocation during the compilation process.
Both coprocessors are designed to be tightly attached to the open-source Leon-2 Sparc
V8 compliant CPU. A custom coprocessor channel is presented and the
microarchitecture is detailed.

PJ2:

V. A. Chouliaras, J. L. Nunez, K. Koutsomyti, S. R. Parr, D. J. Mulvaney, S. Datta, ‘On the

development of a custom vector accelerator for high-performance speech coding’, IEE

Electronic Letters, Vol. 40, Issue 24, 25 Nov. 2004, pg 1559-1561
This is the first journal contribution in which results are presented for a collection of
vector extensions to the Sparc V8 ISA for accelerating the G.723.1 and G.279.A
speech coding standards. Results indicate that a parametric data-parallel architecture
and microarchitecture, 32 bytes wide, is sufficient to capture the greatest amount of
DLP in the speech coding workloads. The results in this work are complementary to
the data presented in PJ1.

PJ3:

V. A. Chouliaras J. L. Nunez, D. J. Mulvaney, F. Rovati, D. Alfonso, ‘4 Multi-standard

Video coding accelerator based on a vector architecture’, IEEE Transactions on Consumer

Electronics, Vol. 51, Issue 1, Feb 2005, pg 160-167, ISSN:0098-3063
This work quantifies the DLP in a significant subset of embedded workloads, namely
media (consumer) applications and in particular, transform-based video coding. The
paper discusses the profiling of the MPEG-2 TMS, MPEG-4 (XViD) video coders as

24

Pl4:

well as a proprietary implementation of the H264 video encoder, supplied by ST
Microelectronics. Subsequently, a set of approximately 45 vector instruction
extensions to the Sparc V8 ISA are identified and developed and a pipelined
microarchitecture is proposed to implement them. The paper includes a VLSI
implementation of the combined processor-coprocessor design, implementing a subset

of the MPEG-4 vector ISA, targeted at a high-performance 0.13 yum CMOS process

J. L. Nunez, V. A. Chouliaras, ‘High Performance Arithmetic Coding VLSI Macro for the

H264 Video Compression Standard’, IEEE Transactions on Consumer Electronics Vol. 51,
Issue 1, Feb 2005, pg 144-151 ISSN:0098-3063

PJ5:

An interesting alternative to accelerating the data-parallel parts of the H264 video
coding standards is presented in this work, In particular, the complexity, in terms of
dynamic instruction count as well as function calls, of the arithmetic coding process is
measured in the H264 video coding standard JM 9.2 reference implementation, We
subsequently developed a new, hardware-focused arithmetic coding algorithm realized
as a multiplication free, non-stalling pipeline, able to process one bit per cycle while
maintaining the original arithmetic coding efficiency of the H264 reference
implementation, The functionality of the arithmetic coding engine is encapsulated in a
custom coprocessor which attaches to our default RISC CPU. Issues on maintaining a
precise exception model for the software are identified and solved at the

microarchitecture level.

Grecos, C., Saparon, A. and V. A. Chouliaras., ‘Three novel low complexity scanning orders
Jor MPEG-2 full search motion estimation’, Real Time Imaging, 10, February 2004, pp 53-65,
ISBN 1077-2014

This paper presents an interesting alternative, based purely on algorithmic
optimizations, to the computational complexity issues apparent in real-time video
encoding. In particular, three scanning orders of similar complexity are identified for
the ME process in MPEG-2 TMS and it is shown that they reduce by approximately

7.1% the number of examined macroblocks, potentially reducing data cache misses.

25

Paper PJ1: V. A, Chouliaras, J. L. Nunez, ‘Scalar Coprocessors for accelerating the G723.1
and G729A4 Speech Coders’, IEEE Transactions on Consumer Electronics, Vol. 49, Issue 3,
Aug. 2003, pg. 703-710

26

V. A Chouliaras and J. Nunez: Scalar Coprocessors for Accelerating the G723.1 and G729A Speech Coders

703

Scalar Coprocessors for Accelerating the G723.1 and G729A
Speech Coders
Vassilios A. Chouliaras and Jose Nunez, Member, IEEE

Abstract — We investigate two scalar coprocessors for
accelerating the ITU-T G723.1 and G7294 speech coders.
Architecture space exploration indicates up 1o 72% reduction
in the total number of instructions executed through the
introduction of custom instructions and small changes to the C
reference code. The accelerators are designed to be attached
to a configurable embedded RISC CPU where they make use
of the host register file and Load/Store Infrastructure’.

Index Terms —Coprocessor, Embedded systems, RISC
CPU, Speech coding.

I. INTRODUCTION

Speech compression is utilized in a multitude of applications
including amongst others VoIP networks and digital satellite
systems. Typical consumer products comprise multimedia terminals,
digital dictation machines, videophones and IP phones. The G723.1
recommendation [1] in particular was designed to standardize
telephony and videoconferencing over public telephone lines
(POTS) and is part of the ITU H.324 standard.

This work investigates the benefit, in terms of complexity reduction,
of architecture (instruction) extensions for the efficient execution of
the above vocoders, building on previous work by the authors [6].
The identified extensions are implemented as coprocessors, tightly-
coupled to a configurable, embedded RISC processor.

There is a significant body of research into application
acceleration via targeted coprocessors: application domains are
diverse, ranging from cryptography [12]), maze-routing [7] to high-
end video processing [19]. Previous research info the efficient
execution of speech coders include [13] and [14] which describe the
necessary changes in the ITU reference code when targeting very
high-performance, offthe-self digital signal processors. [15]
describes a semi-automated chip-synthesis flow targeting a
horizontally microprogrammed (VLIW) embedded DSP
architecture, capable of executing one multiply-accumulate operation
per clock cycle. The workload in this case was the GSM half-rate
speech coder,

Our research is a continuation of [6] which describes instruction
set extensions, implemented in a moderate-complexity datapath
(coprocesser) attached to a configurable embedded processor, We
have investigated a second coprocessor configuration which includes
@ private register file. Results indicate that the new configuration is
superior the previously reported method,

V. A. Chouliaras is with the Depariment of Electronic and Elecirical
Engineering, University of Loughborough, Loughborough, Leicestershire
LE!L 3TU, UK (e-mail: V. A Chowliaras@lboro.ac.uk),

Jose Nunez is with the Depariment of Electronic and Electrical
Engineering, University of Loughborough, Loughborough, Leicestershire
LE11 3TU, UK (e-mail: J.L.Nunez-yancz@iboro.ac.uk).

Manuseript received May 22, 2003

" II, LPAS- BASED SPEECH CODERS

The G723.1 and G729A standards belong to the category of
Linear-Prediction Analysis-by-Synthesis (LPAS) [21] speech
coders. They produce low bit-rate, high-quality speech using a
combination of analysis-by-synthesis techniques where the
encoder {analysis) includes the decoder (synthesis) to determine
the initial excitation signal, and linear prediction techniques to
determine the coefficients of the speech synthesis filter. The
G723.1 standard specifies a dual rate speech coder that can
operate at 5.3 or 6.3 Kbps while the G729A operates at a rate
fixed at 8 Kbps. Quality improves with higher bit rates although
the overall performance of G723.1 at 6.3 Kb/s and G729A is
similar, A clear difference in thess coders is their algorithmic
delay where the total one-way delay of G729A of 25 ms
compares favorably with the 67.5 ms of G.723.1. Technically,
G723.1 at 6.3 Kbps differs from G729A and G723.1 at 5.3 Kbps
in the excitation model for the synthests filter. G.723.1 at 5.3
Kbps uses multi-pulse excitation with a maximum likelthood
quantizer (MP-MLQ) while G723.1 at 6.3 kbps and G729A use
code excited linear prediction (CELP) [21]. CELP coders are
based in a codebook that stores possible excitation sequences for
the synthesis filter. This is the most common realization of the
LPAS paradigm and its dataflow is depicted in figure 1.

In the figure, the original input speech is used to perform linear
prediction analysis and calculate the coefficients of a tenth-order
synthesis filter. The filter order models the number of resonant
frequencies or formants of the transfer function of the human
vocal tract. The excitation signal to the synthesis filter is
obtained from two codebooks that model the initial stages of the
human sound production system. An adaptive codebook is used
to model the pitch structure of voice sounds originating in the
vibrating vocal chords and a fixed codebook is used to model
unvoiced sounds such as nasal or plosive sounds. The residual
error between the reconstructed speech produced by the
synthesis filter and the original input speech is then further
processed by a perceptual weighting filter, The cutput signal
from this process is then meiched against the adaptive codebook
elements to determine the codebook index and gain that best
approximate the residual signal. The adaptive codebook
contribution is removed from the residual and the same process
is repeated using the fixed codebook. The index and gains for
both codebooks are assembled together with the synthesis filter
coefficients in the bitstream transmitted to the decoder. This
processing is done for every frame of 10 ms of voice signal. The
G729A decoder dataflow is illustrated in figure 2. The received
bitstream is disassembled to obtain the filter coefficients and the
codebook parameters. The excitation is constructed by adding
the adaptive and fixed codebook vectors scaled by their gains.
The excitation is then filtered through the same synthesis filter as

0098 3063/00 $10.00 © 2003 IEEE

704

during encoding. Additional post-processing of the speech

signal is performed to enhance its quality.

Transmilted
- — — - Bistream

Figure 1: G729A CELP Coder

O o) Shortorm. '
> Filte -

Figure 2: GT29A CELP Decoder

1. PROBLEM FORMULATION

This research identifies architecture and microarchitecture
requirements for the efficient implementation of the G729A
and G723.1 speech coders on high-performance, low-cost,
configurable microprocessors.

The workloads where initially executed and profiled in native
mode (Linux X86): Table 1 shows the relative amount of time
spent outside the DSP emulation instructions,

In order to investigate the potential acceleration of the
algorithms when executing on an embedded microprocessor,
the workload was recompited for the Simplescalar instruction
set architecture (ISA) [15]. Table 2 illustrates the simulated
processor profiling results,

As expected, the workloads spend a significant amount of
time/instructions executing the DSP emulation functions. It is
clear that efficient implementation of the DSP emulation
instructions on a configurable extensible microprocessor can
lead to a very high-performance, targeted-architecture for the
particular workloads. The small form-factor and reduced
power consumption of the proposed solution makes it a very
attractive candidate for replication and integration in an §oC
ASIC.

IEEE Transactions on Consumer Electronics, Vol. 49, No. 3, AUGUST 2003

Table 1: Relative amount of time spent outside the DSP emulation
instruetions

Algorithm Relative time (%, native)
G723 Coder 313
(G723 Decoder 22.8
G729 Coder 304
G729 Decoder 26.9

Table 2: Relative number of tota] instructions executed outside the DSP

emulation instructions
Algorithm Relative instructions (%, simulated)
G723 Coder 345
G723 Decoder 333
G729 Coder 342
G729 Decoder 37.2

This is the approach taken in this work; the Instruction Set
Architecture was chosen to be precisely the DSP emulation
instructions a3 they appear in the reference source. Tt is
summarized in table 3:

Table 3: Coprocessor ISA

Move ops Description

Mvre Move RISC CPU register to
COpProcessor register

Mver Move Coprocessor register to RISC
CPU register

Myrv Move RISC CPU register LSB to
coprocessor overflow

Mvevr Move coprocessor overflow to RISC
CPU register LSB

Data ops Description

Sature 32-16 bit ITU saturate

Add 16-bit add and saturate

Sub 16-bit sub and saturate

Abs_s 16-bit absolute value

1_abs 32-bit ahsolute value

Shl 16-bit Shifi-left with negative shift
support and saturation

Shr 16-bit shifi-right with negative shift
support and saturation

Negate 16-bit negation

Norm_s 16-bit normalization calculation

Norm_] 32-bit normalization calculation

L_add 32-bit add with overflow saturation

L_sub 32-bit sub with overflow and saturation

Mult 16x16->16 signed multiplication with
overflow and saturation

L_mult 16x16->32 signed muitiplication with
overflow and saturation

L_mac 16x16->32 multiplication and 32-bit
summation with overflow and saturation

L_msu 16x16->32 multiplication and 32-bit

Miscellaneous ops

subtraction with overflow and saturation
Description

Clv
Setv

Clear sticky overflow bit
Set sticky overflow bit

V. A, Chouliaras and J. Nunez: Scalar Coprocessors for Accelerating the G723.1 and G729A Speech Coders 705
IV. MICROARCHITECTURE f— 2 s 4 —f—s 7

We have investigated two microarchitectures: One that uses o mm_]m r—__,n—__J

the main CPU register file and another that utilizes its own, peop_n.cap_no N Ve

Both microarchitectures make use of the RISC memory peop_in holdn \ | /

subsystem (L1 Data cache) and are designed to be attached to poot_in vald N

a Sparc-V8 compliant SoC subsystem distributed upder LGP!, on ot 0] MK BB g - —

[10]. We choose to connect the coprocessors o the integer unit o i opree

pipeline directly instead of designing them as AHB-compliant poop_indin[at0; an

masters [I1] for performance reasons: Stand-alone AHB PoOR_ O] SoRY:D) ot

coprocessors are very effective when working on medium fo pesp_outi0)haldn

large blocks of streaming data. Although the workloads

perform a lot of work on blocks of data (samples), there were ~— Por-ouiCldeusto) TN

many more instances where we had to insert custom assembly ¥ nﬂ.‘é‘?‘.T"l‘,T""

code into irregular (non-iterative) blocks. As a result, we opted Poap_ou{1]haldn

for a very tightly-coupled configuration which accommodates
efficiently both cases. High-level views of both
microarchitectures are depicted in figures 4 and 6 respectively,
This section discusses a number of design parameters:

A. Coprocessor Inferface

The open-source embedded RISC processor lacked detailed
microarchitecture documentation. Initial experimentation with
the already existing coprocessor interface was inconclusive as
to its ability to operate in a pipelined fashion. That would have
had a detrimental effect on the performance of the
coprocessors and it was therefore decided to implement a new,
pipelined coprocessor interface. The newly developed
coprocessor port can handle two coprocessors and is able to
deliver an instruction on every cycle, External coprocessors
provide flow control to the main processor through a dedicated
stall signal.

The diagram of figure 3 shows & coprocessor data operation on
cycle 1 followed by a host-to-coprocessor register transfer on
cycle 2. In cycle 3, a coprocessor register is requested by the
RISC processor but due to internal stall conditions, data are
made available one cycle later than the expected time (cycle 5
instead of cycle 4). During that time, the main processor is
held with the holdn signal. Finally, 2 second read operation,
this time directed to Coprocessor 1, is initiated in cycle 6.
Results are made available to the main pipeline in cycle 7.

B. Microarchitecture 1. Using the main RISC CPU

Register File

This is the simplest microarchitecture since it makes use of the
main RISC processor register file, This type of approach has
been adopted by configurable microprocessor vendors [18]
[22] and it is effectively a side-datapath with associated
control, artached to the main CPU as depicted in Figure 4:

Figure 3: Pipelined coprocessor I'F

Instruction .
P Cache } ' °

T Lo way selecd mux
Fo T T a—

4 RF(1,2)

____ DATAPATH vy

RISCCPU -

Figure 4: Microarchitecture without vegister file

In this case, the coprocessor consists of the Datapath and the
Control Pipeline

Starting at the IFETCH stage, the main RISC processor fetches
one instruction word from a multi-way set-associative
instruction cache and clocks it into the instruction register.
RISC and coprocessor decoding take place concurrently at the
DECODE stage with the main RISC register file accessed at
the falling edge of the clock. Due to the significant number of
Multiply-add operations in the workload, a third read port was
added to the main CPU register file to accommodate single-

706

cycle addition (RF3). This port is depicted as an embedded
SRAM block, instantiated in the coprocessor hijerarchy,
clocked at the falling edge of the DECODE stage. Finally, all
result bypassing takes place in this stage.

The EXEC stage is the main processing stage for both the
RISC processor and the coprocessor, During this stage all non-
arithmetic operations are computed in the coprocessor. In
addition, the 16-bit signed-multiplication is performed. All
transfers between the main RISC pipeline and the internal
coprogessor state take place in this stage.

Coprocessor results are pipelined in the EXEC2 stage where
the add part of the Multiply-add operation is performed along
with saturation. During this stage, the L1 data cache is
accessed and one 32-bit word is returned to the main RISC
pipeline from the load path as depicted in the diagram. It is
this stage that qualifies state updates in the coprocessor side
since all possible exception conditions have been resolved.
Finally, results are clocked into a staging register prior to
committing to the RISC register file, on the falling edge of the
clock.

C. Microarchitecture 2: Using private Register File

This microarchitecture is considerably different to the previous
one due to utilizing a separate, 16x32-bit register file in
addition to a more elaborate control mechanism, The
coprocessor state is fully accessible from the RISC CPU and is
shown in figure 5:

hlwin]| 2o

:

Figure 5: Coprocessor Programmers Model

It consists of sixteen 32-bit registers and a sticky overflow bit,
Bi-directional transfer instructions, between the host RISC
processor and the coprocessor, were added to accommodate
the lack of Move-to-coprocessor/Move-from-coprocessor
instructions in the Sparc V3§ architecture [17].

The high-level schematic of the coprocessor with its own
register file is depicted in figure 6. In this case, the
coprocessor pipeling is segmented in three major sections:
Front-end, Control pipeline and Datapath,

Starting from the top, the main CPU reads an instruction from
the multi-way set-associative instruction cache and clocks it
into the instruction register.. The latched command is then
decoded, both at the RISC processor and the coprocessor
front-end, and register-file read-addresses are extracted. In
parallel, the coprocessor decoding logic computes a number of
control fields that are sent to the control pipeline.

During the EXEC/READ stage, the register file is accessed
followed by operand bypassing. The resolved operands oprl,
opr2 and opr3 are clocked into the operand registers where
they are utilized during the first execution stage (EXEC1).

IEEE Transactions on Consumer Electronics, Vol. 49, No. 3, AUGUST 2003

In DMEM/EXEC!, all shifting, normalization and
miscellaneous operations are performed. In addition, the
signed-multiplier is accessed if the command specifies that.
Results are passed to EXEC2 for the second stage of execution
where all arithmetic and saturation takes place.

The configuration of figure 6 permits the pipelined execution
of all the commands with a latency of 1 cycle. The only
exceptions are the multiply-add and multiply-subtract with
saturation, which span both execution stages and have a
latency of 2 cycles.

Instruction
Cache

)

l P aitaet T N ~
Y (pecone

BYPASS1

| READ
9
2

opr! o)

-
T
1
|

BHIFT | [Twnse cTH
UNIT UNIT || Blared
Hukt

aN3did ¥
“ JOHEINOD .

EXEC1

- BYPASS2

| Il

9] ——
EXEC2A
n CTRL
Aignad .
atder
Sdttiration
: . . g DATAPATH RF
C Lo RISCCPU T Y, . DATAPATH Y,

Figure 6: high-level microarchitecture

The following sections discuss in more detail the
microarchitecture blocks common to both coprocessors. These
include the EXEC1 and EXEC2 stages and lower hicrarchical
blocks.
1) EXEC! Stage

EXEC] includes datapath logic to perform 16x16 bit signed
multiplication, all ITU shift operations and a miscellaneous
block responsible for handling all opcodes not falling in the
previous category. These are depicted in figure 7

al Multiplier

This is the signed, 16-bit multiplier, Due to the highly
configurable nature of the RISC processor and the portability
requirements of this work, HDL constants are used to select
whether the multiplier is inferred in the RTL code or
instantiated. In the later case, a Booth-Encoded, Wallace-tree
multiplier [20] is utilized due to the higher pipelined
performance when compared to the implementations chosen by
the synthesis tools.

V. A. Chouliaras and J. Nunez: Scalar Coprocessors for Accelerating the G723,1 and G729A Speech Coders 707

2
§
Shite_rena(1f) :‘_‘

0
-—ﬁ%: oprasiny hFLreolit)
3116 opre10) shif_selv)

T shift_unit
Lodo

Top ———— s3_ron
g 150

oprie(18)
-
?SQL oprIe(18)
I i

miso_rass{18
mino_esaol1®)

i) 93 128 _f

]

a3_res |
1 s Ml

opr2o(10}
cm

de
o omie MUSD_UnIL
nep

oprt 150
signed 16
318 mult

Figure 7: EXEC1 Stage

mise,_ sty {2)

MuX_proc

e} #3_860V_I

Table 4: Multiplier performance vs. architecture (MHz)

Multiplier Unpipelined 2-stage
Synthesis/CS 204 330
Synthesis/NBW 376

Synthesis/WALL 385 502
WALL/No

BOOTH 345 476
WALL/BOOTH 370 574

Table 4 depicts the unpipelined and two-stage pipelined
maximum operating frequency of the 16x16 signed multiplier
in a high-performance 0.13 process. Our timing budget allows
for the use of a non-pipelined multiplier thus, simplifying
coprocessor pipeline design.

B Shift Unit

The shift unit implements the 16 and 32-bit ITU shift
operations. A particular characteristic of these operations is
the ability to specify negative shift amounts resulting in a
positive shift in the opposite direction. The high-level
schematic of the shift unit is depicted in figure 8.

2) EXEC2 Stage
This stage performs the Add-part of the MAC instruction as
well as all arithmetic and saturation. Results commit to the
private register file at the end of this cycle or return to the host
pipeline during stage DMEM. The common EXEC2 high-level
schematic is shown in figure 9.

1 &bl
v

sal_shl
aab)e

¥ _tese

Figure 8: ITU Shifter Schematic

[@ 2 (sature }- 2 fRF
+ B SEXT
®
——
operands to hostCPU
Figure 9: EXEC2 Stage high-level schematic
Y. RESULTS
Results were obtained for both coprocessors at the

architectural level with the baseline architecture being the
Simplescalar ISA, The workloads where compiled and all ITU
test vectors were validated on the standard architecture
simulator (sim-profile). Tables 5 and 6 depict the number of
simulated processor instructions required for each workload,
for the G723.1 and G729A algorithms respectively

Table 5: G723.1 unmodified instruction count

Test vector Instructions
Dx53mix (mix rate) 1,063,099,834
Dtx53mix (5.3 Kbits/s) 926,595,183
Dix63 (6.3 Kbits/s) 10,159,707,298

708
Table 6: GT29A unmodified instruction couvnt
Test vector Instructions
Algthm 62,620,904
Fixed 213,968,970
Lsp 3,677,189,411
Pitch 3,253,182,556
Tame 230,922,927

The workloads where then modified to include custom
assembly instructions and a new architecture-level simulator
(sim-coproc), based on the existing profiling simulator, was
designed. The test vectors were again simulated and the
algorithmic complexity was measured and compared to that
obtained in the previous run. Fully compliance to the ITU-T
test vectors was maintained at any instance.

A, Coprocessor without register file results

Tables 7 and 8 depict the average (over all test vectors),
relative algorithmic complexity for both the coder and decoder
of the G729A and G723.1 standards respectively when
compiled and simulated for a coprocessor using the RISC
processor register file.

Table 7: G729 Coder Results (average)

IEEE Transactions on Consumer Electronics, Vol, 49, No, 3, AUGUST 2003

ABS_S 0984 0.977 0.001 0.003
SHL 0981 0.965 0.003 0.012
SHR 0.981 0.959 0.000 0.006
L_SHL 0.936 0.908 0.044 0.051
L_SHR 0912 0.901 0.024 0.006
NEGATE 0912 0.901 0.000 0.000
L_ADD 0.824 0.819 0.083 0.082
L_SUB 0.814 0.804 0.010 0.015
ROUND 0.809 0.788 0.005 0.016
L_ABS 0.809 0.788 0.000 0.000
NORM_S 0.809 0.788 0.000 0.000
NORM_L 0.808 (.787 0.001 0.001
DIV_S§ 0.807 0.787 0.000 0.001
MULT 0.806 0.786 0.001 0.001
L_MULT 0.678 0.670 0.129 0.114
L_MAC 0.563 0.541 0.114 0.129
L_MSU 0.543 0510 0.020 0.031

The tables illustrate the fractional complexity reduction as
extension instructions are added, one by one, for both coder
and decoder. In the case of the G729A coder, an average
architectural improvement in algorithmic complexity of the
order of 49% (coder) to 47.1% (decoder) is achieved. The
G723.1 standard achieves similar figures with to 45.7% and

Normalized Coder Decoder : :

. 49% complexity reduction for the coder and the decoder
Complexity Cader Decoder Deita Delta respectively. These improvement figures do not take into
SATURE 0.940 0.972 0.060 0.028 account cycle-effects such as cache misses, prefetching or the
ADD 0.937 0.969 0.003 0.002 possibility of muiti-issue.

SUB 0.927 0.967 0.010 0.002)) .
ABS_S 0.927 0.967 0.000 0.000 B. Coprocessor with private register file results
SHL 0.924 0.962 0.003 0.005 Tables 9 and 10 show th y I testvectors)
SHR 0.923 0.956 0.002 0.006 es 9 and 10 show the average (over all test-vectors),
LSHL 08 0898 om4 0oy L e o with o privae regser
L_SHR 0.896 0.895 0.002 0.002 file and utilizing all the defined instructions of table 3 {except
NEGATE 0.896 0.895 0.000 0.000 division). Further substantial gains are observed: The G723.1
L_ADD 0.814 0.837 0.082 0.059 coder demonstrates an average relative complexity of 65%
L_SUB 0.802 0.812 0.012 0.023 compared to the unmodified standard and an improvement of
ROUND 0.796 0.801 0.006 0.011 35.6% over to the previous architecture whereas the G729A
L_ABS 0.796 (.841 0.000 0.000 standard achieves 69% of unmodified complexity and
NORM § 0,796 0.801 0.000 0.000 improvement of 39.3% compared to the previous architecture.
NORM L, 0795 0.799 0.001 0.002 It is clear that the introduction of the coprocessor register file
DIV S 0.792 0.797 0.003 0.002 provided significant benefit due to reducing the register
MULT 0771 0.784 0.021 0.012 pressure compared to the previous mc‘thod. In adc.im.on, a

significant number of Load/Store operations were ecliminated
L MULT 0.660 0.674 0.111 0.110 since transient values are now cached in the dedicated register
L_MAC 0.534 0.580 0.126 0.094 file.
L MSU 0.510 0.529 0.024 0.051

Table 9: G723.1 Results
Table 8: G723.1 Coder Results (average) Benchmark Instruction Count Fractional
{Coprocessor) complexity

Normalized Coder Decoder Dtx53mix (mix rate) 380,717,669 0.36
Complexity Coder Decoder Delta Delta DtxS3mix (5.3 257,744,402 0.28
SATURE 0.987 0985 0.013 0.015 Kbits/s)
ADD 0.985 0.981 0.002 0.004 Dtx63 (6.3 Kbits/s) 4,261,239,585 0.42
SUB 0985 0.980 0.000 0.000 Average 0.35

V. A. Chouliaras and J. Nunez: Scalar Coprocessors for Accelerating the G723.1 and G729A Speech Coders

Table 10: G729A Resulis

Benchmark Instruction Count Fractional
{Comprocessor) complexity
Algthm 19,765,353 0.31
Fixed 67,662,019 0.31
Lsp 1,257,199,028 0.31
Pitch 1,030,256,280 0.31
Tame 73,056,645 0.31
Average 0.31

V1. SOC SUBSYSTEM

Architecture research demonstrated the superiority of the
coprocessor with a private register file. This microarchitecture
is currently being implemented in RTL VHDL as a tightly-
coupled coprocessor for the Leon Sparc-V8 CPU. Detailed
microarchitecture analysis followed by trial synthesis
confirmed that all instructions can fit in a single high-
frequency cycle resulting in a latency of 1 and an initiation
rate of 1. Exceptions to this are the Multiply-add/subtract
instructions and the short divide with latency/initiation rate of
2/1 and 17/17 respectively. In particular, it was decided that
due to the very low improvement, the iterative divider block
would not be utilized.

The CPU/Coprocessor attaches to a 32-bit AHB system which
connects to an external host via an AHB-PCI Bridge. This is
depicted in figure 10,

Instruction
Cache

709

A, Block-level verification

The reference code DSP emulation instructions were
instrumented to produce human-readable files of their input
operands, the state of the global Overflow flag and output
results. These vectors were subsequently fed into the
individual datapath blocks and their functionality validated on
a per-workload basis.

B, System level verification

In parallel to block-level verification, system verification
involved the design of a DMA coniroller, to transfer the
embedded processor binary and frames from the host memory
into the FPGA board SDRAM. The RISC processor, without
the coprocessor, executed the workload and agreement with
the ITU-T test vectors was obtained,

b instruction

[&]

8

)

&

o

5]

] LoE

5

2 RISCORU————=
Front-end o oR r

w

& T

5 Y
[} -,
H RISC Hner)
§ cPU ol
3]
Iy AHBS Wishbone
Wishbone \nterconnect
Bridge

PCI IfF

Host

Figure 10: SoC Subsystem

The optimized speech cader and the frames to be processed
are transferred with DMA from the host PC to the SDRAM
memoty of the RISC/Coprocessor FPGA board. After that, the
RISC CPU/copracessor combination processes the frames and
stores the compressed frames in local memory (SDRAM). The
compressed frames are transferred back to the PC memory for
comparison with the ITU-T test vectors.

VII. SYSTEM VERIFICATION

Significant effort is spent in validating the system both at
block as well as system level [[6]:

| ALU
Bypass Buses __|

§ |4 DataCache

o R B i

Q Ld/St Unit B

.)

e Coprocessor

7 Main Execution Pipeline
Figure 11: High-level schematic of limited dual-issuee CPU

VIII. CONCLUSIONS AND FUTURE WORK

We utilized a combination of techniques to profile and
optimize the ITU-T G729A and G723.1 speech coders.

A further significant source of optimization lies with tapping
the amount of data-level parallelism available in the
workloads. Our group currently investigates vector
architectures for the efficient execution of the speech coders.

710

Additional insight on the cycle effects will be provided
through the cycle-accurate modeling of both coprocessors
when attached to a more generic RISC CPU with limited dual-
issue ability. This is portrayed in figure 11 where a high-
performance scalar RISC processor with 8 pipeline stages and
limited dual-issue capability (one scalar, one coprocessor) is
described. This will allow for experimentation of the
processor/co-processor design space and provide insight into
the necessary microarchitecture requirements for the efficient
execution of the workloads,

Finally, we are building the RTL model of the
microarchitecture of figure 6 in the context of the system of
figure 10.

REFERENCES

[11 TTU-T Recommendation G.723.1, ‘Dwal Rate Speech coder for
multimedia communications tramsmitting at 5.3 and 6.3 kbits/s", 3/96

[2] ITU-T Recommendation G.729, ‘Coding of speech ar 8 kbits/s using
conjugate-structure aigebratc~code-excited linear-prediction (CS-
ACELP}’, 3196

[3] M. Prasad, P. Arcy, M. Diamondstein, H. Srinivas, ‘Half-Rate GSM
Vocoder Implementation on a Dual-Mac Digital Signal Processor’,
Proceedings of the 1997 IEEE International Conference on Agoustics,
Speech and Signal Processing, pg 619-622

{4] Vinod Kathail, Shail Aditya, Robert Schreiber, B. Ramakrishna Rau,
Darren C, Cronquist, Mukund Sivaraman, ‘PICO: Awomatically
designing custom compnters’, IEEE Computer, 35(9), September 2002

[5]1 D. Burger, T. Austin, ‘Evalfuaiing Future Microprocessors: The
Simplescalar Tool Set’ http://www.simplescalar.com

[6] V. A, Chouliaras, J. L. Nunez, “A scalar coprocessor for accelerating
the G723.1 and G7294 speech coders”, accepted for publication in the
IEEE International Conference on Consumer Electronics (ICCEQ3)

[71 Y. Won, S. Sahni, Y. El-Ziq, '4 hardware accelerator for maze
routing’, IEEE Trans on Computers, vol. 39, no. 1, pp. 141-145, Jan,
1990

[8) R. Cox, Three new speech coders from the ITU cover a range of
applications’, IEEE Communications magazine, pp. 40-47, Sept 1997

[91 R. Cox, P. Kroon, ‘Low bit-rate speech coders for multimedia

communication’, [EEE Communications magazine, pp.34-41, December

1996

‘The Leon-2 processor

www.gaisler.com

[11] ‘4MBA Specification (Rev 2.6))°, www.arm.com

[12] A. Royo, J. Moran, C. Lopez, “Design and implementation of a
copracessor for cryptography applications”, Procecdings of the 1997
IEEE European Design and Test Conference (ED&TC’97), pg 213-217

[13] B. Costingscu, R. Ungurcanu, M. Stoica, E. Medve, R. Pread, M.
Alexiu, C. Nas, ITU-T G729 Implementation on Starcore SCI0’,
AN2094/D, Rev. 0,02/2001, www.motorola.com

[10] User’s manual, XST edition, ver. [.0.14",

IEEE Transactions on Consumer Electronics, Vol. 49, Mo, 3, AUGUST 2003

[14] 8. Chang, J. Hu, ‘Realtime implementation of G723.1 speech codec on
a I6-bit DSP processor', Department of electronic and control
engineering, National Chiao Tung Univesity, Hsinchu, Taiwan, RO.C

[15] M. Soler, A. Andre, E. Closse, J. Laval, F. Balestro, D. Morche, P, Senn,
‘An embedded DSP platform for multi-standard JTU G728, G729 &
G723.1 audio compression’, France Telecom, CNET

[16] M. Medina, G, Ezer, P. Konas, 'Verification of configurable processor
cores’, proceedings of the 2000 Design Automation Conference, Los
Angeles, Califomia

[17] 'The Sparc Architecture Manual Version 8", www.sparc.com

[18] A. Wang, E. Killian, D. Maydan, C. Rown, ‘Hardware/software
instruction set configurability for system-on-chip processors’,
proceedings of the 2001 Design Automation Conference, Las Vegas,
Nevada

[19] W, Raab, N. Bruels, U. Hachmann, J. Hamisch, U, Ramacher, C. Sauer,
A. Techmer, ‘4 100-GOPS programmable processor for vehicle vision
systems’, IEEE Design and Test of Computers, pp.8-16, Jan-Feb 2003

[20] Arithmetic module generator, hitp:/fwww.fysel.ntnu,no/modgen/

[21] A. 5. Spanias, ‘Speech Coding: 4 twtorial review’, Proceedings of the
IEEE, vol. 82, no. 10, pp.1541-1581, October 1994

[22] Y. Zhao, A. Wang, M. Moskewicz, C. Madigan, ‘Matching architecture
to application via configurable processors, A case study with the
Boolean satisfiability problem’, proceedings of the 2001 International
Conference on Computer Design: VLSI in Computers and Processors

Vassilios A, Chouliaras was born in Athens, Greece in
1969, He received a B.Sc. in Physics and Laser Science
from Heriot-Watt University, Edinburgh in 1993 and an
M.Sec. in VLSI Systems Engineering from UMIST in
1995, He worked as an ASIC design engineer for
Intracom SA and as a senior R&D
Engineer/Microprocessor architect for ARC Intemational.

il Currently, he i3 a lecturer in the Department of Electronic
and Electncal Engmeermg at the University of Loughborough, UK. His
research interests include superscalar and wector CPU microarchitecture,
high-petformance embedded CPU implementations, performance modeling,
custom instruction set design and seif-timed design,

José Luis N@fiez is a research fellow in the department of
Electronic Engineering at Loughborough University
where he bas worked since 1997, His current interests
include the areas of lossless data compression,
reconfigurable vector architectures, FPGA-based design
and high-speed data networks. He received his BS and
MS degree in Electronics Engineering from Universidad
de La Coruna (La Coruna, Spain) and Universidad
Politécnica de Catalufia (Bareelona, Spain) respectively in
1993 and 1997. He received his PhD degree at Loughborough University
(Loughborough, England) in 2001 working in the arca of hardware
architectures for high-speed data compression,

Paper PJ2: V. A. Chouliaras, J. L. Nunez, K. Koutsomyti, S. R. Parr, D. J. Mulvaney, S.

Datta, ‘On the development of a custom vector accelerator for high-performance speech
coding’, IEE Electronic Letters, Vol. 40, Issue 24, 25 Nov. 2004, pg 1559-1561

35

e10of13

Manuscript for Review

On the development of a custom vector accelerator for high-performance

speech coding

Author:

_ Journal: { Electronics Letters
Manuscript ID: i draft
Manuscript Type: | Letter
* Date Submitted by the | n/a

 Complete List of Authors:

| Chouliaras, Vassilios; University of Loughborough, Electronic and

Electrical Engineering

' { Nunez-Yanez, Jose; University of Loughborough, Electronic and

Electricai Engineering

] Koutsomyti, Konstantia; University of Loughborough, Electronic and
| Electrical Engineering

{ Parr, Simon; ; University of Loughborough, Electronic and Electrical
1 Engineering

{ Mulvaney, David; University of Loughborough, Electronic and

{ Electrical Engineering

1 Datta, S.; University of Loughborough, Electronic and Electrical

Engineering

Keyw'(:)'rds_:: |

| VECTOR PROCESSOR SYSTEMS, VERY HIGH SPEED INTEGRATED

CIRCUITS, COMPUTER ARCHITECTURE

.. powarsd by ScholarOne..

Manuscript Central™

Page 2 of 13

On the development of a custom vector

accelerator for high-performance speech

coding

V. A. Chouliaras, J. L. Nunez, K. Koutsomyti, S. R. Parr, D. J. Mulvaney, S.
Datta

The addition of custom vector instructions to the G.729A speech coding
algorithm is shown to significantly reduce its computational complexity. The
identified vector extensions are implemented in the form of a configurable
vector accelerator, tightly coupled to a 32-bit Sparc V8-compliant reduced
instruction set (RISC) processor, Architectural simulation demonstrates that a
reduction in complexity of up 60%, for a vector length of sixteen 16-bit
elements, is achievable in current very large scale integration (VLSI)

technology.

Introduction: The G.729A standard speech coding algorithm, as
recommended by the International Telecommunications Union (ITU) [1], is a
reduced complexity version of the Conjugate-Structure Algebraic-Code-
Excited Linear-Prediction (CS-ACELP) coder of the G.729 recommendation.
This coder belongs to the time domain Analysis-by-Synthesis (AbS) class of
speech coders. Such coding schemes have been widely adopted as they
produce speech that is subjectively of high quality while maintaining a low
transmission rate. In the AbS approach, the encoder (analysis) incorporates

the decoder (synthesis) to determine the initial excitation signal and uses

linear prediction techniques to determine the coefficients of the speech
synthesis filter. In the CS-ACELP coder the initial excitation for the synthesis
filter is obtained from two codebooks. An adaptive codebook is used to model
an estimated pitch period that represent the voice sounds originating in the
vibrating vocal chords and a fixed codebook is used to model unvoiced
sounds such as nasal or plosive utterances. The excitation signal is then
applied to a tenth-order synthesis fitter whose transfer function models the
human vocal tract. The coefficients of this synthesis filter are obtained by
applying linear prediction analysis to the original speech input. The residual
error between the reconstructed speech produced by the synthesis filter and
the original input speech is processed by a perceptual weighting filter. The
output of the filter is matched against the adaptive codebook elements to
determine both the codebook index and gain that best approximate the
residual signal. The codebook contribution is removed from the residual and a
new match is made using the fixed codebook. The index and gains for both
codebooks are assembled together with the synthesis filter coefficients to
form the bitstream transmitted to the decoder. This entire processing is
repeated for every 10ms frame of the voice signal. At the receiver, the
bitstream is disassembled to obtain the filter coefficients and the codebook
parameters. The excitation is constructed by adding the adaptive and fixed
codebook vectors scaled by their gains and it is then filtered through the same
synthesis filter used during encoding. Additional post-processing of the
speech signal is performed to enhance its quality.

Methodology. The ITU G.729A reference code was profiled both in native
mode (Intel x86) and on the SimpleScalar [2] tools to ensure consistency and

general applicability of results. The Simplescalar environment is a complete

Page 4 of 13 |

?950f13

computer architecture modelling tool based around a simulated 32-bit MIPS-I|
type processor with 64-bit opcodes. The compiler was GCC 2.7.3 with
optimizations (-O3).

The respective complexity metrics (real time for native mode profiling,
dynamic instruction count for the simulated processor) of the G.729A encoder
were within 5% of one another despite the fundamentally different instruction-
set architectures (ISAs). Our experiments therefore concentrated on the
simulated infrastructure as this produces results that are both independent of
the sampling issues of the native profiling tool and more close to real
implementations of RISC/DSP (digital signal processor) processing kernels for
telecommunication applications. In our previous work we quantified on the
relative complexity of the DSP emulation instructions for the G723.1 and
G729A ITU reference implementations and proposed two scalar accelerators
[3 4] to reduce that complexity by up to 69% and 65% respectively. That
complexity distribution is presented in Fig. 1. Subsequent code reviews
revealed that significant data-level parallielism (DLP) exists in the workload
resulting in the architectural definition of vector extension instructions based
on the DSP emulation instructions and their associated implementation as a
vector accelerator. The Data-parallel sections of the coder were re-written in
vector assembly with the vector instructions used in place of the inefficient C
implementation.

The processor state of the vector accelerator is depicted in Fig. 2. It consists
of sixteen vector registers of statically-configurable length, two vector
accumulators, two vector mask (predicate) registers and sixteen 32-bit scalar
registers. The proposed vector [SA consists of fixed-point arithmetic, multiply-

add, shift (with negative shift capability), mask processing, merge, vector load

and store instructions in 16-bit and 32-bit variants.

Microarchitecture; The vector extensions are implemented as a tightly-
coupled coprocessor attached to a high-performance, 32-bit configurable
processor [5]. The combined microarchitecture is shown in Fig. 3. Instructions
are fetched from the multi-way set-associative instruction cache and clocked
in the instruction register. When a vector opcode is identified, the source
operand addresses are extracted and passed to the synchronous vector
register file. Vector register access is followed by operand bypassing in both
the scalar and vector pipelines. The EXEC stage is the first phase of
execution of the vector ISA and the only execution stage in the main scalar
pipeline. In addition, vector load operations return their data to the vector
pipeline at the end of the datapath. Intermediate results are pipelined to the
next stage (DMEM/EXEC?2) for the final phase of vector execution. During this
stage, scalar operands return to the main RISC pipeline via the data cache
load path. Finally, results commit o the vector register file after being stored
in a staging register. The staging register is necessary for performance
reasons, relating to the set-up time of the register file SRAMs, and pipeline

symmetry, for the precise processor state recovery following an exception.

Results: The vectorized workload was executed with vector extensions
enabled and the dynamic instruction count (complexity) was measured for all
the ITU test vectors and for vector lengths ranging from 2 (32 bits) to 128
(1024 bits). The normalized complexity of the vectorized workload for all input
vectors and vector lengths is shown in Fig. 3. it is clear that significant

reductions in complexity are achieved at vector lengths in the range 2 to 16,

Page 6 of 13

e7of13

corresponding to a range of vector datapath widths from 32 bits to 512 bits.
Such widths are realizable in current VLS| technologies. Little further
improvement in complexity occurs for vector lengths greater than 16, but local
minima do occur at vector lengths of 32, 64 and 128 (not shown).
Configurations with vector lengths greater than 16 are unrealistic in practice
due to the significant silicon overhead incurred by such wide datapaths and
the need for very long cache fill bursts. Such configurations were investigated
in this study only for completeness. The results of Fig. 3 reflect a shared
multiplier resource per two 16-bit elements. Our preliminary investigation
shows that a dedicated multiplier per 16-bit element provides an additional

benefit of the order of 1% only.

Conclusiornr, A custom vector 1ISA was developed that offers significant
reduction in the complexity of the G.729A speech coder. Initial architectural
results are very promising, demonstrating a reduction in algorithmic
complexity of up to 60% that can be realized in current VLS! implementations.
Further work will focus on the combining the scalar extensions reported earlier
and the vector extensions reported here, for both G.729A and alternative

speech coding standards.

References

1. ITU-T Recommendation G.729, Coding of speech af & kbits/s using
conjugate-siruclure algebraic-cooe-excited linearorediction (CS-ACELE),
3/96, Place des Nations, CH-1211, Geneva, Switzerland.

2. D. Burger, T. Austin, ‘Evalrating Future Microprocessors. The
SimpreScalar Too/ Sel’hitp./iwww.simplescalar.com

3. V. A Chouliaras, J. L. Nunez, A scalar coprocessor for accelerating the
G723 7 and G7294 speech coders Proceedings of the |IEEE International
Conference on Consumer Electronics (ICCEQ3), Los Angeles, California,
USA

4. V. A. Chouliaras, J. L. Nunez, ‘Scalar Coprocessors for accelerating the

G723.1 and G729A Speech Coders’, |IEEE Transactions on Consumer
Electronics, Vol. 49, Issue 3, Aug. 2003, pg. 703-710.

5. ‘The Leon-2 processor User's manual, XST edition, ver. 1.0.14,
www.gaisler.com

Acknowledgments
This work is supported by the UK Engineering and Physical Sciences
Research Council (EPSRC) under contact GR/S44976/01

Author's affiliations:

V. A. Chouliaras, J. L. Nunez, K. Koutsomyti, S. R. Parr, D. J. Mulvaney, and
S. Datta are with the Department of Electronic and Electrical Engineering,
Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK.
Email: v.a.chouliaras@Ilboro.ac.uk

Page 8 of 13

Figure Captions

Fig. 1:1TU G.729A reference implementation profiling of the DSP emulation
instructions

Fig. 2: Vector accelerator state

Fig. 3: Relative complexity reduction of the vectorized G.729A encoder

Fig. 4: Microarchitecture of the tightly-coupled vector accelerator and the main

scalar processor

Figure 1

Page 10 of 13

. ITU-T G729A DSP Emulation Instructions
- .:Percentage Complexity Distribution -

DSP Instruction

" {a Coder .|

Decoder

e 110f13

Figure 2

Vector Reg|ster Flle e
'_;;VLMAX 16 blt elements e

,VRO i
VR 14?_,_
~;_VR,§ :

1‘?'VR{4. g
VRS ¢
VR6 "
VRT-
‘VR8
}VR 10
"VR 1 1.

o VLMAX blts

- Scalar Register F1|e e

32 brt

‘ SRO™

'SR1.
SR2..
SR3"
'SR4"
'SR5. .
ISR6
|SR7

Vector Accu mulators

o VLmAXP2 32-bit elements |

VAGCO

Jvacet

VMSKO,

Figure 3

Page 12 of 13 |

G729A "ch‘:_ﬁdder ' (Sharégi!_

Multmphe

Figure 4

RISC

FETC)

. (&

"”Ic_m'iés','dcjn‘iégw'"'ﬁ ‘ ~ K

Pipeline

scalar mL
write-buffars -
Ll

Vector
DATAPATH
(VLMAX=2)

. Datgpath

Scalar

-

&=

Datapath

Scalar

Controller

y-Selact & Block

Merge A

“vo_gout

-

INF3did TONINOD

AHB UF

Paper PJ3: V. A. Chouliaras J. L. Nunez, D. J. Mulvaney, F. Rovati, D, Alfonso, ‘4 Multi-
standard Video coding accelerator based on a vector architecture’, IEEE Transactions on

Consumer Electronics, Vol. 51, Issue 1, Feb 2005, pg 160-167

49

160

Abstract —A4 multi-standard video encoding coprocessor is
presented that efficiently accelerates MPEG-2, MPEG-4
(XViD) end a proprietary H.264 encoder. The proposed
architecture attaches to a configurable, extensible RISC CPU
to form a highly efficient solution 10 the computational
complexity of current and emerging video coding standards. A
subset of the ISA has been implemented as a VLSI macrocell
Jor a high performance 0.13 um silicon process’,

Index Terms — MPEG2, MPEG4, H264, vector/SIMD
accelerator, embedded RISC

1. INTRODUCTION
The past 10 years have witnessed an explosion in the

quantity of visual information that must be transmitted and

stored efficiently using limited and expensive resources.
Advanced video coding allows orders of magnitude reduction
in the required bit-rates and is regarded as an enabling
technology in moving personal communications to a higher
level of interactivity. This technology is being deployed
particularly successfully in embedded systems for personal use
such as Personal Digital Assistants (PDAs), digital cameras,
palmiop computers and cellular phones as well as portable
video game consoles and DVD players [1]. The major
requirement of such systems is high-quality, low bit-rate video
coding implemented in high-performance and low-power VLSI
systems. Applications such as DVD decoding have so far been
implemented in hardware platforms consisting of one or more
embedded CPUs with associated accelerators for targeting the
computationally complex functions. However, forthcoming
applications such as personal wireless video involve compute-
intensive real-time coding as well as decoding and this
increase in the required computational capability can only be
met by specialized video architectures,

Standard mobile wireless networks based on 2G GSM
technology operate at 9.6 Kbit/s bandwidth and are thus
unsuitable to support guality, real-time video. 2.5G GPRS
provides an interim solution supporting 115 Kbit/s whereas
upcoming 3G technology is expected to achieve at least 144

!'V. A Chouliaras and D, J. Mulvaney are with the Electronics Systems
Design Group, Department of electronic and Electrical Engineering,
University of Loughborough, UK (V.A.Chouliaras@lboro.ac.uk,
D.) Mulvaney @iboro.ac.uk).

J. L. Nunez is with the Department of Electionic Engineeting, University
of Bristol, UK (].L.Nunez-Yanez@bristol.ac.uk)

F. Rovati and D. Alfonso are with the Advanced System Technology Labs,
STMicroelectroncs, Agrate, Italy (fabrizio.rovati@st.com,
daniele.alfonso@st.com)

Manuscript received December 28, 2004

IEEE Transactions on Consumer Electronics, Vol. 51, No. 1, FEBRUARY 2005

A Multi-Standard Video Accelerator based
on a Vector Architecture
V. A. Chouliaras, J. L. Nunez., D. J. Muli/aney, F. 8. Rovati and D. Alfonso

Kbit's on fast moving stations, rising to 384 Kkbit/s for
pedestrian or slow moving stations, These figures indicate that
video transmission must be achieved at less than 100 Kbit/s in
emerging wireless networks to become as successful as current
voice telephony

II. BACKGROUND

Substantial research has been conducted at the algorithmic
level with the aim of developing improved video codecs
capable of achieving high quality video encoding at lower bit
rates than existing standards, Typically, lower bit-rates and
higher PSNR values are achieved by sophisticated techniques
that exploit the spatial and temporal redundancy present within
the picture frame (intra-frame) and across frames (inter-frame)
in a video sequence. Intra-frame coding removes the spatial
redundancy within a single frame and the techniques utilized
for this task are derivatives of those used for still image coding
while inter-frame coding removes the temporal redundancy by
coding the difference between the frames of a video sequence.
Three fundamental video coding methods can be identified:
those based on the discrete cosine transform (DCT) [2], [3],
those employing the wavelet transform [4] and those adopting
fractal-based coding algerithms [5]. The DCT-based methods
are currently much more popular than the other two methods
and form the basis of all the current international standards in
digital video coding. The very high computing requirements of
these multimedia workloads have created a demand for high-
performance execution engines which can be categorized into
four major microarchitectural approaches namely very-large-
instruction-word (VLIW), superscalar, vector-based and
application-specific,

Traditionally, Digital Signal Processors have been used for
high-performance signal processing tasks such as audio,
speech and video coding. A state-of-the-art DSP device [6]
uses a wide VLIW architecture to execute up to § instructions
per cycle at a maximum frequency of 1 GHz. Taking the
VLIW paradigm to the extreme, the licensable Silicon IP core
in [7] is a highly-parallel (up to 60 instructions) solution
targeted towards streaming embedded applications. Both
architectures represent modemn approaches 1o long-instruction-
word (LIW) signal processing with the first device being a
capable execution engine for mains-powered media and
telecommunication applications and the later approach
offering excellent acceleration capability to small-size
applications (kernels). Neither architecture is optimized for
mobile video however the ULIW core presents a very potent
customization target.

0098 3063/05/$20.00 © 2005 IEEE

V. A, Chouliaras et al.: A Multi-Standard Video Accelerator based on a Vector Architecture 161

In the category of high-performance desktop superscalar
processors, there has been a universal adoption of multimedia-
enhanced instruction set architectures (ISAs), based on short
vector/SIMD support [8], [9]. Such extensions proved decisive
in achieving real-time video encoding/decoding on a desktop
workstation however, their power consumption and size
renders such devices inappropriate for embedded applications.

A number of specialized DSP vendors have realized the
abundance of data level parallelism in multimedia workloads
and introduced architectures with higher levels of
specialization for video coding. The video engine in [10] uses
a VLIW core combined with SIMD support (up to 128 bit
wide). It can issue up to 4 instructions per second while
clocking at 300 MHz and taps parallelism both at the
instruction and the data level. Another approach combines a
64-bit MIPS RISC processor with two hardwired units for
motion estimation and run-length coding plus a vector-based
64-bit wide macro-block engine to extract data level
parallelism from the rest of the functions [11]. The parallel
video DSP chip in [12] uses a 32-bit RISC processor, a 512-bit
vector architecture and dedicated motion estimation
coprocessors to achieve 3 billion multiply-accumulate
operations per second while clocking at a modest 100 MHz.
This is a highly parallel, complex device capable of extracting
significant data level parallelism in both standard and
proprietary video codecs. The chip uses very wide vectors and
achieves leading-edge performance, clearly demonstrating the
full potential of a dedicated vector architecture.

In the application-specific category, a number of
commercial ASIC and FPGA-based hardware solutions
targeting video coding are currently available based on the
paradigm of combining a general purpose embedded
microprocessor with custom hardware for the compute-
intensive tasks. The Video Encoder in [13] targets MPEG-4
simple profile encoding, It includes a number of hardwired
units to accelerate DCT coding, motion estimation,
quantization and bit stream packing. The multimedia
coprocessor in [14] combines a standard 32-bit ARM9 RISC
processor with custom blocks to accelerate the most compute-
intensive tasks such as motion estimation. The audio/video
encoder chip in [15] is based on a MIPS-like RISC processor
with DSP extensions for audio/video encoding. Finally, the
MPEG-2 encoder in [16] is available as a silicon IP core
targeting high-performance field-programmable gate arrays
(FPGA). Tts architecture incorporates macro-block processing
engines for motion estimation, forward DCT and quantization,
These solutions offer competitive performance at the expense
of flexibility, scalability and their ability to handle emerging
standards.

This work identifies vector architectures as the most potent
engines for tapping the abundant Data Level Parallelism in
three major video coding standards namely, MPEG-2, MPEG-
4 and H264 and proposes a highly targeted, configurable,
vector coprocessor that can be attached to an embedded RISC
CPU., This coprocessor is capable of delivering better area,

power and performance metrics compared to other
programmable solutions, in order to meet the requirements of
wireless embedded applications. This paper deals primarily
with the performance aspect of this programmable vector
accelerator.

IIL. VIDEO STANDARD REVIEW

A MPEG-2

MPEG-Z is a very popular, lossy video compression
standard currently employed in many consumer produsts such
as DVD players, DVD recorders and digital set top boxes.
This standard was introduced in 1994 by the ISO/ITU-T {17]
to support high quality video at transmission rates ranging
from 4 to 80 Mbit/s, The MPEG-2 codec is based on the DCT
either of the residual data, obtained afier performing motion
estimation (ME) and compensation (MC) to remove
redundancy between frames (inter-frame coding), or of the
original luminance and chrominance data when removing
redundancy within the same frame (intra-frame coding). These
transformations ate followed by quantization which removes
the high spatial frequency components in order to significantly
reduce the required channel rate while maintaining good visual
quality. MPEG-2 has achieved a universal acceptance status
and is the baseline video coding standard in this work.

B. MPEG-4

The MPEG-4 multimedia standard covers a broad spectrum
of audio and video coding schemes and representations
allowing for the efficient transmission and storage of
audiovisual information. This work focuses only on the visual
coding aspect of that standard. The main processing functions
involved in producing MPEG-4 video content are: ME, MC,
forward discrete cosine transform (FDCT), inverse discrete
cosine transform (IDCT), quantization (Q) and variable length
coding (VLC). These functions are applied at block (8x8 pels)
ot macroblock (16x16 pels) levels. The MPEG-4
implementation selected for our work is the open-source XViD
[18] version which in its most recent stable version implements
a simple profile (SP).

MC is typically the most compute-intensive part of block-
based video coding algorithms. It is used in predictive coded
frames (P frames) to estimate the amount of movement
experienced by the blocks or macroblocks across consecutives
frames. The XViD algorithm uses one or four motion vectors
(MV) per macroblock and half-pel motion compensation
precision depending on quality settings, There is one MV for
each of the luminance (luma) components in the macroblock,
while the two chrominance (chroma) component MVs are
calculated as a mean of the luma MVs. To determine these
MVs, XViD uses a Predictive Motion Vector (PMV)
algorithm that selects a MV for a block using the MVs
generated for the neighboring blocks in the same frame and
one MV from the previous frame. The selected MV is then
further refined using a size-adaptive square area to search for a
better MV. The search process is based on the compute-

162

intensive sum-of-absolute-differences (SAD) method over a
search range, The MV that produces the smallest SAD value is
selected as the best. The search is not performed exhaustively
and early termination is used to speed-up the algorithm when a
suitable SAD threshold value has been reached. The size of the
square area is selected adaptively by the PMV algorithm, The
motion compensation process refines the MV using half-pel
interpolation so the value of a pel is calculated as the mean of
adjacent pel values and a rounding factor.

DCT is used in the coding of both Intra (I) and Predictive
(P) frames. The FDCT is applied to I frames to transform the
image data blocks from the spatial domain to the frequency
domain. The spatial frequency coefficients are then quantized
and high-frequency information is removed resulting in a
reduction in data volume with minimal loss of quality. The
IDCT recovers an approximation of the original temporal
image data using the quantized coefficients. These functions
operate in the same way with P frames, except the input to the
function is the residual remaining following the subtraction of
the motion estimated block from the actual block of image
data. Both FDCT and IDCT in XViD are 32-bit integer
precision functions that transform first the columns and then
the rows of each of the image blocks. Quantization in the
frequency domain is the lossy step in the algorithm since the
high-frequency (high-detail) components in the frame tend to
generate low-value coefficients which are rounded down to
zero after this step, The XViD algorithm selects the same
quantization strategy as that recommended by ITU-T for the
H.263 standard [19]. The quantization matrix is optimized for
low-bit rate settings and has the same effect on high and low
frequency coefficients,

VLC is the last stage of the video coding process and
reduces the number of bits used for the frequency coefficients.
XViD uses a (last, run, level) triplet format where the first bit
indicates if the last non-zero coefficient is being coded, the run
indicates how many zero coefficients precede the current non-
zero coefficient and the level indicates the value of the current
non-zero coefficient. To further speed-up this process the
codes are stored in look up tables (LUTs) and the (last, run,
level} triplets are used as addresses to these LUTs. This
implementation is geared towards speed since it is clear that
more sophisticated coding strategies are possible, VLC is in
general a sequential process and is the only functional block
where vector extensions do not offer any advantage.

C. H264

H.264 is a hybrid video coding standard, developed by the
Joint Video Team (JVT) of the ITU-T Video Coding Expetts
Group (VCEG) and the ISO/IEC Moving Pictures Experts
Group (MPEG) [20], [21]. With respect to its ancestors, it
offers about 50% better compression while not compromising
quality, due to a range of improvements that impact all aspects
of the digital video encoding process [22].

Principal innovations of H.264 are Multiframe Prediction,
which allows the use of more than one previous-frame as

IEEE Transactions on Consumer Electronics, Vol. 51, No. 1, FEBRUARY 2005

reference for ME, sub-sample interpolation at 1/4™ of a pixel,
and Macroblock partitioning which admits up to 16
independent MVs associated with each 16x16 pixels
Macroblock. The Hadamard Transform is used to compute the
SAD in the frequency domain and the classical 8x8 pixels
DCT is replaced by a simpler integer version operating on
16x16 and 4x4 pixel blocks. Two different entropy coding
schemes may be used: CAVLC (Context-Adaptive Variable
Length Coding), a Huffman-like method, and CABAC
{Context-Adaptive Binary Arithmetic Coding), a complex but
high-performance variation of arithmetic coding,

The proprietary software implementation of H.264 used in
this work includes a fast ME method, called ‘Openslim’, which
is based on the correlation existing among spatially adjacent
and temporally consecutive motion vectors. It operates in two
steps, first selecting the best MV from a set of candidates
chosen from vectors already computed for Mactoblocks in the
current and previous frame; second, testing a fixed number of
displacement vectors around the best position found in the
previous step. This algorithm executes two interleaved motion
searches: a coarse search following the picture display order,
and a fine search in the picture coding order; the latter
exploiting the results of the former to achieve higher precision.
Openslim provides performance almost identical to that of the
common Full-Search Block-Matching, at only a very small
fraction of the computation.

"The bit-rate of the encoded sequences is controlled by an
algorithm proposed by the JVT committee [23], which is a
Constant Bit-rate Controller (CBR) derived by the classical
TMS5 method developed for MPEG-2 by the MPEG Software
Simulation Group [24].

IV, PROBLEM FORMULATION

The aim of this research is to enable real-time video encoding
in portable, wireless products through a combination of
advanced hardware platforms executing explicitly parallelized
{vectorized) versions of the three video coding standards. The
proposed platform is based on an open source configurable,
extensible, 32-bit Sparc V8-compliant [25] RISC CPU [26]
augmented by a configurable vector accelerator,

All three standards were initially profiled unmodified on our
default Instruction Set Simulator (1S8) which is based on the
Simplescalar Toolset [27]. The major complexity contributors
identified at the function level are depicted in Fig. 1 (MPEG-2),
Fig. 2 (MPEG-4) and Fig. 3 (H.264). In the case of MPEG-2,
the major dynamic instruction count contributors were the inner
loop of the ME function (DIST1), which computes the error of
the current macroblock over an arbitrary reference macroblock,
This function is called for all macroblocks in the search window
of the reference frame and is independent of the search algorithm
utilized,

For the case of MPEG-4, functions of major complexity are
ME/MC, FDCT and te IDCT and finally Q. The complexity of
these functions accounts for more than 80% of total complexity
and the existence of significant amounts of data level parallelism

V. A, Chouliaras et al.: A Multi-Standard Video Accelerator based on a Vector Architecture 163

makes them very good candidates for vectorization.

" MPEG2 TMS (Full Search) Complexity distribution

L P;iwuu carﬁphxﬁy

Figure 1: MPEG-2 TM5 complexity distribution

U MPEGH (XVid) Complexity Distribution,

—

w5 B0% 45

STH% . 40%

k¢ Pom-nt.gnkcclzmyluxlly E

Figure 2: MPEG-4 (XViD) Complexity

T RO PLPeH,M25

£ i

Figure 3: H.264 inner ME loop relative complexity (Non-Hadamard,
Cpenslim ME)

Fig 3. depicts the relative complexity of the morion
estimation function in the proprietary H.264 video coder, for
different configurations: Bx is the number of B-frames
between anchor frames, Fy indicates the number of previous
reference frames used by Multiframe Prediction, Field refers to
interlaced coding, while INTRA means that all the pictures
were encoded as I-type, without ME. In INTRA_field coding,
the top field of each picture is Intra Coded, while the bottom
field is predicted from the top,

ARCHITECTURAYL RESULTS

Following profiling all three video coding standards were
vectorized and, in the process, a common vector Instruction
Set Architecture (ISA) was developed. The vector extension
instructions were added to our default ISS and the
performance (dynamic instruction count) evaluated over vector
length, search range, and ME algorithm. Results were obtained
for multiple video sequences in the case of MPEG-2 and
MPEG-4.

® W
Baaroh Range fpela)

Figure 4; MPEG-2 TMS fractional complexity
Fig. 4 shows the final complexity of the MPEG?2 encoder as
a function of vector length {4, 8 and 16 bytes) and for a search
range of up to 63 pels. A more detailed account of the MPEG-
2 aspect of this work can be found in [28].

Vectarized MPEG 4 (XVID) Gomplexity

PEe SR

wdp— +VH BRGE + VCLP !
—# - +YMERGE
—a&— NONE (Defaulg :

o
W
[

Fracfonal Complexity
o
[
@
r_‘—jl_'_ﬂ ——

Ahds ARALALLL

o
ta
w

-III“I'I. PR e
pAR LT L S

oz2a Tt
[+] 32 &4

T r T —
8¢ 128 160 192 224 256
VLMAX (Bytes)

Figure 5: MPEG-4 (XViD) fractional complexity

Fig. 5 shows the complexity of the vectorized MPEG4
encoder for three configurations: Default incorporates a
basecase video ISA with the VMERGE and
VMERGE+VCLIP curves showing the benefit of these two
additional instructions. The maximum vector length ranges up
to 256 bytes however, no additional benefit is achieved beyond
128 bytes with realistic VLSI implementations ranging
between 16 to 64 bytes. Though not shown explicitly, the
complexity of the XViD ME was reduced by 85% at a vector
length of 24 bytes and the complexity of MC was reduced by
70% at the same vector length. DCT vectorization involved
two functions for forward and inverse DCT, The 2-D §x8 DCT
is performed using 2 1-D DCTs that are applied first to the
columns and then to the rows of the 8x8 pixel array. In order
efficiently vectorize the DCT, extra functionality was needed
to transpose the arrays so that vector load and vector store

164

instructions would perform unit-stride accesses. The
complexity of the DCT functions after vectorization was
reduced by 82% at 32-byte vector length, Finally,
vectorization of the quantization functions yielded a reduction
in complexity of the order of 93% at a vector length of 64
bytes and a 90% reductlon at a vector length of 32 bytes

* OPENSLIN_B2 F3

Flgure 6 Vectorwed H 264 Encoder Complexlty (16 Search Range)
Fig. 6. depicts the complexity of the proprictary H264
implementation, We vectorized only the SAD computation for
the Non-Hadamard transform case. The H.264 results are thus
preliminary, with vectorization applied to the ENC_SATD
function only (up to 72% complexity reduction within that
function). The overall complexity of the vectorized encoder is
approximately 86% for a vector length of 32 bytes and this is
the subject of ongoing investigation.

VI, PROGRAMMERS MODEL AND INSTRUCTION

Fig. 3 shows the programmer-visible state of the parametric
vector accelerator.

. Vector Register File Scalar Register Fils
- VLMAX 8-bit elements” . v 32-bit . T
[] SRO .
= PSR
SRz |
SR3 - .,
! A SR4
1 VRS 7 SRS
[VRB SR8 :
|] | VRMAX-1 . SRMAX-
Vector Magk Registora we Voetor Lonnth Reglster
(VLMAX * 8 bits) Scalar Accumulators ;. (8 -bits)
VMASK1Y - (32-bits) VLEN
‘E_:_'VMASK?_ P \f,v:uccl;‘:d__—l

Figure 7° Accelerator Programmer s Model

The programmer-visible state is itself parameterized and
split into three main register categories namely vector {up to
VRMAX registers), scalar (up to SRMAX registers) and
miscellaneous (mask, scalar accumulators and vector length
register). The ISA consists of 45 custom instructions in five
categories: Miscellaneous, load/store, cross-lane, video, and
reduction operations. Miscellaneous operations affect the
VLEN register and move scalar data between the main RISC
processor and the vector coprocessor. The vector load/store
instructions transfer scalar and vector operands from the vector
load/-store unit (VLSU) to the accelerator scalar and vector

IEEE Transactions on Consumer Electronics, Vol, 51, No. 1, FEBRUARY 2005

register files respectively. All such operations support register-
indirect and register-indirect with post-increment/pre-
decrement addressing modes. The category of cross-lane
operations includes two and three-operand byte-granularity
permute, pack and unpack operations and inter-element shifis,
Their major characteristic is that a particular scalar pipeline is
able to access operands from all other scalar pipelines. The
common datapath component is the triple-operand permute
unit which allows for arbitrary, byte-wise permute operations
of two source vectors under the control of a third source
vector. All pack/unpack operations are special (hardwired)
variations of the two or three operand permute which drive
pre-computed patterns to the permute unit decode logic instead
of a third vector source. Video operations cover the bulk of the
vector ISA for video acceleration. They include 8, 16 and 32-
bit intra-element shifts, vector compare-merge, vector multiply
(8 and 16 bits), SAD and arithmetic operations. Finally,
reduction operations compute a scalar value out of one or
more vector operands and write it back to one of the
accumulators or scalar registers,

VII. MICROARCHITECTURE

The accelerator attaches to the configurable, extensible
Sparc-V8 compliant Leon2 CPU. Fig. 8 depicts a high-level
schematic of the proposed AHB-based [29] SoC sub-system in
which the major blocks are the Scalar CPU, the Coprocessor
I'F, the video coprocessor and the high-speed external
memory. A more detailed schematic of the core
processor/coprocessor microarchitecture is depicted in Fig. 9.

Scalar CPU Coprecessor
Ca
Core " _g Coprotessor
;’“9"‘3' cry Datapath
amory ¢

ICACHE I mcns? I ViLsy l
AHB Maste

AHB On-Chip Bus
Figure 8: SoC Kernel

The Leon 2 CPU is a standard 5-stage RISC pipeline.
Instructions are fetched from the multi-way, set-associative
instruction cache and clocked into the instruction register.
Decoding takes place in the DECODE stage with the RISC
register file accessed at the falling edge of the clock. The
bypassing logic in DECODE determines whether register file
data or internally pipelined results are clocked in the ALU
input registers. During EXEC, the ALU operation is performed
and a virtual address is computed. Scalar data cache access
takes place during DMEM/EXEC2 and scalar results return to
the RISC pipeline during this cycle, Finally, resulis are
clocked into an intermediate register prior to committing to the
processor register file. The processor incorporates a
configurable data cache in a write-through configuration with
no-write-allocate policy. The scalar data cache forms part of

SDRAM Cirl
[AHD Slave)

V. A. Chouliaras et al.: A Multi-Standard Video Accelerator based on a Vector Architecture 165

the data pipeline which includes a 3-word, non-collapsing
write buffer serving to decouple the high-speed execution
pipeline from the slower SoC memory subsystem. The core
CPU finally includes a parametric instruction cache. It is a
standard design and supports instruction streaming (processor
operating in parallel to the refill sequence while the missed
instruction/data word is fetched). Both caches are refilled over
the AHB via the processor bus controller, which includes the
ICache/DCache arbitration mechanism,

MEMORY
DATAPATH PIPE

g

]
b

Figure 9; Processor-Coprocessor Microarchitecture
The vector coprocessor is a configurable, 4-stage pipelined
microarchitecture and consists of the vector datapath, the vector
memory pipeline and the control pipeline, The vector datapath
consists of the vector register file, and bypass logic, the cross-
lane logic, the SIMD datapaths and the reduction logic,

peIm_Tes(3) g
opri_r() .
opr2_r(8) : » laned_res(6)
A
>
oprl_r{7}
rag_sel_r| res_sel_r

Figure 10: LANES microarchitecture

A major configuration parameter is the maximum vector
register length in bytes, VLMAX, which dictates the geometry
of the vector register file SRAMs and the number of scalar
datapaths instantiated. The vector pipeline in particular is
segmented into VLMAX/4 32-bit scalar lanes, each capable of
operating on four bytes, two half-word or one word element
per cycle (4-way SIMD}. The logic of a single 8-bit datapath
slice (LANER) is depicted in Fig. 10.

Four LANES entities are composed as shown in Fig. 11 to
form a 32-bit scalar lane. The logical hierarchy of the EXEC
stage does not include the cross-lane logic since the later is
shared across all datapaths in the EXEC stage.

Figure 11: LANE32 microarchitecture

The vector register file supplies operands to the vector
pipeline and is segmented into VLMAX/4 elements, each
consisting of 3R1W, VRMAX-by-32-bit embedded RAMs
with byte-write capability. Due to the unique requirements of
the MPEG-2 algorithm, a special vector register file in a
SRIW configuration can be instantiated however, at the
expense of limiting VRMAX to 8. A further parameter allows
the use of latch, flop or dual-port compiled SRAM
configurations. In the later case, there are two more possible
configurations: the first makes use of three dual-port memories
with common write port and individual read ports and the
second instantiates two dual-port blocks with the read port of
the first clocked at double the processor clock allowing for
area/frequency tradeoffs, ‘

perm_, res

vif_opri_r vif_bs_omd_r

Figure 12: Cross-lane Logic

The cross-lane logic of Fig. 8§ executes all permute,
pack/unpack instructions and inter-element shifis. To
eliminate unnecessary toggling in the crossbar when executing
a non-permute operation, datapath-gating logic is instantiated
which hardwires the crossbar vecior operands to “0°.

A number of opcodes specify the add-reduction of a vector
register to a single 32-bit value, writing that scalar result to a
scalar address/data register. The reduction logic is situated in
the DMEM/EXEC2 stage and Fig. 13 details & possible
implementation of the add-reduction logic, for VLMAX=16
bytes (128 bits). The implementation depicted consists of
logy(16)+1=5 full-adder stages, each of increasing bit width,
Other implementations are possible, depending on target
technology and synthesis tool ability to perform advanced
transformations of adder irees,

* The crossbar is potentially a source of concern in timing and routing
closure for VLMAX>32 configurations due to accessing all vector operands
from each scalar lane and producing a vector result fanning-out to all scalar
lanes,

166

VOP] o
VOP2

R e RS

308

ki

_» sres

Figure 13: Parametric reduction logic (VLMAX=16}

[] Vdalaaddr N
VETIR
i b-aL
JL ’
y y

2ey/LIMAX Dultyr
BNK_t

BNK

DMA
CTAL

N B

o AHB ——
- CTRL ——
/ INoXom
H AHB 1O

Figure 14; Local-RAM VLSU Microarchitecture

r
Gak

The VLSU supplies operands to the vector register file via
load operations and commit stores to the system memory. It
includes a number of scalar address/data registers along with
associated address update logic, the vector data cache or local
memory (depending on the VLSU configuration), the vector
write buffers and the on-chip-bus (AHB) controller. These
architected scalar registers are used to hold scalar values,
which are copied to individual or multiple elements of a vector
register via move or splat operations respectively and also as
address pointers. When used as address pointers in vector
load/store operations, the programmer can specify post
increment/decrement modes of operation. In this case, the
address register is updated afier the load/store operation by the
amount of bytes transferred which is always equal to
VSTATE.VLEN. There are special instructions to transfer the
scalar registers to and from the main RISC CPU register file.
The VLSU can be configured to include either a parametric,
write-through vector data cache which incorporates coherency
logic to ensure its consistency with the main RISC CPU cache
or, with a DMA-filled local memory, The later configuration is
depicted in Fig. 14 in which the local memory is segmented in
two banks to allow for unaligned byte-accesses. The local
memory is filled or flushed to the system memory via a
dedicated AHB port, under software control (DMA).

VIII. VLSIMACROCELL
We implemented a subset of the microarchitecture of Fig. 5

IEEE Transactions on Consumer Electronics, Vol, 51, No. 1, FEBRUARY 2005

on a high-petformance, 0.13 pm, 8-copper layer CMOS
technology. The chosen configuration includes a 4-way, 8 KB
instruction cache with a 16-byte block length, a 4-way, 16 KB
data cache with a 32-byte block size and snooping logic
enabled, an 8 KB local memory block for the vector
accelerator segmented into two banks of 256 words by 128
bits. We selected a configuration implementing all the
necessary extension instructions for MPEG-2 and H.264
acceleration, The accelerator includes a vector register file of 8
words, each of 128, bits in a 5RIW configuration. We
synthesized the design flat on a modern physical synthesis tool
and performed power planning and final rowting in a
commercial quality standard cell router. The resulting VLSI
macrocell floorpian and layout of the dual-port register file
configuration are shown in Figs. 15a and 15b respectively.
; i

Layoul
Figure 15: Floorplan and Layout of the Processor-Coprocessor
architecture
Table 1 lists the implementation details of the placed and
routed design.
Table 1: VLSI Macrocell Characteristics

Instances/Macros 51156/26

Area (um®) 3996 x 996.3 =3981693 um*
Core Utilization 86.3%

Fmax (MHz) 194.1

IX, CONCLUSION AND FUTURE WORK

We described a configurable scalar-processor/vector-
coprocessor microarchitecture for accelerating the existing and
emerging video-coding standards. Architecture level
experimentation identified a number of vector operations that
significantly reduce the dynamic instruction count of MPEG-2,
MPEG-4 and the ME function of a proprictary H264
implementation thus allowing for real-time video encoding on
a wireless, portable device. Further work will focus on
improving the achieved figures through the spatial re-
arrangement of luminance data such that further data level
paralielism can be exposed in the case of MPEG2. Most
importantly, our investigations have shown that there exists a
very significant amount of thread level parallelism in all
workloads. We therefore plan to investigate cache-coherent
multi-processor ~ configurations of the proposed
microarchitecture in an attempt to further reduce the
complexity of the optimized encoders.

V. A Chouliaras et al.;

REFERENCES

[1] G. Lawton, ‘New Technologies Place Video in Your Hand’, IEEE
Computer, Vol, 34, No, 4, pp. 14-17, 2001

[2] S.Vassiliadis, G. Kuzmanov, S, Wong, ‘MPEG-4 and the New
Multimedia Architectural Challenges’, Proc. 15th International
Conference on Systems for Automation of Engineering and Research
(SAER-2001}, pp. 24-31, Bulgaria, 2001.

[3] ‘Emerging H.26L Standard: Overview and TM8320C64x Digital Media
Platform Implementation’, White Paper, UB Video Ine., Vancouver,
Canada, 2002

[4] P. Orbaek, ‘A real-time software video codec based on wavelets’, Proc.
Of Intl. Conf. On Communication Technology (IFIP), 2000

[5] 1 Streit, L. Hanzo, ‘A Fractal Video Communicator’, IEEE Vehicular
Technology Conference (VTC), pp. 1030-1034, Stockholm, Sweden,
1994

[6] TMS320C6000 CPU and Instruction Set Reference Guide', Document
SPRUI89F, Texas Instruments Incorporated, Houston, Texas 77251-
1443, USA.

[71 T. R Halfhill, “Silicon Magic Breaks Out”, Microprocessor Report,
December 172003

[8] R Bhargava, L. John, B. Evans, and R. Radhakrishnan, “Evaluating
MMX technology using DSP and multimedia applications” Proc. Of
IEEE/ACM 8Sym. on Microarchitecture, pp. 37-46, December, 1998.

[9] D. Talla, L. K John, V. Lapinskii and B. L. Evans, ‘Evaluating signal
processing and multimedia applications on SIMD, VLIW and
superscalar architectures’, Proc. IEEE Int. Conf. on Computer Design,
pp. 163-172, Sep. 2000

[10] Equator Technologies MAP-CA®, EDN.com, Online Edition available at
www.g-insite.net/ednmag/, 2000

[11] J. Kneip et. al,, ‘Applying and Implementing the MPEG-4 Multimedia
Standard’, IEEE Micro, Vol. 19, No. 6, pp. 64-74, 1999

[12] *Ax36 Family of Parallel Image and Video Digital Signal Processors
DSP Chips’, White Paper, Oxford Micro Devices, Inc, Monroe, CT
06468, USA, 2002

[13] M. Long, ‘Amphion Launches MPEG-4 Hardware-Accelerator Cores’,
e-inSITE, Online Edition available at http:/www.e-insite.net/esec/ ,
2002

[14) M. Long, ‘Emblaze Semi Samples Multimedia Co-Processor for
Handhelds, e-inSITE, Online Edition available at htip:/www.e-
insite. net/esec/ , 2003

[15] “VW2005 MPEG-1,-2,-4 Audio/Video Encoder Chip’, Product Brief,
Vweb Corporation, San Jose, CA 9129, USA, 2002

[16] *MPEG-2 HDTV I&P Encoder’, Product Specification, Duma Video,
Inc., Portland, OR 97220, 2002

[17] http://www.mpeg.org

[18] http:/fwww.xvid.org

[19] K. Rijkse, ‘H.263: Video Coding for Low-Bit-Rate Communication’,
IEEE Communications Magazine, pp. 42-45, December, 1996

[20] [SULLIVAN] G.J.Sullivan, P.Topiwala, A.Luthra, “The H.264/AVC
Advanced Video Coding standard: overview and introduction to the
Fidelity Range Extensions”, SPIE conference on Applications of Digital
Image Processing XXVII, August 2004,

[21] (IVT] Joint Video Team of ISO/IEC MPEG and ITU-T VCEG, “Text of
ISO/IEC 14496-10:2004 Advanced Video Coding Standard (second
editiony’, ISO/IEC JTCI/SCIZ9/WGI1/N6359, Munich, Germany,
March 2004,

[22] D. Alfonso, D. Bagni, L. Celetto, L. Pezzoni, “Detailed rate-distortion
analysis of H.264 video coding standard and comparison to MPEG-
2/4”, in Proceedings of Visual Communication and Image Processing
(VCIP) 2003, Lugano, Switzerland.

[23] D.Alfonso, D.Bagni, L.Celetto, S.Milani, “Constant bit-rate control
efficiency with fast motion estimation in H.264/AVC video coding
standard”, Proceedings of the 12" Eyropean Signal Processing
Conference (EUSIPCO) 2004, Wien, Austria,

[24] ISO/MEC FTC1/8C29/WG11, Test Model 5, April 1993

[25] The Sparc Architecture Manual Version 87, http://www sparc.org

[26] ‘The Leon-2 processot User’s manual, XST edition, ver. 1.0.14°,
http:/Awww. gaisler.com

[27]1 D. Burget, T. Austin, ‘Evaluating Future Microprocessors: The
Simplescalar Tool Set’, http://www.simplescalar.com

A Multi-Standard Video Accelerator based on a Vector Architecture 167

[28] V. A. Chouliaras, J. L. Nunez-Yanez, 8. Agha, ‘Silicon Implementation
of a Parametric Vector Datapath for realime MPEG2 encoding’,
proceedings of the IASTED (SIP) 2004, Honolulu, Hawaii, USA

[29F www.arm.com/armtech/AMBA_Spec?OpenDocument

Vassilios A. Chouliaras was born in Athens, Greece in
1969. He received a B.Sc. in Physics and Laser Science
from Heriot-Watt University, Edinburgh in 1993 and an
M.Sc. in VLSI Systems Engineering from UMIST in
1995. He worked as an ASIC design engineer for
INTRACOM $A and as a senior R&D engineer/processor
architect for ARC International. Currently, he is a lecturer

- in the Department of Electronic and Electrical
Engmcenng at the University of Loughborough, UK where he is leading the
research into embedded CPUs and SoC modeling, His research interests
include superscalar and vector CPU micrearchitecture, high-performance
embedded CPU implementations, performance modeling, custom instruction
set de51gn and self-timed design.

TR José Luis Nifiez is a lecturer in the department of
Electronic Engincering at Bristol University. Prior to that
he was a research fellow in the department of Etectronic
Engincering at Loughborough University where he
worked since 1997, His cumrent interests include the areas
of losslesstossy data compression, reconfigurable
computing, FPGA-based design and high-speed data
networks. He received his BS and MS degree in
Electronics Engineering from Universidad de La Coruna
(La Coruna, Spain) and Universidad Politécnica de Catalufia (Barcelona,
Spain) respectively in 1993 and 1957. He received his PhD degree at
Loughborough University (Loughborough, England) in 2001 working in the
area of hardware architectures for high-speed lossless data compression

- David. J. Mulvaney has been a Senior Lecturer in the
Department of Electronic and Electrical Engineering at
Loughborough University since June 2001, He is
currently managing research sponsored by a number of
commercial and government bodies. His main research
interests include novel real-time embedded machine
learning techniques and electronic hardware solutions for
real-time applications. Dr Mulvaney has carried out
consultancy work for BP, Otis, Cadbury-Schweppes and
GE Lighting, gives commercial training courses in real-time embedded C++
and has over 40 publications in professional journals and at international
conferences.

Fabrizio S. ROVATI was born in Monza, Italy in 1971
He received electronic engineering degree at the Milan
Polytechnic, Ttaly, in 1996. He joined STMicroelectronics
ld.,, Bristol, UK (formerly INMOS Ltd) where he
contributed to the development of an MPEG-2 transport
demultiplexer co-processor. He then joined
&2 STMicroclectronics' Advanced System Technologies in
1998 where he worked on the design of an MPEG-2 motion estimation co-
processor and on MPEG video encoder’s system architectures. He published
four papers and holds seven patents and nihe patent applications in digital
video signal processing and architectures field, He is contract professor at
Pavia Polytechnic University and gave several lectures at Milan Polytechnic
University. His main interests are in digital video signal processing and
related system-level and processors architectures,
Daniele Alfgnso (M’04) was born in Alghero, kaly, in
1972. In 1998 he received a master degree in Electrical
Engineering from the Turin Polytechnic, and then he
joined STMicroelectronics, Advanced Systern Technology
tabs, working on image compression algorithms, jointly
with the Italian National Research Council. Later, he
focused on moving pictures encoding and transceding
(H.263, MPEG-2, MPEG-4, and H.264), low-power
motion estimation, de-interlacing and frame-rate conversion, His main
interests are algorithms and architectures for digital video applications and he
holds several patents granted in Europe.

Paper PJ4: J. L. Nunez, V. A. Chouliaras, ‘High Performance Arithmetic Coding VLSI
Macro for the H264 Video Compression Standard’, IEEE Transactions on Consumer
Electronics Vol. 51, Issue 1, Feb 2005, pg 144-151

58

144

IEEE Transactions on Consumer Electronics, Vol. 51, No, 1, FEBRUARY 2005

High-performance Arithmetic Coding VLSI Macro for the H264
Video Compression Standard
J. L. Nailez, V. A. Chouliaras, Member, IEEE

Abstract — this paper investigates the algorithmic
complexity of arithmetic coding in the new H264 video coding
standard and proposes a processor-coprocessor architecture
to reduce it by more than an order of magnitude. The
proposed coprocessor is based on an innovative algorithm
known as the MZ-coder and maintains the original coding
efficiency via a low-complexity, multiplication-free, ron-
stalling, fully pipelined architecture. The coprocessor
achieves a constant throughput for both coding and decoding
processes of | symbol per cycle and is designed to be attached
to a controlling embedded RISC CPU whose instruction set
has been extended with arithmetic coding instructions.

Index Terms — arithmetic coding, H264, video coding,
Golomb codes, renormalization, embedded systems, RISC
CPU,

L. INTRODUCTION

The digitisation of visual information is nowadays common
practice in large number of consumer products such as
Personal Digital Assistants (PDA), digital cameras, palmtop
computers and cellular phones as well as portable video game
consoles and portable DVD players [1]. This exponential
increase in the amount of digital visual information that must
be siored, processed and then, transmitted efficiently has
motivated a large body of research, both in industry as well as
in academia, into advanced video coding techniques. New
video coding standards such as the recent H264 video codec
{also known as MPEG4 part 10) [2] deliver better quality and
lower bit rates but at the expense of an almost exponential
increase in the number of CPU cycles required per input frame
of video data when compared to previous generation standards
[3]- The introduction of advanced entropy coding within the
H264 standard, via the pioneering use of context-based
arithmetic coding [4], is one of the reasons behind the increase
in the computational cost of the codec. The high-speed
arithmetic coder {AC) coprocessor described in this paper has
been designed to achieve a significant reduction of the AC
computational cost of the H264 standard with modest
hardware cost. This paper is organised as follows: Section II
reviews hardware-based binary arithmetic coders. Section III
presents the motivation for this work based on a study of the

J. L. Nufiez is with the Department of Electronic and Electrical
Engineering, Unjversity of Bristol, UK (e_mail: j.lnunez-yanez@
bristol.ac, uk)

V. A, Chouliaras is with the department of Electionic Engineering,
University of Loughborough, UK (¢_mail: v.a.chouliaras@lboro.ac.uk)

Manuscript received December 2, 2004

1

computational costs of AC in the H264 video codec. Section
IV presents our novel MZ coder and evaluates its efficiency
compared with other arithmetic coding implementations.
Section V studies the applicability of the MZ coder to entropy
coding within the context of the H264 video standard. Seciion
VI presents the hardware architecture of the MZ codec core
and section VII describes the required ISA extensions. Section
VIII presents the implementation results when targeting high
performance FPGA and ASIC technologies. Finaily, section
IX summarizes our findings, and concludes this work.

11, HARDWARE-BASED BINARY ARITHMETIC CODERS

The IBM Q-coder [5] and the QM-coder [6] are the best
known examples of hardware-based binary arithmetic coders.
These devices use the remormalization approximation
introduced by Rissanen in [7] to avoid the complex
multiplications and divisions with the main difference across
them being the complexity of the model which is formed by
128 contexts in the Q-coder and 1024 contexts in the QM-
coder respectively. VLSI implementations of both the Q-coder
and QM-coder are reported in {6]. Both hardware algorithms
clocked at 75 MHz with a throughput of around 64
Mbits/second. The device was implemented in 0.35 pm
standard cell technology from IBM (CMOS 58). The adaptive
binary arithmetic coding device presented in [8] replaces the
division operation by storing the probability values in a lookup
table and uses the coder state as a pointer to a particular
probability in that table. Similarly to the QM-coder, 1024
contexts are used each of them with its own probability state.
Multiplications on the other hand are done explicitly using an
8x8 parallel multiplier. The VLSI implementation was carried
out on TSMC’s 0.8 pm standard cell CMOS technology and
the chip achieved a maximum frequency of 25 MHz. This
device needs 8 clock cycles to complete the probability
estimation and arithmetic operation phases plus a variable
number of renormalization cycles. Renormalization typically is
done in a single clock cycle but up to 7 clock cycles may be
required. The resulting symbol throughput is approximately 3
Mbits/second. An improved version of that chip is presented in
[9] in which a dynamic pipeline architecture is used to deliver
6 Mbits/second throughput at the same clock frequency and
technology as the original design but with approximately 30%
area overhead.

ITI, ANALYSIS OF AC IN THE H264 VIDEO CODEC

The H264 video coding standard is a state-of-the-art algorithm
which delivers up to 50% reduction in bit-rates when
compared to previous standards such as MPEG4 [10] or H263

0098 3063/05/$20.00 © 2005 IEEE

J. L. Nufiez and V. A. Chouliaras: High-performance Arithmetic Coding VLSI Macro for the H264 Video Compression Standard 145

[11] at equivalent video quality settings. In order to achieve
this the H264 uses a number of innovative techniques for
extracting the redundancy present in the video stream. One
such technique is the use of an arithmetic coding extension and
context-based modeling known as CABAC [12]. The
underlying architecture of the H264 standard is similar to that
of previous standards such as the H263 and MPEG4, and
consists of four major computational stages: Motion
estimation and compensation (ME), discrete cosine transform
(DCT), quantization (Q) and entropy coding (EC), These
functions are applied to the data blocks resulting from dividing
the image frame into variable size subframes. Finally, EC is
applied after the binarization stage to the data produced by the
ME and Q functions to further remove redundancy and reduce
bit rates and it achieves this by using codes with fewer bits for
the most probable parameters. In previous standards entropy
coding was based in variable-length-codes (VLC) derived
from the well-known Huffman codes due to their simplicity
and ease of implementation. H264 can also use VLC codes but
also permits the use of arithmetic coding as an improved
alternative to VLC. In the approach used by the CABAC
algorithm embedded in the H264 standard the probability state
includes the probability information and multiplications are
replaced by table look-up operations using the probability state
and the two most-significant bits (MSB) of the range as
pointers. This translates into a single table of 64 probability
states times 4 ranges or otherwise, 256 8-bit values, Arithmetic
is then carried out via simple additions and subtractions
however, the renormalization loop is a sequential process with
a cost of up to 6 iterations. The modelling stage in CABAC
uses 2 additional tables for the adaptation process, to calculate
the new probability state of the active context depending on
whether a Most-Probable-Symbol (MPS) or a Least-Probable-
Symbol (LPS) has just been coded.

To evaluate the complexity of AC in the H264 codec we
selected 7 video sequences organized in 3 standard video
formats namely QCIF, CIF, and SDTV, The video sequences
and the chosen configuration of the H264 video codec are
summarized in Table 1:

¥ ideo Blzefply FrameCount Sagnence¥ana E 264 ¢ on figuration
Form at s}
pcrr 1762144 60 Centainer,Porem sa M K B search range s 16,K E full
ey 8 seatch, reference fram es = 5,
or 3521280 60 Paris, Tes pete, li adam anl wansiom 0K ,B
M obile franes 0¥ ,RD optin isation
[TEL 120x576_ 30 Caleadar o

Table 1. Test Video Sequences and H264 configuration

Initial profiling of the algorithm was carried out in the
SimpleScalar [13] processor simulation environment. Profiling
data indicates that the complexity of AC during decoding is a
fraction of the complexity during the coding process.
Nevertheless, we chose to support both coding and decoding
acceleration in the hardware coprocessor to offer a self-
contained solution, These results are summarized in Table 2
for the QCIF format.

Total AC Instruction AC callsper Instruction
Instruction Countper frame frame count per AC
Count per frame (Millions) (Millions) call
(Milligns)

Coder 3,046 685 11 62

Decoder 23.5 0.2 0.0047 42

Table 2. AC Coding/Decoding Complexity in the QCIF Format

The number of calls to the AC routine increases substantially
in higher quality settings and for larger video formats. This is
illustrated in Figs, 1 and 2 which depict the number of AC
calls per frame and the associated PSNR values, as a function
of the quantization parameter QP, One AC call is needed for
each bit of data (symbol) that must be coded. The AC costs
range from 1 million calls per frame to approximately 60
millions calls per frame for a QP of 16, depending on the input
video format, The high computation coding requirements are
largely due to the Rate Distortion Optimization (RD) [14] in
the H264 standard. In RD optimisation each macroblock is
coded with different modes and the one that minimizes the
rate-distortion curve is selected. In addition to the number of
calls, algorithm profiling indicates that an average of 62
instructions for coding and 42 instructions for decoding are
needed for each AC function call. When targeting an
embedded, scalar, RISC CPU like the SPARC-compliant
Leon2 [15] used in this work this translates approximately into
100 CPU clock cycles per AC call or bit for an average clocks-
per-instruction (CPI) ratic of approximately 1.6 for the coding
phase. We can therefore safely conclude that AC, in the
context of advanced video coding, is a very compute-intensive
operation and since traditional parallelizing techniques such
as SIMD [16] extensions cannot accelerate this essentially
sequential process, the introduction of dedicated hardware
support in the form of a specialized coprocessor is a suitable
solution.

Avithenetic Coding cost

veedss QOF
——CF
= e o STV

Fig. 1. H264 arithmetic coding complexity

146

Awrage PSNR aluse

%

a -

-
« 2 | e QOF
é‘" | ——CF

E .| eSOV

%61 -

b

2d--

k2

4 8 27 18 n 4 23
o

Fig. 2, H264 PSNR evaluation

1V. PROPOSED ARITHMETIC CODING ALGORITHM

The original Z-coder sofiware algorithm was developed by
ATT labs [17] as a generalization of the Golomb/Rice coder
for lossless coding of bi-level images. Golomb/Rice coding is
used to code a run of r consecutive occurrences of a MPS
followed by a single occurrence of a LPS, using a parameter m
to control how many MPS fit in one bit of code and also how
many bits of code are required to code a LPS. The code has
two components: the first component is #/m 1’s, followed by a
single 0, while the second component is » mod m, coded as an
ordinary binary number with log,(m) bits. Although easy to
implement, the limitation of Golomb codes is that the chosen
parameter m is only good for a single probability distribution
however, a general compression system has to be able 1o deal
with arbitrary sequences of events with different probabilities.
The Z-coder aims to solve this limitation. Z-coding Is the same
as Golomb coding with the advantage that the parameter m can
be changed for each symbol being coded. The extra
complexity of the algorithm is small and more details can be
found in the original paper [17]. Our work has focused on
maintaining the simplicity of the Z-coding algorithm while
increasing its suitability for hardware implementation and this
is where our novelty lies. The resulting MZ~coder balances the
complexity of coding the MPS and LPS, simplifies the
precision of the arithmetic and handles special hardware
borrow conditions while maintaining coding efficiency and
achieving high performance via a fully pipelined micro-
architecture. In order to validate the efficiency of the MZ-
coder in a general compression environment a software
implementation has been developed in which a sophisticated
variable-order Markov-model [18] has been coupled to a
selection of 3 arithmetic coders named the Lei coder, the
Bmult coder and our own MZ coder. The Lei coder improves
the coding efficiency of the Q-coder and a detailed description
is available in [19]. The Bmult algorithm uses the standard
method proposed in [18] with full precision integer
multiplications. These two known arithmetic coders and the
MZ-coder have been compared with the information content of

R R B R .

IEEE Transactions on Consumer Electronics, Vol, 51, No. 1, FEBRUARY 2005

the Markov modeler measured by the equation symbol bits = -
loga(symbol_probability) using floating point arithmetic. This
equation bounds the theoretical compression for the given
model. Our experimentation is based on two standard data sets
commonly used in the literature: the Calgary and the
Canterbury (20] data sets. Figs. 3 and 4 show the percentual
compression degradation (Y axis) as a function of the block
size (X axis). The best performer is, as expected, the Bmult
algorithm using fuli precision integer multiplications. The two
multiplication-free coders perform similarly with a maximum
degradation of around 1% although the MZ coder outperforms
the Lei coder in all block sizes. Additionally, the MZ coder
performs very well for small block sizes outperforming the
information content of the model given by the floating point
arithmetic. The reason is that the MZ algorithm has been
designed to predict symbols with a slightly higher level of
confidence than that obtained from the probability data
provided by the model. Extensive simulation has shown that
slight over-predictions are particularly beneficial for small
block sizes where the limited amount of data available
prevents model construction from entering a stable state.

Calgary MZ svaluation

v e e Broult
—a—Lel
e ~M2

wg R izt e Aome

#1102 186 N2K Filg

Block Size

Fig. 3. MZ arithmetic coding efficiency in the Calgary corpus

Canterbury MZ svaluation

0 7 T T * - -#--- Broult
288 .- szl 200 a0 sie2 tek 32K As | —m—Ln
Y P T A T T R T g
o 4

U

Biock Size

Fig. 4. MZ grithmetic coding efficiency in the Canterbury corpus

Apart from offering good coding efficiency, one of the main
attractive points of the MZ-coder is its fast renormalization.
The criginal AC algorithm present in CABAC uses a variable
cycle (from 0 to a maximum of 6 cycles) renormalization stage
to keep the state variables in the required range. This variable
renormalization latency is due to the inner dependencies of the
state variables and the renormalization loop. Fig. 5 illustrates

1. L. Nifiezand V. A. Chouliaras: High-performance Arithmetic Coding VLSI Macra for the H264 Video Compression Standard

that the costs of multiple-cycle renormalization account for a
performance degradation of around 15%.

Renomalization cost

]

ix
13
2
o
§15 Lo OOF
% s
& 10 eSOV
E
$
[3 s nn e i 1 e e om0 e i e e
£
2 —
4] 12 18 20 “ 28
w

Fig. 5. Renormalization costs in CABAC

On the other hand, the renormalization process in the MZ-
coder does not include internal dependencies, As a result, it
can be readily accomplished with a shift left operation. This is
illustrated in the pseudocode of Fig. 6 which also shows the
internal dependencies of Jow inside the while loop in the
CABAC case, This MZ-coder feature guarantees a data-
independent throughput of 1 symbol per clock ¢vcle and
simplifies the contro!l data path.

pLPS = tablet4x6(state);

Z = range + pLFS; range = range — rLP5;

If (Z>=HALF) if (symbol = MPS)
Z=QUARTER + Z >>1; {

TLPS = table256x8 (state,range),

If(SymbOI = MPS) IOWrmge;
{ range =1LPS;
ange=Z;
if (tange >= HALF) /*renormalization loop*/
{ while(range < QUARTER)
output 1bit; { _
range <=1; ifflow >= HALF)
subend <=1, { _
} Qutput bit;
} low -=HALF;
else 3
f else
Z=FULL-2Z: { .
suben[&H-dl-I;z-zr if {low< QUAR'IER)
range +=Z; ' | Quiput bit;
shift_bits = shift(range), clse .]
output shift_bits bits; low-ﬁuﬁ%gmw”’
range <= shift_bits; } ;
stbend <= shift_bits; Jow <e=1:
J range <<=1;

}
Fig. 6. CABAC & MZ psendocode description

V. VIDEO CODING EFFICIENCY OF THE MZ ALGORITHM

The MZ algorithm has been incorporated into the JM 7.3
H264 reference software [21] and its coding efficiency
measured using the video sequences of Table 1,

147

Figs. 6 and 7 depict the coding efficiency of the proposed MZ
coder and the VLC coder versus the CABAC algorithm. Fig. 6
shows that the performance of CABAC and the MZ coder are
virtually undistinguishable. On the other hand, the simple VLC
codes increase the bit rates by around 8% for these video
sequences with the effect being more noticeable for the large
SDTV format.

Mz v CABAC Evaluation

10

9 -
e 84
2
2 7
o
Q.E 6 coote e SDTV
g g 5 .‘ e [i e e
OE 4l e —EQCF
3% .1 - -CIF
E£Ev 3
€»
Q
3
[

Al 43 —45 20— 425

QP
Figure 6. MZ coding efficiency
VLE vCABAC Evatuation

B
s 74
£% 5. sroteee SDTY
<_‘3§4_‘, I B
22 3 -+~CF
28 8¢ B e
g 24 - i
P O S —— ;

0 T T T T T T

-1 -

QP

Figure 7. VLC coding efficiency

These results have been verified by decoding the resulting bit
files using the corresponding entropy decoders for each of the
3 options tested (VLC, MZ, CABAC). They validate the MZ
algorithm as delivering the same level of performance as the
original CABAC, The unique advantage of the MZ is therefore
its single cycle renormalization capability and its efficient
hardware micro-architecture which results in high performance
VLSI implementation. The microarchitechitecture is presented
in the following sections.

148

V1. ARCHITECTURE AND VLSI IMPLEMENTATION

Fig. 8 shows the hardware architecture of the arithmetic coding
COpProcessor.

Probatility state H

ROM LP& Coprocessor -
Tabis 84x7

MZ Decodar’
Arithmetic

Shift 3}
Bhitt Out
Old Data

Cods Len
-~

s
Decode

Figure 8. Coprocessor architecture

The coprocessor has been coupled 10 a SPARC V3 [22]
compliant embedded CPU [15] which includes a standard, 5-
stage RISC pipeline. The Leon2 processor was selected for
this work due to its open-source nature which makes the
integration of the coprocessor pipeline in the Leon2 data path
easier due to having full access to the RTL source code. The
following sections describe the main modules of the MZ-
coder,

A. Arithmetic Coding Coprocessor Description

1) MZcoder arithmetic
The hardware implementation reduces the arithmetic precision
to 8 bits and the precision of the subend and range registers to
7 bits from the original 17 bits and 16 bits in the Z-coder [17]
software algorithm respectively. This precision is sufficient to
handle the minimum symbol frequency of 1/128 as fixed by
the LPS table, without affecting coding efficiency. The
renormalization {s done in parallel for range and subend and in
the same pipeline cycle as the rest of the MZ arithmetic. The
number of bits that must be added to the output code depends
on the amount of renormalization needed in the range value so
that the range is kept between “0000000” and “1000000”.
Shifting must be done until the MSB of the range value is 0,
The shift value ranges from 0 when no shifting is required to 7
when the input range is “1111111” and 7 shift operations are

IEEE Transactions on Consumer Electronics, Vol, 51, No. 1, FEBRUARY 2005

tequired to obtain “0000000”. The code bits output from the
MZ arithmetic stage are buffered in the code buffer stage.

2} Code buffer

The code buffer stage is required to contrel possible borrow
bits originating in the previous stage that could affect the value
of the bits contained in the code buffer. A total of 8 bits are
buffered in this stage. A number of bits, as defined by the shift
value, must be inserted at the least-significant bit in the code
buffer. The result from doing the MZ arithmetic means that an
overflow is possible in the subend register, As long as the
value stored in the buffer is different from 0, the borrow will
be stopped in the code buffer register. If the value of the
buffer is O then the borrow propagates out into bits that have
already been sent to the code generator stage (discussed next)
and the current output is formed by as many bits set to 1 as
specified by the shift signal since borrow propagation, in the
code buffer, will swap all the bits from 0 to 1, The code
generator stage handles possible borrows originating in the
code buffer by not outputting bits until a bit set to 1 has been
reccived from the code buffer stage. The bit set to 1 will
behave as a barrier for the possible borrows being propagated
out of the code buffer.

3) Code generator

The code generator takes the 0 to 7 bits produced by the code
buffer and the zero run count to build a code of up to 14 bits.
The zero run register counts the number of consecutive 0 bits
in the input. These bits are the equivalent of the bits_to follow
variable used by sofiware arithmetic coders [4]. The output is
formed as a bit set to I plus zero run bits set to 0 when the first
bit set to 1 from the code buffer is received after a run of
consecutive 0%s, Output is then possible since the bit set to 1
will block any possible borrows originating in any following
coding events. In software the bits_to follow counter is a
simple integer variable but in hardware this could leave an
undefined and potentially unlimited number of bits in the
coder pending to be output, This is undesirable from 2 latency
and complexity point of view so instead of using a large 32-bit
register, a 3-bit counter is utilized to keep track of the zero run
count. This mechanism means that only a maximum of 7 bits
could be left in the coder pending to be output. The maximum
length codeword that the bit packer should be able to handle is
therefore given by:

Max length codeword = 7 new bits + 7 bits pending =
= 14 bits.

It is possible that more than 7 bits set to 0 are received in
which case the zero run counter will overflow. To avoid this
situation the hardware emits the pending 7 bits set to 0
preceded by a bit set to 1 in a speculative manner, The first bit
of the next output codeword will indicate if the bits emitted
speculatively must be inverted. The decoder will extract this
bit from the data stream, negate it and subtract the result from
the previous code, effectively transforming any code bit
sequence of “10000000” to “01111111™, This process adjusts
the code to the correct value and performs a similar function to

J. L. Nufiez and V. A. Chouliaras: High-performance Arithmetic Coding VLSI Magro for the H264 Video Compression Standard 149

the stuffing bit suggested by IBM in their Q-coder {5]. The
extra bit is part of the next codeword and will have the value 0
if and only if a borrow bit originated in the code buffer stage.
Potentially a run of 7 consecutive 0s could be followed by
another run of 7 consecutive 0s overflowing the zero run count
again. This is not a problem and the hardware will emit
codewords as normal. The potential long borrow will not cause
the decoder to fail because all the coding events that were
coded previous to the event that produced the borrow can be
decoded without any borrow propagation. The fundamental
requirement to guarantee correct decoding is that the borrow
must be propagated in the decoder before the decoder tries to
decode the bit that produced that borrow in the first place.

4) Code packer

The variable number of bits produced by the code generator is
finally pipelined to the code packer whose function is to pack
the variable length codewords into fixed-length 8-bit
codewords, ready to be output. Since up to 7 bits can be left
inside the code packer without generating any output and up to
14 bits can be forwarded by the code generator stage in every
cycle, the width of the packer register has to be at least 21 bits
to be able to store all the data bits in this particular case.

B. Arithmetic Decoding Coprocessor Description

1}. Process run

The module to process the zero runs checks if 7 consecutive
bits are set to zero with the help of the zero run register. If this
condition is detected, the next bit corresponds to an exfra bit
added by the coder. This bit is removed from the coded data
stream and a borrow_propagate signal is forwarded to the next
pipcline stage to adjust the rest of the codeword bits
accordingly, before they are used by the decoder. If the bit is
set to no borrow propagation is needed but if the bit is set to
0 a borrow propagation must take place that will be stopped by
the first bit set to 1 in the code buffer register.

2) Assemble new data and Shift out old data
This block buffers the codeword bits before they are required
by the MZ-decoder arithmetic. To increase the amount of
parallelism between the MZ decoder arithmetic and the
assembly-shift operation, data is concatenated in the
assemble_new data module before the arithmetic logic has
determined how many bits must be disregarded. Once this
value s known, old data is shifted out and the codeword is
rebuilt using the arithmetic adjusted codeword and new data in
the shift_out old data module. The codeword is then
registered in the code buffer, ready to start a new decoding
operation. Since assembling of new data is done without
knowing how many bits are going to be disregarded by the
decoding arithmetic, enough bits must be present so that, in the
case that no data is assembled but maximum bits are
disregarded, enough valid bits remain for the next decoding
cycle. It is also critical to propagate the borrow signal as far as
the first bit set to 1. At least 6 bits of codeword must always be
valid. If a decoding operation can consume up to 6 bits and at
least 6 bits must remain valid for the next decoding operation

at least 12 bits must be valid at the start of the cycle. This
means that data must be added when less than 12 valid bits
remain in the code buffer register. The code buffer register
must therefore be at least 19 bits wide to be able to store the
total of 8 new bits plus 11 bits of codeword.

3). MZ decoder arithmetic

The decoding arithmetic follows that presented in the Z-coder
paper [18] with the benefit of using only 7-bit precision and
having balanced MPS/L.PS branches, similar to the proposed
coding hardware. The arithmetic circuits have been designed
to maximise throughput by performing as many operations in
parallel as possible.

Finally, the DMA/AHB bus controller moves data between the
internal coprocessor FIFOs and main memory.

VIL ISA EXTENSIONS

A total of 5 instructions have been added to the SPARC V§
ISA to support the coprocessor. The MZ code_mps and
MZ_code_{ps instructions advance the MZ pipeline and are
used each time the main processor enters the AC routine. The
data transferred to the MZ module when any of these two
instructions is executed is the 6-bit probability state. The MZ
arithmetic corresponding to an MPS or LPS coding event is
then executed and the results are forwarded to the next
pipeline stage (code buffer). The MZ state stored in the
registers range and subend is also updated. The data path from
the MZ arithmetic to the execution stage in the Leon processor
returns the number of bits needed by the executed coding
instruction. The video codec sofiware uses this information to
calculate the current coding bit costs. The rate distortion
optimisation accepts or rejects a sequence of coding events
depending on the value of this cost and the current PSNR
value. This means that two extra instructions are required to
accept or reject previously executed coding events: MZ comit
and MZ reset, Additionally and not shown in the figure but
implied, there is a set of equivalent MZ state registers
corresponding to the hidden state. These registers are updated
by the MZ comit instruction and are used to update the visible
state by the MZ reser instruction, Therefore, the purpose of
the MZ_comit and MZ_reset instructions are to accept or reject
previously coding events by updating the coprocessor state
registers. The decoder requires another instruction extension
called MZ_decode_s. Once the decoding process starts, the
coprocessor state machine (not shown) fills up the code buffer
tegister independently of the code running on the main CPU.
Once a decode instruction is received, some of these bits are
used to generate a decode MPS/LPS signal that indicates if a
most probable symbol or a least probable symbol has been
decoded. The software running on the main CPU interprets
this signal as a bit set to 1 or a bit set to 0 depending on which
symbol (0 or 1) is the most probable symbol. A valid signal
indicates to the main CPU if the code buffer contained enough
bits for the instruction to complete. Otherwise, the main CPU
must reset the state of the decoder engine using MZ_reset and
execute again the decode instruction. Finally, the state
registers are pipelined at each level and move with the data

159

path pipeline with the rest of the codeword data. This is
necessary to handle possible exceptions originating in the main
CPU data path that would cause the main pipeline to restart
and the same instruction to be executed more than once. A
restart signal originating in the exception logic unit of the
Leon2 CPU will load the pipeline state information into the
corresponding state registers in the MZ coprocessor should a
software exception happens in the main processor.

VIII. IMPLEMENTATION

To verify the functionality and performance of the AC
coprocessor we have integrated the core in a SoPC platform
implemented using an Altera APEX20KE PCI development
board. The main components of the SoPC platform are
illustrated in Fig. 9. it

Figure 9, SoPC Platform

The AMBA AHB subsystem incorporates a total of 5 masters
(Debug Support Unit, Leon2 Processor, AC coprocessor,
DMA Engine, PCI Bridge Interface) and 2 slaves (memory
controller and AHA/APB Bridge). The Conirol registers
module, instantiated as a slave in the AMBA APB bus,
controls the execution of the H264 binary on the FPGA board.
There are a total of 5 extra registers added to the standard
Leon system for control purposes. The interrupt register is
hardwired to the open drain INTAN signal on the PCI bus.
When one of the bits in the interrupt register is set to zero the
INTAN signal goes low. It is the responsibility of the
application driver running on the host computer to remove this
interrupt by writing OxFFFFFFFF to the interrupt register. The
debug support unit can be used to help debugping an
application running on target hardware. The MZ coprocessor
can clock up to 50 MHz in this technology but the Leon2
processor and the Opencores PCI Bridge are limited to 33
MHz. The complexity and performance details of the FPGA
implementation are shown in Table 3. The AC coprocessor
teduces the complexity of arithmetic coding by more than an
order of magnitude in this configuration .

The chosen Silicon technology for the VLSI macro was the
UMC 0.13 pm, 8-copper process. The design was originally
synthesized in Synplify ASIC and then, read into the Synopsys
Design Compiler for further logical netlist optimization. It was

IEEE Transactions on Consumer Electronics, Vol 51, No. 1, FEBRUARY 2005

then read into Synopsys Physical Compiler tool and optimized
for Minimum Physical Constraints (MPC). The MPC (placed)
netlist was then run through Place and Route on the Cadence
Encounter platform to verify that the design was indeed

routable,

Component Lagic Cells Memory bits Performance
Leon CPU 7724 94332 33MHz
DSU 1355 16384
PCI Bridge 3730 32768
Memory Controller 733 8196
DMA Engine 291 [1]
AHB Controller 565 0
AHB/APR Bridge 317 0
Conirol Registers 400 0
AC Coprocessor 1460 448 50 MHz
Overall SorcC 16575 (43% of 151828 (46% of 33 MHz
APEX20K1000E APEX20K100CE
Altera FPGA) Altera FPGA)

Table 3. SoPC complexity and perfomance details

Once the routability aspect of the design was achieved, the
original logical netlist was read into Physical Compiler once
more, but now with real physical constraints applied. These
constraints specified the utilization factor, aspect ratio and die
size¢ (derived from the previous MPC run), power ring
dimensions, power trunks width and number, pin (port)
location and finally, the power straps characteristics. It was re-
optimized and passed to SoC Encounter for the final Place and
Route run, The maximum operating frequency was 330 MHz
worst-case (throughput of 330 MSymbols/second) and the
complexity of.both the coder and decoder is 5600 standard
cells. Fig. 10 depicts the final placement and layout of the
arithmetic coding/decoding coprocessor.

Figure 10, Coprocessor Placement and Layout

J. L. Nafiez and V. A. Chouliaras: High-performance Arithmetic Coding VLSI Macro for the H264 Video Compression Standard 151

IX, CONCLUSIONS

This paper presented an innovative hardware architecture for
arithmetic coding based on the simple Golomb codes that
enables a data-independent throughput of 1 symbol per clock
cycle without affecting coding efficiency. The MZ-coder has
been applied to the problem of accelerating the compute-
intensive entropy coding functions in the state of the art H264
video coding standard and shown to deliver equivalent bit
rates while eliminating the need for multiple renormalization
cycles. The hardware has been verified using low-cost FPGA
technology and shown to have modest requirements in terms of
silicon area while achieving good results in terms of clock rate.
The SoPC platform utilizes the open-source Leon2 processor
with the proposed accelerator and shown to reduce the
complexity of AC by more than an order of magnitude,
Subsequently, a VLSI implementation was carried out in a
high performance .13 pm silicon process and the resulting
macrocell achieved a throughput of 330 Msymbols/second.
The H264 video coding standard is expected to be the enabling
technology in the near future for personal multimedia
communications, Major efforts are currently active within
industry and academia to accelerate the compute-intensive
motion estimation, transform and quantization functions
through developing fast algorithms and exploiting the
available data level parallelism. Entropy coding, based on
arithmetic coding, is mainly a sequential process, not well
suited to this kind of optimization. Its acceleration with the
proposed hardware architecture could play a major role in
bringing real-time H264 video coding within the grasp of low-
power embedded devices.
References

[1] G. Lawton, “New Technologies Place Video in Your Hand”, IEEE
Computer, Vol. 34, No. 4, pp. 14-17, 2001.

[2] G Bjontegaard, “H.26L Test Model Long Term Number 4 (TML 4)
draft0”, ITU-TSG16/Q.6 Q15-1-72, June 2000.

[3] V. A Chouliaras, J. L. Nofiez “A Multi Standard Video Coding
Accelerator based on a Vector Architecture”, to appear in IEEE
International Conference on Consumer Electronics, Las Vegas, January,
2005,

[4] G. Langdon, “An Introduction to Arithmetic Coding”, IBM). Res.
Develop, Vol. 28, No. 2, pp. 135-149, March 1984,

[5] W.B. Penncbaker et al, “An overview of the Basic Principles of the Q-
Coder Adaptive Binary Arithmetic Coder” IBM J. Res. Develop, Vol
32, No. 6, pp. 717-725, November 1988.

[6}] M. L Slattery, L. L. Mitchell, “The Qx-coder”, IBM Journal of Research
and Development, Vol. 42, No, 6, pp. 767-784, 1998,

[7]1 J. Rissanen, K. Mohiuddin, “A Multiplication-free Multialphabet
Arithmetic Coder”, IEEE Transactions on Communications, Vol. 37,
pp. 93-58, 1989,

[8] 8. Kuang, J. Jou, Y. Chen, “The Design of an Adaptive On-Line Binary
Arithmetic- Coding Chip”, IEEE Transactions on Circuits and Systems-
I Fundamental Theory and Applications, Vol. 45, No. 7, pp 693-706,
July 1998

[9) S.RKuang et al., “Dynamic pipeline design of an adaptive binary
arithmetic coder”, [EEE Trans. on Circuits and Systems-II: Analog and
Digital Signal Processing, Vol. 48, No. 6, pp. 813 —-825, Sep 2001,

[10} 1. Kneip et. al., “Applying and Implementing the MPEG-4 Multimedia
Standard”, IEEE Micro, Vol. 19, No. 6, pp. 64-74, ,1999.

{11] K. Rijkse, “H.263; Video Coding for Low-Bit-Rate Communication”,
IEEE Communications Magazine, pp. 42-45, December, 1996,

[12) D. Marpe, H. Schwartz, T. Wiegand, “Context-Based Adaptive
Arithmetic Coding in the H.264 Video Compression Standard”, IEEE
Transactions on Circuits and Systems for Video Technology, Vol. 13,
No. 7, pp. 620-636, 2003,

[13] Information available at www.simplescalar.org

[14] T. Stockhammer, D. Kontopodis, T. Wiegand, "Rate-distortion
optimization for JVT/H.26L video coding inpacket loss environment”,
Proc. of 2002 Int, PacketvideoWorkshop, Pittsburgh, USA, 2002.

[15] Information available at www.gaisler.com

[16) D. Talla, L. K. John, V. Lapinskii and B. L. Evans, “Evaluating signal
processing and multimedia applications on SIMD, VLIW and
superscalar architectures”, Proc. IEEE Int. Conf. on Computer Design,
pp. 163-172, Sep. 2000.

[17] L. Bottou, P. G. Howard, Y. Bengio, “The Z-coder adaptive binary
coder”, In Proceedings of the Data Compression Conference, pages 13-
22, March 1998,

[18] Y. Cleary, 1. Witten, “Data Compression Using Adaptive Coding and
Partial String Matching”, IEEE Transactions on Communications, Vol.
32, No. 4, pp. 396-402, 1984

[19] S. M. Lei, “Efficient Multiplication-Free Arithmetic Codes”, IEEE
Transactions on Communications”, Vol. 43, No. 12, pp. 2950-2958,
1995

[20] R. Amold, T.Bell, ‘A Corpus for the Evaluation of Lossless
Compression Algorithms’, Data Compression Conference, pp. 201-210,
1997,

[21] Sources available at http://iphome.hhi.de/suchring/tml/

[22] Information available at www.sparc.comy/standards/V8.pdf

José Luis Nafiez is a a lecturer in the department of
Electronic Engineering at Bristol University, Prior to that
he was a research fellow in the department of Electronic
Engineering at Loughborough University where he
worked since 1997, His current interests include the areas
of lossless/lossy data compression, reconfigurable
computing, FPGA-based design and high-speed data
networks. He received his BS and MS degree in
Electronics Engineering from Universidad de La Coruna
(La Coruna, Spain) and Universidad Politécnica de Catalufia {Barcclona,
Spain} respectively in 1993 and 1997. He received his PhD degree at
Loughborough University (Loughborough, England) in 2001 working in the
area of hardware architectures for high-speed lossless data compression

Vassilios A. Chouliaras was born in Athens, Greece in
1969. He received a B.Sc. in Physics and Laser Science
from Heriot-Watt University, Edinburgh in 1993 and an
M.S¢. in VLSI Systems Engineering from UMIST in
1995. He worked as an ASIC design engineer for
INTRACOM SA and as a senior R&D engineer/processor
architect for ARC International. Currently, he is a lecturer

k in the Department of Electronic and Electrical
Engmeermg at the University of Loughborough, UK. His research interests
include superscalar and vector CPU microarchitecture, hiph-performance
embedded CPU implementations, performance modeling, custom instruction
set design and self-timed design.

Paper PJ5: Grecos, C., Saparon, A. and Chouliaras, V., ‘Three novel low complexity
scanning orders for MPEG-2 full search motion estimation’, Real Time Imaging, 10,
February 2004, pp 53-65

67

Available online at www.sciencedirect.com
SCIENCE @nln!c'r'

Real-Time Imaging 10 (2004) 33-65

www.elsevier.com/locate/rii

Three novel low complexity scanning orders for MPEG-2 full search
motion estimation

Christos Grecos*, Azilah Saparon, Vassilis Chouliaras
Department of Electronic/Electrical Engineering, Loughborough University, Leicestershive LEII 3TU, UK

Abstract

Complexity localisation in the reference frame is the key process for the derivation of efficient scanning orders for motion
estimation. The more localised the complexity is, the more computationally efficient scanning orders can be derived for reduced cost
motion estimation algorithms, However, this processes entails serious pre-processing overhead which may render it unsuitable for
real time video coding systems. In this paper, we propose three low complexity scanning orders of similar performance that are very
competitive in terms of the operation count ratio metric with respect to the MPEG-2 raster scan order, show improvements of
7.14% on the average with respect to the number of examined macroblock rows metric and they also show an increase in the speed-
up ratio of 0.12 on the average as compared to the standard. As compared to other work in the literature, the proposed scanning
orders require one fourth of the operation count ratio and show an increase in the speed-up ratio of 45 times on the average.

@© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

The research efforts for the mofion estimation
problem in video coding can be classified in two
categories according to the quality-complexity trade-
off. The first category consists of the Full search
methods [1] which examine all locations inside a given
search window in the reference frame. These algorithms
find the best match of the macroblock to be encoded in a
window of a given size at the cost of high computational
complexity, The second category consists of methods
that trade off quality for reduced complexity, thus
examining only a subset of locations inside a given
search window. Such methods include the 2-d logarith-
mic search [3), the cross search [5], the Three Step Search
(388) [2], the Four Step Search (4SS) [6], the gradient
descent search [7], the diamond search [8] and a whole
range of zonal searches [9]. To reduce the cost of the
Full Search methods, a variety of schemes have been
proposed in the literature such as the partial distortion
climination technique (PDE) [10] and its variations
[15-17], successive climination algorithms (SEA)

*Corresponding author. Tel.: +44-1509-227077; fax: +44-1509
227014,

E-mail addresses: c.grecos@lboro.ac.uk (C. Grecos), a.saparon@
Iboro.ac.uk (A. Saparon), v.a.chouliaras@lboro.ac.uk
(V. Chouliaras),

1077-2014/8 - see front matter @ 2004 Elsevier Ltd. All rights rescrved.
doi:10.1018/j.rt1.2004.02.001

[18-24], fast 2-d finite impulse response filters [25],
vertical-horizontal and massive projection techniques
for candidate and reference blocks [26-27] etc. All these
schemes examine only a subset of the pixels for a given
search position in the reference frame andjor for the
macroblock to be encoded, while still finding the best
match in statistical terms. The work in this paper falls in
this category of schemes.

An appealing possibility in the search methods
without quality degradation is the tailoring of the
scanning order for the computation of the sum of
absolute differences (SAD) metric according to the
direction of the local motion field in the reference frame.
The idea is that the sooner the maximal changes of the
local motion field are identified in the process of SAD
computation between the macroblock to be encoded and
a candidate predictor in the reference frame, the faster
this predictor can be rejected if it has exceeded the
minimum SAD found so far. Early search termination
{or early jump out (EJO) in MPEG-2 terminclogy)
obviously implies computational savings since only a
subset of the pixels for the macroblock to be encoded
and its potential best match in the reference frame need
to be examined. The search will then continue from the
next search position in the reference frame inside the
given search window. This early bailing out mechanism
essentially classifies these scanning orders as variable
complexity algorithms (VCAs) since complexity of the

54 C. Grecos et al. | Real-Time Imaging 10 (2004) 53-65

motion estimation clearly depends on the properties of
the input source, thus specific scanning orders that are
tailored to these properties can indeed achieve computa-
tional scalability [14]. It has to be noted that the
scanning orders we are dealing with refer to motion
estimation rather than to the encoding of DCT coeffi-
cients despite the fact that the latter have been very
popular in the literature (zig-zag scanning, alternate
scanning etc. [4]). Due to simplicity in implementation,
the MPEG-2 standard [1] in TM-S§ chose to examine
EJC points at the end of every macroblock row and it
also chose a fixed raster-scan order for the SAD
computation of the pixels involved. This fixed raster-scan
order, which accumulates SAD in the two macroblocks
from top to bottom and from left to right, can be very
inflexible and cause unnecessary computational over-
head due to the following reason: No attempt is made in
the standard to identify content-wise the areas in the
reference macroblock that will result in the biggest
computational reduction if examined first, during the
motion estimation process. This is in contrast with
computationally intensive but theorctically proven
results by Tao and Orchard [30] and later work by
Kim {11-12], which clearly demonstrate that the early
identification of regions with highest gradients (i.e.
activity) in the reference macroblock will produce the
maximal computational savings. Due to these theore-
tical and practical results [11,12,30], the fast identifica-
tion of these high activity areas in the reference
macroblock, either through blind estimation or through
very low overhead classification that justifies its use is
imperative,

The idea behind the first two blind estimation
scanning orders we propose, is that by spiralling inwards
in the reference macroblock, we are able to locate more
pixels with higher gradients faster as compared to the
raster scan order and thus potentially save computa-
tions. A simple predictor of the maximal change of the
motion field, in combination with inward movement in
the reference macroblock during the SAD calculations is
the basis of the third scanning order proposed and it
also achieves faster location of high gradient pixels. The
following figure illustrates the benefits of the proposed
schemes,

In Fig. 1, it is clear that the dissimilar areas
(represented as white patches in the reference frame)
of candidate macroblock predictors, can be faster
identified and potentially eliminated by different scan-
ning orders than the one used by the standard. In the
cases depicted in the figure, a scanning order with EJO
points at the ends of rows/columns from the right-most
column to the left-most, from the left-most column to
the right-most and from the bottom-most row to the
top-most would be ideal for fast rejection of the first
three candidate predictors. For the predictor repre-
sented by the free form closed contour inside the

T s oo |
Pl /‘\
- %

-

fram
[i]

Fig. 1. Similarity between macroblocks of the current and reference
frames.

reference macroblock, the highest gradient pixels will
occur just on the borders of the contour where the
texture changes. It can be easily seen that scanning
based on squares of decreasing sizes as we are moving
inward during SAD calculation in the reference macro-
block, will be able to locate more boundary contour
pixels faster since it examines four directions simulta-
neously as compared to the single scan direction used by
the standard for the same number of operations per
macroblock, This is also true for the candidate predictor
represented by the free form open contour inside the
reference macroblock, as shown in Fig. 1.

The design of scanning orders for Full search motion
estimation algorithms can be subdivided in zero over-
head and in limited pre-processing schemes. In zero
overhead schemes, the order of SAD computation
between pixels in the current and reference macroblocks
is usually fixed and the choice of the order tries to
compensate for the blindness of the estimation. Relevant
work can be found in [12]. In limited pre-processing
schemes, the maximal changes in the local motion field
are identified through some kind of pre-processing such
as gradient estimation, gradient sorting etc. [11). It has
to be noted that the gains of the limited pre-processing
methods through accurate identification of the maximal
changes in the local motion field have to be weighted
against the time that such pre-processing needs for real
time motion estimation schemes. This is the reason that
we present in Section 4 both computational savings in
terms of the average nwmber of rows examined per
macroblock, computational savings in terms of the
operations required but also computational savings in
terms of the actual run times for the different schemes,
since the latter two metrics consider pre-processing
overhead as well.

In this paper, we propose three novel scanning orders
for motion estimation. The first two belong to the
category of zero overhead schemes since they attempt to
eliminate unsuitable predictors in the reference frame as
fast as possible, based on joint exploitation of horizontal
and vertical SAD information. The third scanning order
proposed belongs to the category of limited pre-
processing schemes, since it utilises SAD information
only of the boundary macroblock rows and columns for

C. Grecos et al. | Real-Time Imaging 10 (2004) 53-65 55

determining the scan direction. The paper is organised
as follows: Section 2 describes the proposed scanning
orders for motion estimation, Section 3 describes
complexity comparisons of the proposed schemes as
compared to other work in the literature and Section 4
contains comprehensive experiments that show the
merits of the proposed scanning orders versus the
raster-scan order used in MPEG-2 but also as compared
to other works in the literature. Section 4 ends by
drawing conclusions from our work.

2. Proposed scanning orders
2.1, Spiralling inward scanning order

This scanning order is based on the idea that the SAD
value between pixels located on corresponding positions
on the sides of squares of decreasing size inside the
current and reference macroblocks, may be used to
reject candidate predictors faster than the raster scan
order used by MPEG-2. For a 16 x 16 pixel area there
are 8 such squares with sides 16,14,12,10,8,6,4 and 2
pixels respectively. Formally, let's assume that I(i,)) is
the intensity of pixel (4, /) inside a frame n, dx and dy are
the motion vector coordinates for a candidate best
match of the macroblock to be encoded in the reference
frame and (k,!) are the coordinates of the upper left
hand corner of the current macroblock. Furthermore,
assume that ¢ indicates the offset of the upper left hand
corner of any inner square from the coordinates (k, /)
and m is an offset from the upper left hand corner of any
square. Then the SAD difference between the reference
and the current macroblocks according to the proposed
scanning order can be represented by the following
equation:

SAD reference_macroblock —current.macroblock
g=T7 [m=15~2x¢g

=2

g=0 m=0
—Ii(k+g+m+dx,l+ g+ dy)

Ltk +q+m,!+q)

m=15-1xq

+ 3 M+ (15— g), 1+ g +m)
m=0
Lk + (15— g +dx,l + g+ m+dy)
m=15-2xgq
+ Y Mk+(5-g)—mi+(15-g)
m=()
~I 1k + (15— @) — m+dx,] + (15—) + dy)]|
m=15-2xq
+ Y k+gl+(5—g)—m)
m=0
— Ltk +g+dx,i+(15—q)—m+dy)|. 1)

Fig. 2. Spiralling inward scanning order.

The following figure shows the proposed scanning
order (Fig. 2):

In the above figure, SAD computation starts from the
points depicted as diamonds and potential EJO points
are at the corners of the squares of decreasing size for
both the reference and current macroblocks. The
direction of the SAD computation for the pixels on
the sides of squares of decreasing size is shown using
arrowheads. The scanning order moves inwards in the
macroblocks and the minimum size of the sides of
the squares is 2 pixels. The dotted arrowhead shows the
direction of the scanning order from the borders of the
macroblocks to the centre. In the case that an EJO
occurs, motion estimation continues as in the spiral
search from the next search point inside the search
window of the reference frame. Finally, it has to be
noted that the scanning order has to be the same for both
the current macroblock and its potential best match,
since this is a pre-condition for finding exactly the same
best matches as the Full Search (FS). If the scan order is
different, we risk premature search termination with
adverse effects on quality and bit rate.

2.2. Alternating spiralling inward scanning order

The design of this scanning order is based on the idea
that the spiralling inward scanning order may be
wasting computations due to the fixed direction of the
scanning order (top horizontal side of square-right
vertical side of square-bottom horizontal side of
square-left vertical side of square). In fact, the spiralling
inward scanning order will reject faster candidate
macroblocks on the basis of horizontal SAD informa-
tion rather than on the basis of vertical SAD informa-
tion. This is evident from the order itself, since a
candidate macroblock to be rejected in the reference
frame on the basis of vertical SAD information will have
to wait until the horizontal SAD computations are
performed. For this reason, a less biased scheme can be
designed which uses horizontal and vertical SAD
information for rejection of candidate macroblocks on
an alternating basis. Thus in the alternating scanning
order case, the scan directions (top horizontal side of

36 C. Grecos et al. | Real-Time Imaging 10 (2004) 53-65

outer square-right vertical side of outer square-bottom
horizontal side of outer square-left vertical side of outer
square) and (left vertical side of the inner square-bottom
horizontal side of the inner square-right vertical side of
the inner square-top horizontal side of the inner square)
are used. The cycle completes after two iterations and
subsequently the outer square becomes inner and the
algorithm continues. Again notice that for a 16 x 16
pixel area there are 8§ inner squares with sides
16,14,12,10,8,6,4 and 2 pixels respectively Formally,
let's assume that I,(i,/) is the intensity of pixel (7,)
inside a frame n, dx and dy are the motion vector
coordinates for a candidate best match of the macro-
block to be encoded in the reference frame and (k, /) are
the coordinates of the upper left hand corner of the
current macroblock. Furthermore, assume that ¢
indicates the offset of the upper left hand corner of
any inner square from the coordinates (k,/} and m is an
offset from the upper left hand corner of any square.
Then the SAD difference between the reference and the
current macroblocks according to the proposed scan-
ning crder can be represented by the following equation:

SA4D reference_macroblock—current_macroblock

g=3 m=15-4xq
= {[Z Lk +2xg+ml+2xq)

g= m=0

Lk +2xg+m+de,]+2%x g+ dy)|

m=15-4xg
+ D hk+(5-2xg),l+2x g+m)
m={
Sk +(15-2%x q)+dx,]+ 2x g+m+dy)|
m=15=-4xq
+ S Mk +(5-2xg)—mI+(15—2x g))
m=0
Lok + (15= 2 X) = m+ dx, 1 + (15 — 2 x g) + dv)|
m=15—4xqg
+ Y k+2xql+(15-2xg)—m)
m=0

— Lk +2xg+dx,]+ (15~2 x ¢) —m+dy)|

m=15—(dxg+2)
X
m=0
Lk +Cxg+ D+de, I+ 2 x g+ 1)+m+dy)
m=15-(4xg+2)
+ Y Hk+@x g+ +m,l

m=0
FHB-Cxg+ DL k+2xg+1D+m
+dx, I+ (15 -2 x g+ 1))+ 4|
m=15—(dxq+2)

LD

n=()

L+ Qxqg+ DI+ 2 xg4+1D+m)

[fi(k + (15— (2 x g+ 1)),!

A5 -2 g+) —m — Lok +(15— 2 x g+ 1)
+dx, I+ (15- 2 x g+ 1)) ~m+dy)]
m=15~(4xg+2)

LD

m=0

F2Xg+ 1) =Lk + (15— 2 x g+ 1)

e +(15-2x g+ 1)) —m,}

—m+dx,1+(ZXq+1)+dy)[]}. (2)

In the above equation, the first part of the summation
computes the SAD for pixels on the sides of squares
with side length 16,12,8 and 4 pixels which are visited
during the first cycle of the proposed scanning order.
Similarly, the second part of the summation computes
the SAD for pixels on the sides of squares with side
length 14,10,6 and 2 pixels which are visited during the
second cycle of the proposed scanning order.

The following figure shows the proposed scanning
order (Fig. 3):

As in the previous figure, SAD computation starts
from the points depicted as diamonds and potential EJO
points are at the corners of the squares of decreasing size
inside the reference and current macroblocks., The
direction of the SAD computation for the pixels on
the sides of squares of decreasing size is shown using
arrowheads. The dotted arrowhead shows the direction
of the scanning order from the borders of the macro-
blocks to the centre. Furthermore, the star symbol
indicates the position where the cycle is restarted and
again the minimum size of the sides of the squares is 2
pixels.

2.3. Horizontallvertical scanning order

In essence, both the preceding scanning orders
attempt to predict the maximum change in the direction
of the motion field with zero initial assumptions. This
maximum change in the motion field direction will
enable faster rejection of candidate macroblocks in the
reference frame, thus saving a significant amount of
computations. Although both the preceding orders are
ideal for online implementations due to the zero initial

Fig. 3. Alternating spiralling inward scanning order.

C. Grecos et al. [Real-Time Imaging I} (2004) 53-65) 57

assumptions, some computationally economical pre-
processing could be beneficial for more accurate
estimation of the maximum change in the motion field
direction. The trade-off here is that the more accurate
the determination of the motion field maximal change,
the more pre-processing is required in general. This pre-
processing may out-weigh the benefits of computational
reduction when the optimal scanning order is found.
This lead to the idea of the selection of a horizontal/
vertical scanning order for the candidate macroblock in
the reference frame by using only very limited pre-
processing. Independent of our research, a horizontal/
vertical scanning order has also been proposed by Kim
and Choi [12] but with a much more computationally
intense pre-processing phase as will be shown in the
section regarding complexity considerations.
Specifically, the first scheme they propose utilises
gradient measures on 8 x 8 block level for finding the
best scanning direction per macroblock. The second
scheme they propose utilises sorted gradients on a
macroblock row level to predict maximal changes in the
motion ficld. The third scheme they propose, further
uses sorting of 4 x4 sub-block gradients in order to
improve the accuracy of the prediction of the maximal
change in the motion field, In contrast, our proposed
scanning order is determined from examining only the
SAD difference between the boundary rows and
columns of the macroblock to be encoded and the
candidate macroblock in the reference frame. The
direction of the maximal SAD difference is then chosen
as the scanning direction. A further difference between
their scanning orders and the one we propose is the
number and the location of the checking points for EJO
in the vertical direction. The following figures along with
the algorithmic steps show our proposed scanning order:

bl ' bS5

b3 b4

. [

Fig. 4. Step 1 of horizontal/vertical scanning order.

is indicated by the arrowheads in the figure above. The
SAD computation is sequential in the above figure since
if an EJO does not occur for the direction a, the
computation for SAD continues in the directions bl-b4
and if we still have not jumped out, we examine SAD
across the direction ¢. Notice that there are only two
potential EJO points in the vertical direction. For the
first EJO point, we are essentially adding SADs across
the first half of the left-tmost and right-most columns
and then we check for EJO. In the case of the EJO
condition not being satisfied, we continue with the SAD
computation in the same manner across the second half
of the Jeft-most and right-moest columns and we repeat
the check again. This is indicated by the use star symbols
instead of arrowheads in the left most column of the
macroblock in Fig, 4, If an EJO has not occurred at the
end of the bottom macroblock row, the SADs from
directions a and ¢ and the cumulative SAD from
directions bl-b4 are used to determine the scanning
order in Step 2.

If (max{SADy_pumiatives SADa, SAD:) = = SADp_cumularive) Vse direction d
else if (max(SA4Di_cumutatives SAD,, SAD;) = = SAD,) use direction e

else use direction f

Step 1: This step is applicable only for the top,
bottom, left and right most macroblock rows and
columns for the current and reference macroblocks.
For notational reasons, let us consider the vertical
directions b1-b4 as distinct in this step although they are
actually the same. SAD information is computed
initially from the top macroblock rows of the macro-
block to be encoded and its candidate predictor in the
reference frame {direction a), the left most and right
most columns of the two macroblocks (directions bl—-
b4) and the bottom rows of the two macroblocks
(direction c). If the SAD is greater than the minimum
SAD found so far along any direction, an EJO can occur
at the end of the top most and bottom most rows or in
the middle and at the end of the right most column. This

Step 2: There are three potential scanning orders
(directions d, e and) for the rest of the SAD calculation
and they are chosen according to the following scheme:

The following figure shows the potential scanning
orders for the current and reference macroblocks
according to the outcome of Step 2 (Fig. 5):

In the above figure, the dashed arrowheads show the
direction of the scanning order when directions e and f
are chosen. However, when the vertical direction is
chosen (direction d), we check for EJO in the middle and
at the end of the second right most macroblock column
after we added the corresponding SADs of the second
left most macroblock column. If an EJO is not found,
the algorithm continues with the third left most and
right most macroblock columns and so on until we

58 C. Grecos et al. | Real-Time Imaging 10 (2004) 53-65

——————s———.
N 2
| —_—
1 |
——» - H |
——— 1
—_— v
T ——
Direction d Direction e Direction £

Fig. 5. Potential scanning orders according to the outcome of step 2 of
the horizontalfvertical scan method.

either jump out because we found an EJO or we reach
the middle of the macroblock. Assume (k,/) are the
coordinates of the upper left-most corner of the first
inner square in the current macroblock, m and » are the
horizontal and vertical offsets from the upper left-most
corner of the first inner square and dx and dy are the
motion vector coordinates for a candidate best match of
the macroblock to be encoded in the reference frame.
Step 2 of the proposed scanning order can then be
expressed formally as

if direction d is chosen

SAD reference_macroblock—current_macroblock ey

n=1 m=7

= D23 Ut +n,0 + m)

=1 m=]
—L_y(k+n+dx,l+m+dy)
L+ (15—l +my— 5y
x(k + (15— n) +dx, 1+ m + dy)|

n=7 m=7

+3 S Nk A I+ 8 4 m)

n=| m=1
L lk+n 4 de,]+ 8+ mdy)|
e + (15— m),] + 8 +m)

=Ltk + (15— +dx,]+ 8+ m+dy)

else if direction e is chosen

SAD reference.macroblock—current. macroblockgeps

r=1 m=14
= [Z LG+ m, I+ n)

=14 m=1
—Ik+mtdxl+n +dy)[]

else if direction £ is chosen

S4D reference_macroblock— current_macroblockue:

n=14 m=14
= [Z > Ik + 1)

r=1 m=1

— Lk +m+de, i +n+dy)|. (3)

Finally, it is worth noting that we can further simplify
Step2 with a “rough™ knowledge of the dominant
motion in a video sequence. For example, Step 2 will
enable faster rejection of candidate reference macro-
blocks for sequences that have predominantly horizon-
tal rather than vertical motion. This is due to the fact
that most of the cases will be handled by the first
conditional branch and thus two extra comparisons can
be saved in most of the cases. Conversely, we can save
comparisons for predominantly vertically moving se-
quences by simply rearranging the order of the condi-
tional statement, We will provide comprehensive resuits
for both predominantly horizontal, vertical and purely
mixed sequences in Section 4.

3. Complexity considerations

The issue of complexity has been addressed in the
literature mainly from the number of operations point
of view and indirectly using metrics related to memory
accesses [28]. However, issues like the pre-processing
time for specific algorithms have largely been neglected.
This pre-processing time can indeed make a motion
estimation algorithm slower as compared to MPEG-2 at
run time even if there is reduction in the number of
operations and the number of memory accesses. For this
reason, pre-processing complexity issues are discussed in
this section but also actual run times are measured for
the three developed algorithms in the following section
describing experiments. The closest point of comparison
for the developed schemes are the three motion
estimation algorithms proposed in [11-12] and their
theoretical analysis [30] which may reduce the average
number of checking rows per macroblock but they do
suffer from pre-processing overhead. For the sake of
clarity, the suggested scanning orders are also compared
with a fixed scanning order based on dithering of 4 x 4
sub-blocks as shown in [29]. In this scanning order, there
is no pre-processing overhead since the order of
checking pixel positions inside the sub-blocks is pre-
determined. In the scanning order determination based
on 8 x 8 block gradients in [12], the overhead stems
purely from the gradient computation for each block in
a macroblock. In the scanning order determination
based on sorted macroblock rows [i12] or sorted sub-
block gradients [11], the overhead stems both from the
gradient computation per block but also from the
sorting required. Let us examine closely the overhead
of gradient computation for the scanning order deter-
mination based on 8 x 8 block gradients in [12]. To
compute the gradient of an 8 x 8§ block in the most
computationally efficient way, one has to evaluate the
pixel gradients at each pixel separately for both the x
and y directions and then the sum of the gradient
magnitudes along the two directions will be the value of

C. Grecos et al. | Real-Time Imaging 10 (2004) 53-65 59

the gradient for the pixel. This is ¢learly seen using the
following approximations from [11];

IGLf e,) = 1/ G + G| G| + |Gyl = [f (x.5)
S+ 1L, + [f(x,3) = e,y + 1), Gy

where f(x, y)}is the pixel intensity at position (x,y), G is
the gradient of the pixel intensity and G, and G, are the
partial pixel gradients across the horizontal and vertical
directions respectively.

The above calculation requires 3 additions/subtrac-
tions per pixel gradient in the best case and 2 absolute
value calculations. For a 256 pixel area, the gradient
computation will thus require 768 additions/subtrac-
tions and 512 absolute value computations. Subse-
quently in [12] the block gradient (8 x 8 pixel area) is
computed as the sum of pixel gradients. This will result
in further 63 additions/block for a total of 252 additions
for the macroblock, Thus the block gradient algorithm
will cost 1020 additions/subtractions and 512 absolute
value computations. The block gradients are subse-
quently added in pairs and according to the maximum
value of these pairs a scanning direction is chosen (right
to left, left to right, top to bottom or bottom to top).
This further costs 4 additions and 3 comparisons, for a
total cost of 1024 additions/subtractions, 512 absolute
value computations and 3 comparisons.

The scanning order determination based on sorted
macroblock rows in [12], chose the scanning direction in
exactly the same manner as the first algorithm on the
same paper [12]. The only difference is that after the
scanning direction has been chosen, there is the extra
overhead of sorting the macroblock rows or columns.
The fastest sorting algoerithms require O{n log,} com-
parisons with n the size of input (in this case 1§
macroblock rows or columns), thus requiring 64
comparisons for the sorting phase. Furthermore, 16
more additions are required for forming the gradients of
the macroblock rows/columns from the partial gradients
on the corresponding blocks, resulting in total pre-
processing cost of 1040 additions/subtractions, 5i2
absolute value computations and 67 comparisons,

In the scanning order determination based on sorted
sub-block gradients [11], the scanning direction is
chosen in terms of sorted sub-blocks rather than in
terms of sorted scan lines in a macroblock. The
argument here is that sorted sub-blocks inside a macro-
block can better pinpoint the direction of the maximal
change in the local motion field as compared to sorted
scan lines, thus operations can be saved in the process of
finding the best macroblock match in the reference
frame. Let us consider the computational overhead of
such a scheme: For a 256 pixel area, the gradient
computation will require 768 additions/subtractions and
512 absolute value computations as in the algorithms
above. To group these gradients into 16 sub-blocks,

where the gradient of each sub-block is the sum of the
gradients of its constituent pixels we need 240 additions
for a total of 1008 additions/subtractions and 512
absolute value computations for the sub-block gradient
formation phase, To sort 16 sub-blocks, we further need
64 comparisons for a total pre-processing cost of 1008
additions/subtractions, 512 absolute value computations
and 64 comparisons,

It is clear that although the average number of
macroblock rows examined by the three aforementioned
schemes may indeed be less than the number of rows
examined in fixed raster scan orders like the one used in
TMS5 of MPEG-2 [1], the pre-processing cost of these
schemes in terms of operations is higher than the three
scanning orders proposed. In particular, the spirailing
inward and the alternating spiral schemes have zero pre-
processing cost, while the content dependent horizontal/
vertical scanning order of the third proposed scheme
only requires 120 additions/subtractions for SAD
cateylation and 4 comparisons, since only the macro-
block boundary row and column pixels are used for
determining the scanning order. As compared to the
dithering scanning order [29], the spiralling inward and
the alternating spiral schemes have the same pre-
processing overhead (none), while the benefits of the
content dependent horizontal/vertical scanning order in
terms of predicting the direction of the motion field have
to be weighted against the small pre-processing over-
head required (124 operations).

4, Experiments and conclusion

The proposed scanning orders were extensively tested
for motion estimation performance in a variety of
commonly used video sequences exhibiting different
motion characteristics. The test sequences “Deadline”,
“Mother and Daughter (MaD)” and ““Students” can be
categorised as slow motion sequences. The sequence
“Bowing” was also a slow motion sequence but in
addition it contained objects that moved forward
(zooming) and downward (vertically). “Tennis” and
“Paris” were fast paced sequences but the difference
among them was that there were objects moving
horizontally in “Paris™, while in “Tennis" they moved
vertically. Finally, “Rotating City” contained a large
fast motion area and it involved zooming and panning
of the camera. Each sequence consisted of 50 frames
except “Rotating City” which only consisted of 35
frames, The performance evaluation in terms of speed-
ups was also performed for a variety of search windows
with sizes ranging from + 7 to 63 pixels. To facilitate
comparisons, the computational savings in terms of
average number of rows examined in the motion
estimation process are presented, operation count ratio
per macroblock and finally the actual run time speed-up

60 C. Grecos et al. [Real-Time Imaging 10 (2004) 53—65

ratic including the pre-processing stage of motion
estimation. This stage-by-stage presentation of results
is intentional because although the average number of
examined macroblock rows is commonly used in the
literature [11-12], such a metric cannot account for pre-
processing costs. Furthermore even if the pre-processing
cost is accounted for in metrics such as the operation
count ratio, issues like regularity in memory accesses
still remain unaccounted for. The metric that encom-
passes all the factors affecting the performance of
different scanning orders is therefore the actual run
time speed-up ratio. It should be noted however that
both the average number of macroblock rows examined
and the operation count ratio can still be useful
performance indicators for multiple pass coding
schemes since the motion estimation statistics of the
first pass can significanfly reduce costs in subsequent
passes. The experiments were performed on a Pentium-2
processor at 1 GHz. We also compare our schemes with
other well-known work in the literature and we use the
following acronyms in the graphs:

® Spiral denotes the spiralling inward scanning order
we propose.

® Alt-Spiral denotes the alternating spiral scanning
order we propose.

® Vbt and Thv denote the vertical/horizontal and the
horizontal/vertical scanning orders we propose. In
fact Vbt stands for the vertical-bottom-top scanning
order and Tbv for the top-bottom-vertical order,

® Kiml denotes the second scanning algorithm in

- Ref. [12].

® Kim2 denotes the scanning algorithm based on
complexity using 4 x 4 sub-blocks in Ref. [11].

® Kim3 denotes the first scanning algorithm in Ref [12].

* Dithering denotes a fixed scanning order based on
4 x 4 sub-blocks as in Ref, [29].

® MPEG-2 denotes the fixed scanning order (left to
right—top to bottom) that is used in the standard
(TMS5).

In Table 1A, the average number of examined rows
per macroblock with respect to the window size is
shown. This average is over all the candidate positions
inside a search window in the reference frame, It can be
seen that the average number of rows examined
decreases as the search window increases. This is
expected since the bigger the search window, the more
candidate positions for the best match in the reference
frame will be rejected after only a small number of
macroblock rows is examined, thus bringing the average
down. Obviously, the gains of the proposed methods
depend both on the sequence motion characteristics as
well as the window size. On the average, gains of 7.14%
are observed across all window sizes in Table 1B for the
proposed scanning orders as compared to the MPEG-2
raster scan, Furthermore, 9.87% gains over MPEG-2

for other popular adaptive scanning orders requiring
pre-processing are also observed in the same table.

For comparison purposes, results for the dithering
scanning order are also presented, which is a fixed
scanning order with average gains 2.41% over the
MPEG-2 scanning order in Table 1B, It has to be noted
that the proposed schemes consistently outperform
dithering and they are highly competitive with respect
to other adaptive schemes requiring much more pre-
processing as shown in the tables. In fact, it can be scen
that the average gain of other adaptive schemes
requiring pre-processing over the suggested schemes is
less than 3% and the biggest differences occur at small
window sizes.

The effects of pre-processing in terms of speed-up
ratios but also in terms of actual run times complexity
(in seconds) are shown in Table 2B and A, respectively.
The actual run times refer to the total time needed for
encoding 50 (35 frames for the rotating city sequence) of
each of the tested sequences and includes the pre-
processing time needed for the motion estimation. The
speed-up ratios denote the percentage gain with respect
to the actual run time, To facilitate comparisons, the
low complexity scanning order part of these tables refers
to schemes that require no or minimal pre-processing,
while the high complexity scanning order part refers to
other schemes in the literature that require significant
pre-processing. It is evident from Table 2A and B that
across different size windows, the proposed scanning
orders have a higher speed-up ratio with respect to the
MPEG-2 raster scan order by (.12 on the average, while
other adaptive schemes in the literature have a lower
speed-up ratio by 39.7 times. Even the fixed dithering
scan order has a lower speed-up ratio with respect to
MPEG-2 by 0.78 on the average due to the irregularity
in memory access patterns [13-14]. From the results, it
can be seen that the proposed scanning orders consis-
tently outperform both the dithering and the adaptive
schemes in the literature and bigger differences in the
performance benefits occur for larger window sizes. This
clearly reveals a trade-off between fine complexity
localisation from the adaptive scanning orders in the
literature and the pre-processing overhead imposed
from such methods. As the window size increases,
complexity localisation becomes less important in
motion estimation schemes involving Early Jump Quts,
while the pre-processing overheads remain. Thus, for
scanning orders with pre-processing cost far out-
weighting the complexity localisation benefits, the run
time performance can actually degrade and this effect is
amplified with larger window sizes. In this light, run
time improvements of lower complexity schemes like the
ones proposed make them very attractive for real time
applications. Table 3 shows the total number of
operations per macroblock for the scanning orders
examined and includes the effects of pre-processing as

C. Grecos et al. ! Real-Time Inaging 10 (2004) 53-65

61

Table |
Sequence Window Low complexity scanning orders High complexity scanning orders
size (£)
MPEG2 Spiral ALT-Spiral VBT TBV Dithering Kim] Kim2 Kim3
(A) Average number of examined rows per macroblock
Bowing 7 5.23 4.46 4.54 4.57 4.57 4.85 4.36 4.13 4.55
15 3.94 3.39 343 345 345 3.69 3.35 323 3.54
23 3.26 2.82 2.84 2.87 2.87 3.07 2.80 272 2.97
3% 2,82 245 2.47 247 247 2.67 244 2.39 2.59
63 1.87 1.65 1.65 1.66 1.66 1.78 1.65 1.63 1.74
Deadline 7 3.08 2.7 2.7% 2718 2,78 301 2.60 238 2.81
15 233 2.10 2.1 2.10 2.10 2.28 2.04 1.93 219
23 1.97 1.80 1.80 1.80 1.80 1.93 1.77 1.71 1.89
31 1.77 1.61 1.61 1.61 1.61 1.74 1.62 1.57 1,72
63 1.32 1.21 1.21 1.20 1.20 1,32 1.25 1.23 1.31
MaD 7 5.84 5.19 5.29 5.32 5.32 5.61 5.10 4.80 531
15 457 403 4.10 4.11 4.11 4.41 4.06 3.88 4.23
23 3.82 3.37 342 3.44 3.44 370 343 331 3.58
3 336 295 2938 3.00 3.00 3.24 3.00 292 3.14
63 223 1.97 1.98 1.99 1.9% 2.16 2.02 1.99 211
Paris 7 3.06 2,73 275 2.73 273 294 2352 2.31 2.69
5 2.34 2.08 2.10 2.09 2.09 2.26 2.00 1.90 211
23 2.03 1.81 1.82 1.81 1.81 1.96 1.78 1.7 1.87
3l 1.85 1.66 1.67 1.66 1.66 1.79 1.66 1.61 1.72
63 " 147 1.34 1.35 1.35 1.35 1.44 1.37 133 1.40
Students 7 3.25 2.89 292 291 291 3.10 27 246 2.90
15 245 217 2.18 217 217 234 2.11 1.98 2.25
23 205 1.83 1.82 1.82 1.82 5.98 1.80 1.71 1.91
k1! 1.82 1.64 1.64 1.63 1.63 1.76 1.62 1.56 I.71
63 1.34 1.23 1.23 1.23 1.23 1.32 1.25 1.23 1.31
Tennis 7 6.26 5.89 598 5.98 5.98 6.15 5.64 5.52 5.96
15 5.29 495 4.98 5.00 5.00 515 4.71 4.64 5.08
23 4,73 4.45 448 4.49 4.49 4,64 4.24 4.18 4.60
31 4,49 4.17 4.19 420 4,20 433 3.98 3.92 4.33
63 3.69 3.41 342 343 3.43 3.55 3.27 3.24 3.56
Rotating city 7 10.73 10.14 10.46 10.52 10.52 10.77 10.64 10.57 10.60
15 8.88 8.38 3.59 8.60 8.60 8.87 8.75 8.70 8.76
23 7.56 7.11 7.26 7.24 7.24 7.52 7.41 7137 743
3 6.66 6.25 6.35 6.32 6.32 6.61 6.50 6.47 6.53
63 4.33 4.29 4.33 4.30 4.30 4,53 4.46 4.13 4.53
(B) Percenmtage gain in number of examined rows
Bowing 7 0% 15% 13% 13% 13% % 17% 21% 13%
15 0% 14% 13% 13% 13% 6% 15% 18% 10%
23 0% 14% 13% 12% 12% 6% 14% 17% 9%
31 0% 13% 12% 13% 13% 6% 13% 15% 8%
63 G% 12% 1294 1% 11% 4% 12% 13% 7%
Deadline 7 0% 10% 9% 10% 10% 2% 15% 2% 9%
15 0% 10% 9% 10% 10% 2% 12% 17% 6%
23 0% 9% 9% 9% 9% 2% 10% 13% 4%
i1 0% 9% 9% 9% 9% 1% 8% 11% 3%
63 0% 8% 8% 9% 9% 0% 5% 7% 1%
MaD 7 0% 11% 9% 9% 9% 4% 13% 18% 9%
5 0% 12% 10% 16% 10% 3% % 15% 7%
23 0% 12% 11% 10% 10% 3% 10% 13% 6%
31 0% 12% 11% 11% 11% 4% 11% 13% 7%
63 0% 11% 1% 11% 11% 3% 10% 11% 5%
Paris 7 0% 11% 10% 11% 11% 4% 18% 24% 12%
15 0% 11% 10% 11% 11% 3% 14% 19% 10%
23 0% 11% 10% 11% 11% 4% 12% 15% 8%
31 0% 10% 10% 10% 10% 4% 11% 13% %
63 0% 9% 8% 9% 9% 2% 7% 10% 5%
Students 7 0% 11% 10% % 11% 5% 17% 24% 11%
15 0% 11% 11% 11% 11% 4% 14% 19% 8%
23 0% 1% 11% 11% 11% 4% 12% 17% 7%

62

Table 1 {continued)

C. Grecos et al. | Real-Time Imaging 10 (2004) 53-65

Sequence Window Low complexity scanning orders High complexity scanning orders
size (1)
MPEG? Spiral ALT-Spiral VBT TBV Dithering Kiml Kim?2 Kim3
31 0% 10% 10% 10% 10% 3% 11% 14% 6%
63 0% 9% 9% 9% 9% 1% 7% 9% 3%
Tennis 7 0% 6% 5% 4% 4% 2% 10% 12% 5%
i5 0% % 6% 6% 6% 3% 11% 12% 4%
23 0% % 6% 6% 6% 3% 11% 12% 4%
31 0% 7% 7% 6% 6% 4% 11% 13% 4%
63 0% 8% 7% 7% T% 4% 11% 12% 1%
Rotating city 7 0% 6% 3% % 2% 0% 1% 1% 1%
15 0% 6% 3% 3% 3% 0% 1% 2% 1%
23 0% 6% 4% 4% 4% 1% 2% 2% 2%
31 0% 6% 5% 5% 5% 1% 2% 3% 2%
63 0% 1% 0% 1% 1% —4% -3% 5% -4%
Average (%) 0 7.76 6.92 6.94 6.94 241 10.35 13.40 5.85
Table 2
sequence Window Low complexity scanning orders High complexity scanning orders
size (1)
MPEG2 Spiral ALT-spiral VBT TBV Dithering Kiml Kim2 Kim3
(A) Total encoding time (5)
Bowing 7 6.10 5.75 5.72 5.44 5.46 7.08 167 158 127
15 17.26 15.70 15.83 14.68 14,77 20.23 702 668 534
23 3179 28,79 28.92 26.73 26.67 3841 1558 1479 1181
31 48.68 44.23 44.41 40.81 40.88 61.95 2736 2599 2075
63 1117 119.83 119.76 115.86 109.38 191,35 10150 9402 7503
Deadline 7 4.44 432 4.29 4.09 4.05 7.08 170 162 131
15 1145 10.86 10,93 10.18 10.19 32.03 718 684 545
23 21.04 19.85 19.97 18.50 18.32 60,68 1591 1517 1211
31 3292 31.31 31.44 29.00 23.84 61.95 2806 2666 2127
63 97.83 93.53 93.53 86.94 85.98 191.35 10150 9683 717
MaD 7 7.06 6.91 6.98 6.62 6.63 11.73 173 164 133
15 20.51 19.55 19.71 18.40 18.40 60.47 721 692.38 550.08
23 38.00 35.72 36.11 33.19 33.26 67.41 1595 1529 12t5
n 58.59 5501 55.38 50.76 50.67 105.02 2801 2683 2133
63 15512 144.10 144,79 131.40 130.64 283.04 10123 9696 7702
Paris 7 4.40 427 4.25 4.06 3.96 6,94 169 161 131
15 11.35 10.62 10.83 9.87 9.86 20.13 n7 680 544
23 21.27 19.78 19.96 18.26 18.24 38.80 1592 1509 1224
31 34.02 31.71 32.00 29.32 29.04 63.15 2803 2657 2154
63 106.93 100.90 101.13 9245 92.01 205.54 10179 9660 7715
Students 7 4.60 442 4.47 4,19 4.15 7.26 171 162 132
15 11.80 1L14 11.21 10.28 10.30 20.57 722 685 548
23 21.45 20.19 20.27 18.49 i8.40 38.90 1603 i520 1229
3 3336 3141 3150 28.73 28.54 61.70 2820 2672 2160
63 98.90 93.66 94.01 85.91 84.97 189.68 10182 9698 7736
Tennis 7. 6.67 6.53 6.61 6.31 6.31 11.21 148 140 114
15 21.37 20.35 20.60 19.26 19.42 37.87 626 591 478
23 4313 40.69 41.33 3827 38.42 77.74 1382 1303 1052
3 71.89 67.62 68.43 63.32 63.60 130.19 2430 2287 1846
63 23593 220.57 223.62 206.99 205.51 429.98 8672 8199 6595
Rotating city 7 13.72 13.66 13.77 13.03 12.87 22.40 236 224 179
15 45.36 44.20 44,53 4136 41.18 76.32 984 942 751
23 8174 84.57 85.46 77.60 77.33 149.17 2195 2098 1649
3 138.60 132.36 133.03 12045 120.01 236,22 3869 3698 2903
63 392.46 36545 368.39 32132 32297 673.13 14391 13799 10952

C. Grecos et al. | Real-Time Imaging 10 (2004) 53-65 63

Table 2 (continued)

sequence Window Low complexity scanning orders High complexity scanning orders
size {(+)
MPEG2 Spiral ALT-spiral VBT TBV Dithering Kiml Kim2 Kim3
(B) Speedup ratio
Bowing 7 1.00 0.94 0.94 0.89 0.90 1.16 27.39 26.06 20.90
15 1.00 0.91 092 0.85 0.86 1.17 40,70 8.7 30.99
23 1.060 091 0.91 0.84 0.34 1.21 49.01 46.54 3718
31 1.00 0.91 0.91 0.84 0.84 1.27 56.21 53.40 42.64
63 Lo 0.91 0.91 0.88 0.83 146 77,39 71.68 57.21
Deadline 7 1.00 0.97 0.97 0.92 091 1.59 38.36 36.59 29.65
15 1.00 095 0.95 0.89 0.89 2.80 62,71 59.80 47.64
23 1.00 0.94 0.95 0.88 0.87 2.88 75.62 72.11 57.56
31 1.00 0.95 0.96 (.88 0.88 1.88 85.24 81.01 64.63
63 1.00 0.96 0.96 0.89 0.88 1.96 103.76 98.99 78.89
MaD 7 1.00 0.98 0.99 0.94 0.94 1.66 24.54 2335 18.86
15 1.00 0.95 0.95 0.90 0.90 2,95 35.16 33.76 26.82
23 1.00 0.94 0.95 0.87 0.88 1.77 4198 40.25 31.98
31 1.00 0.94 0.95 0.87 0.86 1.79 47.82 45.80 36.41
63 1.00 0.93 0.93 0.85 0.84 1.82 65.26 62.51 49.65
Paris 7 1.00 0.97 .97 0.92 0.90 1.58 38.55 36.68 29.86
15 1.00 0.94 0.95 0.87 0.87 1.77 63,24 59.92 48.02
23 1.00 093 0.94 0.86 0.86 1.82 74.88 70.98 57.59
31 1.00 093 0.94 0.86 0.85 1.86 82.41 78.11 63.34
63 1.00 094 0.95 0.86 0.86 1.92 95,19 90.34 72.15
Students 7 1.00 0.96 0.97 091 0.90 1.58 37.32 3543 28.72
15 1.00 0.94 0.95 0.87 0.87 1.74 61.26 58.09 46.46
23 1.00 0.94 0.94 0.86 0.86 1.81 74.74 70.87 57.33
31 1.00 0.94 0.94 0.86 0.86 1.85 84.54 20.10 64.75
63 1.00 0.95 0.95 0.87 0.86 1.92 102.96 98.06 78.23
Tennis 7 1.00 0.98 0.99 0.95 0.95 1.68 22,33 21.10 17.10
15 1.00 0.95 0.96 0.90 0.91 1.77 29.31 27.70 22.39
23 1.00 0.94 0.96 0.89 0.89 1.80 32.05 30.27 2441
3 1.00 0.94 0.95 0.38 0.88 1.81 33.81 31.82 25.68
63 1.00 0.93 0.95 0.88 0.87 1.82 36.76 34.76 27.96
Rotating city 7 1.00 1.00 1.00 0.95 0.94 1.63 17.22 16.37 13.08
15 1.00 0.97 0.98 0.91 0.91 1.68 2170 20,79 16.57
23 1.00 0.96 097 0.88 0.88 1.70 25.02 2392 18.80
31 1.00 0.95 0.96 0.87 0.37 1.70 27.92 26.69 20.95
63 1.00 0.93 0.94 0.82 0.82 1.72 36.67 35.18 27.91
Average 1 092 0.92 0.85 0.85 1.78 45.73 43.12 33.25
Speedup +0.08 +0.08 +0.15% +0.15 ~0.78 —44.73 —42.12 -32.25
Table 3 SAD estimation. Further 16 comparisons are required in

Cost of operations for motion estimation per macroblock for various
scanning orders

Scanning orders Cost of Operation count ratios
operations with respect to MPEG-2

MPEG-2 raster 512 1

scan

Dithering 512 1

Kiml 2051 4 times

Kim2 2131 4.16 times

Kim3 2096 4.09 times

Spiral : 512 1

Alt-spiral 512 ‘ 1

Vbt and Tbv 636 1.24 times

well as the actual motion estimation operations. In this
table, the raster scan order used in MPEG-2 requires
256 absolute value computations and 240 additions for

the EJO points for a total of 512 operations for the
MPEG-2 scanning order which does not require pre-
processing overhead. The operation count ratios in this
table are with respect to the MPEG-2 scan order and all
operations are assigned equal weighting. It can be seen
from the results that the operation count ratio increases
only by 0.24 in the proposed adaptive horizontal/
vertical scanning order, it does not increase for the
fixed order schemes proposed (spiralling inwards and
alternating spiralling inwards) and it increases by 4 or
more times in other adaptive schemes in the literature.

Finally, Table 4 shows the average PSNR values per
window size with a given channe! and frame rate for
each tested sequence. It has to be noted that all the
tested scanning orders give exactly the same PSNR
values (per frame and on the average) for a given
window size, channel and frame rates since they find the

64 C. Grecos et al. | Real-Time Imaging [0 (2004) 53-65

Table 4
Average PSNR in various window sizes for all tested scanning ordets

Sequence Channel bit Frame Window MSE PSNR
rate(bits/s) rate(framefs) size {dB)

Bowing 4,000,000 25 7 1.82 48.96
15 1.82 4896

23 1.80 4907

31 1.82 4896

63 1.83 4894

Deadline 4,000,000 25 7 3.57 4458
15 3.58 44.58

23 357 44.58

3 3.58 44.57

63 3.58 44.56

MaD 5,000,000 25 7 2.69 4620
15 2,69 46.20

23 270 46.19

31 271 46.1%

63 271 46.17

Paris 5,000,000 25 7 3.9 43.94
5 400 4393

23 3.99 4394

3 3.99 4394

63 400 4393

Students 5,000,660 25 7 2,28 4749
15 228 4749

23 228 4748

3l 228 4749

63 228 4748

Tennis 5,000,000 25 7 622 4141
15 6.17 41.47

23 6.17 4147

3 6.17 4147

63 6.18 41.46

Rotating city 5,000,000 25 7 10.32 3828
15 10.32 38.49

23 10,10 38.59

31 9.70 38.718

63 7.22 39.55%

same best matches in the reference frame. From the
results, it can also be observed that the PSNR. does not
necessarily increase with bigger window size. This is a
side effect of choosing the best predictor for the
macroblock to be encoded based on the minimum
SAD metric only and irrespective of how similar the
predictor is to the macroblock to be encoded. This
entrapment to local minima has ramifications in both
the MSE and PSNR metrics as shown in Table 4.

In conclusion, the three proposed scanning orders
(spiralling inwards-aiternating spirals and herizontal/
vertical) achieve average gains of 7.14% in terms of
examined macroblocks rows as compared to the MPEG-
2 raster scan order and are within 3% in termus of
average gains of other schemes in the literature requiring
much heavier pre-processing. They have the same or
very similar operation count ratios as compared to
MPEG-2, in contrast to other schemes involving pre-
processing which increase the operation count ratios
mote than 4 times. In terms of run time performance,

the proposed scanning orders increase the speed-up ratio
by 0.12 on the average with respect to MPEG-2, as
compared to pre-processing schemes that decrease it by
39.7 times on the average. Finally, the proposed schemes
consistently outperform the dithering scanning order in
the average number of macroblock rows and run time
performance metrics, while they have the same or very
similar performance in terms of operation counts. For
these reasons, the proposed scanning orders could be
very attractive for reduced complexity initial estimation
of the motion field direction for one pass coding schemes
in real time applications.

5. Summary

Scanning orders have been greatly overlooked in the
video coding literature in the context of motion
estimation, although they have been very successfully
employed for increasing the compression efficiency in
the coding of DCT coefficients. The design of efficient
scanning orders, which reduce the computational cost of
the motion estimation, essentially entails complexity
localisation in the motion field direction of the reference
frame. This complexity localisation is unfortunately a
computationally intensive process which may render
such scanning orders unsuitable for real time video
coding system implementations, In this paper, three low
complexity scanning orders of similar performance are
proposed that are very competitive in terms of the
operation count ratio metric with respect to the MPEG-
2 raster scan order, show improvements of 7.14% on the
average with respect to the number of examined
macroblock rows metric and they also show an increase
in speed-up ratio of 0.12 on the average as compared to
the standard. As compared to other work in the
literature, the proposed scanning orders require one
fourth of the operation count ratio and show an increase
in the speed-up ratio of 45 times on the average.

References

[1]1 MPEG software: http://www.mpeg.org/MPEG/MSSG/

[2] Li R, Zeng B, Liou ML. A new 3 step search Algotithm for Block
Motion Estimation. IEEE Transactions on Circuits and Systems
for Videa Technology [994:4(4):438-43.

[3] Jain JR, Jain AK. Displacement measurement and its application
in interframe image coding, IEEE Transactions on Communica-
tions 1981;COM 29:1799-806.

{4] Pennebaker W, Mitchel I, JPEG still image data compression
standard. New York: Var Nostrand Reinhold; 1994,

{51 Ghanbari M. The cross-search algorithm for motion estimation.
IEEE Transactions on Communications 1990;38:950-3.

{6] Lai-man Po, Wing-Chung Ma. A novel four step-search
algorithm for fast block motion estimation. IEEE Transactions
on Circuits and Systems for Video Technology 1996;6:313-7,

C. Grecos et al. [Real-Time Imaging 10 (2004) 5365 65

7} Liu LK, Feig E, A block based gradient descent search algorithm
for block motion estimation in video coding. IEEE Transactions
on Circuits and Systems for Video Technology 1996;6:419-22.

[8) Tham JY, Ranganath S, Ranganath M, Kassim AA. A novel
unrestricted center-biased diamond search algorithm for block
motion estimation. IEEE Transactions on Circuits and Systems
for Video Technology 1998,8:369-77.

[9] Tourapis AM, Au OC, Liou M. Highly efficient predictive zonal
algorithms for fat block matching motion estimation, IEEE
Transactions on Circuits and Systems for Video Technology
2002;12:934-47,

[10} Chun-Ho Cheung, Lai-Man Po, Generalised partial distortion
search algorithm for block matching motion estimation. Thessa-
loniki, Greece: IEEE ICIP; 2001.

[11] Kim JN, Byun SC, Kim YH, Ahn BH. Fast full search mation
estimation using early detection of impossible candidate vectors,
IEEE Transactions on Signal Processing 2002;50(9):2355-635.

{12] Jong-Nam Kim, Tae-Sun Choi. A fast full search motion
estimation algorithm using representative pixels and adaptive
matching scan. IEEE Transactions on Circuits and Systems for
Video Technology 2000;10:1040-8.

[13] Lengwehasatit K, Ortega A. Probabilistic partial distortion fast
matching for motion estimation. IEEE Transactions on Circuits
and Systems for Video Technology 2001;11(2):139-52.

[14) Langwehasatit K. Complexity Distortion trade-offs in image and
video compression. PhD Thesis, University of Southern Califor-
nia, May 2000,

[15] Eckart 8, Fogg C. ISO/IEC MPEG-2 software video codec.
Proceedings of SPIE 1995;2419:100-18,

[16) ITU-T Recommencdation H263 Software Implementation. Digital
Video Coding Group, Telenor R&D, 1995,

[17] Kim JN, Choi TS. Computational Reduction using UESA
adaptive partial sum form gradient magnitude for fast motion
estimation. Proceedings if PCS 1999, p. 107-11,

[18] Li W, Salari E, Successive elimination algorithm for motion
estimation, IEEE Transactions on Image Processing 1995,4:105-7.

{19] DeOliveira GC, Alcaim A. On fast motion compensation
algorithms for video coding, in Proceedings of PCS 1997.
p. 467-72,

[20) Lu JY, Wu K8, Lin JC. Fast full search in motion estimation by
hievarchical use of Minkowski’s inequality (HUMI). Patiern
Recognition 1998;31:945-52.

[21] Coban MZ, Mersercau RM. A fast exhaustive search algorithm
for rate constrained motion estimation. IEEE Transactions on
Image Processing 1998,9:769--73,

{22] Wang HS, Mersereau RM. Fast algorithms for the estimation of
mation vestors, IEEE Transactions on Image Processing 1999;
8:435-8.

[23} Gaoc XQ, Duammu CJ, Zou CR. A moltilevel successive
elimination algorithm for block matching motion estimation.
IEBEE Transactions on Image Processing 2000;9:501-4.

[24] Oh TM, Kim YR, Hong WG, Ko SJ. A fast full secarch motion
estimation algorithm using the sum of partial norms. Proceedings
of ICCE 2000, p, 236-7.

125) Naito Y, Miyazaki T, Kuroda I. A fast full search motion
estimation method for programmable processors with a multiply
accumulator. Proceedings of ICASSP 1996. p. 32214

[26) Lin YC, Tai SC. Fast full search block matching for metion
compensated video compression. IEEE Transactions on Commu-
nications 1997;45:527-31.

[27] Do VL, Yun KY. A low power VLSI architecture for full search
block matching motion estimation. IEEE Transactions on
Circuits and Systems for Video Technology 1998;8:393-8.

[28] Patterson DA, Hennesy JL.. Computer architecture: a quantitative
approach. 2nd ed. Los Altos, CA: Morgan-Kauffinan Publishers;
1996, .

[29] Cheung CK, LaiMan PO. Normalised partial distortion search
algorithm for block motion estimation, IEEE Transactions on
Circuits and Systems for Video Technology 2000;10(3):417-22.

[30] Tao B, Orchard MT. Gradient Based residual variance modelling
and its Applications to Motion Compensated video coding. IEEE
Transactions on Image Processing 2001;10(1):24-35.

Group PC: Published National and International Conference papers on Parallelism and

the Software-Hardware Interface in Embedded Systems

PCl1:

V. A. Chouliaras, J. L. Nunez, ‘4 Scalar Coprocessor for accelerating the G723.1 and

G7294 Speech Coders’, proceedings of the IEEE International Conference on Consumer
Electronics (ICCE 2003), Los Angeles, California, USA, ISBN:0-7803-8838-0

PC2:

This paper presents the results of a first approach in developing a systematic
methodology for designing custom ISA extensions for telecom applications. The
target was the International Telecommunications Union (ITU-T) speech coding
standards G.723.1 and G.729.A. The study profiled the workloads and identified a
number of fixed-point extensions that demonstrated a significant reduction in the
dynamic instruction count of both speech coders. Subsequently, a scalar coprocessor
microarchitecture was proposed to encapsulate these new ISA extension, in the

context of a high-performance, dual-issue RISC microprocessor

V. A. Chouliaras, J. L. Nunez-Yanez, S. Agha, ‘Silicon Implementation of a Parametric
Vector Datapath for real-time MPEG2 encoding’, Proceedings of the IASTED (SIP) 2004,
Honolulu, Hawaii, USA, ISBN: 0-88986-442-X

This contribution extends the methodologies developed over the past few years at the
Electronic Systems Design Group through targeting the MPEG-2 TM3 video coding
standard. A characteristic of the TMS reference implementation is the abundance of
data and thread-level parallelism which is unfortunately, left to the system architect to
discover and recover. In particular, the block-matching inner-function of the ME
algorithm, function distl, is described in a mostly sequential way thus making
automatic vectorization virtually impossible. The paper follows the systematic
methodologies established by the author to characterize the workload, identify the
compute-intensive areas of the TMS implementation, parallelize (through
vectorization) and subseqﬁently, implement custom vector instruction ISA extensions.
These extensions were encapsulated in a parametric vector accelerator attached to an
open-source, configurable, extensible RISC CPU. Finally, three VLSI
implementations, for a number of vector register file configurations, were undertaken

on a high-performance 0.13 pm, 8-copper layer CMOS process.

81

PC3:

V. A, Chouliaras, J. L. Nunez, Fabrizio. S. Rovati, Daniele Alfonso ‘A multi-standard video

coding accelerator based on a vector architecture’, Proceedings of the IEEE International

Conference in Consumer Electronics (ICCE 2005), Las Vegas, Nevada, USA, ISBN: 07803-

8839-9

PC4:

The work of the previous contribution is expanded to accommodate the very latest
video coding standards such as MPEG-4 (integer-based XViD implementation) and
H264 (ST Microelectronics proprietary implementation, developed for very low
power, portable, consumer products). The same parallelization methodology as in PC2
was applied and significant reductions in the dynamic instruction count of the
applications were achieved. The contribution concludes with a suitably detailed
microarchitecture of a parametric vector accelerator tightly coupled to a configurable,
extensible 32-bit RISC CPU.

V. A, Chouliaras, J. A. Flint, Y. Li, ‘Parametric Data-Parallel architectures for TLM

acceleration’, Proceedings of the 3™ International Conference on Computational

Electromagnetics and Its Applications (ICCEA), Nov. 1-4 2004, Beijing, China

PC5:

This work quantified the benefits of exploiting the DLP in an electromagnetic
modelling 3D TLM kemel. Using the infrastructure developed for consumer
embedded applications, the joint study with Dr. James Flint started by re-writing the
SCN-TLM code in a vectorized form first and then, threading (statically assigning to
distinet CPU contexts) the data-parallel sections. A number of experiments were then
conducted which quantified with precision the algorithmic benefit (dynamic
instruction count reduction) of this application when configured to run on a

parametric, vector-floating-point processor.

V. A Chouliaras, J. L. Nunez-Yanez, T. R. Jacobs and Ashwin K. Kumaraswamy,

‘Configurable Multiprocessors for high-performance MPEG-4 video coding’, Proceedings of
the IEEE Annual Symposium on VLSI, May 11-12 2005, Tampa, Florida, USA.

A number of research groups and major industrial vendors have identified and
exploited DLP to a certain extent through ISA extensions, streaming memory systenis
or a combination thereof. However, very few researchers have touched on TLP in
video workloads and this is one of the areas where the Electronic Systems Design

Group at Loughborough University has been particularly successful. This contribution
82

targets the MPEG-4 (XViD) video coding standard implementation and details the
development of a custom PRAM simulator, the threading process of the MPEG-4
implementation and evaluates the theoretical performance of the parallelized XViD
encoder on the PRAM machine. The results clearly demonstrate a significant
reduction in the dynamic instruction count for each CPU context. The paper presents a
VLSI macrocell consisting of two modified Leon-2 embedded CPUs each of which
includes a custom, hardware-based barrier mechanism and has coherent level 1 data
caches. The multiprocessor interconnect is a single 32-bit wide AMBA bus.

PCé6:

Ashwin K. Kumaraswamy, V. A. Chouliaras, T. R. Jacobs, and J. L. Nunez-Yanez, ‘Systen-

on-Chip Design Framework (SDF) unifying Specification Capture and Design Modelling’,

Proceedings of the 2005 Electronic Design Processes (EDP) Workshop, April 6-8, Monterey

Beach Hotel, Monterey, California, USA.
The development of the parallelized algorithms and the vector and multi-threaded
microarchitectures required to execute them efficiently has been based on a number of
industrial methodologies that are consistently applied in embedded workloads. One
major drawback of these methodologies is the lack of automation in the process.
Clearly, parallelizing applications at the data and thread level is a time-consuming
process that can be executed by an expert human programmer, sllould time is not an
issue, as there are no mainstream vectorizing and parallelizing compilers available to
embedded CPU designers. The final form of parallelism, instruction level parallelism,
is exposed in the vast majority of applications via the compiler illustrating a degree of
maturity in the automation of the compilation process. The same cannot be claimed for
the hardware design flow which segments, in an ad-hoc manner, the design space into
programmable (CPU-based) and non-programmable (hardwired) domains. The CPU-
based domain has been studied quite thoroughly since it devolves the hardware
complexity to the compiler whereas the hardwired solutions space is the primary
candidate for automatic explottation via high-level specifications such as SystemC.
This contribution is the first report of a major effort in fusing together two
technologies, nearly cycle-accurate system-on-chip simulation and UML-based
integrated system specification capture. The successful fusing of these processes is a
signiﬁcént milestone for the Electronic Systems Design Group as it will permit the
precise and unambiguous specification and automatic implementation of large-scale

microarchitecture blocks and sub-systems.
&3

PCT:

V M Dwyer, S Agha and V Cheuliaras, ‘Low Power Full-Search Block Matching using

reduced bit SAD values for early termination’, Proceedings of Mirage 2005 International

conference on Computer Vision/Computer Graphics collabaration techniques
This work presents an algorithmic optimization for reducing the power consumption
of an MPEG-2 TMS encoder via using a truncated sum-of-absolute-differences (SAD)
metric., Typically, full-search motion estimation relies on the computation of an error
term which describes how well a macroblock in the current frame matches a
macroblock within a search window in the reference frame. So far, designers have
been utilizing full accuracy for performing the arithmetic of the well known SAD
computations. In this work, we propose a modified arithmetic scheme in which only
the upper four (most-significant) bits of the luma component of the reference and
current blocks participate in the computation of the SAD error term, A correction
mechanism is implemented that reverts to full-width arithmetic if certain encoding
conditions are met.

PC8:

Tom R. Jacobs, Vassilies A. Chouliaras and Jose L. Nunez, ‘A thread and data-Parallel

MPEG-4 Video Encoder for a System-On-Chip Multiprocessor’, accepted for oral

presentation at the IEEE 16" International Conference on application-specific architectures

and processors (ASAP 2005), Samos, Greece, July 23-25 2005 |
Following the successful exploitation of parallelism at the thread level, this
contribution elaborates on a combined thread and data parallel implementation of the
MPEG-4 XViD video coding standard. It is shown that both types of parallelism
should be exploited for optimal execution on power-conscious consumer appliances
and presents a modified VLSI implementation of the multi-processor Leon-2 based
platform in which each CPU core incorporates the tightly-coupled vector accelerator
implementing a subset of the MPEG-4 (PJ3) and the full set of MPEG-2 (PC2) vector
gxtensions.

PC9:

S. R. Parr, K. Koutsomyti, V. A. Chouliaras, J.L. Nunez, D. J. Mulvaney, ‘Configurable

Scalar and Vector Coprocessors for accelerating the G.723.1 and G.729.4 speech coders’,

accepted for oral presentation at the IASTED International Conference on Signal and Image

Processing (ACIT-SIP), Novosibirsk, Russia, June 20-24, 2005

84

This contribution provides substantially more research data to those already published
in the IEE Electronics Letter contribution (paper PJ2). In particular, it consolidates all
the results for both G.723.1 and G.729.A speech coders encoding and decoding, all
test vectors and all optimization methods including combined scalar and vector
accelerators. The paper finalizes the programmers’ model and proposes a highly
detailed parametric vector accelerator with each scalar lane being a 2-way SIMD

configuration as the implementation of choice.

85

Paper PC1: V. A. Chouliaras, J. L. Nunez, 4 Scalar Coprocessor for accelerating the
G723.1 and G7294 Speech Coders’, Proceedings of the IEEE International Conference on
Consumer Electronics (ICCE 2003), Los Angeles, California, USA, ISBN:0-7803-8838-0

86

A Scalar Coprocessor for Accelerating the G723.1 and G729A speech coders

Vassilios A, Chouliaras, Jose. L. Nunez
Department of Electronic and Electrical Engineering
University of Loughborough
Loughborough, Leicestershire LE11 3TU

Abstract: A scalar accelerator that reduces
significantly the complexity of the ITU-T G723.1 and
G719A speech coders is described. Preliminary
architecture space exploration indicates up to 49%
reduction in the total number of instructions executed
through the introduction of a few custom instructions
and small changes to the reference C source code. The
accelerator is designed as an autonomous unit that can
be attached to a configurable RISC CPU where it
makes use of the host register file and Load/Store
pipeline,

Introduction

Speech compression is utilized in a multitude of
applications including amongst others VoIP networks and
digital satellite systems. Typical consumer products
comprise multimedia terminals, digital dictation machines,
videophones and IP phones. The G723.1 recommendation
[1] in particular was designed to standardize telephony and
videoconferencing over public telephone lines (POTS) and
is part of the ITU H.324 standard. ITU-T
recommendations G723.1 and G729A [2] belong to the
Code-Excited Linear-Prediction (CELP) category of
speech coders.

This work describes architecture (instruction) extensions
for the efficient execution of the above vocoders. These
extensions are being implemented in a meoderate-
complexity datapath (coprocessor) attached to a
configurable embedded processor,

Problem Formulation

To be able to utilize speech compression in a portable
consumer product, it is essential to provide high-
performance, low-power embedded DSP hardware.
Previous work includes the progressive iransformation of a
GSM vocoder into VLSI hardware using the SpecC
Methodology [7). In [8), a custom VLIW-coprocessor is
described to accelerate the half-rate GSM vocoder. In
addition, there is a significant body of research into the
automatic/semi-automatic targeted instruction set
generation [3, 4, 5, 6]. Currently however, state-of-the-art
configurable processor vendors follow a manual approach
in extending their instraction sets. We take a similar
approach since our hardware baseline is such a processor.
We profile, measure and manually customize the ISA of a
32-bit MIPS-like processor such as to match precisely the
requirements of our workload.

Experimental Method and Results

We utilized the Simplescalar Toolset [9] to compile and
simulate our workloads. Sim-profile was extended to

recognize the new instructions and the workloads where
run with and without the new instructions switched on.
The basic_op.c package was modified such that each
function mapped to hardware was replaced by three to five
inline assembly statements. These functions were declared
themselves as inline however, no performance difference
was measured leading to the conclusion that the GCC
2.7.3 compiler automatically inlined them. Both workloads
where compiled with full optimisations (-07),

Figures 1 and 2 depict the normalized complexity of the
G723.1 and G729A vocoders as a function of the
extension instructions.

G7231

WDeccder
BCcoder

NEGATE

L_SHR [T
L_SHL B
SHR M

sHL B

sup 2

ADD B
SATURE

0.50 0.60 0.70 0.80 0.80 1.00
Normalized Complexity

Figure 1: G723.1 Normalized Complexity

We observe that most benefit is achieved with the
introduction of a pipelined multiply-shift (L_MULT),
multiply-add (L_MAC), 32-bit add/subtract-saturate
(L_ADD, L_SUB), 32-bit shifts with negative amount
support (L_SHL and L_SHR), round and saturate
instructions.

Figure 3 depicts a high-level view of a high-performance
scalar processor (with limited dual-issue capability)
incorporating the proposed datapath, Instructions are
dispatched either to the integer pipeline or the extension
datapath in the dispatch stage. The 16x16 multiplier is
pipelined in order not to penalize the main processor cycle
time. Single-cycle operators including all arithmetic, shifts

and saturation are handled during the Dcache? stage where
they are registered prior to being passed to the main
pipeline. This is important since the setup time of the
embedded RAM block (Register file) is typically two to
three times longer than the setup time of an array of flops
in a high-performance 0.13 um Silicon process thus
creating a potential critical path in the Dcache? stage,

G729A

L_MULT
MULT F
DS E o

NORM_L i .

NORM_SM:“: :
L_Aﬂsm

ROUND
L_SuUs &
L_ADD [E

NEGATE B2
L_SHR
L_SHL e
SHR

SHL

ABS_S

suUB E

HMDecoder
SCoder

0.50 0.60 0.70 0.80 0.90 1.00
Normalized Complexity

Figure 2: GT29A Normalized Complexity

Conclusions

We have achieved close to 49% reduction in the
algorithmic complexity of the ITU-T G723.1 and G729A
speech coders. We are currently investigating a decoupled
microarchitecture: Preliminary results indicate further
significant reduction in the vocoder complexity through
introducing a dedicated register file to the accelerator,

References

1. ITU-T Recommendation G.723.1, ‘Dual Rate Speech
coder for multimedia communications transmitting at
3.3 and 6.3 kbits/s', 3/96

2. ITU-T Recommendation G.729, 'Coding of speech at
8 kbits/s using conjugate-structure algebraic-code-
excited linear-prediction (CS-ACELP)', 3/96

3. P. Faraboschi, G. Brown, I. Fisher, ‘Lx: 4 technology
platform for Customizable VLIW embedded
computing’, Proceedings of the 27" Annual
International Symposium on Computer Architecture,
Vancouver, Canada

Vinod Kathail, Shail Aditya, Robert Schreiber, B.
Ramakrishna Rau, Damren C, Cronquist, Mukund
Sivaraman, PICO: Automatically designing custom
computers', IEEE Computer, 35(9), September 2002
M. Amold, H. Corporaal, ‘Designing Domain-specific
processors’, Proceedings of the 9% International
Workshop on Hardware/Software Codesign,
Copenhagen, April 2001

H. Choi Jong-Sun Kim, Chi-Won Ycon, In-Cheol
Park, ‘Synthesis of application specific instructions
Jor embedded DSP sofrware’, IEEE Transactions on
Computers, 48(6) 603-14, June 1999

A. Gerstlauer, S. Zhao, D. Gajski, ‘Design of a GSM
Vocoder using the SpecC methodology', TR IC8-99-
11, University of California, Irvine

M. Prasad, P. Arcy, M. Diamondstein, H. Srinivas,
‘Half-Rate GSM Vocoder Implenrentation on a Dual-
Mac Digital Signal Processor’, Proceedings of the
1997 IEEE International Conference on Acoustics,
Speech and Signal Processing

D. Burger, T. Austin, ‘Evaluating Future
Microprocessors: The SimpleScalar Tool Set’
http:/iwww.simplescalar.com

_ B :.‘1
" paate <[
2 R ;
Q * naw_pi ;
o 7 “m %‘:
I P 2 s:
Al :t-g‘ &
P 2079
E DA
g i L./
E—'_—m ™ *i "
= Bypass Ji. .
N .
o HiE D
i lld2 :
5 " 3) "y
8 Ld/St Unit .
Coprocessor

Main Exacution Pipeling

Figure 3: High-level processor pipeline

Paper PC2: V. A. Chouliaras, J. L. Nunez-Yanez, S. Agha, ‘Silicon Implementation of a
Parametric Vector Datapath for real-time MPEG2 encoding’, Proceedings of the IASTED
(SIP) 2004, Honolulu, Hawaii, USA, ISBN: 0-88986-442-X

89

SILICON IMPLEMENTATION OF A PARAMETRIC VECTOR
DATAPATH FOR REAL-TIME MPEG2 ENCODING

V. A. Chouliaras, J. L. Nunez-Yanez, S. Agha
Department of Electronic and Electrical Engineering
University of Loughborough

UK

v.a.chouliaras@lboro.ac.uk

ABSTRACT

We discuss the architecture specification, RTL
development and ongoing physical implementation of a
parametric vector/SIMD accelerator for real-time MPEG2
encoding. The MPEG2 TMS5 reference code was
systematically optimized through tapping the Data-Level-
Parallelism (DLP) of the inner loop of Motion Estimation
(ME) via custom vector extension instructions. We show
that these instructions reduce the computational
complexity of the encoding process by up to 60% for full-
secarch motion estimation. The combined RISC
CPU/Vector accelerator is being implemented as a hard
macro, This work focuses on the flow from algorithmic C
to a placed and routed database for the datapath of the
vector accelerator in a high-performance 0.13 um, 8-layer
copper silicon process, for a number of register file
configurations.

KEYWORDS
Video coding, multimedia processing, coprocessors,
computer architecture

1. Introduction

The MPEG2 video coding algorithm is a very popular
standard for lossy video compression used in many
consumer products such as DVD players/recorders and
digital set top boxes. The standard was introduced in
1994 by the ISO/ITU-T [1] organization to support good-
quality video with transmission rates ranging from 4-80
Mbits/s. The MPEG2 codec is based around the discrete
cosine transformation of either the residual data, obtained
after performing motion estimation and compensation
when removing redundancy within frames (inter-frame
coding), or the original luminance/chrominance data when
removing redundancy within the same frame (intra-frame
coding). These transformations are followed by
quantization which removes high spatial frequency
components, significantly reducing the required
transmission rate while maintaining good visual quality.

A significant amount of research is currently being
conducted into alternative algorithms such as those based
in wavelet transforms [2] and fractal-based coding
algorithms [3]. Nevertheless, the DCT-based methods are
presently much more popular than the other two and form

the basis of all international standards for digital video
coding. These standards are summarized in Table 1.

Table 1: DCT-based video coding standards

Std Year Body Rate Usage
H261 1990 ITU-T 64 Kb/s ISDN
Video
phone
MPEG1 1993 IS0 1.2 Mb/s CD-
ROM
MPEG2 1994 ISOATU-T 4-80 Mb/s DVD,
HDTV
H263 1995 ITU-T 64 Kb/s PSTN
Video
Phone
MPEG4 2000 IS0 24-1024 Many
Kb/s
H264 2003 ISOATU-T <64 Kb/S Many

Two recently new video coding standards are the
MPEG-4 [4] and H264 [5), introduced in 2000 and 2003
respectively. These algorithms achieve even lower bit-
rates and higher PSNR values compared to MPEG2

through increasingly sophisticated techniques. This
directly translates into significantly higher raw
computational requirements (at least an order of

magnitude increase for H264) and increased power
consumption. This, in conjunction with the rising
importance of digital video transmission (through the
expected phasing out of analog TV over the next years
and the popularity of video-capable embedded devices
like mobile phones, portable DVD players} has spawned
significant research and development efforts both in
industry and academia into. a new generation of
sophisticated hardware platforms. These platforms utilize
an increasing number of embedded configurable
processors the most significant of which are reviewed in
the next section.

2. Configurable and reconfigurable
architectures

In an attempt to reach near-hardwired performance
levels, embedded processor vendors have produced CPU
architectures that can be extended to closely match the
processing and memory requirements of the required

algorithm. This is the domain of (statically) configurable,
extensible processors. It is interesting to note that
traditional embedded CPU designers like ARM and MIPS
have jumped in the configurable CPU bandwagon of
pionecering companies like ARC and Tensilica via
closely/loosely coupled coprocessors {ARM, MIPS) or
datapath accessibility (MIPS). In the last few years, active
rescarch in the domain of very-long-instruction-word
(VLIW) and dynamically configurable architectures has
lead to the commercialization of more exotic architectures
from vendors like SiliconHive, Aspex, Elixent and Cradie
to name a few. The main vendors, architectures and
characteristics of both configurable and reconfigurable
offerings are summarized in Table 2:

Table 2: Configurable and Re-configurable processor
vendors and architectures

Vendor microarchitecture Characteristics
ARC A4 (4 stages) Scalar, 16/32-bit
[6} A5 (4 stages) (modeless except Ad),
AGOD (5 stages) 32-bit datapath,
AT00 (7 stages) configurable,
extensible
Tensilica Xtensa (5 stages) Scalar, 16/24 bit
[71 (modeless), 32-bit
datapath,
configurable,
extensible
ARM ARMY (5 stages) Scalar 16/32 bit
[81 ABRMI0 (6 stages) (mode-bit), 32-bit
ARML11 (8 stages) datapath, coprocessor
I'F
MIPS M4K (5 stages) Scalar, 16/32-bit
%1 (mode bit), 32-bit
datapath, copracessor
I/F, datapath

extension technology
SiliconHive Avispat Instructions up to 768
[10} bits long (ULIW). Up
to 60 instructions per
cycle
Aspex LineDancer Combines a SIMD
[11} parallel processor
- with a RISC
controller
Elixent DFA-1000 Consists of an array of
[12] 4-bit ALUs connected
using a routing
network of SRAM-
based switches.
Craddle MDSP Multiple RISC, DMA
[13] and DSP engines
arranged in quads, in
a twa level
hierarchical bus
structure with local
memories.

3. Architecture-level results

The MPEG2-TMS reference sofiware was initially
profiled, in native mode (x86) as well as on a simulated

processor which implements the Simplescalar ISA [14].
We used 12 video sequences {fog, snowfall, snow lane,
cup, deadline, office, paris, rotating city, student, mother
and daughter, bowing, tennis), each consisting of 25
frames. Profiling was done for full-search [15], three-step-
scarch [16], four-step-search [17] and hierarchical-
diamond-search [18]. As shown in Figure 1 (full-search)
and Table 3 (algorithmic search methods), the major
complexity contributors are the inner loop of the motion
estimation function (DIST1) which computes the error of
the current macroblock over an arbitrary reference
macroblock. This function is called for all macroblocks in
the search window of the reference frame and is
independent of the search algorithm utilized.

For full-search ME in particular, cur profiling results
demonstrate that the DIST] function complexity ranges on
average from 51% to 72% of the unmodified reference
software complexity for a search window of 6 to 62 pels
respectively. At the same time, the complexity of FDCT
and FULL_SEARCH varies with scarch window range
with the former decreasing and the later increasing,

Full-search ME Complexity distribution

W EELEN |
1 N i g

Figure 1; Full-search ME fractional complexity
distribution
The algorithmic methods on the other hand exhibit
near-constant behavior over the search range. Table 3
shows the average complexity distribution of the three
identified functions for all remaining ME methods,
averaged over all video sequences,

Table 3: Relative Complexity Distribution:

Algorithmic ME
Function Distl FDCT Full Others
Search
388 43.55 18.09 1.55 36.80
488 42.23 18.57 1.04 38.16
HDS 41.54 18.57 1.93 37.95

It is therefore clear that the inner loop of the ME
computation is the most processing-intense function and
one that would provide the major performance benefit if
accelerated successfully. The DIST1 function was
subsequently recoded to expose the data-level-parallelism

and in the process, a vector ISA was identified. Figure 2
depicts the average complexity reduction for full-search
ME, across all video sequences, over a search range of 6-
62 pels and maximum vector lengths of 32, 64 and 123
bits. It demonstrates an increasing algorithmic complexity
reduction with increasing search range due to the
introduction of three vector instructions. These vector
extensions are discussed in the next section.

We further observe that the difference in complexity
reduction between the 32-bit (4 bytes) and 64-bit (8-bytes)
and between 64-bits 128-bits (16-bytes) averaged over all
sequences, ranges between 4.4% to 9.9% and 2.2% t0 5 %
respectively, over the search window range. This
demonstrates that a datapath width of 64 bits
(VLMAX=8) presents a good design compromise in terms
of area-performance.

%" ‘Fraetfonal gémplexity reduct|
SEET L Full-search ME

U5 | et SUM(WLMAXRY) +
P | = sump M)’ ||

| Complexity Reduetion - .

Figure 2: Average fractional Complexity reduction
over all sequences vs. Search range, vs. VLMAX

4, Vector ISA and Programmers Model

This section discusses the programmer-visible part of
the accelerator. Figure 3 shows the extra state added on
top to the existing Sparc V8 processor state.

32 VLMAX"8
0 VRO
VR1
2 VR2
3 VR4
7 VR_MAX-1

Figure 3: Accelerator Programmers Model

There are § 32-bit scalar registers, used primarily for
memory address caleuwlation, a parametric scalar

accumulator used when executing the wvector SAD
instruction, the Vector length register VLEN which
specifies the number of byte elements of the target vector
register that will be affected by the currently executing
vector instruction. Finally, there are up to VR_MAX,
parametric-length vector registers (maximum [ength can
be set to any value between 4 and 1024 bytes at
elaboration time} that are used to hold the luminance data
prior to executing the VSAD operation.

The coprocessor supports a number of vector operate,
load/store and RISC communication instructions, These
are detailed in [19] by the authors. Table 4 iflustrates the
vector compute instructions supported by the parametric
datapath:

Table 4; Datapath Instructions

Command Description

VSAD Compute the absolute value of the

difference of two 8-bit numbers.

Accumulate result into scalar

accumulator

VAVG2SAD Average two 8-bit numbers and compute
the absolute value of the difference of
the average with a third 8-bit number.
Accumulate result into scalar
accumulator

VAVG4SAD Average four 8-bit numbers and compute
the absolute value of the difference of
the average with a fifth 8-bit number,
Accumulate result into scalar
accumulator

5. Parameterization

A particular characteristic of our approach is the high-
degree of parameterization starting from the algorithmic
level, all the way down to the physical implementation,
The parameterization constants belong to one of four
different groups as shown in Table 5:

Table 5: System parameterization

Level Parameters Description
Algorithm Maximum Vector These parameters
length (VLMAX) have a direct effect
Maximum number in the performance
of vecior registers of the vectorized
(VR_MAX) DISTI function
RTL Vector register file Affect the RTL
implementation implementation of
(SRAM/Flop/Latch- the coprocessor.
based) Includes the silicon
area, power
consumption and
max operating
frequency
RTL Fast bypassing Affects the timing

of the RTL

implementation of
the bypassing logic
within the vector
pipeline. Latency
can be either 0
(default} or 1 (fast

implementation)
Physical Floorplan aspect Affect the physical
(Pre- ratio, utilization domain
route) (routability, power
consumption, area,
IR-drop)
Physical Power grid Affect the final
(Route) configuration result of the router
Optimization effort

At the highest level is algorithmic parameterization via
VLMAX and VR_MAX, These affect the geometry of the
vector register file and the number of scalar datapaths that
constitute the wvector pipeline. For the MPEG2 TMS5
workload, a VR_MAX of § is sufficient for the stall-free
implementation of the wvectorized DIST1 function.
Similarly, a VLMAX of 16 bytes (128 bits) and
subsequently, a vector datapath consisting of 16 scalar
elements, is the default parameter for the workload. Future
algorithmic optimization will allow the wuse of
VLMAX>16, further accelerating the workload.

At the RTL level, we can specify the implementation of
the vector register file using dual-port SRAMs, flops or
latches. In addition, a critical path in the result bypassing
from the vector execute stage (EXEC) back to register
fetch (DECODE stage) can be removed through the
FAST BYPASS parameter. This would move pipeline
forwarding to EXEC2-DECODE resulting in 1-cycle
latency across dependent wvector-operate instructions.
However, a maximum of 8 vector registers suffices to
ensure that no dependent instructions appear back-to-back
during the SAD computations in the degenerate (32-bit)
case.

At the physical planning level (Physical pre-route), the
user can specify minimum and maximum floorplan aspect
ratios and target utilization and step values for each. A
scripting mechanism controls the physical synthesis phase,
iterating across the aspect ratio range, for all utilization
values. The scripts collect the area/performance output
from the synthesizer in a final results file which can be
viewed in a spreadsheet. This is potentially the most time-
consuming phase of the investigation and one that benefits
the most from a multiprocessing/distributed processing.

The last level of parameterization directly affects the
QoR of the routing phase. This includes the power grid
configuration (metal layers, horizontal/vertical spacing)
and the optimization effort for the router,

6. Coprocessor RTL Implementation

Figure 4 depicts the combined scalar processor/vector
coprocessor in the context of a SoC sub-system. Qur

microarchitecture utilizes the industry-standard AHB bus
[20] to connect the streaming masters (Scalar CPU, DMA
enging and Coprocessor LSU) to a single memory slave
{PC133 SDRAM controller). The AHB datapath is 32-bits
wide and clocked at the same rate as the rest of the
system.

]

Coprocessor

Fon]
JFlo| Coprocessor

i Core CPU €™ Datapath
31 ICACHE H DCACH J VDCACHE]
: . Bus onlroller' Bus Gontroller
[_(AHB Slave) || 4] {AHB Master) | [_aHeMastey |-
| AHB T

Figure 4; Coprocessor SoC Kernel

Figure 5 shows a detailed view of the microarchitecture
of the combined processor/coprocessor indicating the bi-
directional communication channel across the scalar CPU
and the accelerator.

MEMORY
DATAPATH PIPE

RF e

Briw mee
load , a— R

A | Eypas Logic

[T B B RE) Updeie- .
ﬂllrl‘ :lM‘r ; P Ll r ‘

| ﬂnq opne_ w521 aprig Vactor
— |l Cache

—T |y b=
N I ; 2T120] m-;—:::.-. 70 | ['“'““-_

1
T = .« |rema

§
H
£
g
INT3dId ICULNOD

Yy ¥ ¥ ﬂ%‘

Fedutionloge)

wee Controller

Figure 5: Accelerator Microarchitecture

The main CPU is a standard 5-stage RISC pipeline with
the synchronous register file access taking place on the
falling edge of the second stage (DECODE) due to
architectural reasons [21). A write-through data cache
with three non-collapsing write buffers and AHB snooping
ability is included and instructions are fetched from the
parametric Instruction Cache.

The Coprocessor is segmented into three major
sections: The datapath, the Memory Pipeline and the
contro] Pipeline.

There is a bi-directional communication channel Flops 278 88.28 59084+0 460x938

between the main RISC CPU and the vector accelerator. (431480)
This is build on-top of the existing coprocessor I/F. Latch 2297 9176 46519+0 488x1003
Typical R/W transactions are depicted in Figure 6: (489464)
L 2 s
allt "__Jf—_)ﬁ_ﬂ__*f_uf'—_)
Feop_in.cop_no |/
peop_in.hokin \ L
poop_invmlid N
peop_in.opel18:0] duta_o vIe, mwer dute o] mver
date Into coproc
peop_in.din[31:0] dln
peop_oulf1].dsuif31:0) gol
petp_outio] hokin | |
dut ot vl ———+
poop_aulid].douwif31:0] dout
e
peoR_outi1]hokin]] N1/ 1]

Figure 6: Coprocessor IF Transactions

7. VYector Datapath Hard Macro

The combined processor-coprocessor architecture is
currently being implemented as a hard macro, in the
context of an AHB-based SoC Kernel for video coding
acceleration, targeting a high-performance, 0.13 pm, 8-Cu
silicon process. A highly-automated scripting
methodelogy was used which, in conjunction to the design
parameterization, can exhaustively probe the synthesis as
well as the physical implementation space for each
physical cluster of the processing kernel.

For this work we choose the parametric vector datapath.
The scripting process iterated over tens of potential
implementation candidates of the physical cluster and
achieved a local minimum at an aspect ratio of 0.4-0.6
(width:height) and a pre-route utilization of 85%, for the
RAM-based register file configuration. Subsequently, the
aspect ratio was fixed at 0.5 for all the vector register file
configurations. Figures 7, 8 and 9 depict the floorplan and
layout of the vector datapath cluster for SRAM, Flop and
Latch-based vector register file configurations
respectively.

Cur results indicate that very high post-route silicon
utilization is achievable however, at the expense of
operating frequency. Congested designs like the flop and
latch-based versions achieved significantly better pre-
layout (post-placement) timing to that depicted in the table
above. The latch-based configuration in particular was
penalized by the routing of a second, double-frequency
clock used to generate the write-strobe. The critical path
in all designs was inside the reduction logic and no
register re-timing was attempted. The physical resulis are
summarized in Table 6.

Figure 8: Flop-based VRF configuration

Table 6: Datapath physical macro data

Config Fmax Util Std Cells Area
(MHz) (%) +RAMS (umd)
SRAM 312 93.02 2677745 457x914
{417689)

Figure 9: Latch-based VRF configuration

8. Conclusions and future work

This work discussed the architecture specification and
physical implementation of a parametric vector datapath.
Starting at the algorithmic level, we applied systematic
modeling and transformation techniques to expose and
evaluate the Data-Level-Parallelism of the inner loop of
the Motion Estimation algorithm. In the process, we
developed a custom, vector ISA which was implemented
as a tightly-coupled coprocessor, attached to a RISC CPU,
By targeting only the inner loop of the ME we are able to
leverage our microarchitecture to accelerating a number of
Algorithmic ME methods without modification. Through
following a highly-parameterized design approach, we are
able to specify top-level architecture, microarchitecture,
timing and physical implementation constraints which are
propagated down the implementation flow via a scripting
mechanism. In this way, we are able to exhaustively probe
the implementation space of our microarchitecture and
converge to an appropriate physical solution. Ongoing
work takes place in using this methodology at the SoC-
kernel level where the described accelerator datapath, and
its control and memory pipelines are connected to the
controlling RISC CPU thus, forming a complete SoC
computation kernel for real-time MPEG2 video encoding.

Architectural exploration resulis indicate further
significant improvement through the vectorization of the
standard, floating-point forward-DCT algorithm, at the
expense of introducing floating-point operations in a
consumer-SoC form-factor which however, contradicts the
economics of consumer-So0C design. Additional research
will therefore probe the architecture space for a number of
integer-based forward DCT algorithms and their

vectorization benefit. We expect to utilize much of our
existing hardware infrastructure in this process. A further
software-based optimization comes in the form of spatial
optimization (re-arrangement) of the luminance data in
order to accommodate wider (>16 bytes) vectors. It is
expected that the increase in processing complexity
required to restructure the luminance arrays will be
amortized over greater vector lengths.

Finally, the last and potentially very significant source
of parallelism in block-based video coding algorithms is
Thread-Level Parallelism. In this case, multiple processor
contexts execute different sub-graphs of the control-flow
graph of the algorithm while maintaining sequential
semantics through Fork/Join operation. Our resulis
indicate that static-threading of the Full-search motion
estimation and Forward DCT computations provides very
significant extra benefit which will complement the Data-
Level-Parallelism optimizations presented in this work,
The Electronics Systems Design Group at Loughborough
University actively pursues this route.

References

[1] S. Liv, ‘Performance comparison of MPEG] and MPEG2 video
compression standards’, 41" IEEE International Computer
Conference COMPCON 96, pp. 25-28, 1996,

[2] P. Orback, ‘A real-time sofiware video codec based on wavelets’,
Proc. Of Intl. Conf. On Communication Technology (IFIP}, 2000.

[3]1 J. Streit, L. Hanzo, ‘4 Fractal Video Communicator’, IEEE
Vehicular Technology Conference (VTC), pp. 1030-1034,
Stockholm, Sweden, 1994,

[4] 8 Vassiliadis, G. Kuzmanov, S. Wang, "MPEG-4 and the New
Multimedia Architectural Challenges’, Proc. 15" Internationai
Conference on Systems for Automation of Engieering end
Research (SAER-2001), pp. 24-31, Bulgaria, 2001.

[51 ‘Emerging H.26L Standard: Overview and TMS320C64x Digital
Media Plaiform Implementation’, White Paper, UB Video Inc.,
Vancouver, Canada, 2002.

[6] htip:/iwww. arc.com/products/SOC/microprogessors/arcprocessors/
index html

(7] http/fwww tensilica com/html/configurability html

(81 http:/fwrww arm com/fproducts/CPUs/embedded himi

[9] hitp:/fwww.mips.com/content/Products/Cores/32-BitCores

{101 woanw siliconthive com

[11] www.aspex-semi com

(12] www.elixent.com

[13] www.cradle.com

{141 D. Burger, T. Austin, ‘Evaluating Future Microprocessors: The
Stmplescalar Tool Set’, http.//werw simplescalar.com

[15) http:/Avww mpep orpMPEGMSS(H
[16] Zeng and Liu ‘A new 3 step search Algorithm for Block Motion

Estimation’, IEEE Transactions on Circuits and Systems for Video
Technology, Vol. 4, No 4, Aug. 1994,

{17} Lai-man Po and Wing-Chung Ma, ‘4 novel four step-search
algorithm for fast block motign estimation’, IEEE Transactions on
Circuits and Systems for Video Technology, vol. 6, pp. 313-317,
1996,

(i8] J.¥.Tham, 3.Ranganath, M.Ranganath and A A Kassim, ‘4 novel
unrestricted center-biased diamond search algorithm for biock
motion estimation’, IEEE Transactions on Circuits and Systems
for Video Technology, vol. 8, pp 369-377, 1998

1191 V. A, Chouliaras, J. L. Nunez, ‘From C fo Si: Codesign of a
parametric embedded vector coprocessor for high-performance
MPEG2 video encoding’, submitted to IEEE Transactions on
Computers

[20) ‘AMBA Specification (Rev 2.0)", www.arm.com

[21] ‘The Sparc Architecture Manual Version 8', www.sparc.com

Paper PC3: V. A, Chouliaras, J. L., Nunez, Fabrizio. S. Rovati, Danicle Alfonso ‘A multi-

standard video coding accelerator based on a vector architecture’, Proceedings of the IEEE
International Conference in Consumer Electronics (ICCE 2005), Las Vegas, Nevada, USA,
ISBN: 07803-8839-9

96

3.4-1

A multi-standard video coding accelerator based on a vector
architecture

Vassilios A. Chouliaras, Jose L. Nunez, Fabrizio. S. Rovati, Daniele Alfonso

Abstract — We discuss the architecture definition and
microarchitecture of a multi-standard, parametric vector
accelerator for block-based video coding. Our target coding
algorithms were the MPEG-2 TM5, MPEG-4 (XViD) and
STM’s proprietary H.264 implementation. We fully
vectorized the MPEG-2 and MPEG-4 coders and partially
vectorized the H264 encoder. In the proprietary H264 case,
we targeted inner loop of the motion estimation function. Our
preliminary results demonsirate a significant complexity
reduction of the order of 65%, 70% and 16% for MPEG-2,
MPEG-4 and H.264 respectively. In the latter case the
complexity of the inner loop of motion estimation has been
reduced by 79% compared to the scalar case.”.

Index Terms — RISC Coprocessor, SIMD, MPEG2,
MPEG4, H264.

L INTRODUCTION

ector/SIMD architectures are the most effective means

for tapping the abundant data-level parallelism present in
current and emerging embedded workloads [1, 2] with ever-
increasing transistor budgets permitting the use of complete,
short-vector units within desktop processors [3] as well as
high-volume, SoC-based consumer products. {4].

In this work, we define the Instruction Set Architecture
(ISA) and microarchitecture of a parametric vector
coprocessor capable of significantly accelerating the three
most important video coding algorithms namely MPEG-2 5],
MPEG-4 [6] and the evolving H.264 standard {7]. The vector
accelerator is tightly-coupled to an open-source, configurable
extensible Sparc-V§ compliant RISC processor (8]

The novelty of our work lies with identifying a number of
common vector inmstructions that afford significant
performance benefit in the three major video coding
standards of interest and their subsequent implementation in
the form of a custom vector accelerator [9]. The basecline
architecture for our investigation is a MIPS-like machine
[10].

II. METHODOLOGY AND RESULTS

The workloads were initially profiled and the complexity
distribution recorded at function-level granularity. Fig. 1,

!'v, A, Chouliaras is with the Department of Electronic and Electrical
Engineering, University of Loughborough, UK

Jose. L. Nunez is with the Department of Electronic Engineering,
University of Bristol, UK

F. S. Rovati and D. Alfonso are with ST Microelectronics, Advanced
System Technology Group, Agrate, ltaly

depicts the complexity distribution for MPEG-2 TMS3,
MPEG-4 (XViD) and the relative complexity of the Motion
Estimation function in the proprietary H.264, which expleits a
fast predictive-recursive algorithm, called Openslim, being
able to achieve nearly the same quality performance of the
Full-Search Block-Matching with only a few percent of the
computation [11).

PEG2 TMS (Full Ses

HEMAINING

AR
P-rcln!lgi cﬁmhl'oxl

P

- O
= B0_F1_Flsld, .25

o _F1, W.51

.- Vectorized MPEG2 TM5 Complexi

o

Vectorized MPEG4 XVID Compiexity . -

|7 #eeep e QB un .
: PEIIL I ee s s r ittt ittty

82 8d% o6 20T 160 92 224 2se. VLMAX (Bytes} -

cabandar_OPENSLIN, INTRA
" caender OPENSLIN_INTRA_Fiek: -
. celendw_OPENSLALBOF -
- calencar_QPENSLIN_BO_F1_ Flse
- calendar_OPENSLIM_BO F3
calendar; OPENSLIM,BO,F3, Fieke
calndar_DPENSLIM B2 FT
i_caiendar OPENSLIN, B2 F3_F)

Fig. 2: Vectorized Video Coder Complexity

Fig 2 depicts the normalized (%) complexity of all three
the vectorized video coders. The H.264 results are
preliminary, with vectorization applied to the ENC_SATD
function only (up to 72% complexity reduction in
ENC_SATD). Further significant benefits are expected as
other functions are vectorized.

III. MICROARCHITECTURE

The vector extensions are implemented as a tightly-coupled
coprocessor, attached to a configurable, 32-bit Sparc V8-
compliant processor. The combined processor/coprocessor
microarchitecture is depicted in Fig. 7. In the diagram, the
main RISC processor supplies instructions to the vector
pipeline during the decode stage. The vector register file is
then accessed followed by operand bypassing in both
pipelines. The resolved vector operands are then clocked into
the operand registers. During EXECI, all cross-lane

operations are performed (including permute, pack/unpack
etc) as well as the first stage of the remaining operations.
Intermediate results are pipelined fo the next stage for the
final stage of wvector execution. For SAD (reduction)
operations, the custorn SAD datapath is used. Results commit
to a staging register prior to being written to the vecior
register file on the falling edge of the clock

MEMORY
DATAPATH PIPE
ey

JE 1

P
- atratern

L1
Conkomr

el

Fig. 3. Accelerator microarchitecture

1V, CONCLUSIONS

We developed custom vector instructions in the form of a
tightly-coupled vector accelerator, to significantly reduce the
complexity of the existing and emerging video coding
standards. Further investigation will focus on Thread-level
parallelism. Preliminary data on a thread-parallel MPEG-2

implementation reveal further, significant complexity
reduction for 16 processor contexts.
REFERENCES

[1] K. Asanovic, “Vector Microprocessors”, Ph.D, Thesis, Technical
Report UCB/CSD-98-1014, Computer Science Division, University of
California at Berkeley

[2] A I Paterson et al, ‘A case for intelligent RAM: IRAM’, IEEE Micro,
April 1997

[3]) Peleg, U. Weiser, ‘MMX Technology to the Intel Architecture’, IEEE
Micro, July 1996

[4] K. Diefendorff, ‘Sony’s Emotionally Charged Chip’, Microprocessor
Report, vol. 13, no. 5, April 19 1999

[5} httpi/fwww.mpeg.org

[6] http//www.xvidorg

[7] R. Schafer, T, Wiegrand, H. Schwarz, ‘“The Emerging H.264 standard’,
EBU Technical Review, January 2003

[B] ‘The Leon-2 processor User's manual, XST edition, ver. 1.0.14’,
hupi//www.gaisler.com

(91 V. A, Chouliaras, J. L. Nunez-Yanez, 8. Agha, ‘Silicon
Implementation of a Parametric Vector Datapath for real-time MPEG2
enceding’, to appear in IASTED 2004 (SIP), Honolulu, Hawaii, USA

[10] D. Burger, T. Austin, ‘Evaluating Future Microprocessors: The
Simplescatar Tool Set’, hitp:/fwww.simplescalar.com

[11] D.Alfonso, D.Bagni, L.Celetto, S.Milani, “Constant bit-rate control
efficiency with fast motion estimation in H.264/AVC video coding
standard”, to be published in Proceedings of the 12th European Signal
Processing Conference (BUSIPCO) 2004, Wien, Austria.

Paper PC4: V. A. Chouliaras, J. A, Flint, Y. Li, ‘Parametric Data-Parallel architectures for
TLM acceleration’, Proceedings of the 3" International Conference on Computational
Electromagnetics and Its Applications (ICCEA), Nov. 1-4 2004, Beijing, China

99

Parametric Data-Parallel Architectures for TLM acceleration

V. A, Chouliaras, J. A. Flint, Y. Li,
Department of Electronic and Electrical Engineering
University of Loughborough, UK

Postal address : Mr Vassilios A, Chouliaras, Dept of Electronic and Electrical Engineering,
University of Loughborough, Loughborough, LEICS LE11

3TU, UK

Email: v.a.chouliaras @lboro.ac.uk

Website: hitp:/fwww Iboro.ac.uk/departments/el/research/esd/projects.html

Postal address : Dr. James A, Flint, Dept of Electronic and Electrical Engineering, University of
Loughborough, Loughborough, LEICS LE11 3TU, UK

Email: j.a.flint@lboro.ac.uk

Website; http/iwww_Iboro.ac ukidepartments/el/staff/flint-james html

Postal address : M. Yibin Li, Dept of Electronic and Electrical Engineering, University of
Loughborough, Loughborough, LEICS LLE11 3TU, UK

Email: Y Li2@lboro.ac.uk

Website: http:/fwww.lborg.ac.uk/departments/el/research/esd/vpd_area html

Parametric Data-Parallel Architectures for TLM acceleration

V. A. Chouliaras, J. A. Flint, Y. Li,
Department of Electronic and Electrical Engineering
University of Loughborough, UK

Abstract; We discuss the architecture and
microarchitecture of a scalable, parameiric vector
accelerator for the TLM algorithm, Architecture-level
experimentation demonstrates an order of magnitude
complexity reduction for vector lengths of 16 32-bit
single-precision elements. We envisage the proposed
architecture replicated in a SoC environment thus,
forming a multiprocessor system capable of tapping
parallelism at the thread level as well as the data
level.

INTRODUCTION

Prior attempts to implement the TLM algorithm {1}
on general-purpose architectures have fallen into two
major categories: Shared memory, cache coherent
multi-processors [2, 3] and distributed processors [4]
with shared- memory machines often demonstrating
better performance.

The TLM is a highly-parallel three-dimensional
numerical algorithm which has the potential for being
accelerated along its innermost loop via vectorization
thus, tapping parallelism at the data level (DLP).
Furthermore, the algorithm can be statically “sliced’
(threaded) along the second outer loop, and be
executed on the previously mentioned platforms via
different processors executing different ijterations.
Such parallelism is known as thread-level-paratielism
[5] and is currenily being pursued by all major
microprocessor vendors,

Successful acceleration of such parallel codes
depends very much on the algorithmic
communication pattern which dictates the level of
data sharing across the multiple processors. In the
case of the TLM, data transfers between individual
nodes is very high and in extreme cases the data
transfer during the connect part of the algorithm can
be much more computationally expensive than the
numerical calculations during scattering. The
performance differential between shared memory and
distributed machines is often attributed to such data
sharing issues.

Custom architectures for accelerating TLM codes
have been proposed in the past by Stothard and
Pomeroy [6]). Our work proposes & custom vector
approach to accelerating the inner loop of TLM

codes, quite unlike this earlier work. In our case, an
embedded 32-bit processor is augmented with a
configurable, extensible custom vector accelerator
and resides on an on-chip-bus {7} thus, forming a
finely-tuned SoC computation kernel for the TLM
algorithm.

VECTOR ARCHITECTURE

The programmer’s model of the parametric vector
accelerator for TLM is depicted in Figare 1:

;;A:.Vnz:tor Reglster Fiie -
- VLMAX 32-bit elemonts

i

NN T
'Ii! 1 vR1
N ‘

H
T vRe
s]] L]

Vactor Accumulators
VLMAY 32-bit sloments - ;
T [] vacco)

| [| } VACC1,

¢ Vettor Length Reglster
“ 10-hit W

Gl E..__'l <

Figure 1: Vector accelerator programmer’s model

A :

The programmer’s model specifies a parametric
number of wvector registers (VRMAX), each
consisting of a parametric number of 32-bit single-
precision elements (VLMAX). There is a scalar
register file consisting of a parameiric number of
scalar 32-bit elements (SRMAX), used for virtual
address computation, immediate passing and vector
splat operations. Additionally, there are two vector
accumulators each holding VEMAX single-precision
elements and finally, the vector length register
(VLEN) which specifies the number of bytes that will
e affected by the currently executing vector opcode.
The Instruction Set Architecture (ISA) of the
accelerator includes standard vector floating point
operations except division, vector Load/Stores, and a
generalized permute instruction. A large number of
sub-element manripulation instructions (including
vector splat instructions) can be synthesized based on

the three-operand permute infrastructure. The ISA is
summarized in Table 1
Table 1: Vector Coprocessar ISA

‘Instriction .- Description: g

MVSRZVLEN Transfer scalar%regzste

N lgngth:eglster CYLEN), s e
MVSRZCSR Transfer RISC scalar register to
coprocessor scalar regxster

ey to RISC reglster

MVSR2CVEL Move RISC scalar register o
coprocessor vector element

fMVCVEL2R WOVG COProcessor; vector . element f

sk AL) 151c
VLDU Load vector register unaligned
under VLEN

& ur,ka]ig‘n:t'ad-_‘

Three- operand bytewwc vector
permute
i pTv_t coprocessor scalar register- o,

kL e coProcéssor veclor seRISIer.” ... 4
VFPADD.S Vector floating-point add (single
premswn) under VLEN
-VFPSUB Vector, floating-point - suby. (
i under VLEN: .
VFPMUL.S Vector ﬂoatmg pomt mult (smg]c
precision) under VLEN
~Yector - ﬂoann - om = muyiti

VEPNMAC:

¥ |
e accumulate. i

VECTOR MICROARCHITECTURE

The proposed vector extensions are implemented as a
tightly-coupled vector accelerator attached to an
open-source, configurable, extensible, Sparc V8-
compliant RISC CPU [8]. The processor/coprocessor
combination communicates via the AHB On-Chip
Bus to the SDRAM controller which controls the off-
chip SDRAM part. A high level schematic of the
scalar processor and vector accelerator is depicted in
Figure 2.

Sealar CPU

“j Coprocessor

: el - Care CPU Datapath
TSDRAM || Lty
{_toftatip) [} icacke || peacwe |3
1 SDRAMCH |1} ™ —gus Coniraller [s Conorer
t (AHB Slave) [AHB Master o (AHBMaster) |
[AHB

Figure 2: TLM computation kernel

As shown in the figure, there exists a bidirectional
communication channel across the scalar processor
and the vector accelerator. Though the open source
CPU provides a coprocessor interface, it was decided
to implement that channel in order to ensure
pipelined, lockstep operation of the accelerator and
timely transfer of data to and from the main CPU.
Typical transactions on the developed channel are
depicted in Figure 3.
f

o 3 4 & &

o AN N SN mtﬂ

BecR_n.oop_no N —
peop_inhokdn | /
poop_inwalid A
Ppeap_in.opcid 9:9] dala_oy Mvic mycr ot mygr
’ data tnts coxan
Poop_indivfa1:0] din.

Paop_out]1].deutt31 0

peop_oulf0Lholdn

PooR_bisi0) doutat 0]

poop_ounlf ok I I
Figure 3: Processor-Coprocessor communication channel

The detailed microarchitecture of the combined
scalar processorfvector coprocessor for a vector
length of two 32-bit (single-precision) elements is
depicted in Figure 4.

Figure 4: Detailed microarchitecure

Instructions are- fetched from the multi-way set-
associative instruction cache and stored in a single
32-bit regisier. Typically, high-performance RISC
processors of equal pipeline depth would extract the
source operand fields right after instruction cache
access and set up the synchronous register file.

Unfortunately, that is not the case in the particular
processor which, due to the windowing scheme of the
Sparc V8 architecture, requires access to the current-
window-pointer (CWP) register in order to compute a
physical register file address. As a result, source
operand addresses are set-up on the falling edge of
the clock in the DECODE stage. During this stage,
the register file is accessed and the two source
registers are retrieved. Operand bypassing takes then
place and the resolved operands are clocked into the
ALU input registers, ready for execution. It is during
this stage that the vector opcodes are identified and
dispatched to the tightly-coupled vector accelerator,
Decoding logic in the later produces a number of
contro] fields which are pipelined down the control
pipeline. Vector operand accesses are triggered by
the falling edge of the clock during decode, for
reasons of symmetry to the scalar pipeline.

During the EXEC stage, the RISC CPU executes the
scalar instruction or computes the virtual address of a
Load/Store operatien. In the same stage, the vector
accelerator performs the first stage of the pipelined
floating point computations, In the next stage, scalar
data return to the main processor via the data cache
return path whereas the vector accelerator performs
the last stage of execution. Due to the very tight
timing constraints, floating point results are stored in
an intermediate register prior to committing to the
vector register file.

METHODOLOGY

We have applied a basic implementation of the SCN
TLM algorithm {1] in which no external boundary
conditions were used. In the particular case, a single
output node was used as a diagnostic aid to verify
correct operation. We used the accelerated scatter
method of Naylor and Ait-Sadi as proposed in [9].
The non-vectorized (scalar) algorithm was profiled
both in native mode (IA32 Linux) as well as on our
simulated processor for consistency of results. Scalar
code profiling revealed a scatter:connect complexity
ratio of 63:37, averaging over all the studied
configurations.

Cur simulation infrastructure is based around the
simplescalar toolset [10] which provides a complete
computer architecture modelling and performance
evaluation environment. The compiler used was GCC
2.7.3 with optimizations (-03).

RESULTS

The reference problem chosen for benchmarking was
a fixed mesh of 10° nodes. This number is convenient
as it gives a prime factorisation of 2°x 5%, which
allows for the aspect ratio of the problem space to be
varied over a reasonable range whilst maintaining the
same number of nodes,

We measured the absolute complexity (dynamic
instruction count) of the scalar code for all
configurations of interest. Then, the vectorized code
was run and its complexity recorded for a maximum
vector length of wp to 16 single-precision elements.
Figures 2 and 3 depict the normalized complexity of
the vectorized algorithm over maximum vector

length.

06 3 Normalized complexity over
Y Max Vector Length

05 4 ‘\\

\ —— 2x2x250 000 node
04 Y —e- 100%100% 100 node

03
0z
o1
0
2 4 6 8 10 12 14 16
Vector length

Figure 2 — Benchmarking using a thin and a cubic
problem space.

Figure 2 suggests that the optimal (less complex)
configuration is where the problem space is thin, i.e.
where the vector length is maximised.

o7 Normalized complexity over
0.6 Max Vector Length

054\
04
0.3
02

0.1

0 T
2 4 6 8 14 12 14 16

Vector length
Figure 3 - Iteration time for 80 x 100 x 125 node
mesh with differing alignmen: relative to the vector
direction. All of these results show a similar speedup

Figure 3 depicts a 80x 100X 125 configuration
compared with a mesh of 100x125x80,
80x125x 100, etc. These mesh dimensions were
chosen as being typical of realistic model of an
electromagnetic scattering situation. Results
demonstrate that vectorization alignment changes
only slightly the complexity (and hence run time) in
all configurations. A vector length of 16 single-
precision elements showed a speedup of

approximately an order of magnitude thus clearly
demonstrating the benefit of using parallelism at the
data level.

CONCLUSIONS

We have proposed a parametric vector accelerator to
exploit the significant amount of data level
parallelism which is inherent within the TLM code.
Our results demonstrate an order-of-magnitude
performance improvement can be achieved for a
vector length of 16 single-precision elements. Such a
configuration is realizable with current VLSI
technology.

We are also actively investigating thread-level
parallelism as the second major source of parallelism
in the workload. Our scalable architecture can be
replicated thus, creating a cache-coherent, embedded
multiprocessor for TLM acceleration providing
further performance benefits,

REFERENCES

1. P.B. Johns, “A symmetrical condensed node for
the TLM method”, IEEE Trans. Microw. Theory
Tech., vol. 35, no. 4, pp. 370377, 1987.

2. I. L. Dubard, O. Benevello, D, Pompei, I. Le
Roux, P. P, M. So, and W. J. R. Hoefer,
“Acceleration of TLM through signal processing
and parallel computing”, in Computation in
Electromagnetics, pp. 71-74, IEE, 25-27
November 1991,

3, C. C. Tan and V. F. Fusco, “TLM modelling
using an SIMD computer”, Tnt. J. Numerical
Modelling: Electronic Networks, Devices and
Fields, vol. 6, pp. 299-304, 1993.

4, P. I Parsons, S, R. Jaques, S. H. Pulko, and F.
A. Rabhi, “TLM modeling using distributed
computing”, IEEE Microw. and Guided Wave
Lett., vol. 6, no. 3, pp. 141-142, 1996.

5. J. Henessy, D. A. Patterson “Computer
architecture: A quantitative appreach”, Morgan
Kaufmann publishers, ISBN 1-55860-329-8

6. D. Stothard and S, C. Pomervy, “Pedicated TLM
arrgy processor”, Applied Computational
Electromagn. Sec. I., vol. 13, no. 2, pp. 188-196,
1998.

7. “AMBA Specification (Rev 2.0)”, www.arm.com

8. “The Leon-2 processor User's manual, XST
edition, ver. 1.0.147, hup/iwww.gaisler.com

9.

10.

P. Naylor and R. Ait-Sadi, “Simple method for
determining 3-D TLM nodal scattering in
nonscalar problems”, Electron. Lett., vol. 28, no.
25, pp. 23532354, 1992.

D. Burger, T. Austin, ‘Evaluating Future
Microprocessors: The Simplescalar Tool Set’,
bup:/fwww.simplescalar.com

Paper PC5: V. A. Chouliaras, J. L. Nunez-Yanez, T. R. Jacobs and Ashwin K,

Kumaraswamy, ‘Configurable Multiprocessors for high-performance MPEG-4 video coding’,
Proceedings of the IEEE Annual Symposium on VLSI, May 11-12 2005, Tampa, Florida,
USA

1035

Configurable Multiprocessors for high-performance MPEG-
4 video coding

V. A. Chouliaras, T. R. Jacobs and Ashwin K. Kumaraswamy
Loughborough University, UK
Jose L. Nunez-Yanez
University of Bristol, UK
E-mail: v.a.chouliaras@lboro.ac.uk

Abstract

We investigate the performance improvement of a
multithreaded MPEG-4 video encoder executing on a
configurable, extensible, SoC multiprocessor.
Architecture-level results indicate a significant
reduction in the dynamic instruction count of the order
of 83% for 16 processor contexts compared to the
original single-thread implementation, We extended an
open-source 32-bit RISC CPU to include hardware-
based multi-processing primitives and associated
support state and implemented a parametric, bus-
based SoC multiprocessor as the target platform for
the threaded video encoder.

1. Introduction
The past 10 years have seen a substantial increase in
the quantity of audio-visual information (multimedia
content) that must be processed and delivered to
consumers. This has initiated a large body of research,
both in industry as well as in academia, resulting in
advanced video coding standards such as MPEG-2 [1],
MPEG-4 [2] and H264 [3]). These standards enabled
major reductions in the channel bit-rates via advanced
compression algorithms exploiting redundancy in the
spatial (intra-frame) and temporal (inter-frame)
dimensions of the input video sequence. A common
characteristic of all three standards is the very high
computational requirements of the encoding process
{4]. For the MPEG-4 in particular, our data indicate
that 400 MIPS are required to achieve 30 Frame-per-
second (FPS) at QCIF resclution (176x144). Such
processing requirements are unrealistic, from a
business perspective, in a mobile, wireless consumer
platform calling for the introduction of advanced
optimizations in the encoding process and new VLSI
architectures, capable of extracting all parallelism out
of a block-based video coder workload.

Prior work by our group as well as other researchers
has focused on Data-Level-Parallelism (DLP) since this
is the most widely accepted form of parallelism in

media workloads. This work investigates the effect of
exploiting the inherent Thread-Level-Parallelism (TLP)
of block-based video coding standards as an orthogonal
(thus, complementary) form of parallelism in trying to
achieve high-performance, software-only solutions to
the very high computational requirements of the
encoding process.
2. Simulation Methodology

We developed a novel, multi-context, instruction-
set-simufator (ISS) based on the Simplescalar toolset
[5]. The simulator is parametrical as to the number of
processor contexts (software threads) it supports thus,
permitting the theoretical study of arbitrary parallel
configurations including shared-memory
multiprocessors, multi-threaded processors and
multithreaded muitiprocessors. Architectural hooks are
in place to allow it to interface to a cycle-accurate
back-end thus permitting measurements of cycle effects
such as clocks-per-instruction (CPI) per processor and
interconnect bandwidth utilization. The simulator
executes every instruction in I ‘time period’ thus, can
be classified as a PRAM model.
3. Results

The performance of the multi-threaded MPEG-4
encoder was evaluated with three video sequences,
‘Garden’, ‘Foreman® and ‘Coastguard’,

"Qarden’ Baquanca Encoder Complaiity
(3824240, 26 framan)}

W Dyanewc Ineiruciion ot
3

Figure 1: Garden Sequence Results

Fareman’ saquaence Encader Complaxiy
[DHZX296, 28 framan)

H w
PFrocrssoy Gonpors (Thread s}

Figure 2: 'Foreman’ sequence results
"Cotatguant peguentd Entadel Complaxtyy

(a52x 289, 25 Mranmes)

" B

X Dyramie intrurtina Connd
o

2 .] "] 2 “ "
Procament Conme (Threude]

Figure 3: 'Coastguard' sequence results

All sequences were coded at a resolution of 352x240
pels with the exception of *Foreman’ which was coded
at 352x288 pels. All sequences consisted of 25 frames.

Figs. 3, 4 and 5 depict the complexity metric as a
function of processor contexts and quality metric. The
graphs demonstrate an average 83% complexity-metric
reduction at 16 processors, whereas a 2-processor
configuration shows a near-linear complexity-metric
reduction of the order of 45%. The results are collected
on our PRAM simulator and include synchronization
overheads however, do not model cycle effects such as
the CPI ratio increase expected in a bus-based SoC
multiprocessor.

4, VLSI Macrocell

We implemented the N=2 configuration of the
system depicted in Fig, 6b in a high performance 0.13
pm CMOS process. The design was synthesized for
maximum performance initially on Synopsys Design
Compiler and then, read into Cadence SoC Encounter
where floorplanning and power routing took place. The
clusters were exported to Synopsys Physical Compiler
for placement optimization and imported again into
SoC encounter for detailed routing. Figs. 7 and 8 depict
the floorplan and final layout of the N=2 MP
configuration. The macrocell implementation data are
tabulated in Table 1,

i WO,

Figure §: 2-way VSMP -Iayout
Table 1: 2-way SMP VLSI macrocell data

PARAMETER VALUE

Std cells 110099

RAMs 52

Fmax 179.5 MHz

Size 4585x2291 pm?2 (9086988 pm2)

5. Conclusions

We discussed the development of a multi-threaded
video encoder based on an open-source implementation
of the MPEG-4 standard for a SoC Multiprocessor.
Architecture-level experimentation showed a
significant reduction of the order of 83% in the
dynamic instruction count metric of the threaded
algorithm compared to the original, sequential version
clearly demonstrating the potential of exploiting the
inherent TLP of video coding workloads.

6. References

1. htipzfwww.mpeg.org

2. hutpdiwww.xvid.org

3. G.J.Sullivan, P.Topiwala, A Luthra, “The H.264/AVC
Advanced Video Coding standard: overview and
introduction to the Fidelity Range Extensions®, SPIE
conference on Applications of Digital Image Processing
XXVII, August 2004,

4. V. A, Chouliaras, J. L. Nunez, Fabrizio. 5. Rovati,
Danicle Alfonso ‘A multi-signdard video coding
accelerator based on o vecior architecture’,
Proceedings of the IEEE International Conference in
Consumer Electronics (ICCE 2005), Las Vegas,
Nevada, USA

5. D. Burger, T. Austin, ‘Evaluating Future
Microprocessors: The Simplescalar Tool Set’,

http:/rwww. simplescalar.com

Paper PC6: Ashwin K. Kumaraswamy, V. A, Chouliaras, T. R. Jacobs, and J. L. Nunez-
Yanez, ‘System-on-Chip Design Framework (SDF) unifving Specification Capture and
Design Modelling’, Proceedings of the 2005 Electronic Design Processes (EDP) Workshop,
April 6-8, Monterey Beach Hotel, Monterey, California, USA

108

System-on-Chip Design Framework (SDF) unifying
Specificaton Capture and Design Modeling

Ashwin K. Kumaraswamy, V. A. Chouliaras, T. R. Jacobs, and J. L. Nunez-Yanez

Abstract— We propose a new EDA tool flow which aims to
allow SoC architects to utilize an object-oriented approach in the
development SoC's including shared-memory, cache-coherent,
single-chip multiprocessors, The tool will allow the visual
definition of a complex computation kernel/SoC through
instantiation of parametric IP such as processors, SDRAM
controllers, DMA engines, on-chip buses, switch matrices and
coherency directories, coprocessors, etc. Such IP is captured
either at the specification level via UML, at the model level
{SystemC, SpecC or ANSI C) or at the implementation level (RTL
VHDL or Verilog). The unified environment then simulates the
whele system and in the process, a near-optimal solution in terms
of area, power and performance, is achieved. Finally, the output
of the tool conmsists of a cycle-accurate executable model
accompanied by the system RTL.

I. INTRODUCTION

We present preliminary results of a new EDA flow named
System-on-chip Design Framework (SDF) which unifies the
specification capture and design modeling. Current, tools in
the market namely Incyte, Mageillem, Visual Elite have
provided solutions for specification optimization, graphical
design entry and hardware-software partitioning to help
designing of high performance IPs , but clearly we are still
lacking a complete robust flow which helps the designers to
take designs from specification to silicon and there is been a
concrete effort to develop such a flow.
SDF flow secks to unify the specification capture, modeling,
optimization of very high performing streaming system-on-
.chip designs through a unique combination of technologies,
SDF is intended to be the future front end tool flow. The
overall SDF flow can be classified into two parts namely the
unified specification capture and the heart of SDF, the unified
simulator,
At present the flow is partially completed with work being
done on the specification capture stage so as to accommodate
the existing system level design languages (SLDL) like
systemc and specc.
We use UML as the front end specification capture format and
- convert the UML to a known SLDLSs like SystemC and SpecC,
this translation is being performed using a unique combination
of technologies and we have a working model of translation kit

Affiliations

Ashwin K. Kumaraswamy, V. A. Chouliaras and Tom R. Jacobs are with Dept
of Electronic and Electrical Engineering, University of
Loughborough,Loughborough, UK, email:ashwink.ctes2004b@cselondon.com
J. L. Nunez-Yanez is with the Dept of Electronic Engineering, University of
Bristol, Bristol, UK

from specification to SLDL(SpecC) and simultaneously work
is being performed to accommodate SystemC, as its been
widely used in the industry.

We have the SDF simulator which has been developed and this
clearly is the basement for the existing mechanizations, The
below figure is the overall flow of SDF

50 Product

Unified Specification Captura

Undiec SoC Modeling Existing 50C Flow

Simulation/

AHSC (Choc)
Lagucy P Liraioa Optimization
. .Flow
Fig 1. Overall SDF Flow
V. Unified Simulator
L Comman-Kamal smuistor
#odeisim, VC3)
SystamG. === -
HOL.]
ANSI-C Optimizad applkcation
(Hardware} Ghrsadad, wecorzed)
ANSI-C e
{Application}

Fig 2: SDF Flow internal flow path

II. UNIFIED SPECIFICATION

We propose a methodology that can transform UML models
into a known System Level Design Language (SLDL)
(SystemC/SpecC). In other words, UML model acts as a
“wrapper” to the SLDL’s methodology. In UML each aspect
of the SLDL’s methodology can be modelled and refined. This
has various advantages. The standardization of UML provides
a base to revise the approaches to combine SLDL with object
oriented analysis and design techniques (OOAD) techniques.
One of the main directions for the joint application of SLDL

and UML can be identified as modelling SLDL specifications
with UML. This direction serves mainly the idea to make large
SLDL specification better understandable and to give
additional information (e.g. inheritance hierarchies,
dependencies, pattern structures) for documentation purposes
or as additional implementation advice. UML is mapped onto
the SpecC methodology. Uniqueness, to this new
methodology, is that the UML representation of the system is

separated from the underlying methodology. This helps in
unifying the ways a system can be represented in UML without
worrying about the way it will be implemented. The reason
behind using this approach is that the UML model can be
ported seamlessly to any methodology. Thus we have to first
understand how a system can be modelled in UML. Although
there can be numerous ways of describing a system in UML,
only one of these methods can be chosen. This way the code-
generation (transformation) phase will be made easy.

A Hardware/Software co-designed system can be specified
through the concepts of behaviours that interact via channels
through ports and interfaces. There is a clear separation
between computation and communication where behaviours
mode! computation, and communication is modelled by using
shared variables and/or channels [5]. Keeping this in mind, the
first step is to decide on the modelling of the different aspects
of a system, ie. computation and communication.
Computation will consist of behaviours and their definitions,
Communication will consist of ports, channels and interfaces.
(Interfaces can also be used in the modelling of computation

[3,8])

Modeling of Computation

In UML, the behaviours are modelled as classes. The local
variables and the functions are also modeled within the class in
their respective positions. A composite behaviour will contain
instances of other behaviours. These compositions can be
modeled using associativity. When breaking down behaviour
into sub-behaviours, for structural hierarchy, generalizations
can be used. There can be two types of hierarchy: structural
and behavioral. Structurally, behaviours can be broken down
into sub-behaviours and these into sub-behaviours, and so on.
Designs are specified in a hierarchical manner using top-down
functional decomposition (behavioral hierarchy). Both these
hierarchies cotrespond to the concept of generalization and
associativity in UML (5, 8].

Modeling of Communication

To model interfaces, UML’s interface notation is used. An
interface is like an abstract class that consists of a set of
method declarations, Interfaces can also be placed in a
hierarchical fashion, Behaviours can, optionally, “realize”
single or multiple interfaces. The channef or the behaviour that
realize the interfaces should supply the definitions for the
method declarations.

The stereotype, <<channel>>, is used to represent a class asa
channel. Channels are also modelled in the same manner as
behaviour. Ports can be modelled in two ways. A port can
either be a simple variable or another Interface or Class. In
order to identify an object as a port, the <<port>> stereotype
is used. If the port is declared as a simple variable of type
type1, the variable declaration in UML will be as

name: typel <<port>>

The <<port>> stereotype helps in identifying certain variables
and also associations as ports, rather than local variables or
instances respectively,

Modeling of Execution

The main problem in designing a system is the modeling of
execution or show parallelism i.c., to represent behaviors that
will be executing in sequence, parallel or pipelined, There are
two different ways of showing this. It is well known that in
UML different views are meant for different activities of
modeling. Thus, these considerations have to be mentioned in
more than one of the views, In the static view (class diagram)
we annotate these using stereotypes. This is very helpful,
because the class diagram shows the static structure of the
system, The problem of showing parallelism in the execution
model can be solved through composition, Leaf behaviour, by
itself will only perform its operations sequentially. If a
component has to be modeled to execute in parallel or
pipelined mode, then its behaviour can be further reduced into
separate classes and its objects will be composed into the main
component. These sub-behaviours can then be modeled to run
in parallel or pipelined mode by specifying the mode of
execution to the composite behaviour (main component). This
can be done in the static view of the model. The actual
execution of the composite behaviour can be modeled in
detail, using State chart diagrams and/or Sequence diagrams.

It was concluded that the State Machine view and the Activity
view of the UML had enough notations specified to describe
the internal behaviours of any component. Clocks can also be
modeled as behaviours and can be made to generate events,
These events can be used in other views to specify the timing
characteristics of the system.

Transformation of Static View

Since SpecC is not an Object oriented language, there is no
way of representing object hierarchies. Thus generalization is
used to model behavioral hierarchy. In other words, behavioral
hierarchy is modeled as a composition of multiple behaviours,
according to the SpecC methodology. Therefore
generalizations are transformed in the same manner as
associations. A static view is shown in figure (3).

Transformation of State Machine View

The state machine view describes the dynamic behaviour of
objects. Each object is treated as an isolated entity that
communicates with the environment by detecting events and
responding to them [7]. A state machine is a graph of states
and transitions. Usually a state machine is attached to a class
and describes the response of an instance of the class to events
that it receives.

A State Machine view is used to model the internal behaviour
of an object of a class, A state machine contains states that are
connected by transitions, Each state is defined as some unit of
time in which the object stays and performs certain operations,
whereas transitions are instantaneous, i.e. they occur at zero
time. When an event occurs, it may cause the firing of a
transition that takes the object to a new state. When a
transition fires, an action attached to the transition may be
executed. Theoretically, this execution period is zero. State
machines are shown as a state chart diagram (Figure 4).

L R -
~

tehaviour Bl {Bus conm)

{
Bl pl;
}

behaviour P { }
[

] .
intezface Bas { }

!
2]

[
int zead [)2
| .

Fig 3. Static View

,,l .
bebaviour B {)
{

e g2 -
vold azin {} |
pipe |

pL .x2ia(); p2 .main{);

TeThIn;
H

72_doe v

L..‘.

Fig 4: State Machine View

III. THE SDF FLOW

Fig.1,2 depicts a high-level view of the proposed SoC Design
Framework tool that we are currently developing. It consists of
the input interface which can accept silicon and software IP in
a number of forms including SystemC, standard HDL (VHDL
and Verilog), cycle-accurate C conforming to the SDF API
and finally, standard C for the application. These elements are
slotted in system-defined and used-defined ‘Stencils’ from
which on they are available for manual or automatic
instantiation and design space exploration.

A. Core Simulation Engines

The primary simulation engine is based around a

parameterized, multi-context, Instruction Set Simulator (MT-
ISS) derived from the Simple scalar computer architecture
research tools [SS]. The default ISS has been re-architectured
to allow the instantiation of a number of processor contexts
and additional programmer-visible state for multi-processor
{MP) synchronization, The simulator can be considered as an
Exclusive-Read, Exclusive-Write (EREW) Parallel RAM
(PRAM) machine. Architectural hooks are in place to allow
interfacing to a cycle-accurate (CA) back-end. In this way, the
ISS is dynamically producing (short) instruction traces which
are (dynamically) consumed by the CA back-end. In the
process, various parameters are evaluated such as the Clocks-
Per-Instruction (CPI) ratio per CPU, bus utilization, ICache
and Dcache misses, pipeline stalls due to dependencies
amongst others,
The MT-ISS is one of the core simulator of the SDF flow and
drives both the programmable and non-programmable C-based
simulation models along with being used for software
development.

The second simulation engine is an industry-standard tool such
as Mentor Graphics Modelsim. It interfaces to the cycle-
accurate infrastructure via the FLI and allows for the modeling
of legacy 1P (VHDL, Verilog) and the primary output of the
specification-capture front-end which is described in System-C

B, Marnual and Automatic Flows

There are two major flow (feedback loops) in the SDF tool.
The first is based around a GUI solution which is used to
instantiate silicon IP blocks and application software
components from the IP stencils on to the SoC canvas. The
contents of those stencils can be ‘dragged’ onto the SoC area
thus, incrementally building up and simulating the SoC model.
We make no distinction as to whether the stencils contain
synthesizable Silicon IP or CA models as the core simulators
permit their arbitrary mix. This is of paramount importance in
the modeling of highly-complex, future SoC architectures.
Experimentation takes place after the SoC has been ‘drawn’
and it’s memory map established and populated. The feedback
loop of Fig. 2 illustrates the manual or automatic refinement
process, from SoC specification to performance closure and
clearly illustrates the synergy between the MT-ISS, CA back-
end and industrial simulators in providing a unified framework
for SoC modeling,

A further route exists where the process is fully automated. In
this case, a genetic-algorithm (GA) design space walker takes
over the refinement process of the SoC once the initial
allocation of programmable and non-programmable resources
has happened.

C. Embedded CPU Stencils

The primary programmable engine used is based on an open-
source, 32-bit RISC CPU with an extended Instruction Set to
allow for hardware barrier synchronization. In addition, the
programimer’s model was extended to include a unique, non-
programmable, processor ID field which is used to identify the
executing CPU to a software thread.

As we are targeting primarily Data-Level-Parallelism (DLP),
we have augmented the microarchitecture of the Leon-2 CPU
to include a custom coprocessor channel in order to
communicate to very high performance, tightly-coupled vector
coprocessors [IEE Elec Letters], [IEEE ICCE]. Typical
transactions along this new interface are depicted in the
diagram of figure 5 shows a coprocessor data operation on
cycle 1 followed by a host-to-coprocessor register transfer on
cycle 2, In cycle 3, a coprocessor register is requested by the
RISC processor but due to internal stall conditions, data are
made available one cycle later than the expected time (cycle 5
instead of cycle 4), During that time, the main processor is
held with the holdn signal, Finally, a second read operation,
this time directed to Coprocessor 1, is initiated in cycle 6.
Results are made available to the main pipeline in cycle 7.

ok "___)L__J

peop_in.cop_ho 1/

poop_in.holdn

peop_in.vatid

poop_in.opc{19:0] data_o; myre mver data_o mver

data inte coproc
peop_in.din[31:0] din

peop_outf1].doutj31:0] doul

poop_outf0) hakin

data out valid ——+|

Peop_out{0].dowi31:0] [T R —

j heldn asserted
holkdn

Instruction
Cathe

MEMORY CTRL

—hon'
T i DATAPATH
] _PIPE PIPE

¥ vecior Ragae k]
RF
51w

iaad M)
L Bypass Logic
1zl

Al 1 |zu__“__1
¥ oY P

+—Lf)

sgereil

Y v
- [¢]
prid oprd_g opry_f opr2y opris Dual-Banked g
t— : — Lol Memory) 3
Ll ol g

H - Merge Logic

£ == 151:142@ iz 2] \—f—':tm—)—‘ %
; : E ‘(ucm o
: [=
=z
m

)

- st resid

Yooy ¥ Y
Reduction Logic

AHE i

Figure 6: Scalar CPU and Vector Accelerator

Fig6 shows the combined processor-coprocessor
microarchitecture which includes a parametric vector
accelerator implementing three custom instructions for the
data-parallel sections of the MPEG-2 encoder attached to the
scalar CPU which is a standard S-stage design. From the
diagram, instructions are fetched from the multi-way, set-
associative instruction cache and clocked into the instruction
register. Decoding takes place in the DECODE stage with the
RISC register file accessed at the falling edge of the clock. The
bypassing logic in DECODE determines whether register file
data or internally pipelined results are clocked in the ALU
input registers. During EXEC, the ALU operation is performed
and a virtual address is computed. Scalar data cache access
takes place during DMEM/EXEC2 and scalar results return to
the RISC pipeline during this cycle. Finally, results are
clocked into an intermediate register prior to committing to the

processor

register file. The
configurable data and instruction caches the former in a write-
through configuration with no-write-allocate policy. Both
caches are refilled over the on-chip bus via the bus controller.

processor incorporates

D. Interconnect Stencils
We are targeting primarily the SoC modeling and
implementation domain. We therefore have included support
for multi-layer AMBA (AHB) [ARM] based on the
infrastructure provided by the Opensource CPU, augmented
with the hardware synchronization primitives. A typical
scenario of a paremetric, cache-coherent, SoC MP is depicted

L Périheral Bus
Bridge ¥

R W

rmance Bus

“Hgn Pert

Y SDRAM éhannel '
Figure7: Scalar, 32-bit RISC CPU pipeline

Further development is underway to allow for very high
bandwidth interconnects (other than a hierarchy of buses) to be
utilized. In this case, distributed coherency directors are
utilized to ensure that the CPU caches remain consistent.

E. Streaming unit stencils

Prior research into statically-configurable (offline
configurable) vector/SIMD accelerators has successfully
concluded that such umnits are of paramount importance in
achieving performance closure in a consumer/media SoC. The
complexity-metric reduction due to the vector instructiosn
implemented via this tightly-coupled coprocessor is shown ina
standalone identified

)

- Full-n.nlclu ;&E

P

YR
Range (pels)

ich

Figure$: MPEG-2 DLP benefit

IV. RESULTS

To establish the proposed methodology, we studied a multi-
threaded implementation of the MPEG-2, TMS5 reference
video standard [mpeg.org]. The encoder was initially profiled
in order to identify the most compute-intensive paris at
function-level granularity. The complexity metric used was the
dynamic instruction count of the application when compiled
for a MIPS II-like CPU and executing on a single-context
simulator,

From Fig. 7, the most compute-intensive function was
identified as the inner loop of ME (DIST!). This function
computes the error of the current macro block over all
macroblocks in the search window of the reference frame and
its complexity ranges from 52% to 73% of total dynamic
instruction count for a search window of 7 to 63 pels
respectively. The second most complex function was the
forward-DCT computation (FDCT) with a complexity metric
ranging between 2.,1% and 21% of the total dynamic
instruction count. FullSearch is the wrapper function around
the low-level DIST/ and implements the default ME algorithm.
Its complexity ranged from 3.5% to 23.2% of the total
complexity. This is the level at which we applied our threading
technique as this allows the utilization of less complex,
algorithmic ME methods such as three-step search [10] and
four-step-search [11] in the parailelized encoder,

The performance of the threaded MPEG-2 encoder was
evaluated in a relatively slow, vertical-moving sequence
{Snowfall) and a very fast, circular-moving sequence (Rotating
City). We used Full-Search ME which is the default algorithm
in the reference MPEG-2 code.

DFULLSEARCH
DIREMAINING -

Figure 9: MPEG-2 TMS5 Algorithm Profiling

Results depict the dynamic instruction count reduction for the
primary processor context (thread 0) for the wvertical and
circular-motion video sequences respectively. Context 0 is the
controlling thread in the parallel encoder as it performs 1/O
and activates the remaining threads early during execution and
thus, suffers the maximum overhead.

Rotating City Sequence {28 hramas)

Figure 10: Theoretical Performance (Circular Motion)

Both graphs demonstrate a significant reduction in the
complexity metric both when the number of processor contexts
is increased and when the search window range is increased.
The complexity improves no further once the number of
processor contexts exceeds 32. Performance saturation at 95%
complexity-metric reduction occurs when a threaded loop is
exccuted only once. Results compare favorably with prior
studies which achieved a 65%-70% complexity-metric
reduction at a search range of 62 pels, for a 128-bit DLP

architecture

V. COMPARISON OF LIKE MINDED EDA TOOLS

Tools What is does What it does not
Incyte 1.Specification 1.Design Modelling in
Optimization System not done
2 Designer specification | 2.No Hardware-
oriented software partitioning
3.Tool shows the 3 Notreallya
potential problems in the | integrator platform
design thus helping in based on any Bus
fast design time standard
Magilleium 1.Graphical Desigh 1.No option for design
Entry based tool modelling and design
2 Integration Platform exploration at the
based on AMBA highest level.
3. Transactional RTL 2 Basically choosing
Builder, full support for | blocks from the
SystemC existing library
4.Good Verification
system in place
Visual Elite 1.Graphical Design 1.Not a design

Entry based

2 Performs Hardware-
Software partitioning
3.Helps in design using
specific Microprocessors

specification capture
and desigh modelling
based tool

System-on-chip
Design
Framework

1.Graphical Design
Entry

2.Design Specification
capture and architecture
exploration along with
direct choice from
legacy IP library.
3.Integration platform
with AMBA

4 Hardware-Software
partitioning.
5.Supports SystemC,C
RTL, SpecC

VI1. CONCLUSION

We have demonstrated the new EDA flow proposal and
submitted preliminary results of the SDF flow that we have
developed on two fronts.
1. UML diagrams being converted to the desirable
SLDL.
2. The simulation performance of the SDF unified
simulation flow. '

VII. FUTURE WORK

To integrate the tool flow so as to make the automation, we
have been able to demonstrate that such a tool flow is
conceivable.

» Future work will quantify on cycle effects of the bus-
based configuration as well as the benefit of local
scratchpad memories over the parametric Data Cache.

s Complete the UML to SystemC in the same lines of
SpecC

» Develop the GUI for graphical design entry.

s Develop the automation as envisioned.

REFERENCES

1. M. Keating and P. Bricaud, “Reuse Methodelogy Manual for
System-on-Chip designs, 2nd Edition, Kluwer Academic
Publishers, Norwell 1999,

2, F Balarin et al, “Hardware-Software Co-Design of Embedded
systems, The POLIS approach,” Kluwer Academic Publishers,
1997.

3. D. Gajski, J.Zhu et al. “SpecC: Specification Language and Design
Methodology”, Kfuwer Academic Publishers, 2G00.

4. Rainer Domer, Daniei D. Gajski, Andreas Gerstlauer, “SpecC
Methodology for High-Level Modeling,” 9th EDP IEEE/DATC
Electronic Design Processes Workshop 2002.

5. Object Management Group, Omg upified modeling language
specification version 1.3, June 1999,

6. D. E. Lackey, “Applving Placement-based Synthesis for On-time
System-on-a-Chip Design” JEEE Custom Integrated Circuits
Conference, 2000, pp. 121-124.

7. Object Management Group, Omg-xmi metadata interchange

~ version 1.2, January 2002.

8. J. L. Diaz-Herrera, An isomorphic mapping for SpeeC in UML,
Internet: hitp:/fist. unibwmuenchen. de/GROOM/OMER-
2/papers/OMER2-

9. DiazHerrera.pdf, 2000, SPSU-CS TR 2000.

10. Sikora T, "MPEG Digital Video—-Coding Standards,” IEEE Signal
Processing Magazine, Vol. 14, No. 5, September 1997, pp. 82—
100,

11, Motion Picture Experts Group hitp:iwww mpeg org

12. V. A Chouliaras, J. L. Nunez, Fabrizio. S. Rovati, Daniele
Alfonso ‘A multi-standard video coding accelerator based on a
vector architecture’, Proceedings of the IEEE International
Conference in Consumer Electronics (ICCE 2005), Las Vegas,
Nevada, USA

13. Shen K, Delp E J, "A parallel implementation of an MPEG
encoder; faster than real-time!", In Proccedings of the SPIE
Conference on Digital Video Compression; Algorithms and
Technologies, pp. 407-418, San Jose, California, 5-10 February.
1995.

14. “The Leon-2 processor User’s manuat, XST edition, ver. 1.0.14",
http:/www. gaisler.com

15, Theo Ungerer, Borut Robi¥, Jurij Sile, “A svervey of processorw
with explicit multithreading”, ACM Computing Surveys (CSUR),
Volume 35 Issve 1, March 2003

16, SimpleScalar LLC hitp/fwww simplescalat.com/

17,

i8.

15,

Martinez J. F., Torrellas] “Speculative synchronization: applying
thread-level specuiation to explicitly parallel application” ACM
SIGARCH Computer Architecture News, 30, 5, pp.18-29

Zeng and Liu “A new 3 step search Algorithm for Block Motion
Estimation”, IEEE Transactions on Circuits and Systems for
Video Technology, Vol. 4, No 4, Aug. 1994,

Lai-man Po and Wing-Chung Ma, “A novel four step-search
algorithm for fast block motion estimation”, IEEE Transactions on
Circuits and Systems for Video Technology, vol, 6, pp. 313-317,
1596.

Paper PC7: V M Dwyer, S Agha and V. Chouliaras, ‘Low Power Fuli-Search Block
Matching using reduced bit SAD values for early termination’, Proceedings of Mirage 2005

International conference on Computer Vision/Computer Graphics collaboration techniques

115
|
|

Proceedings of Mirage 2005, INRIA Rocquencourt, France, March, 1-2 2005

LOW POWER FULL SEARCH BLOCK MATCHING USING REDUCED
BIT SAD VALUES FOR EARLY TERMINATION

V M Dwyer, S Agha and V Chouliaras

v.m.dwyer@lboro.ac.uk
Loughborough University, Dept. of Electronic & Electrical Engineering, Ashby Road,
Loughborough, Leicestershire, UK

ABSTRACT

Full-search motion estimation is often employed for selection
of the best motion vector through a minimum SAD by iterat-
ing over all candidate motion vectors of the search area. How-
ever, although the dataflow is regular and the architectures
straightforward, the computational complexity is high. Con-
sidering all possible candidate motion vectors and calculating
a distortion measure at every search position produces a high
computational burden, typically 60-80% of a video encoder’s
computational load. This makes it unsuitable for real time
video applications. To alleviate the problem SAD calculations
based on reduced numbers of bits (RBSAD) have been sug-
gested which gives power and time savings, but the reduced
dynamic range means that picture quality can be compro-
mised. This current work presents a corrected-RBSAD algo-
rithm, which corrects to full SAD resolution under certain
circumstances. The compromise achieved provides the low
power of the reduced bits and a higher accuracy, closer 1o that
of a Full Search,

1. INTRODUCTION

Battery powered real-time visual communication appli-
cations place stringent requirements on power consump-
tion. As a result Motion Estimation algorithms [1, 2],
which eliminate the temporal redundancy in video se-
quences, are widely used in video coding, Currently the
prevailing method of Motion Estimation has been the
block-matching algorithm [3], which computes a motien
vector on a block-by-block basis, as it generally out per-
forms other methods such as the pel-recursive algorithm
[4]. The block-matching algorithm divides the current
frame F, into non-overlapping square blocks of N x N
pixels which are matched to blocks of the same size in
some region of a reference frame F,. This region is
known as the Search Area and is predetermined by the
search sirategy adopted. All pixels within the same block
of the current frame are assumed to have the same mo-
tion vector. N is most commonly taken equal to 16, and

191

the Search Area is gencrally defined as a square of size
(N+2p)* surrounding the position of the block of interest
referenced to the frame F,. With billions of arithmetic
operations per second [53, 6] and a memory bandwidth of
the order of GByte/s, it is generally not feasible to search
all possible positions in the Search Area for each block
in each frame (the Full-Search Motion Estimation algo-
rithm {3]), and encode a CIF sized video at 30 fps, with
the low power constraints of today's processor technol-
ogy, particularly if the search range (effectively the
value of p) is large [7].

Fast motion estimation algorithms can give reduced
computational complexity, as well as advantages for
VLSI design in terms of area and power consumption
[e.g. 5 and references therein, 6]. However, the reduced
computational complexity gained by these fast Motion
Estimation algorithms has often to be offset by losses in
visual quality and/or by irregularities in data flow. Con-
sequently it is difficult to achieve efficient VLSI imple-
mentations that can employ Data Reuse efficiently [5,6].

The figure of merit used to determine the ‘best match’
between blocks in the current and reference frames is
usually a distance metric, typically the Sum of Absolute
Difference (SAD) between the current frame Micro-
Block (MB) and a candidates MB in the reference frame.
This is generally termed the SAD value which, taking
the reference frame as the immediately preceding frame,
may be written as

16
SAD(m,n)= Y |s(i,j, k)= s(i+m,j+n,k-1)
i,j=1
(D
for a 16 x 16 MB, The best motien vector is determined
as

[1,9]" = arg min SAD(m,n) @
m.h

Here s(3,7,%) is the (8-bit luminance) pixel value at (i,/)

in frame %, # and v are the horizontal and vertical motion

vectors respectively, and the minimization is performed

Proceedings of Mirage 2005, INRIA Rocquencourt, France, March, 1-2 2005

over the set of candidate blocks in the Search Area. For
the Full Search method, SAD values are computed for
all blocks in the designated region [3] and the search
naturally is computationally burdensome. Even with p as
small as 8 this stili corresponds to 256 possible candi-
date blocks. One means of reducing the computation is
to use one of the fast motion estimation methods such as
the Three Step Search and its variants [8, 9], the conju-
gate gradient method [10], and many others which may
be found, for example, in refs [5, 6] and references
therejn, Such ‘fast’ methods base the candidate set on
previous results which increases the design complexity
and disturbs the dataflow making dedicated hardware
implementations very difficult, however power and
speed savings are envisaged {5, 6].

The usual means of testing the accuracy of these faster
algorithms is through the use of the Peak-Signal to Noise
Ratiec {PSNR) which is usually defined as the fractional
RMS error between the predicted and true frames ex-
pressed on a dB scale. To be considered realistic, any
fast algorithm really needs to be within a fraction of a
dB of the Full Search (the gold standard) value.

In order to preserve the dataflow regularity in its
VLSI architecture, and at the same time to reduce com-
putational complexity, a numbet of authors have em-
ployed a full-search algorithm, but with eqn (1) based on
a reduced number of bits. Such schemes are known as
Bit Truncation and provide an RBSAD (Reduced-Bit
Sum of Absolute Difference) metric or distortion meas-
ure [11, 12]. The downside of such a method is the re-
duced dynamic range. In the case of a 4-bit RBSAD the
resolution for pixel luminance values in the integer range
[0, 255] is reduced from unity to steps of 16, The result
is that although two blocks may provide the best match
with the reduced resolution, it is possible that the match
with full resolution may not be best. This leads to an
increased error matrix and consequently a lower bit-rate,
or a higher quantisation error and, possibly, a reduction
of visual quality. Whilst these problems are possibilities,
in practice the PSNR for the two methods for real se-
quences are very close, Table I.

The only case studied in which the average PSNR for
the sequences studied is significantly worse using
RBSAD is the “Claire” sequence where the average
PSNR values (with full and reduced resolution) are al-
ready very large. A typical frame from the sequence is
shown in Fig.(1). The purpose of this work is to investi-
gate means of providing a correction to only those cases
in which the RBSAD is poor, so that the advantages of
reduced bits {power and speed) can be maintained with-
out some of the disadvantages. This means that correc-
tion should largely be restricted to the “Claire” se-

192

quence, The difference between the average PSNR for
the full resolution and with reduced bits (using 4-bits) in
the case of the “Claire” sequence is around 2dB, This
difference is plotted for the first one-hundred frames in
the sequence in Fig.{2). The problem is that with this
“head and shoulders” sequence there are several very
good matches for each current frame MB and the
RBSAD method has difficulty in selecting the best. In-
deed the RBSAD calculation will not be able to distin-
guish between any candidate blocks for which the
RBSAD calculation is equal to zero, and this still leaves
a wide range of possible SAD values. An obvious and
simple correction to the, generally very good, RBSAD
method is to revert to a full resolution value whenever
RBSAD =0.

feq. Mom | Fore- | Fog Snow | Smow | Claire
Man Fall Lane
FSSAD 3586 | 28.46 | 3228 | 2682 [3016 | 46.15
RBSAD 35.58 | 2837 | 3176 | 2670 | 30.09 | 43.29
gcérrectcd 3558 | 2837 | 3176 {2670 | 3000 | 4409
% recal- | 1.75 32 1.79 0 6.65 2341
culation

Table Y PNSR for full resolution (FS) and reduced-bit
(RBSAD) algorithms.

Figure 1. Frame 11 from “Claire’ sequence

The hardware implications of such a scheme are obvi-
ous as whenever RBSAD = 0, the full resolution calcula-
tion is simply the 4-bit RBSAD of the lower bits. Con-
sequently the calculation may be split into two. A 4-bit

Proceedings of Mirage 2005, INRIA Rocquencourt, France, March, 1-2 2005

RBSAD calculation for the upper four bits, which is
generally used, and, in the case that this upper bit
RBSAD = 0, a 4-bit RBSAD calculation for the lower
four bits. For the hardware, two options are possible.
Either: (i) The two 4-bit calculations are pipelined and
only in the case when RBSAD = 0 is the correction to
full resolution applied; or (ii) Two identical Full Search
hardware layouts are created each based on 4 bits. The
first runs continuously and the second performs a correc-
tion whenever the RBSAD value calculated by the first
is zero, The result, in either case, is a saving in power
and speed.

A second, but not inconsiderable, power saving,
which results from this architecture, is in memory reads
from on-chip memory. If the data is stored in two sepa-
rate memory blocks as it is written to the on-chip mem-
ory, with the upper four bits in one block and the lower
four bits in another, then typically only reads from the
upper block will be required, Only when the upper four
bit RBSAD = 0, will require reads from both memory
blocks will be necessary.

The purpose of this paper is to investigate the accu-
racy of this simple correction to the standard reduced bit
method and to investigate whether such correction meth-
ods in general are appropriate.

2. ALGORITHM

We consider here a number of test sequences, as shown
in Table 1. These involve most types of motion seen in
typical sequences and so are representative of what
might be expected in real video clips. We imagine a
mechanism of thresholding, in which an RBSAD calcu-
lation is converted into a full resolution SAD if the value

PSNR difference
3 T T T

251

B0 % m W W @ W 8 w0 W
frama number

Figure 2. Difference between full resolution (FSSAD)

PNSR and reduced bit RBSAD PSNR values.

of RBSAD is less than some value T, In this case the
algorithm we shall present actually corresponds to the
case T = 1. Thus we effectively execute the pseudocode

If (RBSAD(7:4)) < T then
output = SAD(7:0)
else
output=RBSAD(7:4)
end;

>

and suppose that, in some way as yet unspecified, the
correction from reduced bit to full resolution can be
achieved in hardware,

Percentage corrections

i
UL—.\««wﬁf e
8 16 A0 IO 40 S0 B0D YOO e00 900 U0
Threghold T

Figure 3. The fraction of corrections dn(T)/dT made
with a threshold value of T for the “Claire” se-
quence,

s Percentage catrections

a \'\ T — | 1
0 50 1006 4500 X0 p-inl 3000
Threshald

Figure 4. As Fig. (3) for the “snow lane” sequence.

Note that her¢ we have used the notation that
RBSAD(7:4) is an SAD calculation based on using the
top four bits (7:4) of the luminance pixel values.

193

Proceedings of Mirage 2005, INRIA Rocguencourt, France, March, 1-2 2005

In a motion estimation calculation for a given se-
guence, the fraction of times #(7T) that the RBSAD calcu-
lation fell below 7" was recorded as a function of T, this
gives a measure of the efficiency of the method for that
threshold value. Fig. 3 & 4 shows the derivative dn/dT
for the “Claire” sequence and the “snow lane” sequence,
It is clear that dn/dT is large at =1 rapidly saturating for
lager threshold values. For the “Claire™ sequence dn/dT
shows a rapid increase as T — 0 and similar analysis of
other sequences shows the same behavior although to a
lesser extent. This implies that if we apply a correction
to the RBSAD to get the full resolution SAD for T=1,
i.e. whenever we get an RBSAD value = 0, we shall
correct for many of the errors in an RBSAD calculation.

The upper four bit RBSAD = 0 occurs only when
ls(i, j k)Y —s(i+m, j+n,k+1) <16
for all § and j in the current frame MB, This means that

the restriction of the analysis to only the upper four bits
(7:4) evaluates to zero. Le.

[s(i,j,K) 74 —(i+m, j+ 1,k + 1)7:4[=0
for all i and j in the current frame MB, As a consequence
only the lower four bits contribute to the SAD sum and

we may replace the full resolution SAD value by the
lower four-blt calculation, Thus

s(i,j,k)—s(i+m,j+n,k+1)
1JrK) j

=s(i, j, k)so —s(i+m,j+n,k+1) 30|

for all j and j in the current frame MB.
This then corresponds to executing the pseudocode

If (RBSAD(7:4)) = 0 then

output = RBSAD(3:0) = SAD(7:0)
else

output = RBSAD(7:4)
end;

where the RBSAD(3:0) value is computed from an iden-
tical replica of the hardware (or indeed even the same
hardware) to that which obtained the value of
RBSAD(7:4). The calculation of the two stages can ei-
ther be pipelined in the same unit or performed in paral-
lel by separate units. Either way, depending on the num-
ber of corrections made, a considerable saving in com-
putation and hence power may be achieved. Most of the
current 8-bit (full resolution) architecture designs may
be used as they are typically created in a bit slice fash-
ion,

The zero flag of the final add-and-accumulate adder,
at the base of the adder tree use to evaluate eqn, (1), is

used as an enable/disable for the lower bit calculation
and also as a control for the MUX which selects between
the upper and lower bit values, Fig. 5.

Assuming that 2 four bit RBSAD takes roughly half
the power of a full resolution SAD calculation, if a re-
calculation is required 23.4% of the time (Table I), a
power saving of roughly 76.6/2% = 38.3% is obtained
compared to the Full Search method, Note that in the
cases for which the RBSAD calculation produces an
accurate PSNR value (i.e. all but the “Claire” sequence)
there are almost no corrections applied. In addition, ei-
ther with only a minimal increase in area the timing can
be roughly halved or alternatively with similar timings
the silicon area can be roughly halved.

3. ARCHITECTURE

The architecture envisaged involves a number of
Processing Elements (PEs), each of which deals with the
calculation of the best fit of a single MB in the current
frame.

output
n 1
|
RBSAD RBSAD
PEU PEf
Z flag —L———) Enable

£ f

On-chip On-chip
Memory Memory
M1 M2
Upper Lower
4-bits 4-bits

I 3N

Figure 5. Upper(PE,) and lower (PEg) SAD calcula-
tons in a processing element PE.

Proceedings of Mirage 2003, INRIA Rocquencourt, France, March, 1-2 2005

Thus an image with dimensions 320 x 480 pixels will
involve 20 PEs. PE; will work on the current frame data
in columns 1 to 16, PE; will work on columns 17 to 32
etc. The RBSAD(7:4) calculation takes data from on-
chip memory M1, which stores the upper four bits of the
pixel values as they are read in from external memory.
Unless RBSAD(7:4) = 0, the data in on-chip memory
M2, which stores the lower four bits, will not be read.

Not having to read all the data from on-chip memory
can yield a large saving in power requirement. In addi-
tion using only the top four-bits yields faster adders (for
four bit inputs standard ripple adders are as fast as the so
called ‘fast adders’ and consume much less area} and
consumes significantly lower power, Fig. 5. A particular
architecture has not been specified at this time as many
Full Search architectures apply. The simple implementa-
tion suggested above requires that a single PE calculates
the best-fit for a single MB, and the architecture would
need significant modifications for those designs for
which many PEs work in parallel comparing candidate
MBs in the search window for a single MB in the current
frame, Nevertheless such modifications are clearly pos-
sible.

4, CONCLUSIONS

In this paper we have proposed an alternative imple-
mentation to the standard Full Search Block Matching
algorithm for the estimation of Motion Vectors in video
sequencing. The method is based around the general
good performance of the method of Bit Truncation in
which typically the upper four bits are used in the Sum
of Absclute Difference calculation. It has all the advan-
tages of the reduced bit method in that the Reduced Bit
SAD (RBSAD) may be calculated with power and time
savings, but essentially uses the calculated RBSAD
value as an early termination of the calculations. For the
“Claire™ sequence, where the RBSAD value is signifi-
cantly lower than the SAD value, we have shown that
the majority of fixes for the RBSAD value occur when
the match is good and RBSAD(7:4) = 0. Correcting the
SAD output to the true value SAD(7:0) is possible by
repeating the calculation on the lower four bits, i.e.
RBSAD(3:0). On the other hand for the other se-
quences, in which the values of SAD and RBSAD are
very close, virtually no extra computations are required.

The majority of standard architectures based on a bit
slice design and a single processing element per current
frame MB can be easily implemented with this method.
The saving in PSNR, shown in Fig, 6 for fifty frames of
the “Claire” sequence and in Table I for a group of other

sequences, shows a significant improvement in accuracy
towards the Full Search method but with most of the
power and time savings of the Reduced Bit SAD
method. Effectively the RBSAD is used as an early ter-
mination criterion.

The analysis presented here is based upon a correc-
tion being applied only when RBSAD =0,ie. T=1. 1t
is possible to extend the technique to correct the
RBSAD to a full resolution value for other threshold
values or, for example, in the case of small motion vec-

tors. This will be considered in a future publication [13].

Conected RBSAD

3 —_— —

Figure 6. Difference between FSSAD and RBSAD.
The circles represent the standard RBSAD while the
squares represent the corrected curve.

5. REFERENCES

[1] ISO/EC JTC1/SC29/WG11 1313-1, “Coding of moving
pictures and associated audio,” 1994,

[2] CCITT SG XV, “Recommendation H.261 — Video codec
for audiovisual services”, 1990,

[3]1 TR Jain and A K Jain, “Displacement measurement and
its application in interframe image coding,” 1IEEE Trans
Commun, COM-29 1799-1808 (1981).

[4) A Netravali and J D Robbins, “Motion compensated teie-
vision coding: Part 1", Bell Syst. Tech J., 58 629-668
(1979),

[5] P M Kuhn, “Fast MPEG-4 Motion Estimation: Processor
based and flexible VLSI implementation” J. VLSI Signal
Processing 23 67-92 (1999).

[6] P M Kuhn, G Diebel, 8 Herman, A Keil, H Mooshofer, A
Karp, R Mayer and W Stechele, “Complexity and PSNR-
comparison of several fast Motion Estimation algorithms
for MPEG-4", SPIE 3460, Applications of Digital Image
Processing XXI, San Diego, USA, 486 — 499 (1998).

[7) V G Moshnyaga, “A new computationally adaptive for-
mulation of block-matching Motion Estimation”, IEEE
Trans. Circuits Syst. Video Technol. 11, 118-124 (2001).

Proceedings of Mirage 2005, INRIA Rocquencourt, France, March, 1-2 2005

[81 T Koga, K Lumina, A Hirano, Y Lijima and T Ishiguro,
“Motion compensated interframe coding for video confer-
encing”, Proc NTC 1981, G5.3.1-5 (1981).

[91 H Jong, L Chen and T Chieuh, “Accuracy improvement
and cost reduction of three-step search block matching al-
gorithm for video coding”, [EEE Trans. Circuits Syst.
Video Technol. 4, 88-91 (1994).

[10] R Srinivasan and K Rao, “Predictive coding based on
efficient Motion Estimation”, IEEE Trans. Commun., 38
950-953 (1990}

[11] Y Baek, H 8 Oh and H K Lee, “An efficient block-
matching criterion for motion estimation and its VLSI im-
plementation”, [EEE Trans Consumer Electron., 42 885-
892 (1996).

[12] § Lee, J-M Kim and S-I Chae, “New Motion Estimation
algorithm using an adaptively quantized low bit-resolution
image and its VLSI architecture for MPEG2 video encod-
ing”, IEEE Trans. Circuits Syst. Video Technol.8, 734-
744 (1998).

{13) V M Dwyer, S Agha and V Chouliaras, in preparation.

196

Paper PC8: Tom R. Jacobs, Vassilios A. Chouliaras and Jose L. Nunez, ‘4 Thread and Data-
Parallel MPEG-4 Video Encoder for a System-On-Chip Multiprocessor’, accepted for oral

presentation at the IEEE 16th International Conference on application-specific architectures
and processors (ASAP 2005), Samos, Greece, July 23-25 2005

122

A Thread and Data-Parallel MPEG-4 Video Encoder
for a System-On-Chip Multiprocessor

Tom R. Jacobs, Vassilios A, Chouliaras

Department of Electronic and Electrical Engineering
University of Loughborough, Loughborough, UK

t.r.jacobs@lboro.ac.uk

Abstract

We studied the dynamic instruction count reduction
Jor a single-thread, vectorized and a mulfi-threaded,
non-vectorized, MPEG-4 video encoder. Resulls
indicate ot maxximum improvement of the order of 88%
Jor 22 CPU contexts for the multi-threaded case
whereas the single-thread, veclorized version
demonstrates an 835% improvement for a vector
register file length of 24 bytes, over the scalar case.
We present VLSI macroceils of a vector accelerator
implementing a subset of the MPEG-4 vector IS4 and
a 2-way, parametric, bus-based, cache coherent, SoC
multi-processor,

1. Introduction

As the demand for video and multimedia products
continues to expand, the problem of transmitting and
processing the ever-increasing amount of media
content becomes more acute, To address this, a number
of lossy video compression standards such as MPEG-1
[1], MPEG-2 [2], MPEG-4 [3] and H264 [4] have been
developed in recent years, with each method being
more sophisticated and complex than earlier
approaches. One method of providing the
computational power for these increasing complex
standards has been to create very powerful, small form-
factor System on Chip (embedded) computer systems
to ensure real-time video content delivery in every day
consumer products. A very potent leverage of SoC
computation power comes from the exploitation of
various degrees of parallelism available in these
standards the most prominent of which are Data-Level
Parallelism (DLP) and Thread-Level Parallelism
{TLP). These types of parallelism can be exploited
individually by vector/SIMD architectures [5] and
Chip-Multiprocessing/Multithreading respectively.

This work addresses the extraction of DLP and TLP
and quantifies the performance benefits (dynamic
instruction count reduction) in an open-source, integer-

Jose L. Nunez-Yanez
Department of Electronic Engineering
University of Bristol, Bristol, UK
[.L.nunes-vanez(@bristol. ac.uk

only implementation of the MPEG-4 standard [6]. This
paper will show the significant reduction in per-CPU
instruction count achieved by exploiting both forms of
paralellism. The paper is structured as follows: Section
2 describes the MPEG-4 XviD video compression
standard, identifies the most computationally-
expensive functions and discusses the potential of DLP
and TLP, Section 3 details the abstract methodology
we developed to parallelise arbitrary workloads and
Section 4 applies this methodology to MPEG-4. This is
followed by a discussion of a novel, multi-processor
simulator developed for this purpose. Section 6
presents the results, in terms of dynamic instruction
count reduction, for the non-vectorized, threaded and
single-thread, vectorized versions of the workload.
VLSI macrocells for the DLP-accelerator and a
System-on-Chip (SoC) multi-processor are presented
and finally, this work concludes by consolidating our
findings and identifying issues to be studied in the
future.

2. MPEG-4

The MPEG-4 standard was designed for low-
bandwidth multimedia applications. The specification
addresses not only video compression but also the use
of audio, 3D objects and interactive modules. Video
compression is an important aspect of the standard and
this work focuses primarily at the hardware-sofiware
interface of MPEG-4 video coding and high-
performance embedded computing platforms.

As in previous MPEG standards the specification
standardizes the bitstream structure and not the strict
implementation steps towards producing that bitstream.
This extra degree of freedom allows for multiple
implementations of the standard with one such
implementation being the integer-only, open-source
XviD.

In alogical progression from older MPEG standards
such as MPEG-1 and MPEG-2, MPEG-4 is a discrete
Cosine transform (DCT) and motion estimation (ME)
based video compression scheme. After colour

conversion into YUV colour space each frame is
divided into 8x8 blocks and the chrominance
component sub-sampled. These blocks are grouped
into macroblocks containing 4 luminance blocks and a
corresponding number of chrominance blocks,
depending on the colour scheme chosen (4 for 4.4.4,, 2
for 4.2.2 and 1 for 4.2.0). DCT is performed on both
the luminance and chrominance components for an
intra-coded frame. This transforms the frame content
from the spatial domain to the frequency domain in
which higher frequency information, to which the
human eye is less sensitive, is removed via more
coarse quantisation. The net effect is the production of
a compressed Dbitstream by eliminating spatial
redundancy within the image.

For temporal (inter-frame) redundancy, motion
vectors (MV} are computed by tracking areas of high
gimilarity from one frame to the next. The XviD
encoder searches exhaustively over a finite area within
previously encoded frames in search for a macroblock
that matches best the current macroblock. This
matching process is via the Sum-ofabsolute-
differences (SAD) mechanism and proceeds until a
macroblock, within a prescribed error limit, is found.
The residue ermror produced from ME and the
reconstructed frame in the encoder (produced after
motion compensation, MC) is transformed and
quantised in the same manner as for intra frames.

MPEG4 complaxy distribution
0
i = :
F 70 o~ = x
e ks = = '
a et -] = B Quantization
LR 5 - A | moer
v - = Ap ame
E 4@ bt)] ame
= =y] - TOversl
i = e =
g £] - 22
- k=] =]
“ 7 o b
¢ A] vy [bt == |
@2 1]]
Quakity satting

Figure 1: MPEG-4 {(XviD} profiling

Figure 1 depicts the most computationally-
expensive operations in the encoding process for a
number of Quality levels. These quality levels enable
various features of the encoder such as half pixel
resolution MV and interdv (inter encoded MB using
four MV for MC, one per 8x8 luma block), with more
features introduced as the quality level increases, The
results of the profiling were obtained through
measuring the number of instructions executed and
mapping them to the four functional groups above. To
allow for the real-time implementation of streaming-

video in small form factor consumer appliances it is
clear that these functions should be primarily targeted
for parallelism extraction at al! levels.

3. TLP Methodology

Parallelising code at the thread level involves
distributing the statically-threaded control-flow-graph
(CFG) of the application across the active processor
contexts {CPUs) within the shared-memory system. In
the proposed approach, the most compute-intensive
functions arc manually selected after profiling and
threaded at loop-level with different iterations of loops
assigned to different CPUs while fully obeying the
algorithm data-flow-graph (DFG). Figure 2 depicts
diagrammatically this process.

Setial

AR EA—
|

I
—f—

Time

Figure 2 Transformation of loop from serial to
parallel

From the figure, a 6-iteration loop is evenly split
across three processor contexts, The process of
converting from the single threaded model into the
multi-processor one involves a number of distinct steps
with an optional extra step depending on the number of
available processors:

+ Firstly all data dependencies between loop
iterations need to be addressed. This is achieved
by evaluating each functional block within the
iterations, assessing its data requirements and if
necessary segmenting the loop into serial and
parallel sections.

s Once all data dependencies have been resolved
the most evident step is to reduce the number of
iterations of the loop is reduced and the
reduction is calculated using equation 1:

parallel_iterations = serial_iteration /
processor_count [fI}

» Since all processors are working in an iteration
subset of the original loop, a method of
mapping the non-threaded iteration range to the
that of the threaded case is needed:

original iteration = processor_number +
{parallel loop_iteration
* processor_count) fj

o Due to multiple processors running
simultaneously the scope of programming
objects (variables) in each processor and their
exclusivity is of great importance. To achieve
exclusivity, processors work with private (local)
variables. To access shared arrays, the later
should be declared as global (which is very
inefficient) or static, in the current scope.

So far it has been assumed that equation I produces
an integer iteration number. This is not always the case
and additional code is needed to support this situation,
This extra ¢code is known as the ‘remainder’ code and
has a direct resemblance to the process of strip-mining
in vectorized applications..

4. TLP extraction in MPEG-4

The loops associated with the transform
functionality are located within the encoding functions
for both 1 and P/B frames, FrameCodel and
FrameCodeP respectively. Both loops encompass
transform (DCT), quantisation (Q) and VLC
functionality. In the single-thread case the encoder
scans ecach row of the frame, macroblock by
macroblock, executing the same subset of code. In the
multi-threaded environment the entire macroblock row
is the shared component with all processor contexts
encoding the row in parallel, one MB per CPU,

4.1. FrameCodel

When encoding an Intra frame the pixel data is
transformed and quantised along with its inverse
within MBTransQuantIntraMT, a modified version of
MBTransQuantinira. Following that the quantised data
is VLC-coded in function MBCoding. To allow
MBTransQuantintra to be executed in parallel, one
extra variable, a per MB quant value, need to be passed
into the function and additional code is neceded to
support this extra variable. This quant value was
originally obtained from pEnc->current->quant, and
describes the current quantisation level of the frame
and changes with each additional macroblock encoded.
Due to this dependency, each macroblock requires a

private quantisation value. This translates to a serial
loop, within the parallel section, required to calculate a
private quant value for each MB in the row before
MBTransQuantintraMT is called.

4.2, FrameCodeP

The process of encoding P and B frames is split into
two parts in function FrameCodeP. First, motion
estimation is carried out on the whole frame by calling
function MbotionEstimation, Within this function the
motion vectors for each macroblock are calculated.
With all the motion vectors calculated, the process of
transforming and encoding each block then follows. As
with the I frames case, rows of macroblock are
encoded in parallel.

Another major task in the encoding process is MC
which re-establishes macroblock pixel data from the
motion vectors computed previously. This takes place
in function MBMotionCompensation and can be
executed in parallel since there are no data
dependencies across macroblocks. Once the pixel data
has been recreated a similar routine as that for I frames
is executed with a serial section for calculating the
frame quantisation parameter. These values are passed
into the parallel-executing MBTransQuantintraMT
function.

ME, like transform, ecxccutes in parallel, per
macroblock row, Within the MotionEstimation
function the process of motion-vector (MV) prediction
is followed by a search which establishes the 'best'
match MV with respect to a previously encoded frame.
This function requires no modification to execute in a
multi-processor environment since these frames have
been encoded and are available to all processors. In
addition, this process is executed more efficiently by
vector/SIMD architectures due to the abundant DLP.

* xl&| [*|*)*
d EIES

*

(@) (b) (©
Figure 3: ideal prediction, current prediction
and proposed prediction

Unlike calculated MVs, predicted MVs are based on
the current frame. Assuming that the motion transcends
MB borders, the prediction function produces the
average of the previously encoded MB's MVs. The
timely availability of neighbouring MB MVs is
different in a parallel implementation compared to the
single-threaded case. Figure 3 shows three different
prediction patterns that can be used to predict the
motion of a specific MB. From the figure, it is clear

that the most accurate prediction is likely to come from
taking the mean of all possible neighbouring MBs.
Such a pattern is not possible since not all of the MBs
required for the prediction have been previously
encoded in either single or multi-threaded case. Using
the scan line approach of figure 3b, the proposed
method within MPEG-4 standard, MBs above and to
the left can be used for predictions however, to allow
for the MB in a row to be encoded in parallel, the block
to the left cannot be used and the prediction pattern of
figure 3¢ was thus implemented. A minimal fall in
PSNR was observed when using this prediction
pattern.

The MPEG-4 standard specifies that the differential
between the calculated and predicted MV is stored in
the bitstream. To allow the correct recovery of MVs
from the later, the decoder must use the same predicted
MVs. To ensure this once all MV for the row have
been calculated, the original prediction algorithm is
executed in serial and the differential calculated [9].

The block-based nature of the MPEG-4 encoder
with the repetitive, independent computational steps
involved leads naturally to parallelising the process at
thread-level. Prior research in threading video
workloads targeted a distributed network of
workstations as the computation engine rather than a
shared-memory multi-processor system [7]. In this
case, the workload is distributed at far coarser
granularity level (at the group of pictures, GOP, level)
than our proposed technique since at this level a multi-
computer architecture is more suitable due to the low
inter-processor communication, However, such multi-
computers are less capable to shared memory systems
when implemented in SoC products due to the disjoint
address space which calls for more silicon dedicated to
private caches, per CPU, This is not the case for
shared-memory configurations which can take the form
of Chip-Multiprocessors (CMP), Multi-threaded
processors (MT) or multi-threaded multi-processors
(CMP-MT) in which much finer level of resource
sharing can take place including the secondary cache
subsystem (CMP/CMP-MT) or even the whole
execution pipeline (MT/CMP-MT). We have therefore
targeted such shared-memory systems due to their
greater microarchitecture flexibility and potential for
performance scalability and exploited TLP at a much
finer granularity level the previous scheme,

Further to TLP, prior work by our group [8] as well
as other researchers has focused on Data-Level-
Parallelism (DLP) since this is the most widely
accepted form of parallelism in media workloads. TLP
exploitation, as discussed in the previous paragraph,
yields orthogonal (thus, complementary) benefits to
DLP allowing for scamless exploitation of both forms
of parallelism. We believe that such a DLP-TLP

system is the optimal programmable solution for real-
time video encoding SoCs.

5. Simulation Infrastructure

The threaded XviD encoder was compiled and
verified on our custom, multi-context Instruction-Set-
Simulator (MT-ISS) which is originally based on the
SimpleScalar infrastructure [10]. This is a complete
computer architecture research toolset and the ISS was
extended to allow for arbitrary-large multi-context
system modelling, The simulator produces dynamic
instruction counts for a specified number of processor
contexts and implements a sofiware API to a cycle-
accurate (CA) back-end. The combined MT-ISS and
CA back-end will permit the detailed (near-RTL
accuracy) study of arbitrary single and multi-processor
configurations and interconnect.

6. Results

This section discusses the theoretical performance
benefit of the threaded and vectorized XviD MPEG-4
video coder

6.1 TLP

Eight video sequences at CIF (352x288) resolution
were encoded each consisting of 25 frames. The
sequences were encoded for quality settings 1 through
5 and simulated on the MT-ISS for up to 64 processor
contexts.

E 10
L %%
5 80

T gy cualty
'E L e I s |
£ —2
] 3
E a0 & 1
§~ 0 —5
e AL - - - - Emmlo L ___
H
£ W} —-e . TTTTES
2

4 2 5 4 1% 22 n o
Prooassor Count

Figure 4 Foreman video sequence

Figure 4 depict the dynamic instruction count reduction
for the primary processor context (thread Q) for the
foreman video sequence. Context 0 is chosen as the
reference because it is the controlling context as it
performs /O and activates the remaining contexts early
during execution. The graph demonstrate a significant
reduction in complexity metric with an increasing
number of processors, No further complexity savings
are achieved once the number of processor contexts
exceeds, for the chosen video sequences, 22. The

reasoning behind this is that for maximum gain, the
threaded loops should be executed once only which is
true when the number of processor contexts is greater
than or equal to the upper limit of the loop iterations.
For a processor count less than this value a threaded
loop is executed multiple times thus, leading to a larger
instruction count per context. The optimal number of
contexts for the MPEG-4 XviD workload is calculated
by:

Opt_context{MPEG-4) = frame_width/ 16 [fIl]

For all three threaded functions the upper limit of
the loop is directly related to the width of the input
frames as specified above. This is imposed by the way
the MotionEstimation function has been threaded and
dominates the optimal number of threads of the other
parallelised functions. To increase this limit a different
implementation would need to be used since the data
dependencies in the MV prediction are resolved for
each row separately.

6.2 DLP

Functions of major complexity were identified
during algorithm profiling as being ME, MC, DCT and
IDCT and Q. The dynamic instruction count of these
functions accounts for more than 80% of total
complexity and the existence of significant amounts of
data level parallelism makes them excellent candidates
for vectorization [8]. Figure 5 shows the dynamic
instruction count reduction, due to varving the
architecturally-visible vector register length from 8 to
200 bytes, with results plotted for 3 quality settings. It
shows an overal] dynamic instruction count reduction
of the order of 70% observed at a vector length of 32~
bytes. These benefits relate to the single-threaded
version of the workload however, they are orthogonal
to the benefits achieved by exploiting TLP and are
expected to remain largely insensitive, across all
software threads.

8 M 40 3 TN KM LD 1M 13 6 LM X0 314 T3 24
Viestar Wik

Figure 5: Overall dynamic instruction count
reduction

7. VLSI Macrocells

DLP Accelerator

Following the theoretical study of the previous
sections, we implemented a subset of the MPEG-4
vector ISA in the form of a custom tightly-coupled
accelerator that aftaches to an open-source,
configurable, extensible, 32-bit RISC architecture 11}
implementing the Sparc V8§ [12] instructions et
architecture (ISA),

The design has been previously presented in [13]
and this section presents the VLSI implementation data
of a more up-to-date implementation of the
microarchitecture in which a number of eritical paths
were improved and more MPEG-4 related vector
instructions added,

Figure 6a depicts the VLSI macrocell of the
accelerator in a high-performance, 0.13 um silicon
process from UMC. The lefimost RAM cells are the 5-
read, l-write (5R1W) vector register file with
geometry of 8x128 bit. The large memory arrays on
top and bottom of the standard cells are the two banks
of the local memory of the vector load-store unit
(VLSU). Table 1 details the performance and
characteristics of the macrocell.

Table 1: MPEG-4 VLSl Accelerator
Characteristics

Parameter Value

Std cells 25070

RAMs 8

Fmax 292.3 MHz

Size 1461 x 760 pm’ (1111233 pm’)

Cache-coherent multi-processor

We implemented a configurable, extensible, cache-
coherent multi-processor based on the opensource CPU
and internally developed IP. The implementation
includes dual, modified Leon-2 CPUs each with an
attached accelerator, as discussed above, in a shared-
bus configuration, The VLSI layout and macrocell
characteristics are presented in figure 6b and Table 2
respectively.

)

Figure 6: 2-way vector multi-processor system

Table 2: Cache-coherent mulli-processors
Characteristics

Parameter Value

Std cells 83455

RAMs 52

Fmax 170 MHz

Size 2730 x 2732 pm2 (7466115 pm2)

Though the standalone accelerator achieves close to
300 MHz worst-case, post-route performance, this is
reduced when it is attached to each of the two Leon-2
CPUs of figure 6. In the multiprocessor case, the
critical path is in the shared bus infrastructure,
significantly limiting the performance of the SoC
multi-processor to 170 MHz whereas the accelerator
has its critical path in the add-reduction logic of the
SAD functionality. These results clearly indicate the
potential of the standalone accelerator and the
limitations, in terms of maximum operating frequency,
of shared-bus multiprocessors.

8. Conclusions

This work quantified the Thread and Data-Level
parallelism of an integer-only, open-source
implementation of the high performance MPEG-4
video coding standard. Our results conclusively
demonstrate that programmable solutions for
consumer-driven products should address both forms
of parallelism in order to achieve real-time video
encoding, within the power budget of a consumer-
market SoCs. Further work by our research groups will
focus on fusing the single-thread, vectorized MPEG-4
encoder to the non-vectorized, multi-threaded version
in order to present conclusively the benefit of tapping

the two most profound forms of parallelism, TLP and
DLP. In addition, we shall be investigating cycle-
effects of the proposed bus-based configuration and
study more advanced interconnects.

8. Reference
[1] MPEG1, ISO/AEC 11172-2:1993
[2] Motion Picture Experts Group http://www.mpeg.org

[3] MPEG Video Group, “MPEG-4 Video Verification
Model 6.07, Doc. ISO/IEC ITC1 / $C29 /WG11 N1582,
Sevilla MPEG Meeting, February 1997

[4] G.J.Sullivan, P.Topiwala, A.Luthra, “The H.264/AVC
Advanced Video Coding standard: overview and introduction
to the Fidelity Range Extensions”, SPIE conference on
Applications of Digital fmage Processing XXVII, August
2004,

[5] Ax36 Family of Parallel Image and Video Digital Signal
Processors DSP Chips’, White Paper, Oxford Micro
Devices, Inc, Monroe, CT 06468, USA, 2002

[6] XviD core library source code, www.xvid.org

7] Ke Shen, Lawrence A. Rowe, and Edward J. Delp. A
parallel implementation of an MPEGI1 encoder: Faster than
real-time! In Proceedings of SPIE Conference on Digital
Video Compression: Algorithms and Technologies, San Jose,
February 5-10 1995

[8] V. A. Chouliaras, J, L. Nunez, Fabrizio. S. Rovati,
Daniele Alfonso ‘A multi-standard video coding accelerator
based on a vector architecture’, Proceedings of the IEEE
International Conference in Consumer Electronies (ICCE
2005), Las Vegas, Nevada, USA

{9] Communication with CLambert, R.Czyz, XviD core
developers. XviD-devel mailing list Sept.-Nov. 2004

[10] SimpleScalar LLC http.//www.simplescalar.com/

[11] “The Leon-2 processor User’s manual, XST edition,
ver. 1.0.147, http://www gaisler.com

[12] The Sparc Architecture Manual Version 8,
http://www.sparc.org

[13] V. A. Chouliaras, J. L. Nunez-Yanez, S. Agha, ‘Silicon
Implementation of a Parametric Vector Datapath for real-
time MPEG2 encoding’, Proceedings of the IASTED (SIP)
2004, Honolulu, Hawaii, USA, ISBN: 0-88986-442-X

Paper PC9: S. R. Parr, K. Koutsomyti, V. A, Chouliaras, J.L. Nunez, D. J. Mulvaney,
‘Configurable Scalar and Vector Coprocessors for accelerating the G.723.1 and G.729.4
speech coders’, accepted for oral presentation at the IASTED International Conference on
Signal and Image Processing (ACIT-SIP), Novosibirsk, Russia, June 20-24, 2005

129

CONFIGURABLE SCALAR AND VECTOR COPROCESSORS FOR
ACCELERATING THE G.723.1 AND G.729A SPEECH CODERS
S. R. Parr, K. Koutsomyti, V. A. Chouliaras, 1.1, Nunez, D. J. Mulvaney
Loughborough University
United Kingdom
s.r.patr@lboro.ac.uk

ABSTRACT

This paper presents the results of an investigation of
employing configurable scalar and vector coprocessors to
accelerate the (.723.1 and the (.729A speech coders.
Architecture exploration has produced a reduction by up
to 70% of the total number of instructions executed
following the infroduction of custom instructions. The
accelerators are designed to be attached to a configurable
embedded RISC CPU where they will make use of the
host register file and load/store infrastructure.

KEY WORDS
Signal Processing, Coprocessor, Embedded systems,
Speech coding,

1 Introduction

Speech compression is utilized in a multitude of
communication applications{1][2][3], including Voice
over Internet Protocols networks and digital satellite
systems, Typical consumer products employing this
technelogy are multimedia terminals, digital dictation
machines, videophones and IP phones. The G.723.1[4]
and the G.729A[S5] recommendations were designed to
standardize telephony and videoconferencing over public
telephone lines and are part of the International
Telecommunication Union (ITU) H.324 standard. This
work investigates the benefit, in terms of complexity
reduction, of architecture (instruction) extensions for the
efficient execution of the above vocoders, building on
previous work[6]{7]. The identified extensions are
implemented as coprocessors, tightly-coupled to a
configurable, embedded RISC processor.

There is a significant body of research into application
acceleration via targeted coprocessors; application
domains are diverse, ranging from cryptography{8], maze-
routing[9] to high-end video processing[10]. Previous
research into efficient execution of speech coders include
that by Costinescu ef @/.[11] and by Chang and Hu[12]
which describe the necessary changes in the ITU
reference code when targeting very high-performance,
off-the-shelf digital signal processors, Soler at ai[13]
describe a semi-automated chip-synthesis flow targeting a
horizontally micro-programmed (VLIW) embedded DSP
architecture, capable of executing one multiply-
accumulate operation per clock cycle. The workload in
this case was the GSM half-rate speech coder.

The research is a continuation of Raab et al.[10] which
describes instruction set extensions, implemented in a
moderate-complexity datapath (coprocessor) attached to a
configurable embedded processor.

2 LPAS- Based Speech Coders

The G723.1 and the G729A standard speech coding
algorithms, as recommended by the ITU, belong to the
category of linear-prediction analysis-by-synthesis
(LPAS) speech coders{i4]. G.729A is a reduced
complexity 8kbits/s version of the Conjugate-Structure
Algebraic-Code-Excited Linear-Prediction (CS-ACELP)
coder in the G.729 recommendation[5]. The G.723.1 dual
rate speech coder for multimedia applications transmits at
either 5.3kbits/s or 6.3kbits/s. Such coding schemes have
been widely adopted as they produce high quality speech
while maintaining a low bit-rate, but at the price of higher
complexity.

The quality of speech improves with higher bit rates
although the overall performance of the G.723.1 at
6.3kbits/s and the G.729A are similar, A clear difference
in the performance of these two vocoders is their
algorithmic delay; the total one-way delay of 25ms for
G.729A compares favourably with that of 67.5ms for
G.723.1. Technically, G.723.1 at 6.3kbits/s differs from
the G.723.1 at 5.3kbits/s in the excitation model for the
synthesis filter. The G.723.1 at 5.3kbits/s uses multi-pulse
excitation with a maximum likelihood quantizer model
while the G.723.1 at 6.3kbits/s and the G.729A uses the
code excited linear predication model.

3 Problem Formulation

This research identifies architecture and microarchitecture
requirements for the efficient implementation of the
G.729A and G723.1 speech coders on high-performance,
low-cost, configurable microprocessors.

The workloads were executed and profiled in native mode
(Linux x86). Table 1 shows the relative time spent outside
the digital signal processor (DSP) emulation instructions.
To research the potential acceleration of the algorithms
when executed on an embedded microprocessor, the
workload was recompiled for the SimpleScalar instruction
set architecture (ISA). Table 2 illustrates the simulated

processor profiling results in terms of the number of
instructions executed.

It is clear that the workloads spend a significant
proportion of their time executing DSP emulation
functions. If the DSP emulation instructions could be
executed by configurable extensible microprocessor there
is the potential to achieve a valuable reduction in
execution time. A suvitable high-performance, targeted-
architecture for executing the workloads could reduce the
form-factor and power consumption, making it a very
attractive candidate for replication and integration in a
System-on-Chip (SoC) ASIC.

Table 1: Relative amount of time spent outside the DSP emulation
instructions

Algorithm Relative time (%, native)
G723 Coder 313
G729 Coder 304

Table 2: Relative number of total instructions executed outside the
DSP emulation instructions

Algorithm Relative instructions {%, simulated)
G723 Coder 345
G729 Coder 342

4 Programmers Model

The programmer’s model for the vector and scalar
coprocessor accelerator is depicted in Figure 1. There are
16 vector registers (VR0-VRI15), each consisting of a
parametric number (VLMAX) of scalar (16-bit) elements.
There are two vector accumulators (VACCOQ, VACC1)
consisting of VLMAX/2 scalar elements (32-bits) and two
vector mask registers of length VLMAX bits. Finally,
there are 16 scalar registers and a sticky overflow flag.

Scalar Reginser Fiie |
ey

; Vactar Raglster Fila -
“VLMAX 15-bHt slsmants

i

]

T

=

T3

- T

o

| i
T T vR12
1T T[] vRe
DL s

Vector Accumulators .

VLMAKS2 32-hit elerients

Figure 1; Scalar and vector secelerator programmers’ model

5 Microarchitecture

The scalar and vector coprocessors are attached to the
Sparc-v8 compliant CPU core via a custom pipeline
coprocessor port[15][