1,724 research outputs found

    Documenting numerical experiments in support of the Coupled Model Intercomparison Project Phase 6 (CMIP6)

    Get PDF
    Numerical simulation, and in particular simulation of the earth system, relies on contributions from diverse communities, from those who develop models to those involved in devising, executing, and analysing numerical experiments. Often these people work in different institutions and may be working with significant separation in time (particularly analysts, who may be working on data produced years earlier), and they typically communicate via published information (whether journal papers, technical notes, or websites). The complexity of the models, experiments, and methodologies, along with the diversity (and sometimes inexact nature) of information sources, can easily lead to misinterpretation of what was actually intended or done. In this paper we introduce a taxonomy of terms for more clearly defining numerical experiments, put it in the context of previous work on experimental ontologies, and describe how we have used it to document the experiments of the sixth phase for the Coupled Model Intercomparison Project (CMIP6). We describe how, through iteration with a range of CMIP6 stakeholders, we rationalized multiple sources of information and improved the clarity of experimental definitions. We demonstrate how this process has added value to CMIP6 itself by (a) helping those devising experiments to be clear about their goals and their implementation, (b) making it easier for those executing experiments to know what is intended, (c) exposing interrelationships between experiments, and (d) making it clearer for third parties (data users) to understand the CMIP6 experiments. We conclude with some lessons learnt and how these may be applied to future CMIP phases as well as other modelling campaigns

    Implementation of U.K. Earth system models for CMIP6

    Get PDF
    We describe the scientific and technical implementation of two models for a core set of experiments contributing to the sixth phase of the Coupled Model Intercomparison Project (CMIP6). The models used are the physical atmosphere-land-ocean-sea ice model HadGEM3-GC3.1 and the Earth system model UKESM1 which adds a carbon-nitrogen cycle and atmospheric chemistry to HadGEM3-GC3.1. The model results are constrained by the external boundary conditions (forcing data) and initial conditions.We outline the scientific rationale and assumptions made in specifying these. Notable details of the implementation include an ozone redistribution scheme for prescribed ozone simulations (HadGEM3-GC3.1) to avoid inconsistencies with the model's thermal tropopause, and land use change in dynamic vegetation simulations (UKESM1) whose influence will be subject to potential biases in the simulation of background natural vegetation.We discuss the implications of these decisions for interpretation of the simulation results. These simulations are expensive in terms of human and CPU resources and will underpin many further experiments; we describe some of the technical steps taken to ensure their scientific robustness and reproducibility

    Live Animal Ultrasound Information as a Decision Tool in Replacement Beef Heifer Programs

    Get PDF
    Real-time ultrasound information taken on beef heifers prior to backgrounding is used to develop a logit model to aid heifer retention decisions. The value of ultrasound data is calculated as the difference in certainty equivalents between a decision rule incorporating ultrasound information and one using only visual cues. The value of ultrasound data is found to be around $10 per head but is influenced by heifer value and backgrounding costs.expected utility, heifer development, logit, real-time ultrasound, Agribusiness, Agricultural and Food Policy, Livestock Production/Industries, Q11, Q12, Q13,

    Live Animal Ultrasound Information as a Decision Tool in Replacement Beef Heifer Programs

    Get PDF
    Ultrasound data are used to sort heifers for immediate sale or for development as replacement stock. While ultrasound improves predictions about conception, the value of ultrasound the data is relatively small. This value is primarily influenced by heifer development costs and bred heifer premiums over commercial feeder heifers.Livestock Production/Industries,

    The Carbon Dioxide Removal Model Intercomparison Project (CDRMIP): rationale and experimental protocol for CMIP6

    Get PDF
    The recent IPCC reports state that continued anthropogenic greenhouse gas emissions are changing the climate, threatening "severe, pervasive and irreversible" impacts. Slow progress in emissions reduction to mitigate climate change is resulting in increased attention to what is called geoengineering, climate engineering, or climate intervention – deliberate interventions to counter climate change that seek to either modify the Earth's radiation budget or remove greenhouse gases such as CO2 from the atmosphere. When focused on CO2, the latter of these categories is called carbon dioxide removal (CDR). Future emission scenarios that stay well below 2 °C, and all emission scenarios that do not exceed 1.5 °C warming by the year 2100, require some form of CDR. At present, there is little consensus on the climate impacts and atmospheric CO2 reduction efficacy of the different types of proposed CDR. To address this need, the Carbon Dioxide Removal Model Intercomparison Project (or CDRMIP) was initiated. This project brings together models of the Earth system in a common framework to explore the potential, impacts, and challenges of CDR. Here, we describe the first set of CDRMIP experiments, which are formally part of the 6th Coupled Model Intercomparison Project (CMIP6). These experiments are designed to address questions concerning CDR-induced climate "reversibility", the response of the Earth system to direct atmospheric CO2 removal (direct air capture and storage), and the CDR potential and impacts of afforestation and reforestation, as well as ocean alkalinization.

    The Radiative Forcing Model Intercomparison Project (RFMIP): experimental protocol for CMIP6

    Get PDF
    The phrasing of the first of three questions motivating CMIP6 – “How does the Earth system respond to forcing?” – suggests that forcing is always well-known, yet the radiative forcing to which this question refers has historically been uncertain in coordinated experiments even as understanding of how best to infer radiative forcing has evolved. The Radiative Forcing Model Intercomparison Project (RFMIP) endorsed by CMIP6 seeks to provide a foundation for answering the question through three related activities: (i) accurate characterization of the effective radiative forcing relative to a near-preindustrial baseline and careful diagnosis of the components of this forcing; (ii) assessment of the absolute accuracy of clear-sky radiative transfer parameterizations against reference models on the global scales relevant for climate modeling; and (iii) identification of robust model responses to tightly specified aerosol radiative forcing from 1850 to present. Complete characterization of effective radiative forcing can be accomplished with 180 years (Tier 1) of atmosphere-only simulation using a sea-surface temperature and sea ice concentration climatology derived from the host model's preindustrial control simulation. Assessment of parameterization error requires trivial amounts of computation but the development of small amounts of infrastructure: new, spectrally detailed diagnostic output requested as two snapshots at present-day and preindustrial conditions, and results from the model's radiation code applied to specified atmospheric conditions. The search for robust responses to aerosol changes relies on the CMIP6 specification of anthropogenic aerosol properties; models using this specification can contribute to RFMIP with no additional simulation, while those using a full aerosol model are requested to perform at least one and up to four 165-year coupled ocean–atmosphere simulations at Tier 1

    The Petri Net Model for the Collaborative Virtual Environment on the Web

    Get PDF
    [[abstract]]This paper presents a Petri Net model to analyze the workflow of a web-based multiple participants virtual environment. The presented approach not only can conspicuously help the developer to comprehend the interaction relationship between the client-server virtual environments but also to easily construct a shared virtual world. Based on the presented Petri Net model, we propose an architecture for the collaborative virtual environment and implement a multiple user 3D web browsing system, called the SharedWeb system. Problems of providing the multi-user interaction on the Web and the solutions proposed by the Petri Net model are fully elaborated here. Some experimental results along with two demonstrated virtual world are also presented.[[notice]]èŁœæ­ŁćźŒ

    Forest fluxes and mortality response to drought: model description (ORCHIDEE-CAN-NHA r7236) and evaluation at the CaxiuanĂŁ drought experiment

    Get PDF
    Extreme drought events in Amazon forests are expected to become more frequent and more intense with climate change, threatening ecosystem function and carbon balance. Yet large uncertainties exist on the resilience of this ecosystem to drought. A better quantification of tree hydraulics and mortality processes is needed to anticipate future drought effects on Amazon forests. Most state-of-the-art dynamic global vegetation models are relatively poor in their mechanistic description of these complex processes. Here, we implement a mechanistic plant hydraulic module within the ORCHIDEE-CAN-NHA r7236 land surface model to simulate the percentage loss of conductance (PLC) and changes in water storage among organs via a representation of the water potentials and vertical water flows along the continuum from soil to roots, stems and leaves. The model was evaluated against observed seasonal variability in stand-scale sap flow, soil moisture and productivity under both control and drought setups at the CaxiuanĂŁ throughfall exclusion field experiment in eastern Amazonia between 2001 and 2008. A relationship between PLC and tree mortality is built in the model from two empirical parameters, the cumulated duration of drought exposure that triggers mortality, and the mortality fraction in each day exceeding the exposure. Our model captures the large biomass drop in the year 2005 observed 4 years after throughfall reduction, and produces comparable annual tree mortality rates with observation over the study period. Our hydraulic architecture module provides promising avenues for future research in assimilating experimental data to parameterize mortality due to drought-induced xylem dysfunction. We also highlight that species-based (isohydric or anisohydric) hydraulic traits should be further tested to generalize the model performance in predicting the drought risks.</p

    The Gridbus Toolkit for Service Oriented Grid and Utility Computing: An Overview and Status Report

    Full text link
    Grids aim at exploiting synergies that result from cooperation of autonomous distributed entities. The synergies that result from grid cooperation include the sharing, exchange, selection, and aggregation of geographically distributed resources such as computers, data bases, software, and scientific instruments for solving large-scale problems in science, engineering, and commerce. For this cooperation to be sustainable, participants need to have economic incentive. Therefore, "incentive" mechanisms should be considered as one of key design parameters of Grid architectures. In this article, we present an overview and status of an open source Grid toolkit, called Gridbus, whose architecture is fundamentally driven by the requirements of Grid economy. Gridbus technologies provide services for both computational and data grids that power the emerging eScience and eBusiness applications.Comment: 11 pages, 3 figures, 3 table
    • 

    corecore