
Loughborough University
Institutional Repository

Parallelism and the
software-hardware interface

in embedded systems

This item was submitted to Loughborough University's Institutional Repository
by the/an author.

Additional Information:

• A Doctoral Thesis. Submitted in partial ful�lment of the requirements for
the award of Doctor of Philosophy of Loughborough University.

Metadata Record: https://dspace.lboro.ac.uk/2134/14467

Publisher: c© V. A. Chouliaras

Please cite the published version.

https://dspace.lboro.ac.uk/2134/14467

This item was submitted to Loughborough University as a PhD thesis by the
author and is made available in the Institutional Repository

(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence
conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

University Library

n 1:'1 Loughborough
'V University

AuthorlFiling Title ... (;.H~.lA.LIA.~.As.,.v................... '
.. h •••••••••••••••

Class Mark -:.:L
Please note that fines are charged on ALL

overdue items.

~~\~I~~\m 1\11\ 1\\\1\ \1 \ \\ \\\\\

_. ~

Parallelism and the Software-Hardware Interface

In

Embedded Systems

By

Vassilios Apostolos Chouliaras

A Doctoral Thesis submitted in partial fulfilment of the requirements for the award of Doctor

of Philosophy of Loughborough University

June 2005

© V. A. Chouliaras

U Loughborough
d' . University

Pilkinglon Library

Dale :rAN 200b

Class T
Ace '\
No. 04-0 31 1653

ACKNOWLEDGMENTS

I would deeply like to thank my wife, Nantia, for continuous support throughout the long

process of conquering the Knowledge. Her support, understanding and Love, kept me focused

and composed throughout the years of working professionally away from the Mediterranean.

It was her who decided that I should accept the academic post in the Midlands, instead of the

industrial post in downtown San Jose and I have to admit, three years after that extremely

difficult decision, that she was right and I was wrong.

I deeply acknowledge the support of my family in Athens throughout all my 35 and half

years. Without their clear vision, and persistence in pursuing the Knowledge, I would have

never been able to understand the ways our world is working.

I gratefully acknowledge the support of my colleague, Dr. Jose Luis Nunez-Yanez. Jose was

the sole microelectronics engineering expert I could rely on for bringing our research to life

and the accomplishments and success of the microelectronics research group were also due to

his hard work and dedication.

I most sincerely thank Dr. David Mulvaney for being always available, always technically

sound, always listening and giving solution to most problems, trivial or otherwise. David

provided much assistance in the group and was an excellent academic probation adviser.

Finally, I would like to sincerely thank all my academic colleagues and friends here in

Loughborough. In particular, I would like to mention Professor Roger Goodall for being an

academic raw model to me and one that I simply am unable to reach.

4

This Thesis is dedicated to the Memory of my Dear Friend,

Dimitrios Daniolos

Who left us so suddenly

12 June 1969 - 11 June 2004

5

~---------------------------------- ---. -

ABSTRACT

This thesis by publications addresses issues in the architecture and microarchitecture of next

generation, high performance streaming Systems-on-Chip through quantifying the most

important forms of parallelism in current and emerging embedded system workloads.

The work consists of three major research tracks, relating to data level parallelism, thread

level parallelism and the software-hardware interface which together reflect the research

interests of the author as they have been formed in the last nine years.

Published works confirm that parallelism at the data level is widely accepted as the most

important performance leverage for the efficient execution of embedded media and telecom

applications and has been exploited via a number of approaches the most efficient being

vectorlSIMD architectures. A further, complementary and substantial form of parallelism

exists at the thread level but this has not been researched to the same extent in the context of

embedded workloads. For the efficient execution of such applications, exploitation of both

forms of parallelism is of paramount importance. This calls for a new architectural approach

in the software-hardware interface as its rigidity, manifested in all desktop-based and the

majority of embedded CPU's, directly affects the performance ofvectorized, threaded codes.

The author advocates a holistic, mature approach where parallelism is extracted via automatic

means while at the same time, the traditionally rigid hardware-software interface is optimized

to match the temporal and spatial behaviour of the embedded workload. This ultimate goal

calls for the precise study of these forms of parallelism for a number of applications executing

on theoretical models such as instruction set simulators and parallel RAM machines as well

as the development of highly parametric microarchitectural frameworks to encapSUlate that

functionality.

6

- --- -------

Table of Contents

ACKNOWLEDGMENTS ... 4

ABSTRACT .. 6

TABLE OF CONTENTS .. 7

CHAPTER 1 ... 10

1.1 THEMATIC AREAS ... 11

1.1.1 Data Level Parallelism .. 11

1.1.2 Thread Level Parallelism ... 13

1.1.3 The software-hardware interface 14

1.1.4 Instruction Level Parallelism ... 14

1.2 METHODOLOGY •••••••..••.•.............•.••••••.••••.••••••••••••.•••••.•••..•.•••...•...............•............•....•..•.••••••.......••••••. 15

1.3 FURTHER WORK ... 16

1.3.1 Advanced software optimization tools ... 16

1.3.2 The System Design Framework .. 17

t.3.3 Fault-Tolerant Parametric Multiprocessor Kernel for mission-critical applications 18

1.3.4 The Uttimate ASIC CPU approach: The SS_SPARC ... 19

1.4 AUTHOR CONTRIBUTIONS IN THE PUBLISHED WORKS .. 19

PaperPJl 19

Paper P J2 19

Paper P J3 20

Paper PJ4 20

Paper PJ5 20

Paper PCl 21

Paper PC2 21

Paper PC3 .. 21

Paper PC4 .. 22

Paper PC5 .. 22

Paper PC6 .. 22

Paper PC7 .. 23

Paper PC8 .. 23

Paper PC9 .. 23

GROUP PJ: PUBLISHED JOURNAL PAPERS ON PARALLELISM AND THE

SOFTW ARElHARDW ARE INTERFACE IN EMBEDDED SYSTEMS .. 24

PAPER PJ1: V. A. CHOULIARAS, J. L. NUNEZ, 'SCALAR COPROCESSORS FOR ACCELERATING THE G723.1 AND

G729A SPEECH CODERS', IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, VOL. 49, ISSUE 3, AUG. 2003,

PG. 703-71 0 ... 26

7

PAPER PJ2: V. A. CHOULIARAS, J. L. NUNEZ, K. KOUTSOMYTI, S. R. PARR, D. J. MULVANEY, S. DATTA, 'ON

THE DEVELOPMENT OF A CUSTOM VECTOR ACCELERATOR FOR HIGH-PERFORMANCE SPEECH CODING', lEE

ELECTRONIC LETTERS, VOL. 40, ISSUE 24, 25 Nov. 2004, PG 1559-1561 ... 35

PAPER PJ3: V. A. CHOULIARAS J. L. NUNEZ, D. J. MULVANEY, F. ROVATI, D. ALFONSO, 'A MULTI-STANDARD

VIDEO CODING ACCELERATOR BASED ON A VECTOR ARCHITECTURE', IEEE TRANSACTIONS ON CONSUMER

ELECTRONICS, VOL. 51, ISSUE I, FEB 2005, PG 160-167 .. .49

PAPER PJ4: J. L. NUNEZ, V. A. CHOULIARAS, 'HIGH PERFORMANCE ARITHMETIC CODING VLS! MACRO FOR THE

H264 VIDEO COMPRESSION STANDARD', IEEE TRANSACTIONS ON CONSUMER ELECTRONICS VOL. 51, ISSUE I,

FEB 2005, PG 144-151 .. 58

PAPER PJ5: GRECOS, C., SAPARON, A. AND CHOULIARAS, V., 'THREE NOVEL LOW COMPLEXITY SCANNING

ORDERS FOR MPEG-2 FULL SEARCH MOTION ESTIMATION', REAL TIME IMAGING, 10, FEBRUARY 2004, PP 53-65

.. 67

GROUP PC: PUBLISHED NATIONAL AND INTERNATIONAL CONFERENCE PAPERS ON

PARALLELISM AND THE SOFTWARE-HARDWARE INTERFACE IN EMBEDDED SYSTEMS 81

PAPER PCI: V. A. CHOULIARAS, J. L. NUNEZ, 'A SCALAR COPROCESSOR FOR ACCELERATING THE G723.1 AND

G729A SPEECH CODERS', PROCEEDINGS OF TH~ IEEE INTERNATIONAL CONFERENCE ON CONSUMER

ELECTRONICS (ICCE 2003), Los ANGELES, CALIFORNIA, USA, ISBN:0-7803-8838-0 86

PAPER pe2: V. A. CHOULIARAS, J. L. NUNEZ-YANEZ, S. AGHA, 'SILICON IMPLEMENTATION OF A PARAMETRIC

VECTOR DATAPATH FOR REAL-TIME MPEG2 ENCODING " PROCEEDINGS OF THE lASTED (SIP) 2004,

HONOLULU, HA WAll, USA, ISBN: 0-88986-442-X ... 89

PAPER PC3: V. A. CHOULIARAS, J. L. NUNEZ, FABRIZIO. S. ROVATI, DANIELE ALFONSO 'A MULTI-STANDARD

VIDEO CODING ACCELERATOR BASED ON A VECTOR ARCHITECTURE', PROCEEDINGS OF THE IEEE INTERNATIONAL

CONFERENCE IN CONSUMER ELECTRONICS (ICCE 2005), LAS VEGAS, NEVADA, USA, ISBN: 07803-8839-9.96

PAPER PC4: V. A. CHOULIARAS, J. A. FLINT, Y. LI, 'PARAMETRIC DATA-PARALLEL ARCHlTECTURES FOR TLM

ACCELERATION', PROCEEDINGS OF THE 3'D INTERNATIONAL CONFERENCE ON COMPUTATIONAL

ELECTROMAGNETICS AND ITS ApPLICATIONS (ICCEA), Nov. 1-42004, BElJING, CHINA 99

PAPER PC5: V. A. CHOULlARAS, J. L. NUNEZ-YANEZ, T. R. JACOBS AND ASHWIN K. KUMARASWAMY,

'CONFlGURABLE MULTIPROCESSORS FOR HIGH-PERFORMANCE MPEG-4 VIDEO CODING', PROCEEDINGS OF THE

IEEE ANNUAL SYMPOSIUM ON VLSI, MAY 11-122005, TAMPA, FLORIDA, USA .. 105

PAPER PC6: ASHWIN K. KUMARASWAMY, V. A. CHOULIARAS, T. R. JACOBS, AND J. L. NUNEZ-YANEZ,

'SYSTEM-ON-CHIP DESIGN FRAMEWORK (SDF) UNIFYING SPECIFICATION CAPTURE AND DESIGN MODELLING',

PROCEEDINGS OF THE 2005 ELECTRONIC DESIGN PROCESSES (EDP) WORKSHOP, APRIL 6-8, MONTEREY

BEACH HOTEL, MONTEREY, CALIFORNIA, USA .. 10 8

PAPER PC7: V M DWYER, S AGHA AND V. CHOULIARAS, 'Low POWER FULL-SEARCH BLOCK MATCHING USING

REDUCED BIT SAD VALUES FOR EARLY TERMINATION', PROCEEDINGS OF MIRAGE 2005 INTERNATIONAL

CONFERENCE ON COMPUTER VISION/COMPUTER GRAPHICS COLLABORATION TECHNIQUES 115

PAPER PC8: TOM R. JACOBS, VASSILIOS A. CHOULIARAS AND JOSE L. NUNEZ, 'A THREAD AND DATA-PARALLEL

MPEG-4 VIDEO ENCODER FOR A SYSTEM-aN-CHIP MULTIPROCESSOR " ACCEPTED FOR ORAL PRESENTATION AT

THE IEEE 16TH INTERNATIONAL CONFERENCE ON APPLICATION-SPECIFIC ARCHITECTURES AND PROCESSORS

(ASAP 2005), SAMOS, GREECE, JULY 23-25 2005 .. 122

8

PAPER PC9: S. R. PARR, K. KOUTSOMYTI, V. A. CHOULIARAS, J.L. NUNEZ, D. J. MULVANEY, 'CONFlGURABLE

SCALAR AND VECTOR COPROCESSORS FOR ACCELERATING THE G.?23.l AND G.729.A SPEECH CODERS', ACCEPTED

FOR ORAL PRESENTATION AT THE lASTED INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING

(ACIT-SIP), NOVOSIBIRSK, RUSSIA, JUNE 20-24, 2005 .•••••••..•••••••...••••...•••••...••••••...•..••..•••••....•••••••••....••••••••• 129

GROUP RJ: UNDER-REVIEW JOURNAL PAPERS .. 135

APPENDIX A: COMPLETE LIST OF AUTHOR PUBLICATIONS .. 138

A.l ACADEMIC JOURNAL PUBLICATIONS (PUBLISHED) .. 1 38

A.2 ACADEMIC JOURNAL PUBLICATIONS (UNDER REVIEW/ACCEPTED FOR PUBLICATION) 138

A.3 REFEREED CONFERENCE PUBLICATIONS (PRESENTED/ACCEPTED) .. 139

A.4 PATENT APPLICATIONS .. 143

A.5 NON-REFEREED CONTRIBUTIONS .. 144

9

Chapter 1

Introduction to the Thesis

The term 'embedded systems' typically refers to non-visible, programmable computers that

control a particular function in a higher order system. Examples of such systems are

automobile Engine Management System (EMS), controllers embedded within household

appliances, distributed arrays of sensors, programmable baseband processors in mobile

terminals and chip-multiprocessors (CMP) in PCI-X add-on cards for scientific computing.

The range and diversity of embedded systems is enormous and there are very few (if any)

application domains where embedded 'intelligence' is not needed. Embedded systems are

implemented in a number of technologies ranging from printed circuit board (PCB)-based

systems to single-die and multi-die (stacked) Systems-on-Chip (SoCs). In this thesis, the term

embedded system is considered synonymous to high-performance systems-on-chip.

Parallelism is a common characteristic of modern media and telecom applications in the

embedded domain. It comes in a number of forms, expressed either by the human

programmer or automatically exposed by the high-level language compiler. There are four

universally accepted forms of parallelism namely, Instruction Level Parallelism (ILP), Data

Level Parallelism (DLP), Thread Level Parallelism (TLP) and Process Level Parallelism

(PLP). The distinction amongst these forms of parallelism relates to the fraction of the

software application that can be executed in parallel (PLP and TLP), the spatial arrangement

of the data items processed by the application as well as their dependencies (DLP) and finally,

the register operand and execution resource requirements of the application binary (ILP). This

thesis elaborates on thread level and data level parallelism as these have been found to be the

most relevant to the application domain of interest, and discusses mechanisms around a non

rigid software-hardware interface for the benefit of exploiting these most important forms of

parallelism.

The thesis consists of three groups of papers. The first group includes five published journal

papers and the second group includes nine accepted/presented national and international

conference papers. Both groups consist of contributions which belong to one of three thematic

areas namely, data level parallelism, thread level parallelism and the software-hardware

inter/ace. A final group includes references to other journal publications by the author and his

research group, currently under review or in the final acceptance phase.

1.1 Thematic Areas

This section elaborates on the three major thematic areas covered by the published works. A

reference is also made to instruction level parallelism but the thesis does not substantially

address this as the principal benefits in theoretical performance and thus, execution time, are

realized primarily via the exploitation ofTLP and DLP.

1.1.1 Data Level Parallelism

This thematic area includes contributions found in papers PJ2, PB, PC2, PC3, PC4, PC8 and

PC9. DLP extraction and exploitation is a well studied subject in the domain of scientific

computing, computational fluid dynamics (CFD), financial analysis and more recently,

genome modelling. It has become a potent performance leverage in feature-rich, SoC-based

consumer products over the past few years as the media content processed by such appliances

and transmitted over existing and emerging wired and wireless networks, has increased

dramatically.

The unwillingness of industry to shift to a programming paradigm that explicitly exposes

parallelism (resembling the unwillingness of the same industry to adopt a self-timed design

methodology as a superior design paradigm from the power management and timing

independence perspectives) initially led to limited exploitation of DLP and, where it was

explored, that was using ad-hoc, manual methodologies. This rigidity can be primarily

attributed to the software engineering establishment which uses well known high-level

languages (HLLs) such as C and c++ which simply don't provide the necessary semantics. In

fact, both C and C++ rely heavily on constructs such as pointers which are potentially

detrimental to the automatic detection of thread and data parallelism. It is interesting to point

out that the scientific community has long identified DLP as being capable of significantly

improving performance and has developed FORTRAN vectorizing compilers to automatically

take advantage of vector floating-point hardware. In the consumer electronics area, there are

few high-level language compilers capable of exposing DLP and these come from established

vendors such as Tensilica and dynamic start-ups such as the Philips spin-out SiliconHive. In

11

the latter case, I believe that the compiler transforms the DLP to ILP in order to schedule the

very wide Avispa+ family of Ultra Long Instruction Word (ULIW) CPUs. A number of recent

microprocessor start-ups acknowledge the benefit of automatically exploiting such

parallelism; however they remain suspiciously cryptic as to their technology's ability to

automatically uncover that parallelism.

To address these issues and exploit DLP, the Electronic Systems Design Group at

Loughborough University embarked in an initially manual process of quantifying the amount

of data parallelism in media and telecom workloads. Our studies characterized precisely the

theoretical performance benefit of vectorized media, telecom and scientific workloads and

resulted in a systematic methodology for developing vector instruction set architecture (ISA)

extensions for established architectures.

The results of this work have shown benefits in media and telecom applications when the

starting points are the publicly-available implementations such as the MPEG-2 TM5, the

open-source MPEG4 XViD and the open-source X264 codes. Communication with industry

has established that the algorithms that are suitable for SoC-based products are highly

optimized and assembly-recoded versions of such publicly available codes. An industrial

colleague, Mr. John Edwards from Motorola UK, quantified the performance improvement

going to hand-coded, optimized assembly versions from publicly available codes to be within

an order of magnitude (factor of ten). As we don't have access to such optimized

implementations, we postulate that the algorithmic benefit achieved in our studies will be

achievable on the hand optimized codes as well. It is interesting to state that we realized

tremendous benefits in highly regular scientific applications such as 3D transmission line

modelling (TLM) codes. These are short codes (kernels) that are characterized by high spatial

and temporal regularity in data accesses as well as very high floating-point computational

requirements.

To harness DLP within the constraints of an SoC embedded system, we architected and

currently develop a number of data-parallel accelerators for media, telecom and scientific

workloads with a clear focus on tightly integrating such coprocessors to an open-source,

configurable 32-bit Sparc VS compliant RISC CPU core, developed for the European Space

Agency by Gaisler Research in Sweden.

12

1.1.2 Thread Level Parallelism

Thread-level parallelism refers to the parallel execution of parts of the control flow graph

(CFG) of the software application via a collection of processors (processor contexts) typically

(but not necessarily) in a shared memory configuration, while fully observing sequential

execution semantics (data dependencies). Typical SoC architectures that can exploit and

benefit from this form of parallelism are chip-multiprocessors (CMP), multi-threaded

processors (MT) or multithreaded chip-multiprocessors (CMP-MT). A very dramatic example

of the later architecture is the 'Niagara' CPU under development by Sun Microsystems. The

processor includes eight scalar Sparc V9 CPU 'cores', each being a 4-way MT-processor in a

shared memory configuration. As a result, a single device accommodates 32 CPU contexts

allowing for the dramatic improvement in the execution performance of threaded server

codes. Though not an embedded system in its truest sense, such CMP-MT configurations are

expected to become dominant in 90nm silicon nodes and beyond.

This thematic area, in the contexts of current and emerging video coding standards, is

discussed in contributions PCS and PC8. In addition, the Electronic Systems Design Group is

transforming the high performance H264 standard and its X264 open-source implementation

to a thread-parallel version. The potential of TLP is evident from the already published

research as well as our ongoing efforts in the field. In fact, data suggest that under ideal

communications (execution on a PRAM model), the thread-parallel MPEG-2 TMS

implementation provides significantly better performance than the data-parallel version.

Finally, we observe in the video coding subset of the workloads that TLP is a complementary

form of parallelism to parallelism at the data level (typically available at inner loops) and can

be found at the outer loop levels of the compute-intensive areas of the application. This

observation suggests that a SoC chip vector multiprocessor (multi-vector computer) in a

shared memory configuration is a very potent engine for the real-time execution of such

codes. I have worked independently and for a number of years in the area of vector

multiprocessors and the outcome is the SS_SPARe project which is briefly discussed in the

'future research' section.

13

1.1.3 The software-hardware interface

This thematic area, covered in PJl, PJ2, PB, PJ4, PCI, PC2, PC3 and PC4 is probably the

most conceptually difficult area to appreciate for established software developers who

normally deal with fixed ISAs. Our research has extended these ideas by proposing vector

ISA extensions, primarily designed around a private (non-architecturally-specified) register

file. These data-parallel extensions are encapsulated within a generic microarchitectural

framework (coprocessor) that is closely-coupled to the 32-bit Leon-2 CPU. Nowadays, these

ideas are becoming more widespread and we witness the emergence of an increasing number

of CPU intellectual-property (IP) start-ups that advocate ISA extensibility. In particular,

Stretch Inc. has produced an application-specific integrated circuit (ASIC) which includes a

modified Tensilica Xtensa Core and an uncommitted (embedded) field-programmable gate

array (FPGA) fabric. The device is complemented by automatic tools (including a C compiler,

and it appears, a vectorizer) which, given the target application, will automatically compile,

profile, and generate data-parallel datapaths and scalar custom instructions in the

reconfigurable fabric with the remainder ofthe application running on the Xtensa core. This is

a level of automation previously unheard of (perhaps with the exception of the latest Tensilica

C compiler and FLIX execution semantics) which can potentially provide tremendous power

to system developers, without the need to go the ASIC route.

I strongly advocate the route taken by Stretch with the exception that automation should be

applied at 'design time'. This would provide much improved performance, both from a

microarchitecture as well as from a performance point of view, but at the expense of having to

produce an ASIC. This is the route followed by Tensilica and currently looked at by ARC

International. The Electronic Systems Design Group will focus on automatic ISA Extension

development in the coming months.

1.1.4 Instruction Level Parallelism

Microprocessor manufacturers have strived to extract as much ILP as possible from sequential

applications in programmable, pipelined architectures. ILP is a Iow-level form of parallelism

in the sense that, unless the human programmer is willing to code an application explicitly in

14

assembly, ILP can't be controlled and is thus left to the capabilities of the compiler to expose

it and that of the underlying ILP microarchitecture to execute it.

We have witnessed an explosion in the capability ofILP architectures in desktop and large

scale systems. Taking as an example the largest microprocessor vendor, the first major

attempt to exploit ILP was with the Pentium PS microarchitecture; a dual-issue, statically

scheduled CPU with a high performance Floating Point Unit (FPU). A number of other

microprocessor vendors have produced similar microarchitectures the most striking of which

was the Alpha architecture whose first implementation, the 21064, shattered the clock

frequency records when it was first introduced in 1992 at an operating frequency of200 MHz.

Subsequent implementations of the X86 and Alpha architectures materialized, each

increasingly more complex and using more sophisticated dynamic features for exposing and

exploiting the limited ILP available in desktop workloads.

In the embedded domain however, there have been few significant attempts in developing

ILP-capable architectures. This is primarily attributed to the perceived lack of ILP and the

abundance of other forms of parallelism such as TLP and DLP in the target application area as

well as the very limited power budgets of battery-powered embedded devices. I do however

believe that within their organizational constraints and engineering budgets, embedded CPU

vendors could still extract performance benefits by implementing low-order ILP pipelines.

Though not directly presented in this thesis, the author is working in a high-performance ILP,

DLP and TLP-capable RISC-based ASIC processor architecture which is highly

parameterized in both the architecture and microarchitecture axes.

1.2 Methodology

The methodologies followed across all three research themes originate from established

industrial practice that I was exposed to when I was working as a professional engineer for

ARC International and as an ASIC designer for INTRACOM. One of the major issues at that

time, and an issue I am confident applies to most major embedded CPU IP providers, was the

lack of precise data on the potential benefit of exploiting the forms of parallelism discussed

above. Clearly, techniques such as profiling are well established, however at the time, ARC

did not address the issues of vectorization, manual or automatic vector ISA design, threading

15

and execution on a parallel-RAM (PRAM) model. To the best of my knowledge, these issues

were not being addressed at ARM, MIPS and Tensilica at that time.

After joining the Department of Electronic and Electrical Engineering at Loughborough

University, I focused on developing the infrastructure that I deemed important in an effort to

quantifY and exploit parallelism at all levels. This has led to two major contributions in the

domain of architectural simulators (ISS) for embedded CPUs. Starting with the publicly

available Simplescalar computer architecture research tools, I developed a systematic

methodology for adding additional programmer-visible state to the default ISS (sim-profile).

This led to the development of a new simulator known as sim-vector which has become the

standard tool by which the Electronic Systems Design Group at Loughborough has been

studying vectorized workloads. Subsequently, r re-architected the sim-profile simulator, part

of the simplescalar tools which resulted in a second-generation simulator known as sim

system. Sim-system can be considered as an Exclusive-Read, Exclusive-Write (EREW)

Parallel RAM (PRAM) simulator and has been utilized very successfully in studying

statically-threaded workloads. It is interesting to note that the threading and execution

methodologies are interoperable with the shared-memory OpenMP API.

In addition, I developed most of the scripting support infrastructure to run the newly

developed simulators and automatically collect the results and trained all my Ph.D. students

and senior researchers to actively study DLP and TLP. The simulators and the collection of

scripts are used continuously within the Electronics Systems Design Group.

1.3 Further work

This section briefly presents ongoing and near-future research initiated and managed by the

author:

1.3.1 Advanced software optimization tools

The issue of automatic software optimization, which includes vectorization along the inner

loops, threading across the outer loops, compiler-directed prefetching for hiding memory

16

---------------------------_.- -

latencies, automatic data alignment for multi-banked on-chip memory hierarchies and custom

ISA extensions constitutes what many CPU architects would consider to be the Holy Grail of

Computer Architecture. Research in the past thirty years has established solutions to some of

these issues however, I strongly advocate a holistic approach, one that would be independent

of ISA and application domain. Such tools, if they existed, would assist next-generation SoC

designers in precisely studying, profiling, parallelizing and optimizing their codes, in a

generic way, to match a generic and highly scalable, programmable, SoC platform.

Subsequently, co-simulation of the generic platform and the optimized software and design

space exploration would yield the final optimization parameters that would lead to a near

optimal, software-based solution.

1.3.2 The System Design Framework

The System Design Framework project has been designed to give the Electronic Systems

Design Group a powerful tool to probe the microarchitecture space of next-generation

streaming Systems-on-Chip. The SDP is the cycle-accurate back-end to sim-system and will

permit the modelling of emerging (5-10 years projection) microarchitectures with near-RTL

accuracy. Our studies on vector and threaded workloads were carried out with sim-system

(and its predecessor, sim-vector) which gave us confidence that exploitation of parallelism at

all levels is the way to approach the development of VLSI systems of substantial processing

capability and complexity. We are actively pursuing this research project and currently we are

in talks with BAE Systems to finalize support and commitment to our. approach. The

successfully blending of object-oriented system design methodologies as advocated by my

colleagues Dr. David Mulvaney and Mr. Ashwin Kumaraswamy has opened the door to many

exciting possibilities for the particular work. This area appears to be of great importance and

this is reflected on the Gatsby Grant, awarded to the Group as pathfinder funding to further

develop this technology. In addition, we are completing the patent application process for the

Universal Modelling Language (UML)-to-SystemC part of the flow and we target the United

States Patent and Trademarks Office (USPTO).

17

I

I

I

I

I

1.3.3 Fault-Tolerant Parametric Multiprocessor Kernel/or mission-critical applications

This is an active project with my colleagues, Dr. James Flint and Mr. Emmanuel Touloupis.

Over the past two years, we developed a unique, fault-tolerant version of the Leon-2 CPU

system that shows substantial tolerance against single-event and multi-event upsets. The

microarchitecture is based on the triplication of the execution pipeline which differentiates

our method from other techniques which involve triplication of the microarchitecture state

flip-flops. The pipeline is characterized by a distributed voting scheme for the per-cycle

validation of all microarchitecture state across all three pipelines. During normal operation,

the system executes the application software on all three pipelines but with only one pipeline

committing architecture state (register file and memory values). On detection of a single or

multi-bit error, the distributed control logic automatically re-configures the triplicated

pipeline by taking out the particular datapath that developed the fault and entering a special

pair mode of operation. This operation takes only one cycle. Subsequently, the faulty pipeline

is re-introduced after a programmable number of cycles at which point the system enters

again TMR mode of operation. If a further fault is detected during operation in pair mode, the

system enters an automatic restart procedure which leads to a software reset and the rebooting

of the CPU.

We have successfully developed the architecture, implemented the microarchitecture,

produced ASIC macros of the CPU and collected a significant number of simulation results

when executing the automotive subset of benchmarks in the MiBench benchmark suite. Our

findings have been reported on national and international conferences [7 15 17] and are the

subject of an ongoing patent application. In addition, our industrial collaborators, MIRA Ltd,

have expressed interest to develop this idea further into automotive X-by-wire and they

currently champion the patenting process. Dr. Flint and Mr. Touloupis have agreed to pursue

this further through the development of a configurable, SoC execution kernel and associated

infrastructure for such systems. We are drafting an EPSRC proposal for this system and a US

Patent for the existing multi-pipeline, single-context, fault-tolerant CPU.

18

1.3.4 The Ultimate AS1C CPU approach: The SS_SPARe

This is a major effort to develop a very high performance configurable, extensible CPU

system that efficiently handles all the forms of parallelism as discussed in this chapter. I have

been working on this over a number of years and the current state ofthe design is satisfactory.

The CPU is a multi (five)-issue, in-order-dispatch, out-of-order commit, Sparc V8 compliant

microarchitecture parameterized as to the number of CPU contexts, memory hierarchies, and

DLP infrastructure. I envision this design as a replacement for the arbitrary choice of

microcontroller/CPUIDSP combinations in current and next generation SoCs due to its unique

parameterization, streaming and execution bandwidth, and configurability and extensibility

options. The licensing model of the design is yet to be finalized and the route by which it will

be made available is also not clear at present.

1.4 Author Contributions in the published works

This section discusses in detail my contribution to each of the published works.

Paper PJ1

The process of developing two scalar ISA extensions to complement the Simplescalar and

Sparc V8 ISAs along with the embodiment of the first ISA in the newly-developed sim-vector

ISS was my responsibility. Dr. J. Nunez provided assistance in the development of the private

register file solution and its subsequent benchmarking. In addition, I developed the scripting

infrastructure to automatically run the workloads over all configurations and established the

methodology by which research in ISA design is carried out in the Electronic Systems Design

Group.

PaperPJ2

The engineering methods of developing a custom vector ISA and subsequently, a vector

accelerator for the ITU-T G.729.A and G.723.1 speech coding algorithms were my primary

contributions in this work. The whole concept originated after long conversations in 2002

19

r--- -

with one of the senior software experts at ARC International's D8P group, Dr. Dariush

Baghbadrani, during which we sought ways of addressing the limitations of the dual 16-bit

ARC Tangent A4 CPU DSP engine. The methodology followed since then led to the

development and continuous enrichment of 'sim-vector', the group's proprietary 188. In

addition, I developed the scripting infrastructure to automatically run the workloads over all

configurations and collect the simulation results.

PaperPJ3

My contributions in this work related to the development of the vector ISA for the

acceleration of MPEG-2, MPEG-4 (XViD) and H264 (proprietary ST Microelectronics

implementation), the update of sim-vector alld subsequent collection of results, the

development of the common vector coprocessor for accelerating the inner loop of motion

estimation (ME) in all algorithms, the development of the processor-coprocessor interface,

RTL coding, front-end synthesis and back-end implementation. Dr. Nunez provided

significant help in the vectorization process of the MPEG-4 (XViD) workload.

PaperPJ4

This contribution was in a slightly different area to my direct research interests. As a result,

my contributions in this work were primarily around the processor-coprocessor interface, the

precise exception mechanism and ways to introduce both programmer (visible) and

microarchitecture (invisible) state in a side-pipeline, running in parallel to the main CPU. In

addition, I performed the A8IC synthesis front-end tasks and all associated back-end

operations includingphysicai synthesis and detailed routing.

PaperPJ5

My contributions to this work related to input to the concept of different scanning-orders and

methods of minimizing the (expected) very high cache misses ratios and associated latencies,

the setting up of the simulation infrastructure based around sim-vector and the automatic

20

collection of results over a period of time. My results were subsequently compared to those

collected by the other two researchers which used both abstract performance metrics as well

as real-time measurements and correlated reasonably well.

PaperPCl

This paper preceded contribution PJI and discusses the development of one scalar accelerator

for the G.729.A speech coding standard. My contributions were in the development of that

scalar ISA, its introduction in the sim-vector ISS and the definition of the microarchitecture

and means of introducing a side-datapath to the default Leon-2 CPU. I also developed the

scripting infrastructure to automatically run the workloads over all input vectors and collect

the results

PaperPC2

Algorithmic profiling, vector ISA definition, parameterization, microarchitecture specification

and implementation were my responsibility in this work. Mr. Sharukh Agha developed 14

sub-sampling (fast) ME algorithms which were subsequently studied, in the context of a

parametric vector architecture. These results were not published in this conference but are

under scrutiny by Dr. Vince Dwyer, Mr. Agha and the author and scheduled to be submitted

to the IEEE 2006 International Conference on Consumer Electronics (ICCE 2006).

PaperPC3

In this paper, I contributed to the algorithmic profiling, vector ISA definition, the

parameterization, microarchitecture specification and ASIC implementation of the combined

32-bit RISC CPU and the parametric vector accelerator.

21

PaperPC4

My contribution in this work was in the specification of the way the code should be

(explicitly) vectorized, the vector floating point ISA, microarchitecture (floating-point

datapath), the combined pipeline and its communication mechanism with the scalar 32-bit

RISC CPU. Dr. James Flint provided the initial 3D TLM kernel which was jointly re-written

to expose the DLP (in the inner loops) and the TLP (in the outer loops).

PaperPC5

The design and implementation of both the multi-threaded instruction set simulator (MT-ISS),

the barrier mechanism and the synchronization principle were my contributions in this work.

In particular, the simplescalar toolset was re-engineered to include a (configurable) number of

extra CPU contexts, additional state was added to each context to facilitate synchronization

(hardware-like barrier mechanism) as well as a number of machine states (sleep modes) were

introduced. Sim-system proved to be an invaluable tool in all out studies in threaded

consumer and scientific codes and has eventually become our mainstream simulator. A

further, ongoing effort involves the production of a single static and multiple dynamic

execution traces from sim-system which are consumed by a cycle-accurate back-end. This

effort will allow us to model arbitrary System-on-Chip multiprocessors (CMP), multithreaded

processors (MT) or muItithreaded multiprocessors (CMP-MT) as well as arbitrary memory

hierarchies and interconnect.

PaperPC6

My contribution in this work was twofold: Firstly, in the refinement and 'industrialization' of

the core tool developed by Mr. Ashwin Kumaraswamy, I proposed a different ESL target

(SystemC) after extensive experimentation with an industrial-strength SystemC

compiler/synthesizer. As a result, the flow was streamlined and the loop was closed, from

system level specification capture in UML, all the way down to GDS. The. second

contribution was in the design and implementation of the multithreaded instruction set

simulator used to collect the theoretical results from the MPEG-4 video encoder. The

22

r-- --

combined effort of specification capture and SoC modelling has lead the Electronic Systems

Design Group to proposed a holistic approach to the grant challenge of specification capture,

all the way to silicon, of highly complex, next generation SoC platforms for media and

scientific workloads.

PaperPC7

My contribution was in the deployment of custom vector ISA extensions for the efficient

execution of a number of algorithmic (sub-sampling) ME algorithms developed by Mr.

Sharukh Agha. The theoretical study on the RBSAD was performed by Dr. Vince Dwyer. In

partiCUlar, Mr. Agha developed a substantial number of sub-sampling ME algorithms and

variations which were profiled and evaluated for the vector ISA extensions identified in PC2.

A larger number of results are available which will be published at a future IEEE Consumer

Electronics Conference.

PaperPC8

Algorithmic profiling, scripting support, implementation of the PRAM simulator and overall

guidance were my responsibilities in this work. Mr. Tom Jacobs very meticulously

parallelized the convoluted video coding workload and Dr. Nunez worked on the

vectorization aspect ofthe coder.

PaperPC9

My contribution in this work related to the setup of the scripting infrastructure, the

development of the simulators, the profiling and evaluation processes and the overall

guidance and supervision of the two researchers, Mr. Simon R. Parr and Mrs. K. Koutsomyti.

23

r--- -

Group PJ: Published Journal Papers on Parallelism and the SoftwarelHardware

Interface in embedded systems

PJI:

V. A. Chouliaras, J. 1. Nunez, 'Scalar Coprocessors for accelerating the G723.1 and G729A

Speech Coders', IEEE Transactions on Consumer Electronics, Vol. 49, Issue 3, Aug. 2003,

pg. 703-710, ISSN:0098-3063

PJ2:

This paper discusses a number of scalar ISA extensions developed to accelerate the

ITU-T G.723.1 and G.729.A speech coding standards. In particular, results are

presented for two scalar coprocessors, one with and one without a private, scalar

register file, which are tightly attached to a 32-bit RISC CPU. The results demonstrate

that the coprocessor employing a private register file achieves superior performance

due to relieving the pressure on register allocation during the compilation process.

Both coprocessors are designed to be tightly attached to the open-source Leon-2 Sparc

V8 compliant CPU. A custom coprocessor channel is presented and the

microarchitecture is detailed.

V. A. Chouliaras, J. 1. Nunez, K. Koutsomyti, S. R. Parr, D. J. Mulvaney, S. Datta, 'On the

development of a custom vector accelerator for high-performance speech coding " IEE

Electronic Letters, Vol. 40, Issue 24, 25 Nov. 2004, pg 1559-1561

PJ3:

This is the first journal contribution in which results are presented for a collection of

vector extensions to the Sparc V8 ISA for accelerating the G.723.l and G.279.A

speech coding standards. Results indicate that a parametric data-parallel architecture

and microarchitecture, 32 bytes wide, is sufficient to capture the greatest amount of

DLP in the speech coding workloads. The results in this work are complementary to

the data presented in PJI.

V. A. Chouliaras J. 1. Nunez, D. J. Mulvaney, F. Rovati, D. Alfonso, 'A Multi-standard

Video coding accelerator based on a vector architecture', IEEE Transactions on Consumer

Electronics, Vol. 51, Issue 1, Feb 2005, pg 160-167, ISSN:0098-3063

This work quantifies the DLP in a significant subset of embedded workloads, namely

media (consumer) applications and in particular, transform-based video coding. The

paper discusses the profiling of the MPEG-2 TM5, MPEG-4 (XViD) video coders as

24

- - -------

PJ4:

well as a proprietary implementation of the H264 video encoder, supplied by ST

Microelectronics. Subsequently, a set of approximately 45 vector instruction

extensions to the Sparc V8 ISA are identified and developed and a pipe lined

microarchitecture is proposed to implement them. The paper includes a VLSI

implementation of the combined processor-coprocessor design, implementing a subset

of the MPEG-4 vector ISA, targeted at a high-performance 0.13 !lm CMOS process

J. 1. Nunez, V. A. Chouliaras, 'High Performance Arithmetic Coding VLS! Macro for the

H264 Video Compression Standard', IEEE Transactions on Consumer Electronics Vol. 51,

Issue I, Feb 2005, pg 144-151 ISSN:0098-3063

PJ5:

An interesting alternative to accelerating the data-parallel parts of the H264 video

coding standards is presented in this work. In particular, the complexity, in terms of

dynamic instruction count as well as function calls, of the arithmetic coding process is

measured in the H264 video coding standard JM 9.2 reference implementation. We

subsequently developed a new, hardware-focused arithmetic coding algorithm realized

as a multiplication free, non-stalling pipeline, able to process one bit per cycle while

maintaining the original arithmetic coding efficiency of the H264 reference

implementation. The functionality of the arithmetic coding engine is encapsulated in a

custom coprocessor which attaches to our default RISC CPU. Issues on maintaining a

precise exception model for the software are identified and solved at the

microarchitecture level.

Grecos, C., Saparon, A. and V. A. Chouliaras., Three novel low complexity scanning orders

for MPEG-2 full search motion estimation " Real Time Imaging, 10, February 2004, pp 53-65,

ISBN 1077-2014

This paper presents an interesting alternative, based purely on algorithmic

optimizations, to the computational complexity issues apparent in real-time video

encoding. In particular, three scanning orders of similar complexity are identified for

the ME process in MPEG-2 TM5 and it is shown that they reduce by approximately

7.1 % the number of examined macroblocks, potentially reducing data cache misses.

25

Paper PJI: V. A. Chouliaras, J. 1. Nunez, 'Scalar Coprocessorsfor accelerating the G723.1

and G729A Speech Coders', IEEE Transactions on Consumer Electronics, Vo!. 49, Issue 3,

Aug. 2003, pg. 703-710

26

V. A Chouliaras and J. Nunez: Scalar Coprocessors for Accelerating the G723.1 and G729A Speech Coders 703

Scalar Coprocessors for Accelerating the G723.1 and G729A
Speech Coders

Vassilios A. ChouJiaras and Jose Nunez, Member, IEEE

Abstract - We investigate two scalar coprocessors for
accelerating the ITU-T G723. I and G729A speech coders.
Architecture space exploration indicates up to 72% reduction
in the total number of instructions executed through the
introduction of custom instructions and small changes to the C
reference code. The accelerators are designed to be attached
to a corifigurable embedded RISC CPU where they make use
of the host register file and LoadlStore Infrastructure}.

Index Terms -Coprocessor, Embedded systems, RISC
CPU, Speech coding.

I. INTRODUCTION

Speech compression is utilized in a multitude of applications
including amongst others VolP networks and digital satellite

systems. Typical consumer products comprise multimedia terminals,
digital dictation machines, videophones and IP phones. The G723.1
recommendation [1] in particular was designed to standardize
telephony and videoconferenclng over public telephone lines
(POTS) and is part of the ITV H.324 standard.
This work investigates the benefit, in terms of complexity reduction,
of architecture (instruction) extensions for the efficient execution of
the above vocoders, building on previous work by the authors [6].
The identified extensions are implemented as coprocessors, tightly
coupled to a configurable, emhedded RISC processor.

There is a significant body of research into application
acceleration via targeted coprocessors: application domains are
diverse, ranging from cryptography [12], maze-routing [7] to high
end video processing [19]. Previous research into the efficient
execution of speech coders include [13] and [14] which describe the
necessary changes in the ITV reference code when targeting very
high-perfonnance, off-the-self digital signal processors. [15]
describes a semi-automated chip-synthesis flow targeting a
horizontally microprogrammed (VLIW) embedded DSP
architecture, capable of executing one multiply-accumulate operation
per clock cycle. The workload in this case was the GSM half-rate
speech coder.

Our research is a continuation of [6] which describes instruction
set extensions, implemented in a moderate-oomplexity datapath
(coprocessor) attached to a configurable embedded processor. We
have investigated a second coprocessor configuration which includes
a private register file. Results indicate that the new configuration is
superior the previously reported method.

V. A. Chouliaras is with the Department of Electronic and Electrical
Engineering, University of Loughborough, Loughborough, Leicestershire
LEII nu, UK(e-rnail: VAChouliaras@lboro.ac.uk).

Jose Nunez is with the Department of Electronic and Electrical
Engineering, University of Loughborough, Loughborough, Leicestershire
LEII 3TU, UK (e-mail: J.L.Nunez-yanez@lboro.ac.uk).

H. LP AS- BASED SPEECH CODERS

The G723.! and G729A standards belong to the category of
Linear-Prediction Analysis-by-Synthesis (LP AS) [21] speech
coders. They produce low bit-rate, high-quality speech using a
combination of analysis-by-synthesis techniques where the
encoder (analysis) includes the decoder (synthesis) to determine
the initial excitation signal, and linear prediction techniques to
determine the coefficients of the speech synthesis filter. The
G723.1 standard specifies a dual rate speech coder that can
operate at 5.3 or 6.3 Kbps while the G729A operates at a rate
fIXed at 8 Kbps. Quality improves with higher bit rates although
the overall performance of G723.l at 6.3 Kb/s and G729A is
similar. A clear difference in these coders is their algorithmic
delay where the total one-way delay of G729A of 25 ms
compares favorably with the 67.5 ms ofG.723.!. Technically,
G723.1 at 6.3 Kbps differs from G729A and G723.1 at 5.3 Kbps
in the excitation model for the synthesis filter. G.723.1 at 5.3
Kbps uses multi-pulse excitation with a maximum likelihood
quantizer (MP-MLQ) while G723.l at 6.3 kbps and G729A use
code excited linear prediction (CELP) [21]. CELP coders are
based in a codebook that stores possible excitation sequences for
the synthesis filter. This is the most common realization of the
LP AS paradigm and its dataflow is depicted in figure !.
In the figure, the original input speech is used to perform linear
prediction analysis and calculate the coefficients of a tenth-order
synthesis filter. The filter order models the number of resonant
frequencies or formants of the transfer function of the human
vocal tract. The excitation signal to the synthesis filter is
obtained from two cndebooks that model the initial stages of the
human sound production system. An adaptive codebook is used
to model the pitch structure of voice sounds originating in the
vibrating vocal chords and a fixed codebook is used to model
unvoiced sounds such as nasal or plosive sounds. The residual
error between the reconstructed speech produced by the
synthesis filter and the original input speech is then further
processed by a perceptual weighting filter. The output signal
from this process is then matched against the adaptive codebook
elements to determine the codebook index and gain that best
approximate the residual signal. The adaptive codebook
contribution is removed from the residual and the same process
is repeated using the fixed codebook. The index and gains for
both codebooks are assembled together with the synthesis fiIter
coefficients in the bitstream transmitted to the decoder. This
processing is done for every frame of 1 0 ms of voice signal. The
G729A decoder dataflow is illustrated in figure 2_ The received
bitstream is disassembled to obtain the filter coefficients and the
codebook parameters. The excitation is constructed by adding
the adaptive and fixed codebook vectors scaled by their gains.
The excitation is then filtered through the same synthesis filter as

Manuscript received May 22, 2003 0098 3063/00 $ 10.00 0 2003 IEEE

704

during encoding. Additional post-processing of the speech
signal is perfonned to enhance its quality.

+

---t- ____ .J I

lic ... ~1 ; Gain <,' '

_ /. Quan~ati~n ':

L.. __ T~=:.d

Figure 1: G729A CELP Coder

Figure 2: G729A CELP Decoder

Ill. PROBLEM FORMULATION

This research identifies architecture and microarchitecture
requirements for the efficient implementation of the G729A
and 0723.1 speech coders on high-performance, low-cost,
configurable microprocessors.
The workloads where initially executed and profiled in native
mode (Linux X86): Table I shows the relative amount of time
spent outside the DSP emulation instructions,
In order to investigate the potential acceleration of the
algorithms when executing on an embedded microprocessor,
the workload was recompiled for the Simplescalar instruction
set architecture (ISA) [15]. Table 2 illustrates the simulated
processor profiling results.
As expected, the workloads spend a significant amount of
time/instructions executing the DSP emulation functions. It is
clear that efficient implementation of the DSP emulation
instructions on a configurable extensible microprocessor can
lead to a very high-performance, targeted-architecture for the
particular workloads. The small form-factor and reduced
power consumption of the proposed solution makes it a very
attractive candidate for replication and integration in an SoC
ASIC.

IEEE Transactions on Consumer Electronics, Vol. 49, No. 3, AUGUST 2003

Table 1: Relative amount of time spent outside the DSP emulation
instructions.

Algorithm
G723 Coder
G723 Decoder
G729 Coder
G729 Decoder

Relative time (IV., native)
31.3
22.8
30.4
26.9

Table 2: Relative number of total instructions executed outside the DSP
emulation instructions

Algorithm
G723 Coder
G 723 Decoder
G729 Coder
G729 Decoder

Relative instructions ('Vo, simulated)
34.5
33.3
34.2
37.2

This is the approach taken in this work: the Instruction Set
Architecture was chosen to be precisely the DSP emulation
instructions as they appear in the reference source. It is
swnmarized in table 3:

Move ops
Mvrc

Mvcr

Mvrv

Mvcvr

Data ops
Sature
Add
Sub
Abs_s
L_abs
Shl

Shr

Negate
Norm_s
NormJ
L_add
L_sub
Mult

Miscellaneous ops
Clv
Setv

Table J: Coprocessor ISA

Description
Move RISC CPU register to
coprocessor register
Move Coprocessor register to RISe
CPU register
Move RISC CPU register LSB to
coprocessor overflow
Move coprocessor overflow to RISC
CPU register LSB
Description
32-16 bit ITU saturate
16-bit add and saturate
16-bit sub and saturate
16-bit absolute value
32-bit absolute value
16-bit Shift-left with negative shift
support and saturation
16-bit shift-right with negative shift
support and saturation
16-bit negation
16-bit nonnalization calculation
32-bit nonnalization calculation
32-bit add with overflow saturation
32-bit sub with overflow and saturation
16x 16-> 16 signed multiplication with
overflow and saturation
16xI6->32 signed multiplication with
overflow and saturation
16xI6->32 multiplication and 32-bit
summation with overflow and saturation
16x16->32 mUltiplication and 32-bit
subtraction with overflow and saturation
Description
Clear sticky overflow bit
Set sticky overflow bit

-------------------~- -

V. A. Chouliaras and J. Nunez: Scalar Coprocessors for Accelerating the G723.1 and G729A Speech Coders 705

IV. MICROARCHITECfURE

We have investigated two microarchitectures: One that uses
the main CPU register file and another that utilizes its own.
Both microarchitectures make use of the RISC memo!),
subsystem (L1 Data cache) and are designed to be attached to
a Sparc-V8 compliant SoC subsystem distributed under LGPL
[10]. We choose to connect the coprocessors to the integer unit
pipeline directly instead of designing them as AHB-compliant
masters [11] for performance reasons: Stand-alone AHB
coprocessors are very effective when working on medium to
large blocks of streaming data. Although the workloads
perform a lot of work on blocks of data (samples). there were
many more instances where we had to insert custom assembly
code into irregular (non-iterative) blocks. As a result, we opted
for a ve!), tightly-coupled configuration which accommodates
efficiently both cases. High-level views of both
microarchitectures are depicted in figures 4 and 6 respectively.
This section discusses a number of design parameters:

A. Coprocessor Interface

The open-source embedded RISC processor lacked detailed
microarchitecture documentation. Initial experimentation with
the already existing coprocessor interface was inconclusive as
to its ability to operate in a pipelined fashion. That would have
had a detrimental effect on the performance of the
coprocessors and it was therefore decided to implement a new,
pipelined coprocessor interface. The newly developed
coprocessor port can handle two coprocessors and is able to
deliver an instruction on every cycle. External coprocessors
provide flow control to the main processor through a dedicated
stall signal.
The diagram of figure 3 shows a coprocessor data operation on
cycle I followed by a host-to-coprocessor register transfer on
cycle 2. In cycle 3, a coprocessor register is requested by the
RISe processor but due to internal stall conditions, data are
made available one cycle later than the expected time (cycle 5
instead of cycle 4). During that time, the main processor is
held with the holdn signal. Finally, a second read operation,
this time directed to Coprocessor I, is initiated in cycle 6.
Results are made available to the main pipeline in cycle 7.

B. Microarchitecture 1: Using the main RISC CPU
Register File

This is the simplest microarchitecture since it makes use of the
main RiSe processor register file. This type of approach has
been adopted by configurable microprocessor vendors [18]
[22] and it is effectively a side-datapath with associated
control, attached to the main CPU as depicted in Figure 4:

pcopJn,hold~ ~---+--+----h
pc<))Un,V8~d ~---+--+----+--+----jf--+-

pcopJn,din[31:0) ~;;~~~~~t~~;;;;;~~~ p<:<>I)_WI\1j.~3':OJ dout

pcop_oul[O].hQldn

Figure 3: Pipelined coprocessor IIF

Figure 4: Mictoarchitecture without register file

In this case, the coprocessor consists of the Datapath and the
Control Pipeline
Starting at the IFETCH stage, the main RISC processor fetches
one instruction word from a multi-way set-associative
instruction cache and clocks it into the instruction register.
RISC and coprocessor decoding take place concurrently at the
DECODE stage with the main RiSe register file accessed at
the falling edge of the clock. Due to the significant number of
Multiply-add operations in the workload, a third read port was
added to the main CPU register file to accommodate single-

--- --

706

cycle addition (RP3). This port is depicted as an embedded
SRAM block, instantiated in the coprocessor hierarchy,
clocked at the falling edge of the DECODE stage. Finally, all
result bypassing takes place in this stage.
The EXEC stage is the main processing stage for both the
RISC processor and the coprocessor. During this stage all non
arithmetic operations are computed in the coprocessor. In
addition, the 16-bit signed-multiplication is performed. All
transfers between the main RISC pipeline and the internal
coprocessor state take place in this stage.
Coprocessor results are pipelined in the EXEC2 stage where
the add part of the Multiply-add operation is performed along
with saturation. During this stage, the Lt data cache is
accessed and one 32-bit word is returned to the main RISC
pipeline from the load path as depicted in the diagram. It is
this stage that qualifies state updates in the coprocessor side
since all possible exception conditions have been resolved.
Finally, results are clocked into a staging register prior to
committing to the RISC register file, on the falling edge of the
clock.

C. Microarchitecture 2: Using private Register File

This microarchitecture is considerably different to the previous
one due to utilizing a separate, 16x32-bit register file in
addition to a more elaborate control mechanism. The
coprocessor state is fully accessible from the RISC CPU and is
shown in figure 5:

Figure 5: Coprocessor Programmers Model

It consists of sixteen 32-bit registers and a sticky overflow bit.
Bi-directional transfer instructions, between the host RISe
processor and the coprocesso!, were added to accommodate
the lack of Move-to-coprocessorlMove-from-coprocessor
instructions in the Sparc VS architecture [17].
The high-level schematic of the coprocessor with its own
register file is depicted in figure 6. In this case, the
coprocessor pipeline is segmented in three major sections:
Front-end, Control pipeline and Datapath.
Starting from the top, the main CPU reads an instruction from
the multi-way set-associative instruction cache and clocks it
into the instruction register .. The latched command is then
decoded, both at the RISC processor and the coprocessor
front-end, and register-file read-addresses are extracted. In
parallel, the coprocessor decoding logic computes a number of
conttol fields that are sent to the control pipeline.
During the EXECIREAD stage, the register file is accessed
followed by operand bypassing. The resolved operands oprl,
opr2 and opr3 are clocked into the operand registers where
they are utilized during the first execution stage (EXEC I).

IEEE Transactions on Consumer Electronics, Vol. 49, No. 3, AUGUST 2003

In DMEMIEXECI, all shifting, normalization and
miscellaneous operations are performed. In addition, the
signed-multiplier is accessed ifthe command specifies that.
Results are passed to EXEC2 for the second stage of execution
where all arithmetic and saturation takes place.
The configuration of figure 6 permits the pipelined execution
of all the commands with a latency of 1 cycle. The only
exceptions are the multiply-add and multiply-subtract with
saturation, which span both execution stages and have a
latency of2 cycles.

Figure 6: high-level microarchitedure

The following sections discuss in more detail the
microarchitecture blocks common to both coprocessors. These
include the EXEC 1 and EXEC2 stages and lower hierarchic.1
blocks.

1) EXEC1 Stage
EXECl includes datapath logic to perform 16xl6 bit signed
multiplication, all ITV shift operations and a misceIlaneous
block responsible for handling all opcodes not falling in the
previous category. These are depicted in figure 7

a) Multiplier

This is the signed, 16-bit multiplier. Due to the highly
configurable nature of the RISC processor and the portability
requirements of this work, HDL constants are used to select
whether the multiplier is inferred in the RTL code or
instantiated. In the later case, a Booth-Encoded, Wallace-tree
multiplier [20] is utilized due to the higher pipelined
perfonnance when compared to the implementations chosen by
the synthesis tools.

v. A. Chouliaras and J. Nunez: Scalar Coprocessors for Accelerating the G723.1 and G729A Speech Coders 707

,
15(1

.... ,0(10) .
31'16

°Pllo(IO) InIVo •• (11)

~ '" oPJ\!O(IO) '~It.. ... o(11)
31.16

0JIi20(18) .h1t.. (:I) . ,,' ..•
shlft..unlt

"" J '" OP'O(II) ~ 31:1
°P'IO(11) .. 1",., .. o(lIlj

~
0

'" ~0(18) ml.o o(l8) e .3JeaJ I 31'1 -'. mloo •• otY(2) ~ ..• e I I '"
~. mile_unit

'- I
,,' '" signed 16 1 I 3116 I mult)

'-'
Figure 7: EXECl Stage

Table 4: Multiplier performance vs. architecture (MHz)

Multiplier Unpipelined 2-stage
Synthesis/CS 204 330
SynthesisINB W 376
SynthesisJW ALL 385 502
WALLINo
BOOTH 345 476
WALLIBOOTH 370 574

Table 4 depicts the unpipelined and two-stage pipelined
maximum operating frequency of the 16xl6 signed multiplier
in a high-performance 0.13 process. Our timing budget allows
for the use of a non-pipelined multiplier thus, simplifYing
coprocessor pipeline design.

b) Shift Unit

The shift unit implements the 16 and 32-bit ITU shift
operations. A particular characteristic of these operations is
the ability to specify negative shift amounts resulting in a
positive shift in the opposite direction. The high-level
schematic ofthe shift unit is depicted in figure 8.

2) EXEC2 Stage
This stage performs the Add-part of the MAC instruction as
well as all arithmetic and saturation. Results commit to the
private register file at the end of this cycle or return to the host
pipeline during stage DMEM. The common EXEC2 high-level
schematic is shown in figure 9.

.t.m;-+--~

Figure 8: ITV Shirter Schematic

RF
+

operands to hostCPU

Figure 9: EXEC2 Stage high-level schematic

V. RESULTS

Results were obtained for both coprocessors at the
architectural level with the baseline architecture being the
Simplescalar ISA. The workloads where compiled and aIlITU
test vectors were validated on the standard architecture
simulator (sim-profile). Tables 5 and 6 depict the number of
simulated processor instructions required for each workload,
for the G723.1 and G729A algorithms respectively

Table 5: G723.1 unmodified instruction count

Test vector
Dtx53mix (mix rate)
Dtx53mix (5.3 KbitsJs)
Dtx63 (6.3 Kbitsls)

Instructions
1,063,099,834
926,595,183
10,159,707,298

708

Table 6: G729A unmodirled instrudioo count

Test vector
AIgthm
Fixed
Lsp
Pitch
Tame

Instructions
62,620,904
213,968,970
3,977,189,411
3,253,182,556
230,922,927

The workloads where then modified to include custom
assembly instructions and a new architecture-level simulator
(sim-coproc), based on the existing profiling simulator, was
designed. The test vectors were again simulated and the
algorithmic complexity was measured and compared to that
obtained in the previous run. Fully compliance to the ITU-T
test vectors was maintained at any instance.

A. Coprocessor without register file results

Tables 7 and 8 depict the average (over all test vectors),
relative algorithmic complexity for both the coder and decoder
of the G729A and G723.1 standards respectively when
compiled and simulated for a coprocessor using the RISe
processor register file.

Normalized
Complexity
SATURE
ADD
SUB
ABS_S
SHL
SHR
L_SHL
L_SHR
NEGATE
L_ADD
L_SUB
ROUND
L_ABS
NORM_S
NORM_L
DIV_S
MULT
L_MULT
L_MAC
L MSU

Normalized
Complexity
SATURE
ADD
SUB

Table 7: G729 Coder Results (average)

Coder
0.940
0.937
0.927
0.927
0.924
0.923
0.899
0.896
0.896
0.814
0.802
0.796
0.796
0.796
0.795
0.792
0.771
0.660
0.534
0.510

Dec()der

0.972
0.969
0.967
0.967
0.962
0.956
0.898
0.895
0.895
0.837
0.812
0.801
0.801
0.801
0.799
0.797
0.784
0.674
0.580
0.529

Coder
Delta
0.060
0.003
0.010
0.000
0.003
0.002
0.024
0.002
0.000
0.082
0.012
0.006
0.000
0.000
0.001
0.003
0.021
0.111
0.126
0.024

Table 8: G723.1 Coder Results (average)

Coder Decoder
0.987 0.985
0.985 0.981
0.985 0.980

Coder
Delt.
0.013
0.002
0.000

Decoder
Delta
0.028
0.002
0.002
0.000
0.005
0.006
0.059
0.002
0.000
0.059
0.025
0.011
0.000
0.000
0.002
0.002
0.012
0.110
0.094
0.051

Decoder
Delt.
0.015
0.004
0.000

IEEE Transactions on Consumer Electronics. Val. 49, No. 3, AUGUST 2003

ABS_S 0.984 0.977 0.001 0.003
SHL 0.981 0.965 0.003 0.012
SHR 0.981 0.959 0.000 0.006
L_SHL 0.936 0.908 0.044 0.051
L_SHR 0.912 0.901 0.024 0.006
NEGATE 0.912 0.901 0.000 0.000
L_ADD 0.824 0.819 0.088 0.082
L_SUB 0.814 0.804 0.010 0.015
ROUND 0.809 0.788 0.005 0.016
L_ABS 0.809 0.788 0.000 0.000
NORM_S 0.809 0.788 0.000 0.000
NORM_L 0.808 0.787 0.001 0.001
DlV_S 0.807 0.787 0.000 0.001
MULT 0.806 0.786 0.001 0.001
L_MULT 0.678 0.670 0.129 0.116
L_MAC 0.563 0.541 0.114 0.129
L MSU 0.543 0.510 0.020 0.031

The tables illustrate the fractional complexity reduction as
extension instructions are added, one by one, for both coder
and decoder. In the case of the G729A coder, an average
architectural improvement in algorithmic complexity of the
order of 49% (coder) to 47.1% (decoder) is achieved. The
G723.1 standard achieves similar figures with to 45.7% and
49% complexity reduction for the coder and the decoder
respectively. These improvement figures do not take into
account cycle~effects such as cache misses, prefetching or the
possibility of multi-issue.

B. Coprocessor with private register file results

Tables 9 and 10 show the average (over all test-vectors),
relative algorithmic complexity of the G723.1 and G729A
coders respectively for a coprocessor with a private register
file and utilizing all the defined instructions of table 3 (except
division). Further substantial gains are observed: The G723.1
coder demonstrates an average relative comp1exity of 65%
compared to the unmodified standard and an improvement of
35.6% over to the previous architecture whereas the G729A
standard achieves 69% of unmodified complexity and
improvement of 39.3% compared to the previous architecture.
It is clear that the introduction of the coprocessor register file
provided significant benefit due to reducing the register
pressure compared to the previous method. In addition, a
significant number of LoadJStore operations were eliminated
since transient values are now cached in the dedicated register
file.

Table 9: G72J.l ResUlts

Benchmark

Dtx53mix (mix rate)
Dtx53mix (5.3
Kbits/s)
Dtx63 (6.3 Kbits/s)
Average

Instruction Count
(Coprocessor)
380,717,669
257,744,402

4,261,239,585

Fractional
complexity
0.36
0.28

0.42
0.35

I

I

I

I

I

I

V. A Chouliaras and J. Nunez: Scalar Coprocessors for Accelerating the G723.1 and G729A Speech Coders 709

Benchmark

AIgthm
Fixed
Lsp
Pitch
Tame
Average

Table 10: G729A Results

Instruction Count
(Coprocessor)
19,765,353
67,662,019
1,257,199,028
1,030,256,280
73,056,645

VI. SOC SUBSYSTEM

Fractional
complexity
0.31
0.31
0.31
0.31
0.31
0.31

Architecture research demonstrated the superiority of the
coprocessor with a private register file. This microarchitecture
is currently being implemented in RTL VHDL as a tightly
coupled coprocessor for the Lean Sparc-V8 CPU. Detailed
microarchitecture analysis followed by trial synthesis
confirmed that all instructions can fit in a single high
frequency cyc1e resulting in a latency of 1 and an initiation
rate of 1. Exceptions to this are the Multiply-addlsubtract
instructions and the short divide with latency/initiation rate of
2/1 and 17117 respectively. In particular, it was decided that
due to the very low improvement, the iterative divider block
would not be utilized.
The CPU/Coprocessor attaches to a 32-bit AHB system which
connects to an external host via an AHB-PCI Bridge. This is
depicted in figure 10.

Arbiter!
Mem"t---~---L7Uo---------
Ctrl

Host

Figure 10: SoC Subsystem

The optimized speech coder and the frames to be processed
are transferred with DMA from the host PC to the SDRAM
memory of the RISC/Coprocessor FPGA board. After that, the
RISC CPU/coprocessor combination processes the frames and
stores the compressed frames in local memory (SDRAM). The
compressed frames are transferred back to the PC memory for
comparison with the ITU~ T test vectors.

VII. SYSTEM VERIFICA nON

Significant effort is spent in validating the system both at
block as well as system level [(6):

A. Block-level verification

The reference code DSP emulation instructions were
instrumented to produce human-readable files of their input
operands, the state of the global Overflow flag and output
results. These vectors were subsequently fed into the
individual datapath blocks and their functionality validated on
a per-workload basis.

B. System level verification

In parallel to block-level verification, system verification
involved the design of a DMA controller, to transfer the
embedded processor binary and frames from the host memory
into the FPGA board SDRAM. The RISC processor, without
the coprocessor, executed the workload and agreement with
the !TU-T test vectors was obtained.

GPR

·RISCCPl}--·_
Front-end

)\~=3!W Main Execution Pipeline

Figure 11: High-level schematic ofliOlited dual-issue CPU

VIII. CONCLUSIONS AND FUTURE WORK

We utilized a combination of techniques to profile and
optimize the ITU-T G729A and G723.1 speech coders.
A further significant source of optimization lies with tapping
the amount of data-level parallelism available in the
workloads. Our group currently investigates vector
architectures for the efficient execution of the speech coders.

710

Additional insight on the cycle effects will be provided
through the cycle-accurate modeling of both coprocessors
when attached to a more generic RISC CPU with limited dual
issue ability. This is portrayed in figure 11 where a high
performance scalar RISC processor with 8 pipeline stages and
limited dual"issue capability (one scalar, one coprocessor) is
described. This will allow for experimentation of the
processor/co .. processor design space and provide insight into
the necessary microarchitecture requirements for the efficient
execution of the workloads.
Finally, we are building the RTL model of the
microarchitecture of figure 6 in the context of the system of
figure 10.

REFERENCES

[1) ITIJ-T Recommendation 0.723.1, 'Dual /?11te Speech coder for
multimedia communications transmitting at 5.3 and 6.3 kbitsls', 3/96

[2) Il1J-T Recommendation G.729, 'Coding of speech at 8 kbitsls using
conjugate-structure algebraic-code-excited linear-prediction (CS
ACELP),,3196

[3] M. Prasad, P. Arcy, M. Diamondstein, H. Srinivas, 'Half-Rate GSM
Vocoder Implementation on a Dual·Mac Digital Signal Processor',
Proceedings of the 1997 IEEE International Conference on Acoustics,
Speech and Signal Processing, pg 619·622

(4J Vinod Kathail, Shail Aditya, Robert Schreiber, B. Ramakrishna Rau,
Darren C. Cronquist, Mukund Sivaraman, 'PICO: Automatically
designing custom computers', IEEE Computer, 35(9), September 2002

[5) D. Burger, T. Austin, 'Evaluating Future Microprocessors: The
Simplescalar Tool Set' http://www.simplescalar.com

(6) V. A Chouliaras, J. L. Nunez, "A scalar coprocessor for accelerating
the G723.1 and G729A speech coders", accepted for publication in the
IEEE International Conference on Consumer Electronics (ICCE03)

[7] Y. Won, S. Sahni, Y. EI·Ziq, 'A hardware accelerator for maze
routing', IEEE Trans on Computers, vo!. 39, no. I, pp. 141·145, Jan.
1990

18) R. Cox, "three new speech coders from the ITU cover a range of
applications', IEEE Communications magazine, pp. 40·47, Sept 1997

[9] R. Cox, P. Kroon, 'Low bit·rate speech coders for multimedia
communication', IEEE Communications magazine, pp.34·41, December
1996

[10] 'The Leon·2 processor User's manual. XST edition, ver. 1.0.14',
www.gaisler.com

[11] 'AMBA Specification (Rev 2.0)', www.ann.com
[12] A Royo, 1. Moran, C. LJpez, "Design and implementation of a

coprocessor for cryptography applications ", Proceedings of the 1997
IEEE European Design and Test Conference (ED&TC'97), pg 213·217

[13] B. Costinescu, R. Ungureanu, M. Stoica, E. Medve, R. Pread, M.
Alexiu, C. Jlas, 'ITU·T G729 ImplementaJion on Starcore SC140',
AN2094/0, Rev. 0,02/2001, www.motorola.com

IEEE Transactions on Consumer Electronics. Vat 49, No. 3, AUGUST 2003

[14] S. Chang, J. Hu, 'Real·time implementation ofG723.1 speech codec on
a 16·bil DSP processor', Department of electronic and control
engineering, National Chiao Tung Univesity, Hsinchu, Taiwan, R.O.C

[151 M. Soler, A Andre, E. Closse, J. Laval, F. Balestro, D. Morche, P. Senn,
'An embedded DSP platform for multi-standard rru G728, G729 &
G72J.1 audio compression', France Telecom, CNET

[I61 M. Medina, G. Ezer, P. Konas, 'Verification of configurable processor
cores', proceedings of the 2000 Design Automation Conference, Los
Angeles, California

[17J 'The Spare Architecture Manual Version 8', www.sparc.com
[181 A. Wang, E. Killian, O. Maydan, C. Rown, 'Hardware/software

instruction set configurability for system~n·chip processors',
proceedings of the 2001 Design Automation Conference, Las Vegas,
Nevada

[191 W. Raab, N. Bruels, U. Hachmann, J. Harnisch, U. Ramacher, C. Sauer,
A. Techmer, 'A lOO·GOPS programmable processor for vehicle vision
systems', IEEE Design and Test of Computers, pp.g.16, lan·Feb 2003

[20J Arithmetic module generator, hUp://www.f»sel.ntnu.no/modgen/
[21] A. S. Spanias. 'Speech Coding: A tutorial review', Proceedings of the

IEEE, vol. 82, no. 10, pp.l541·1581, October 1994
[221 Y. Zhao, A. Wang, M. Moskewlcz, C. Madigan, 'Matching architecture

to application via conjigurable processors. A case study with the
Boolean satisfiability problem '. proceedings of the 2001 International
Conference on Computer Design: VLSI in Computers and Processors

Vassilios A. Chouliaras was born in Athens, Greece in
1969. He received a B.Se.. in Physics and Laser Science
from Heriot·Watt University, Edinburgh in 1993 and an
M.Sc. in VLSI Systems Engineering from UMIST in
1995. He worked as an ASIC design engineer for
Intracom SA and as a senior R&D
EngineeriMicroprocessor architect for ARC International.
Currently, he is a lecturer in the Department of Electronic

and Electrical Engineering at the University of Loughborough, UK. His
research interests include superscalar and ector CPU micrcarthitecture.
high.performance embedded CPU implementations, perfonnance modeling,
custom instruction set design and self·timed design.

Jose Luis Nuftez is a research fellow in the oepartment of
Electronic Engineering at Loughborough University
where he has worked since 1997. His current interests
include the areas of lossless data compression,
reconfigurable vector architectures, FPGA·based design
and high-speed data networks. He received his BS and
MS degree in Electronics Engineering from Universidad
de La Coruna (La Corona, Spain) and Universidad
Politecnica de Cata1ui\a (Barcelona, Spain) respectively in

1993 and 1997. He received his PhD degree at Loughborough University
(Loughborough, England) in 2001 working in the area of hardware
architectures for high·speed data compression.

Paper PJ2: V. A. Chouliaras, J. L. Nunez, K. Koutsomyti, S. R. Parr, D. J. Mulvaney, S.

Datta, 'On the development of a custom vector accelerator for high-performance speech

coding', IEE Electronic Letters, Vo!. 40, Issue 24, 25 Nov. 2004, pg 1559-1561

35

e 1 of 13

Manuscript for Review

On the development of a custom vector accelerator for high-performance
speech coding

Journal: Electronics Letters

Manuscript ID: draft

Manuscript Type: Letter

Date Submitted by the nla
Author: '

Complete list of Authors: Chouliaras, Vassilios; University of Loughborough, Electronic and
Electrical Engineering
Nunez-Yanez, Jose; University of loughborough, Electronic and
Electrical Engineering

: Koutsomyti, Konstantiai University of loughborough, Electronic and
Electrical Engineering
Parr, Simonj ; University of Loughborough, Electronic and Electrical
Engineering
Mulvaney, Davidi University of Loughborough, Electronic and

, Electrical Engineering
, Datta, S.; University of Loughborough, Electronic and Electrical

Engineering

VECTOR PROCESSOR SYSTEMS, VERY HIGH SPEED INTEGRATED
Keywords: CIRCUITS, COMPUTER ARCHITECTURE

powvted Dl,Sch·{)tarOne
Manuscript CentralM

Page 2 of 13

e 3 of 13

On the development of a custom vector

accelerator for high-performance speech

coding

V. A. Chouliaras, J. L. Nunez, K. Koutsomyti, S. R. Parr, D. J. Mulvaney, S.

Datta

The addition of custom vector instructions to the G.729A speech coding

algorithm is shown to significantly reduce its computational complexity. The

identified vector extensions are implemented in the form of a configurable

vector accelerator, tightly coupled to a 32-bit Sparc VB-compliant reduced

instruction set (RISC) processor. Architectural simulation demonstrates that a

reduction in complexity of up 60%, for a vector length of sixteen 16-bit

elements, is achievable in current very large scale integration (VLSI)

technology.

Introduction: The G.729A standard speech coding algorithm, as

recommended by the International Telecommunications Union (ITU) [1], is a

reduced complexity version of the Conjugate-Structure Algebraic-Code

Excited Linear-Prediction (CS-ACELP) coder of the G.729 recommendation.

This coder belongs to the time domain Analysis-by-Synthesis (AbS) class of

speech coders. Such coding schemes have been widely adopted as they

produce speech that is subjectively of high quality while maintaining a low

transmission rate. In the AbS approach, the encoder (analysis) incorporates

the decoder (synthesis) to determine the initial excitation signal and uses

linear prediction techniques to determine the coefficients of the speech

synthesis filter. In the CS-ACELP coder the initial excitation for the synthesis

filter is obtained from two codebooks. An adaptive codebook is used to model

an estimated pitch period that represent the voice sounds originating in the

vibrating vocal chords and a fixed codebook is used to model unvoiced

sounds such as nasal or plosive utterances. The excitation signal is then

applied to a tenth-order synthesis filter whose transfer function models the

human vocal tract. The coefficients of this synthesis filter are obtained by

applying linear prediction analysis to the original speech input. The residual

error between the reconstructed speech produced by the synthesis filter and

the original input speech is processed by a perceptual weighting filter. The

output of the filter is matched against the adaptive code book elements to

determine both the codebook index and gain that best approximate the

residual signal. The codebook contribution is removed from the residual and a

new match is made using the fixed codebook. The index and gains for both

codebooks are assembled together with the synthesis filter coefficients to

form the bitstream transmitted to the decoder. This entire processing is

repeated for every 10ms frame of the voice signal. At the receiver, the

bitstream is disassembled to obtain the filter coefficients and the codebook

parameters. The excitation is constructed by adding the adaptive and fixed

codebook vectors scaled by their gains and it is then filtered through the same

synthesis filter used during encoding. Additional post-processing of the

speech signal is performed to enhance its quality.

Methodology. The ITU G.729A reference code was profiled both in native

mode (Intel x86) and on the SimpleScalar [2) tools to ensure consistency and

general applicability of results. The Simplescalar environment is a complete

Page4of13 i

e 5 of 13

computer architecture modelling tool based around a simulated 32-bit MIPS-II

type processor with 64-bit opcodes. The compiler was GCe 2.7.3 with

optimizations (-03).

The respective complexity metrics (real time for native mode profiling,

dynamic instruction count for the simulated processor) of the G.729A encoder

were within 5% of one another despite the fundamentally different instruction

set architectures (ISAs). Our experiments therefore concentrated on the

simulated infrastructure as this produces results that are both independent of

the sampling issues of the native profiling tool and more close to real

implementations of RISC/DSP (digital signal processor) processing kernels for

telecommunication applications. In our previous work we quantified on the

relative complexity of the DSP emulation instructions for the G723.1 and

G729A ITU reference implementations and proposed two scalar accelerators

[3 4] to reduce that complexity by up to 69% and 65% respectively. That

complexity distribution is presented in Fig. 1. Subsequent code reviews

revealed that significant data-level parallelism (DLP) exists in the workload

resulting in the architectural definition of vector extension instructions based

on the DSP emulation instructions and their associated implementation as a

vector accelerator. The Data-parallel sections of the coder were re-written in

vector assembly with the vector instructions used in place of the inefficient e

implementation.

The processor state of the vector accelerator is depicted in Fig. 2. It consists

of sixteen vector registers of statically-configurable length, two vector

accumulators, two vector mask (predicate) registers and sixteen 32-bit scalar

registers. The proposed vector ISA consists of fixed-point arithmetic, multiply

add, shift (with negative shift capability), mask processing, merge, vector load

and store instructions in 16-bit and 32-bit variants.

Microarcnitecture: The vector extensions are implemented as a tightly

coupled coprocessor attached to a high-performance, 32-bit configurable

processor [5]. The combined microarchitecture is shown in Fig. 3. Instructions

are fetched from the multi-way set-associative instruction cache and clocked

in the instruction register. When a vector opcode is identified, the source

operand addresses are extracted and passed to the synchronous vector

register file. Vector register access is followed by operand bypassing in both

the scalar and vector pipelines. The EXEC stage is the first phase of

execution of the vector ISA and the only execution stage in the main scalar

pipeline. In addition, vector load operations return their data to the vector

pipeline at the end of the datapath. Intermediate results are pipelined to the

next stage (DMEM/EXEC2) for the final phase of vector execution. During this

stage, scalar operands return to the main RISC pipeline via the data cache

load path. Finally, results commit to the vector register file after being stored

in a staging register. The staging register is necessary for performance

reasons, relating to the set-up time of the register file SRAMs, and pipeline

symmetry, for the precise processor state recovery following an exception.

Results: The vectorized workload was executed with vector extensions

enabled and the dynamic instruction count (complexity) was measured for all

the ITU test vectors and for vector lengths ranging from 2 (32 bits) to 128

(1024 bits). The normalized complexity of the vectorized workload for all input

vectors and vector lengths is shown in Fig. 3. It is clear that significant

reductions in complexity are achieved at vector lengths in the range 2 to 16,

Page 6 of 13

e 7 of 13

corresponding to a range of vector data path widths from 32 bits to 512 bits.

Such widths are realizable in current VLSI technologies. Little further

improvement in complexity occurs for vector lengths greater than 16, but local

minima do occur at vector lengths of 32, 64 and 128 (not shown).

Configurations with vector lengths greater than 16 are unrealistic in practice

due to the significant silicon overhead incurred by such wide datapaths and

the need for very long cache fill bursts. Such configurations were investigated

in this study only for completeness. The results of Fig. 3 reflect a shared

multiplier resource per two 16-bit elements. Our preliminary investigation

shows that a dedicated multiplier per 16-bit element provides an additional

benefit of the order of 1 % only.

Conclllsion. A custom vector ISA was developed that offers significant

reduction in the complexity of the G.729A speech coder. Initial architectural

results are very promising, demonstrating a reduction in algorithmic

complexity of up to 60% that can be realized in current VLSI implementations.

Further work will focus on the combining the scalar extensions reported earlier

and the vector extensions reported here, for both G.729A and alternative

speech coding standards.

References

1. ITU-T Recommendation G.729, 'Coding of speech at 8 kbits/s lIsing
conjllgate-strllctllre algebraic-code-excited linear-prediction (CS-ACELp):
3/96, Place des Nations, CH-1211, Geneva, Switzerland.

2. D. Burger, T. Austin, 'Evalllating FlItl/re Microprocessors: The
SimpleScalar Tool Set.http://www.simplescalar.com

3. V. A. Chouliaras, J. L. Nunez, 54 scalar coprocessor for accelerating the
G72.3.1 and G729A speech coders: Proceedings of the IEEE International
Conference on Consumer Electronics (ICCE03), Los Angeles, California,
USA

4. V. A. Chouliaras, J. L. Nunez, 'Scalar Coprocessors for accelerating the

G723.1 and G729A Speech Coders', IEEE Transactions on Consumer
Electronics, Vol. 49, Issue 3, Aug. 2003, pg. 703-710.

5. 'The Leon-2 processor User's manual, XST edition, ver. 1.0.14',
www.gaisler.com

Acknowledgments
This work is supported by the UK Engineering and Physical Sciences
Research Council (EPSRC) under contact GRfS44976f01

Author's affiliations:
V. A. Chouliaras, J. L. Nunez, K. Koutsomyti, S. R. Parr, D. J. Mulvaney, and
S. Datta are with the Department of Electronic and Electrical Engineering,
Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK.
Email: v.a.chouliaras@lboro.ac.uk

Page 8 of 13

e 9 of 13

Figure Captions

Fig. 1: ITU G.729A reference implementation profiling of the DSP emulation

instructions

Fig. 2: Vector accelerator state

Fig. 3: Relative complexity reduction of the vectorized G.729A encoder

Fig. 4: Microarchitecture of the tightly-coupled vector accelerator and the main

scalar processor

Figure 1

SHR

L;..SHR

'SHL

ADD

DI\I_5
'----'-"ROUND

SUB

L_SUB

MULT

.i,L'; SHl:~:'
~'\ -

ITU~ T <3729.4. DSP Emulation Instructions
Percentage Complexity Distribution

Page 10 of 13

e 11 of13

Figure 2

'. . ' , . .'

Vector Register File Scalar Register File .
VLMAX 16-bit elements 32-bit

.'. .

.-
VRO SRO
VRt SR1 ..

.", VR2 SR2 .. ,
VR3

<uf

•• .SR3 . '.
'VR4 SR4
VR5 SR5.
.VR6 LSR6
VR7 . SR7
VRB \

,

. NR9 . Vector Accumulators· ."

VR10 ., VLMAX/2 32-bit elements
c· VR11

! I I I !VACCO
'. IVR12 VACC1

.VR13 ";, .' '.' :
:VR14 '. Vector Mas.k Registers
. VR15 .. " VLMAX bits

'/
..

J """ :-< . .; .
.'.

. .. ./ I I I I J I I I I I:~~~
i;~ .; .•

"
i> . ;. ,,>!';t :' ' . '. , ..•..

Figure 3

G729A Encod~r (Shared Multiplier)

, .

Page 12 of 13 ,

,cll-}xed,,<
<,C Isp",
,:4,/. ' >:7':

~()i;;:': pftc~
, ".'>

-*-tarre re ,y'-'"

~:te~t,', '
+sp~ech

I

I

____ J

e130f13

Figure 4

Rise
p' r 'I pe me ...

U
, Instruction

0 Cache
f-J:

Il
.g.

~
ay seled

. m", i----';'._--
'.' -'-

J .' '. .. le R,se RF
Decode 2R1W

.' I,' '. 'A
0

1 5" I, o ". oW W I'sl I·" o I
: ' ,',<'

Vector
DATAPATH
(VLMAX=2)

1'1 I..I.
I· ,'';
I·' ~0C 2R J '. . 1W 1W .

I'j~l 3'3 10 : 3'l".
I 1 ,(BYP''') ~ Byp." .

I'~I "1~ li",I,,!'"
r' -_ - . ,. I • -"', ' . .' ~T~U I···· ..

,

l. ' Other. C,~RL

5"",,, \ I·,' .'. (5""", 0 frl CTRL
... I ,Dat~P8'1h , Da~path " 1iS.. .' L '.' ;; .• -

~
. • . .

I:
.....

-'

I I
Data Cache Id •. ;t.cu,' . [, ..•.

"'C;; I,'·' - -,,-' IJ I ay select .. ; .. i
I'ri"""-I--

.. ::. '., . ' mux

·r~-····I--'·;"··
-N

I.f-•. ::Eo " .. ·3~ ,: i
Ww
~~

"

U Scalar 1<:. Scalar .. ,,~.
Datapalh Datapath ':. . ..c ~..: 2 pi 2 i

1 I •• ·' ,'('2~ . • scalar

~':"" [00---7 .~ write-buffers . .. - .. - . -- -- .. u

" .
- .' i

'f . .(' ...'. ,,' .i - RF J BUS '.'

Controller
ID .. " ~ ... ,' ' . ; ; .

. 7
AHB IIF

MEMORY
PIPE

CC _t_,;; . I' '.
I ['I!
I' 1rt~t;
\i' :'

I'{ ,uD)
Update
Lo le

. , .',

Vector
Cache

'. tt ,
. (way-se\ed. &. Block
' Merge

VC_d~~'t 7

,'* l 31" 63:3 ,.-. ..
'. "d
• rile

" ' El . ~ u
1 >

BUS
; Controller

,
'~ .

I

, 7
AHBIIF

j
.(Coproc

Decode

,,±i:
CTRL'

".' I: . i.' I:'
....--

..

CTRl

I

'1-'-I-, .
lie"

I(CTRL ... ;' .

o
o z

~
r

" 'ii
m
r
Z
m

Paper PJ3: V. A. Chouliaras J. 1. Nunez, D. J. Mulvaney, F. Rovati, D. Alfonso, 'A Multi

standard Video coding accelerator based on a vector architecture', IEEE Transactions on

Consumer Electronics, Vol. 51, Issue I, Feb 2005, pg 160-167

49

160 IEEE Transactions on Consumer Electronics, Vol. 51, No. I, FEBRUARY 2005

A Multi-Standard Video Accelerator based
on a Vector Architecture

V. A. Chouliaras, J. L. Nunez., D. J. Mulvaney, F. S. Rovati and D. Alfonso

Abstract -A multi-standard video encoding coprocessor is
presented that efficiently accelerates MPEG-2, MPEG-4
(XViD) and a proprietary H.264 encoder. The proposed
architecture attaches to a configurable, extensible RISC CPU
to form a highly efficient solution to the computational
complexity of current and emerging video coding standards. A
subset of the ISA has been implemented as a VLSI macrocell
for a high performance O. 13 pm silicon process'.

Index Terms - MPEG2, MPEG4, H264, vectorlSIMD
accelerator, embedded RISe

I. INTRODUCTION

The past 10 years have witnessed an explosion in the
quantity of visual information that must be transmitted and.
stored efficiently using limited and expensive resources.
Advanced video coding allows orders of magnitude reduction
in the required bit-rates and is regarded as an enabling
technology in moving personal communications to a higher
level of interactivity. This technology is being deployed
particularly successfully in em bedded systems for personal use
such as Personal Digital Assistants (PDAs), digital carneras,
palmtop computers and cellular phones as well as portable
video game consoles and DVD players [I]. The major
requirement of such systems is high~quality, Iow bit-rate video
coding implemented in high-performance and low-power VLSI
systems. Applications such as DVD decoding have so far been
implemented in hardware platforms consisting of one or more
embedded CPUs with associated accelerators for targeting the
oomputationally complex functions. However, forthcoming
applications such as personal wireless video involve compute
intensive real-time coding as wen as decoding and this
increase in the required computational capability can only be
met by specialized video architectures.

Standard mobile wireless networks based on 2G GSM
technology operate at 9.6 Kbitls bandwidth and are thus
unsuitable to support quality, real-time video. 2.5G GPRS
provides an interim solution supporting 115 Kbitls whereas
upcoming 3G technology is expected to achieve at least 144

I V. A. Chouliaras and D. 1. Mulvaney are with the Electronics Systems
Design Group, Department of electronic and Electrical Engineering,
University of Loughborough, UK (VAChouliaras@lboro.ac.uk,
D.1Mulvaney@\boro.ac.uk).

1. L. Nunez is with the Department of Electronic Engineering, University
of Bristol, UK (JL.Nunez.-YaneZ@bristol.ac.uk)

F. Rovati and D. Alfonso are with the Advanced System Technology Labs,
STMicroelectroncs, Agrate, Italy (fabrizio.rovati@st.com,
daniele.alfonso@st.com)

Kbitls on fast moving stations, rising to 384 KkbiVs for
pedestrian or slow moving stations. These figures indicate that
video transmission must be achieved at less than lOO Kbitls in
emerging wireless networks to become as successful as current
voice telephony

n. BACKGROUND

Substantial research has been conducted at the algorithmic
level with the aim of developing improved video codecs
capable of achieving high quality video encoding at lower bit
rates than existing standards. Typically, lower bit-rates and
higher PSNR values are achieved by sophisticated techniques
that exploit the spatial and temporal redundancy present within
the picture frame (intra-frame) and across frames (inter-frame)
in a video sequence. Intra-frame coding removes the spatial
redundancy within a single frame and the techniques utilized
for this task are derivatives of those used for still image coding
while inter-frame coding removes the temporal redundancy by
coding the difference between the frames of a video sequence.
Three fundamental video coding methods can be identified:
those based on the discrete cosine transform (DCT) [2], [3],
those employing the wavelet transform [4] and those adopting
fractal-based coding algorithms [5]. The DCT·based methods
are currently much more popular than the other two methods
and fonn the basis of all the current international standards in
digital video coding. The very high computing requirements of
these multimedia workloads have created a demand for high
performance execution engines which can be categorized into
four major microarchitectural approaches namely very-large
instruction-word (VLIW), superscalar, vector-based and
application-specific.

Traditionally, Digital Signal Processors have been used for
high-performance signal processing tasks such as audio,
speech and video coding. A state-of-the-art DSP device [6]
uses a wide VLIW architecture to execute up to 8 instructions
per cycle at a maximum frequency of 1 GHz. Taking the
VLlW paradigm to the extreme, the licensable Silicon IP core
in [7] is a highly-parallel (up to 60 instructions) solution
targeted towards streaming embedded applications. Both
architectures represent modem approaches to long-instruction
word (LIW) signal processing with the first device being a
capable execution engine for mains-powered media and
telecommunication applications and the tater approach
offering excellent acceleration capability to small-size
applications (kernels). Neither architecture is optimized for
mobile video however the ULIW core presents a very potent
customization target.

Manuscript received December 28, 2004 00983063/051$20.00 © 2005 IEEE

V. A. Chouliaras et al.: A Multi-Standard Video Accelerator based on a Vector Architecture 161

In the category of high-performance desktop superscalar
processors, there has been a universal adoption of multimedia
enhanced instruction set architectures (ISAs), based on short
vectorlSIMD support [8], [9]. Such extensions proved decisive
in achieving real-time video encoding/decoding on a desktop
workstation however, their power consumption and size
renders such devices inappropriate for embedded applications.

A number of specialized DSP vendors have realized the
abundance of data level parallelism in multimedia workloads
and introduced architectures with higher levels of
specialization for video coding. The video engine in [10] uses
a VLlW core combined with SIMD support (up to 128 bit
wide). It can issue up to 4 instructions per second while
clocking at 300 MHz and taps parallelism both at the
instruction and the data level. Another approach combines a
64-bit MIPS RISC processor with two hardwired units for
motion estimation and run-length coding plus a vector-based
64-bit wide macro-block engine to extract data level
parallelism from the rest of the functions [11]. The parallel
video DSP chip in [12] uses a 32-bit RISC processor, a 512-bit
vector architecture and dedicated motion estimation
coprocessors to achieve 3 billion multiply.-accumulate
operations per second while clocking at a modest 100 MHz.
This is a highly parallel, complex device capable of extracting
significant data level parallelism in both standard and
proprietary video codecs. The chip uses very wide vectors and
achieves leading-edge performance, clearly demonstrating the
full potential of a dedicated vector architecture.

In the application-specific category, a number of
commercial ASIC and FPGA-based hardware solutions
targeting video coding are currently available based on the
paradigm of combining a general purpose embedded
microprocessor with custom hardware for the compute
intensive tasks. The Video Encoder in [13] targets MPEG-4
simple profile encoding. It includes a number of hardwired
units to accelerate DCT coding, motion estimation,
quantization and bit stream packing. The multimedia
coprocessor in [14] combines a standard 32-bit ARM9 RIse
processor with custom blocks to accelerate the most compute
intensive tasks such as motion estimation. The audio/video
encoder chip in [15] is based on a MIPS-Iike RIse processor
with DSP extensions for audio/video encoding. Finally, the
MPEG-2 encoder in [16] is available as a silicon IP core
targeting high-performance field-programmable gate arrays
(FPGA). Its architecture incorporates macro-block processing
engines for motion estimation, forward DCT and quantization.
These solutions offer competitive performance at the expense
of flexibility, scalability and their ability to handle emerging
standards.

This work identifies vector architectures as the most potent
engines for tapping the abundant Data Level Parallelism in
three major video coding standards namely, MPEG-2, MPEG-
4 and H264 and proposes a highly targeted, corifigurable,
vector coprocessor that can be attached to an embedded RIse
CPU. This coprocessor is capable of delivering better area,

power and performance metrics compared to other
programmable solutions, in order to meet the requirements of
wireless embedded applications. This paper deals primarily
with the performance aspect of this programmable vector
accelerator.

Ill. VIDEO STANDARD REVIEW

A. MPEG-2

MPEG-2 is a very popular, lossy video compression
standard currently employed in many consumer products such
as DVD players, DVD recorders and digital set top boxes.
This standard was introduced in 1994 by the ISO/ITU-T [17]
to support high quality video at transmission rates ranging
from 4 to 80 Mbitls. The MPEG-2 codec is based on the DCT
either of the residual data, obtained after performing motion
estimation (ME) and compensation (Me) to remove
redundancy between frames (inter-frame coding), or of the
original luminance and chrominance data when removing
redundancy within the same frame (intra-frame coding). These
transformations are followed by quantization which removes
the high spatial frequency components in order to significantly
reduce the required channel rate while maintaining good visual
quality. MPEG-2 has achieved a universal acceptance status
and is the baseline video coding standard in this work.

B. MPEG-4

The MPEG-4 multimedia standard covers a broad spectrum
of audio and video coding schemes and representations
allowing for the efficient transmission and storage of
audiovisual information. This work focuses only on the visual
coding aspect of that standard. The main processing functions
involved in producing MPEG-4 video content are: ME, MC,
forward discrete cosine transform (FDCT), inverse discrete
cosine transform (IDCT), quantization (Q) and variable length
coding (VLC). These functions are applied at block (8x8 pels)
or macroblock (16x16 pels) levels. The MPEG-4
implementation selected for our work is the open-source XViD
[18] version which in its most recent stable version implements
a simple profile (SP).

MC is typically the most compute-intensive part of block
based video coding algorithms. It is used in predictive coded
frames (P frames) to estimate the amount of movement
experienced by the blocks or macrobIocks across consecutives
frames. The XViD algorithm uses one or four motion vectors
(MV) per macroblock and half-pel motion compensation
precision depending on quality settings. There is one MV for
each of the luminance (luma) components in the macroblock,
while the two chrominance (chroma) component MVs are
calculated as a mean of the luma MVs. To determine these
MV s, XViD uses a Predictive Motion Vector (PMV)
algorithm that selects a MV for a block using the MVs
generated for the neighboring blocks in the same frame and
one MV from the previous frame. The selected MV is then
further refined using a size-adaptive square area to search for a
better MV. The search process is based on the compute-

162

intensive sum-of-absolute-differences (SAD) method over a
search range. The MV that produces the smallest SAD value is
selected as the best. The search is not performed exhaustively
and early termination is used to speed-up the algorithm when a
suitable SAD threshold value has been reached. The size of the
square area is selected adaptively by the PMV algorithm. The
motion compensation process refines the MV using half-pel
interpolation so the value of a pel is calculated as the mean of
adjacent pel values and a rounding factor.

DCT is used in the coding of both Intra (I) and Predictive
(P) frames. The FDCT is applied to I frames to transform the
image data blocks from the spatial domain to the frequency
domain. The spatial frequency coefficients are then quantized
and high-frequency information is removed resulting in a
reduction in data volume with minimal loss of quality. The
IDCT recovers an approximation of the original temporal
image data using the quanti zed coefficients. These functions
operate in the same way with P frames, except the input to the
function is the residual remaining following the subtraction of
the motion estimated block from the actual block of image
data. Both FDCT and !DCT in XViD are 32-bit integer
precision functions that transform first the columns and then
the rows of each of the image blocks. Quantization in the
frequency domain is the lossy step in the algorithm since the
high-frequency (high·detail) components in the frame tend to
generate low-value coefficients which are rounded down to
zero after this step. The XViD algorithm selects the same
quantization strategy as that recommended by !TU-T for the
H.263 standard [19). The quantization matrix is optimized for
low-bit rate settings and has the same effect on high and low
frequency coefficients.

VLC is the last stage of the video coding process and
reduces the number of bits used for the frequency coefficients.
XViD uses a (last. run. level) triplet format where the first bit
indicates if the last non-zero coefficient is being coded, the run
indicates how many zero coefficients precede the current non
zero coefficient and the level indicates the value ofthe current
non-zero coefficient. To further speed-up this process the
codes are stored in look up tables (LUTs) and the (last, run,
level) triplets are used as addresses to these LUTs. This
implementation is geared towards speed since it is clear that
more sophisticated coding strategies are possible. VLC is in
general a sequential process and is the only functional block
where vector extensions do not offer any advantage.

C. H.264
H.264 is a hybrid video coding standard, developed by the

Joint Video Team OVT) of the !TU-T Video Coding Experts
Group (VCEG) and the ISOIIEC Moving Pictures Experts
Group (MPEG) [20), [21). With respect to its ancestors, it
offers about 50% better compression while not compromising
quality, due to a range of improvements that impact all aspects
ofthe digital video encoding process [22).

Principal innovations of H.264 are Alultiframe Prediction,
which allows the use of more than one previous-frame as

IEEE Transactions on Consumer Electronics, Vol. 51, No. I, FEBRUARY 2005

reference for ME, sub-sample interpolation at I/4th of a pixel,
and Macroblock partitioning which admits up to 16
independent MVs associated with each 16xl6 pixels
Macroblock. The Hadamard Transform is used to compute the
SAD in the frequency domain and the classical 8x8 pixels
DCT is replaced by a simpler integer version -operating on
16xl6 and 4x4 pixel blocks. Two different entropy coding
schemes may be used: CAVLC (Context-Adaptive Variable
Length Coding), a Huffman-like method, and CABAC
(Context-Adaptive Binary Arithmetic Coding), a complex but
high-performance variation of arithmetic coding.

The proprietary software implementation of H.264 used in
this work includes a fast ME method, called 'Openslim', which
is based on the correlation existing among spatially adjacent
and temporally consecutive motion vectors. It operates in two
steps, first selecting the best MV from a set of candidates
chosen from vectors already computed for Macroblocks in the
current and previous frame; second, testing a fixed number of
displacement vectors around the best position found in the
previous step. This algorithm executes two interleaved motion
searches: a coarse search following the picture display order,
and a fine search in the picture coding order; the latter
exploiting the results of the former to achieve higher precision.
Openslim provides performance almost identical to that of the
common Full-Search Block-Matching, at only a very small
fraction of the computation.

The bit-rate of the encoded sequences is controlled by an
algorithm proposed by the JVT committee [23), which is a
Constant Bit-rate Controller (CBR) derived by the classical
TM5 method developed for MPEG-2 by the MPEG Software
Simulation Group [24).

IV. PROBLEM FORMULATION

The aim of this research is to enable real-time video encoding
in portable, wireless products through a combination of
advanced hardware platforms executing explicitly parallelized
(vectorized) versions of the three video coding standards. The
proposed platform is based on an open source configurable,
extensible, 32-bit Sparc V8-compliant [25) RISC CPU [26)
augmented by a configurable vector accelerator.

All three standards were initially profiled unmodified on our
default Instruction Set Simulator (lSS) which is based on the
Simplescalar Toolset [27). The major complexity contributors
identified at the function level are depicted in Fig. 1 (MPEG-2),
Fig. 2 (MPEG-4) and Fig. 3 (H.264). In the case of MPEG-2,
the major dynamic instruction count contributors were the inner
loop of the ME function (DISTI), which computes the error of
the current macroblock over an arbitrary reference macro block.
This function is called for all macroblocks in the search window
of the reference frame and is independent of the search algorithm
utilized.

For the case of MPEG-4, functions of major complexity are
MEIMC, FDCT and te !DCT and fmally Q. The complexity of
these functions accounts for more than 80% of total complexity
and the existence of significant amounts of data level parallelism

r-- ---

V. A. Chouliaras et a1.: A Multi~Standard Video Accelerator based on a Vector Architecture 163

makes them very good candidates for vectorization.

MPEG2 ,TMS (Fu'n Search', Comple~lty dIstribution

" " ."

._,·,i · ... ~
p'rCHtaa. eomp")(1ty

..

Figure 1: MPEG-2 TM5 complexity distribution

QDtST1

Figure 3: H.264 inner ME loop relative complexity (Non-Hadamard,
Openslim ME)

Fig 3. depicts the relative complexity of the motion
estimation function in the proprietary H.264 video coder, for
different configurations: Bx is the number of B·ftames
between anchor frames, Fy indicates the number of previous
reference frames used by Multiframe Prediction, Field refers to
interlaced coding, while INTRA means that all the pictures
were encoded as I-type, without ME. In INTRA_field coding,
the top field of each picture is Intra Coded, while the bottom
field is predicted from the top.

ARCHITECTURAL RESULTS

Following profiling all three video coding standards were
vectorized and, in the process, a common vector Instruction
Set Architecture (ISA) was developed. The vector extension
instructions were added to our default ISS and the
performance (dynamic instruction count) evaluated over vector
length, search range, and ME algorithm. Results were obtained
for multiple video sequences in the case of MPEG-2 and
MPEG-4.

" " "
Figure 4: MPEG-2 TMS fractional complexity

Fig. 4 shows the final complexity of the MPEG2 encoder as
a function of vector length (4, 8 and 16 bytes) and for a search
range of up to 63 pels. A more detailed account of the MPEG-
2 aspect of this work can be found in [28].

Vectorlzed MPEG4 (XVID) Complexity

'3'+-~~----~~-----------i :m:::: •.•.•.••..•• _.-'l
".+-~--~~~~.~-~.~-~ .. ~-~ .. ~-~ ..

o 32 64 96 ~28 ~60 ~92 224 256
VLMAX (Bytu)

'. +VII BRa K + VCL:l>

___ .,.VMKRae

_ .. _NoNK(DefaulQ

Figure 5: MPEG-4 (XViD) fractional complexity
Fig. 5 shows the complexity of the vectorized MPEG4

encoder for three configurations: Default incorporates a
basecase video ISA with the VMERGE and
VMERGE+ VCLIP curves showing the benefit of these two
additional instructions. The maximum vector length ranges up
to 256 bytes however, no additional benefit is achieved beyond
128 bytes with realistic VLSI implementations ranging
between 16 to 64 bytes. Though not shown explicitly, the
complexity of the XViD ME was reduced by 85% at a vector
length of 24 bytes and the complexity of MC was reduced by
70% at the same vector length. DCT vectorization involved
two functions for forward and inverse DCT. The 2-D 8x8 DCT
is performed using 2 I-D DCTs that are applied first to the
columns and then to the rows of the 8x8 pixel array. In order
efficiently vectorize the DCT, extra functionality was needed
to transpose the arrays so that vector load and vector store

164

instructions would perform unit-stride accesses. The
complexity of the DCT functions after vectorization was
reduced by 82% at 32-byte vector length. Finally,
vectorization of the quantization functions yielded a reduction
in complexity of the order of 93% at a vector length of 64
bytes and a 90% reduction at a vector length of32 bytes.

j0i, •
,;: ~O.9

0."
0."

&1\
~5i yu.w: (s;t..)

Figure 6: Vectorized H.264 Encoder Complexity (16 Search Range)
Fig. 6. depicts the complexity of the proprietary H264

implementation. We vectorized only the SAD computation for
the Non-Hadamard transform case. The H.264 results are thus
preliminary, with vectorization applied to the ENC_SATD
function only (up to 72% complexity reduction within that
function). The overall complexity of the vectorized encoder is
approximately 86% for a vector length of 32 bytes and this is
the subject of ongoing investigation.

VI. PROGRAMMERS MODEL AND INSTRUCTION

Fig. 3 shows the programmer-visible state of the parametric
vector accelerator.

" ..
Vector Register File ,J Scal~r Register File ' ..

V~MAX,.8.blt el,'Tents' 32.blt', ::'

i i I ~~~ ~~~~•
VR2 SR2
VR3 SR3
VR4 SR4
VR5 SRS
VR6 SR6 •
VRMAX·1 SRMAX·1

Vector Mask,Registers V.ctor Length RegIster,'
(VLMAX·8 bits) Scalar Accumulators ;,' '(a-bits)

~ VMASK1'" (32-blts), C:=]V. lEN
l-..J' VMAS~2, ,; c:==J VACC1' :' '.' :'':.'' '.' .••• L::-.-J VACC2. . ••

Figure 7: Accelerator Programmer's M()del
The programmer~visible state is itself parameterized and

split into three main register categories namely vector (up to
VRMAX registers), scalar (up to SRMAX registers) and
miscellaneous (mask, scalar accumulators and vector length
register). The ISA consists of 45 custom instructions in five
categories: Miscellaneous, load/store, cross-lane, video, and
reduction operations. Miscellaneous operations affect the
VLEN register and move scalar data between the main RlSC
processor and the vector coprocessor. The vector load/store
instructions transfer scalar and vector operands from the vector
load/-store unit (VLSU) to the accelerator scalar and vector

IEEE Transactions on Consumer Electronics, Vol. 51, No. 1, FEBRUARY 2005

register files respectively. All such operations support register
indirect and register-indirect with post-incrementlpre~
decrement addressing modes. The category of cross-lane
operations includes two and three-operand byte-granularity
permute, pack and unpack operations and inter-element shifts.
Their major characteristic is that a particular scalar pipeline is
able to access operands from all other scalar pipelines. The
common datapath component is the triple-operand permute
unit which allows for arbitrary, byte~wise permute operations
of two source vectors under the control of a third source
vector. All pack/unpack operations are special (hardwired)
variations of the two or three operand permute which drive
pre-computed patterns to the permute unit decode logic instead
of a third vector source. Video operations cover the bulk of the
vector ISA for video acceleration. They include 8, 16 and 32-
bit intra-element shifts, vector compare~merge, vector multiply
(8 and 16 bits), SAD and arithmetic operations. Finally,
reduction operations compute a scalar value out of one or
more vector operands and write it back to one of the
accumulators or scalar registers.

VII. MICROARCHITECTURE

The accelerator attaches to the configurable, extensible
Sparc-V8 compliant Leon2 CPU. Fig. 8 depicts a high-level
schematic of the proposed AHB-based [29] SoC sub-system in
which the major blocks are the Scalar CPU, the Coprocessor
IIF, the video coprocessor and the high-speed external
memory. A more detailed schematic of the core
processor/coprocessor microarchitecture is depicted in Fig. 9.

External

Scalar CPU

AHB On-Chip Bus
Figure 8: SoC Kernel

The Leon 2 CPU is a standard 5-stage RlSC pipeline.
Instructions are fetched from the multi~way, set~associative
instruction cache and clocked into the instruction register.
Decoding takes place in the DECODE stage with the RISC
register file accessed at the falling edge of the clock. The
bypassing logic in DECODE determines whether register file
data or internally pipelined results are clocked in the ALU
input registers. During EXEC, the AI.U operation is performed
and a virtual address is computed. Scalar data cache access
takes place during DMEMlEXEC2 and scalar results return to
the RISC pipeline during this cycle. Finally, results are
clocked into an intermediate register prior to committing to the
processor register file. The processor incorporates a
configurable data cache in a write-through configuration with
no-write-allocate policy. The scalar data cache forms part of

V. A. Chouliaras et al.: A Multi-Standard Video Accelerator based on a Vector Architecture 165

the data pipeline which includes a 3-word, non-collapsing
write buffer serving to decouple the high-speed execution
pipeline from the slower SoC memory subsystem. The core
CPU finally includes a parametric instruction cache. It is a
standard design and supports instruction streaming (processor
operating in parallel to the refill sequence while the missed
instruction/data word is fetched). Both caches are refilled over
the AHB via the processor bus controller, which includes the
ICachelDCache arbitration mechanism.

Figure 9: Processor-Coprocessor Microarcbitecture
The vector coprocessor is a configurable, 4-stage pipe lined

micro architecture and consists of the vector datapath, the vector
memory pipeline and the control pipeline. The vector datapath
consists of the vector register file, and bypass logic, the cross
lane logic, the SIMD datapaths and the reduction logic.

rea_seU

Figure 10: LANES microarchitecture
A major configuration parameter is the maximum vector

register length in bytes, VLMAX, which dictates the geometry
of the vector register file SRAMs and the number of scalar
datapaths instantiated. The vector pipeline in particular is
segmented into VLMAXl4 32-bit scalar lanes, each capable of
operating on four bytes, two half-word or one word element
per cycle (4-way SIMD). The logic of a single S-bit datapath
slice (LANES) is depicted in Fig. 10.

Four LANES entities are composed as shown in Fig. 11 to
form a 32-bit scalar lane. The logical hierarchy of the EXEC
stage does not include the cross-lane logic since the later is
shared across all datapaths in the EXEC stage.

,
. i.

I. r, .
" i~ <I

Figure 11: LANE32 microarchitedure
The vector register file supplies operands to the vector

pipeline and is segmented into VLMAXl4 elements, each
consisting of 3RI W, VRMAX-by-32-bit embedded RAMs
with byte-write capability. Due to the unique requirements of
the MPEG-2 algorithm, a special vector register file in a
5RI W configuration can be instantiated however, at the
expense of limiting VRMAX to S. A further parameter allows
the use of latch, flop or dual-port compiled SRAM
configurations. In the later case, there are two more possible
configurations: the first makes use of three dual-port memories
with common write port and individual read ports and the
second instantiates two dual-port blocks with the read port of
the first clocked at double the processor clock allowing for
area/frequency tradeoffs.

vr,- opr1.r vrf.bs. cmd.r

Figure 12: Cross-lane Logic

perm... res

The cross-lane logic of Fig. 8 executes all permute,
pack/unpack instructions and inter-element shifts2. To
eliminate unnecessary toggling in the crossbar when executing
a non-permute operation~ datapath-gating logic is instantiated
which hardwires the crossbar vector operands to '0'.

A number of opcodes specifY the add-reduction of a vector
register to a single 32-bit value, writing that scalar result to a
scalar address/data register. The reduction logic is situated in
the DMEMJEXEC2 stage and Fig. 13 details a possible
implementation of the add-reduction logic, for VLMAX~16
bytes (12S bits). The implementation depicted consists of
10g,(16)+1~5 full-adder stages, each of increasing bit width.
Other implementations are possible, depending on target
technology and synthesis tool ability to perform advanced
transformations of adder trees.

2 The crossbar is potentially a source of concern in timing and routing
closure for VLMAX>32 configurations due to accessing all vector operands
from each scalar lane and producing a vector result fanning-out to all scalar
lanes.

166

QC_CIIJ

"U" .. ,

SRES

Figure 13: Parametric reduction logic (VLMAX=l6)

:~~~~==~~~~~~'~ .. ~'"~.'~------~

Figure 14: Local~RAM VLSU Microarchitecture

The VLSU supplies operands to the vector register file via
load operations and commit stores to the system memory. It
includes a number of scalar address/data registers along with
associated address update logic, the vector data cache or local
memory (depending on the VLSU configuration), the vector
write buffers and the on-chip-bus (AHB) controller. These
architected scalar registers are used to hold scalar values,
which are copied to individual or multiple elements of a vector
register via move or spIat operations respectively and also as
address pointers. When used as address pointers in vector
load/store operations, the programmer can specify post
increment/decrement modes of operation. In this case, the
address register is updated after the load/store operation by the
amount of bytes transferred which is always equal to
VSTATE.VLEN. There are special instructions to transfer the
scalar registers to and from the main RlSC CPU register file.
The VLSU can be configured to include either a parametric,
write-through vector data cache which incorporates coherency
logic to ensure its consistency with the main RISe CPU cache
or, with a DMA-filled local memory. The later configuration is
depicted in Fig. 14 in which the local memory is segmented in
two banks to allow for unaligned byte-accesses. The local
memory is fined or flushed to the system memory via a
dedicated AHB port, under software control (DMA).

VIII. VLSI MACROCELL

We implemented a subset of the microarchitecture of Fig. 5

IEEE Transactions on Consumer Electronics, Vol. 51, No. 1, FEBRUARY 2005

on a high-performance, 0.13 ~m, 8-copper layer CMOS
technology. The chosen configuration includes a 4-way, 8 KB
instruction cache with a 16-byte block length, a 4-way, 16 KB
data cache with a 32-byte block size and snooping logic
enabled, an 8 KB local memory block for the vector
accelerator segmented into two banks of 256 words by 128
bits. We selected a configuration implementing all the
necessary extension instructions for MPEG-2 and H.264
acceleration. The accelerator includes a vector register file of 8
words, each of 128, bits in a SRI W configuration. We
synthesized the design flat on a modem physical synthesis tool
and performed power planning and final routing in a
commercial quality standard cell router. The resulting VLSI
macrocell floorplan and layout of the dual-port register file
cOllfiguration are shown in ISa and ISb resoe"tively.

Figure 15: Floorplan and Layout of the Processor-Coprocessor
architecture

Table I lists the implementation details ofthe placed and
routed design.

Table 1: VLSI Macrocell Characteristics

InstanceslMacros 51156/26
Are. m' 3996 x 996.3 ~3981693
Core Utilization 86.3%
Fm.. MHz 194.1

IX. CONCLUSION AND FUTURE WORK

We described a configurable scalar-processor/vector
coprocessor microarchitecture for accelerating the existing and
emerging video-coding standards. Architecture level
experimentation identified a number of vector operations that
significantly reduce the dynamic instruction count ofMPEG-2,
MPEG-4 and the ME function of a proprietary H264
implementation thus allowing for real-time video encoding on
a wireless, portable device. Further work will focus on
improving the achieved figures through the spatial re
arrangement of luminance data such that further data level
parallelism can be exposed in the case of MPEG2. Most
importantly, our investigations have shown that there exists a
very significant amount of thread level parallelism in all
workloads. We therefore plan to investigate cache-coherent
multi-processor configurations of the proposed
microarchitecture in an attempt to further reduce the
complexity of the optimized encoders.

V. A Chouliaras et al.: A Multi-Standard Video Accelerator based on a Vector Architecture 167

REFERENCES

[I] G. Lawton, 'New Technologies Place Video in Your Hand', IEEE
Computer, Vol. 34, No. 4, pp. 14-17,2001

[2J S.Vassiliadis, G. Kuzmanov, S. Wong, 'MPEG-4 and the New
Multimedia Architectural Challenges', Proc. 15th International
Conference on Systems for Automation of Engineering and Research
(SAER·2001), pp. 24·31, Bulgaria, 2001. . . .

[3] 'Emerging H.26L Standard: Overview and lMS320C64x Digital Media
Platfonn Implementation', Whjte Paper, UB Video Jnc., Vancouver,
Canada, 2002

[4J P. Orbaek, 'A real-time software video codec based on wavelets', Proc.
Of Intl. Conf. On Communication Technology (IFIP), 2000

[5J J. Streit,1. Hanzo, 'A Fractal Video Communicator', IEEE Vehicular
Technology Conference (VTC), pp. 1030-1034, Stockholm, Sweden,
1994

[6J TMS320C6000 CPU and Instruction Set Reference Guide', Document
SPRut89F, Texas Instruments Incorporated, Houston, Texas 77251-
1443, USA.

[7J T. R. Halfhill, "Silicon Magic Breaks Out", Microprocessor Report,
December lit 2003

[8] R Bhargava, L John, B. Evans, and R Radhakrishnan, 'Evaluating
MMX technology using DSP and multimedia applications' Proc. Of
IEEElACM Sym. on Microarchitecture, pp. 37-46, December, 1998.

[9] D. Talla, L K.. John, V. lapinskii and B. L. Evans, 'Evaluating signal
processing and multimedia applications on SIMD, VLIW ~nd
superscalar architectures', Proc. IEEE Int. Cont: on Computer DeSign,
pp. 163·172, Sep. 2000

[10] Equator Technologies MAP-CA', EDN.com, Ontine Edition available at
www.e-insite.netlednmag!.2000

[11] 1. Kneip et. al., 'Applying and Implementing the MPEG-4 Multimedia
Standard', IEEE Micro, Vol. 19, No. 6, pp. 64-74, ,1999

[12] 'Ax36 Family of Parallel Image and Video Digital Signal Processors
DSP Chips', White Paper, Oxford Micro Devices, Inc, Monroe, CT
06468, USA, 2002

113] M. Long, 'Amphion Launches MPEG-4 Hardware-Accelerator Cores',
e-inSITE, Ontine Edition available at http://www.e-insite.netlesec/ ,
2002

[14J M. Long, 'Emblaze Semi Samples Multimedia Co-Processor for
Handhelds, e-inSITE, Online Edition available at http://www.e
insite.netlesec/ , 2003

[15] 'VW2005 MPEG-I,-2,-4 AudioNideo Encoder Chip', Product Brief,
Vweb Corporation, San Jose, CA 9129, USA, 2002

[16] 'MPEG-2 HDTV I&P Encoder', Product Specification, Duma Video,
Inc., Portland, OR 97220, 2002

[17] http://W\\>W.mpeg.org
[18] http://W\\>W.xvid.org
[19J K. Rijkse, 'H.263: Video Coding for Low-Bit-Rate Communication',

IEEE Communications Magazine, pp. 42-45, December, 1996
[20J [SULLIVAN] G.J.Sullivan, P.Topiwala, ALuthra, "The H.264/AVC

Advanced Video Coding standard: overview and introduction to the
Fidelity Range Extensions", SPIE conference on Applications a/Digital
Image Processing XXVII, August 2004.

[21] [JVT] Joint Video Team of ISO/IEC MPEG and fIU-T VCEG, "Text of
ISO/IEC 14496-10:2004 Advanced Video Coding Standard (second
edition)", lSO/IEC JTCl/SC19IWGlI/N6359, Munich, Germany,
March 2004.

[22] D. Alfonso, D. Bagni, 1. Celetto, 1. Pezzoni, "Detailed rate-distortion
analysis of H.264 video coding standard and comparison to MPEG-
2/4", in Proceedings of Visual Communication and Image Processing
(VCl?) 2003, Lugano, Switzerland.

[23] D.Alfonso, D.Bagni, LCeletto, S.Milani, "Constant bil-rate control
efJiciency with fast motion estimation in H.2641AVC video coding
standard", Proceedings of the 12th European Signal Processing
Conference (EUSIPCO) 2004, Wien, Austria.

[24J ISOIlEC ITCIISC29IWGII, Test ModelS, April 1993
[25] The Spare Architecture Manual Version 8', http://www.space.org
[26] 'The Leon-2 processor User's manual, XST edition, ver. 1.0.14',

http://W\\>W.gaisler.com
[27] D. Burger, T. Austin, 'Evaluating Future Microprocessors: The

Simplescalar Tool Set', http://www.simplescalar.com

[28] V. A Chouliaras, 1. L. Nunez-Yanez, S. Agha, 'Silicon Implementation
of a Parametric Vector Datapath for real-time MPEG2 encoding',
proceedings of the lASTED (SIP) 2004. Honolulu, Hawaii, USA

[29J www.arm.com/armtechlAMBA_Spec?OpenDocument

Vassilios A. Chouliaras was born in Athens, Greece in
1969. He received a B.Sc. in Physics and laser Science
from Heriot-Watt University, Edinburgh in 1993 and ~n
M.Sc. in VLSI Systems Engineering from UMIST In
1995. He worked as an ASIC design engineer for
INTRACOM SA and as a senior R&D engineer/processor
architect for ARC International. Currently, he is a lecturer
in the Department of Electronic and Electrical

Engineering at the University of Loughborough, UK wh~re he is lea~ing the
research into embedded CPUs and SoC modeling. HIS research Interests
include superscalar and vector CPU microarchitecture, high-performance
embedded CPU implementations, performance modeling, custom instruction
set design and self-timed design.
1""'"'i~:!"i".!iI Jose Luis Niiftez is a lecturer in the department of

Electronic Engineering at Bristol University. prior to that
he was a research fellow in the department of Electronic
Engineering at Loughborough University where he
worked since 1997. His current interests include the areas
of 10sslessl1ossy data compression, reconfigurable
computing, FPGA-based design and high-speed da!a
networks. He received his BS and MS degree In
Electronics Engineering from Universidad de la Coruna

(La Coruna, Spain) and Universidad Politecnica de Cataluna (Barcelona,
Spain) respectively in 1993 and 1997. He received his PhD degree at
Loughborough University (Loughborough, England) in 200 1 work~ng in the
area of hardware architectures for high-speed lossless data compressIOn

David. J. Mulvaney has been a Senior Lecturer in the
Department of Electronic and Electrical Engineering ~t
Loughborough University since June 2001. He IS

currently managing research sponsored by a number of
commercial and government bodies. His main research
interests include novel real-time embedded machine
learning t~hniques and electronic hardware solutions for
real-time applications. Or Mulvaney has carried out
consultancy work for BP, Otis, Cadbury-Schweppes and

GE Lighting, gives commercial training courses in real-time em?edded .C++
and has over 40 publications in professional journals and at internatIOnal

conferences.
Fabrizio S. ROVATI was born in Monza, Italy in 1971.
He received electronic engineering degree at the Milan
Polytechnic, Italy, in 1996. He joined STMicroelectronics
Itd., Bristol, UK (formerly INMOS Ltd.) where he
contributed to the development of an MPEG-2 transport
demultiplexer co-processor. He then joined
STMicroelectronics' Advanced System Technologies in

1998 where he worked on the design of an MPEG-2 motion estimation co
processor and on MPEG video encoder's system architectures .. He ~ubli.s~ed
four papers and holds seven patents and nine patent applicatIOns In digital
video signal processing and architectures field. He is contract professor at
Pavia Polytechnic University and gave several lectures at Milan Polytechnic
University. His main interests are in digital video signal processing and
related system-level and processors architectures.

Daniele Alfonso (M'04) was born in Alghero, Italy, in
, 1972. In 1998 he received a master degree in Electrical

Engineering from the Turin Polytechnic, and then he
joined STMicroelectronics, Advanced System Technology
labs, working on image compression algorithms, jointly
with the Italian National Research Council. Later, he
focused on moving pictures encoding and transcoding
(H.263, MPEG-2, MPEG-4, and H.264), low-power

motion estimation, de-interlacing and frame-rate conversion. His main
interests are algorithms and arcbitectures for digital video applications and he
holds several patents granted in Europe.

Paper PJ4: J. 1. Nunez, V. A. Chouliaras, 'High Peiformance Arithmetic Coding VLSI

Macro for the H264 Video Compression Standard', IEEE Transactions on Consumer

Electronics Vo!. 51, Issue I, Feb 2005, pg 144-151

58

144 IEEE Transactions on Consumer Electronics, Vol. 51, No. I, FEBRUARY 2005

High-performance Arithmetic Coding VLSI Macro for the H264
Video Compression Standard
J. L. NUilez, V. A. Chouliaras, Member, IEEE

Abstract - this paper investigates the algorithmic
complexity of arithmetic coding in the new H264 video coding
standard and proposes a processor-co processor architecture
to reduce it by more than an order of magnitude, The
proposed coprocessor is hased on an innovative algorithm
known as the MZ-coder and maintains the original coding
efficiency via a low-complexity, mu/tiplicalion-/ree, non
stalling, fully pipelined architecture. The coprocessor
achieves a constant throughput for both coding and decoding
processes of I symbol per cycle and is designed to be attached
to a controlling embedded RISC CPU whose instruction set
has been extended with arithmetic coding instructions.

Index Terms - arithmetic coding, H264, video coding,
Golomb codes, renormalization, embedded systems, RISe
CPU.

I. INTRODUCTION

The dlgltlsation of vlsual1~formation is nowadays common
practice in large number of conSumer products such as
Personal Digital Assistants (PDA), digital cameras, palmtop
computers and cellular phones as well as portable video game
consoles and portable DVD players [I]. This exponential
increase in the amount of digital visual information that must
be stored, processed and then, transmitted efficiently has
motivated a large body of research, both in industry as well as
in academia. into advanced video coding techniques. New
video coding standards such as the recent H264 video codec
(also known as MPEG4 part 10) [2] deliver better quality and
lower bit rates but at the expense of an almost exponential
increase in the number of CPU cycles required per input frame
of video data when compared to previous generation standards
[3]. The introduction of advanced entropy coding within the
H264 standard, via the pioneering use of context-based
arithmetic coding [4], is one of the reasons behind the increase
in the computational cost of the codec. The high-speed
arithmetic coder (AC) coprocessor described in this paper has
been designed to achieve a significant reduction of the AC
computational cost of the H264 standard with modest
hardware cost. This paper is organised as follows: Section 11
reviews hardware-based binary arithmetic coders. Section III
presents the motivation for this work based on a study of the

J. L. NllfIez is with the Department of Electronic and Electrical
Engineering, University of Bristol, UK (e_mail: j.l.nunez-yanez@
bristol.ac. uk)

V. A. Chouliaras is with the department of Electronic Engineering,
University of Loughborough, UK (e_mail: v.a.chouliaras@lboro.ac.uk)

computational costs of AC in the H264 video codec. Section
IV presents our novel MZ coder and evaluates its efficiency
compared with other arithmetic coding implementations.
Section V studies the applicability of the MZ coder to entropy
coding within the context of the H264 video standard. Section
VI presents the hardware architecture of the MZ codec core
and section VII describes the required ISA extensions. Section
VIII presents the implementation results when targeting high
performance FPGA and ASIC technologies. Finally, section
IX summarizes our findings, and concludes this work.

11. HARDWARE-BASED BINARY ARITHMETIC CODERS

The IBM Q-coder [5] and the QM-coder [6] are the best
known examples of hardware-based binary arithmetic coders.
These devices use the renormalization approximation
introduced by Rissanen in [7] to avoid the complex
multiplications and divisions with the main difference across
them being the complexity of the model which is formed by
128 contexts in the Q-coder and 1024 contexts in the QM
coder respectively. VLSI implementations of both the Q-coder
and QM·coder are reported in [6]. Both hardware algorithms
clocked at 75 MHz with a throughput of around 64
Mbitslsecond. The device was implemented in 0.35 j.Iffi

standard cell technology from IBM (CMOS 5S). The adaptive
binary arithmetic coding device presented in [8] replaces the
division operation by storing the probability values in a lookup
table and uses the coder state as a pointer to a particular
probability in that table. Similarly to the QM-coder, 1024
contexts are used each of them with its own probability state.
Multiplications on the other hand are done explicitly using an
8x8 parallel multiplier. The VLSI implementation was carried
out on TSMC's 0.8 ~m standard cell CMOS technology and
the chip achieved a maximum frequency of 25 MHz. This
device needs 8 clock cycles to complete the probability
estimation and arithmetic operation phases plus a variable
number of renormalization cycles. Renormalization typically is
done in a single clock cycle but up to 7 clock cycles may be
required. The resulting symbol throughput is approximately 3
Mbits/second. An improved version of that chip is presented in
[9] in which a dynamic pipeline architecture is used to deliver
6 Mbits/second throughput at the same clock frequency and
technology as the original design but with approximately 30%
area overhead.

Ill. ANALYSIS OF AC INTHEH264 VIDEOCODEC

The H264 video coding standard is a state-of-the-art algorithm
which delivers up to 50% reduction in bit-rates when
compared to previous standards such as MPEG4 [10] or H263

Manuscript received December 2, 2004 00983063/05/$20,00 «:> 2005 IEEE

J. L. NUfiez and V. A. Chouliaras: High-perfonnance Arithmetic Coding VLSI Macro for the H264 Video Compression Standard 145

[11] at equivalent video quality settings. In order to achieve
this the H264 uses a number of innovative techniques for
extracting the redundancy present in the video stream. One
such technique is the use of an arithmetic coding extension and
context-based modeling known as CABAC [12]. The
underlying architecture of the H264 standard is similar to that
of previous standards such as the H263 and MPEG4, and
consists of four major computational stages: Motion
estimation and compensation (ME), discrete cosine transform
(DCT), quantization (Q) and entropy coding (EC). These
functions are applied to the data blocks resulting from dividing
the image frame into variable size subframes. Finally, EC is
applied after the binarization stage to the data produced by the
ME and Q functions to further remove redundancy and reduce
bit rates and it achieves this by using codes with fewer bits for
the most probable parameters. In previous standards entropy
coding was based in variable-length-codes (VLC) derived
from the well-known Huffinan codes due to their simplicity
and ease ofimplementation. H264 can also use VLC codes but
also permits the use of arithmetic coding as an improved
alternative to VLC. In the approach used by the CABAC
algorithm embedded in the H264 standard the probability state
includes the probability information and multiplications are
replaced by table look-up operations using the probability state
and the two most-significant bits (MSB) of the range as
pointers. This translates into a single table of 64 probability
states times 4 ranges or otherwise, 256 8-bit values. Arithmetic
is then carried out via simple additions and subtractions
however, the renormalization loop is a sequential process with
a cost of up to 6 iterations. The modelling stage in CABAC
uses 2 additional tables for the adaptation process, to calculate
the new probability state of the active context depending on
whether a Most-Probable-Symbol (MPS) or a Least-Probable
Symbol (LPS) has just been coded.
To evaluate the complexity of AC in the H264 codec we
selected 7 video sequences organized in 3 standard video
formats namely QCIF, CIF, and SDTV. The video sequences
and the chosen configuration of the H264 video codec are
summarized in Table 1:

V Idee SI:t(ph 'n •• CouDt S.qlaDC ••• 1I • !l2U COllf.Wuntjon
lefl It . .,
'CIf lHxlH 60 Container,Pore. an,M ME searcbrange. U,M E fIIU ... search, refereDce tra1ll ea = 5,
tu 352x2a3 60 Paris, Tea pet!!, K adaI!ll alii tlansfom 0 N ,B

M obi1e trallesOH,RDoptinisation
SO TV 720xS76 lO Calendar OH

Table 1. Test Video Sequences and H264 configuration

Initial profiling of the algorithm was carried out in the
SimpleScalar [13] processor simulation environment. Profiling
data indicates that the complexity of AC during decoding is a
fraction of the complexity during the coding process.
Nevertheless, we chose to support both coding and decoding
acceleration in the hardware coprocessor to offer a self
contained solution, These results are summarized in Table 2
for the QCIF format.

Total AC Instruction AC calls per Instruction
Instruction Count per frame frame count per AC
Count per frame (Millions) (Millions) colI
Jrd~llIons)

Coder 3,046 68.5 1.1 62
Decoder 23.5 0.2 0.0047 42

Table 2. AC Coding/Det:oding Complexity in the QCIF Format

The number of calls to the AC routine increases substantially
in higher quality settings and for larger video formats. This is
illustrated in Figs. I and 2 which depict the number of AC
calls per frame and the associated PSNR values, as a function
of the quantization parameter QP. One AC call is needed for
each bit of data (symbol) that must be coded. The AC costs
range from I million calls per frame to approximately 60
millions calls per frame for a QP of 16, depending on the input
video format. The high computation coding requirements are
largely due to the Rate Distortion Optimization (RD) [14] in
the H264 standard. In RD optimisation each macroblock is
coded with different modes and the one that minimizes the
rate-distortion curve is selected. In addition to the number of
calls, algorithm profiling indicates that an average of 62
instructions for coding and 42 instructions for decoding are
needed for each AC function call. When targeting an
embedded, scalar, RISC CPU like the SPARC-compliant
Leon2 [15] used in this work this translates approximately into
lOO CPU clock cycles per AC call or bit for an average clocks
per-instruction (CPI) ratio of approximately 1.6 for the coding
phase. We can therefore safely conclude that AC, in the
context of advanced video coding, is a very compute~intensive
operation and since traditional parallelizing techniques such
as SIMD [16] extensions carmot accelerate this essentially
sequential process, the introduction of dedicated hardware
support in the form of a specialized coprocessor is a suitable
solution.

Ari\tmetic Coding cost

lro,-------------------------____ -,

e.,··

12 16

'"
•

Fig. 1. H264 arithmetic coding complexity

146

A\6rage PSr.R IIllues

"r-----------------------------

I j;:~;:~~~~.
38 ------ •.• " .. __ .",_,__ .. '~ .. ~---"' •••• : .. :fI
38 "~-~.

32 " -

~,~----------------------~
" ..

Cl'

Fig. 2. H164 PSNR evaluation

IV. PROPOSED ARITHMETIC CODING ALGORITHM

The original Z·coder software algorithm was developed by
ATT labs [17] as a generalization of the GolomblRice coder
for lossless coding of bi-level images. Golomb/Rice coding is
used to code a run of r consecutive occurrences of a MPS
followed by a single occurrence of a LPS, using a parameter m
to control how many MPS fit in one bit of code and also how
many bits of code are required to code a LPS. The code has
two components: the first component is rim 1 's, followed by a
single 0, while the second component is r mod rn, coded as an
ordinary binary number with logim) bits. Although easy to
implement, the limitation of Golomb codes is that the chosen
parameter m is only good for a single probability distribution
however, a general compression system has to be able to deal
with arbitrary sequences of events with different probabilities.
The Z-coder aims to solve this limitation. Z~coding is the same
as Golomb coding with the advantage that the parameter m can
be changed for each symbol being coded. The extra
complexity of the algorithm is small and more details can be
found in the original paper [17]. Our work has focused on
maintaining the simplicity of the Z-coding algorithm while
increasing its suitability for hardware implementation and this
is where our novelty lies. The reSUlting MZ-coder balances the
complexity of coding the MPS and LPS, simplifies the
precision of the arithmetic and handles special hardware
borrow conditions while maintaining coding efficiency and
achieving high performance via a fully pipelined micro
architecture. In order to validate the efficiency of the MZ
coder in a general compression environment a software
implementation has been developed in which a sophisticated
variable-order Markov-model [18] has been coupled to a
selection of 3 arithmetic coders named the Lei coder, the
Bmult coder and our own MZ coder. The Lei coder improves
the coding efficiency of the Q-coder and a detailed description
is available in [19]. The Bmult algorithm uses the standard
method proposed in [18] with full precision integer
multiplications. These two known arithmetic coders and the
MZ-coder have been compared with the information content of

IEEE Transactions on Consumer Electronics, Vo!. SI, No. I, FEBRUARY 2005

the Markov modeler measured by the equation symbol bits ~ -
/og,(symbo/"'probability) using floating point arithmetic. This
equation bounds the theoretical compression for the given
model. Our experimentation is based on two standard data sets
commonly used in the literature: the Ca/gary and the
Canterbury [20] data sets. Figs. 3 and 4 show the percentual
compression degradation (Y axis) as a function of the block
size (X axis). The best performer is, as expected, the Bmult
algorithm using full precision integer multiplications. The two
multiplication-free coders perform similarly with a maximum
degradation of around 1 % although the MZ coder outperforms
the Lei coder in all block sizes. Additionally, the MZ coder
performs very well for small block sizes outperforming the
information content of the model given by the floating point
arithmetic. The reason is that the MZ algorithm has been
designed to predict symbols with a slightly higher level of
confidence than that obtained from the probability data
provided by the model. Extensive simulation has shown that
slight over-predictions are particularly beneficial for small
block sizes where the limited amount of data available
prevents model construction from entering a stable state.

Calga,y MZ evaluation

., L __________________________ -"

Slw.o.S\u

" . .,,, BmuU

~'"
- -MZ

Fig. 3. MZ arithmetic coding efficiency in the Calgary corpus

Can!ertloJry MZevaluallon

"',-----------------------------------"1

BlockS;"

Fig. 4. MZ arithmetic coding efficiency in the Canterbury corpus

Apart from offering good coding efficiency, one of the main
attractive points of the MZ-coder is its fast renormalization.
The original AC algorithm present in CABAC uses a variable
cycle (from 0 to a maximum of 6 cycles) renormalization stage
to keep the state variables in the required range. This variable
renormalization latency is due to the inner dependencies of the
state variables and the renormalization loop. Fig. 5 illustrates

J. L. NUf!ez and V. A. Chouliaras: High·performance Arithmetic Coding VLSI Macro for the H264 Video Compression Standard 147

that the costs of multiple-cycle renormalization account for a
performance degradation of around 15%.

3,---------------------------______ -,

•.. ,."

12 "
'" " "

Fig. 5. Renorrnalization costs in CABAC

On the other hand, the renormalization process in the MZ
coder does not include internal dependencies. As a result, it
can be readily accomplished with a shift left operation. This is
illustrated in the pseudocode of Fig. 6 which also shows the
internal dependencies of low inside the while loop in the
CABAC case. This MZ-coder feature guarantees a data
independent throughput of 1 symbol per clock cycle and
simplifies the control data path.

pLPS = table64x6(state);
Z = range + pLPS;
If (Z ,.., HALF)

Z=QUARTER + Z» 1;
If (symbol ~ MPS)
{

}
else
{

range= Z;
if (range >= HALF)
(

output 1 bit;
range <=1;
subend <"=1;

Z~FULL-Z;

subend +=Z;
range+= Z;
shift_bits = shift(range)~

output shift bits bits;
range <"" shift_bits;
subend <= shift_bits;

rLPS = table256x8 (state,range);
range = range - rLPS;
if (symbol != MPS)
(

)

low+=range;
range = rLPS;

'·renonnaiization loop·'
while(range < QUARTER)
{

if(low >= HALF)
{

}
oIse
(

}

Output bit;
low-=HALF;

if (Iow< QUARTER)
Output bit;

else
bits to follow++;

low-=QUAR1ER;

low«=l;
range <<"=1;

Fig. 6. CABAC & MZ pseudocode description

V. VIDEO CODING EFFICIENCY OF THE MZALGORITHM

The MZ algorithm has been incorporated into the JM 7.3
H264 reference software [21] and its coding efficiency
measured using the video sequences of Table 1.

Figs. 6 and 7 depict the coding efficiency of the proposed MZ
coder and the VLC coder versus the CABAC algorithm. Fig. 6
shows that the performance of CABAC and the MZ coder are
virtually undistinguishable. On the other hand, the simple VLC
codes increase the bit rates by around 8% for these video
sequences with the effect being more noticeable for the large
SDTV format.

10

9

" 8
0

': 7

~ " 6 ~o
E~ 5 o~
,,~

4 - " ~~ ,.
3 ;;~

• 2 ~ • 0-

0

·1

10

9

0 8
0

':g 7
~o 6
~o

e,;; 5
o~

~~ 4
~= ,.

3 ;;~

~ 2
• 0- 1

0

·1

MZvCABAC Evaluation

8 12 16 29--2+--2

OP

Figure 6. MZ coding efficiency

\le vOSAC E\'a!ua~on

:""".:''':'.:.:',,~.
, ..•.. '.

''' SOTV
__ QCIF

- -CIF

.._- .'~':':''':::''';-'- ,,· SOW
........ ,"--t.:.-:---..... --":. ~ "" .- __._OCIF

-..--CIF

OP

Figure 7. VLe coding efficiency

These results have been verified by decoding the resulting bit
files using the corresponding entropy decoders for each of the
3 options tested (VLC, MZ, CABAC). They validate the MZ
algorithm as delivering the same level of performance as the
original CABAC. The unique advantage of the MZ is therefore
its single cycle renormalization capability and its efficient
hardware micro-architecture which results in high performance
VLSI implementation. The microarchitechitecture is presented
in the following sections.

148

VI. ARCHITECTURE AND VLSIIMPLEMENTATION

Fig. 8 shows the hardware architecture ofthe arithmetic coding
coprocessor.

Figure 8. COI,ro,ce",or~'r<lbitectu,re

The coprocessor has been coupled to a SPARC V8 [22]
compliant embedded CPU [15] which includes a standard, 5-
stage RIse pipeline. The Leon2 processor was selected for
this work due to its open-source nature which makes the
integration of the coprocessor pipeline in the Leon2 data path
easier due to having full access to the RTL source code. The
following sections describe the main modules of the MZ
coder.

A. Arithmetic Coding Coprocessor Description

J) MZ coder arithmetic
The hardware implementation reduces the arithmetic precision
to 8 bits and the precision of the subend and range registers to
7 bits from the original 17 bits and 16 bits in the Z-coder [17]
software algorithm respectively. This precision is sufficient to
handle the minimum symbol frequency of 11128 as fixed by
the LPS table, without affecting coding efficiency. The
renormalization is done in parallel for range and subend and in
the same pipeline cycle as the rest of the MZ arithmetic. The
number of bits that must be added to the output code depends
on the amount of renormalization needed in the range value so
that the range is kept between "0000000" and "1000000".
Shifting must be done until the MSB of the range value is O.
The shift value ranges from 0 when no shifting is required to 7
when the input range is "1111111" and 7 shift operations are

IEEE Transactions on Consumer Electronics, Vo!. 51, No. I, FEBRUARY 2005

required to obtain "0000000". The code bits output from the
MZ arithmetic stage are buffered in the code buffer stage.

2) Code buffer
The code buffer stage is required to control possible borrow
bits originating in the previous stage that could affect the value
of the bits contained in the code buffer. A total of 8 bits are
buffered in this stage. A number of bits, as defined by the shift
value, must be inserted at the least-significant bit in the code
buffer. The result from doing the MZ arithmetic means that an
overflow is possible in the subend register. As long as the
value stored in the buffer is different from 0, the borrow will
be stopped in the code buffer register. If the value of the
buffer is 0 then the borrow propagates out into bits that have
already been sent to the code generator stage (discussed next)
and the current output is formed by as many bits set to 1 as
specified by the shift signal since borrow propagation, in the
code buffer, will swap all the bits from 0 to 1. The code
generator stage handles possible borrows originating in the
code buffer by not outputting bits until a bit set to 1 has been
received from the code buffer stage. The bit set to 1 will
behave as a barrier for the possible borrows being propagated
out of the code buffer.

3) Code generator
The code generator takes the 0 to 7 bits produced by the code
buffer and the zero run count to build a code of up to 14 bits.
The zero run register counts the number of consecutive 0 bits
in the input. These bits are the equivalent ofthe bits_to Jollow
variable used by software arithmetic coders [4]. The output is
formed as a bit set to 1 plus zero run bits set to 0 when the first
bit set to 1 from the code buffer is received after a run of
consecutive O's. Output is then possible since the bit set to 1
will block any possible borrows originating in any following
coding events. In software the bits_toJollow counter is a
simple integer variable but in hardware this could leave an
undefined and potentially unlimited number of bits in the
coder pending to be output. This is undesirable from a latency
and complexity point of view so instead of using a large 32-bit
register, a 3-bit counter is utilized to keep track of the zero run
count. This mechanism means that only a maximum of 7 bits
could be left in the coder pending to be output. The ma.ximum
length codeword that the bit packer should be able to handle is
therefore given by:

Max length codeword ~ 7 new bits + 7 bits pending ~
~ 14 bits.

It is possible that more than 7 bits set to 0 are received in
which case the zero run counter will overflow. To avoid this
situation the hardware emits the pending 7 bits set to 0
preceded by a bit set to 1 in a speCUlative manner. The first bit
of the next output codeword will indicate if the bits emitted
speculatively must be inverted. The decoder will extract this
bit from the data stream, negate it and subtract the result from
the previous code, effectively transforming any code bit
sequence of "10000000" to "01111111". This process adjusts
the code to the correct value and performs a similar function to

J. L NMez and V. A. Chouliaras: High-perfonnance Arithmetic Coding VLSI Macro for the H264 Video Compression Standard 149

the stuffing bit suggested by IBM in their Q-coder [5]. The
extra bit is part of the next codeword and will have the value 0
if and only if a borrow bit originated in the code buffer stage.
Potentially a run of 7 consecutive Os could be followed by
another run of 7 consecutive Os overflowing the zero run count
again. This is not a problem and the hardware will emit
codewords as normal. The potential long borrow will not cause
the decoder to fail because all the coding events that were
coded previous to the event that produced the borrow can be
decoded without any borrow propagation. The fundamental
requirement to guarantee correct decoding is that the borrow
must be propagated in the decoder before the decoder tries to
decode the bit that produced that borrow in the first place.

4) Code packer
The variable number of bits produced by the code generator is
finally pipelined to the code packer whose function is to pack
the variable length codewords into fixed-length 8-bit
codewords, ready to be output. Since up to 7 bits can be left
inside the code packer without generating any output and up to
14 bits can be forwarded by the code generator stage in every
cycle, the width of the packer register has to be at least 21 bits
to be able to store all the data bits in this particular case.

B. Arithmetic Decoding Coprocessor Description

I). Process run
The module to process the zero runs checks if 7 consecutive
bits are set to zero with the help of the zero run register. Ifthis
condition is detected, the next bit corresponds to an extra bit
added by the coder. This bit is removed from the coded data
stream and a borrow yropagate signal is forwarded to the next
pipeline stage to adjust the rest of the codeword bits
accordingly, before they are used by the decoder. If the bit is
set to I no borrow propagation is needed but if the bit is set to
o a borrow propagation must take place that will be stopped by
the first bit set to I in the code buffer register.

2) Assemble new data and Shift out old data
This block buffers the codeword bits before they are required
by the MZ-decoder arithmetic. To increase the amount of
parallelism between the MZ decoder arithmetic and the
assembly-shift operation, data is concatenated in the
assemble_new data module before the arithmetic logic has
determined how many bits must be disregarded. Once this
value is known, old data is shifted out and the codeword is
rebuilt using the arithmetic adj usted codeword and new data in
the shift_out_old_data module. The codeword is then
registered in the code buffer, ready to start a new decoding
operation. Since assembling of new data is done without
knowing how many bits are going to be disregarded by the
decoding arithmetic, enough bits must be present so that, in the
case that no data is assembled but maximum bits are
disregarded, enough valid bits remain for the next decoding
cycle. It is also critical to propagate the borrow sigoal as far as
the first bit set to I. At least 6 bits of codeword must always be
valid. If a decoding operation can consume up to 6 bits and at
least 6 bits must remain valid for the next decoding operation

at least 12 bits must be valid at the start of the cycle. This
means that data must be added when less than 12 valid bits
remain in the code buffer register. The code buffer register
must therefore be at least 19 bits wide to be able to store the
total of 8 new bits plus II bits of codeword.

3). MZ decoder arithmetic
The decoding arithmetic follows that presented in the Z-coder
paper [18] with the benefit of using only 7-bit precision and
having balanced MPSILPS branches, similar to the proposed
coding hardware. The arithmetic circuits have been designed
to maximise throughput by performing as many operations in
parallel as possible.
Finally, the DMAlAHB bus controller moves data between the
internal coprocessor FIFOs and main memory.

VII. ISA EXTENSIONS

A total of 5 instructions have been added to the SPARC V8
ISA to support the coprocessor. The MZJode_mps and
MZ _code _Ips instructions advance the MZ pipeline and are
used each time the main processor enters the AC routine. The
data transferred to the MZ module when any of these two
instructions is executed is the 6-bit probability state. The MZ
arithmetic corresponding to an MPS or LPS coding event is
then executed and the results are forwarded to the next
pipeline stage (code buffer). The MZ state stored in the
registers range and subend is also updated. The data path from
the MZ arithmetic to the execution stage in the Leon processor
returns the number of bits needed by the executed coding
instruction. The video codec software uses this information to
calculate the current coding bit costs. The rate distortion
optimisation accepts or rejects a sequence of coding events
depending on the value of this cost and the current PSNR
value. This means that two extra instructions are required to
accept or reject previously executed coding events: MZ_comit
and MZJeset. Additionally and not shown in the figure but
implied, there is a set of equivalent MZ state registers
corresponding to the hidden state. These registers are updated
by the MZ _ comit instruction and are used to update the visible
state by the MZ _reset instruction. Therefore, the purpose of
the MZ_comit and MZ_reset instructions are to accept or reject
previously coding events by updating the coprocessor state
registers. The decoder requires another instruction extension
called MZ_decode_s. Once the decoding process starts, the
coprocessor state machine (not shown) fills up the code buffer
register independently of the code running on the main CPU.
Once a decode instruction is received, some of these bits are
used to generate a decode MPSILPS signal that indicates if a
most probable symbol or a least probable symbol has been
decoded. The software running on the main CPU interprets
this signal as a bit set to I or a bit set to 0 depending on which
symbol (0 or I) is the most probable symbol. A valid signal
indicates to the main CPU if the code buffer contained enough
bits for the instruction to complete. Otherwise, the main CPU
must reset the state of the decoder engine using MZ_reset and
execute again the decode instruction. Final1y, the state
registers are pipelined at each level and move with the data

150

path pipeline with the rest of the codeword data. This is
necessary to handle possible exceptions originating in the main
CPU data path that would cause the main pipeline to restart
and the same instruction to be executed more than once. A
restart signal originating in the exception logic unit of the
Leon2 CPU will load the pipeline state information into the
corresponding state registers in the MZ coprocessor should a
software exception happens in the main processor.

VIII. IMPLEMENTATION

To verify the functionality and performance of the AC
coprocessor we have integrated the core in a sope platform
implemented using an Altera APEX20KE PCI development
board. The main components of the SoPC platform are
illustrated in Fig. 9. PClB<,.o

Figure 9. SoPC Platform

The AMBA AHB subsystem incorporates a total of 5 masters
(Debug Support Unit, Leon2 Processor, AC coprocessof,
DMA Engine, PCI Bridge Interface) and 2 slaves (memory
controller and AHAfAPB Bridge). The Control registers
module, instantiated as a slave in the AMBA APB bus,
controls the execution of the H264 binary on the FPGA board.
There are a total of 5 extra registers added to the standard
Leon system for control purposes. The interrupt register is
hardwired to the open drain INT AN signal on the PCI bus.
When one of the bits in the interrupt register is set to zero the
INTAN signal goes low. It is the responsibility of the
application driver running on the host computer to remove this
interrupt by writing OxFFFFFFFF to the interrupt register. The
debug support unit can be used to help debugging an
application running on target hardware. The MZ coprocessor
can clock up to 50 MHz in this technology but the Leon2
processor and the Opencores PCI Bridge are limited to 33
MHz. The complexity and performance details of the FPGA
implementation are shown in Table 3. The AC coprocessor
reduces the complexity of arithmetic coding by more than an
order of magnitude in this configuration.
The chosen Silicon technology for the VLSI macro was the
UMC 0.13 ~m, 8-copper process. The design was originally
synthesized in Synplify ASIC and then, read into the Synopsys
Design Compiler for further logical netlist optimization. It was

IEEE Transactions on Consumer Electronics. Vol. 51. No. I, FEBRUARY 2005

then read into Synopsys Physical Compiler tool and optimized
for Minimum Physical Constraints (MPC). The MPC (placed)
netlist was then run through Place and Route on the Cadence
Encounter platform to verifY that the design was indeed
routable.

Altera FPGA)
APEXlOKlOOOE
A1tera FPGA)

Table 3. SoPC complexity and perfomance details

Once the routability aspect of the design was achieved, the
original logical netlist was read into Physical Compiler once
more, but now with real physical constraints applied. These
constraints specified the utilization factor, aspect ratio and die
size (derived from the previous MPC run), power ring
dimensions, power trunks width and number, pin (port)
location and finally, the power straps characteristics. It was re
optimized and passed to SoC Encounter for the final Place and
Route run. The maximum operating frequency was 330 MHz
worst-case (throughput of 330 MSymbols/second) and the
complexity of both the coder and decoder is 5600 standard
cells. Fig. 10 depicts the final placement and layout of the
arithmetic coding/decoding coprocessor.

Figure 10. Coprocessor Placement and Layout

J. L. NUfiez and V. A. Chouliaras: High-perfonnance Arithmetic Coding VLSI Macro for the H264 Video Compression Standard 151

IX. CONCLUSIONS

This paper presented an innovative hardware architecture for
arithmetic coding based on the simple Golomb codes that
enables a data-independent throughput of I symbol per clock
cycle without affecting coding efficiency. The MZ-coder has
been applied to the problem of accelerating the compute
intensive entropy coding functions in the state of the art H264
video coding standard and shown to deliver equivalent bit
rates while eliminating the need for multiple renormalization
cycles. The hardware has been verified using Iow-cost FPGA
technology and shown to have modest requirements in terms of
silicon area while achieving good results in terms of clock rate.
The SoPC platform utilizes the open-source LeonZ processor
with the proposed accelerator and shown to reduce the
complexity of AC by more than an order of magnitude.
Subsequently, a VLSI implementation was carried out in a
high performance 0.13 flm silicon process and the resulting
macrocell achieved a throughput of 330 Msymbolslsecond.
The H264 video coding standard is expected to be the enabling
technology in the near future for personal multimedia
communications. Major efforts are currently active within
industry and academia to accelerate the compute-intensive
motion estimation, transform and quantization functions
through developing fast algorithms and exploiting the
available data level parallelism. Entropy coding, based on
arithmetic coding, is mainly a sequential process, not well
suited to this kind of optimization. Its acceleration with the
proposed hardware architecture could play a major role in
bringing real-time H264 video coding within the grasp oflow
power embedded devices.

References

[11 G. Lawton, "New Technologies Place Video in Your Hand", IEEE
Computer, Vo!. 34, No. 4, pp. 14-17,2001.

[21 G. Bjontegaard, "H.26L Test Model Long Tenn Number 4 (TML 4)
draftO", ITV·TSGI6/Q.6 QI5-J-72, June 2000.

[31 V. A. Chouliaras, J. L. NUitez "A Multi Standard Video Coding
Accelerator based on a Vector Architecture", to appear in IEEE
International Conference on Consumer Electronics, Las Vegas, January,
2005.

[41 G. Langdon, "An Introduction to Arithmetic Coding", IBM J. Res.
Develop, Vol. 28, No. 2, pp. 135-149, March 1984.

[51 W.B. Pennebaker et aI, "An overview of the Basic Principles of the Q
Coder Adaptive Binary Arithmetic Coder" IBM J. Res. Develop, Vol
32, No. 6, pp. 717-725, November 1988.

[6} M. J. Slattery, J. L. Mitchell, "The Qx-coder", IBM Journal of Research
and Development, Vo!. 42, No. 6, pp. 767-784, 1998.

[71 J. Rissanen, K Mohiuddin, "A Multiplication-free Multialphabet
Arithmetic Coder", IEEE Transactions on Communications, Vol. 37,
pp. 93-98, 1989.

[81 S. Kuang, J. Jou, Y. Chen, "The Design of an Adaptive On-Line Binary
Arithmetic- Coding Chip", IEEE Transactions on Circuits and Systems~
I: Fundamental Theory and Applications, Vo!. 45, No. 7, pp 693-706,
July 1998

[91 S.R.Kuang et aI., "Dynamic pipeline design of an adaptive binary
arithmetic coder", IEEE Tmns. on Circuits and Systems-IT: Analog and
Digital Signal Processing, Vo!. 48, No. 6, pp. 813 -825, Sep 2001.

[10) J. Kneip et. al., "Applying and Implementing the MPEG-4 Multimedia
Standard", IEEE Micro, Vol. 19, No. 6, pp. 64-74, ,1999.

[111 K Rijkse, "H.263: Video Coding for Low-Bit-Rate Communication",
IEEE Communications Magazine, pp. 42-45, December, 1996.

[12J D. Marpe, H. Schwartz, T. Wiegand, "Context-Based Adaptive
Arithmetic Coding in the H.264 Video Compression Standard", IEEE
Transactions on Circuits and Systems for Video Technology, Vo!. 13,
No. 7, pp. 620-636,2003.

[131 Infonnation available at www.simplescalar.org
[141 T. Stockhammer, D. Kontopodis, T. Wiegand, "Rate-distortion

optimization for JVTIH.26L video coding inpacket loss environment",
Proc. of2002 Int. PacketvideoWorkshop, Pittsburgh, USA, 2002.

[15] Infonnation available at www.gaisler.com
[16J D. Talla, L. K. John, V. Lapinskii and B. L Evans, "Evaluating signal

processing and multimedia applications on SIMD, VLIW and
superscalar architectures", Proc. IEEE Int. Conf. on Computer Design,
pp. 163-172, Sep. 2000.

[171 1. Bottou, P. G. Howard, Y. Bengio, "The Z-coder adaptive binary
coder", In Proceedings of the Data Compression Conference, pages 13-
22, March 1998.

[181 J. Cleary, I. Witten, "Data Compression Using Adaptive Coding and
Partial String Matching", IEEE Transactions on Communications, Vo!.
32, No. 4, pp. 396-402, 1984

[191 S. M. Lei, "Efficient Multiplication-Free Arithmetic Codes", IEEE
Transactions on Communications", Vol. 43, No. 12, pp. 2950·2958,
1995

[201 R. Arnold, T.Bell, • A Corpus for the Evaluation of Lossless
Compression Algorithms', Data Compression Conference, pp. 201-210,
1997.

[211 Sources available at http://iphome.hhLde/suehring/tmV
[22] Infonnation available at www.sparc.comJstandardsN8.pdf

Jose Luis Nilftez is a a lecturer in the department of
Electronic Engineering at Bristol University. Prior to that
he was a research fellow in the department of Electronic
Engineering at Loughborough University where he
worked since 1997. His current interests include the areas
of losslessllossy data compression, reconfigurable
computing, FPGA-based design and high-speed data
networks. He received his BS and MS degree in
Electronics Engineering from Universidad de La Coruna

(La Coruna, Spain) and Universidad Politecnica de Cataluffa (Barcelona,
Spain) respectively in 1993 and 1997. He received his PhD degree at
Loughborough University (Loughborough, England) in 2001 working in the
area of hardware architectures for high-speed lossless data compression

Vassilios A. ChouJiaras was born in Athens, Greece in
1969. He received a B.Sc. in Physics and Laser Science
from Heriot-Watt University, Edinburgh in 1993 and an
M.Sc. in VLSI Systems Engineering from UMIST in
1995. He worked as an ASIC design engineer for
INTRACOM SA and as a senior R&D engineer/processor
architect for ARC International. Currently, he is a lecturer
in the Department of Electronic and Electrical

Engineering at the University of Loughborough, UK. His research interests
include superscalar and vector CPU microarchitecture, high-perfonnance
embedded CPU implementations, perfonnance modeling, custom instruction
set design and self-timed design.

Paper PJ5: Greeos, C., Saparon, A. and Chouliaras, V., 'Three novel low complexity

scanning orders for MPEG-2 foil search motion estimation', Real Time Imaging, 10,

February 2004, pp 53-65

67

~---. ----

Available on line at www.sciencedirect.com

8CII!!NCI!!@DIRI!!CT.

ELSEVIER Real~Time lmaging 10 (2004) 53-65

www.elsevier.eomllocatelrti

Three novel low complexity scanning orders for MPEG-2 full search
motion estimation

Christos Grecos*, Azilah Saparon, Vassilis Chouliaras
Department of Electronic/Electrical Engineering, Loughborough University, Leicestershire LEll 3TU, UK

Abstract

Complexity localisation in the reference frame is the key process for the derivation of efficient scanning orders for motion
estimation. The more localised the complexity is, the more computationally efficient scanning orders can be derived for reduced cost
motion estimation algorithms. However, this processes entails serious pre~processing overhead which may render it unsuitable for
real time video coding systems. In this paper, we propose three low complexity scanning orders of similar performance that are very
competitive in terms of the operation count ratio metric with respect to the MPEG~2 raster scan order. show improvements of
7.14% on the average with respect to the number of examined macroblock rows metric and they also show an increase in the speed.
up ratio of 0.12 on the average as compared to the standard. As compared to other work in the literature, the proposed scanning
orders require one fourth of the operation count ratio and show an increase in the speed~up ratio of 45 times on the average.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

The research efforts for the motion estimation
problem in video coding can be classified in two
categories according to the quality·complexity trade
off. The first category consists of the Full search
methods [IJ which examine allloc.tions inside. given
search window in the reference frame. These algorithms
find the best match of the macroblock to be encoded in a
window ofa given size at the cost of high computational
complexity. The second category consists of methods
that trade off quality for reduced complexity, thus
examining only a subset of locations inside a given
search window. Such methods include the 2·d logarith
mic search [3], the cross search [5], the Three Step Search
(3SS) [2], the Four Step Search (4SS) [6], the gradient
descent search [7], the diamond search [8] and a whole
range of zonal searches [9]. To reduce the cost of the
Full Search methods, a variety of schemes have been
proposed in the [iterature such as the partial distortion
elimination technique (PDE) [to] and its variations
[15-17], successive elimination algorithms (SEA)

"'Corresponding author. Tel.: +44~1509-227077; fax: +44~1509
227014.

E-mail addresses:c.greeos@lboro.ae.uk (C. Grecos), a.saparon@
Iboro.ae.uk (A. Saparon), v.a.chouliaras@lboro.ac.uk
(V. Chouliaras).

1077~2014/$~see front matter © 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.rti.2004.02.001

[18-24], fast 2·d finite impulse response filters [25],
vertical-horizontal and massive projection techniques
for candidate and reference blocks [26--27] etc. AU these
schemes examine only a subset of the pixels for a given
search position in the reference frame and/or for the
macro block to be encoded, while still finding the best
match in statistical terms. The work in this paper faUs in
this category of schemes.

An appealing possibility in the search methods
without quality degradation is the tailoring of the
scanning order for the computation of the sum of
absolute differences (SAD) metric according to the
direction of the local motion field in the reference frame.
The idea is that the sooner the maximal changes of the
local motion field are identified in the process of SAD
computation between the macroblock to be encoded and
a candidate predictor in the reference frame, the faster
this predictor can be rejected if it has exceeded the
minimum SAD found so far. Early search termination
(or early jump out (EJO) in MPEG-2 terminology)
obviously implies computational savings since only a
subset of the pixels for the macro block to be encoded
and its potential best match in the reference frame need
to be examined. The search will then continue from the
next search position in the reference frame inside the
given search window. This early bailing out mechanism
essentially classifies these scanning orders as variable
complexity algorithms (yeAs) since complexity of the

54 C. Grecos et all Real-Time Imaging 10 (2004) 53-65

motion estimation clearly depends on the properties of
the input source, thus specific scanning orders that are
tailored to these properties can indeed achieve computa
tional scalability [14]. It has to be noted that the
scanning orders we are dealing with refer to motion
estimation rather than to the encoding of DCT coeffi
dents despite the fact that the latter have been very
popular in the literature (zig-zag scanning, alternate
scanning etc. [4]). Due to simplicity in implementation,
the MPEG-2 standard [I] in TM-5 chose to examine
EJO points at the end of every macro block row and it
also chose a fixed roster-scan order for the SAD
computation of the pixels involved. This fixed raster-scan
order, which accumulates SAD in the two macro blocks
from top to bottom and from left to right, can be very
inflexible and cause unnecessary computational over·
head due to the following reason: No attempt is made in
the standard to identify content-wise the areas in the
reference macroblock that will result in the biggest
computational reduction if examined first, during the
motion estimation process. This is in contrast with
computationally intensive but theoretically proven
results by Tao and Orchard [30] and later work by
Kim [1\-12], which clearly demonstrate that the early
identification of regions with highest gradients (i.e.
activity) in the reference macroblock will produce the
maximal computational savings. Due to these theore
tical and practical results [11,12,30], the fast identifica
tion of these high activity areas in the reference
macro block, either through blind estimation or through
very low overhead classification that justifies its use is
imperative.

The idea behind the first two blind estimation
scanning orders we propose, is that by spiralling inwards
in the reference macroblock, we are able to locate more
pixels with higher gradients faster as compared to the
raster scan order and thus potentially save computa
tions. A simple predictor of the maximal change of the
motion field, in combination with inward movement in
the reference macroblock during the SAD calculations is
the basis of the third scanning order proposed and it
also achieves faster location of high gradient pixels. The
following figure illustrates the benefits of the proposed
schemes.

In Fig. I, it is clear that the dissimilar areas
(represented as white patches in the reference frame)
of candidate macroblock predictors, can be faster
identified and potentially eliminated by different scan
ning orders than the one used by the standard. In the
cases depicted in the figure, a scanning order with EJO
points at the ends of rows/columns from the right-most
column to the left-most, from the left-most column to
the right-most and from the bottom-most row to the
top-most would be ideal for fast rejection of the first
three candidate predictors. For the predictor repre
sented by the free form closed contour inside the

Reference frallle
Current frame

Fig. 1. Similarity between macroblocks of the current and reference
frames.

reference macro block, the highest gradient pixels will
occur just on the borders of the contour where the
texture changes. It can be easily seen that scanning
based on squares of decreasing sizes as we are moving
inward during SAD calculation in the reference macro
block, will be able to locate more boundary contour
pixels faster since it examines four directions simulta
neously as compared to the single scan direction used by
the standard for the same number of operations per
macroblock. This is also true for the candidate predictor
represented by the free form open contour inside the
reference macroblock, as shown in Fig. I.

The design of scanning orders for Full search motion
estimation algorithms can be subdivided in zero over
head and in limited pre-processing schemes. In zero
overhead schemes, the order of SAD computation
between pixels in the current and reference macroblocks
is usually fixed and the choice of the order tries to
compensate for the blindness of the estimation. Relevant
work can be found in [12]. In limited pre-processing
schemes, the maximal changes in the local motion field
are identified through some kind of pre-processing such
as gradient estimation, gradient sorting etc. [11]. It has
to be noted that the gains of the limited pre-processing
methods through accurate identification of the maximal
changes in the local motion field have to be weighted
against the time that such pre-processing needs for real
time motion estimation schemes. This is the reason that
we present in Section 4 both computational savings in
terms of the average number of rows examined per
macroblock, computational savings in terms of the
operations required but also computational savings in
terms of the actual run times for the different schemes,
since the latter two metrics consider pre-processing
overhead as well.

In this paper, we propose three novel scanning orders
for motion estimation. The first two belong to the
category of zero overhead schemes since they attempt to
eliminate unsuitable predictors in the reference frame as
fast as possible, based on joint exploitation of horizontal
and vertical SAD information. The third scanning order
proposed belongs to the category of limited pre
processing schemes, since it utilises SAD information
only of the boundary macroblock rows and columns for

C. Grecos et aL I Real-Time Imaging 10 (2004) 53-65 55

determining the scan direction. The paper is organised
as follows: Section 2 describes the proposed scanning
orders for motion estimation, Section 3 describes
complexity comparisons of the proposed schemes as
compared to other work in the literature and Section 4
contains comprehensive experiments that show the
merits of the proposed scanning orders versus the
raster-scan order used in MPEG-2 but also as compared
to other works in the literature. Section 4 ends by
drawing conclusions from our work.

2. Proposed scanning orders

2.1. Spiralling inward scanning order

This scanning order is based on the idea that the SAD
value between pixels located on corresponding positions
on tbe sides of squares of decreasing size inside the
current and reference macroblocks, may be used to
reject candidate predictors faster than the raster scan
order used by MPEG-2. For a 16 x 16 pixel area there
are 8 such squares with sides 16,14,12,10,8,6,4 and 2
pixels respectively. Formally, let's assume that l,(i,j) is
the intensity of pixel (i,}) inside a frame n, dx and dy are
the motion vector coordinates for a candidate best
match of the macroblock to be encoded in the reference
frame and (k, I) are the coordinates of tbe upper left
hand corner of the current macroblock. Furthermore,
assume that q indicates the offset of the upper left hand
corner of any inner square from the coordinates (k, l)
and m is an offset from the upper left hand corner of any
square. Then the SAD difference between the reference
and the current macroblocks according to the proposed
scanning order can be represented by the following
equation:

SAD,ejerence_macroblock-current_macroblock

= ~ [m=~2Xq II,(k + q + m, I + q)

-I,_I(k+ q +m +dx,1 + q +dy)1
m=IS-2xq

+ L II,(k + (15 - q),1 + q+m)
m=O

-I,_I(k + (15 - q) + dx, I + q + m + dy)1
m=lS-2xq

+ L II,(k + (IS - q) - m, I + (15 - q»
m=O

-I,_I(k+ (IS - q) - m + dx, I + (15 - q) + dy)1
m=lS-2xq

+ L II,(k+q,I+(I5-q)-m)
m=O

- It-I(k+q + dX,1 + (15 - q) - m +dY)I). (I)

Fig. 2. Spiralling inward scanning order.

The following figure shows the proposed scanning
order (Fig. 2):

In the above figure, SAD computation starts from the
points depicted as diamonds and potential EJO points
are at the corners of the squares of decreasing size for
both the reference and current macro blocks. The
direction of the SAD computation for the pixels on
the sides of squares of decreasing size is shown using
arrowheads. The scanning order moves inwards in the
macroblocks and the minimum size of the sides of
the squares is 2 pixels. The dotted arrowhead shows the
direction of the scanning order from the borders of the
macro blocks to the centre. In the case that an EJO
occurs, motion estimation continues as in the spiral
search from the next search point inside the search
window of the reference frame. Finally, it has to be
noted that the scanning order has to be the same for both
the current macroblock and its potential best match,
since this is a pre-condition for finding exactly the same
best matches as the Full Search (FS). If the scan order is
different, we risk premature search termination with
adverse effects on quality and bit rate.

2.2. Alternating spiralling inward scanning order

The design of this scanning order is based on tbe idea
that the spiralling inward scanning order may be
wasting computations due to the fixed direction of the
scanning order (top horizontal side of square-right
vertical side of square-bottom horizontal side of
square-left vertical side of square). In fact, the spiralling
inward scanning order will reject faster candidate
macroblocks on the basis of horizontal SAD informa
tion rather than on the basis of vertical SAD informa
tion. This is evident from the order itself, since a
candidate macro block to be rejected in the reference
frame on the basis of vertical SAD information will have
to wait until the horizontal SAD computations are
performed. For this reason, a less biased scheme can be
designed which uses horizontal and vertical SAD
information for rejection of candidate macroblocks on
an alternating basis. Thus in the alternating scanning
order case, the scan directions (top horizontal side of

56 C Grecos et al. I Rea/-Time Imaging 10 (2004) 53-65

outer square-right vertical side of outer square-bottom
horizontal side of outer square-left vertical side of outer
square) and (left vertical side of the inner square-bottom
horizontal side of the inner square-right vertical side of
the inner square-top horizontal side of the inner square)
are used. The cycle completes after two iterations and
subsequently the outer square becomes inner and the
algorithm continues. Again notice that for a 16 x 16
pixel area there are 8 inner squares with sides
16,14,12,10,8,6,4 and 2 pixels respectively Formally,
let's assume that l,(i,j) is the intensity of pixel (i,j)
inside a frame n, dx and dy are the motion vector
coordinates for a candidate best match of the macro
block to be encoded in the reference frame and (k, I) are
the coordinates of the upper left hand corner of the
current macro block. Furthermore, assume that q
indicates iIle offset of the upper left hand corner of
any inner square from the coordinates (k, f) and m is an
offset from the upper left hand corner of any square.
Then the SAD difference between the reference and the
current macro blocks according to the proposed scan
ning order can be represented by the following equation:

SAD,e!erence_macroblock-currenLmacroblock

= ~{[m~~4xqllt(k + 2 x q +m,l + 2 x q)

-It-l(k+ 2 x q+m +dx,l + 2 x q +dy)1
m=15-4xq

+ L IIt(k+(15-2xq),1+2xq+m)
m=O

-It-l(k+ (15 - 2 x q) +dx,l + 2 x q+m +dY)1
m=15-4xq

+ L IIt(k+(15-2xq)-m,I+(15-2xq»
m=O

-It-l(k + (15 - 2 x q) - m+dx,l +(15 - 2 x q)+dy)1
m=IS-4xq

+ L II,(k + 2 x q, I + (15 - 2 x q) - rn)
m=O

- It-l(k+ 2 x q+dx,l + (15 - 2 x q) - m +dY)I]

+ [m~15f.q+2) lI,(k + (2 x q + I), I + (2 x q + 1) + m)

-It_l(k+ (2 x q+ I) + dX,1 +(2 x q+ I) +m +dy)1
m=15-(4xq+2)

+ L IIt(k + (2 x q+ I)+rn,l
m=O

+(15 - (2 x q + I») - It-1(k + (2 x q + I) + m

+dx, I + (15 - (2 x q + I» +dy)1
m=15-(4xq+2)

+ L IIt(k + (15 - (2 x q + I», I
m=O

+(15 - (2 x q + I» - m) - It_1(k +(15 - (2 x q+ I»

+dx, I + (15 - (2 x q + I» - m + dY)1
m=15-(4xq+2)

+ L IIt(k + (15 - (2 x q + I)) - rn, I
m=O

+(2 x q + I)) - It_1k + (15 - (2 x q + I»

-rn+dx,I+(2 x q+ I) + dYl1] }. (2)

In the above equation, the first part of the summation
computes the SAD for pixels on the sides of squares
with side length 16,12,8 and 4 pixels which are visited
during the first cycle of the proposed scanning order.
Similarly, the second part of the summation computes
the SAD for pixels on the sides of squares with side
length 14,10,6 and 2 pixels which are visited during the
second cycle of the proposed scanning order.

The following figure shows the proposed scanning
order (Fig. 3):

As in the previous figure, SAD computation starts
from the points depicted as diamonds and potential EJO
points are at the corners of the squares of decreasing size
inside the reference and current macroblocks. The
direction of the SAD computation for the pixels on
the sides of squares of decreasing size is shown using
arrowheads. The dotted arrowhead shows the direction
of the scanning order from the borders of the macro
blocks to the centre. Furthermore, the star symbol
indicates the position where the cycle is restarted and
again the minimum size of the sides of the squares is 2
pixels.

2.3. Horizontal/vertical scanning order

In essence, both the preceding scanning orders
attempt to predict the maximum change in the direction
of the motion field with zero initial assumptions. This
maximum change in the motion field direction will
enable faster rejection of candidate macroblocks in the
reference frame, thus saving a significant amount of
computations. Although both the preceding orders are
ideal for online implementations due to the zero initial

! ,
I'

V
;..0-

I1
\

Fig. 3. Alternating spiralling inward scanning order.

C Grecos et all Real-Time Imagfng 10 (2004) 53-65 57

assumptions, some computationally economical pre
processing could be beneficial for more accurate
estimation of the maximum change in the motion field
direction. The trade-off here is that the more accurate
the determination of the motion field maximal change,
the more pre-processing is required in general. This pre
processing may out-weigh the benefits of computational
reduction when the optimal scanning order is found.
This lead to the idea of the selection of a horizontal/
vertical scanning order for the candidate macroblock in
the reference frame by using only very limited pre
processing. Independent of our research, a horizontal!
vertical scanning order has also been proposed by Kim
and Choi [12] but with a much more computationally
intense pre-processing phase as will be shown in the
section regarding complexity considerations.

Specifically, the first scheme they propose utilises
gradient measures on 8 X 8 block level for finding the
best scanning direction per macroblock. The second
scheme they propose utilises sorted gradients on a
macroblock row level to predict maximal changes in the
motion field. The third scheme they propose, further
uses sorting of 4 x 4 sub-block gradients in order to
improve the accuracy of the prediction of the maximal
change in the motion field. In contrast, our proposed
scanning order is determined from examining only the
SAD difference between the boundary rows and
columns of the macro block to be encoded and the
candidate macroblock in the reference frame. The
direction of the maximal SAD difference is then chosen
as the scanning direction. A further difference between
their scanning orders and the one we propose is the
number and the location of the checking points for EJO
in the vertical direction. The following figures along with
the algorithmic steps show our proposed scanning order:

1"' · "'1
1_b3 c~",l

Fig. 4. Step 1 of horizontal/vertical scanning order.

is indicated by the arrowheads in the figure above. The
SAD computation is sequential in the above figure since
if an EJO does not occur for the direction a, the
computation for SAD continues in the directions b l-b4
and if we still have not jumped out, we examine SAD
across the direction c. Notice that there are only two
potential EJO points in the vertical direction. For the
first EJO point, we are essentially adding SADs across
the first half of the left-most and right-most columns
and then we check for EJO. In the case of the EJO
condition not being satisfied, we continue with the SAD
computation in the same manner across the second half
of the left-most and right-most columns and we repeat
the check again. This is indicated by the use star symbols
instead of arrowheads in the left most column of the
macroblock in Fig. 4. If an EJO has not occurred at the
end of the bottom macroblock row, the SADs from
directions a and c and the cumulative SAD from
directions b 1-b4 are used to determine the scanning
order in Step 2.

If (max(SADb_cumu[ative, SADa, SADe) = = SADb_CUtnulative) use direction d

else if (max(SADb_rnm"la/i", SADa, SAD,) = = SAD,) use direction e

else use direction!

Step I: This step is applicable only for the top,
bottom, left and right most macro block rows and
columns for the current and· reference macroblocks.
For notational reasons, let us consider the vertical
directions bl-b4 as distinct in this step although they are
actually the same. SAD information is computed
initially from the top macroblock rowS of the macro
block to be encoded and its candidate predictor in the
reference frame (direction a), the left most and right
most columns of the two macroblocks (directions bl
b4) and the bottom rows of the two macroblocks
(direction c). If the SAD is greater than the minimum
SAD found so far along any direction, an EJO can occur
at the end of the top most and bottom most rows or in
the middle and at the end of the right most column. This

Step 2: There are three potential scanning orders
(directions d, e and t) for the rest of the SAD calculation
and they are chosen according to the following scheme:

The following figure shows the potential scanning
orders for the current and reference macroblocks
according to the outcome of Step 2 (Fig. 5):

In the above figure, the dashed arrowheads show the
direction of the scanning order when directions e and f
are chosen. However, when the vertical direction is
chosen (direction d), we check for EJO in the middle and
at the end of the second right most macro block column
after we added the corresponding SADs of the second
left most macroblock column. If an EJO is not found,
the algorithm continues with the third left most and
right most rilacroblock columns and so on until we

58 C. Grecos et al. I Real~Tjme Imaging 10 (2004) 53-65

lL_>~J 1
Ii\ , , , ,

11 H
, ,

Direction d Dj~ction e

,
• ,

, , , , , ,
'¥

Direction f

• ,

Fig. 5. Potential scanning orders according to the outcome of step 2 of
the horizontal/vertical scan method.

either jump out because we found an EJO or we reach
the middle of the macroblock. Assume (k, I) are the
coordinates of the upper left-most corner of the first
inner square in the current macroblock, m and n are the
horizontal and vertical offsets from the upper left-most
corner of the first inner square and dx and dy are the
motion vector coordinates for a candidate best match of
the macro block to be encoded in the reference frame.
Step 2 of the proposed scanning order can then be
expressed formally as

if direction d is chosen

SADre/erence_macroblock-currenLmacroblock8IeP2

= [~~III'(k+n,'+m)
-I'_I(k + n + dX,1 + m + dY)1

+II,(k + (15 - n), I + m) - 1,_1

x(k + (15 - n) + dx, 1 + m + dy)1I
n=7 m=7

+ L2)I,(k+n,/+8+m)
11=1 m=1

-I'_I(k + n + dx, 1 + 8 + m + dy)1

+II,(k + (15 - n), 1 + 8 + m)

- I,_I(k + (15 - n) + dx, 1 + 8 + m + dY)II]

else if direction e is chosen

SADrejerence_macroblock-current_macroblock",epl

= [~~4II'(k+m,'+n)

- It-1(k+ m + dX,1 +n +dY)I]

else if directionf is chosen

SAD re/erence_macroblock -curren,_macroblocksup2

= [~~4II'(k+m,'+n)

- ['_I(k + m + dx, I + n + dY)I]. (3)

Finally, it is worth noting that we can further simplify
Step2 with a "rough" knowledge of the dominant
motion in a video sequence. For example, Step 2 will
enable faster rejection of candidate reference macro
blocks for sequences that have predominantly horizon
tal rather than vertical motion. This is due to the fact
that most of the cases will be handled by the first
conditional branch and thus two extra comparisons can
be saved in most of the cases. Conversely, we can save
comparisons for predominantly vertically moving se
quences by simply rearranging the order of the condi
tional statement. We will provide comprehensive results
for both predominantly horizontal, vertical and purely
mixed sequences in Section 4.

3. Complexity considerations

The issue of complexity has been addressed in the
literature mainly from the number of operations point
of view and indirectly using metrics related to memory
accesses [28]. However, issues like the pre-processing
time for specific algorithms have largely been neglected.
This pre-processing time can indeed make a motion
estimation algorithm slower as compared to MPEG-2 at
run time even if there is reduction in the number of
operations and the number of memory accesses. For this
reason, pre-processing complexity issues are discussed in
this section but also actual run times are measured for
the three developed algorithms in the following section
describing experiments. The closest point of comparison
for the developed schemes are the three motion
estimation algorithms proposed in [11-12] al1d their
theoretical analysis [30] which may reduce the average
number of checking rows per macro block but they do
suffer from pre-processing overhead. For the sake of
clarity, the suggested scanning orders are also compared
with a fixed scanning order based on dithering of 4 X 4
sub-blocks as shown in [29]. In this scanning order, there
is no pre-processing overhead since the order of
checking pixel positions inside the sub-blocks is pre
determined. In the scanning order determination based
on 8 x 8 block gradients in [12], the overhead stems
purely from the gradient computation for each block in
a macroblock. In the scanning order determination
based on sorted macroblock rows [12] or sorted sub
block gradients [11], the overhead stems both from the
gradient computation per block but also from the
sorting required. Let us examine closely the overhead
of gradient computation for the scanning order deter
mination based on 8 x 8 block gradients in [12]. To
compute the gradient of an 8 x 8 block in the most
computationally efficient way, one has to evaluate the
pixel gradients at each pixel separately for both the x
and Y directions and then the sum of the gradient
magnitudes along the two directions will be the value of

C, Grecos et aI, I Real·Time Imaging 10 (2004) 53-65 59

the gradient for the pixel. This is clearly seen using the
following approximations from [11]:

IG[f(x,y)]1 = JG; + q"'IGxl + IGyl"'!f(x,y)

- [(x + l,y)1 + If(x,y) - [(x,y + 1)1, (4)

where[(x, y) is the pixel intensity at position (x,y), G is
the gradient of the pixel intensity and Gx and Gy are the
partial pixel gradients across the horizontal and vertical
directions respectively.

The above calculation requires 3 additions/subtrac
tions per pixel gradient in the best case and 2 absolute
value calculations. For a 256 pixel area, the gradient
computation will thus require 768 additions/subtrac
tions and 512 absolute value computations. Subse
quently in [12] the block gradient (8 x 8 pixel area) is
computed as the sum of pixel gradients. This will result
in further 63 additions/block for a total of 252 additions
for the macro block. Thus the block gradient algorithm
will cost 1020 additions/subtractions and 512 absolute
value computations. The block gradients are subse
quently added in pairs and according to the maximum
value of these pairs a scanning direction is chosen (right
to left, left to right, top to bottom or bottom to top).
This further costs 4 additions and 3 comparisons, for a
total cost of 1024 additions/subtractions, 512 absolute
value computations and 3 comparisons.

The scanning order determination hased on sorted
macro block rows in [12], chose the scanning direction in
exactly the same manner as the first algorithm on the
same paper [12]. The only difference is that after the
scanning direction has been chosen, there is the extra
overhead of sorting the macroblock rows or columns.
The fastest sorting algorithms require Q(n log,) com
parisons with n the size of input (in this case 16
macro block rows or columns), thus requiring 64
comparisons for the sorting phase. Furthermore, 16
more additions are required for forming the gradients of
the macro block rows/columns from the partial gradients
on the corresponding blocks, resulting in total pre
processing cost of 1040 additions/subtractions, 512
absolute value computations and 67 comparisons.

In the scanning order determination based on sorted
sub-block gradients [11], the scanning direction is
chosen in terms of sorted sub-blocks rather than in
terms of sorted scan lines in a macro block. The
argument here is that sorted sub-blocks inside a macro
block can better pinpoint the direction of the maximal
change in the local motion field as compared to sorted
scan lines, thus operations can be saved in the process of
finding the hest macroblock match in the reference
frame. Let us consider the computational overhead of
such a scheme: For a 256 pixel area, the gradient
computation will require 768 additions/subtractions and
512 absolute value computations as in the algorithms
above. To group these gradients into 16 sub-blocks,

where the gradient of each sub-block is the sum of the
gradients of its constituent pixels we need 240 additions
for a total of 1008 additions/subtractions and 512
absolute value computations for the sub-block gradient
formation phase. To sort 16 sub-blocks, we further need
64 comparisons for a total pre-processing cost of 1008
additions/subtractions, 512 absolute value computations
and 64 comparisons.

It is clear that although the average number of
macroblock rows examined by the three aforementioned
schemes may indeed be less than the number of rows
examined in fixed raster scan orders like the one used in
TM5 of MPEG-2 [1], the pre-processing cost of these
schemes in terms of operations is higher than the three
scanning orders proposed. In particular, the spiralling
inward and the aiternating spiral schemes have zero pre
processing cost, while the content dependent horizontaJf
vertical scanning order of the third proposed scheme
only requires 120 additions/subtractions for SAD
calculation and 4 comparisons, since only the macro
block boundary row and column pixels are used for
determining the scanning order. As compared to the
dithering scanning order [29], the spiralling inward and
the aiternating spiral schemes have the same pre
processing overhead (none), while the benefits of the
content dependent horizontal/vertical scanning order in
terms of predicting the direction of the motion field have
to be weighted against the small pre-processing over
head required (124 operations).

4. Experiments and conclusion

The proposed scanning orders were extensively tested
for motion estimation performance in a variety of
commonly used video sequences exhibiting different
motion characteristics. The test sequences "Deadline",
"Mother and Daughter (MaD)" and "Students" can be
categorised as slow motion sequences. The sequence
"Bowing" was also a slow motion sequence but in
addition it contained objects that moved forward
(zooming) and downward (vertically). "Tennis" and
"Paris" were fast paced sequences but the difference
among them was that there were objects moving
horizontally in "Paris", while in "Tennis" they moved
vertically. Finally, "Rotating City" contained a large
fast motion area and it involved zooming and panning
of the camera. Each sequence consisted of 50 frames
except "Rotating City" which only consisted of 35
frames. The performance evaluation in terms of speed
ups was also performed for a variety of search windows
with sizes ranging from ± 7 to ± 63 pixeis. To facilitate
comparisons, the computational savings in terms of
average number of rows examined in the motion
estimation process are presented, operation count ratio
per macroblock and finally the actual run time speed-up

60 C. Grecos et all Rea/-Time lmaging 10 (2004) 53-65

ratio including the pre-processing stage of motion
estimation. This stage-by-stage presentation of results
is intentional because although the average number of
examined macro block rows is commonly used in the
literature [11-12J, such a metric cannot account for pre
processing costs. Furthermore even if the pre-processing
cost is accounted for in metrics such as the operation
count ratio, issues like regularity in memory accesses
still remain unaccounted for. The metric that encomw
passes all the factors affecting the performance of
different scanning orders is therefore the actual run
time speed-up ratio. It should be noted however that
both the average number of macroblock rows examined
and the operation count ratio can still be useful
performance indicators for multiple pass coding
schemes since the motion estimation statistics of the
first pass can significantly reduce costs in subsequent
passes. The experiments were performed on a Pentium-2
processor at 1 GHz. We also compare our schemes with
other well-known work in the literature and we use the
following acronyms in the graphs:

• Spiral denotes the spiralling inward scanning order
we propose.

• All-Spiral denotes the alternating spiral scanning
order we propose.

• Vbl and Tbv denote the vertical/horizontal and the
horizontal/vertical scanning orders we propose. In
fact Vbt stands for the vertical-bottom-top scanning
order and Tbv for the top-bottom-vertical order.

• Kiml denotes the second scanning algorithm in
Ref. [12J.

• Kim2 denotes the scanning algorithm based on
complexity using 4 x 4 sub-blocks in Ref. [11J.

• Kim3 denotes the first scanning algorithm in Ref. [12J.
• Dithering denotes a fixed scanning order based on

4 x 4 sub-blocks as in Ref. [29J.
• MPEG-2 denotes the fixed scanning order (left to

right-top to bottom) that is used in the standard
(TM5).

In Table lA, the average number of examined rows
per macro block with respect to the window size is
shown. This average is over all the candidate positions
inside a search window in the reference frame. It can be
seen that the average number of rows examined
decreases as the search window increases. This is
expected since the bigger the search window, the more
candidate positions for the best match in the reference
frame will be rejected after only a small number of
macroblock rows is examined, thus bringing the average
down. Obviously, the gains of the proposed methods
depend both on the sequence motion characteristics as
well as the window size. On the average, gains of7.14%
are observed across all window sizes in Table I B for the
proposed scanning orders as compared to the MPEG-2
raster scan. Furthermore, 9.87% gains over MPEG-2

for other popular adaptive scanning orders requIrIng
pre-processing are also observed in the same table.

For comparison purposes, results for the dithering
scanning order are also presented, which is a fixed
scanning order with average gains 2.41 % over the
MPEG-2 scanning order in Table lB. It has to be noted
that the proposed schemes consistently outperform
dithering and they are highly competitive with respect
to other adaptive schemes requiring much more pre
processing as shown in the tables. In fact, it can be seen
that the average gain of other adaptive schemes
requiring pre-processing over the suggested schemes is
less than 3 % and the biggest differences occur at small
window sizes.

The effects of pre-processing in terms of speed-up
ratios but also in terms of actual run times complexity
(in seconds) are shown in Table 2B and A, respectively.
The actual run times refer to the total time needed for
encoding 50 (35 frames for the rotating city sequence) of
each of the tested sequences and includes the pre
processing time needed for the motion estimation. The
speed-up ratios denote the percentage gain with respect
to the actual run time. To facilitate comparisons, the
low complexity scanning order part of these tables refers
to schemes that require no or minimal pre·processing,
while the high complexity scanning order part refers to
other schemes in the literature that require significant
pre-processing. It is evident from Table 2A and B that
across different size windows, the proposed scanning
orders have a higher speed-up ratio with respect to the
MPEG-2 raster scan order by 0.12 on the average, while
other adaptive schemes in the literature have a lower
speed-up ratio by 39.7 times. Even the fixed dithering
scan order has a lower speed-up ratio with respect to
MPEG-2 by 0.78 on the average due to the irregularity
in memory access patterns [13-14J. From the results, it
can be seen that the proposed scanning orders consis
tently outperform both the dithering and the adaptive
schemes in the literature and bigger differences in the
performance benefits occur for larger window sizes. This
clearly reveals a trade-off between fine complexity
localisation from the adaptive scanning orders in the
literature and the pre-processing overhead imposed
from such methods. As the window size increases,
complexity localisation becomes less important in
motion estimation schemes involving Early Jump Outs,
while the pre-processing overheads remain. Thus, for
scanning orders with pre·processing cost far out
weighting the complexity localisation benefits, the run
time performance can actually degrade and this effect is
amplified with larger window sizes. In this light, run
time improvements of lower complexity schemes like the
ones proposed make them very attractive for real time
applications. Table 3 shows the total number of
operations per macro block for the scanning orders
examined and includes the effects of pre-processing as

C. Grec(}s et al / Real-Time Imaging 10 (2004) 53-65 61

Table 1

Sequence Window Low complexity scanning orders High complexity scanning orders
size(±)

MPEG2 Spiral ALT-Spiral VBT TBV Dithering Kiml Kim2 Kim3

(A) Average number of examined rows per macroblock
Bowing 7 5.23 4.46 4.54 4.57 4.57 4.85 4.36 4.13 4.55

15 3.94 3.39 3.43 3.45 3.45 3.69 3.35 3.23 3.54
23 3.26 2.82 2.84 2.87 2.87 3.07 2.80 2.72 2.97
31 2.82 2.45 2.47 2.47 2.47 2.67 2.44 2.39 2.59
63 1.87 1.65 1.65 1.66 1.66 1.78 1.65 1.63 1.74

Deadline 7 3.08 2.77 2.79 2.78 2.78 3.01 2.60 2.39 2.81
15 2.33 2.10 2.11 2.10 2.10 2.28 2.04 1.93 2.19
23 1.97 1.80 1.80 1.80 1.80 1.93 1.77 1.71 1.89
31 1. 77 1.61 1.61 1.61 1.61 1.74 1.62 1.57 I. 72
63 1.32 1.21 1.21 1.20 1.20 1.32 1.25 1.23 1.31

MaD 7 5.84 5.19 5.29 5.32 5.32 5.61 5.10 4.80 5.31
15 4.57 4.03 4.10 4.11 4.11 4.41 4.06 3.88 4.23
23 3.82 3.37 3.42 3.44 3.44 3.70 3.43 3.31 3.58
31 3.36 2.95 2.98 3.00 3.00 3.24 3.00 2.92 3.14
63 2.23 1.97 1.98 1.99 1.99 2.16 2.02 1.99 2.11

Paris 7 3.06 2.73 2.75 2.73 2.73 2.94 2.52 2.31 2.69
15 2.34 2.08 2.10 2.09 2.09 2.26 2.00 1.90 2.11
23 2.03 1.81 1.82 1.81 1.81 1.96 1.78 1.71 1.87
31 1.85 1.66 1.67 1.66 1.66 1.79 1.66 1.61 1.72
63 1.47 1.34 1.35 1.35 1.35 1.44 1.37 1.33 1.40

Students 7 3.25 2.89 2.92 2.91 2.91 3.10 2.71 2.46 2.90
15 2.45 2.17 2.18 2.17 2.17 2.34 2.11 1.98 2.25
23 2.05 1.83 1.82 1.82 1.82 1.98 1.80 1.71 1.91
31 1.82 1.64 1.64 1.63 1.63 1.76 1.62 1.56 1.71
63 1.34 1.23 1.23 1.23 1.23 1.32 1.25 1.23 1.31

Tennis 7 6.26 5.89 5.98 5.98 5.98 6.15 5.64 5.52 5.96
15 5.29 4.95 4.98 5.00 5.00 5.15 4.71 4.64 5.08
23 4.78 4.45 4.48 4.49 4.49 4.64 4.24 4.18 4.60
31 4.49 4.17 4.19 4.20 4.20 4.33 3.98 3.92 4.33
63 3.69 3.41 3.42 3.43 3.43 3.55 3.27 3.24 3.56

Rotating city 7 10.73 10.14 10.46 10.52 10.52 10.77 10.64 10.57 10.60
15 8.88 8.38 8.59 8.60 8.60 8.87 8.75 8.70 8.76
23 7.56 7.11 7.26 7.24 7.24 7.52 7.41 7.37 7.43
31 6.66 6.25 6.35 6.32 6.32 6.61 6.50 6.47 6.53
63 4.33 4.29 4.33 4.30 4.30 4.53 4.46 4.13 4.53

(B) Percentage gain in number of examined rows
Bowing 7 0% 15% 13% 13% 13% 7% 17% 21% 13%

15 0% 14% 13% 13% 13% 6% 15% 18% 10%
23 0% 14% 13% 12% 12% 6% 14% 17% 9%
31 0% 13% 12% 13% 13% 6% 13% 15% 8%
63 0% 12% 12% 11% 11% 4% 12% 13% 7%

Deadline 7 0% 10% 9% 10% 10% 2% 15% 22% 9%
15 0% 10% 9% 10% 10% 2% 12% 17% 6%
23 0% 9% 9% 9% 9% 2% 10% 13% 4%
31 0% 9% 9% 9% 9% 1% 8% 11% 3%
63 0% 8% 8% 9% 9% 0% 5% 7% 1%

MaD 7 0% 11% 9% 9% 9% 4% 13% 18% 9%
15 0% 12% 10% 10% 10% 3% 11% 15% 7%
23 0% 12% 11% 10% 10% 3% 10% 13% 6%
31 0% 12% 11% 11% 11% 4% 11% 13% 7%
63 0% 11% 11% 11% 11% 3% 10% 11% 5%

Paris 7 0% 11% 10% 11% 11% 4% 18% 24% 12%
15 0% 11% 10% 11% Il% 3% 14% 19% 10%
23 0% 11% 10% 11% 11% 4% 12% 15% 8%
31 0% 10% 10% 10% 10% 4% ll% D% 7%
63 0% 9% 8% 9% 9% 2% 7% 10% 5%

Students 7 0% 11% 10% 11% 11% 5% 17% 24% 11%
15 0% 11% 11% 11% 11% 4% 14% 19% 8%
23 0% 11% 11% ll% 11% 4% 12% 17% 7%

62 C. Grecos et al. I Real-Time Imaging 10 (2004) 53-65

Table 1 (continued)

Sequence Window Low complexity scanning orders High complexity scanning orders
size (±)

MPEG2 Spiral ALT-SpiraJ YBT TBY Dithering Kiml Kim2 Kim3

31 0% 10% 10% 10% 10% 3% 11% 14% 6%
63 0% 9% 9% 9% 9% 1% 7% 9% 3%

Tennis 7 0% 6% 5% 4% 4% 2% 10% 12% 5%
15 0% 7% 6% 6% 6% 3% 11% 12% 4%
23 0% 7% 6% 6% 6% 3% 11% 12% 4%
31 0% 7% 7% 6% 6% 4% 11% 13% 4%
63 0°/11 8% 7% 7%~ 7% 4% 11% 12% 3%

Rotating city 7 0% 6% 3% 2% 2% 0% 1% 1% 1%
15 0% 6% 3% 3% 3% 0% 1% 2% 1%
23 0% 6% 4% 4% 4% 1% 2% 2% 2%
31 0% 6% 5% 5% 5% 1% 2% 3% 2%
63 0% 1% 0% 1% 1% -4% -3% 5% -4%

Average (%) 0 7.76 6.92 6.94 6.94 2.41 10.35 13.40 5.85

Table 2

sequence Window Low complexity scanning orders High complexity scanning orders
size (±)

MPEG2 Spiral ALT-spiral YBT TBY Dithering Kiml Kim2 Kim3

(A) Total encoding time (s)
Bowing 7 6.10 5.75 5.72 5.44 5.46 7.08 167 158 127

15 17.26 15.70 15.83 14.68 14.77 20.23 702 668 534
23 31.79 28.79 28.92 26.73 26.67 38.41 1558 1479 1181
31 48.68 44.23 44.41 40.81 40.88 61.95 2736 2599 2075
63 131.17 119.&3 119.76 115.86 109.3& 191.35 IQI50 9402 7503

Deadline 7 4.44 4.32 4.29 4.09 4.05 7.08 170 162 131
15 11.45 10.86 10.93 10.18 10.19 32.03 718 684 545
23 21.04 19.85 19.97 18.50 18.32 60.68 1591 1517 1211
31 32.92 3l.31 31.44 29.00 28.84 61.95 2806 2666 2127
63 97.83 93.53 93.53 86.94 85.98 191.35 10150 9683 7717

Man 7 7.06 6.91 6.98 6.62 6.63 11.73 173 164 133
15 20.51 19.55 19.71 18.40 18.40 60.47 721 692.38 550.08
23 38.00 35.72 36.11 33.19 33.26 67.41 1595 1529 1215
31 58.59 55.01 55.38 50.76 50.67 105.02 2801 2683 2133
63 155.12 144.10 144.79 131.40 130.64 283.04 10123 9696 7702

Paris 7 4.40 4.27 4.25 4.06 3.96 6.94 169 161 131
15 1l.35 1M2 10.83 9.87 9.86 20.13 717 680 544
23 21.27 19.78 19.96 18.26 18.24 38.80 1592 1509 1224
31 34.02 31.71 32.00 29.32 29.04 63.15 2803 2657 2154
63 106.93 100.90 101.13 92.45 92.01 205.54 10179 9660 7715

Students 7 4.60 4.42 4.47 4.19 4.15 7.26 17l 162 132
15 11.80 11.l4 11.21 10.28 10.30 20.57 722 685 548
23 21.45 20.19 20.27 18.49 18.40 38.90 1603 1520 1229
31 33.36 31.41 31.50 28.73 28.54 61. 70 2820 2672 2160
63 98.90 93.66 94.01 85.91 84.97 189.68 10182 9698 7736

Tennis 7 6.67 6.53 6.61 6.31 6.31 11.21 148 140 114
15 21.37 20.35 20.60 19.26 19.42 37.87 626 591 478
23 43.13 40.69 41.33 3&.27 38.42 77.74 1382 1305 1052
31 71.89 67.62 68.43 63.32 63.60 130.19 2430 2287 1846
63 235.93 220.57 223.62 206.99 205.51 429.98 8672 8199 6595

Rotating city 7 13.72 13.66 13.77 13.OJ 12.87 22.40 236 224 179
15 45.36 44.20 44.53 41.36 41.18 76.32 984 942 751
23 87.74 84.57 85.46 77.60 77.33 149.17 2195 2098 1649
31 138.60 132.36 lJJ.oJ 120.45 120.01 236.22 3869 3698 2903
63 392.46 365.45 36&.39 323.32 322.97 673.13 14391 13799 10952

C. Grecos et al. I Real-Time Imaging 10 (2004) 53-65 63

Table 2 (continued)

sequence Window Low complexity scanning orders High complexity scanning orders
size (±)

MPEG2 Spiral ALT-spiral VBT TBV Dithering Kiml Kim2 Kim3

(8) Speedup ratio
Bowing 7 1.00 0.94 0.94 0.89 0.90 1.16 27.39 26.06 20.90

15 1.00 0.91 0.92 0.85 0.86 1.17 40.70 38.72 30.99
23 1.00 0.91 0.91 0.84 0.84 1.21 49.01 46.54 37.18
31 1.00 0.91 0.91 0.84 0.84 1.27 56.21 53.40 42.64
63 1.00 0.91 0.91 0.88 0.83 1.46 77.39 71.68 57.21

Deadline 7 1.00 0.97 0.97 0.92 0.91 1.59 38.36 36.59 29.65
15 1.00 0.95 0.95 0.89 0.89 2.80 62.71 59.80 47.64
23 1.00 0.94 0.95 0.88 0.87 2.88 75.62 72.11 57.56
31 1.00 0.95 0.96 0.88 0.88 1.88 85.24 81.01 64.63
63 1.00 0.96 0.96 0.89 0.88 1.96 103.76 98.99 78.89

MaD 7 1.00 0.98 0.99 0.94 0.94 1.66 24.54 23.35 18.86
15 1.00 0.95 0.96 0.90 0.90 2.95 35.16 33.76 26.82
23 1.00 0.94 0.95 0.87 0.88 1.77 41.98 40.25 31.98
31 1.00 0.94 0.95 0.87 0.86 1.79 47.82 45.80 36.41
63 1.00 0.93 0.93 0.85 0.84 1.82 65.26 62.51 49.65

Paris 7 1.00 0.97 0.97 0.92 0.90 1.58 38.55 36.68 29.86
15 1.00 0.94 0.95 0.87 0.87 1.77 63.24 59.92 48.02
23 1.00 0.93 0.94 0.86 0.86 1.82 74.88 70.98 57.59
31 1.00 0.93 0.94 0.86 0.85 1.86 82.41 78.11 63.34
63 1.00 0.94 0.95 0.86 0.86 1.92 95.19 90.34 72.15

Students 7 1.00 0.96 0.97 0.91 0.90 1.58 37.32 35.43 28.72
15 1.00 0.94 0.95 0.87 0.87 1.74 61.26 58.09 46.46
23 1.00 0.94 0.94 0.86 0.86 1.81 74.74 70.87 57.33
31 1.00 0.94 0.94 0.86 0.86 1.85 84.54 80.10 64.75
63 1.00 0.95 0.95 0.87 0.86 1.92 102.96 98.06 78.23

Tennis 7 1.00 0.98 0.99 0.95 0.95 1.68 22.33 21.10 17.10
15 1.00 0.95 0.96 0.90 0.91 1.77 29.31 27.70 22.39
23 1.00 0.94 0.96 0.89 0.89 1.80 32.05 30.27 24.41
31 1.00 0.94 0.95 0.88 0.88 1.81 33.81 31.82 25.68
63 1.00 0.93 0.95 0.88 0.87 1.82 36.76 34.76 27.96

Rotating city 7 1.00 1.00 1.00 0.95 0.94 1.63 17.22 16.37 13.08
15 1.00 0.97 0.98 0.91 0.91 1.68 21.70 20.79 16.57
23 1.00 0.96 0.97 0.88 0.88 1.70 25.02 23.92 18.80
31 1.00 0.95 0.96 0.87 0.87 1.70 27.92 26.69 20.95
63 1.00 0.93 0.94 0.82 0.82 1.72 36.67 35.16 27.91

Average I 0.92 0.92 0.85 0.85 1.78 45.73 43.12 33.25
Speedup +0.08 +0.08 +0.15 +0.15 -0.78 -44.73 -42.12 -32.25

Table 3 SAD estimation. Further 16 comparisons are required in
Cost of operations for motion estimation per macroblock for various the EJO points for a total of 512 operations for the
scanning orders

MPEG-2 scanning order which does not require pre-
Scanning orders Cost of Operation count ratios processing overhead. The operation count ratios in this

operations with respect to MPEG-2 table are with respect to the MPEG-2 scan order and all
MPEG-2 raster 512 operations are assigned equal weighting. It can be seen
scan from the results that the operation count ratio increases
Dithering 512 only by 0.24 in the proposed adaptive horizontal/
Kiml 2051 4 times vertical scanning order, it does not increase for the Kim2 2131 4.16 times
Kim3 2096 4.09 times fixed order schemes proposed (spiralling inwards and
Spiral 512 1 alternating spiralling inwards) and it increases by 4 or
Alt-spiral 512 1 more times in other adaptive schemes in the literature.
Vbt and Tbv 636 1.24 times Finally, Table 4 shows the average PSNR values per

window size with a given channel and frame rate for
each tested sequence. It has to be noted that all the

well as the actual motion estimation operations. In this tested scanning orders give exactly the same PSNR
table, the raster scan order used in MPEG-2 requires values (per frame and on the average) for a given
256 absolute value computations and 240 additions for window size, channel and frame rates since they find the

64 C. Greeos et al. I Rea/~Time Imaging 10 (2004) 53-65

Table 4
Average PSNR in various window sizes for all tested scanning orders

Sequence Channel bit Frame Window MSE PSNR
rate(bits(s) rate(frame/s) size (dB)

Bowing 4,000,000 25 7 1.82 48.96
15 1.82 48.96
23 1.80 49.07
31 1.82 48.96
63 1.83 48.94

Deadline 4,000,000 25 7 3.57 44.58
15 3.58 44.58
23 3.57 44.58
31 3.58 44.57
63 3.58 44.56

MaD 5,000,000 25 7 2.69 46.20
15 2.69 46.20
23 2.70 46.19
31 2.71 46.19
63 2.71 46.17

Paris 5,000,000 25 7 3.99 43.94
15 4.00 43.93
23 3.99 43.94
31 3.99 43.94
63 4.00 43.93

Students 5,OOO,(){)() 25 7 2.28 47.49
15 2.28 47.49
23 2.28 47.48
31 2.28 47.49
63 2.28 47.48

Tennis 5,(){)(),000 25 7 6.22 41.41
15 6.17 41.47
23 6.17 41.47
31 6.17 41.47
63 6.18 41.46

Rotating city 5,000,000 25 7 10.32 38.28
15 10.32 38.49
23 10.10 38.59
31 9.70 38.78
63 7.22 39.55

same best matches in the reference frame. From the
results, it can also be observed that the PSNR does not
necessarily increase with bigger window size. This is a
side effect of choosing the best predictor for the
macro block to be encoded based on the minimum
SAD metric only and irrespective of how similar the
predictor is to the macro block to be encoded. This
entrapment to local minima has ramifications in both
the MSE and PSNR metrics as shown in Table 4.

In conclusion, the three proposed scanning orders
(spiralling inwards-alternating spirals and horizontalf
vertical) achieve average gains of 7.14% in terms of
examined macro blocks rows as compared to the MPEG-
2 raster scan order and are within 3% in terms of
average gains of other schemes in the literature requiring
much heavier pre-processing. They have the same or
very similar operation count ratios as compared to
MPEG-2, in contrast to other schemes involving pre
processing which increase the operation count ratios
more than 4 times. In terms of run time perfonnance,

the proposed scanning orders increase the speed-up ratio
by 0.12 on the average with respect to MPEG-2, as
compared to pre-processing schemes that decrease it by
39.7 times on the average. Finally, the proposed schemes
consistently outperform the dithering scanning order in
the average number of macroblock rows and run time
performance metrics, while they have the same or very
similar performance in terms of operation counts. For
these reasons, the proposed scanning orders could be
very attractive for reduced complexity initial estimation
of the motion field direction for one pass coding schemes
in real time applications.

5, Summary

Scanning orders have been greatly overlooked in the
video coding literature in the context of motion
estimation, although they have been very successfully
employed for increasing the compression efficiency in
the coding of OCT coefficients. The design of efficient
scanning orders, which reduce the computational cost of
the motion estimation, essentially entails complexity
localisation in the motion field direction of the reference
frame. This complexity localisation is unfortunately a
computationally intensive process which may render
such scanning orders unsuitable for real time video
coding system implementations. In this paper, three low
complexity scanning orders of similar performance are
proposed that are very competitive in terms of the
operation count ratio metric with respect to the MPEG-
2 raster scan order, show improvements of7.14% on the
average with respect to the number of examined
macroblock rows metric and they also show an increase
in speed-up ratio of 0.12 on the average as compared to
the standard. As compared to other work in the
Hterature, the proposed scanning orders require one
fourth of the operation count ratio and show an increase
in the speed-up ratio of 45 times on the average.

References

[1J MPEG software: http://www.mpeg.orgfMPEG/MSSG/
{2] Li R, Zeng B, Liou ML. A new 3 step search Algorithm for Block

Motion Estimation. IEEE Transactions on Circuits and Systems
for Video Technology 1994;4(4):438-43.

[3] Jain JR, Jain AK. Displacement measurement and its application
in interframe image coding, IEEE Transactions on Communica
tions 1981;COM 29:1799-806.

[4J Pennebaker W, Mitchel J. JPEG still image data compression
standard, New York: Van Nostrand Reinhold; 1994.

{51 Ghanbari M, The cross-search algorithm for motion estimation.
lEEE Transactions on Communications 1990;38:950--3.

{61 Lai-man Po, Wing-Chung Ma. A novel four step-search
aJgorithm for fast block motion estimation. JEEE Transactions
on Circuits and Systems for Video TechnOlogy 1996;6:313--7.

~---

C. Grecos et al. I Real-Time imaging 10 (2004) 5$-65 65

l71 Liu LK, Feig E. A block based gradient descent search algorithm
for block motion estimation in video coding. IEEE Transactions
on Circuits and Systems for Video Technology 1996;6:419-22.

I8J Tham IY, Ranganath S, Ranganath M, Kassim AA. A novel
unrestricted center-biased diamond search algorithm for block
motion estimation. IEEE Transactions on Circuits and Systems
for Video Technology 1998;8:369-77.

(9) Tourapis AM, Au QC, Liou M. Highly efficient predictive zonal
algorithms for fat block matching motion estimation. IEEE
Transactions on Circuits and Systems for Video Technology
2002;12:934-47.

(10) Chun-Ho Cheung, Lal-Man Po. Generalised partial distortion
search algorithm for block matching motion estimation. Thessa
loniki, Greece: IEEE ICIP; 2001.

[111 Kim IN, Byun SC, Kim YH, Ahn BH. Fast full search motion
estimation using early detection of impossible candidate vectors.
IEEE Transactions on Signal Processing 2002;50(9):2355-65.

(I21 Jong~Nam Kim, Tae-Sun Choi. A fast full search motion
estimation algorithm using representative pixels and adaptive
matching scan. IEEE Transactions on Circuits and Systems for
Video Technology 2000; JO: 1040--8.

[13] Lengwehasatit K, Ortega A. Probabilistic partial distortion fast
matching for motion estimation. IEEE Transactions on Circuits
and Systems for Video Technology 2001;11(2):139-52.

[l4} Langwehasatit K. Complexity Distortion trade-offs in image and
video compression. PhD Thesis, University of Southern Califor
nia, May 2000.

[15] Eckart S, Fogg C, ISO/lEe MPEG-2 software video codec,
Proceedings of SPIE 1995;2419:100-18,

116] ITU-T Recommendation H263 Software Implementation. Digital
Video Coding Group, Telenor R&D, 1995,

117) Kim IN, Choi TS, Computational Reduction using UESA
adaptive partial sum form gradient magnitude for fast motion
estimation, Proceedings if pes 1999. p. 107~11.

(18) Li W, Salari E. Successive elimination algorithm for motion
estimation. IEEE Transactions on [mage Processing 1995;4: 105--7.

(19) DeOliveira GC, A1caim A, On fast motion compensation
algorithms for video coding, in Proceedings of PCS 1997,
p.467-72.

(20) Lu JY, Wu KS, Lin JC. Fast full search in motion estimation by
hierarchical use of Minkowski's inequality (HUM£), Pattern
Recognition 1998;31:945-52.

(211 Coban MZ, Mersereau RM. A fast exhaustive search algorithm
for rate constrained motion estimation, IEEE Transactions on
Image Processing J998;9:769-73,

(22] Wang HS, Mersereau RM. Fast algorithms for the estimation of
motion vectors, IEEE Transactions on Image Processing 1999;
8:435-8.

(23) Gaa XQ, Duanmu CJ, Zou CR, A multilevel successive
elimination algorithm for block matching motion estimation.
IEEE Transactions on Image Processing 2000;9:501-4.

[24] Oh TM, Kim YR, Hong WG, Ko SJ. A fast full search motion
estimation algorithm using the sum of partial norms. Proceedings
of ICCE 2000. p. 236-7.

[25} Naito Y, Miyazaki T, Kuroda I. A fast full search motion
estimation method for programmable processors with a multiply
accumulator, Proceedings of ICASSP 1996. p. 3221-4.

126] Lin YC, Tai se, Fast full search block matching for motion
compensated video compression. IEEE Transactions on Commu
nications 1997;45:527-31,

[27J Do VL, Yun KY. A low power VLSI architecture for full search
block matching motion estimation.]EEE Transactions on
Circuits and Systems for Video Technology 1998;8:393--8.

[28] Patterson DA, Hennesy JL. Computer architecture: a quantitative
approach. 2nd ed, Los Altos, CA: Morgan-Kauffman Publishers;
1996.

[29} Cheung CK, LaiMan PO. Normalised partial distortion search
algorithm for block motion estimation, IEEE Transactions on
Circuits and Systems for Video Technology 2000;IO(3}:417-22.

[30] Tao B, Orchard MT, Gradient Based residual variance mooelling
and its Applications to Motion Compensated video coding. IEEE
Transactions on Image Processing 2001;10(1):24-35.

Group PC: Published National and International Conference papers on Parallelism and

the Software-Hardware Interface in Embedded Systems

PC1:

V. A. Chouliaras, J. 1. Nunez, 'A Scalar Coprocessor for accelerating the G723.1 and

G729A Speech Coders', proceedings of the IEEE International Conference on Consumer

Electronics (ICCE 2003), Los Angeles, California, USA, ISBN:0-7803-8838-0

PC2:

This paper presents the results of a first approach in developing a systematic

methodology for designing custom ISA extensions for telecom applications. The

target was the International Telecommunications Union (ITU-T) speech coding

standards G.723.1 and G.729.A. The study profiled the workloads and identified a

number of fixed-point extensions that demonstrated a significant reduction in the

dynamic instruction count of both speech coders. Subsequently, a scalar coprocessor

microarchitecture was proposed to encapsulate these new ISA extension, in the

context of a high-performance, dual-issue RISC microprocessor

V. A. Chouliaras, J. 1. Nunez-Yanez, S. Agha, 'Silicon Implementation of a Parametric

Vector Datapath for real-time MPEG2 encoding', Proceedings of the lASTED (SIP) 2004,

Honolulu, Hawaii, USA, ISBN: 0-88986-442-X

This contribution extends the methodologies developed over the past few years at the

Electronic Systems Design Group through targeting the MPEG-2 TM5 video coding

standard. A characteristic of the TM5 reference implementation is the abundance of

data and thread-level parallelism which is unfortunately, left to the system architect to

discover and recover. In particular, the block-matching inner-function of the ME

algorithm, function dist 1, is described in a mostly sequential way thus making

automatic vectorization virtually impossible. The paper follows the systematic

methodologies established by the author to characterize the workload, identify the

compute-intensive areas of the TM5 implementation, parallelize (through

vectorization) and subsequently, implement custom vector instruction ISA extensions.

These extensions were encapsulated in a parametric vector accelerator attached to an

open-source, configurable, extensible RISC CPU. Finally, three VLSI

implementations, for a number of vector register file configurations, were undertaken

on a high-performance 0.13 /lm, 8-copper layer CMOS process.

81

PC3:

V. A. Chouliaras, J. 1. Nunez, Fabrizio. S. Rovati, Daniele Alfonso 'A multi-standard video

coding accelerator based on a vector architecture " Proceedings of the IEEE International

Conference in Consumer Electronics (ICCE 2005), Las Vegas, Nevada, USA, ISBN: 07803-

8839-9

PC4:

The work of the previous contribution is expanded to accommodate the very latest

video coding standards such as MPEG-4 (integer-based XViD implementation) and

H264 (ST Microelectronics proprietary implementation, developed for very low

power, portable, consumer products). The same parallelization methodology as in PC2

was applied and significant reductions in the dynamic instruction count of the

applications were achieved. The contribution concludes with a suitably detailed

microarchitecture of a parametric vector accelerator tightly coupled to a configurable,

extensible 32-bit RISC CPU.

V. A. Chouliaras, J. A. Flint, Y. Li, 'Parametric Data-Parallel architectures for TLM

acceleration " Proceedings of the 3rd International Conference on Computational

Electromagnetics and Its Applications (ICCEA), Nov. 1-42004, Beijing, China

PC5:

This work quantified the benefits of exploiting the DLP in an electromagnetic

modelling 3D TLM kernel. Using the infrastructure developed for consumer

embedded applications, the joint study with Dr. James Flint started by re-writing the

SCN-TLM code in a vectorized fonn first and then, threading (statically assigning to

distinct CPU contexts) the data-parallel sections. A number of experiments were then

conducted which quantified with precision the algorithmic benefit (dynamic

instruction count reduction) of this application when configured to run on a

parametric, vector-floating-point processor.

V. A. Chouliaras, J. 1. Nunez-Yanez, T. R. Jacobs and Ashwin K. Kumaraswamy,

'Conflgurable Multiprocessors for high-performance MPEG-4 video coding', Proceedings of

the IEEE Annual Symposium on VLSI, May 11-122005, Tampa, Florida, USA.

A number of research groups and major industrial vendors have identified and

exploited DLP to a certain extent through ISA extensions, streaming memory systems

or a combination thereof. However, very few researchers have touched on TLP in

video workloads and this is one of the areas where the Electronic Systems Design

Group at Loughborough University has been particularly successful. This contribution
82

PC6:

targets the MPEG-4 (XViD) video coding standard implementation and details the

development of a custom PRAM simulator, the threading process of the MPEG-4

implementation and evaluates the theoretical performance of the parallelized XViD

encoder on the PRAM machine. The results clearly demonstrate a significant

reduction in the dynamic instruction count for each CPU context. The paper presents a

VLSI macrocell consisting of two modified Leon-2 embedded CPUs each of which

includes a custom, hardware-based barrier mechanism and has coherent level 1 data

caches. The multiprocessor interconnect is a single 32-bit wide AMBA bus.

Ashwin K. Kumaraswamy, V. A. Chouliaras, T. R. Jacobs, and J. 1. Nunez-Yanez, 'System

on-Chip Design Framework (SDF) unifying Specification Capture and Design Modelling',

Proceedings of the 2005 Electronic Design Processes (EDP) Workshop, April 6-8, Monterey

Beach Hotel, Monterey, California, USA.

The development of the parallelized algorithms and the vector and multi-threaded

microarchitectures required to execute them efficiently has been based on a number of

industrial methodologies that are consistently applied in embedded workloads. One

major drawback of these methodologies is the lack of automation in the process.

Clearly, parallelizing applications at the data and thread level is a time-consuming

process that can be executed by an expert human programmer, should time is not an

issue, as there are no mainstream vectorizing and paralIelizing compilers available to

embedded CPU designers. The final form of parallelism, instruction level parallelism,

is exposed in the vast majority of applications via the compiler illustrating a degree of

maturity in the automation of the compilation process. The same cannot be claimed for

the hardware design flow which segments, in an ad-hoc manner, the design space into

programmable (CPU-based) and non-programmable (hardwired) domains. The CPU

based domain has been studied quite thoroughly since it devolves the hardware

complexity to the compiler whereas the hardwired solutions space is the primary

candidate for automatic exploitation via high-level specifications such as SystemC.

This contribution is the first report of a major effort in fusing together two

technologies, nearly cycle-accurate system-on-chip simulation and UML-based

integrated system specification capture. The successful fusing of these processes is a

significant milestone for the Electronic Systems Design Group as it will permit the

precise and unambiguous specification and automatic implementation of large-scale

microarchitecture blocks and sub-systems.
83

PC7:

V M Dwyer, S Agha and V Chouliaras, 'Low Power Full-Search Block Matching using

reduced bit SAD values for early termination " Proceedings of Mirage 2005 International

conference on Computer Vision/Computer Graphics collaboration techniques

pcs:

This work presents an algorithmic optimization for reducing the power consumption

of an MPEG-2 TM5 encoder via using a truncated sum-of-absolute-differences (SAD)

metric. Typically, full-search motion estimation relies on the computation of an error

term which describes how well a macroblock in the current frame matches a

macroblock within a search window in the reference frame. So far, designers have

been utilizing full accuracy for performing the arithmetic of the well known SAD

computations. In this work, we propose a modified arithmetic scheme in which only

the upper four (most-significant) bits of the luma component of the reference and

current blocks participate in the computation of the SAD error term. A correction

mechanism is implemented that reverts to full-width arithmetic if certain encoding

conditions are met.

Tom R. Jacobs, Vassilios A. Chouliaras and Jose L. Nunez, 'A thread and data-Parallel

MPEG-4 Video Encoder for a System-On-Chip Multiprocessor', accepted for oral

presentation at the IEEE 16th International Conference on application-specific architectures

and processors (ASAP 2005), Samos, Greece, July 23-25 2005

PC9:

Following the successful exploitation of parallelism at the thread level, this

contribution elaborates on a combined thread and data parallel implementation of the

MPEG-4 XViD video coding standard. It is shown that both types of parallelism

should be exploited for optimal execution on power-conscious consumer appliances

and presents a modified VLSI implementation of the multi-processor Leon-2 based

platform in which each CPU core incorporates the tightly-coupled vector accelerator

implementing a subset of the MPEG-4 (PJ3) and the full set ofMPEG-2 (PC2) vector

extensions.

S. R. Parr, K. Koutsomyti, V. A. Chouliaras, J.1. Nunez, D. J. Mulvaney, 'Configurable

Scalar and Vector Coprocessors for accelerating the G.723.1 and G.729.A speech coders',

accepted for oral presentation at the lASTED International Conference on Signal and Image

Processing (ACIT-SIP), Novosibirsk, Russia, June 20-24, 2005

84

This contribution provides substantially more research data to those already published

in the lEE Electronics Letter contribution (paper PJ2). In particular, it consolidates all

the results for both G.723.1 and G.729.A speech coders encoding and decoding, all

test vectors and all optimization methods including combined scalar and vector

accelerators. The paper finalizes the programmers' model and proposes a highly

detailed parametric vector accelerator with each scalar lane being a 2-way SIMD

configuration as the implementation of choice.

85

Paper PCI: V. A. Chouliaras, J. 1. Nunez, 'A Scalar Coprocessor for accelerating the

G723.1 and G729A Speech Coders', Proceedings of the IEEE International Conference on

Consumer Electronics (ICCE 2003), Los Angeles, California, USA, ISBN:0-7803-8838-0

86

A Scalar Coprocessor for Accelerating the G723.1 and G729A speech coders
Vassilios A. Chouliaras, Jose. L. Nunez

Department of Electronic and Electrical Engineering
University ofLoughborough

Loughborough, Leicestershire LEll 3TU

Abstract: A scalar accelerator that reducts
significantly the complexity of the ITU-T G723.l and
G729A speech coders is described. Preliminary
architecture space exploration indicates up to 49%
reduction in the total number of instructions executed
through the introduction of a few custom instructions
and small changes to the reference C source code. The
accelerator is designed as an autonomous unit that can
be attached to a configurable RISe CPU where it
makes use of the host register file and Load/Store
pipeline.

Introduction
Speech compression is utilized in a multitude of
applications including amongst others VolP networks and
digital satellite systems. Typical consumer products
comprise multimedia terminals, digital dictation machines,
videophones and IP phones. The G723.l recommendation
[1] in particular was designed to standardize telephony and
videoconferencing over public telephone lines (POTS) and
is part of the lTU H.324 standard. lTU-T
recommendations G723.1 and G729A [2] belong to the
Code-Excited Linear-Prediction (CELP) category of
speech coders.
This work describes architecture (instruction) extensions
for the efficient execution of the above vocoders. These
extensions are being implemented in a moderate
complexity datapath (coprocessor) attached to a
configurable embedded processor.

Problem Formulation
To be able to utilize speech compression in a portable
consumer product, it is essential to provide high
performance, Iow-power embedded DSP hardware.
Previous work includes the progressive transformation of a
GSM vocoder into VLSI hardware using the SpecC
Methodology [7]. In [8]. a custom VLIW-coprocessor is
described to accelerate the half-rate GSM vocoder. In
addition, there is a significant body of research into the
automatic/semi-automatic targeted instruction set
generation [3, 4, 5, 6]. Currently however, state-of-the-art
configurable processor vendors follow a manual approach
in extending their instruction sets. We take a similar
approach since our hardware baseline is such a processor.
We profile, measure and manually customize the ISA of a
32-bit MIPS-Iike processor such as to match precisely the
requirements of our workload.

Experimental Method and Results
We utilized the Simplescalar Toolset [9] to compile and
simulate our workloads. Sim-profile was extended to

recognize the new instructions and the workloads where
run with and without the new instructions switched on.
The basic _ op.c package was modified such that each
function mapped to hardware was replaced by three to five
inline assembly statements. These functions were declared
themselves as inline however, no performance difference
was measured leading to the conclusion that the GCe
2.7.3 compiler automatically inlined them. Both workloads
where compiled with full optimisations (-07).
Figures t and 2 depict the normalized complexity of the
G723.l and G729A vocoders as a function of the
extension instructions.

G723.1

'-"'"
L,.MAC

L,.MULT

MULT

OIV_S

NORM_L

NORM_S

'-'''
ROUND

L_SUB

L_AOO

NEGATE

L,.SHR

L,.SHL

'"
'"'

ABS_S

""
'"

SATURE

0.50 0.60 0.70 0.80 0.90 1.00
Normlrlzld Compllxlty

Figure I: G723.1 Normalized Complexity

We observe that most benefrt is achieved with the
introduction of a pipelined multiply-shift (L_MULD,
mUltiply-add (L_MAC), 32-bit add/subtract-saturate
(L_ADD, L_SUB), 32-bit shifts with negative amount
support (L_SHL and L_SHR), round and saturate
instructions.
Figure 3 depicts a high-level view of a high-performance
scalar processor (with limited dual-issue capability)
incorporating the proposed datapath. Instructions are
dispatched either to the integer pipeline or the extension
datapath in the dispatch stage. The 16xt6 multiplier is
pipelined in order not to penalize the main processor cycle
time. Single~cycle operators including all arithmetic, shifts

and saturation are handled during the Dcache2 stage where
they are registered prior to being passed to the main
pipeline. This is important since the setup time of the
embedded RAM block (Register file) is typically two to
three times longer than the setup time of an array of flops
in a high-performance 0.13 urn Silicon process thus
creating a potential critical path in the Dcache2 stage.

MULl

DIV_S

NORM_L

NORM_S

L_ABS

ROUND

L..SUB

L~DD

NEGATE

L_SHR

L_SHL

SHR

SHL

ABS_S

SUB

ADD

SATURE

G729A

0.50 0,60 0.70 0.80 0.90 1.00

NormaUud Complexity

Figure 2: G729A Normalized Complexity

Conclusions

_Decoder

aCoder

We have achieved close to 49% reduction in the
algorithmic complexity of the ITU-T G723.1 and G729A
speech coders. We are currently investigating a decoupled
microarchitecture: Preliminary results indicate further
significant reduction in the vocoder complexity through
introducing a dedicated register file to the accelerator.

References
1. ITU-T Recommendation G.723.1, 'Dual Rate Speech

coder for multimedia communications transmitting at
5.3 and 6.3 kbitsls', 3/96

2. ITU-T Recommendation G.729, 'Coding of speech at
8 kbitsls using conjugate-structure algebraic-code
excited linear-prediction (CS-ACELP)', 3/96

3. P. Faraboschi, G. Brown, 1. Fisher, 'Lx: A technology
platform for Customizable VLIW embedded
computing', Proceedings of the 27th Annual
International Symposium on Computer Architecture,
Vancouver, Canada

4. Vinod Kathail, Shail Aditya, Robert Schreiber, B.
Ramakrishna Rau, Darren C. Cronquist, Mukund
Sivaraman, 'PICO: Automatically designing custom
computers', IEEE Computer, 35(9), September 2002

5. M. Arnold, H. Corporaal, 'Designing Domain-specific
processors', Proceedings of the 9th International
Workshop on Hardware/Software Codesign,
Copenhagen, April 200 I

6. H. Choi Jong-Sun Kim, Chi-Won Yoon, In-Cheol
Park, 'Synthesis of application specific instructions
for embedded DSP software', IEEE Transactions on
Computers, 48(6) 603-14, June 1999

7. A. Gerstlauer, S. Zhao, D. Gajski, 'Design of a GSM
Vocoder using the SpecC methodology', TR ICS-99-
11, University ofCalifomia, Irvine

8. M. Prasad, P. Arcy, M. Diamondstein, H. Srinivas,
'Half-Rate GSM Vocoder Implementation on a Dual
Mac Digital Signal Processor', Proceedings of the
1997 IEEE International Conference on Acoustics,
Speech and Signal Processing

9. D. Burger, T. Austin, 'Evaluating Future

w •
~
Q

N
W •
~
Q

u

<
" 00

Microprocessors: The SirnpleScalar Tool Set'
http://www.simplescalar.com

~~~"~+ 

a-- 'SG·GPU·_·- .. 
Front-end GPR 

• "12) 

" 

~ 

w • 
~ 
0 

~ • 
~ 
~ 

Figure 3: High-level processor pipeline 



Paper PC2: V. A. Chouliaras, J. L. Nunez-Yanez, S. Agha, 'Silicon Implementation of a 

Parametric Vector Datapath for real-time MPEG2 encoding', Proceedings of the lASTED 

(SIP) 2004, Honolulu, Hawaii, USA, ISBN: 0-88986-442-X 

89 



SILICON IMPLEMENTATION OF A PARAMETRIC VECTOR 
DATAPATH FOR REAL-TIME MPEG2 ENCODING 

V. A. Chouliaras, J. L. Nunez-Yanez, S. Agha 
Department of Electronic and Electrical Engineering 

University of Loughborough 
UK 

v.a.chouliaras@lboro.ac.uk 

ABSTRACT 
We discuss the architecture specification, RTL 
development and ongoing physical implementation of a 
parametric vector/SIMD accelerator for real-time MPEG2 
encoding. The MPEG2 TM5 reference code was 
systematically optimized through tapping the Data-Level
Parallelism (DLP) of the inner loop of Motion Estimation 
(ME) via custom vector extension instructions. We show 
that these instructions reduce the computational 
complexity of the encoding process by up to 60% for full
search motion estimation. The combined RISC 
CPUNector accelerator is being implemented as a hard 
macro. This work focuses on the flow from algorithmic C 
to a placed and routed database for the datapath of the 
vector accelerator in a high-performance O. \3 I'm, 8-layer 
copper silicon process, for a number of register file 
configurations. 

KEYWORDS 
Video coding, multimedia processing, coprocessors, 
computer architecture 

1. Introduction 

The MPEG2 video coding algorithm is a very popular 
standard for lessy video compression used in many 
consumer products such as DVD players/recorders and 
digital set top boxes. The standard was introduced in 
1994 by the ISOIITU-T (I] organization to support good
quality video with transmission rates ranging from 4-80 
Mbits/s. The MPEG2 codec is based around the discrete 
cosine transformation of either the residual data, obtained 
after performing motion estimation and compensation 
when removing redundancy within frames (inter-frame 
coding), or the originalluminance/chrominance data when 
removing redundancy within the same frame (intra-frame 
coding). These transformations are followed by 
quantization which removes high spatial frequency 
components, significantly reducing the required 
transmission rate while maintaining good visual quality. 

A significant amount of research is currently being 
conducted into alternative algorithms such as those based 
in wavelet transforms [2] and fractal-based coding 
algorithms [3]. Nevertheless, the DCT-based methods are 
presently much more popular than the other two and form 

the basis of all international standards for digital video 
coding. These standards are summarized in Table I. 

Table 1: neT-based video coding standards 

Std Year Body Rate Usage 
H261 1990 ITU-T 64 Kb/s ISDN 

Video 
phone 

MPEGl 1993 ISO 1.2 Mh/s CD-
ROM 

MPEG2 1994 ISO/ITU-T 4-80 Mb/s DVD, 
HDTV 

H263 1995 ITU-T 64 Kh/s PSTN 
Video 
Phone 

MPEG4 2000 ISO 24-1024 Many 
Kh/s 

H264 2003 ISO/lTU-T <64 Kb/S Many 

Two recently new video coding standards are the 
MPEG-4 [4] and H264 [5], introduced in 2000 and 2003 
respectively. These algorithms achieve even lower bit
rates and higher PSNR values compared to MPEG2 
through increasingly sophisticated techniques. This 
directly translates into significantly higher raw 
computational requirements (at least an order of 
magnitude increase for H264) and increased power 
consumption. This, in conjunction with the rIsmg 
importance of digital video transmission (through the 
expected phasing out of analog TV over the next years 
and the popularity of video-capable embedded devices 
like mobile phones, portable DVD players) has spawned 
significant research and development efforts both in 
industry and academia into· a new generation of 
sophisticated hardware platforms. These platforms utilize 
an increasing number of embedded configurable 
processors the most significant of which are reviewed in 
the next section. 

2. ConfigurabJe and reconfigurabJe 
architectures 

In an attempt to reach near-hardwired performance 
levels, embedded processor vendors have produced CPU 
architectures that can be extended to closely match the 
processing and memory requirements of the required 



algorithm. This is the domain of (statically) configurable, 
extensible processors. It is interesting to note that 
traditional embedded CPU designers like ARM and MIPS 
have jumped in the configurable CPU bandwagon of 
pioneering companies like ARC and Ten.ilica via 
closely/loosely coupled coprocessors (ARM, MIPS) or 
datapath accessibility (MIPS). In the last few years, active 
research in the domain of very-Iong-instruction-word 
(VLIW) and dynamically configurable architectures has 
lead to the commercialization of more exotic architectures 
from vendors like SiliconHive, Aspex, Elixent and Cradle 
to name a few. The main vendors, architectures and 
characteristics of both configurable and reconfigurable 
offerings are summarized in Table 2: 

Table 2: Configurable and Re-configurable processor 
vendors and architectures 

Vendor 
ARC 
[6] 

Tensilica 
[7] 

ARM 
[8] 

microarchitecture 
A4 (4 stages) 
AS (4 stages) 
A600 (S stages) 
A700 (7 stages) 

Xtensa (5 stages) 

ARM9 (S stages) 
ARMIO (6 stages) 
ARMII (8 stages) 

MIPS M4K (S stages) 
[9] 

SiJiconHive A vispa+ 
[10] 

Aspex LineDancer 
[11] 

Elixent DFA-1000 
[12] 

Craddle MDSP 
[13] 

Characteristics 
Scalar, 16/32·bit 
(modeless except A4), 
32·bit datapath, 
configurable, 
extensible 
Scalar, 16/24 bit 
(modele,,), 32-bit 
datapath, 
configurable, 
extensible 
Scalar 16/32 bit 
(mode-bit), 32·bit 
datapath, coprocessor 
IIF 
Scalar, 16/32-bit 
(mode bit), 32·bit 
datapath, coprocessor 
IIF, datapath 
extension technology 
Instructions up to 768 
bits long (ULJW). Up 
to 60 instructions per 
cycle 
Combines a SIMD 
parallel processor 
with a RISC 
controUer 
Consists of an array of 
4·bit ALUs connected 
using a routing 
network of SRAM
based switches. 
Multiple RISC, DMA 
and DSP engines 
arranged in quads, in 
a two level 
hierarchical bus 
structure with local 
memories. 

3. Architecture-level results 

The MPEG2-TM5 reference software was initially 
profiled, in native mode (x86) as well as on a simulated 

processor which implements the Simplescalar ISA [14]. 
We used 12 video sequences (fog, snowfall, snow lane, 
cup, deadline, office, paris, rotating city, student, mother 
and daughter, bowing, tennis), each consisting of 25 
frames. Profiling was done for full-search [15], three-step
search [16], four-step-search [17] and hierarchical
diamond-search [18]. As shown in Figure I (full-search) 
and Table 3 (algorithmic search methods), the major 
complexity contributors are the inner loop of the motion 
estimation function (DISTI) which computes the error of 
the current macro block over an arbitrary reference 
macroblock. This function is called for a\l macroblocks in 
the search window of the reference frame and is 
independent of the search algorithm utilized. 

For full-search ME in particular, our profiling results 
demonstrate that the DISTI function complexity ranges on 
average from 51 % to 72% of the unmodified reference 
software complexity for a search window of 6 to 62 pels 
respectively. At the same time, the complexity of FDCT 
and FULL_SEARCH varies with search window range 
with the former decreasing and the later increasing. 

Figure 1: Full-search ME fractional complexity 
distribution 

The algorithmic methods on the other hand exhibit 
near-constant behavior over the search range. Table 3 
shows the average complexity distribution of the three 
identified functions for all remaining ME methods, 
averaged over all video sequences. 

Table 3: Relative Complexity Distribution: 
Algorithmic ME 

Function DistI FDeT Full Others 
Search 

3SS 
4SS 
lIDS 

43.55 
42.23 
41.54 

18.09 
18.57 
18.57 

1.55 
1.04 
1.93 

36.80 
38.16 
37.95 

It is therefore clear that the inner loop of the ME 
computation is the most processing-intense function and 
one that would provide the major performance benefit if 
accelerated successfully. The DIS TI function was 
subsequently recoded to expose the data-level-parallelism 



and in the process, a vector ISA was identified. Figure 2 
depicts the average complexity reduction for full-search 
:ME, across all video sequences, over a search range of 6-
62 pels and maximum vector lengths of 32, 64 and 128 
bits. It demonstrates an increasing algorithmic complexity 
reduction with increasing search range due to the 
introduction of three vector instructions. These vector 
extensions are discussed in the next section. 

We further observe that the difference in complexity 
reduction between the 32-bit (4 bytes) and 64-bit (S-bytes) 
and between 64-bits 128-bits (I6-bytes) averaged over all 
sequences, ranges between 4.4% to 9.9% and 2.2% to 5 % 
respective1y, over the search window range. This 
demonstrates that a datapath width of 64 bits 
(VLMAX=8) presents a good design compromise in terms 
of area-perfonnance. 

Fraotlonal oiinp,exlty r,~d~~ilon',::;+' 
,Full-search ME' ",,' 

18 2~ 38 ~ 

i, Search ~~"g. (P.lst;:,':' 

Figure 2: Average fractional Complexity reduction 
over all sequences vs. Search range, vs. VLMAX 

4. Vector ISA and Programmers Model 

This section discusses the programmer-visible part of 
the accelerator. Figure 3 shows the extra state added on 
top to the existing Sparc VS processor state. 

32 VLMAX*8 

m 
! I 

VRO 

VR1 

VR2 
VR4 

i 1 i 
SACC 

VLEN 

Figure 3: Accelerator Programmers Model 

There are S 32-bit scalar registers, used primarily for 
memory address calculation, a parametric scalar 

accumulator used when executing the vector SAD 
instruction, the Vector length register VLEN which 
specifies the number of byte elements of the target vector 
register that will be affected by the currently executing 
vector instruction. Finally, there are up to VR_MAX, 
parametric-length vector registers (maximum length can 
be set to any value between 4 and 1024 bytes at 
elaboration time) that are used to hold the luminance data 
prior to executing the VSAD operation. 

The coprocessor supports a number of vector operate, 
load/store and RiSe communication instructions. These 
are detailed in [19] by the authors. Table 4 illustrates the 
vector compute instructions supported by the parametric 
datapath: 

Command 
VSAD 

Table 4: Datapath Instructions 

Description 
Compute the absolute value of the 
difference of two S-bit numbers. 
Accumulate result into scalar 
accumulator 

V AVG2SAD Average two 8-bit numbers and compute 
the absolute value of the difference of 
the average with a third 8-bit number. 
Accumulate result into scalar 
accumulator 

VAVG4SAD Average four S-bit numbers and compute 
the absolute value of the difference of 
the average with a fifth 8-bit number. 
Accumulate result into scalar 
accumulator 

5. Parameterization 

A particular characteristic of our approach is the high
degree of parameterization starting from the algorithmic 
level, all the way down to the physical implementation. 
The parameterization constants belong to one of four 
different groups as shown in Table 5: 

Table 5: System par.meterization 

Level Parameters DescriEtion 
Algorithm Maximum Vector These parameters 

length (VLMAX) have a direct effect 
Maximum number in the performance 
of vector registers of the vectorized 
(VR_MAX) DISTI function 

RTL Vector register file Affect the RTL 
implementation implementation of 
(SRAMlFloplLatch- the coprocessor. 
based) Includes the silicon 

area, power 
consumption and 
max operating 
frequency 

RTL Fast bypassing Affects the timing 
of the RTL 



Physical 
(pre
route) 

Physical 
(Route) 

Floorplan aspect 
ratio, utilization 

Power grid 
configuration 
Optimization effort 

implementation of 
the bypassing logic 
within the vector 
pipeline. Latency 
can be either 0 
(default) or I (fast 
implementation) 
Affect the physical 
domain 
(routability, power 
consumption, area, 
IR-drop) 
Affect the final 
result of the router 

At the highest level is algorithmic parameterization via 
VLMAX and VI\...MAX. These affect the geometry ofthe 
vector register file and the number of scalar datapaths that 
constitute the vector pipeline. For the MPEG2 TM5 
workload, a VR_MAX of 8 is sufficient for the stall-free 
implementation of the vectorized DISTl function. 
Similarly, a VLMAX of 16 bytes (I28 bits) and 
subsequently, a vector datapath consisting of 16 scalar 
elements, is the default parameter for the workload. Future 
algorithmic optimization will allow the use of 
VLMAX> 16, further accelerating the workload. 

At the RTL level, we can spedlY the implementation of 
the vector register file using dual-port SRAMs, flops or 
latches. In addition, a critical path in the result bypassing 
from the vector execute stage (EXEC) back to register 
fetch (DECODE stage) can be removed through the 
FAST_BYPASS parameter. This would move pipeline 
forwarding to EXEC2-DECODE resulting in I-cycle 
latency across dependent vector-operate instructions. 
However, a maximum of 8 vector registers suffices to 
ensure that no dependent instructions appear back-ta-back 
during the SAD computations in the degenerate (32-bit) 
case. 

At the physical planning level (Physical pre-route), the 
user can specify minimum and maximum floorplan aspect 
ratios and target utilization and step values for each. A 
scripting mechanism controls the physical synthesis phase, 
iterating across the aspect ratio range, for all utilization 
values. The scripts collect the area/performance output 
from the synthesizer in a final results file which can be 
viewed in a spreadsheet. This is potentially the most time
consuming phase of the investigation and one that benefits 
the most from a multiprocessing/distributed processing. 

The last level of parameterization directly affects the 
QoR of the routing phase. This includes the power grid 
configuration (metal layers, horiwntal/vertical spacing) 
and the optimization effort for the router. 

6. Coprocessor RTL Implementation 

Figure 4 depicts the combined scalar processor/vector 
coprocessor in the context of a SoC sub-system. Our 

microarchitecture utilizes the industry-standard AHB bus 
[20) to connect the streaming masters (Scalar CPU, DMA 
engine and Coprocessor LSU) to a single memory slave 
(pC133 SDRAM controller). The AHB datapath is 32-bits 
wide and clocked at the same rate as the rest of the 
system. 

Scalar CPU;':!;; (~oprocessor 

0 

lE:xterrlar Core CPU 
,~ Coprocessor 

lMemorY"" 
Datapath 

.ci .. l l 
11 

SDRAM I (off-chip) ICACH~ !.~ DCACHE]~ I,J VDCACHE 

I·;t¥t '4 'r;, t. t 
r:1 SDRAM C1rt J ~tus_~?ntrOI!~{ I I BUll Controller 
~ (AHB Slave) AHB Master (AHB Master) 

I 1 AHB I 

Figure 4: Coprocessor SoC Kernel 

Figure 5 shows a detailed view of the microarchitecture 
of the combined processor/coprocessor indicating the bi
directional communication channel across the scalar CPU 
and the accelerator. 

Figure 5: Accelerator Microarchitecture 

The main CPU is a standard 5-stage RiSe pipeline with 
the synchronous register file access taking place on the 
falling edge of the second stage (DECODE) due to 
architectural reasons [21). A write-through data cache 
with three non-collapsing write buffers and AHB snooping 
ability is included and instructions are fetched from the 
parametric Instruction Cache. 

The Coprocessor is segmented into three major 
sections: The datapath, the Memory Pipeline and the 
control Pipeline. 



There is a bi-directional communication channel 
between the main RISC CPU and the vector accelerator. 
This is build on-top of the existing coprocessor IIF. 
Typical RIW transactions are depicted in Figure 6: 

>-, 
, .h-

~Jn,holdn 

poopJn ..... lid 

I 

poo~jI.din[31 :lI J 

I pooP_°ultl1-dou'0{31:0 

poop_ou1[O].holtln 

"" d.ta ° 

h-

m= 

I L 

"'----~ ~ h-
'--

'---- 1-1 

mvor d.", ° m~ 

d.\I.~"'proc 

", 

~l .. ",outVl'<l~ 
,~ 

L 
h holdn __ 

M'~ -- J 

Figure 6: Coprocessor I/F Transactions 

7. Vector Datapath Hard Macro 

, 

~ 
'--

M 

The combined processor-coprocessor architecture is 
currently being implemented as a hard macro, in the 
context of an AIill-based SoC Kernel for video coding 
acceleration, targeting a high-performance, 0.13 I'm, 8-Cu 
silicon process. A highly-automated scripting 
methodology was used which, in conjunction to the design 
parameterization, can exhaustively probe the synthesis as 
well as the physical implementation space for each 
physical cluster of the processing kernel. 

For this work we choose the parametric vector datapath. 
The scripting process iterated over tens of potential 
implementation candidates of the physical cluster and 
achieved a local minimum at an aspect ratio of 0.4-0.6 
(width:height) and a pre-route utilization of 85%, for the 
RAM-based register file configuration. Subsequently, the 
aspect ratio was fixed at 0.5 for all the vector register file 
configurations. Figures 7, 8 and 9 depict the floorplan and 
layout of the vector datapath cluster for SRAM, Flop and 
Latch-based vector register file configurations 
respectively. 

Our results indicate that very high post-route silicon 
utilization is achievable however, at the expense of 
operating frequency. Congested designs like the flop and 
latch-based versions achieved significantly better pre
layout (post-placement) timing to that depicted in the table 
above. The latch-based configuration in particular was 
penalized by the routing of a second, double-frequency 
clock used to generate the write-strobe. The critical path 
in all designs was inside the reduction logic and no 
register re-timing was attempted. The physical results are 
summarized in Table 6. 

Table 6: Datapath physical macro data 

Config Fmax Util Std Cells Area 
(MHz) (%) + RAMS (I'm') 

SRAM 312 93.02 26777+5 457x914 
(417689) 

Flops 

Latch 

278 88.28 59084+0 

229.7 91.76 46519+0 

460x938 
(431480) 
488x1003 
(489464) 

Figure 7: RAM-based VRF configuration 

Figure 8: Flop-based VRF configuration 



Figure 9: Latch-based VRF configuration 

8. Conclusions and future work 

This work discussed the architecture specification and 
physical implementation of a parametric vector datapath. 
Starting at the algorithmic level, we applied systematic 
modeling and transformation techniques to expose and 
evaluate the Data-Level-Parallelism of the inner loop of 
the Motion Estimation algorithm. In the process, we 
developed a custom, vector ISA which was implemented 
as a tightly-coupled coprocessor, attached to a RlSC CPU. 
By targeting only the inner loop of the ME we are able to 
leverage our microarchitecture to accelerating a number of 
Algorithmic ME methods without modification. Through 
following a highly-parameterized design approach, we are 
able to specif}! top-level architecture, microarchitecture, 
timing and physical implementation constraints which are 
propagated down the implementation flow via a scripting 
mechanism. In this way, we are able to exhaustively probe 
the implementation space of our microarchitecture and 
converge to an appropriate physical solution. Ongoing 
work takes place in using this methodology at the SoC
kemellevel where the described accelerator datapath, and 
its control and memory pipelines are connected to the 
controlling RISC CPU thus, forming a complete SoC 
computation kernel for real-time MPEG2 video encoding. 

Architectural exploration results indicate further 
significant improvement through the vectorization of the 
standard, floating-point forward-DCT algorithm, at the 
expense of introducing floating-point operations in a 
consumer-SoC form-factor which however, contradicts the 
economics of consumer-SoC design. Additional research 
will therefore probe the architecture space for a number of 
integer-based forward DCT algorithms and their 

vectorization benefit. We expect to utilize much of our 
existing hardware infrastructure in this process. A further 
software-based optimization comes in the form of spatial 
optimization (re-arrangement) of the luminance data in 
order to accommodate wider (>16 bytes) vectors. It is 
expected that the increase in processing complexity 
required to restructure the luminance arrays will be 
amortized over greater vector lengths. 

Finally, the last and potentially very significant source 
of parallelism in block-based video coding algorithms is 
Thread-Level Parallelism. In this case, multiple processor 
contexts execute different sub-graphs of the control-flow 
graph of the algorithm while maintaining sequential 
semantics through Fork/Join operation. Our results 
indicate that static-threading of the Full-search motion 
estimation and Forward DCT computations provides very 
significant extra benefit which will complement the Data
Level-Parallelism optimizations presented in this work. 
The Electronics Systems Design Group at Loughborough 
University actively pursues this route. 

References 
[I] S. Liu, 'Peiformance comparison of MPEGl and MPEG2 Video 

compression standards " 41 SI IEEE International Computer 
Conference COMPCON 96, pp. 25-28, 1996. 

[2] P.Orbaek, 'A real-time software video codec based on wavelets', 
Proc. OfIntl. Coni On Communication Technology (IFIP). 2000. 

[3) 1. Streit, L. Hanzo, 'A Fractal Video Communicator', IEEE 
Vehicular Technology Conference (VTC). pp. 1030-1034, 
Stockholm, Sweden, 1994. 

[41 S.Vassiliadis, G. Kuzmanov, S. Wong, 'MPEG-4 and the N~ 
Multimedia Architectural Challenges " Proe. 15 th International 
Conference on Systems for Automation of Engieering and 
Research (SAER-2001), pp. 24-31, Bulgaria, 2001. 

[S} 'Emerging H26L Standard: Overview and TMS320C64x Digital 
Media Platform Implementation " White Paper, DB Video Inc., 
Vancouver, Canada, 2002. 

[6] http://wwwarc.com/productsISOC/microprocessors/arcprocessors/ 
index html 

[7J http://www.tensilica.com/html/configurabilitv.html 
[8] http://www.arm.com/productslCPUs/embedded.html 
[9] http://www.mips.com/content/Products/CoresJ32-BitCores 
[to] www.siliconhive.com 
[11] W\\oW.aspex-semi.com 
{12] www.elixent.com 
[13] www·cradlecom 
(14] O. Burger, T. Austin, 'Evaluating Future Microprocessors: The 

Simplescalar Tool Set', http·l/wwwsimplescalar.com 
[15] http://www.mpeg.orgIMPEGfMSSGI 
[16] Zeng and Liu 'A new 3 step search Algorithm for Block Motion 

Estimation', IEEE Transactions on Circuits and Systems for Video 
Technology, Vol. 4, No 4, Aug. 1994. 

(17] Lai-man Po and Wing-Chung Ma, 'A novel Jour step-search 
algorithm lor last block motion estimation', IEEE Transactions on 
Circuits and Systems for Video Technology, vo1. 6, pp. 313-317, 
1996. 

[18] l.Y.Tharn, S.Ranganath, M.Ranganatb and A.A.K.assim, i4 novel 
unrestricted center-hiased diamond search algorithm for block 
motion eSlimation'. IEEE Transactions on Circuits and Systems 
for Video Technology, vol. 8, pp 369-377, 1998 

[19] V. A. Chouliaras, J. L. Nunez, 'From C 10 Si: Codesign of a 
parametric embedded veclor coprocessor for high-pe1j"onnance 
MPEG2 video encoding', submitted to IEEE Transactions on 
Computers 

[20] 'AMBA Specification (Rev 2. 0)', www.ann.com 
[21] 'The Sparc Architecture Manual Version 8', WY.oW.sparc.com 



Paper PC3: V. A. Cbouliaras, J. 1. Nunez, Fabrizio. S. Rovati, Daniele Alfonso 'A multi

standard video coding accelerator based on a vector architecture " Proceedings of the IEEE 

International Conference in Consumer Electronics (ICCE 2005), Las Vegas, Nevada, USA, 

ISBN: 07803-8839-9 

96 

L-____________ . ____ _ 



3.4-1 

A multi-standard video coding accelerator based on a vector 
architecture 

Vassilios A. Chouliaras, Jose L. Nunez, Fabrizio. S. Rovati, Daniele Alfonso 

Abstract - We discuss the architecture definition and 
microarchitecture of a multi-standard, parametric vector 
accelerator for block-based video coding. Our target coding 
algorithms were the MPEG-2 TM5, MPEG-4 (XViD) and 
STM's proprietary H.264 implementation. We fully 
vectorized the MPEG-2 and MPEG-4 coders and partially 
vectorized the H264 encoder. In the proprietary H264 case, 
we targeted inner loop a/the motion estimation/unction. Our 
preliminary results demonstrate a significant complexity 
reduction of the order of 65%, 70% and 16% for MPEG-2. 
MPEG-4 and H.264 respectively. In the latter case the 
complexity of the inner loop of motion estimation has been 
reduced by 79% compared to the scalar case. 1. 

Index Terms - RISC Coprocessor, SIMD, MPEG2, 
MPEG4, H264. 

I. INTRODUCTION 

VectorlSIMD architectures are the most effective means 
for tapping the abundant data-level parallelism present in 

current and emerging embedded workloads [1, 2] with ever
increasing transistor budgets permitting the use of complete, 
short-vector units within desktop processors [3] as well as 
high-volume, SoC-based consumer products. [4]. 

In this work, we define the Instruction Set Architecture 
(ISA) and microarchitecture of a parametric vector 
coprocessor capable of signUjeantly accelerating the three 
most important video coding algorithms namely MPEG-2 [5], 
MPEG-4 [6] and the evolving H.264 standard [7]. The vector 
accelerator is tightly-coupled to an open-source, configurable 
extensible Sparc-VS compliant RISC processor [SI 

The novelty of our work lies with identifying a number of 
common vector instructions that afford significant 
perfonnance benefit in the three major video coding 
standards of interest and their subsequent implementation in 
the form of a custom vector accelerator [9]. The baseline 
architecture for our investigation is a MIPS-like machine 
[10]. 

n. METHODOLOGY AND RESULTS 

The workloads were initially profiled and the complexity 
distribution recorded at function-level granularity. Fig. I, 

I V. A. Chouliaras is with the Department of Electronic and Electrical 
Engineering, University of Loughborough, UK 

Jose. L. Nunez is with the Department of Electronic Engineering, 
University of Bristol, UK 

F. S. Rovati and D. Alfonso are with ST Microelectronics, Advanced 
System Technology Group, Agrate, Italy 

depicts the complexity distribution for MPEG-2 TM5, 
MPEG-4 (XViD) and the relative complexity of the Motion 
Estimation function in the proprietary H.264, which exploits a 
fast predictive-recursive algorithm, called OpensJim, being 
able to achieve nearly the same quality perfonnance of the 
Full-Search Block-Matching with only a few percent of the 
computation [11]. 

TMS (Full se'arc'h{c';~pi8'xfty disi~lbutio"n' 
:~';~''';, ,:l' ' j\~ , '. :~~;~' 

71.1 H .• 

u.t 17.' 

14.7 

'f· 

Fig I: Video Coding Standards Profiling 



3.4-1 

Vectorlzed MPEG2 ;TM5 Comple~ltY{ , 

9E ,128 160 192 224 25E 

. " )i';', 
VLMAX (Byt6sf 

• 

• , i12e 

""londor.OPENSLIM"INTRA 
",,_,_OPENSLl~I~rclOl< 
__ OPEt'ISLiIIt.BO.F1 

"_.OPENSLlIII_OO.F'.FloI< 
Z _'_OPENsur.ulC.F'3 

"_.OPENSLlM..BCtF3.FioI< 
""loocfar_OPENSlIM,.B~_F'3 

""_, OPfNSLIM !!2 F3 FIoI< 

'-
VlMAX '(Bytes) 

Fig. 2: Vectorized Video Coder Complexity 
Fig 2 depicts the normalized (%) complexity of all three 

the vectorized video coders. The H.264 results are 
preliminary, with vectorization applied to the ENC_SATD 
function only (up to 72% complexity reduction in 
ENC_SATD). Further significant benefits are expected as 
other functions are vectorized. 

Ill. MICROARCHlTEcruRE 

The vector extensions are implemented as a tightly-coupled 
coprocessor, attached to a configurable, 32-bit Spare VS
compliant processor. The combined processor/coprocessor 
microarchitecture is depicted in Fig. 7. In the diagram, the 
main RISe processor supplies instructions to the vector 
pipeline during the decode stage. The vector register file is 
then accessed followed by operand bypassing in both 
pipelines. The resolved vector operands are then clocked into 
the operand registers. During EXECl~ all cross-lane 

operations are performed (including permute, pack/unpack 
etc) as well as the first stage of the remaining operations. 
Intermediate results are pipelined to the next stage for the 
final stage of vector execution. For SAD (reduction) 
operations, the custom SAD datapath is used. Results commit 
to a staging register prior to being written to the vector 
register file on the falling edge of the clock 

Fig. 3: Accelerator microarchitecture 

IV. CONCLUSIONS 

We developed custom vector instructions in the form of a 
tightly-coupled vector accelerator, to significantly reduce the 
complexity of the existing and emerging video coding 
standards. Further investigation will focus on Thread-level 
parallelism. Preliminary data on a thread-parallel MPEG-2 
implementation reveal further, significant complexity 
reduction for 16 processor contexts. 

REFERENCES 

[1] K. Asanovic, "Vector Microprocessors", Ph.D. Thesis, Technical 
Report UCB/CSD-98-1014, Computer Science Division, University of 
California at Berkeley 

[2] AD. Paterson et ai, 'A case forintelligent RAM: lRAM', IEEE Micro, 
April 1997 

[3) Peleg, U. Weiser, 'MMX Technology to the Intel Architecture', IEEE 
Micro, July 1996 

[4] K. Diefendorff, 'Sony's Emotionally Charged Chip', Microprocessor 
Report, vol. 13, no. 5, April 19 1999 

[5J http://www.mpeg.org 
[6] http://www.xvid.org 
[7] R. Schafer, T. Wiegrand, H. Schwarz, 'The Emerging H.264 standard', 

EBU Technical Review, January 2003 
[8J 'The Leon-2 processor User's manual, XST edition, ver. 1.0.14', 

http://www.gaisler.com 
[9] V. A. Chouliaras, J. L. Nunez-Yanez, S. Agha, 'Silicon 

hnplementation of a Parametric Vector Datapath for real-time MPEG2 
encoding', to appear in IASTED 2004 (SIP), Honolulu, Hawaii, USA 

[to} D. Burger, T. Austin, 'Evaluating Future Microprocessors: The 
Simplescalar Tool Set', http://www.simplescalar.com 

[11J D.Alfonso, D.Bagni, L.Celetto, S.Milani, "Constant bit-rate control 
efficiency with fast motion estimation in H.2641 A VC video coding 
standard", to be published in Proceedings of the 12th European Signal 
Processing Conference (EUSIPCO) 2004, Wien. Austria. 



Paper PC4: V. A. Chouliaras, J. A. Flint, Y. Li, 'Parametric Data-Parallel architectures for 

TLM acceleration', Proceedings of the 3,d International Conference on Computational 

Electromagnetics and Its Applications (ICCEA), Nov. 1-42004, Beijing, China 

99 



Parametric Data-Parallel Architectures for TLM acceleration 

V. A. Chouliaras, J. A. Flint, Y. Li, 
Department of Electronic and Electrical Engineering 

University of Loughborough, UK 

Postal address: Mr Vassilios A. Chouliaras, Dept of Electronic and Electrical Engineering, 
University of Loughborough, Loughborough, LEICS LEI! 
3TU, UK 
Email: v.a.chouliaras@lboro.ac.uk 
Website: http://www.lboro.ac.ukldepartments/eVresearchlesdlprojects.html 

Postal address: Dr. James A. Flint. Dept of Electronic and Electrical Engineering. University of 
Loughborough. Loughborough. LEICS LE!! 3TU. UK 
Email: j.a.flint@lboro.ac.uk 
Website: http://www.lboro.ac.ukldepartments/eVstafflflint-james.htm! 

Postal address: Mr. Yibin Li. Dept of Electronic and Electrical Engineering. University of 
Loughborough. Loughborough. LEICS LEll 3TU. UK 
Email: Y.Li2@lboro.ac.uk 
Website: http://www.lboro.ac.ukldepartments/eVresearchlesdlvpd area.html 



Parametric Data-Parallel Architectures for TLM acceleration 

V. A. Chouliaras, J. A. Flint, Y. Li, 
Department of Electronic and Electrical Engineering 

University of Loughborough, UK 

Abstract: We discuss the architecture and 
microarchitecture of a scalable, parametric vector 
accelerator for the TLM algorithm. Architecture-level 
experimentation demonstrates an order of magnitude 
complexity reduction for vector lengths of 16 32-bit 
single-precision elements. We envisage the proposed 
architecture replicated in a saC environment thus, 
forming a multiprocessor system capable of tapping 
parallelism at the thread level as well as the data 
level. 

INTRODUCTION 

Prior attempts to implement the TLM algorithm [I] 
on general-purpose architectures have fallen into two 
major categories: Shared memory. cache coherent 
multi-processors [2, 3] and distributed processors [4] 
with shared- memory machines often demonstrating 
better perfonnance. 
The TLM is a highly-paranel three-dimensional 
numerical algorithm which has the potential for being 
accelerated along its innermost loop via vectorization 
thus, tapping parallelism at the data level (DLP). 
Furthermore. the algorithm can be statically 'sliced' 
(threaded) along the second outer loop, and be 
executed on the previously mentioned platforms via 
different processors executing different iterations. 
Such parallelism is known as thread-level-parallelism 
[5] and is currently being pursued by all major 
microprocessor vendors. 
Successful acceleration of such parallel codes 
depends very much on the algorithmic 
communication pattern which dictates the level of 
data sharing across the multiple processors. In the 
case of the TLM, data transfers between individual 
nodes is very high and in extreme cases the data 
transfer during the connect part of the algorithm can 
be much more COIDputationally expensive than the 
numerical calculations during scattering. The 
performance differential between shared memory and 
distributed machines is often attributed to such data 
sharing issues. 
Custom architectures for accelerating TLM codes 
have been proposed in the past by Stothard and 
Poroero), [6]. Our work proposes a custom vector 
approach to accelerating the inner loop of TLM 

codes, quite unlike this earlier work. In our case, an 
embedded 32-bit processor is augmented with a 
configurable, extensible custom vector accelerator 
and resides on an on-chip-bus [7] thus, forming a 
fine1y-tuned saC computation kernel for the TLM 
algorithm. 

VECTOR ARCHITECTURE 

The programmer's model of the parametric vector 
accelerator for TLM is depicted in Figure 1: 

," Vector Register File 
VLMAX 32-blt elemental 

'1-'-'-'-'-'-
, I 

I 

, I 

\'RO 
VR1 . 
VR2 
VR3 
\'R' 

I VR5 
VRa 
\'R7 
VRe 

'~. SRO "-' SR1 
SR, 

"',; ~~! 
SRS " 
SRa 

' SRMAX,-1 

VR9 Vector Acwmulatora 
VR10 VlMAX 32-b1t elements 

VR14" ,'VmorLenIJftlReglster 
VRMAX-1 1O-b1t 

CJ 
Figure 1: Vector accelerator programmer's model 

The programmer's model specifies a parametric 
number of vector registers (VRMAX), each 
consisting of a parametric number of 32-bit single
precision elements (VLMAX). There is a scalar 
register file consisting of a parametric number of 
scalar 32-bit elements (SRMAX), used for virtual 
address computation, immediate passing and vector 
spIat operations. Additionally, there are two vector 
accumulators each holding VLMAX single~precision 
elements and finally, the vector length register 
(VLEN) which specifies the number of bytes that will 
be affected by the currently executing vector opcode. 
The Instruction Set Architecture (lSA) of the 
accelerator includes standard vector floating point 
operations except division, vector Load/Stores, and a 
generalized permute instruction. A large number of 
sub-element manipulation instructions (including 
vector splat instructions) can be synthesized based on 



the three-operand permute infrastructure. The ISA is 
summarized in Table 1 

Table 1: Vector Co roceSSQr [SA 

Instruction Descri lion 
(t4VSR2Y~E~ Transfer, scal~:;registe(:'io Je,cto~/ 
~ ~:~,",~":L~.;L:_.~J~pgttlreg!§J~(y~§N) .j'&5c.",~:.,~;b: 
MVSR2CSR Transfer RISC scalar register to 
~~ __ coprocessor scalar register 

"'MVCSR2r(,'r"~'Jrarsfer;:copr~Sor '_s~-;e,gis~ei' 
}~':,£:'d~?;_,~~J.I?~ISG_~'gis~X,i'"jL,"_:f~ ~ ;'v,';dL",.; 
MVSR2CVEL Move RISC scalar register to 

coprocessor vector elem:~en:.:,t~"",_c-l 
' VCVEL21r' -3': Mo~e:-coprocesSOi:1Vector" element' 
lL.li~",2;~:, __ ' JQ R~~~'~g:ft!f!f!~~§itr,~~",::;:;~'~~. ; 
VLDU Load vector register unaHgned 

underVLEN 
VVs'ru"'-... -("':i,Y"'""'-'---f?''''::' StOr:e' ~:, ~ed";:"6r~i~~_~ie~~~' s"'ter"',fk""}\i;liigned , 

':Si.;'~~~~~,:,~.:tL~i~~fL!d-gN": ,.;;,~~':.~:~i1,~ , ,hi" .;d 

VPERM Three-operand bytewise vector 
~~ __ ~.permute 

VS,PLAT'j:;: ';",\!r: :S~tOproCess6tsc~ar register; 'to \ 
,:', :,,,,lL: ~::_M~~2R~,,~~S9!l&~£lqU~g]it~L:::~ '~~.'=; -' 
VFPADD.S Vector floating-point add (single 

precision) under VLEN 
~SiJB.S,:' ,\,,'; VTc'for;fl'~inr"'sub~;' (sirlgie~' 
.i ,,",.~,',:~., ~:ll~_.;;: ":"'pz:~d~!2AL~!!st~[~~~~,:cL";~~~.c~ 
VFPMUL.S Vector floating-point muIt (single 

precision) under VLE';..N;,.-,,.,-,_.,.I 
rVFP);jAC:S~Ve<:tor :l"flo~ti~giioin 
}, ;:/ ,,0, i;t(~ccu'mulat~_::<'" '1T:,:' 

VECTOR MICROARCHITECTURE 

The proposed vector extensions are implemented as a 
tightly-coupled vector accelerator attached to an 
open-source, configurable, extensible, Spare V8-
compliant RISe CPU [8]. The processor/coprocessor 
combination communicates via the AHB On-Chip 
Bus to the SDRAM controller which controls the off
chip SDRAM part. A high level schematic of the 
scalar processor and vector accelerator is depicted in 
Figure 2. 

Figure 2: TLM computation kernel 

As shown in the figure, there exists a bidirectional 
communication channel across the scalar processor 
and the vectoz accelerator. Though the open source 
CPU provides a coprocessor interface, it was decided 
to implement that channel in order to ensure 
pipelined, lockstep operation of the accelerator and 
timely transfer of data to and from the main CPU. 
Typical transactions on the developed channel are 
depicted in Figure 3. 

f-' -o-

f-\-f-L. "--f-\- "--f-\-P= 1'--
I'--

'---

I pcop).,.dlopl:O 

PC.P~0U1I1J.GO!J~31 :Ill 

"" 0 ... 
IL-

.~ .. .,. 
-~-'" 

~L4omva~-i 
~" 

H"~-
I '---LI I 

Figure 3: Processor-Coprocessor communication channel 

The detailed microarchitecture of the combined 
scalar processor/vector coprocessor for a vector 
length of two 32-bit (singleMprecision) elements is 
depicted in Figure 4. 

Figure 4: Detailed microarchileclure 

Instructions are- fetched from the multi-way set
associative instruction cache and stored in a single 
32-bit register. Typically, high-perfonnance RISC 
processors of equal pipeline depth would extract the 
source operand fields right after instruction cache 
access and set up the synchronous register file. 

-



Unfortunately, that is not the case in the particular 
processor which, due to the windowing scheme of the 
Sparc V8 architecture, requires access to the current
window-pointer (CWP) register in order to compute a 
physical register file address. As a result, source 
operand addresses are set-up on the falling edge of 
the clock in the DECODE stage. During this stage, 
the register file is accessed and the two source 
registers are retrieved. Operand bypassing takes then 
place and the resolved operands are clocked into the 
ALU input registers, ready for execution. It is during 
this stage that the vector opcodes are identified and 
dispatched to the tightly-coupled vector accelerator. 
Decoding logic in the later produces a number of 
control fields which are pipelined down the control 
pipeline. Vector operand accesses are triggered by 
the falling edge of the clock during decode, for 
reasons of symmetry to the scalar pipeline. 
During the EXEC stage, the RISC CPU executes the 
scalar instruction or computes the virtual address of a 
Load/Store operation. In the same stage, the vector 
accelerator performs the first stage of the pipelined 
floating point computations. In the next stage, scalar 
data return to the main processor via the data cache 
return path whereas the vector accelerator performs 
the last stage of execution. Due to the very tight 
timing constraints, floating point results are stored in 
an intermediate register prior to committing to the 
vector register file. 

METHODOLOGY 

We have applied a basic implementation of the SCN 
TLM algorithm [1] in which no external boundary 
conditions were used. In the particular case, a single 
output node was used as a diagnostic aid to verify 
correct operation. We used the accelerated scatter 
method of Naylor and Ait-Sadi as proposed in [9]. 
The non-vectorized (scalar) algorithm was profiled 
both in native mode (IA32 Linux) as well as on our 
simulated processor for consistency of results. Scalar 
code profiling revealed a scatter:connect complexity 
ratio of 63:37. averaging over all the studied 
configurations. 
Our simulation infrastructure is based around the 
simplescalar toolset [10] which provides a complete 
computer architecture modelling and performance 
evaluation environment. The compiler used was GCe 
2.7.3 with optimizations (-03). 

RESULTS 

The reference problem chosen for benchmarking was 
a fixed mesh of 106 nodes. This number is convenient 
as it gives a prime factorisation of 26 x 56, which 
allows for the aspect ratio of the problem space to be 
varied over a reasonable range whilst maintaining the 
same number of nodes. 

We measured the absolute complexity (dynamic 
instruction count) of the scalar code for all 
configurations of interest. Then, the vectorized code 
was run and its complexity recorded for a maximum 
vector length of up to 16 single-precision elements. 
Figures 2 and 3 depict the normalized complexity of 
the vectorized algorithm over maximum vector 
length. 

0.6 

O.S 

0.4 

0.3 

0.2 

0.1 

, , , 
\ , , , , , , , 

Normalized complexity over 
Max Vector Length 

-+-

2x2x250 000 node 

100 x 100 x 100 node 

\. ... ,," ...... 

"'-..... ---........ ... ~----~----~----+ 
o ~ __ --__ --____________ __ 

2 4 6 10 12 14 16 

Vector length 

Figure 2 - Benchmarking using a thin and a cubic 
problem space. 

Figure 2 suggests that the optimal (less complex) 
configuration is where the problem space is thin, Le. 
where the vector length is maximised. 

0.7 

0.6 

O.S 

0.4 

0.3 

0.2 

0.1 

0 
2 4 

Normalized complexity over 
Max Vector Length 

6 10 12 14 16 
Vector length 

Figure 3 -Iteration time for BOx 100 x 125 node 
mesh with differing alignment relative to the vector 

direction. All of these results show a similar speedup 

Figure 3 depicts a 80 x 100 x 125 configuration 
compared with a mesh of 100 x 125 x 80, 
80x 125x 100, etc. These mesh dimensions were 
chosen as being typical of realistic model of an 
electromagnetic scattering situation. Results 
demonstrate that vectorization alignment changes 
only slightly the complexity (and hence run time) in 
all configurations. A vector length of 16 single
precision elements showed a speedup of 



approximately an order of magnitude thus clearly 
demonstrating the benefit of using parallelism at the 
data level. 
CONCLUSIONS 

We have proposed a parametric vector accelerator to 
exploit the significant amount of data level 
parallelism which is inherent within the TLM code. 
Our results demonstrate an order-of-magnitude 
performance improvement can be achieved for a 
vector length of 16 single-precision elements. Such a 
configuration is realizable with current VLSI 
technology. 
We are also actively investigating thread-level 
parallelism as the second major source of parallelism 
in the workload. Our scalable architecture can be 
replicated thus, creating a cache-coherent, embedded 
multiprocessor for TLM acceleration providing 
further performance benefits. 

REFERENCES 

l. P. B. lohns, "A symmetrical condensed node for 
the TLM method", IEEE Trans. Mierow. Theory 
Tech., vol. 35, no. 4, pp. 370-377, 1987. 

2. I. L. Dubard, O. Benevello, D. Pompei, J. Le 
Roux, P. P. M. So, and W. I. R. Hoefer, 
"Acceleration ofTLM through signal processing 
and parallel computing ", in Computation in 
Electromagnetics, pp. 71-74, lEE, 25-27 
November 1991. 

3, C. C. Tan and V. F. Fuseo, "TLM modelling 
using an SIMD computer", Int. J. Numerical 
Modelling: Electronic Networks, Devices and 
Fields, vol. 6, pp. 299--304, 1993. 

4. P. I. Parsons, S. R. Iaques, S. H. Pulko, and F. 
A. Rabhi, "TLM modeling using distributed 
computing", IEEE Microw. and Guided Wave 
Lett., vol. 6, no. 3, pp. 141-142, 1996. 

5. J. Henessy, D. A. Patterson "Computer 
architecture: A quantitative approach", Morgan 
Kaufmann publishers, ISBN 1-55860-329-8 

6. D. Stothard and S. C. Pomeroy, "Dedicated TLM 
array processor", Applied Computational 
Electromagn. Soc. I., vol. 13, no. 2, pp. 188-196, 
1998. 

7. "AMBA Specification (Rev 2.0)", www.arm.com 

8. "The Leon-2 processor User's manual, XST 
edition, ver. 1.0.14", httv:llwww.gaisler.com 

9. P. Naylor and R. Ait-Sadi, "Simple method for 
determining 3-D Till nodal scattering in 
nonscalar problems", Electron. LeU., vol. 28, no. 
25, pp. 2353-2354, 1992. 

10. D. Burger, T. Austin, 'Evaluating Future 
Microprocessors: The Simplescalar Tool Set', 
http://www.simplescalar.com 



Paper pes: v. A. Chouliaras, J. L. Nunez-Yanez, T. R. Jacobs and Ashwin K. 

Kumaraswamy, 'Configurable Multiprocessors for high-performance MPEG-4 video coding " 

Proceedings of the IEEE Annual Symposium on VLSI, May 11-12 2005, Tampa, Florida, 

USA 

105 



Configurable Multiprocessors for high-performance MPEG-
4 video coding 

V. A. Chouliaras, T. R. Jacobs and Ashwin K Kumaraswamy 
Loughborough University, UK 

Jose L. Nunez-Yanez 
University of Bristol, UK 

E-mail: v.a.chouliaras@lboro.ac. uk 

Abstract 
We investigate the performance improvement of a 

multithreaded MPEG-4 video encoder executing on a 
configurable, extensible, SoC multiprocessor. 
Architecture~level results indicate a significant 
reduction in the dynamic instruction count of the order 
of 83% for 16 processor contexts compared to the 
original single-thread implementation. We extended an 
open-source 32-bit RISC CPU to include hardware
based multi-processing primitives and associated 
support state and implemented a parametric, bus
based SoC multiprocessor as the target plaiform for 
the threaded video encoder. 

1. Introduction 
The past 10 years have seen a substantial increase in 
the quantity of audio-visual information (multimedia 
content) that must be processed and delivered to 
consumers. This has initiated a large body of research, 
both in industry as well as in academia, resulting in 
advanced video coding standards such as MPEG-2 [I], 
MPEG-4 [2] and H264 [3]. These standards enabled 
major reductions in the channel bit-rates via advanced 
compression algorithms exploiting redundancy in the 
spatial (intra-frame) and temporal (inter-frame) 
dimensions of the input video sequence. A common 
characteristic of all three standards is the very high 
computational requirements of the encoding process 
[4]. For the MPEG-4 in particular, our data indicate 
that 400 M1PS are required to achieve 30 Frame-per
second (FPS) at QCIF resolution (I76x144). Such 
processing requirements are unreaJistic1 from a 
business perspective, in a mobile, wireless consumer 
platform calling for the introduction of advanced 
optimizations in the encoding process and new VLSI 
architectures, capable of extracting all parallelism out 
of a block-based video coder workload. 

Prior work by our group as well as other researchers 
has focused on Data-Level-Parallelism (DLP) since this 
is the most widely accepted form of parallelism in 

media workloads. This work investigates the effect of 
exploiting the inherent Thread-Level-Parallelism (TLP) 
of block-based video coding standards as an orthogonal 
(thus, complementary) form of parallelism in trying to 
achieve high-performance, software-only solutions to 
the very high computational requirements of the 
encoding process. 
2. Simulation Methodology 

We developed a novel, multi-context, instruction
set-simulator (1SS) based on the Simplescalar toolset 
[5]. The simulator is parametrical as to the number of 
processor contexts (software threads) it supports thus, 
permitting the theoretical study of arbitrary parallel 
configurations including shared-memory 
multiprocessors, multi-threaded processors and 
multithreaded multiprocessors. Architectural hooks are 
in place to allow it to interface to a cycle-accurate 
back-end thus permitting measurements of cycle effects 
such as clocks-per-instruction (CPI) per processor and 
interconnect bandwidth utilization. The simulator 
executes every instruction in I 'time period' thus, can 
be classified as a PRAM model. 

3. Results 
The performance of the multi-threaded MPEG-4 

encoder was evaluated with three video sequences, 
'Garden', 'Foreman' and 'Coastguard'. 

'U_ ......... E_eom""'.1Iy 
(312>I20I0.2' ,. ..... ) 

.. ,~-----------------------------------""------- ------------------

-'c-------------------------------- ----------------------------

L~~;'z:;:~·;::;·,~:L~~~~~~:::::~~~~~~:::~~:~~:~:~~~~::::~J 0 
. . ....:::::::: ..................·~:·~:·:~:::::l 

_CO_I"'_ 
Figure 1: Garden Sequence Results 



... _' .... .....,. ......... ""-(3t2><Z88,.~ ..... ) 

, ------------------------------------- ._-------------------

I:. :_-_-_:_-_-_:_-_~:_ -_:_,::::::--::::::::::::::::--:::: :::::::::: ::--:::::: IT] 
! .. ~-.,--"':-----------------------------------------

.. - ---~- -- ------- --- """ :'--.,,----- ------------.-- ----- ---, ---- _ . • ____ .____________ ''''''i>''''''';'';';"-,, -
"L, ________ -==_ .. :.:' '-"":-:-':":.::::::.:~::-'='--~·-:e-~-,,·~d~',"i 

'_0_1"·"'''1 

Figure 2: 'Foreman' sequence results 

!. ---\. --- ---- ---- --- ------ --- --- ------ --- --- ---- ---- ---- ----
j. -----'\::-------- ---------------- -------------------------Iiil 
!: :::::: _:::':::::.; :::::: :::::::::::::: ::::::::::: :::::: 

""'-~,;-:-----.. _- ---------------------

Figure 3: 'Coastguard' sequence results 
All sequences were coded at a resolution of 352x240 

pels with the exception of 'Foreman' which was coded 
at 352x288 pels. All sequences consisted of25 frames. 

Figs. 3, 4 and 5 depict the complexity metric as a 
function of processor contexts and quality metric. The 
graphs demonstrate an average 83% complexity-metric 
reduction at 16 processors, whereas a 2 .. processor 
configuration shows a near-linear complexity-metric 
reduction of the order of 45%. The results are collected 
on our PRAM simulator and include synchronization 
overheads however, do not model cycle effects such as 
the CPI ratio increase expected in a bus-based SoC 
multiprocessor. 

4. VLSI Macrocell 
We implemented the N~2 configuration of the 

system depicted in Fig. 6b in a high performance 0.13 
!Im CMOS process. The design was synthesized for 
maximum performance initially on Synopsys Design 
Compiler and then, read into Cadence SaC Encounter 
where floorplanning and power routing took place. The 
clusters were exported to Synopsys Physical Compiler 
for placement optimization and imported again into 
SoC encounter for detailed routing. Figs. 7 and 8 depict 
the floorplan and final layout of the N~2 MP 
configuration. The macrocell implementation data are 
tabulated in Table 1. 

Figure 8: 2-way VSMP layout 
Tbl12 PVLSI 11 • e : -wal SM macroce data 

PARAMETER VALUE 
Std cells 110099 
RAMs 52 
Fmax 179.5 MHz 
Size 4585x2291 ~21[9086988!1m2) 

5. ConclUSIOns 
We discussed the development of a multi-threaded 

video encoder based on an open-source implementation 
of the MPEG-4 standard for a SoC Multiprocessor. 
Architecture-level experimentation showed a 
significant reduction of the order of 83% in the 
dynamic instruction count metric of the threaded 
algorithm compared to the original, sequential version 
clearly demonstrating the potential of exploiting the 
inherent TLP of video coding workloads. 

6. References 
L http;llwww.mpeg.org 
2, hrtp:Jlwww.xvid.org 
3. GJ-Sullivan, P.Topiwala, ALuthra, "The H.264/AVC 

Advanced Video Coding standard: overview and 
introduction to the Fidelity Range Extensions", SPIE 
conference on Applications of Digital Image Processing 
XXVII, August 2004. 

4. V. A. Chouliaras, J. L. Nunez, Fabrizio. S. Rovati, 
Daniele Alfonso 'A multi-standard video coding 
accelerator based on a vector architecture', 
Proceedings of the IEEE International Conference in 
Consumer Electronics (ICCE 2005), Las Vegas, 
Nevada, USA 

5. D. Burger, T. Austin, 'Evaluating Future 
Microprocessors: The Simplescalar Tool Set', 
http://www.simpIescalar.com 



Paper PC6: Ashwin K. Kumaraswamy, V. A. Chouliaras, T. R. Jacobs, and J. L. Nunez

Yanez, 'System-an-Chip Design Framework (SDF) unifying Specification Capture and 

Design Modelling', Proceedings of the 2005 Electronic Design Processes (EDP) Workshop, 

April 6-8, Monterey Beach Hotel, Monterey, California, USA 

108 



System-on-Chip Design Framework (SDP) unifying 
Specification Capture and Design Modeling 

Ashwin K. Kumaraswamy, V. A. Chouliaras, T. R. Jacobs, and J. L. Nunez-Yanez 

Ahstract- We propose a new EDA tool flow which aims to 
allow SoC architects to utilize an object-oriented approach in the 
development SoC's including shared-memory, cache-coherent, 
single-chip multiprocessors. The tool will allow the visual 
definition of a complex computation kernel/SoC through 
instantiation of parametric IP such as processors, SDRAM 
controllers, DMA engines, on-chip buses, switch matrices and 
coherency directories, coprocessor5, etc. Such IP is captured 
either at the specification level via UML, at the model level 
(SystemC, SpecC or ANSI C) or at the implementation level (RTL 
VHDL or Verilog). The unified environment then simulates the 
whole system and in the process, a near-optimal solution in terms 
of area, power and performance, is achieved. Finally, the output 
of the tool consists of a cyde-accurate executable model 
accompanied by the system RTL. 

I. INlRODUCTION 

We present preliminary results of a new EDA flow named 
System·on·chip Design Framework (SDF) which unifies the 
specification capture and design modeling. Current, tools in 
the market namely Incyte, Mageillem, Visual Elite have 
provided solutions for specification optimization, graphical 
design entry and hardware·software partitioning to help 
designing of high performance IPs , but clearly we are still 
lacking a complete robust flow which helps the designers to 
take designs from specification to silicon and there is been a 
concrete effort to develop such a flow. 
SDF flow seeks to unity the specification capture, modeling, 
optimization of very high performing streaming system·on· 

. chip designs through a unique combination of technologies. 
SDF is intended to be the future front end tool flow. The 
overall SDF flow can be classified into two parts namely the 
unified specification capture and the heart of SDF, the unified 
simulator. 
At present the flow is partially completed with work being 
done on the specification capture stage so as to accommodate 
the existing system level design languages (SLDL) like 
systemc and specc. 
We use UML as the front end specification capture format and 
convert the UML to a known SLDLs like SystemC and SpecC, 
this translation is being performed using a unique combination 
oftechnologies and we have a working model of translation kit 

Affiliations 
Ashwin KKumaraswamy, V. A. Chouliaras and Tom R. Jacobs are with Dept 
of Electronic and Electrical Engineering, University of 
Loughborough.Loughborough.UK.email:ashwink.ctes2004b@cselondon.com 
1.1. Nunez-Yanez is with the Dept of Electronic Engineering, University of 
Bristol, Bristol, UK 

from specification to SLDL(SpecC) and simultaneously work 
is being performed to accommodate SystemC, as its been 
widely used in the industry. 
We have the SDF simulator which has been developed and this 
clearly is the basement for the existing mechanizations. The 
below figure is the overall flow of SDF 

Unified Specifica!ion Capture Ulified SoC Modemng Existi1g SOC Flow Sot Product 

IJoIl --..~ 

.vG.c~) Unified ________ ~ Simulation! 

l.egocylPL.n'iOI ______ ~Optimization 

~Ogo= ______ -..1 Flow 

SyslamC 

HOL 
ANSr-c 

(Hardware) 
ANsr-c 

(Apprica~on) 

Fig I. Overall SDF Flow 

Fig 2: SDF Flow internal flow path 

n. UNIFIED SPECIFICATION 

We propose a methodology that can transform UML models 
into a known System Level Design Language (SLDL) 
(SystemC/SpecC). In other words, UML model acts as a 
"wrapper" to the SLDL's methodology. In UML each aspect 
of the SLDL's methodology can be modelled and refined. This 
has various advantages. The standardization ofUML provides 
a base to revise the approaches to combine SLDL with object 
oriented analysis and design techniques (OOAD) techniques. 
One of the main directions for the joint application ofSLDL 
and UML can be identified as modelling SLDL specifications 
with UML. This direction serves mainly the idea to make large 
SLDL specification better understandable and to give 
additional information (e.g. inheritance hierarchies, 
dependencies, pattern structures) for documentation purposes 
or as additional implementation advice. UML is mapped onto 
the SpecC methodology. Uniqueness, to this new 
methodology, is that the UML representation of the system is 



separated from the underlying methodology. This helps in 
unifying the ways a system can be represented in UML without 
worrying about the way it will be implemented. The reason 
behind using this approach is that the UML model can be 
parted seamlessly to any methodology. Thus we have to first 
understand how a system can be modelled in UML. Although 
there can be numerous ways of describing a system in UML, 
only one of these methods can be chosen. This way the code
generation (transformation) phase will be made easy. 
A Hardware/Software co-designed system can be specified 
through the concepts of behaviours that interact via channels 
through ports and interfaces. There is a clear separation 
between computation and communication where behaviours 
model computation, and communication is modelled by using 
shared variables and/or channels [5]. Keeping this in mind, the 
first step is to decide on the modelling of the different aspects 
of a system, i.e. computation and communication. 
Computation will consist of behaviours and their definitions. 
Communication will consist of ports, channels and interfaces. 
(Interfaces can also be used in the modelling of computation 
[3,8].) 

Modeling of Computation 
In UML, the behaviours are modelled as classes. The local 
variables and the functions are also modeled within the class in 
their respective positions. A composite behaviour will contain 
instances of other behaviours. These compositions can be 
modeled using associativity. When breaking down behaviour 
into sub-behaviours, for structural hierarchy, generalizations 
can be used. There can be two types of hierarchy: structural 
and behavioral. Structurally, behaviours can be broken down 
into sub-behaviours and these into sub-behaviours, and so on. 
Designs are specified in a hierarchical manner using top-down 
functional decomposition (behavioral hierarchy). Both these 
hierarchies correspond to the concept of generalization and 
associativity in UML [5, 8]. 

Modeling of Communication 
To model interfaces, UML's interface notation is used. An 
interface is like an abstract class that consists of a set of 
method declarations. Interfaces can also be placed in a 
hierarchical fashion. Behaviours can, optionally, "realize" 
single or multiple interfaces. The channel or the behaviour that 
realize the interfaces should supply the definitions for the 
method declarations. 
The stereotype, «channel», is used to represent a class as a 
channel. Channels are also modelled in the same manner as 
behaviour. Ports can be modelled in two ways. A port can 
either be a simple variable or another Interface or Class. In 
order to identify an object as a port, the «port» stereotype 
is used. If the port is declared as a simple variable of type 
type1, the variable declaration in UML will be as 

name: typel «port» 

The «port» stereotype helps in identifying certain variables 
and also associations as ports, rather than local variables or 
instances respectively. 

2 

Modeling of Execution 
The main problem in designing a system is the modeling of 
execution or show parallelism i.e., to represent behaviors that 
will be executing in sequence, parallel or pipelined. There are 
two different ways of showing this. It is well known that in 
UML different views are meant for different activities of 
mode ling. Thus, these considerations have to be mentioned in 
more than one of the views. In the static view (class diagram) 
we annotate these using stereotypes. This is very helpful, 
because the class diagram shows the static structure of the 
system. The problem of showing parallelism in the execution 
model can be solved through composition. Leaf behaviour, by 
itself will only perform its operations sequentially. If a 
component has to be modeled to execute in parallel or 
pipelined mode, then its behaviour can be further reduced into 
separate classes and its objects will be composed into the main 
component. These sub-behaviours can then be modeled to run 
in parallel or pipe lined mode by specifying the mode of 
execution to the composite behaviour (main component). This 
can be done in the static view of the model. The actual 
execution of the composite behaviour can be modeled in 
detail, using State chart diagrams and/or Sequence diagrams. 
It was concluded that the State Machine view and the Activity 
view of the UML had enough notations specified to describe 
the internal behaviours of any component. Clocks can also be 
modeled as behaviours and can be made to generate events. 
These events can be used in other views to specify the timing 
characteristics of the system. 

Transformation of Static View 
Since SpecC is not an Object oriented language, there is no 
way of representing object hierarchies. Thus generalization is 
used to model behavioral hierarchy. In other words, behavioral 
hierarchy is modeled as a composition of multiple behaviours, 
according to the SpecC methodology. Therefore 
generalizations are transformed in the same manner as 
associations. A static view is shown in figure (3). 

Transformation of State Machine View 
The state machine view describes the dynamic behaviour of 
objects. Each object is treated as an isolated entity that 
communicates with the environment by detecting events and 
responding to them [7]. A state machine is a graph of states 
and transitions. Usually a state machine is attached to a class 
and describes the response of an instance of the class to events 
that it receives. 
A State Machine view is used to model the internal behaviour 
of an object of a class. A state machine contains states that are 
connected by transitions. Each state is defined as some unit of 
time in which the object stays and performs certain operations, 
whereas transitions are instantaneous, i.e. they occur at zero 
time. When an event occurs, it may cause the firing of a 
transition that takes the object to a new state. When a 
transition fires, an action attached to the transition may be 
executed. Theoretically, this execution period is zero. State 
machines are shown as a state chart diagram (Figure 4). 



.. " " 

t.!lltvi~Uf III j811$ tQIIIl) 
( 
PI pI: 
) 

beo~aviou: fl ( ) 
( 
) 
ln~~rtace II~, ( ) 
( 
1n~ tta1S ( )I 

) 

Fig 3. Static View 

J 

void 1I!i:\ 0 ( 
pipe ( 

pI .ML,(): p2 .:uinO: 
) 
:~t\ln: 

Fig 4: State Machine View 

Ill. TIlE SDF FLOW 

Fig.I,2 depicts a high-level view of the proposed SoC Design 
Framework tool that we are currently developing. It consists of 
the input interface which can accept silicon and software IP in 
a number of forms including SystemC, standard HDL (VHDL 
and Verilog), cycle-accurate C conforming to the SDF API 
and finally, standard C for the application. These elements are 
slotted in system-defined and used-defined 'Stencils' from 
which on they are available for manual or automatic 
instantiation and design space exploration. 

A. Core Simulation Engines 

The primary simulation engine is based around a 
parameterized, multi-context, Instruction Set Simulator (MT
ISS) derived from the Simple scalar computer architecture 
research tools [SS). The default ISS has been re-architectured 
to allow the instantiation of a number of processor contexts 
and additional programmer-visible state for multi-processor 
(MP) synchronization. The simulator can be considered as an 
Exclusive-Read, Exclusive-Write (BREW) Parallel RAM 
(PRAM) machine. Architectural hooks are in place to allow 
interfacing to a cycle-accurate (CA) back-end. In this way, the 
ISS is dynamically producing (short) instruction traces which 
are (dynamically) consumed by the CA back-end. In the 
process, various parameters are evaluated such as the Clocks
Per-Instruction (CPI) ratio per CPU, bus utilization, ICache 
and Dcache misses, pipeline stalls due to dependencies 
amongst others. 
The MT-ISS is one of the core simulator of the SDF flow and 
drives both the programmable and non-programmable C-based 
simulation models along with being used for software 
development. 

3 

The second simulation engine is an industry-standard tool such 
as Mentor Graphics Modelsim. It interfaces to the cycle
accurate infrastructure via the FLI and allows for the modeling 
of legacy IP (VHDL, Verilog) and the primary output of the 
specification-capture front-end which is described in System-C 

B. Manual and Automatic Flows 

There are two major flow (feedback loops) in the SDF tool. 
The first is based around a GUI solution which is used to 
instantiate silicon IP blocks and application software 
components from the JP stencils on to the SoC canvas. The 
contents of those stencils can be 'dragged' onto the SoC area 
thus, incrementally building up and simulating the SoC model. 
We make no distinction as to whether the stencils contain 
synthesizable Silicon IP or CA models as the core simulators 
permit their arbitrary mix. This is of paramount importance in 
the modeling of highly-complex, future SaC architectures. 
Experimentation takes place after the SaC has been 'drawn' 
and it's memory map established and populated. The feedback 
loop of Fig. 2 illustrates the manual or automatic refinement 
process. from SoC specification to performance closure and 
clearly illustrates the synergy between the MT-ISS, CA back
end an.d industrial simulators in providing a unified framework 
for SaC modeling. 
A further route exists where the process is fully automated. In 
this case, a genetic-algorithm (GA) design space walker takes 
over the refinement process of the SaC once the initial 
allocation of programmable and non-programmable resources 
has happened. 

e. Embedded CP U Stencils 

The primary programmable engine used is based on an open
source, 32-bit RISC CPU with an extended Instruction Set to 
allow for hardware barrier synchronization. In addition, the 
programmer's model was extended to include a unique, non
programmable, processor ID field which is used to identify the 
executing CPU to a software thread. 
As we are targeting primarily Data-Level-Parallelism (DLP), 
we have augmented the microarchitecture of the Leon-2 CPU 
to include a custom coprocessor channel in order to 
communicate to very high performance, tightly-coupled vector 
coprocessors [lEE Elec Letters), [IEEE ICCE). Typical 
transactions along this new interface are depicted in the 
diagram of figure 5 shows a coprocessor data operation on 
cycle I followed by a host-to-coprocessor register transfer on 
cycle 2. In cycle 3, a coprocessor register is requested by the 
RISC processor but due to internal stall conditions, data are 
made available one cycle later than the expected time (cycle 5 
instead of cycle 4). During that time, the main processor is 
held with the holdn signal. Finally, a second read operation, 
this time directed to Coprocessor I, is initiated in cycle 6. 
Results are made available to the main pipeline in cycle 7. 



-,-
.~ 

pcopJn,holdn 

pcopJn,valld 

pcopJn.opc(19:0 I 

pcopJn.din[31 :0 I 

I pcop_out[1].dout[31:0 

pt.:op_out[O).holdn 

pcop_out[O].d0Ul[31:0 I 

pcop_Qut[1J.OOIdn 

11' 

11' 
11' 

data ~ 

11' 

e-2 

I-L 

m", -c:= 

-7-

~ "--~ f-L P= "-----
'--V 

"-----
m~' 

"" 0 
m," 

dal:a InJ:opr~c 
din 

"" 
!-'data out valid---! 

'" 
L h hQldn aaserted 

holdn 
f!aaserte I 

Figure 5: Typical Coprocessor Channel Transactions 

OATAPATH MEMORY 
I 

Figure 6: Scalar CPU and Vector Accelerator 

Fig.6 shows the combined processor-coprocessor 
microarchitecture which includes a parametric vector 
accelerator implementing three custom instructions for the 
data-parallel sections of the MPEG-2 encoder attached to the 
scalar CPU which is a standard 5-stage design. From the 
diagram, instructions are fetched from the multi-way, set
associative instruction cache and clocked into the instruction 
register. Decoding takes place in the DECODE stage with the 
RISC register file accessed at the falling edge of the clock. The 
bypassing logic in DECODE determines whether register file 
data or internally pipelined results are clocked in the ALU 
input registers. During EXEC, the ALU operation is performed 
and a virtual address is computed. Scalar data cache access 
takes place during DMEMlEXEC2 and scalar results return to 
the RISC pipeline during this cycle. Finally, results are 
clocked into an intermediate register prior to committing to the 

4 

processor register file. The processor incorporates 
configurable data and instruction caches the former in a write
through configuration with no-write-allocate policy. Both 
caches are refilled over the on-chip bus via the bus controller. 

D. Interconnect Stencils 

We are targeting primarily the SoC mode ling and 
implementation domain. We therefore have included support 
for multi-layer AMBA (AIill) [ARM] based on the 
infrastructure provided by the Opensource CPU, augmented 
with the hardware synchronization primitives. A typical 
scenario of a paremetric, cache-coherent, SoC :MP is depicted 

in Fig. ,;,6.;"""~""",,,",,"_",,",~,,,,,,,,,...,.~.,,...,._,,,,..,.~,,,,, 

SDRAM Channel 
Figure7: Scalar, 32-bit RISC CPU pipeline 

Further development is underway to allow for vel)' high 
bandwidth interconnects (other than a hierarchy ofbuses) to be 
utilized. In this case, distributed coherency directors are 
utilized to ensure that the CPU caches remain consistent. 

E, Streaming unit stencils 

Prior research into statically-configurable (off-line 
configurable) vector/SIMD accelerators has successfully 
concluded that such units are of paramount importance in 
achieving performance closure in a consumer/media Soc. The 
complexity-metric reduction due to the vector instructiosn 
implemented via this tightly-coupled coprocessor is shown in a 
standalone identified 

Figure8: MPEG-2 DLP benefit 



IV. RESULTS 

To establish the proposed methodology, we studied a multi
threaded implementation of the MPEG-2, TM5 reference 
video standard [mpeg.org]. The encoder was initially profiled 
in order to identifY the most compute-intensive parts at 
function-level granularity. The complexity metric used was the 
dynamic instruction count of the application when compiled 
for a MIPS II-like CPU and executing on a single-context 
simulator. 
From Fig. 7, the most compute-intensive function was 
identified as the inner loop of ME (DlSTJ). This function 
computes the error of the current macro block over all 
macroblocks in the search window of the reference frame and 
its complexity ranges from 52% to 73% of total dynamic 
instruction count for a search window of 7 to 63 pels 
respectively. The second most complex function was the 
forward-DCT computation (FDC7) with a complexity metric 
ranging between 2.1% and 21 % of the total dynamic 
instruction count. FullSearch is the wrapper function around 
the low-level DISTI and implements the default ME algorithm. 
Its complexity ranged from 3.5% to 23.2% of the total 
complexity. This is the level at which we applied Qur threading 
technique as this allows the utilization of less complex, 
algorithmic ME methods such as three-step search [10] and 
four-step-search [11] in the parallelized encoder. 
The performance of the threaded MPEG-2 encoder was 
evaluated in a relatively slow, vertical-moving sequence 
(Snowfall) and a very fast, circular-moving sequence (Rotating 
City). We used Full-Search ME which is the default algorithm 
in the reference MPEG-2 code. 

'."';:,\, "',' .. 
P.rc"nlao_ Ccu"pJully'" 

'"/''' "" L 

Figure 9: MPEG-2 TM5 Algorithm Profiling 

Results depict the dynamic instruction count reduction for the 
primary processor context (thread 0) for the vertical and 
circular-motion video sequences respectively. Context 0 is the 
controlling thread in the parallel encoder as it performs 110 
and activates the remaining threads early during execution and 
thus, suffers the maximum overhead. 

5 

'"r----------------------------------------
go) •• -----------------_. ------------------- ---------------------------

110 ---- _________________________________________________________ _ 

--------------------------------------------- --------.---------------- -.' ______________ ,,__________ _ _ _ _________ _ _ _ _ ____ _____ _ _ _ _ _ ______ _______ __7 

------------------ ....... , 

-----'-'--
10 12 14 10 '" >0 22 2' 2S 2" :lO >2 • __ mn.doI 

Figure 10: Theoretical Performance (Circular Motion) 

Both graphs demonstrate a significant reduction in the 
complexity metric both when the number of processor contexts 
is increased and when the search window range is increased. 
The complexity improves no further once the number of 
processor contexts exceeds 32. Performance saturation at 95% 
complexity-metric reduction occurs when a threaded loop is 
executed only once. Results compare favorably with prior 
studies which achieved a 65%-70% complexity-metric 
reduction at a search range of 62 pels, for a 128-bit DLP 
architecture 

V. COMPARISON OF LIKE MINDED EDA TOOLS 

Tools What is does What it does not 
Incyte I.Specification I.Design Modelling in 

Optimization System not done 
2.Designer specification 2.No Hardware· 
oriented software partitioning 
lTool shows the lNot really a 
potential problems in the integrator platfonn 
design thus helping in based on any Bus 
fast design time standard 

Magilleium I.Graphical Design I.No option for design 
Entry based tool modelling and design 
2.Integration Platform exploration at the 
based on AMBA highest level. 
3.Transactiona1 RTL 2.Basically choosing 
Builder, full support for blocks from the 
SystemC existing library 
4.Good Verification 
system in place 

Visual Elite I.Graphical Design l.Not a design 
Entry based specification capture 
2.Performs Hardware- and design modelling 
Software partitioning based tool 
3.Helps in design using 
specific Microprocessors 

System-on-chip I.Graphical Design 

Design Entry 
2.Design Specification 

Framework capture and architecture 
exploration along with 
direct choice from 
Jegacy JP library. 
3.Integration platform 
withAMBA 
4.Hardware-Software 
partitioning. 
5.Supports SystemC,C 
RTL SoecC 



VI. CONCLUSION 

We have demonstrated the new EDA flow proposal and 
submitted preliminary results of the SDF flow that we have 
developed on two fronts. 

I. UML diagrams being converted to the desirable 
SLDL. 

2. The simulation performance of the SDF unified 
simulation flow. 

VII. FUTURE WORK 

To integrate the tool flow so as to make the automation, we 
have been able to demonstrate that such a tool flow is 
conceivable. 

• Future work will quantify on cycle effects of the bus
based configuration as well as the benefit of local 
scratchpad memories over the parametric Data Cache. 

• Complete the UML to SystemC in the same lines of 
SpecC 

• Develop the GUI for graphical design entty. 
• Develop the automation as envisioned. 

REFERENCES 

I. M. Keating and P. Bricaud. "Reuse Methodology Manual for 
System~on-Chip designs, 2nd Edition, Kluwer Academic 
Publishers, Norwell1999. 

2. F. Balarin et. ai, "Hardware-Software Co-Design of Embedded 
systems, The POLlS approach," Kluwer Academic Publishers, 
1997. 

3. D. Gajski, lZhu et aI. "SpecC: Specification Language and Design 
Methodology", Kluwer Academic Puhh'shers, 2000. 

4. Rainer DOmer, Daniel D. Gajski, Andreas Gerstlauer. "SpecC 
Methodology for High-Level Modeling," 9th SDP IEEE/DATC 
Electronic Design Processes Workshop 2002. 

5. Object Management Group, Omg unified modeling language 
specification version 1.3, June 1999. 

6. D. E. Lackey, "Applying Placement-based Synthesis for On-time 
System·on-a-Chip Design"JEEE Custom Integrated Circuits 
Conference, 2000, pp. 121-124. 

7. Object Management Group, Omg-xml metadata interchange 
version 1.2, January 2002. 

8. J. L. Diaz-Herrera, An isomorphic mapping for SpecC in UML, 
Internet: httlrllist.unibwmuenchen. defGROOMfOMER-
2/papers/OMER2-

9. DiazHerrera.pdf. 2000. SPSU-CS TR 2000. 
10, Sikara T, uMPEG Digital Video--Coding Standards," IEEE Signal 

Processing Magazine, Vol. 14, No. 5, September 1997, pp. 82-
100. 

11. Motion Pictllre Experts Group http://www.mpeg.org 
12. V. A. Chouliaras, J. L. Nunez, Fabrizio. S. Rovati, Daniele 

Alfonso <A multi-standard video coding accelerator based on a 
vector architecture', Proceedings of the IEEE International 
Conference in Consumer Electronics (ICCE 200S), Las Vegas, 
Nevada, USA 

13. Shen K, De1p E J, "A parallel implementation of an MPEG 
encoder: faster than real·time!", In Proceedings of the SPIE 
Conference on Digital Video Compression: Algorithms and 
Technologies, pp. 407-418, San Jose. California, 5~1O February. 
1995. 

14. "The Leon-2 processor User's mal1ual, XST edition, ver. 1.0.14", 
http://www.gaisier.com 

IS. Theo Ungerer, Borut Robit, Jurij Sile, "A suervey of processorw 
with explicit multi threading", ACM Computing Surveys (CSUR), 
Volume 35 Issue 1, March 2003 

16. SimpJeScalar LLC http://www.simplescalar.com/ 

6 

17. Martinez J. F., Torrellas J "Speculative synchronization: applying 
thread~level speculation to explicitly parallel application" ACM 
SIGARCH Computer Architecture News, 30, 5, pp. 1 8-29 

18. Zeng and Liu "A new 3 step search Algorithm for Block Motion 
Estimation", IEEE Transactions on Circuits and Systems for 
Video Technology, Vol. 4, No 4, Aug. 1994. 

19. Lai-man Po and Wing-Chung Ma, "A novel four step-search 
algorithm for fast block motion estimation", IEEE Transactions on 
Circuits and Systems for Video Technology, vol. 6, pp. 313-317, 
1996. 



Paper PC7: V M Dwyer, S Agha and V. Chouliaras, 'Low Power Full-Search Block 

Matching using reduced bit SAD values for early termination " Proceedings of Mirage 2005 

International conference on Computer Vision/Computer Graphics collaboration techniques 

liS 



Proceedings of Mirage 2005, INRIA Rocquencourt, France, March, 1-22005 

LOW POWER FULL SEARCH BLOCK MATCHING USING REDUCED 
BIT SAD VALUES FOR EARLY TERMINATION 

V M Dwyer, S Agha and V Chouliaras 

v.m,dwyer@lboro.ac.uk 

Loughborough University, Dept. of Electronic & Electrical Engineering, Ashby Road, 
Loughborough, Leicestershire, UK 

ABSTRACT 

Full-search motion estimation is often employed for selection 
of the best motion vector through a minimum SAD by iterat
ing over all candidate motion vectors of the search area. How
ever, although the dataflow is regular and the architectures 
straightforward. the computational complexity is high. Con
sidering all possible candidate motion vectors and calculating 
a distortion measure at every search position produces a high 
computational burden, typically 60-80% of a video encoder's 
computational load. This makes it unsuitable for real time 
video applications. To alleviate the problem SAD calculations 
based on reduced numbers of bits (RBSAD) have been sug
gested which gives power and time savings, but the reduced 
dynamic range means that picture quality can be compro
mised. This current work presents a corrected-RBSAD algo
rithm, which corrects to full SAD resolution under certain 
circumstances. The compromise achieved provides the low 
power of the reduced bits and a higher accuracy, closer to that 
of a Full Search. 

1. INTRODUCTION 

Battery powered real-time visual communication appli
cations place stringent requirements on power consump
tion. As a result Motion Estimation algorithms [I, 2], 
which eliminate the temporal redundancy in video se
quences, are widely used in video coding. Currently the 
prevailing method of Motion Estimation has been the 
block-matching algorithm [3], which computes a motion 
vector on a block-by-block basis, as it generally out per
forms other methods such as the pel-recursive algorithm 
[4]. The block-matching algorithm divides the current 
frame F, into non-overlapping square blocks of N x N 
pixels which are matched to blocks of the same size in 
some region of a reference frame Fr. This region is 
known as the Search Area and is predetermined by the 
search strategy adopted. All pixels within the same block 
of the current frame are assumed to have the same mo
tion vector. N is most commonly taken equal to 16, and 

191 

the Search Area is generally defined as a square of size 
(N+2p)2 surrounding the position of the block of interest 
referenced to the frame F,. With billions of arithmetic 
operations per second [5, 6] and a memory bandwidth of 
the order of GByte/s, it is generally not feasible to search 
all possible positions in the Search Area for each block 
in each frame (the Full-Search Motion Estimation algo
rithm [3]), and encode a CIF sized video at 30 fps, with 
the low power constraints of today's processor technol
ogy, particularly if the search range (effectively the 
value ofp) is large [7]. 

Fast motion estimation algorithms can give reduced 
computational complexity, as well as advantages for 
VLSI design in terms of area and power consumption 
[e.g. 5 and references therein, 6]. However, the reduced 
computational complexity gained by these fast Motion 
Estimation algorithms has often to be offset by losses in 
visual quality andior by irregularities in data flow. Con
sequently it is difficult to achieve efficient VLSI imple
mentations that can employ Data Reuse efficiently [5,6]. 

The figure of merit used to determine the 'best match' 
between blocks in the current and reference frames is 
usually a distance metric, typically the Sum of Absolute 
Difference (SAD) between the current frame Micro
Block (MB) and a candidates MB in the reference frame. 
This is generally termed the SAD value which, taking 
the reference frame as the immediately preceding frame, 
may be written as 

16 

SAD(m,n) = :Lls(i, j,k)-s(i + m, j + n,k -1)1 
i,j=l 

(I) 
for a 16 x 16 MB. The best motion vector is determined 
as 

[u,vf =argminSAD(m,n) (2) 
m,n 

Here sUJ,k) is the (8-bit luminance) pixel value at (iJ) 
in frame k, U and v are the horizontal and vertical motion 
vectors respectively, and the minimization is performed 



Proceedings of Mirage 2005, INRIA Rocquencourt, France, March, 1-22005 

over the set of candidate blocks in the Search Area_ For 
the Full Search method, SAD values are computed for 
all blocks in the designated region [3] and the search 
naturally is computationally burdensome. Even with p as 
small as 8 this still corresponds to 256 possible candi
date blocks. One means of reducing the computation is 
to use one ofthe fast motion estimation methods such as 
the Three Step Search and its variants [8, 9], the conju
gate gradient method (ID], and many others which may 
be found, for example, in refs [5, 6J and references 
therein. Such 'fast' methods base the candidate set on 
previous results which increases the design complexity 
and disturbs the dataflow making dedicated hardware 
implementations very difficult, however power and 
speed savings are envisaged [5, 6). 

The usual means oftesting the accuracy of these faster 
algorithms is through the use of the Peak-Signal to Noise 
Ratio (PSNR) which is usually defined as the fractional 
RMS error between the predicted and true frames ex
pressed on a dB scale. To be considered realistic, any 
fast algorithm really needs to be within a fraction of a 
dB of the Full Search (the gold standard) value. 

In order to preserve the dataflow regularity in its 
VLSl architecture, and at the same time to reduce com
putational complexity, a number of authors have em
ployed a full-search algorithm, but with eqn (1) based on 
a reduced number of bits. Such schemes are known as 
Bit Truncation and provide an RBSAD (Reduced-Bit 
Sum of Absolute Difference) metric or distortion meas
ure [11, 12]. The downside of such a method is the re
duced dynamic range. In the case of a 4-bit RBSAD the 
resolution for pixel1urninance values in the integer range 
[0, 255] is reduced from unity to steps of 16. The result 
is that although two blocks may provide the best match 
with the reduced resolution, it is possible that the match 
with full resolution may not be best. This leads to an 
increased error matrix and consequently a lower bit-rate, 
or a higher quantisation error and, possibly, a reduction 
of visual quality. Whilst these problems are possibilities, 
in practice the PSNR for the two methods for real se
quences are very close, Table I. 

The only case studied in which the average PSNR for 
the sequences studied is significantly worse using 
RBSAD is the "Claire" sequence where the average 
PSNR values (with full and reduced resolution) are al
ready very large. A typical frame from the sequence is 
shown in Fig.(l). The purpose of this work is to investi
gate means of providing a correction to only those cases 
in which the RBSAD is poor, so that the advantages of 
reduced bits (power and speed) can be maintained with
out some of the disadvantages. This means that correc
tion should largely be restricted to the "Claire" se-

192 

quence. The difference between the average PSNR for 
the full resolution and with reduced bits (using 4-bits) in 
the case of the "Claire" sequence is around 2dB. This 
difference is plotted for the first one-hundred frames in 
the sequence in Fig.(2). The problem is that with this 
"head and shoulders" sequence there are several very 
good matches for each current frame MB and the 
RBSAD method has difficulty in selecting the best. In
deed the RBSAD calculation will not be able to distin
guish between any candidate blocks for which the 
RBSAD calculation is equal to zero, and this still leaves 
a wide range of possible SAD values. An obvious and 
simple correction to the, generally very good, RBSAD 
method is to revert to a full resolution value whenever 
RBSAD=O. 

Mom Fore~ Fog Snow Snow Claire 
Man Fall Lane 

35.86 28.46 32.28 26.82 30.16 46.15 

SAD 35.58 28.37 31.76 26.70 30.09 43.29 

35.58 28.37 31.76 26.70 30.09 44.09 

1.75 3.2 1.79 0 6.65 23.41 
culation 

rable I PNSR for full resolulion (PS) and reduced-bit 
(RBSAD) algorithms. 

Figure 1. Frame 11/rom "Claire" sequence 

The hardware implications of such a scheme are obvi
ous as whenever RBSAD = 0, the full resolution ca!cula
tion is simply the 4-bit RBSAD of the lower bits. Con
sequently the ca!culation may be split into two. A 4-bit 



Proceedings of Mirage 2005, INRIA Rocquencourt, France, March, 1-2 2005 

RBSAD calculation for the upper four bits, which is 
generally used, and, in the case that this upper bit 
RBSAD = 0, a 4-bit RBSAD calculation for the lower 
four bits. For the hardware, two options are possible. 
Either: (i) The two 4-bit calculations are pipelined and 
only in the case when RBSAD = ° is the correction to 
full resolution applied; or (ii) Two identical Full Search 
hardware layouts are created each based on 4 bits. The 
first runs continuously and the second performs a correc
tion whenever the RBSAD value calculated by the first 
is zero, The result, in either case, is a saving in power 
and speed. 

A second, but not inconsiderable, power saving, 
which results from this architecture, is in memory reads 
from on-chip memory. If the data is stored in two sepa
rate memory blocks as it is written to the on-chip mem
ory, with the upper four bits in one block and the lower 
four bits in another, then typically only reads from the 
upper block will be required. Only when the upper four 
bit RBSAD = 0, will require reads from both memory 
blocks will be necessary. 

The purpose of this paper is to investigate the accu
racy of this simple correction to the standard reduced bit 
method and to investigate whether such correction meth
ods in general are appropriate. 

2. ALGORITHM 

We consider here a number of test sequences, as shown 
in Table I. These involve most types of motion seen in 
typical sequences and so are representative of what 
might be expected in real video clips. We imagine a 
mechanism of thresholding, in which an RBSAD calcu
lation is converted into a full resolution SAD if the value 

PSNR difference 

'.5 

~ , • ~ 
~ 
(I) 1.5 

" 

a~ 10 ~ E ~ ~ ~ ro 00 ~ 100 
(rame number 

Figure 2. Difference between full resolution (FSSAD) 
PNSR and reduced bit RBSAD PSNR values. 

193 

of RBSAD is less than some value T. In this case the 
algorithm we shall present actually corresponds to the 
case T = I. Thus we effectively execute the pseudocode 

If (RBSAD(7:4)) < T then 
output = SAD(7:0) 

else 
outpuFRBSAD(7:4) 

end; 
and suppose that, in some way as yet unspecified, the 
correction from reduced bit to full resolution can be 
achieved in hardware. 

2JJ 

15 

10 

5 

°0~=,oo~~zn~=3D~=4~OO~~&O~~'oo~~no==~aoo~~~~~,oco 
Threshold T 

Figure 3. The fraction of corrections dn(T)/dT made 
with a threshold value of T for the "Claire" se
Quence. 

Percentage correctitlna 

5 

t;; • 

~3 
, 

0
0 500 lOCO 1500 :DJ) 

Thre9hold 

Figure 4. As Fig. (3) for the "snow lane" sequence. 

Note that here we have used the notation that 
RBSAD(7:4) is an SAD calculation based on using the 
top four bits (7:4) of the luminance pixel values. 



Proceedings of Mirage 2005, INRIA Rocquencourt, France, March, 1-22005 

In a motion estimation calculation for a given se
quence, the fraction of times n(T) that the RBSAD calcu
lation fell below T was recorded as a function of T, this 
gives a measure of the efficiency of the method for that 
threshold value. Fig. 3 & 4 shows the derivative dn/dT 
for the "Claire" sequence and the "snow lane" sequence. 
It is clear that dn/dT is large at T=I rapidly saturating for 
lager threshold values. For the "Claire" sequence dn/dT 

shows a rapid increase as T -+ 0 and similar analysis of 
other sequences shows the same behavior although to a 
lesser extent. This implies that if we apply a correction 
to the RBSAD to get the full resolution SAD for T = I, 
Le. whenever we get an RBSAD value = 0, we shall 
correct for many of the errors in an RBSAD calculation. 

The upper four bit RBSAD = 0 occurs only when 

Is(i, j,k) -s(i + rn, j + n,k + 1)1 < 16 
for all j and j in the current frame MB. This means that 
the restriction of the analysis to only the upper four bits 
(7:4) evaluates to zero. I.e. 

Is(i, j,kh4 -s(i + rn, j + n,k + Ih41 = 0 
for all j and} in the current frame MB. As a consequence 
only the lower four bits contribute to the SAD sum and 
we may replace the full resolution SAD value by the 
lower four-bit calculation. Thus 

Is(i, j, k) - s(i + rn, j + n, k + 1)1 

= IS(i, j,kho -s(i + rn, j + n,k + Ihol 
for all i and} in the current frame MB. 

This then corresponds to executing the pseudocode 

If(RBSAD(7:4)) = 0 then 
output = RBSAD(3:0) = SAD(7:0) 

else 
output = RBSAD(7:4) 

end; 

where the RBSAD(3:0) value is computed from an iden
tical replica of the hardware (or indeed even the same 
hardware) to that which obtained the value of 
RBSAD(7:4). The calculation of the two stages can ei
ther be pipelined in the same unit or performed in paral
lel by separate units. Either way, depending on the num
ber of corrections made, a considerable saving in com
putation and hence power may be achieved. Most of the 
current 8-bit (full resolution) architecture designs may 
be used as they are typically created in a bit slice fash
ion. 

The zero flag of the final add-and-accumulate adder, 
at the base of the adder tree use to evaluate eqn. (I), is 

194 

used as an enable/disable for the lower bit calculation 
and also as a control for the MUX which seJects between 
the upper and lower bit values, Fig. 5. 

Assuming that a four bit RBSAD takes roughly half 
the power of a full resolution SAD calculation, if a re
calculation is required 23.4% of the time (Table I), a 
power saving of roughly 76.6/2% = 38.3% is obtained 
compared to the Full Search method. Note that in the 
cases for which the RBSAD calculation produces an 
accurate PSNR value (Le. all but the "Claire" sequence) 
there are almost no corrections applied. In addition, ei
ther with only a minimal increase in area the timing can 
be roughly halved or alternatively with similar timings 
the silicon area can be roughly halved. 

3. ARCHITECTURE 

The architecture envisaged involves a number of 
Processing Elements (PEs), each of which deals with the 
calculation of the best fit of a single MB in the current 
frame. 

ou¥'ut 

rrl 

I 
RBSAD RBSAD 

PEu PEt 
Z_flag Enable 

, ,.. , !l-
On-chip On-chip 
Memory Memory 

MJ M2 
Upper Lower 
4-bits 4-bits 

, 
'" 

, 
"" .. 

~ 

Figure 5. Upper(PE,) and lower (PEel SAD calcula
tions in a processing element PE. 



Proceedings of Mirage 2005, INRIA Rocquencourt, France, March, 1-22005 

Thus an image with dimensions 320 x 480 pixels will 
involve 20 PEs. PE I will work on the current frame data 
in columns 1 to 16, PE, will work on columns 17 to 32 
etc. The RBSAD(7:4) calculation takes data from on
chip memory MI, which stores the upper four bits of the 
pixel values as they are read in from external memory. 
Unless RBSAD(7:4) ~ 0, the data in on-chip memory 
M2, which stores the lower four bits, will not be read. 

Not having to read all the data from on-chip memory 
can yield a large saving in power requirement. In addi
tion using only the top four-bits yields faster adders (for 
four bit inputs standard ripple adders are as fast as the so 
called 'fast adders' and consume much less area) and 
consumes significantly lower power, Fig. 5. A particular 
architecture has not been specified at this time as many 
Full Search architectures apply. The simple implementa
tion suggested above requires that a single PE calculates 
the best-fit for a single MB, and the architecture would 
need significant modifications for those designs for 
which many PEs work in parallel comparing candidate 
MBs in the.search window for a single MB in the current 
frame. Nevertheless such modifications are clearly pos
sible. 

4. CONCLUSIONS 

In this paper we have proposed an alternative imple
mentation to the standard Full Search Block Matching 
algorithm for the estimation of Motion Vectors in video 
sequencing. The method is based around the general 
good performance of the method of Bit Truncation in 
which typically the upper four bits are used in the Sum 
of Absolute Difference calculation. It has all the advan
tages of the reduced bit method in that the Reduced Bit 
SAD (RBSAD) may be calculated with power and time 
savings, but essentially uses the calculated RBSAD 
value as an early termination of the calculations. For the 
"Claire" sequence, where the RBSAD value is signifi
cantly lower than the SAD value, we have shown that 
the majority of fixes for the RBSAD value occur when 
the match is good and RBSAD(7:4) ~ 0. Correcting the 
SAD output to the true value SAD(7:0) is possible by 
repeating the calculation on the lower four bits, i.e. 
RB SAD(3:0). On the other hand for the other se
quences, in which the values of SAD and RBSAD are 
very close, virtually no extra computations are required. 

The m'!iority of standard architectures based on a bit 
slice design and a single processing element per current 
frame MB can be easily implemented with this method. 
The saving in PSNR, shown in Fig, 6 for fifty frames of 
the "Claire" sequence and in Table I for a group of other 

195 

sequences, shows a significant improvement in accuracy 
towards the Full Search method but with most of the 
power and time savings of the Reduced Bit SAD 
method. Effectively the RBSAD is used as an early ter
mination criterion. 

The analysis presented here is based upon a correc
tion being applied only when RBSAD ~ 0, i.e. T ~ 1. It 
is possible to extend the technique to correct the 
RBSAD to a full resolution value for other threshold 
values or, for example, in the case of small motion vec
tors. This will be considered in a future publication [13]. 

Corrected RBSAD 

; 
. 1.5 

~ 
0.5 

°O~-'~~'~0--'~'--~~~~~~~~~~~~-~~-4~'~~ 
frame 

Figure 6. Difference between FSSAD and RBSAD. 
The circles represent the standard RBSAD while the 
squares revresent the corrected curve. 

5. REFERENCES 

[1] ISOIIEC JTClISC29IWGll 1313-1, "Coding of moving 
pictures and associated audio," 1994. 

[2] CCITT sa xv, "Recommendation H.261- Video codee 
for audiovisual services", 1990. 

[3] J R lain and A K lain, "Displacement measurement and 
its application in iDterfrarue image coding," IEEE Trans 
Commun, COM-29 1799·1808 (1981). 

[4] A Netravali and J D Robbins, ~'Motion compensated tele~ 
vision coding: Part 1", Bell Sysl Tech I., 58 629-668 
(1979). 

[5] PM Kuhn, "Fast MPEG-4 Motion Estimation: Processor 
based and flexible VLSI implementation" J. VLSI Signal 
Processing 23 67·92 (1999). 

[6] PM Kuhn, a Diebel, S Herman, A Keil, H Mooshofer, A 
Karp, R Mayer and W St.chele, "Complexity and PSNR
comparison of several fast Motion Estimation algorithms 
for MPEG·4", SPIE 3460, Applications of Digital Image 
Processing XXI, San Diego, USA, 486 - 499 (1998). 

[7] V a Moshnyaga, "A new computationally adaptive for
mulation of block-matching Motion Estimation", IEEE 
Trans. Circuits Syst. Video Technol.ll, 118-124 (2001). 



Proceedings of Mirage 2005, INRIA Rocquencourt, France, March, 1-2 2005 

[8] T Koga, K Lumina, A Hirano, Y Lijima and T !shiguro, 
"Motion compensated interframe coding for video confer
encing", Proc NTC 1981, G5.3.1-5 (1981). 

[9] H long, L Chen and T Chieuh, "Accuracy improvement 
and cost reduction of three-step search block matching al
gorithm for video coding", IEEE Trans. Circuits Syst. 
Video Techno!. 4, 88-91 (1994). 

[10] R Srinivasan and K Rac, "Predictive coding based on 
efficient Motion Estimation", IEEE Trans. Commun., 38 
950-953 (1990) 

[11] Y Baek, H S Oh and H K Lee, "An efficient block
matching criterion for motion estimation and its VLSI im
plementation", IEEE Trans Consumer Electron., 42 885-
892 (1996). 

[12] S Lee, J-M Kim and S-I Chae, "New Motion Estimation 
algorithm using an adaptively quantized low bit-resolution 
image and its VLSI architecture for MPEG2 video encod
ing", IEEE Trans. Circuits Syst. Video Techno1.8. 734-
744 (1998). 

[13] V M Dwyer, S Agha and V Chouliaras, in preparation. 

196 



Paper PCS: Tom R. Jacobs, Vassilios A. Chouliaras and Jose 1. Nunez, 'A Thread and Data

Parallel MPEG-4 Video Encoder for a System-On-Chip Multiprocessor', accepted for oral 

presentation at the IEEE 16th International Conference on application-specific architectures 

and processors (ASAP 2005), Samos, Greece, July 23-25 2005 

122 



A Thread and Data-Parallel MPEG-4 Video Encoder 
for a System-On-Chip Multiprocessor 

Tom R. Jacobs, Vassilios A. Chouliaras 
Department of Electronic and Electrical Engineering 
University of Loughborough, Loughborough, UK 

t.r.;acobs@lboro.ac.uk 

Jose L. Nunez-Yanez 
Department of Electronic Engineering 

University of Bristol, Bristol, UK 
It. nunes-vanez@bristol.ac.uk 

Abstract 

We studied the dynamic instruction count reduction 
for a single-thread, vectorized and a multi-threaded, 
non-vectorized, MPEG-4 video encoder. Results 
indicate a maximum improvement of the order of 88% 
for 22 CPU contexts for the multi-threaded case 
whereas the single-thread, veclorized version 
demonstrates an 85% improvement for a vector 
register file length of 24 bytes. over the scalar case. 
We present VLS! macrocells of a vector accelerator 
implementing a subset of the MPEG-4 vector ISA and 
a 2-way, parametric, bus-based, cache coherent, SaC 
multi-processor. 

1. Introdnction 

As the demand for video and multimedia products 
continues to expand, the problem of transmitting and 
processing the ever-increasing amount of media 
content becomes more acute. To address this, a number 
of lossy video compression standards such as MPEG-l 
[I], MPEG-2 [2], MPEG-4 [3] and H264 [4] have been 
developed in recent years, with each method being 
more sophisticated and complex than earlier 
approaches. One method of providing the 
computational power for these increasing complex 
standards has been to create very powerful, small form
factor System on Chip (embedded) computer systems 
to ensure real-time video content delivery in every day 
consumer products. A very potent leverage of SoC 
computation power comes from the exploitation of 
various degrees of parallelism available in these 
standards the most prominent of which are Data-Level 
Parallelism (DLP) and Thread-Level Parallelism 
(TLP). These types of parallelism can be exploited 
individually by vectorlSIMD architectures [5] and 
Chip-Multiprocessing/Multithreading respectively. 

This work addresses the extraction of DLP and TLP 
and quantifies the performance benefits (dynamic 
instruction count reduction) in an open-source, integer-

only implementation of the MPEG-4 standard [6]. This 
paper will show the significant reduction in per-CPU 
instruction count achieved by exploiting both forms of 
paraleIlism. The paper is structured as follows: Section 
2 describes the MPEG-4 XviD video compression 
standard, identifies the most computationally
expensive functions and discusses the potential of DLP 
and TLP. Section 3 details the abstract methodology 
we developed to parallelise arbitrary workloads and 
Section 4 applies this methodology to MPEG-4. This is 
followed by a discussion of a novel, multi-processor 
simulator developed for this purpose. Section 6 
presents the results) in terms of dynamic instruction 
count reduction, for the non-vectorized, threaded and 
single-thread, vectorized versions of the workload. 
VLSI macrocells for the DLP-accelerator and a 
System-on-Chip (SoC) multi-processor are presented 
and finally, this work concludes by consolidating our 
findings and identifYing issues to be studied in the 
future. 

2. MPEG-4 

The MPEG-4 standard was designed for low
bandwidth multimedia applications. The specification 
addresses not only video compression but also the use 
of audio, 3D objects and interactive modules. Video 
compression is an important aspect of the standard and 
this work focuses primarily at the hardware-software 
interface of MPEG-4 video coding and high
performance embedded computing platforms. 

As in previous MPEG standards the specification 
standardizes the bitstream structure and not the strict 
implementation steps towards producing that bitstream. 
This extra degree of freedom allows for multiple 
implementations of the standard with one such 
implementation being the integer-only, open-source 
XviD. 

In a logical progression from older MPEG standards 
such as MPEG-l and MPEG-2, MPEG-4 is a discrete 
Cosine transform (DCI) and motion estimation (ME) 
based video compression scheme. After colour 



conversion into YUV colour space each frame is 
divided into 8x8 blocks and the chrominance 
component sub-sampled. These blocks are grouped 
into macroblocks containing 4 luminance blocks and a 
corresponding number of chrominance blocks, 
depending on the colour scheme chosen (4 for 4.4.4., 2 
for 4.2.2 and I for 4.2.0). DCT is performed on both 
the luminance and chrominance components for an 
intra·coded frame. This transforms the frame content 
from the spatial domain to the frequency domain in 
which higher frequency information, to which the 
human eye is less sensitive, is removed via more 
coarse quantisation. The net effect is the production of 
a compressed bitstream by eliminating spatial 
redundancy within the image. 

For temporal (inter. frame) redundancy, motion 
vectors (MV) are computed by tracking areas of high 
similarity from one frame to the next. The XviD 
encoder searches exhaustively over a finite area within 
previously encoded frames in search for a macroblock 
that matches best the current macroblock. This 
matching process is via the Sum-ofabsolute. 
differences (SAD) mechanism and proceeds until a 
macroblock, within a prescribed error limit, is found. 
The residue error produced from ME and the 
reconstructed frame in the encoder (produced after 
motion compensation, MC) is transformed and 
quantised in the same manner as for intra frames. 

MPEG4 oomplulty dilctrlbutlon 

Figure 1: MPEG-4 (XviD) profiling 

Figure depicts the most computationally-
expensive operations in the encoding process for a 
number of Quality levels. These quality levels enable 
various features of the encoder such as half pixel 
resolution MY and inter4v (inter encoded MB using 
four MV for MC, one per 8x8 luma block), with more 
features introduced as the quality level increases. The 
results of the profiling were obtained through 
measuring the number of instructions executed and 
mapping them to the four functional groups above. To 
allow for the real·time implementation of streaming· 

video in small form factor consumer appliances it is 
clear that these functions should be primarily targeted 
for parallelism extraction at all levels. 

3. TLP Methodology 

Parallelising code at the thread level involves 
distributing the statically-threaded control-flow-graph 
(CFG) of the application across the active processor 
contexts (CPUs) within the shared-memory system. In 
the proposed approach, the most compute· intensive 
functions are manually selected after profiling and 
threaded at loop-level with different iterations ofloops 
assigned to different CPUs while fully obeying the 
algorithm data-flow-graph (DFG). Figure 2 depicts 
diagrammatically this process. 

p~nIJ1. 
~ 

Time---------..... 

Figure 2 Transformation of loop from serial to 
parallel 

From the figure, a 6·iteration loop is evenly split 
across three processor contexts. The process of 
converting from the single threaded model into the 
multi-processor one involves a number of distinct steps 
with an optional extra step depending on the number of 
available processors: 

• 

• 

Firstly all data dependencies between loop 
iterations need to be addressed. This is achieved 
by evaluating each functional block within the 
iterations, assessing its data requirements and if 
necessary segmenting the loop into serial and 
parallel sections. 

Once all data dependencies have been resolved 
the most evident step is to reduce the number of 
iterations of the loop is reduced and the 
reduction is calculated using equation I: 

paralle'-iterations = serial_iteration / 
processor_count [J} 



• Since all processors are working in an iteration 
subset of the original loop, a method of 
mapping the non-threaded iteration range to the 
that of the threaded case is needed: 

original_iteration = processor_number + 
(para/leUoop _iteration 

* processor_count) [Il} 

• Due to multiple processors running 
simultaneously the scope of programming 
objects (variables) in each processor and their 
exclusivity is of great importance. To achieve 
exclusivity, processors work with private (local) 
variables. To access shared arrays, the later 
should be declared as global (which is very 
inefficient) or static, in the current scope. 

So far it has been assumed that equation I produces 
an integer iteration number. This is not always the case 
and additional code is needed to support this situation. 
This extra code is known as the 'remainder' code and 
has a direct resemblance to the process of strip-mining 
in vectorized applications .. 

4. TLP extraction in MPEG-4 

The loops associated with the transform 
functionality are located within the encoding functions 
for both I and PIB frames, FrarneCodeI and 
FrameCodeP respectively. Both loops encompass 
transform (DCT), quantisation (Q) and VLC 
functionality. In the single-thread case the encoder 
scans each row of the frame, macroblock by 
macroblock, executing the same subset of code. In the 
multi-threaded environment the entire macroblock row 
is the shared component with all processor contexts 
encoding the row in parallel, one MB per CPU. 

4.1. FrameCodeI 

When encoding an Intra frame the pixel data is 
transformed and quantised along with its inverse 
within MBTransQuantIntraMT, a modified version of 
MBTransQuantlntra. Following that the quantised data 
is VLC-coded in function MBCoding. To allow 
MBTransQuantIntra to be executed in parallel, one 
extra variable, a per MB quant value, need to be passed 
into the function and additional code is needed to 
support this extra variable. This quant value was 
originally obtained from pEnc->current->quant, and 
describes the current quantisation level of the frame 
and changes with each additional macroblock encoded. 
Due to this dependency, each macroblock requires a 

private quantisation value. This translates to a serial 
loop, within the parallel section, required to calculate a 
private quant value for each MB in the row before 
MBTransQuantlntraMT is called. 

4.2. FrameCodeP 

The process of encoding P and B frames is split into 
two parts in function FrameCodeP. First, motion 
estimation is carried out on the whole frame by calling 
function MotionEstimation. Within this function the 
motion vectors for each macroblock are calculated. 
With all the motion vectors calculated, the process of 
transforming and encoding each block then follows. As 
with the I frames case, rows of macroblock are 
encoded in parallel. 

Another major task in the encoding process is MC 
which re-establishes macroblock pixel data from the 
motion vectors computed previously. This takes place 
in function MBMotionCompensation and can be 
executed in parallel since there are no data 
dependencies across macroblocks. Once the pixel data 
has been recreated a similar routine as that for I frames 
is executed with a serial section for calculating the 
frame quantisation parameter. These values are passed 
into the parallel-executing MBTransQuantlntraMT 
function. 

ME, like transform, executes in parallel, per 
macroblock row. Within the MotionEstimation 
function the process of motion-vector (MV) prediction 
is followed by a search which establishes the 'best' 
match MV with respect to a previously encoded frame. 
This function requires no modification to execute in a 
multi-processor environment since these frames have 
been encoded and are available to all processors. In 
addition, this process is executed more efficiently by 
vectorlSIMD architectures due to the abundant DLP. 

(a) (b) (c) 
Figure 3: Ideal prediction, current prediction 
and proposed prediction 

Unlike calculated MVs, predicted MVs are based on 
the current frame. Assuming that the motion transcends 
MB borders, the prediction function produces the 
average of the previously encoded MB's MVs. The 
timely availability of neighbouring MB MVs is 
different in a parallel implementation compared to the 
single-threaded case. Figure 3 shows three different 
prediction patterns that can be used to predict the 
motion of a specific MB. From the figure, it is clear 



that the most accurate prediction is likely to come from 
taking the mean of all possible neighbouring MBs. 
Such a pattern is not possible since not all of the MBs 
required for the prediction have been previously 
encoded in either single or multi-threaded case. Using 
the scan line approach of figure 3 b, the proposed 
method within MPEG-4 standard, MBs above and to 
the left can be used for predictions however, to allow 
for the MB in a row to be encoded in parallel, the block 
to the left cannot be used and the prediction pattern of 
figure 3c was thus implemented. A minimal fall in 
PSNR was observed when using this prediction 
pattern. 

The MPEG-4 standard specifies that the differential 
between the calculated and predicted MY is stored in 
the bitstream. To allow the correct recovery of MYs 
from the later, the decoder must use the same predicted 
MYs. To ensure this once all MY for the row have 
heen calculated, the original prediction algorithm is 
executed in serial and the differential calculated [9]. 

The block-based nature of the MPEG-4 encoder 
with the repetitive, independent computational steps 
involved leads naturally to parallelising the process at 
thread-level. Prior research in threading video 
workloads targeted a distributed network of 
workstations as the computation engine rather than a 
shared-memory multi-processor system [7]. In this 
case, the workload is distributed at far coarser 
granularity level (at the group of pictures, GOP, level) 
than our proposed technique since at this level a multi
computer architecture is more suitable due to the low 
inter-processor communication. However, such multi
computers are less capable to shared memory systems 
when implemented in SoC products due to the disjoint 
address space which calls for more silicon dedicated to 
private caches, per CPU. This is not the case for 
shared-memory configurations which can take the form 
of Chip-Multiprocessors (CMP), Multi-threaded 
processors (MT) or multi-threaded multi-processors 
(CMP-MT) in which much finer level of resource 
sharing can take place including the secondary cache 
subsystem (CMP/CMP-MT) or even the whole 
execution pipeline (MT/CMP-MT). We have therefore 
targeted such shared-memory systems due to their 
greater microarchitecture flexibility and potential for 
performance scalability and exploited TLP at a much 
finer granularity level the previous scheme. 

Further to TLP, prior work by our group [8] as well 
as other researchers has focused on Data-Level
Parallelism (DLP) since this is the most widely 
accepted form of parallelism in media workloads. TLP 
exploitation, as discussed in the previous paragraph, 
yields orthogonal (thus, complementary) benefits to 
DLP allowing for seamless exploitation of both forms 
of parallelism. We believe that such a DLP-TLP 

system is the optimal programmable solution for real
time video encoding SoCs. 

5_ Simulation Infrastructnre 

The threaded X viD encoder was compiled and 
verified on our custom, multi-context Instruction-Set
Simulator (MT-ISS) which is originally based on the 
SimpleScalar infrastructure [10]. This is a complete 
computer architecture research toolset and the ISS was 
extended to allow for arbitrary-large multi-context 
system modelling. The simulator produces dynamic 
instruction counts for a specified number of processor 
contexts and implements a software API to a cycle
accurate (CA) back-end. The combined MT-ISS and 
CA back-end will permit the detailed (near-RTL 
accuracy) study of arbitrary single and multi-processor 
configurations and interconnect. 

6. Results 

This section discusses the theoretical performance 
benefit of the threaded and vectorized XviD MPEG-4 
video coder 

6.1 TLP 

Eight video sequences at CIF (352x288) resolution 
were encoded each consisting of 25 frames. The 
sequences were encoded for quality settings 1 through 
5 and simulated on the MT-ISS for up to 64 processor 
contexts. 

J '~'iTC\-_ -:_-:_-:_:_-:_-:_ -.. -.-.. -.-.-.. -.-. '. ~ 
1- ~j .. ~._ .......... j 

" -- ...... ".~~~-.~.o;.o;.,;..~. 10 ___________________ _ 

1622'!.264 

Pr_nor Count 

Figure 4 Foreman video sequence 

Figure 4 depict the dynamic instruction count reduction 
for the primary processor context (thread 0) for the 
foreman video sequence. Context 0 is chosen as the 
reference because it is the controlling context as it 
performs I/O and activates the remaining contexts early 
during execution. The graph demonstrate a significant 
reduction in complexity metric with an increasing 
number of processors. No further complexity savings 
are achieved once the number of processor contexts 
exceeds, for the chosen video sequences, 22. The 



reasoning behind this is that for maximum gain, the 
threaded loops should be executed once only which is 
true when the number of processor contexts is greater 
than or equal to the upper limit of the loop iterations. 
For a processor count less than this value a threaded 
loop is executed multiple times thus, leading to a larger 
instruction count per context. The optimal number of 
contexts for the MPEG-4 X viD workload is calculated 
by: 

OpIJonlexl(MPEG-4) ~ frame_width/ 16 [111J 

For all three threaded functions the upper limit of 
the loop is directly related to the width of the input 
frames as specified above. This is imposed by the way 
the MotionEstimation function has been threaded and 
dominates the optimal number of threads of the other 
parallelised functions. To increase this limit a different 
implementation would need to be used since the data 
dependencies in the MV prediction are resolved for 
each row separately. 

6.2DLP 

Functions of major complexity were identified 
during algorithm profiling as being ME, MC, DCT and 
IDCT and Q. The dynamic instruction count of these 
functions accounts for more than 80% of total 
complexity and the existence of significant amounts of 
data level parallelism makes them excellent candidates 
for vectorization [8]. Figure 5 shows the dynamic 
instruction count reduction, due to varying the 
architecturally-visible vector register length from 8 to 
200 bytes, with results plotted for 3 quality settings. It 
shows an overall dynamic instruction count reduction 
of the order of 70% observed at a vector length of 32· 
bytes. These benefits relate to the single-threaded 
version of the workload however, they are orthogonaJ 
to the benefits achieved by exploiting TLP and are 
expected to remain largely insensitive, across all 
software threads. 

.. t········· ....... ' .......... . !.: " •.••••••• 
• ., ·'r ..... 

~~ 

-"'-0< ....... -_._QO 

. . :··"·", __ •• li;:j\ 1\3,"",$ .. " 1_$ .... ,$ .... 1=#.$.$ ."=#_1=#_. 

Figure 5: Overall dynamic instruction count 
reduction 

7. VLSI Macrocells 

DLP Accelerator 
Following the theoretical study of the previous 

sections, we implemented a subset of the MPEG-4 
vector ISA in the form of a custom tightly-coupled 
accelerator that attaches to an open-source, 
configurable, extensible, 32-bit RISC architecture [11] 
implementing the Sparc V8 [12] instructions et 
architecture (ISA). 

The design has been previously presented in [13] 
and this section presents the VLSI implementation data 
of a more up-to-date implementation of the 
microarchitecture in which a number of critical paths 
were improved and more MPEG-4 related vector 
instructions added. 

Figure 6a depicts the VLSI macrocell of the 
accelerator in a high-performance, 0.13 urn siJicon 
process from UMC. The leftmost RAM cells are the 5· 
read, I-write (5RI W) vector register file with 
geometry of 8xl28 bit. The large memory arrays on 
top and bottom of the standard cells are the two banks 
of the local memory of the vector load·store unit 
(VLSU). Table I details the performance and 
characteristics of the macrocell. 

Table 1: MPEG·4 VLSI Accelerator 
Characteristics 

Parameter Value 
Std cells 25070 
RAMs 8 
Fmax 292.3 MHz 
Size 1461 x 760 Ilm 1111233 ~ • .L 

Cache-coherent multi-processor 
We implemented a configurable, extensible, cache· 

coherent multi-processor based on the opensource CPU 
and internally developed IP. The implementation 
includes dual, modified Leon-2 CPUs each with an 
attached accelerator, as discussed above, in a shared· 
bus configuration. The VLSI layout and macrocell 
characteristics are presented in figure 6b and Table 2 
respectively . 



(a) 

(b) 

Figure 6: 2-way vector multi-processor system 

Table 2: Cache-coherent multi-processors 
Characteristics 

Parameter Value 
Std celts 83455 
RAMs 52 
Fmax 170 MHz 
Size 2730 x2732 um2 7466115 "",2) 

Though the standalone accelerator achieves close to 
300 MHz worst~case, post-route performance, this is 
reduced when it is attached to each of the two Leon-2 
CPUs of figure 6. In the multiprocessor case, the 
critical path is in the shared bus infrastructure, 
significantly limiting the performance of the SoC 
multi-processor to 170 MHz whereas the accelerator 
has its critical path in the add-reduction logic of the 
SAD functionality. These results clearly indicate the 
potential of the standalone accelerator and the 
limitations, in terms of maximum operating frequency, 
of shared-bus multiprocessors. 

8. Conclusions 

This work quantified the Thread and Data·Level 
parallelism of an integer-only, open-source 
implementation of the high performance MPEG-4 
video coding standard. Our results conclusively 
demonstrate that programmable solutions for 
consumer-driven products should address both forms 
of parallelism in order to achieve real-time video 
encoding, within the power budget of a consumer
market SoCs. Further work by our research groups will 
focus on fusing the single-thread, vectorized MPEG-4 
encoder to the non-vectorized, multi-threaded version 
in order to present conclusively the benefit of tapping 

the two most profound forms of parallelism, TLP and 
DLP. In addition, we shall be investigating cycle
effects of the proposed bus-based configuration and 
study more advanced interconnects. 

8. Reference 

[I] MPEGl, ISOIIEC 11172-2:1993 

[2] Motion Picture Experts Group http://www.mpeg.org 

[3] MPEG Video Group. "MPEG-4 Video Verification 
Model 6.0", Doc. ISOIIEC ITCl I SC29 IWGI1 N1582, 
SevillaMPEG Meeting, February 1997 

[4] G.J.Sullivan, P.Topiwala, A.Luthra, "The H.264/AVC 
Advanced Video Coding standard: overview and introduction 
to the Fidelity Range Extensions", SPIE conference on 
Applications of Digital Image Processing XXVII, August 
2004. 

[5] Ax36 Family of Parallel Image and Video Digital Signal 
Processors DSP Chips', White Paper, Oxford Micro 
Devices, Inc, Monroe, CT 06468, USA, 2002 

[6] XviD core library source code, www.xvid.org 

[7] Ke Shen, Lawrence A. Rowe, and Edward J. Delp. A 
parallel implementation of an MPEGl encoder: Faster than 
real-time! In Proceedings of SPIE Conference on Digital 
Video Compression: Algorithms and Technologies, San Jose, 
February 5-101995 

[8] V. A. Chouliaras, 1. L. Nunez, Fabrizio. S. Rovati, 
Daniele Alfonso 'A multi-standard video coding accelerator 
based on a vector architecture', Proceedings of the IEEE 
International Conference in Consumer Electronics (ICCE 
2005), Las Vegas, Nevada, USA 

[9] Communication with C.Lambert, R.Czyz, XviD core 
developers. XviD-deve1 mailing list Sept.-Nov. 2004 

[10] SimpleScalar LLC http://www.simplescalar.coml 

[11] "The Leon-2 processor User's manual, XST edition, 
ver. 1.0.14", http://www.gaisler.com 

[12] The Sparc Architecture Manual Version 8', 
http://www.sparc.org 

[13] V. A. Chouliaras, J. L. Nunez-Yanez, S. Agha, 'Silicon 
Implementation of a Parametric Vector Datapath for real
time MPEG2 encoding', Proceedings of the lASTED (SIP) 
2004, Honolulu, Hawaii, USA, ISBN: 0·88986442-X 



Paper PC9: S. R. Parr, K. Koutsomyti, V. A. Chouliaras, J.L. Nunez, D. J. Muivaney, 

'Configurable Scalar and Vector Coprocessors for accelerating the G.723.1 and G.729.A 

speech coders', accepted for oral presentation at the lASTED International Conference on 

Signal and Image Processing (ACIT-SIP), Novosibirsk, Russia, June 20-24, 2005 

129 



CONFIGURABLE SCALAR AND VECTOR COPROCESSORS FOR 
ACCELERATING THE G.723.1 AND G.729A SPEECH CODERS 

S. R. Parr, K. Koutsomyti, V. A. Chouliaras, J.L. Nunez, D. J. Mulvaney 
Loughborough University 

United Kingdom 
s.r.parr@lboro.ac.uk 

ABSTRACT 
This paper presents the results of an investigation of 
employing configurable scalar and vector coprocessors to 
accelerate the G.723.1 and the G.729A speech coders. 
Architecture exploration has produced a reduction by up 
to 70% of the total number of instructions executed 
following the introduction of custom instructions. The 
accelerators are designed to be attached to a configurable 
embedded RISC CPU where they will make use of the 
host register file and load/store infrastructure. 

KEYWORDS 
Signal Processing, Coprocessor, Embedded systems, 
Speech coding. 

1 Introductiou 
Speech compression is utilized in a multitude of 
communication applications[I][2][3], including Voice 
over Internet Protocols networks and digital satellite 
systems. Typical consumer products employing this 
technology are multimedia terminals, digital dictation 
machines, videophones and IP phones. The G.723.1[4] 
and the G.729A[S] recommendations were designed to 
standardize telephony and videoconferencing over public 
telephone lines and are part of the International 
Telecommunication Union (ITV) H.324 standard. This 
work investigates the benefit, in tenns of complexity 
reduction, of architecture (instruction) extensions for the 
efficient execution of the above vocoders, building on 
previous work[6][7]. The identified extensions are 
implemented as coprocessors, tjghtly~coupled to a 
configurable, embedded RlSC processor. 

There is a significant body of research into application 
acceleration via targeted coprocessors; application 
domains are diverse, ranging from cryptography[8], maze
routing[9] to high-end video processing[IO]. Previous 
research into efficient execution of speech coders include 
that by Costinescu et a/.[ll] and by Chang and Hu[12] 
which describe the necessary changes in the ITV 
reference code when targeting very high~perfonnance, 

off-the-shelf digital signal processors. Soler at 01.[13] 
describe a semi~automated chip~synthesis flow targeting a 
horizontally micro-programmed (VLlW) embedded DSP 
architecture, capable of executing one multiply~ 

accumulate operation per clock cycle. The workload in 
this case was the GSM half-rate speech coder. 

The research is a continuation of Raab et al.[IO] which 
describes instruction set extensions, implemented in a 
moderate-complexity datapath (coprocessor) attached to a 
configurable embedded processor. 

2 LP AS- Based Speech Coders 
The G723.1 and the G729A standard speech coding 
algorithms, as recommended by the ITU, belong to the 
category of linear-prediction analysis-by-synthesis 
(LPAS) speech coders[14]. G.729A is a reduced 
complexity 8kbits/s version of the Conjugate-Structure 
Algebraic-Code-Excited Linear-Prediction (CS-ACELP) 
coder in the G.729 recommendation[S]. The G.723.1 dual 
rate speech coder for multimedia applications transmits at 
either S.3kbits/s or 6.3kbits/s. Such coding schemes have 
been widely adopted as they produce high quality speech 
while maintaining a low bit-rate, but at the price of higher 
complexity. 

The quality of speech improves with higher bit rates 
although the overall performance of the G.723.1 at 
6.3kbits/s and the G.729A are similar. A clear difference 
in the performance of these two vocoders is their 
algorithmic delay; the total one-way delay of 2Sms for 
G.729A compares favourably with that of 67.Sms for 
G.723.1. Technically, G.723.1 at 6.3kbits/s differs from 
the G.723.1 at S.3kbits/s in the excitation model for the 
synthesis filter. The G.723.1 at S.3kbits/s uses mUlti-pulse 
excitation with a maximum likelihood quantizer model 
while the G.723.1 at 6.3kbitsis and the G.729A uses the 
code excited linear predication model. 

3 Problem Formulation 
This research identifies architecture and microarchjtecture 
requirements for the efficient implementation of the 
G.729A and G723.1 speech coders on high-performance, 
10w~cost, configurable microprocessors. 

The workloads were executed and profiled in native mode 
(Linux x86). Table I shows the relative time spent outside 
the digital signal processor (DSP) emulation instructions. 
To research the potential acceleration of the algorithms 
when executed on an embedded microprocessor, the 
workload was recompiled for the SimpleScalar instruction 
set architecture (ISA). Table 2 illustrates the simulated 



processor profiling results in terms of the number of 
instructions executed. 

It is clear that the workloads spend a significant 
proportion of their time executing DSP emulation 
functions. If the DSP emulation instructions could be 
executed by configurable extensible microprocessor there 
is the potential to achieve a valuable reduction in 
execution time. A suitable high-performance, targeted
architecture for executing the workloads could reduce the 
form-factor and power consumption, making it a very 
attractive candidate for replication and integration in a 
System-an-Chip (SaC) ASIC. 

Table 1: Relative amount of time spent outside the DSP emulation 
instructions 

Algorithm 
Gn3 Coder 
G729 Coder 

Relative time (%, native) 
31.3 
30.4 

Table 2: Relative number of total instructions executed outside the 
DSP emulation instructions 

Algorithm 
0723 Coder 
G729 Coder 

Relative instructions (%, simulated) 
34.5 
34.2 

4 Programmers Model 
The programmer's model for the vector and scalar 
coprocessor accelerator is depicted in Figure 1. There are 
16 vector registers (VRO-VRI5), each consisting of a 
parametric number (VLMAX) of scalar (16-bit) elements. 
There are two vector accumulators (VACCO, VACCI) 
consisting ofVLMAXJ2 scalar elements (32-bits) and two 
vector mask registers of length VLMAX bits. Finally, 
there are 16 scalar registers and a sticky overflow flag. 

, v.eiOr IbI9Ist&r mll ' 
VLMAX" 18.bIhlJ_tI 

s'c~i.r Re91't.tIr FIle' i 
32·bIl ' 

VRC,:, ,,' 
YR. 
VRS 
VR' VR. 
VR' 
V", 

i i VRe 
VR' 
VRU 
VR" 
VR12 
VR1~ 

VICtor Acc ... mUI.~N 
VLIl!Aj(/Z 3Z·bltehrtMntl 

"''' VR1f' 

11 I, I I~~~_ 
VnuxMuJr~ 

" VLMAXbihl 

IIIIIIIIIII=~ 

SRC< ' 
~~; ~t; 

S'" SR. 
SRe' 
SR' S", SR. 
SR' SRU 
SR11 
SR12 
SR1S 
SR14" 
SR1~jj 

OVerflow 
fllll" 

0>" 

Figure 1: Scalar and vector acceJerator programmers' model 

5 Microarchitecture 
The scalar and vector coprocessors are attached to the 
Spare-vS compliant CPU core via a custom pipeline 
coprocessor port[l5][16]. For performance reasons, this 
approach was chosen in preference to designing an 
AMBA high speed bus (AHB) compliant master[17]. 

High-level views of both scalar 
microarchitecture are depicted in Figure 3 
respectively. , 

.'\....J 

, 

poop_o-.t[11_douIl31:0] 

_~_""I/Ol,M/dn 

d.t. c 

r---c.... 

~" 

.L-

r---c.... r--r--
'---

~" data c 

dotllnto COproo 

~ 

data oul Yllllt -----"I 
==itt!~~rtelt 

and vector 
and Figure 4 

.,-
r--P= 1'--

'------
to" 

'0" 

-~ I I 

Figure 2: Typical Coprocessor Transaction 

Typical read-write transaction of a coprocessor is depicted 
in Figure 2. The diagram shows a coprocessor data 
operation on cycle I followed by a host-to-coprocessor 
register transfer on cycle 2. In cycle 3, a coprocessor 
register is requested by the RISC processor but due to 
internal stall conditions, data is made available one cycle 
later than the expected time (cycle 5 instead of cycle 4). 
During that time, the main processor is held with the 
'holdn' signal. Finally, a second read operation, this time 
directed to another coprocessor, is initiated in cycle 6. 
Results are made available to the main pipeline in cycle 7. 

5.1 Scalar Microprocessor Architecture 

This microarchitecture uses its own 16x32-bit register file. 
The coprocessor state is fully accessible from the RISC 
CPU. Bi-directional transfer instructions have been added 
between the host RISC processor and the coprocessors as 
both move-to-coprocessor and move-from-coprocessor 
instructions are absent in the Sparc v8 architecture. 

The coprocessor pipeline is segmented into three main 
sections: Front-End, Control Pipeline and Datapeth. The 
front-end reads instructions from the main CPU 
instruction cache and clocks them into the instruction 
register. The command is then decoded at the RISC 
processor and coprocessor and the read addresses are 
extracted. In parallel, the coprocessor computes the 
control fields used in its pipeline. 

--------------------------------------- -- - - - - ------



~~ ~~ --------:---:r----

DATAPATH 

Figure 3: High-level scalar microarchitecture 

5.1.1 EXEC1 Stage 
EXECI includes datapath logic to perform 16xl6 bit 
signed multiplication, all ITU shift operations and a 
miscellaneous block responsible for handling all opcodes 
not faIling in other function blocks. 

5.1.2 EXEC2 Stage 
The results are passed from EXEC I stage to this stage. 
Here, the add/sub part of the multiply-add or multiply-sub 
instruction is performed as well as the arithmetic and the 
saturation. Results commit to the private register file at 
the end of this cycle or return to the host pipeline during 
stageDMEM. 

5.2 Vector Microprocessor Architecture 

Figure 4: High-level vector microarthitecture 

The vector coprocessor microarchitecture can handle both 
scalar and vector operations. The coprocessor consists of 
the parametric vector data path, the memory pipeline 
common to both scalar and vector coprocessors and the 
control pipeline. Within the vector data path, the access to 
the vector register file takes place at the same stage as 
access to the RISC processor register file, followed by 
bypassing of the vector operands. There are two stages to 
vector execution. In stage 1, all single~cycIe operations 
are performed as well as the multiplication stage of the 
multiply-add/sub instructions. The second stage executes 
the addition/subtraction part of the multiply-add/sub along 
with reduction operations of the vector accumulators. 
Results are committed either to the vector accumulators or 
to staging registers prior to being written to the vector 
register file. This asymmetry is due to the long set up 
times of the vector register file dual~port random access 
memory (RAM). 

The vector memory pipeline supplies scalar and vector 
operands to the scalar and vector accelerators 
respectively. Following scalar register file reads, the 
results are bypassed prior to an address being presented to 
the vector data cache. In the subsequent cycle, the vector 
data cache is accessed and the vector operands are 
returned to the vector pipeline. The vector store 
operations commit data to the vector write buffers (the 
vector data-cache is write-through) which sends a request 
to the AHB controller for write access to the bus. The bus 
controller is also used for data cache refill operations. The 
control pipeline generates and distributes all control 
signals to all stages of the vector accelerator. 

6 System Architecture 

14------+lSIllAM 

Figure 5: Overall System Architecture 

The overall system architecture is shown in Figure S. The 
combined CPU scalar and vector accelerators are 
connected to the system AHB bus which communicates 
with the external synchronous dynamic RAM (SDRAM) 
through an AHB/slave SDRAM controller. Speech frames 
to be processed are transferred from the host system via 
PCI interface which connects to the SoC kernel via a 
Wishbone Bridge. 

The optimised speech coder and the frames to be 
processed are transferred with direct memory access 



(DMA) from the host PC to the SDRAM memory of the 
RISC/coprocessor FPGA board, and this combination 
processes the frames and stores the compressed frames in 
local memory (SDRAM). The compressed frames are 
transferred back to the PC memory for comparison with 
the ITU-T test vectors. 

7 Results 
Results were obtained for both coprocessors at the 
architectural level, with the baseline architecture being the 
Simplescalar ISA. The workloads where compiled and all 
ITU test vectors were validated on the standard 
architecture simulator (sim-profile). Table 3 and Table 4 
depict the number of simulated processor instructions 
required for each workload, for the G723.1 and G729A 
algorithms respectively. 

Table 3: G723.1 unmodified instruction count 

Test Vector Instruction Count 
Coder 

dtxS3mix.tin (Rate S.3kbits./s) 
dtx63.tin (Rate 6.3kbits/s) 
dtx53mix.tin (Mixed Rate) 

925.&53,310 
10,159,685,901 
1,062,686,&09 

Table 4: G729A unmodified instruction count 

Test vector 

Algthm 
Fjxed 
Lsp 
Pitch 
Tame 
Test 
Speech 

Instructions 
Coder 

62,613,675 
213,961,885 
3,977,1&3,504 
3,253,175,471 
230,917,00& 
311 ,692,276 
6,656,625,331 

The workloads where then modified to include custom 
assembly instructions and a new architecture-level 
simulator (sim-coproc), based on the existing profiling 
simulator, was designed. The test vectors were again 
simulated and the algorithmic complexity was measured 
and compared to that obtained in the previous run. Full 
compliance to the ITU· T test vectors was maintained 
throughout. 

7.1 Vector Coprocessor Results 

Figure 6 and Figure 7 show the results for the G,723.1 and 
G. 729A respectively when a vector coprocessor was 
attached to the RISC processor. The complexities for both 
vocoders do not reduce further for vector lengths greater 
than 16-bits, The G, 723,1 has a reduced complexity 
around 63% where as the G,729A has a reduced 
complexity of around 55%. 

6.123.1 Coder. Vactor Coprllc_r 

,:: C: .. :::::::::::::·::::::::::::::::·:::::::::::::::·::::.:: === 
I 0.' \:::::::.................................... ............ I.: ..... :::: ::':.:::,1 
:ii 0,3 .~ ...... "".~, ......... "=~:=,::=.o=;"" ... ::":..:: I" Mixed Rile GI 

! Cl 0.2 .............................................................. .. 

0.1 .............................................................. .. 

o~~~~~~ __ -= ________ ~ 
o 16 ~ ~ ~ 00 00 112 1~ --
Figure 6 - G.723.1 Vector Coprocessor Results 

G.729A Coder. Veclllr Copro_r 

0.7 .-,--"""'"'""--------'"'-"""'-""-

0,6 ................................................................... . 

05 

.l2 a D .• 
( +, 

0.2 ........................ -.......................................... .. 

0.1 ................ -.................................. . 

16 ~ ~ ~ 00 00 112 1~ 

VoctorL.el'9t> 

Figure 7 - G.729A Vector Coprocessor Results 

7,2 Vector and Scalar Coprocessor Results 

G.723.1 Coder. Vector and Scalar Copro.,....,r 

0.7,---------------, 
0,6 .. - ............................................................ . 

~ 0.5 r .......... ···· .......... ·· .... · .... ·· .. · ...... ·· ...... · ........ · 

1::[:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
! 02 .\"' .. "':;: ... : .. : ... : .. =========1 

0.1 ............................................................... .. 

o~ __ ~~~ ______ -=-=~ 
o 16 ~ ~ ~ 00 00 112 1~ 

VoctorLenglh 

Figure 8 - G.723.1 Vector and Scalar Coprocessor Results 



G.729A Coder· Vector 'nd Scalar Coproc88llOr 

o. ,----.-----------_ 

0.5 •••••••••••••••• - •••••••••••••••••••••••••••••••••••••••••••••••••••• 

0.4 ........................ - •••••••••••••••••••••• - .................... . 

.J !j "~----------------.-----------------------------------.---
- 02 ..................................................................... . 

01 ••.••...••.••••••••••••••••••••••••.••••••••••••••••••••• 

" • ", 

~ 
-~ 

'" ---,--,-
~ 

Figure 9 - G.729A Vector and Scalar Coprocessor Results 

With the introduction of the scalar coprocessor, a 
significant improvement can now be seen. The G.723.1 
now has a reduced complexity of 70% where as the 
G.729A has a reduced complexity of around 65%. 

8 Conclusions and Future Work 
The ITU-T G.729A and G.723.1 speech coders have been 
optimised by introducing custom scalar and vector 
instructions. 

The results have shown a reduced complexity of 70% for 
the G.723.1 and 65% for the G.729A when both vector 
and scalar coprocessors are attached to the RISC CPU. 
Additional insight on the cycle effects of the combined 
scalar-vector architecture will be provided thorough 
cycle-accurate modelling of both coprocessors. This will 
allow for experimentation of the processor/co-processor 
design space and provide insight into necessary 
microarchitecture requirements for the efficient execution 
of the workloads. 

The final stage of the research will be to build the register 
transistor logic (RTL) model of the vector and scalar 
coprocessors. 

References: 

[1] Kondoz, A.M (Ahmet M), Digital Speech: codingfor low bit 
rate communication systems (New York, Chichester, Wiley, 
1999). 

[2] R.Cox, P.Kroon, Low bit-rate speech coders for multimedia 
communication. IEEE Communications magazine, pp.24-4I, 
December J 996 

[3] R Cox, Three New Speech Coders from the ITV cover a 
Range of Applications. IEEE Communications Magazine, 
vol.35. no. 9, pp.40-47, September 1997 

[4] ITU-T Recommendation G.723.1, Dual Rate Speech coder 
for multimedia communications transmitting at 5.3 and 6.3 
kbits/s. 3/96 www.itu.int 

[5] ITU-T Recommendation G.729, Coding of speech at 8 
kbits/s using conjugate-structure algebraic~code-excited linear
prediction (CS-ACELP). 3/96 www.itu.int 

[6] V. A. Chouliaras, J. L. Nunez, A scalar coprocessor for 
accelerating the G723.1 and G129A speech coders. IEEE 
Transactions on Consumer Electronics vo1.49, no.3, pp.703-710, 
Aug.2003 

[7] V. A. Chouliaras, lL. Nunez, K. Koutsomyti, S.R. Parr, DJ. 
Mulvaney and S. Datta, Development of custom vector 
acceJerator for high-perfonnance speech coding. lEE Electronics 
Letters, vol. 40, no. 24, pp. 1559 -1561, Nov. 2004 

[8] A. Royo, 1. Moran, C. Lopez, Design and implementation of 
a coprocessor for cryptography applications. Proceedings of the 
1997 IEEE European Design and Test Conference 
(ED&TC'97), pg 213-217 

[9] Y. Won, S. Sahni, Y. EI-Ziq, A hardware accelerator for 
maze routing. IEEE Trans on Computers, vol. 39, no. 1, pp. J 4 J-
145, Jan. 1990 

[10] A. Raab, N. Bruels, U. Hachmarm, l Harniseh, U. 
Ramacher, C. Sauer, A. Techmer, A 100-GOPS programmable 
processor for vehicle vision systems. IEEE Design and Test of 
Computers, pp.8-16, Jan-Feb 2003 

[111 B. Costinescu, R. Ungureanu, M. Stoica, E. Medve, R. 
Pread, M. Alexiu, C. Ilas, ITU-T G729 Implementation on 
Stareore SCI40. AN2094/D, Rev. 0,02/2001, www.motorola.com 

[12] S. Chaog, J. Hu, Real-time implementation of G723.1 
speech codec on a 16-bit DSP processor. Department of 
electronic and control engineering, National Chiao Tung 
Univesity, Hsinchu, Taiwan, R.O.C 

[13] M. Soler, A. Andre, E. Closse, J. Laval, F. Baleslro, D. 
Morche, P. Senn, An embedded DSP platfonn for multi-standard 
ITV 0728, 0729 & 0723.1 audio compression. France 
Telecom, CNET 

[14] A S Spaoias, Speech Coding: A Tutorial Review. 
Proceedings from the 1EEE vol. 82, no. 10, pp.1541-1581, 
October 1994 

[15] The Leon-2 processor User's manual, XST edition, ver. 
1.0.14. www.gaisJer.com 

[16] The Sparc Architecture Manual Version 8. www.sparc.com 

[17] AMBA Specification (Rev 2.0). www.arm.com 



GROUP RJ: Under-review Journal papers 

This final set of journal contributions includes papers that are still under review and as such, 

they are mentioned in this section only for completeness: 

RJI: 

Jose L. NUilez, V. A. Chouliaras, 'A 1 Gigabyte per Second Streaming Lossless Data 

Compression Chip Based on a Conflgurable Variable-Geometry CAM Dictionary', submitted 

to lEE Proceedings on Computer and Digital Techniques, June 2004. Accepted for 

pUblication. 

RJ2: 

This paper discusses the VLSI implementation of a streaming, high performance, 

CAM-based, lossless data compressor capable of processing 4 input bytes per cycle. 

The resulting macrocell occupied a silicon area of 2 mm by I mm and achieved a 

maximum post-route frequency of 273 MHz in a high performance CMOS process 

resulting in a compression bandwidth in excess of I GB/s. This architecture was the 

Ph.D. outcome of my colleague, Dr. Jose Nunez. My contribution was the fine-tuning 

of the design RTL code for synthesis by the Synopsys tools and the subsequent back

end flow. This contribution has been accepted for publication. 

Xiaofeng Wu, V. A. Chouliaras, Jose Nunez- Yanez and Roger Goodall, 'On the design of a 

,1£ control system processor VLS! hard macro " submitted to IEEE Transactions on Very 

Large Scale Integration, October 2004. Accepted for pUblication. 

In their quest for ultimate performance, industry and academia have been researching 

and developing high performance DSP engines which can process a number of binary 

words every cycle. This paper proposes a very interesting alternative in which a bit

serial DSP architecture for control applications is proposed by my colleagues, Prof. 

Roger Goodall and Mr. Xiaofeng Wu. The bit-serial approach delivers sufficient 

processing capability to achieve the required sampling rates and at the same time, 

dispenses with the use of bit-parallel multipliers. My responsibility in this work was in 

the preparation of the RTL for front-end synthesis and the whole of the back-end flow, 

for two configurations of the program RAM of the design. This contribution has been 

accepted for publication. 

135 



RJ3: 

V. A. Chouliaras, J. 1. Nunez, D. J. Mulvaney, 'On the systematic development of a 

parametric vector accelerator for high performance video coding', submitted to IEEE 

Transactions on Very Large Scale Integration, October 2004 

RJ4: 

This contribution goes into great length at discussing the paraJlelization (vectorization) 

process of the reference MPEG-2 application software. Starting with the reference 

application, the code is profiled and the major CPU cycle consumers are identified at 

the function level. Visual inspection revealed that these computationally-intensive 

functions have sufficient DLP which was exploited via the introduction of a custom 

vector ISA extensions, leading to a maximum dynamic instruction count reduction of 

the order of 68%. My responsibility in this work was in the architecture specification, 

implementation, and simulation of the vector instruction set architecture. I 

subsequently was the main designer behind the implementation of the MPEG-2 ME 

accelerator and the combined processor-coprocessor VLSI macrocell. 

V. Dwyer, S. Agha, V. A. Chouliaras, 'Motion estimation with low resolution distortion 

metric " submitted to lEE Electronic Letters, Jan 2005. Accepted for publication. 

RJ5: 

This work elaborates quite substantially on the Reduced Bit-width SAD (RBSAD) 

methodology as discussed in paper PC7. It has been accepted for publication. 

J. 1. Nunez, V. A. Chouliaras, 'High-Throughput Arithmetic Coding Hardware for the H264 

Advanced Video Compressor', submitted to IEEE Transactions on Circuits and Systems for 

Video Technology, February 2004, revision stage I 

RJ6: 

This contribution proposes a high-performance, fully-pipelined (I symbol per cycle), 

binary arithmetic coding architecture that replaces multiplication and division 

operations by look-up table probing. The microarchitecture of the encoder and the 

decoder consists of 5 and 2 stages respectively and achieves a throughput of 70 

MSymbols/s on an FPGA or 315 MSymbols/s on a high-performance 0.13 Ilm CMOS 

process. A major characteristic of the microarchitecture is the renormalization 

operation which takes place in one cycle thus permitting the processing of one symbol 

per cycle. 

136 

- ------' 



J.L NUilez, V. A. Chouliaras, 'A Col1figurable Statistical Lossless Compression Core Based 

on Variable Order Markov Modelling and Arithmetic Coding', submitted to IEEE 

Transactions con Computers, October 2004. Accepted for publication. 

The Electronic Systems Design Group has been very active in the research of 

streaming, lossless data compression technologies over a number of years. In 

particular, the group has been quite successful in the development of a dictionary

based, streaming compressor/decompressor architecture known as XMatchPRO which 

demonstrated on average, a 50% to 60% compression ratio on established 

benchmarks. This work takes a radical departure from dictionary-based approaches by 

discussing the first hardware implementation of a configurable statistical lossless 

compression engine based on variable-order Markov modeIling and arithmetic coding. 

The engine is known as Byacom-l. 

137 



Appendix A: Complete list of Author Publications 

A.I Academic Journal Publications (published) 

I. V. A. Chouliaras, J. 1. Nunez, 'Scalar Co processors for accelerating the G723.] and 

G729A Speech Coders " IEEE Transactions on Consumer Electronics, Vol. 49, Issue 3, 

Aug. 2003, pg. 703-710, ISSN:0098-3063. 

2. Grecos, C., Saparon, A. and Chouliaras, V., Three novel low complexity scanning orders 

for MPEG-2 foil search motion estimation " Real Time Imaging, 10, February 2004, pp 

53-65, ISBN 1077-2014 

3. V. A. Chouliaras, J. 1. Nunez, K. Koutsomyti, S. R. Parr, D. J. Mu1vaney, S. Datta, 'On 

the development of a custom vector accelerator for high-performance speech coding', IEE 

Electronic Letters, Vol. 40, Issue 24, 25 Nov. 2004, pg 1559-1561, ISSN 0013-5194 

4. V. A. Chouliaras J. 1. Nunez, D. J. Mulvaney, F. Rovati, D. Alfonso, 'A Multi-standard 

Video coding accelerator based on a vector architecture " IEEE Transactions on 

Consumer Electronics, Vol. 51, Issue 1, Feb 2005, pg 160-167, ISSN:0098-3063 

5. J. 1. Nunez, V. A. Chouliaras, 'High Performance Arithmetic Coding VLS] Macro for 

the H264 Video Compression Standard', IEEE Transactions on Consumer Electronics 

Vol. 51, Issue 1, Feb 2005, pg 144-151 ISSN:0098-3063Academic Journal Publications 

(under review) 

A.2 Academic Journal Publications (under review/accepted for publication) 

1. Jose 1. NUfiez, V. A. Chouliaras, D. J. Mu1vaney, 'A ] Gigabyte per Second Streaming 

Lossless Data Compression Chip Based on a Conjigurable Variable-Geometry CAM 

Dictionary " submitted to IEE Proceedings on Computer and Digital Techniques, June 

2004. This work has been accepted for publication. 

2. Xiaofeng Wu, V. A. Chouliaras, Jose Nunez- Yanez and Roger Goodall, 'On the design 

of a LIE control system processor VLS] hard macro " submitted to IEEE Transactions on 

Very Large Scale Integration, October 2004. This work has been accepted for publication. 

138 



3. V. Dwyer, S. Agha, V. A. Chouliaras, 'Motion estimation with low resolution distortion 

metric " submitted to IEE Electronic Letters, Jan 2005. This work has been accepted for 

publication. 

4. E. Touloupis, J. A. Flint, V. A. Chouliaras and D. D. Ward, 'Modelling Multiple Faults 

in Fault-Tolerant Processor Architectures', submitted to IEE Electronic Letters, February 

2004. 

5. J. L. Nunez, V. A. Chouliaras, 'High-Throughput Arithmetic Coding Hardware for the 

H264 Advanced Video Compressor', submitted to IEEE Transactions on Circuits and 

Systems for Video Technology, February 2004, revision stage 1 

6. J.L NUfiez, V. A. Chouliaras, 'A Conflgurable Statistical Lossless Compression Core 

Based on Variable Order Markov Modelling and Arithmetic Coding', submitted to IEEE 

Transactions on Computers, October 2004. This work has been accepted for publication. 

A.3 Refereed Conference Publications (presented/accepted) 

1. V. A. Chouliaras, 'A new approach in the integrated automation of pharmacies based on 

novel concepts of functional and ergonomical design " proceedings, 1st National 

Pharmaceutical Conference, June 1994, Athens, Greece. 

2. V. A. Chouliaras, D. E. Edwards, 'A Superscalar AMULET', proceedings, 1st UK Async 

Forum, December 1996, Edinburgh, Scotland 

http://www.dcs.ed.ac.uklhome/cxs/forum.html. 

3. V. A. Chouliaras, J. L. Nunez, 'A Scalar Co processor for accelerating the G723.1 and 

G729A Speech Coders " Proceedings of the IEEE International Conference in Consumer 

Electronics (ICCE 2003), Los Angeles, California, USA, ISBN:0-7803-8838-0. 

4. Nikolova, E.G.; Mulvaney, D.J.; Chouliaras, V.A.; Nunez-Yanez, J.L., 'A code 

compression scheme for improving SoC performance', Proceedings of the 2003 IEEE 

International Symposium on System-on-Chip, IEEE Cat. No.03EX748. 

5. E. G. Nikolova, D. J. Mulvaney, V. A. Chouliaras, J.L Nufiez, 'A Novel Code 

Compression/Decompression Approach for High-performance SoC Design " Proceedings 

of the IEE Seminar on SoC Design, Test and Technology, Cardiff University, Cardiff, 

UK,2 September 2003. 

6. Chouliaras, V.A., Flint, J.A. and Li, Y., 'Towards a Custom Vector-Parallel Machinefor 

TLM' , Proceedings, Fifth IEE International Conference on Computation in 

139 



Electromagnetics , lEE Conf Pub 505, lEE, CEM 2004, Stratford-upon-Avon UK, April 

2004,2004,33-34, ISBN 0863414001 

7. Touloupis, E., Flint, J. A. and Chouliaras, V. A., 'A Fault-Tolerant Architecture for 

Automotive Applications' , Proceedings of PREP 2004, EPSRC, University of 

Hertfordshire UK, April 2004, 2004, 90-9 I. 

8. V. A. Chouliaras, J. L. Nunez-Yanez, S. Agha, 'Silicon Implementation of a Parametric 

Vector Datapath for real-time MPEG2 encoding', Proceedings of the lASTED (SIP) 

2004, Honolulu, Hawaii, USA, ISBN: 0-88986-442-X 

9. X. Wu, V. A. Chouliaras, R. M. Goodall, 'An application-specific processor hard macro 

for real-time control', Proceedings of the IEEE SOCC 2004 Conference, San Jose, CA, 

USA 

10. J.L NUfiez, V. A. Chouliaras, 'Arithmetic Coding Hardware Acceleration in a SOPC 

Plaiform for Advanced Video Compression', Proceedings, International Conference on 

Reconfigurable Computing and FPGAs (ReConFig04), pp. 19-28, ISBN 970692169-9, 

Colima, Mexico, September, 2004. 

11. V. A. Chouliaras, J. A. Flint, Y. Li, 'Parametric Data-Parallel architectures for TLM 

acceleration', Proceedings of the 3rd International Conference on Computational 

Electromagnetics and Its Applications (ICCEA), Nov. 1-42004, Beijing, China, ISBN 

12. J. L. Nunez, V. A. Chouliaras 'High-performance Arithmetic Coding VLSI Macro for the 

H264 Video Compression Standard', Proceedings of the IEEE International Conference 

on Consumer Electronics (ICCE 2005), Las Vegas, Nevada, USA, ISBN: 07803-8839-9 

13. V. A. Chouliaras, J. L. Nunez, Fabrizio. S. Rovati, Daniele Alfonso 'A multi-standard 

video coding accelerator based on a vector architecture', Proceedings of the IEEE 

International Conference in Consumer Electronics (ICCE 2005), Las Vegas, Nevada, 

USA, ISBN: 07803-8839-9 

14. K. Koutsomyti, S. R. Parr, V. A. Chouliaras, J. Nunez, D. J. Mulvaney, S. Datta, 'Scalar 

and Parametric Vector Accelerators for the G.729A Speech Coding Standard', 

Proceedings of IEE/ACM Postgraduate Seminar on Soc Design, Test and Technology, 

lEE , Loughborough University UK, 15th September 2004 , ISBN 0 8634 I 460 5 

15. E Touloupis, J A Flint, V A Chouliaras and D Ward, 'A TMRprocessor architecturefor 

safety-critical automotive applications', Proceedings of IEEI ACM Postgraduate Seminar 

on Soc Design, Test and Technology, lEE, Loughborough University UK, 15th September 

2004, ISBN 0 86341 460 5 

140 



16. T. R. Jacobs, V. A. Chouliaras, D. J. Mulvaney, J. 1. Nunez 'The application of Thread

Level Parallelism for reducing the architectural complexity of an MPEG-2 encoder', 

Proceedings of IEE/ACM Postgraduate Seminar on Soc Design, Test and Technology, 

lEE, Loughborough University UK, 15th September 2004, ISBN 0863414605 

17. E. Touloupis, 1. A Flint, V. A. Chouliaras, D. D Ward, 'A Fault-tolerant Processor Core 

Architecture for Safety-Critical Automotive Applications', Proceedings of the SAE 2005 

World Congress & Exhibition, April 2005, Detroit, MI, USA (Document Number: 2005-

01-0322) 

18. K Koutsomyti, S R Parr, V A Chouliaras, J Nunez, D J Mulvaney, S Datta, 

'Conflgurable Scalar and Vector Accelerators for the G.729A and G. 723.1 Speech Coding 

Standards', Proceedings of the EPSRCIIEEEIIEE Postgraduate Research Conference in 

Electronics, Photonics, Communications and Networks, and Computing Science 

(PREP2005), University of Lancaster, UK, 30 March-I April 2005 

19. T. R. Jacobs, V A Chouliaras, D J Mulvaney, 'Investigation of Thread-Level Parallelism 

in the architectural complexity reduction of MPEG-2 and XViD video encoders', 

Proceedings of the EPSRC/IEEE/IEE Postgraduate Research Conference in Electronics, 

Photonics, Communications and Networks, and Computing Science (PREP2005), 

University of Lancaster, UK, 30 March-I April 2005 

20. V M Dwyer, S Agha and V Chouliaras , 'Low power full search block matching using 

reduced bit SAD values for early termination', Proceedings of the Mirage 2005 

International conference on Computer Vision/Computer Graphics collaboration 

techniques, Paris, France 

21. S. R. Parr, K. Koutsomyti, V. A. Chouliaras, J.L. Nunez, D. J. Mulvaney, 'Configurable 

Scalar and Vector Co processors for accelerating the G.723.1 and G.729.A speech 

coders " accepted for oral presentation at the lASTED International Conference on Signal 

and Image Processing (ACIT-SIP), Novosibirsk, Russia, June 20-24, 2005 

22. V. A. Chouliaras, Ashwin K. Kumaraswamy, T. R. Jacobs, and J. L. Nunez-Yanez, 

'System-on-Chip Design Framework (SDF) unifYing Specification Capture and Design 

Modelling', Proceedings of the 2005 Electronic Design Processes (EDP) Workshop, April 

6-8, Monterey Beach Hotel, Monterey, California, USA 

23. Indrajit Atluri, Ashwin K. Kumaraswamy and V. A. Chouliaras, 'Energy efficient 

architectures for the Log-Map decoder through intelligent memory usage', Proceedings of 

the IEEE Annual Symposium on VLSI, May 11-122005, Tampa, Florida, USA 

141 



24. V. A. Chouliaras, J. L. Nunez-Yanez, T. R. Jacobs and Ashwin K. Kumaraswamy, 

'Configurable Multiprocessorsfor high-performance MPEG-4 video coding', Proceedings 

of the IEEE Annual Symposium on VLSI, May 11-122005, Tampa, Florida, USA 

25. Tom R. Jacobs, V. A. Chouliaras and Jose L. Nunez, 'A Thread and Data-Parallel 

MPEG-4 Video Encoder for a System-On-Chip Multiprocessor', accepted for oral 

presentation at the IEEE 16th International Conference on application-specific 

architectures and processors (ASAP 2005), Samos, Greece, July 23-25 2005 

26. Jose L. Nunez-Yanez, V. A. Chouliaras, 'Design and Implementation of a High

Performance and Silicon Efficient Arithmetic Coding Accelerator for the H.264 Advanced 

Video Codec', accepted for oral presentation at the IEEE 16th International Conference on 

application-specific architectures and processors (ASAP 2005), Samos, Greece, 

27. Vassilios A. Chouliaras, Vincent M. Dwyer and Sharukh Agha, 'On the performance 

improvement of sub-sampling MPEG-2 Motion Estimation Algorithms with vectorlSIMD 

architectures', accepted for oral presentation at the 'Advanced Concepts for Intelligent 

Vision Systems' (ACIVS2005) conference, University of Antwerp, Antwerp, Belgium 

28. Vincent M Dwyer, Sharukh Agha and Vassilios A Chouliaras , 'Reduced-Bit, Full 

Search Block-Matching Algorithms and their Hardware Realizations', accepted for oral 

presentation at the 'Advanced Concepts for Intelligent Vision Systems' (ACIVS2005) 

conference, University of Antwerp, Antwerp, Belgium 

29. K. Koutsomyti, S. R. Parr, V. A. Chouliaras, J. Nunez, 'Applying Data-Parallel and 

Scalar Optimizations for the efficient implementation of the G.729A and G. 723.1 Speech 

Coding Standards', accepted for oral presentation at the Seventh lASTED International 

Conference on Signal and Image Processing (SIP 2005), Honolulu, Hawaii, USA 

142 



A.4 Patent applications 

The following two patent applications are in progress 

I. D. J. Mulvaney, A. Kumaraswamy, V. A. Chouliaras: USPTO application for novel 

specification capture and electronic system design tool 

2. E. Touloupis, J. Flint, V. A. Chouliaras, D. Ward: USPTO application for novel, 

fault-tolerant RISC CPU microarchitecture for mission critical systems 

143 



A.S Non-Refereed Contributions 

This section lists a number of non-refereed publications by the author and his research group 

1. V. A. Chouliaras, D. Edwards, 'DDANIA: The Don't Dare Not Issue Architecture', 

Amulet Group Internal Report, Department of Computer Science, University of 

Manchester, 1996. 

2. E. G. Nikolova, D. J. Mulvaney, V. A. Chouliaras, J. L. Nunez-Yanez, 'A 

compression/decompression scheme for embedded system codes " Proceedings, 

Electronics Systems and Control Division Mini-Conference, 25/9/2003, University of 

Loughborough 

3. J. L. Nunez and V. A. Chouliaras, 'Variable-Order Context-Based Statistical Hardware 

Data Compression for Wireless Networks and Mobile Computing', Proceedings, 

Electronics Systems and Control Division Mini-Conference, 25/9/2003, University of 

Loughborough 

4. Z. M. Yusof, D. J. Mulvaney, J. L. Nunez-Yanez, V. A. Chouliaras, 'Compressed 

Memory Core " Proceedings, Electronics Systems and Control Division Mini-Conference, 

25/9/2003, University of Loughborough 

5. Yibin Li , V. A. Chouliaras, James A. Flint and David J. Mulvaney, 'Exploration of Data 

and Thread Level parallelism in Transmission Line Modelling " Proceedings, Electronics 

Systems and Control Division Mini-Conference, 25/9/2003, University of Loughborough 

6. Tom Jacobs, V. A. Chouliaras, David Mulvaney, 'Investigation of Thread-Level 

Parallelism in the Architectural Complexity Reduction of MPEG2, XviD and H.264 Video 

Encoders " Proceedings, Electronics Systems and Control Division Mini-conference, 

February 2005, University of Loughborough 

7. S. R. Parr, K. Koutsomyti, V. A. Chouliaras, Jose Nunez, D. J. Mulvaney, S. Datta, 

'Conjigurable Scalar and Vector Co processors for the G.723.1 and G.729A Speech 

Coders " Proceedings, Electronics Systems and Control Division Mini-conference, 

February 2005, University of Loughborough 

144 





l 
I 

11 
1 

I i 


