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Abstract We describe the scientific and technical implementation of two models for a core set of
experiments contributing to the sixth phase of the Coupled Model Intercomparison Project (CMIP6).
The models used are the physical atmosphere-land-ocean-sea ice model HadGEM3-GC3.1 and the
Earth system model UKESM1 which adds a carbon-nitrogen cycle and atmospheric chemistry to
HadGEM3-GC3.1. The model results are constrained by the external boundary conditions (forcing data)
and initial conditions. We outline the scientific rationale and assumptions made in specifying these.
Notable details of the implementation include an ozone redistribution scheme for prescribed ozone
simulations (HadGEM3-GC3.1) to avoid inconsistencies with the model's thermal tropopause, and land use
change in dynamic vegetation simulations (UKESM1) whose influence will be subject to potential biases in
the simulation of background natural vegetation. We discuss the implications of these decisions for
interpretation of the simulation results. These simulations are expensive in terms of human and CPU
resources and will underpin many further experiments; we describe some of the technical steps taken to
ensure their scientific robustness and reproducibility.

Plain Language Summary Complex models of the Earth system are valuable tools for
understanding the processes responsible for our changing climate. The Coupled Model Intercomparison
Project (CMIP) is a well-established activity of the World Climate Research Programme that brings together
results from these models to better understand their process representation and to pool their projections
for robust understanding of future climate pathways. The latest phase of CMIP (CMIP6) is larger and more
ambitious than previous phases. We detail the setup of two U.K. models (HadGEM3-GC3.1 and UKESM1)
for a core set of experiments contributing to CMIP6, including simulations of historical and future
periods covering 1850 to 2300. We highlight assumptions made in applying the prescribed CMIP6 input
data to these models. We outline the technical steps to ensure the reproducibility of these simulations.

1. Introduction
Complex models of the Earth system are valuable tools for understanding the processes responsible for
our changing climate. The Coupled Model Intercomparison Project (CMIP) is a well-established activity
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of the World Climate Research Programme that brings together results from these models to better under-
stand their process representation and to pool their projections for robust understanding of future climate
pathways. CMIP facilitates fundamental climate and carbon cycle research (e.g., Friedlingstein et al., 2014;
Sherwood et al., 2014) and supports assessments of climate science literature (e.g., IPCC, 2014). The United
Kingdom has a long history of contributing to past phases of CMIP (e.g., Gordon et al., 2000; Johns et al.,
1997, 2006; Jones et al., 2011) and has made a strong commitment to the current, sixth, phase (CMIP6;
Eyring et al., 2016). The U.K. contribution to CMIP6 is a collaborative endeavor, with model development
and simulation shared between the Met Office Hadley Centre and a number of research centers under the
auspices of the Natural Environment Research Council (NERC) and the Science and Technology Facilities
Council. Indeed, contributions with U.K. models are not limited to the United Kingdom: Key simulations
are being performed by the Korean Meteorological Administration and New Zealand's National Institute of
Water and Atmospheric Research.

CMIP6 specifies nearly 300 experiments, organized by about 20 CMIP6-endorsed Model Intercomparison
Projects (MIPs) around a central set of experiments (Eyring et al., 2016). The protocols for these experiments
dictate how the models should be configured and what forcing data should be used as input. Nevertheless,
models differ in their capabilities and assumptions, and some aspects of the protocols need to be interpreted
in light of these assumptions. Jones et al. (2011) detailed the implementation of the previous generation
UK Earth system model HadGEM2-ES (Collins et al., 2011) for CMIP5 experiments. In this paper we do
the same for the latest generation of U.K. models, HadGEM3-GC3.1 (Kuhlbrodt et al., 2018; Williams et
al., 2018), and UKESM1 (Sellar et al., 2019), as applied to a core set of experiments in CMIP6, specifically
the DECK and historical experiments (Eyring et al., 2016) and a set of projections for ScenarioMIP (O'Neill
et al., 2016). We focus on these experiments as they have high policy relevance and underpin the majority
of experiments in the other MIPs.

The purpose of this paper is threefold: to aid reproducibility by documenting the setup of U.K. models for
core CMIP6 experiments; to highlight where scientific decisions have been taken in defining this setup,
particularly where these may impact the interpretation of the results; and to outline some of the techni-
cal methodology used to ensure robustness, traceability, and reproducibility of the model experiments. We
do not document the models themselves since they are presented in existing literature nor do we analyze
the results of these experiments as that will be the focus of future work. The paper is structured as fol-
lows: section 2 introduces the model configurations used in the core simulations, section 3 summarizes
the scientific choices and assumptions made in implementing the CMIP6 forcing for these models, section
4 explains the strategy used in initializing historical simulations to maximally span the models' modes of
internal variability, and section 5 outlines the technical steps we took to ensure the reproducibility of these
simulations. Finally, section 6 discusses the implications of some of the scientific choices for the interpreta-
tion of the results of these simulations and briefly summarizes the amount of resource used and the size of
data generated during our participation in CMIP6.

2. Model Configurations Used for CMIP6
The U.K. contribution to CMIP6 is based on two models: the physical climate model HadGEM3-GC3.1
(Kuhlbrodt et al., 2018; Williams et al., 2018) and the Earth system model UKESM1 (Sellar et al., 2019). The
two models are closely related, with UKESM1 consisting of GC3.1 as its physical core, plus the addition of
component models for atmospheric chemistry and for marine and terrestrial biogeochemistry. Two horizon-
tal resolutions of GC3.1 have been used to make DECK, historical, and ScenarioMIP simulations: the first
employs an N96 atmospheric grid (192× 144 grid points) and a tripolar ocean grid with a resolution of nomi-
nally 1◦ (eORCA1, 360× 330 grid points; Madec & Imbard, 1996), while the second has an N216 atmospheric
grid (432 × 325 grid points) and a 0.25◦ tripolar ocean grid (eORCA025, 1,440 × 1,205 grid points). The full
names of these configurations are HadGEM3-GC3.1-N96ORCA1 and HadGEM3-GC3.1-N216ORCA025,
respectively. Hereafter, HadGEM3-GC3.1 is referred to as GC3.1. For UKESM1, only the N96ORCA1 resolu-
tion has been used for CMIP6 simulations. For all these model configurations the atmosphere model uses 85
vertical levels from the surface to 85 km, with a hybrid sigma-height coordinate that follows terrain near the
surface and evolves toward geopotentials at 18 km and above (Walters et al., 2019); the ocean uses 75 verti-
cal levels with a z∗ coordinate in which the reference levels are geopotentials but for which cell thicknesses
vary in time as the nonlinear free surface evolves (Storkey et al., 201).
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Table 1
CMIP6 MIP Submissions Using U.K. Model Configurations

Model HadGEM3-GC3.1 UKESM1.0
Resolution N96ORCA1 N216ORCA025 N96ORCA1
CMIP6 source_id HadGEM3-GC31-LL HadGEM3-GC31-MM UKESM1-0-LL
DECK & historical x x x
AerChemMIP x
C4MIP x
CDRMIP x
CFMIP x
DAMIP x
DCPP x
PAMIP x
FAFMIP x
GeoMIP x
GMMIP x
HighResMIPa x x
ISMIP6 x
LS3MIP x
LUMIP x
OMIP x x
PMIP x x
RFMIP x xb

ScenarioMIP xc xc x
VolMIP x
ZECMIP x

Diagnostic-only MIPs
CORDEX x
DynVarMIP x x x
SIMIP x x x
VIACS AB x x x

Note. See text and Table 2 for an explanation of the trailing letters in source_id.
aHighResMIP uses a matrix of ocean and atmosphere resolutions of GC3.1, which are tied to the
DECK submissions of these two configurations. bThe Tier 1 fixed-SST experiments (referred to as
RFMIP-lite by Pincus et al., 2016) have been performed with UKESM1.0. cA subset of Tiers 1 and
2 scenarios will be performed with GC3.1.

Within CMIP6, each model configuration is uniquely identified by a short string, source_id, whose value
for each configuration is shown in Table 1. The pair of characters at the end of each source_id indicates
the resolution (Low, Medium, or High) of first the atmosphere and second the ocean. The correspondence
between these characters and the resolution of the atmosphere and ocean is documented in Table 2. These
three configurations will also be used for a wide range of CMIP6-endorsed MIPs. The choice of models for
each MIP is documented in Table 1.

3. Forcing Implementation
External forcing data sets are provided by various expert groups under the coordination of CMIP. These
provide many of the inputs required by our models but in many cases need to be augmented with addi-
tional input data. For example, the CMIP6-mandated aerosol and gas emissions include anthropogenic and
biomass burning sources but not natural sources. This section documents scientific choices and assumptions
made in implementing the CMIP6 forcing data, as well as those data sets used to augment them. For many
of these data sets the implementation differs between GC3.1 and UKESM1 because their differing levels of
complexity imply different requirements for driving data. In general, UKESM1 requires fewer input data
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Table 2
Resolutions Corresponding to the Final Pair of Characters in CMIP6 source_id

Resolution indicator Atmosphere resolution Ocean resolution
L N96 eORCA1
M N216 eORCA025
Ha N512 eORCA12
aH is used only in configurations employed by HighResMIP. N512 has 1, 024 × 768
grid points. ORCA12 is a nominally (1/12)◦ tripolar grid with 4, 320×3, 604 points.

sets because it interactively simulates more components of the Earth system, such as atmospheric chemistry
and vegetation cover.

Within this section we cite the scientific papers which document the methodology and evaluation of these
data sets, where available. In Appendix A we document the specific versions of the data sets employed, with
reference to the data set citations (including digital object identifiers) which uniquely identify them.

Where specific processing has been performed for the historical or future period, we describe this below.
For the period 2100–2300 we follow the ScenarioMIP protocol (O'Neill et al., 2016) in using transient forcing
data for solar irradiance, greenhouse gas concentrations, and land use while keeping all other forcing agents
fixed at 2100 levels.

3.1. Solar Variability
The solar radiation forcing used by GC3.1 and UKESM1 is derived from the recommended solar data sets for
CMIP6 (Matthes et al., 2017). Two CMIP6 data sets are used: one for preindustrial control simulations and
the other for historical-future scenario simulations. The preindustrial control data set, consisting of total
solar irradiance (TSI) and solar spectral irradiance (SSI) data, is constructed of time-averaged historical data
corresponding to 1850–1873 mean conditions. The historical-future data set consists of TSI and SSI data at
monthly resolution, using historical reconstructions for the period 1850–2014 and a future projection for
the period 2015–2299 (Matthes et al., 2017). The solar forcing data provided by Matthes et al. (2017) include
information on particle forcing, but the CMIP6 protocol provides no recommendation on whether it should
be used; for consistency with previous rounds of CMIP we do not use solar particle forcing.

The CMIP6 SSI data span the wavelength interval 10–100,000 nm. The interval accepted by GC3.1 and
UKESM1 is 200–10,000 nm across 12 bands. Given that the TSI is consistent with the SSI in the CMIP6 data
set, it is important to include the radiation flux below 200 nm and above 10,000 nm in the model. The spec-
tral irradiance below and above the model frequency range is added to the lowest and highest model bands,
respectively, that is, the 10- to 220-nm irradiance is included in the 200- to 220-nm model band, and the
2,380- to 100,000-nm irradiance is included in the 2,380- to 10,000-nm model band. This approach ensures
that the TSI and SSI applied to the simulations are consistent with one another.

UKESM1 includes photolytic reactions in its interactive simulation of ozone, but the photolysis rates use
fixed solar inputs and therefore have no dependence on the solar variability.

3.2. Stratospheric Volcanic Aerosol
3.2.1. Radiative Properties
Explosive volcanic eruptions inject SO2 into the stratosphere leading to the formation of sulfate aerosols
that scatter solar radiation back to space. This leads to a negative radiative forcing (Myhre et al., 2013),
although this can be offset to some degree by the absorption of outgoing longwave radiation and other rapid
adjustments (Schmidt et al., 2018). Stratospheric aerosol loading varies considerably with time, depending
on the magnitude, altitude, and location of eruptions. Accurate simulations of past climate therefore rely on
a reasonable representation of stratospheric aerosol radiative properties (Shindell et al., 2003).

For CMIP6, stratospheric aerosol properties have been made available via a zonal mean data set specify-
ing aerosol extinction, absorption, and scattering asymmetry as a function of altitude (5 to 40 km in 0.5-km
steps), latitude (5◦ resolution), and time (monthly resolution through the historical period; 1850–2014)
(Arfeuille et al., 2014; Thomason et al., 2018). This climatology was supplied by the Swiss Federal Institute of
Technology (ETH) and conveniently provided as averages over the spectral bands of the Met Office Unified
Model's radiation scheme.
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Figure 1. (a) Shortwave aerosol extinction as a function of altitude and latitude based on the annual mean from the
historical average (averaged climatology used in the preindustrial control simulation and for future scenarios from 2025
onward), (b) stratospheric aerosol optical depth for the averaged climatology as function of month and depending on
the implementation of tropopause height in the offline processing. Both plots show averages across the wavelength
interval 0.32–0.69 μm).

The aerosol properties in this climatology were set to zero below the modeled tropopause to screen out
upper-tropospheric aerosol and prevent unintended impacts on tropospheric meteorology. This screening
was applied offline using a monthly and zonal mean tropopause height climatology derived from a 10-year
simulation using HadGEM3-GA7.0 (Walters et al., 2019) with year 2000 forcings. Tropopause heights were
diagnosed by thermal stratification following the standard World Meteorological Organization definition
(WMO, 1992). To provide a smooth transition with height, a 2-km buffer zone was included straddling
the tropopause such that aerosol was zero 1 km below the tropopause and unmodified 1 km above the
tropopause, with a linear ramp in between. Figure 1a illustrates the resulting smooth variation of aerosol
shortwave extinction with height and latitude in the resulting data set.

The magnitude of the volcanic forcing was somewhat sensitive to the assumed tropopause height, as indi-
cated in Figure 1b. Setting the tropopause 2 km higher decreased the stratospheric aerosol optical depth
(AOD) by 16% and setting it 2 km lower increased AOD by 15%. The AOD shown here is the average AOD
across the wavelength interval 0.32–0.69 μm and is approximately 6% higher than the 0.55 μm AOD.

In line with the CMIP6 experimental protocol (Eyring et al., 2016), for preindustrial control simulations,
a historical mean climatology was used where aerosol properties for each month are the average from all
corresponding months during the period (1850–2014). The historical mean climatology has a small and fairly
smooth seasonal cycle, as shown in Figure 1b, in part due to the seasonal variation of tropopause height.

The time series of stratospheric 0.32- to 0.69-μm AOD for the historical and future periods 1850–2100 are
shown in Figure 2. From the year 2025 onward the historical mean climatology is employed (identical to
that used in preindustrial simulations). For the period from January 2015 to December 2024 aerosol values
are assumed to gradually return to this climatology with a linear ramp to create a smooth transition between
the historical and future periods. During the ramp period the aerosol values in a given month are a linear
combination of the aerosol values in December 2014 and the historical mean values for the given month so
that the seasonal cycle of the averaged climatology gradually returns during the ramp period.

3.2.2. Surface Area Density for Heterogeneous Chemistry
As well as having an important climatic effect through their impacts on the transmission of radiation,
large volcanic eruptions are known to have significant impacts on atmospheric chemistry. The stratospheric
aerosol resulting from large eruptions acts as a medium on which heterogeneous reactions occur. Strato-
spheric heterogeneous reactions are known to play an important role in depletion of ozone as they enable
the activation of reservoirs of ozone-depleting substances (Schmidt et al., 2018).

In UKESM1 this chemistry is simulated using the U.K. Chemistry and Aerosol model (UKCA; Archibald et
al., 2019), following the approach outlined in Morgenstern et al. (2009), with prescribed aerosolf surface area
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Figure 2. Time series of aerosol optical depth (AOD) and aerosol surface area density (SAD) for the stratospheric
aerosol climatologies, including the historical (1850–2014) and future (2015–2100) periods.

density (SAD) from the same source as the radiative properties described above (Beiping, 2017). The tempo-
ral evolution of this SAD is shown in Figure 2. These inputs are provided with the same height, latitude, and
time resolution as the radiative properties, and the same time processing is applied to the transition from
the historical time series to the climatology used post-2025.

Three (out of 19) UKESM1 historical simulations inadvertently use periodic 1850 SAD data, instead of
1850–2014 time series, thus breaking with the CMIP6 experimental protocol. This will reduce the variability
of stratospheric ozone in those ensemble members, most notably following volcanic eruptions when time
series forcing results in a decline in ozone. Outside of the stratosphere, we do not expect this difference in
forcing to have a significant impact on model behavior. Although the periodic 1850 SAD data were applied
in error, we have published these experiments as part of our CMIP6 data because we feel that, first, it will
allow users to analyze the impact of time-varying SAD on stratospheric chemistry by providing a control
with periodic forcing, and second, for components of the model unaffected by the change, these simulations
increase the size of the experimental ensemble. Table A8 shows how users of the published data can use the
CMIP6 file metadata to differentiate these three historical experiments from the rest of the ensemble.

We have made an initial examination of the impact of this erroneous inclusion of 1850 SAD in three ensemble
members by subtracting their zonal mean total column ozone from that of the other 13 members currently
published on the Earth system grid. The temporal and meridional variability of this difference is shown in
Figure 3; these differences reflect both forced variability in heterogeneous chemistry and unforced meteo-
rological variability. From theory we would expect that in times of high chlorine loading (such as during
Pinatubo) an injection of sulfur into the stratosphere should promote ozone depletion by enhancing produc-
tion of active chlorine through heterogeneous reactions. By contrast under low chlorine conditions (during
Krakatoa and Agung), these reactions are not so important, and instead, nitrogen deactivation is enhanced
by the volcanic aerosol, which leads to ozone increases. Indeed, Figure 3 shows some sign of weak positive
anomalies of ozone after the eruptions of Krakatoa and Agung, whereas after Pinatubo 1 or 2 years of quite
low ozone ensued. However, these possible signals are small relative to the background variability and we
have not assessed their significance. A systematic analysis of the impact of SAD variability in these sim-
ulations is planned for future work. The overriding conclusion of this initial look is that missing of SAD
variability in these three ensemble members does not introduce an obvious bias or error to the modeled
ozone concentrations.

In addition to this external input of SAD for sulfate aerosol, UKESM1 interactively calculates the aerosol
surface area produced from the formation of nitric acid trihydrate and mixed ice/nitric acid trihydrate polar
stratospheric clouds (Keeble et al., 2014).
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Figure 3. Annual mean zonal mean total column ozone (Dobson units) for the mean of 13 historical ensemble
members with variable SAD minus the same for the mean of three ensemble members with 1850 SAD. Labels at 70S
denote the four large volcanic eruptions occurring in the historical period: Krakatoa, 1883; Agung, 1963; El Chichon,
1982; Pinatubo 1991.

3.3. Well-Mixed Greenhouse Gases
We use the global mean annual mean concentrations of well-mixed greenhouse gases (WMGHG) provided
by Meinshausen et al. (2017) for the historical period and Meinshausen et al. (2019) for future scenarios. For
1pctCO2 experiments (one of the DECK simulations; Eyring et al., 2016) the model calculates the annual
increase of the CO2 concentration directly, with CO2 incremented by 1% at the beginning of each year.
3.3.1. GC3.1
The source data provide concentrations of 43 WMGHG species, many more than the models' radiation
scheme can cater for. Hence, as in Jones et al. (2011), we use the equivalent concentrations HFC-134a-eq and
CFC-12-eq that summarize the radiatively less important species. This means that we specify five WMGHG
concentrations in total: CO2, CH4, N2O, HFC-134a-eq, and CFC-12-eq. These concentrations are updated
once per year and applied in a spatially uniform manner, with no horizontal or vertical variation.
3.3.2. UKESM1
In the standard configuration of UKESM1, the radiative treatment of CO2, CFCs, and HFCs is identical to
that described above for GC3.1. In contrast, the CH4 and N2O concentrations interacting with radiation in
UKESM1 are represented by interactive three-dimensional tracers in the UKCA chemistry and only their
surface concentrations are prescribed. Above the surface, these tracers are modified by chemical depletion
and advection, resulting a vertical distribution which is more realistic than prescribing a single value at all
heights. These CH4 and N2O surface concentrations are taken from the data of Meinshausen et al. (2017),
as in GC3.1.
3.3.3. CO2 Emissions for UKESM1
The default configuration of UKESM1 uses prescribed CO2 concentrations as described above. However, the
model can also run with interactive CO2 concentrations under prescribed CO2 emissions, as required for
the CMIP6 experiments esm-piControl and esm-historical (Eyring et al., 2016). In this CO2 emission-driven
configuration, CO2 is a three-dimensional tracer which is subject to atmospheric advection and surface
exchange with the marine and terrestrial biosphere. For further details see Sellar et al. (2019).

We use the CO2 emissions data of Hoesly et al. (2018). We combine all emission sources (including aircraft)
and release the emission at the surface. After horizontal interpolation to the model grid and conversion to
the 360-day calendar used by these models, emission data were scaled to ensure that annual global-total
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Table 3
Model Emission Type for Anthropogenic Primary Carbonaceous Aerosol

Model emission Source sector
Fossil fuels Energy, industrial, shipping, transportation, solvents, waste
Biofuels Agriculture, residential/other

emissions agree with the totals provided by the CEDS project (http://www.globalchange.umd.edu/ceds/
ceds-cmip6-data/). This ensures that the model's cumulative global-total CO2 emissions are exactly as pro-
vided by Hoesly et al. (2018). For a long-lived species such as CO2 this conservation of cumulative emission
is the key consideration, contrast this with the treatment of emissions of shorter-lived species below.

3.4. Emissions of Tropospheric Aerosols and Reactive Gases
Both UKESM1 and GC3.1 use emissions of primary carbonaceous aerosol (the model has separate tracers for
black carbon and organic carbon) and gas phase sulfur dioxide (CO2) and dimethyl suphide ((CH3)2S, DMS),
which act as a precursors to sulfate aerosol. Additionally, UKESM1 uses emissions of ethane (C2H6), propane
(C3H8), methanol (CH3OH), formaldehyde (CHO), acetone ((CH3)2CO), acetaldehyde (CH3CHO), carbon
monoxide (CO), and nitric oxide (NO). The CMIP6 protocol provides for these emissions from anthropogenic
and biomass burning sources, and we augment these with emissions of reactive gases from biogenic and
other natural sources.

In contrast to the treatment of CO2 emissions described above, there is no scaling of these emissions to
compensate for the length of year in the models' 360-day calendar. As a result, the annual total of the emis-
sion received by the model is lower than the annual total of the source data by 1.4%, but daily and weekly
totals match those of the source data. We make this choice because these species have lifetimes of order
days to weeks, and therefore, the short-term emission rate is considered more important than the long-term
accumulation.
3.4.1. Anthropogenic Sources
Anthropogenic emissions of carbonaceous aerosol and reactive gases are provided by the CEDS project
(Community Emissions Data System; Hoesly et al., 2018). Carbonaceous aerosols are treated as arising from
the burning of either fossil fuels or biofuels according to the source sector (Table 3). Aerosols from biofuel
burning are emitted with larger sizes than those from fossil fuels: the geometric mean diameter of emitted
aerosols is 150 and 60 nm, respectively.

UKESM1 and GC3.1 differ for SO2 emission as a result of their differing levels of chemical complexity: Both
models simulate the oxidation of SO2 and terpenes in the production of secondary aerosol, but UKESM1
interactively simulates the chemistry of gases responsible for this oxidation (OH, O3, NO3, HO2, and H2O2),
while in GC3.1 these oxidants are prescribed from a monthly climatology representing present-day condi-
tions (Walters et al., 2019). For GC3.1, SO2 emission heights are dependent on sector, and emissions are
split between the surface level emission and a “high-level” emission at 0.5 km, representing emissions ther-
mally lofted from chimney level (Table 4). This follows the implementation used for the previous generation
model (HadGEM2; Jones et al., 2011). In contrast, UKESM1 emits all anthropogenic SO2 into the lowest
model level for consistency with emissions of other chemically active gases.

UKESM1 uses emissions from aircraft for CO2 (see section 3.3.3) and NOx only. NOx aircraft emissions are
prescribed as three-dimensional fluxes using the altitude information provided in the source data. Following
previous implementations of UKCA (e.g., Morgenstern et al., 2017;; O'Connor et al., 2014), aircraft emissions

Table 4
Split of SO2 Emissions Between Surface and High Level for GC3.1

Emission sector Low level % High level %
Energy 0 100
Industrial 50 50
Shipping, transportation, solvents,
Waste, agriculture, residential/other 100 0
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Table 5
Annual Total Prescribed Natural Emissions Used by UKESM1

NO Terrestrial 12.0 Tg
C2H6

a Terrestrial 31.08 Tg
Oceanic 2.5 Tg

C3H8
b Terrestrial 15.61 Tg

Oceanic 2.9 Tg
CO Terrestrial 88.59 Tg

Oceanic 20.0 Tg
HCHO Terrestrial 4.58 Tg
(CH3)2CO Terrestrial 37.43 Tg
CH3CHO Terrestrial 21.51 Tg
CH3OH Terrestrial 129.26 Tg
SO2

c Volcanic 28.77 Tg
aIncludes contributions due to C2H4 and C2H2. bIncludes contributions due
to C3H6. cVolcanic SO2 is used also by GC3.1.

for other species are ignored because their contributions have negligible effect on atmospheric chemistry or
aerosol loading.
3.4.2. Biomass Burning
Both UKESM1 and GC3.1 use primary emissions of black carbon and organic carbon from biomass burning
provided by van Marle et al. (2017). Emissions from forest burning sectors are spread evenly over the lowest
3 km, while other sectors treated as a surface emission. Aerosols emitted from biomass burning sources are
treated with a geometric mean diameter of 150 nm.
3.4.3. Natural Sources
GC3.1 and UKESM1 both interactively simulate emissions of sea salt, dust, and DMS as described in Walters
et al. (2019). In GC3.1 the DMS emission parametrization takes as input the DMS seawater concentration
data set of Lana et al. (2011), while in UKESM1 it uses interactively simulated seawater DMS (Sellar et
al., 2019). Additionally, UKESM1 has interactive emissions of primary marine organic aerosol (PMOA) and
biogenic emissions of the volatile organic compounds isoprene and monoterpene, as described in Sellar et
al. (2019). In GC3.1, DMS emissions are scaled by a factor of 1.7 to account for missing PMOA emissions
(Mulcahy et al., 2018); because UKESM1 includes PMOA emissions, the DMS scaling is reset to 1.0.

In addition to these interactive emissions, both models receive prescribed climatological natural emissions
of various species. These have no secular or interannual variation. Common to both GC3.1 and UKESM1
are emissions of SO2 from continuously degassing volcanoes. These are represented by the present-day
three-dimensional climatology of Dentener et al. (2006), a temporally constant data set with no seasonal vari-
ation. UKESM1 also makes use of biogenic emissions of C2H6, C3H8, CH3OH, HCHO, (CH3)2CO, CH3CHO,
CO, NO, and DMS, which are included through a climatological seasonal cycle. Emissions of ethene (C2H4)
and ethyne (C2H2), species not represented by the model, were combined with those for C2H6, and similarly,
propene (C3H6) emissions were added to C3H8. Land-based emissions were taken from Model of Emissions
of Gases and Aerosols from Nature monthly emissions fluxes compiled for the Monitoring Atmospheric
Composition and Climate project (MEGAN-MACC, Guenther et al., 2012; Sindelarova et al., 2014) aver-
aged over the time period 2001–2010, except for NO where an annual flux of 12 Tg without seasonality was
assumed (Yienger & Levy, 1995). Oceanic emissions were taken from the Precursors of Ozone and their
Effects in the Troposphere project (POET, Granier et al., 2005; Olivier et al., 2003) consisting of 12 monthly
emission fluxes for the year 1990. Annual total emissions fluxes for these prescribed natural emissions are
listed in Table 5.

3.5. Ozone
3.5.1. GC3.1
In GC3.1, ozone is derived from the CMIP6 ozone data sets which are weighted means of historical and
projection Chemistry-Climate Model Initiative simulations by the CESM1-WACCM (Solomon et al., 2015)
and the CMAM (Jonsson, 2004) models (ChecGarcia et al., 2018; Morgenstern et al., 2017). The data sets are
provided on pressure levels. For usage in GC3.1 we linearly interpolate them to the models' terrain-following
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hybrid-height coordinate. The interpolation requires an estimate of the geopotential height, z, of the pressure
levels of the source data, which we derive from the provided zonal mean temperature using the “hypsometric
equation”

z(𝜆, p, t) = R
g ∫

p0

p
T(𝜆, p′, t) d ln p′ (1)

under the assumptions of hydrostatic balance and a constant surface pressure p0 = 1013 hPa. In equation
(1), R = 287.058 J·kg−1·K−1 is the specific gas constant, g = 9.81 m s−2 is the Earth's gravitational acceleration
at the surface, 𝜆 is latitude, p is pressure, and t is time.

Prescribing ozone concentrations in climate simulations leads to a mismatch between the internally gener-
ated thermal tropopause height and prescribed ozone tropopause height. With the relatively high vertical
resolution used in these models, this mismatch becomes greater than in previous generations of models,
and it poses the greatest problem in abrupt-4xCO2 simulations, in which preindustrial ozone concentra-
tions are prescribed. In this example, where the thermal tropopause is higher than the ozone tropopause,
erroneously high ozone concentrations are prescribed in the upper troposphere, leading to an increase in
cold point temperature, excessive stratospheric water vapor, and hence increased radiative heating of the
troposphere. Without correction this effect drives a nonphysical positive feedback under a warming climate.

Thus, in the majority of GC3.1 simulations for CMIP6, the prescribed ozone concentrations are redistributed
following the method of Hardiman et al. (2019) to ensure that they are consistent with the model thermal
tropopause height. For details and discussion of the method, see Hardiman et al. (2019), but there follows
a brief summary. For each simulation, at the end of each model year, the monthly mean, zonal mean, and
thermal tropopause height is calculated at each latitude from data for the previous two model years. Then,
the ozone tropopause is defined at 1 km below the thermal tropopause by setting ozone concentrations there
to 80 ppbv and smoothing across the tropopause. The mass of ozone removed from the troposphere is added
to the stratosphere by multiplying stratospheric ozone concentrations everywhere by a constant to conserve
the total global mass of ozone. This scheme avoids the nonphysical positive feedback in strongly warming
simulations, and Hardiman et al. (2019) find that it reduces the apparent effective climate sensitivity derived
from abrupt4xCO2 experiments by approximately 10%.

This redistribution was not included in the preindustrial control (piControl) simulations, the N216 histori-
cal simulations prior to 1951, or decadal hindcasts and forecasts for the Decadal Climate Prediction Project
(DCPP; Boer et al., 2016), all of which were completed prior to the implementation of this scheme and could
not be rerun due to time constraints and limited computational resources. All other DECK and CMIP6
MIP contributions with GC3.1 include the ozone redistribution scheme. Sensitivity tests indicate no signifi-
cant impact of the remapping on global mean quantities (e.g., long-term mean top-of-atmosphere radiative
flux, surface temperature, and equatorial tropopause temperature) or zonal mean latitude-height profiles
of temperature and specific humidity in piControl simulations (Hardiman et al., 2019). Based on the analy-
sis performed thus far, the lack of ozone remapping prior to 1950 in the N216 historical runs has negligible
impact on results, largely because there is little tropospheric warming in this model before 1950. Further
analysis is underway to confirm this and will be reported elsewhere in this special collection. Table A8 shows
how users of the published data can use the CMIP6 file metadata to determine whether or not the remapping
is used in a given simulation.
3.5.2. UKESM1
In UKESM1, ozone is fully interactive and calculated using a medium complexity, coupled stratosphere-
troposphere chemistry scheme similar to the one described by Morgenstern et al. (2017, their section 2.11
regarding “MetUM-based participants”). This interactive ozone field feeds both into radiation, affecting
shortwave and longwave radiative transfer, as well as into the aerosol scheme, contributing to oxidation of
aerosol precursors (Archibald et al., 2019).

Surface conditions are prescribed for the ozone-depleting substances CFC-11, CFC-12, and CH3Br, as well
as for H2 and carbonyl sulfide (COS) in the same manner as described in section 3.3.2 for CH4 and N2O
(Morgenstern et al., 2009). The values of CFC-11, CFC-12, and CH3Br are prescribed using the global mean
surface concentrations of Meinshausen et al. (2017). CFC-11, CFC-12, and CH3Br also contain contributions
from other Cl- and Br-containing species to ensure the correct stratospheric chlorine and bromine loading
(see Table 6). The surface mixing ratios of H2 and COS are fixed at 500 ppbv and 482.8 pptv, respectively.
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Table 6
Species Contributing to the Surface Specification of CFC-11, CFC-12, and CH3Br

CFC-11 CFC-12 CH3Br
CCl4 CFC-113 H-1211a

CH3CCl3 CFC-114 H-1202
HCFC-141b CFC-115 H-1301
HCFC-142b HCFC-22 H-2402
H-1211a

CH3Cl

Note. Contributions are included by moles of Cl or Br.
aH-1211 contributes to both CFC-11 and CH3Br as it contains both Cl and Br.

3.6. Land Use
The implementation of land use change differs between UKESM1 and GC3.1 because they handle vegetation
in different ways. UKESM1 simulates vegetation cover interactively, and the land use areas must be specified
in a manner which constrains the dynamic vegetation scheme. On the other hand, vegetation fractions are
prescribed in GC3.1, and the time-varying forcing data have to be projected onto the model's input data set.
3.6.1. GC3.1
To represent land cover in GC3.1 model, a historical database of nine land surface types is required, including
urban, bare soil, lake, ice, and five plant functional types (PFTs), namely, C3 and C4 grasses, needleleaf
and broadleaf trees, and shrubs (Essery et al., 2003). The CMIP6 Land Use Harmonization project v2h data
set (LUHv2h) data set does not contain land cover which maps to all of these surface types. We therefore
follow a similar approach to that used by Baek et al. (2013) for HadGEM2-AO and by Betts et al. (2006) for
earlier Hadley Centre models, in which a present-day land cover map is adjusted to follow the time-varying
agricultural areas in the forcing data set.

Our starting point is a near present-day vegetation climatology derived from the International Geosphere
and Biosphere Programme DISCover land cover data set (IGBP-DIS, Loveland et al., 2000) that has rou-
tinely been used in previous Met Office climate models (Baek et al., 2013; Martin et al., 2011; Walters et
al., 2019). The IGBP-DIS land cover data set land cover classifications are mapped onto the model's land
surface-type fractions (defined in Walters et al., 2019). To construct time-varying land cover maps including
the impact of historical changes in anthropogenic land use, we combine this observed specification of land
cover with mappings to the LUHv2h historical reconstruction of land cover. The approach is to represent
changes in crops and pasture from the LUH2v2 data set as a combination of changes in C3 and C4 grasses at
the expense/addition of clearing/planting a corresponding fraction of trees (needleleaf and broadleaf) and
shrubs. Changes are implemented in such a way as to preserve the observed climatological proportions of
C3 to C4 grasses and of needleleaf trees to broadleaf trees and to shrubs. We do this in anomaly space, rel-
ative to the specified present-day observed land cover maps, to ensure that absolute fractions of all surface
types are consistent with our observed specification at the present day. As in UKESM1, we do not include
rangeland in our definition of pasture (see below). The fractions of bare soil, inland water, urban and ice
remain unchanged.
3.6.2. UKESM1
The land use scheme within UKESM1 designates a portion of each gridbox as cropland and a portion as
pasture land, where only crops and pasture grasses can grow, respectively, to the exclusion of trees and
shrubs (Sellar et al., 2019). In the remainder of the gridbox, nine natural PFTs compete for space, which
determines the distribution of forests, grasslands, shrublands, and bare soil (Harper et al., 2016). UKESM1
therefore requires prescribed time series of the fractional cover of each of crop and pasture within each
gridbox. We define cropland as the sum of five crop types (C3/C4 annual/perennial and C3 nitrogen) from
the time-dependent historical reconstruction of land cover classification change in the LUHv2h, updated
from Hurtt et al. (2011) for use in CMIP6. We define pasture land using the managed pasture land use class
in the LUHv2h data set. The LUHv2h data set splits grazing land into managed pasture and rangeland,
with drier and less populated land more likely to be classified as rangeland. In implementing this forcing
data set, we therefore face a choice in whether to include the rangeland areas within the pasture fraction
given to the model. We regard rangeland as regions where animals graze on and around natural vegetation,
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Figure 4. Changes from preindustrial to present-day of tree and shrub PFTs (left column) and grass PFTs (right
column), calculated as the 1995–2014 mean of the CMIP6 historical experiment ensemble mean, minus the first 50
years of the piControl (representing 1850 conditions). Top row: GC3.1; middle row: UKESM1; bottom row: UKESM1
minus GC3.1.

and hence, no clearing or deforestation occurs. Because only grass can grow in the designated pasture area
within UKESM1, we therefore do not include rangeland in the prescribed pasture forcing data.

3.6.3. Land Cover Changes in GC3.1 and UKESM1
While the two methods of implementing land use change are different, they affect biophysical forcing (i.e.,
surface albedo and surface fluxes of heat, water, and momentum) via the same mechanism: changes in the
fractional cover of vegetation types. This mechanism can be compared between the two models to give an
indication of the potential impact of the differing implementation method. Figure 4 contrasts the preindus-
trial to present-day change in aggregated grass and woody PFTs between the two models. In GC3.1 these
changes are fully prescribed, while in UKESM1 they are partially prescribed and partially simulated. In gen-
eral, the magnitude of the net transition from trees to grasses is larger in GC3.1. Because of this difference,
one would expect UKESM1 to exhibit a weaker response to land use change, all else being equal. Work is
underway to determine how much of this difference in land cover change is due to biases in UKESM1's
background simulation of natural vegetation and how much is due to differences in the land use imple-
mentation. de Noblet-Ducoudré et al. (2012) found that the primary driver of differences between model
responses to land use change was the translation of land use into changes in land cover. Dedicated experi-
ments within the CMIP6 Land Use MIP (LUMIP; Lawrence et al., 2016) aim to directly compare different
models response to the same change in land cover.

3.7. Nitrogen Deposition
The JULES land surface component (Best et al., 2011) within UKESM1 includes a new scheme to represent
limitation of carbon uptake by vegetation when available nitrogen is scarce. It is important to represent the
natural deposition to the land surface of nitrogen from the atmosphere, which provides a source term to
the land carbon-nitrogen system, offsetting losses due to leaching and gaseous emission. We use nitrogen
deposition from the same climate-chemistry models as provided the ozone data sets (ChecGarcia et al.,
2018). The deposited nitrogen is added directly to the inorganic nitrogen pool, which is available for plants to
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take up via their roots; the scheme makes no distinction between different nitrogenous species, and the total
amount of nitrogen deposited is assumed to be entirely accessible by plants. The four nitrogen-containing
species provided for nitrogen deposition forcing by input4MIPs, wet and dry fluxes of oxidized (NO𝑦), and
reduced (NHx) forms are therefore combined into one deposition source term.

The MEDUSA2 ocean biogeochemistry component in UKESM1 has a closed nitrogen budget (i.e., no lateral
or surface flux) as described in Yool et al. (2013). We therefore make no use of nitrogen deposition forcing
at ocean points.

3.8. Surface Boundary Forcing for AMIP Experiment
The AMIP experiment, in which the atmosphere and land surface components run uncoupled from the
ocean (Eyring et al., 2016), requires surface forcing data that are not needed in coupled experiments. As per
the AMIP experiment protocol, both GC3.1 and UKESM1 use prescribed sea surface temperatures (SST) and
sea ice concentration. UKESM1 requires additional surface forcing, described below.

The SST and sea ice are taken from the unmodified data set of Durack and Taylor (2017a) and horizontally
interpolated to the grids of the two model resolutions (N96 and N216) using an area-weighted regridding.
Following the method of Taylor et al. (2000), modifications to SST and sea ice concentration values were
then made to ensure that monthly means of the daily values derived by the model during its simulation are
the same as in the original interpolated data. This is needed because these daily values are obtained by linear
interpolation between midmonth values, which can lead to damping of seasonal and interannual variability.
The resulting data are applied at the lower boundary of the atmospheric model. The model applies a limit
to small sea ice concentrations, setting values of less than 0.3 to 0.0. This cutoff in sea ice concentration was
originally required in an earlier version of the model due to limitations in the radiation and boundary layer
schemes used at that time. It is not known whether such an approach is still required in the latest version of
the model, and we will revisit this before the next round of AMIP simulations. This means that the effective
marine boundary conditions in the AMIP simulations differ slightly from the CMIP6 AMIP specification.

The atmosphere component of UKESM1 calculates fluxes of DMS and PMOA at the ocean surface, driven
by the ocean biogeochemistry component's interactively simulated seawater concentrations of DMS and
chlorophyll-a, respectively. The chlorophyll-a is also used in the calculation of ocean surface albedo using
the parametrization of Jin et al. (2011). For the AMIP experiment, we replace these interactive inputs with
DMS and chlorophyll-a monthly climatologies diagnosed from a coupled historical experiment in order to
maintain traceability with the coupled model. We chose to use climatologies rather than transient time series
as the interannual variability in the latter is related to the model's temperature variability, which would be
out of phase with the observed SSTs imposed in the AMIP experiment. The climatologies were compiled
from the 1979–2014 period of a single UKESM1 historical ensemble member (r5i1p1f3; see Appendix A). As
in the coupled model, the ocean's chlorophyll-a values are scaled by 0.5 before use in the atmosphere model
to reduce the influence on PMOA emissions and surface albedo of a mean state bias in the ocean model
(Sellar et al., 2019).

GC3.1 also requires inputs of DMS seawater concentration to drive DMS emissions and chlorophyll-a con-
centration to drive the surface albedo calculation only (GC3.1 does not simulate PMOA emissions). As in its
coupled counterpart, the GC3.1 AMIP experiment uses present-day observation-based monthly climatolo-
gies for these fields: specifically, the Lana et al. (2011) DMS data set and a climatology of surface chlorophyll
derived from the GlobColour merged satellite product (Ford et al., 2012; Walters et al., 2019).

Given the multicentury timescales required to spin-up the terrestrial carbon and nitrogen cycle in UKESM1,
it is not computationally affordable to produce an initial state for an AMIP simulation in which the
carbon-nitrogen cycle is in balance with the climate driven by the imposed SSTs. Thus, in order to maintain
consistent forcing due to land use change between the UKESM1 coupled and AMIP experiments, dynamic
vegetation is deactivated in the latter and replaced by prescribed vegetation properties from a coupled his-
torical situation. The fields prescribed are vegetation fraction, leaf area index (LAI), and canopy height, all
taken from the same member of the historical ensemble as the ocean DMS and chlorophyll-a climatologies.
As with the ocean fields, we use 1979–2014 climatologies for LAI and canopy height to avoid any imprint of
the coupled model's interannual SST variability (monthly and annual mean climatology for LAI and canopy
height, respectively). In contrast in the case of vegetation fraction, we retain the transient land use signal
by applying a 1979–2014 monthly mean time series. The vegetation fractions respond to climate variability
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Figure 5. Time series of Forster and Taylor forcing for the four ScenarioMIP Tier 1 scenarios and SSP1-1.9. Horizontal
dotted lines mark the intended forcing at 2100 for each scenario.

slowly (with a timescale of several years) and thus contain little imprint of the coupled model's interannual
variability.

3.9. Freshwater Forcing From Ice Sheets
With no accounting of the ice sheet mass balance, the ice sheets will accumulate snow indefinitely and the
ocean will lose mass. Thus, outflow of ice sheets to the ocean is simulated by three components in GC3.1 and
UKESM1: surface runoff, icebergs, and ice shelf basal melt. Surface melt runoff occurs in the JULES land
surface model with outflow to the ocean through through the TRIP river routing scheme (Oki & Sud, 2006).

The remaining flux is calibrated based on the mean surface mass balance over a 100-year period of the
model spin-up, prior to the start of the piControl. The surface mass balance is calculated separately for
each hemisphere as the mean rate of increase in snow mass over the calibration period. In the Southern
Hemisphere, 45% of this flux is applied as an iceberg calving source term for NEMO's Lagrangian iceberg
scheme; the calving flux is distributed spatially by scaling the climatology of Marsh et al. (2015) to achieve
the desired total flux. The other 55% is applied as a basal shelf melt, spatially distributed according to the
three-dimensional melt pattern of Mathiot et al. (2017). The Northern Hemisphere flux is implemented
solely as an iceberg calving flux, again by scaling the Marsh et al. (2015) data set. Note that this approach
differs from the interactive calculation described in Williams et al. (2018), in order to allow the ocean volume
to evolve in historical and future simulations.

3.10. Estimated Radiative Forcing
To check that the ScenarioMIP forcings are performing as expected, the net top-of-atmosphere radiative
forcing is estimated using the method of Forster and Taylor (2006). This is a global mean energy balance
approach, based on the equation:

N = F − 𝜆T (2)

where N is the net top-of-atmosphere radiative flux, F the forcing, 𝜆 the feedback parameter, and T the
global mean temperature. 𝜆 may be estimated from the abrupt-4xCO2 experiment using linear regression
(Gregory, 2004). Assuming that 𝜆 is approximately constant, F may then be estimated for each year of a
given scenario using annual model values of N and T.

Results using UKESM1 are shown in Figure 5 for the five ScenarioMIP scenarios designated as highest
priority for the IPCC sixth assessment report: SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. This
shows that the estimated forcings match closely the intended forcing at 2100 and that the time series are
reasonable (c.f. O'Neill et al., 2016).

4. Initialization Strategy
An important requirement when using climate models to simulate the historical past and investigate pos-
sible future Earth system change is that an ensemble of simulations is used that samples the full range of
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Figure 6. IPO:AMO phase space for (a) N96ORCA1 GC3.1 and (b) N96ORCA1 UKESM1 preindustrial control
experiments revealing the monthly evolution of the climate modes over 500 and 858 years, respectively. The initial
conditions chosen for 4 GC3.1 historical experiments and 19 UKESM1 historical experiments are indicated with red
dots. The same approach (not shown) is used to select N216ORCA025 historical initial conditions from the
N216ORCA025 preindustrial control experiment with GC3.1.

unforced variability simulated by the model and, ideally, observed in the real world. Such an ensemble sup-
ports a number of important analyses: (i) evaluation of the simulated modes of natural variability against
equivalent observed modes, (ii) assessment of possible future changes in major modes of variability (e.g.,
changes in the frequency of occurrence, intensity, or geographical location of such modes) under different
warming scenarios, and (iii) through ensemble averaging, provide a clearer identification of the forced cli-
mate change signal, separated from the confounding influence of trends due to natural variability. The most
common method for generating such an ensemble is to ensure that the initial conditions used to start each
historical simulation (in CMIP6 defined as starting 1 January 1850) sample the major modes of variability
in the model's preindustrial control, from which each historical member is initialized.

For both the GC3.1 and UKESM1 historical ensembles, we aimed to ensure that each set of initial conditions
fully sampled the model's preindustrial simulation of both the Interdecadal Pacific Oscillation (IPO; Power
et al., 1999; Zhang et al., 1997) and the Atlantic Multidecadal Oscillation (AMO; Kerr, 2000), which mani-
fest themselves by significant basin-scale variability in SSTs. To realize this, we calculated the first Empirical
Orthogonal Function (EOF) of SST variability for each basin and plot the principal components of these
EOFs in a phase space diagram (Figure 6). Using these diagrams, we identify years from the two piControl
simulations that sample each model's internal variability in the joint EOF time series. Model states for these
years act as initial conditions for subsequent historical simulations made with each model. In addition to
sampling the joint IPO/AMO variability, we further require that selected piControl model states are a mini-
mum of 30 years apart; increasing the likelihood that the ocean states in each historical initial condition are
distinctly different. Table 7 shows the dates chosen for each member of the historical ensemble, for each of
the model configurations.

The UKESM1 piControl exhibits extended periods of multidecadal to centennial variability in SST across the
Southern Ocean of sufficient magnitude to influence global mean SST. This variability is linked to periodic
deep ocean overturning in regions close to the Antarctic coast, such as the Weddell and Ross Seas. Overturn-
ing brings accumulated warm, saline deep water to the surface inducing large-scale reductions in Antarctic
sea ice (i.e., polynyas; Campbell et al., 2019), warm SSTs, and ventilation of ocean heat to the atmosphere.
Such variability has been seen in other coupled models (de Lavergne et al., 2014; Martin et al., 2013) and
may help explain recent observed climate trends in the Antarctic region (Zhang et al., 2019). The timescale
of this variability in UKESM1 is controlled by accumulation of sufficient warm water in the deep South-
ern Ocean to erode the near-surface density gradient between cold, fresh (lighter) water overlying warm,
saline (denser) water. Once this density barrier is overwhelmed, convective mixing from below occurs and
the accumulated heat is lost to the atmosphere. As this variability influences global mean SST on centen-
nial timescales, we decided that it was important to sample in the UKESM1 historical initial conditions in
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Table 7
Dates at Which Historical Ensemble Members Branched From the Respective piControl

Realization index piControl branch date
UKESM1.0 GC3.1-N96ORCA1 GC3.1-N216ORCA025

r1 2250-01-01 1850-01-01 1850-01-01
r2 2165-01-01 1885-01-01 1885-01-01
r3 2120-01-01 1930-01-01 1930-01-01
r4 1960-01-01 1970-01-01 1960-01-01
r5 2020-01-01
r6 2050-01-01
r7 1995-01-01
r8 2395-01-01
r9 2285-01-01
r10 2340-01-01
r11 2460-01-01
r12 2210-01-01
r13 2565-01-01
r14 2685-01-01
r15 2745-01-01
r16 2629-01-01
r17 2716-01-01
r18 2760-01-01
r19 2815-01-01

Note. As a perpetual-1850 simulation, the choice of start year for piControl is an arbitrary
label. The UKESM1.0 piControl begins in 1960, the GC3.1 piControls begin in 1850. Dates
are formatted as YYYY-MM-DD.

addition to the IPO/AMO variability. Figure 7 shows annual mean SST, averaged over the Southern Ocean
(south of 40◦), for the 1,000 years of the UKESM1 piControl from which the historical initial conditions are
drawn. Blue dots on the figure show the first 15 initial conditions, selected solely by sampling the UKESM1
IPO/AMO phase space diagram. The four red dots indicate selected initial condition dates for four UKESM1
historical members, where we instead chose piControl states that capture two maxima and two minima
of the centennial timescale Southern Ocean SST variability. The inset in Figure 7 focuses on the 300 years
of the piControl when these four model states occur. The full black line shows the mean Southern Ocean
SST, while the light green line plots simulated global mean SST over the same period. Clearly, the Southern
Ocean SST variability has a significant imprint on the global mean SST.

Prior to their respective piControl simulations, the models were spun up as follows.

• GC3.1-N96ORCA1 was initialized from 1950 ocean conditions taken from the EN4 analysis data set (Good
et al., 2013) and run for 615 years under CMIP6 preindustrial forcing.

• GC3.1-N216ORCA025 was initialized from EN4 2000 ocean conditions and run for 232 years under
CMIP6 preindustrial forcing.

• The UKESM1.0 spin-up was more complex and will be documented in a companion paper in this special
issue, but in summary it involved a 500-year coupled simulation preceded by separate ocean and land
spin-up simulations of duration 5,000 and 1,000 years respectively.

5. Experiment Reproducibility
The experiments that are performed for CMIP6 require large amounts of compute resource and development
effort, and their results will be used over a period of several years. In view of this expense and protracted
lifetime, we have invested a good deal of effort in ensuring that our results are reliable. Our approach has
been informed by lessons learned during our participation in CMIP5, and we hope that documenting the
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Figure 7. Full figure: Time series of annual mean sea surface temperature (SST) averaged over the Southern ocean
(south of 40◦) for 1,000 years of the UKESM1 piControl simulation. Inset figure: Time series of annual mean Southern
ocean mean SST (black line) and annual mean global mean SST (green line) centered on 300 years of the UKESM1
piControl from which initial conditions the UKESM1 historical members 16–19 were selected. Blue dots indicate the
piControl dates selected as initial conditions for UKESM1 historical simulations using the IPO/AMO phase space
diagram. Red Dots indicate UKESM1 initial condition dates, selected based on sampling variability in Southern ocean
SST.

infrastructure we have used here will be helpful to those in future phases of CMIP and other large intercom-
parisons. It includes using a controlled environment for the development of model code, designing models
which are restartable, documenting model parameters for a given experiment, checking results while the
model is running, and testing the reproducibility of model behavior on different platforms. This effort also
extends to the preparation and curation of the climate forcing data for the different experiments. We describe
each of these aspects in more detail in the following subsections.

We note in passing that our models produce results in their native format; our procedure for convert-
ing this to the standardized format required by CMIP will be described elsewhere. In case it is useful to
other centers, we mention here that version 01.00.29 of the CMIP6 data request was used in publishing
data on the Earth System Grid.

5.1. Code Development
The source code for the various components of the model (atmosphere, ocean, land, etc.) is maintained
in repositories in order to manage changes in a controlled fashion and to facilitate collaborative develop-
ment. We note that each component is under more or less continuous development by communities of
engineers and scientists that are distributed across multiple specialized institutions, which makes the use of
a controlled development environment essential. We also follow software engineering good practice in the
development of the model components, including the use of code standards and documentation, regression
testing, and code review.

Besides being used for component development, some of these practices are also employed elsewhere—for
example, we use repositories for the encapsulation and maintenance of model parameters for different
experiments—see section 5.3—and two stages of code review are used for the applications which generate
the forcings—see section 5.6, below.

5.2. Model Restarts
Owing to their complexity, climate simulations typically execute for long periods of CPU time—typically,
of the order of several months. This period exceeds the maximum execution time usually offered by HPC
environments (typically no longer than a day). It is therefore critical to have an efficient checkpoint-restart
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Table 8
Resource Usage and Output Size for CMIP6 Experiments Run at the Met Office

CMIP6 Computer usage Model output sizea

source_id (CPU core years) (PB)
HadGEM3-GC31-LL 17,123 3.38
HadGEM3-GC31-MM 8,219 2.59
UKESM1-0-LL 27,283 7.99
Total 52,625 13.96
aData volume of native model output, prior to conversion to CMIP6 data
format (see section 5).

strategy, in order to allow simulations to start from saved states. In addition, model runs may subsequently
need to be restarted at any point of the simulation in order to study or reproduce a subset of the model
output. This can happen at any point after the initial simulation has been completed. This means that the
model must be restartable in a bit-for-bit manner from checkpoints held in data archives; that is, a run of
n steps should generate identical results to a run of m steps that had been started from the endpoint of a
run of n-m steps. Because of the multicomponent nature of the model, restart states are usually distributed
across multiple files and the restartability process can be fragile. We have taken great care when designing
and testing the model to ensure that bit-reproducible restarting is maintained throughout the development;
in particular, we have built regression tests for restartability into the workflows for our experiments.

5.3. Experiment Configuration
The configuration of each experiment, incorporating the setting of model parameters, specification of input
data (including forcing data; see section 5.6), and definition of the dependencies and scheduling of compo-
nent tasks, is encapsulated as a Rose suite (The Rose toolkit, 2012). Rose is a framework for developing and
running application configurations and uses the Cylc (Oliver et al., 2018) workflow engine.

The experiments' Rose suites are maintained in a repository in the same fashion as the source code for the
model components (see section 5.1, above) which facilitates the maintenance of experiment configuration,
allowing changes in, for example, parameter settings to be logged and documented by scientists.

5.4. Quality Control
As noted above, these simulation runs typically require months of CPU time; in addition, they generate large
amounts of output—usually of the order of hundreds of GB per model year. Both factors increase the chance
of the occurrence of failures in hardware or other infrastructure such as tape drives (used for archiving
output files) during the course of the run. Experience has shown that it is illuminating to perform checks on
the results as they are being produced, instead of after the simulation has come to an end. More specifically,
we have incorporated into our workflow tests which check for the presence of expected output files in the
tape archive while the run is in progress. This has enabled early detection of archive or disk problems and
avoided the expense of repeating part of a simulation after it has completed.

5.5. Reproducibility Across Platforms
Although we require that two runs of the same model generate bit-wise identical results from the same
starting point (see section 5.2, above), this is not generally possible if the same model is run on different
machines. This is because of the unpredictable way in which minute differences propagate through the
simulation on different platforms, leading to differing results. This applies both to machines in different
physical locations and to the same machine before and after an upgrade which does not preserve bit-level
compatibility (e.g., a major update of the operating system or compiler).

Instead of asking for identical model behavior on two different machines, we seek to verify that each model
configuration is scientifically consistent with the other; that is, could each have been sampled from the same
ensemble of results generated on either machine? To check this, we create an ensemble of short (24 hr)
runs on each machine by perturbing selected variables in their initial conditions using a perturbation whose
numerical value is comparable with the machine's precision. The spread of results (at each point in time
and space) on each platform can then be used to determine whether they could have come from a common
ensemble. The statistical methodology used in this comparison will be reported in future work.
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We have used this method, together with other analyses, such as comparison of the mean state from mul-
tidecade simulations, to verify the consistency of ports of UKESM1. This model was developed and tested
on the internal U.K. Met Office HPC before being ported to ARCHER, a U.K. national supercomputing
platform, and to machines run by the National Institute of Meteorological Science/Korean Meteorological
Administration and New Zealand's National Institute of Water and Atmospheric Research.
5.6. Forcing Data
The forcing data for a given experiment define the boundary conditions for the model and represent an
important aspect of experiment reproducibility. We obtained forcing data from the Input4MIPs data archive
(Durack et al., 2018) to take advantage of common metadata standards and versioning policies. In Appendix
A we tabulate the specific data sets from Input4MIPs which were used in these core simulations. There were
two cases in which, by necessity, we used data from sources other than Input4MIPs:

1. Stratospheric aerosol radiative properties (see section 3.2.1) were calculated specific to our model
wavelength bands and obtained directly from ETH (ftp://iacftp.ethz.ch/pub_read/luo/CMIP6).

2. CO2 emission global annual totals used in scaling gridded emissions (see section 3.3.3) were downloaded
online (http://www.globalchange.umd.edu/ceds/ceds-cmip6-data/).

To ensure that the forcing files are reproducible, metadata to identify the processing code and the source
files were stored as attributes for netCDF output files or as an accompanying JSON file. Specifically, the
metadata were as follows:

• The command and arguments used to generate the output file, which was stored in thehistory attribute
as per version 1.6 of the conventions for climate and forecast metadata (CF conventions and metadata,
2019).

• The repository URL and revision of the source code used.
• A checksum for the source files used.

For a multistage data processing pipeline, the metadata was appended at each stage. Hence, the metadata
for the final file contains the complete processing chain back to the original source files from input4MIPs
(Durack et al., 2018).

As mentioned in section 5.1, two stages of code review were performed for the forcing processing: a scientific
review to verify that the code was an accurate representation of the science, followed by a technical review
to ensure that the code used an interface suitable for integration into a Rose suite.

Processing of the forcing data was performed on JASMIN, the NERC/Science and Technology Facilities
Council data cluster which incorporates the U.K. node of the Earth System Grid. JASMIN also mirrors
the input4MIPs repository; additional required source files were held in a single directory alongside the
input4MIPs data, and this was archived to tape to preserve reproducibility. After review, the final forcing files
were stored in a directory with restricted permissions; this was then mirrored to the sites where the model
runs were being performed and also archived to tape. The tape archive of the forcings would have enabled
us to recover from a catastrophic failure more quickly than reproducing all files from original sources and
will ensure that identical model input files are available even after system upgrades prevent bit-identical
runs of the processing code.

6. Summary and Discussion
We have documented the implementation of U.K. models for a central set of CMIP6 experiments, that is, the
DECK and historical simulations and future scenarios. We have outlined the main technical processes used
to ensure reproducibility of the simulations, to ensure the scientific integrity of the results, and to minimize
costs associated with technical failures. And we have described the technical and scientific implementation
of forcing data sets and the model-specific assumptions made in using these data sets.

In some cases these assumptions will have significant effects on the effective forcing arising from these forc-
ing agents. For example, the UKESM1 implementation of land use, which prevents the model's dynamic
vegetation scheme from growing natural PFTs in areas of prescribed crop and pasture, makes the biogeo-
chemical and biophysical impacts of land use change subject to background model biases in the simulation
of natural vegetation cover. This is a necessary consequence of including a level of process complexity which
enables us to simulate interactions between climate change, the carbon-nitrogen cycle, and land use change,
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but it needs to be borne in mind when interpreting the results from this model. Andrews et al. (2017) discuss
the implications of these choices in more detail, in the context of the predecessors to GC3.1 and UKESM1.

We do not include rangeland within the agricultural land use states imposed in either UKESM1 or GC3.1,
on the assumption that in rangeland animals graze on or around natural vegetation, without land clearance.
Neither of these models are able to represent the effect of grazing on vegetation (indeed, very few models
can, Pongratz et al., 2018), and so the only choice available within the framework of these models is whether
or not to include rangeland within the prescribed grass PFTs used to represent pasture. Including rangeland
in the UKESM1 pasture forcing, or the grass PFTs imposed in GC3.1, would remove all shrubs and trees from
these areas, implying complete clearance of natural vegetation, in contradiction with our understanding
of the definition of rangeland. By neglecting rangeland, we may underestimate land cover change in some
regions. Grazing can have significant effects on the biophysical and biogechemical properties of vegetation
(Erb et al., 2017), although it is not clear that it is important in rangelands, where the intensity of grazing
is low. Conversely, including rangeland within the prescribed grass areas would overestimate land cover
change in other regions. For example, a particular region of interest is Australia in which the inclusion of
rangeland would lead to excessive natural vegetation being removed. Finally, we note that the decision to
exclude rangeland was consistent with the recommended use of LUH2 at the time of implementation.

Similarly, the choices made for the prescription of marine biogeochemical fluxes and terrestrial vegeta-
tion in the UKESM1 AMIP experiment will impact the simulation results. Our choices were driven by the
desire to understand the direct impact of coupled model temperature biases on the atmosphere model, while
keeping other Earth system properties traceable between the two. One could equivalently attempt to derive
observation-based data sets for these some of inputs in order to analyze the atmosphere in the absence of
coupled model biases, but this would have severely reduced traceability to the coupled model by altering
the pattern of aerosol radiative effect and vegetation-climate interactions.

As noted in section 3.1, UKESM1 includes photolytic reactions in its interactive simulation of ozone, but the
photolysis rates use fixed solar inputs and therefore have no dependence on the solar variability. Dennison
et al. (2019) show that including solar variability in photolysis calculations can have a noticeable effect on
ozone production, resulting in variations of order 1% in extratropical total column ozone. This mode of ozone
variability will therefore be absent from the UKESM1 CMIP6 simulations but will be a priority for inclusion
in future versions of UKESM.

Particular care has been taken in the GC3.1 model configurations, which do not simulate interactive
chemistry, to avoid inconsistencies between the model thermodynamics and prescribed ozone. Such incon-
sistencies have the potential to lead to nonphysical feedbacks under high-end climate change scenarios, and
to prevent this, an interactive redistribution of the ozone field is performed. This remapping alters the spatial
distribution of ozone, particularly near the tropopause, and while it is done in such a way as to minimize the
impact on global mean radiative forcing, this redistribution should be considered when analyzing results of
GC3.1 simulations. The potential for these inconsistencies exists in all models which do not simulate ozone
interactively, particularly those which have a high climate sensitivity, and in GC3.1 affected estimates of ECS
by around 10% (Hardiman et al., 2019). We encourage other modeling groups to describe how they mitigate
this risk and suggest that future phases of CMIP include recommendations for handling this issue which
would minimize unwanted model divergence due to nonphysical feedbacks and aid understanding of how
widespread such issues are in CMIP simulations.

Finally, we note that—as has been widely recognized—CMIP6 is larger and more complicated than previous
phases of CMIP, prescribing hundreds of experiments and thousands of model output variables. A summary
of the computing resources used by the experiments that have been run on the Met Office supercomputer
(a Cray XC40) is presented in Table 8. Nearly 14 PB of native model output has been produced thus far, and
we expect to publish around 5 PB of CMIP6 data from all experiments performed in the United Kingdom.
The size of this published data will be equivalent to 4.5 trillion pages of text and more than three times greater
than the entire CMIP5 data archive. A similar comparison for computer usage is complicated by differences
in models, machine specification, and architecture, but the Met Office's CMIP5 experiments used around
920 CPU core years on an IBM Power7 machine. Thus, the U.K.'s CPU resource for CMIP6 simulations is
approximately 2 orders of magnitude larger than that for CMIP5, reflecting the increase in the scope of CMIP,
as well as higher model resolution and process complexity. We are confident that the new understanding of
the Earth system that will be derived from these model results will similarly be greatly enhanced relative to
previous projects.
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The simulations described in this paper form the core of the U.K.'s contribution to CMIP6 and will underpin
many further experiments for CMIP6-endorsed MIPs and other science. We hope that the careful documen-
tation of our experimental configuration will assist others in analysis of the simulations and in setting up
new experiments based on these runs.

Appendix A: Forcing Data Set Versions
Tables A1 to A7 document the specific versions of the input data sets used in forcing the majority of DECK,
historical, and scenarioMIP experiments, with some exceptions detailed below. For the DECK and historical
experiments, these versions correspond to release v6.2.0 of the CMIP6 forcing data. For the purposes of our
models, v6.2.0 is identical to the subsequent and final CMIP6 release v6.2.1, as these releases differ only in
SO2 emissions from aircraft, which we do not use.

Table A1
Input4MIPs Forcing Data Sets Used for Greenhouse Gases

Experiment Data set ID Data set citation
PI, historical UoM-CMIP-1-2-0 Meinshausen and Vogel (2016)
SSP1-1.9 UoM-IMAGE-ssp119-1-2-0 Meinshausen and Nicholls (2018c)
SSP1-2.6 UoM-IMAGE-ssp126-1-2-0 Meinshausen and Nicholls (2018d)
SSP2-4.5 UoM-MESSAGE-GLOBIOM-ssp245-1-2-0 Meinshausen and Nicholls (2018e)
SSP3-7.0 UoM-AIM-ssp370-1-2-0 Meinshausen and Nicholls (2018a)
SSP4-3.4 UoM-GCAM4-ssp434-1-2-0 Meinshausen and Nicholls (2018b)
SSP5-3.4-over UoM-REMIND-MAGPIE-ssp534-over-1-2-0 Meinshausen and Nicholls (2018f)
SSP5-8.5 UoM-REMIND-MAGPIE-ssp585-1-2-0 Meinshausen and Nicholls (2018g)

Table A2
Input4MIPs Forcing Data Sets Used for Land Use

Experiment Data set ID Data set citation
PI, historical UofMD-landState-high-2-1-h Hurtt et al. (2019c)
SSP1-1.9 UofMD-landState-IMAGE-ssp119-2-1-f Hurtt et al. (2019a)
SSP1-2.6 UofMD-landState-IMAGE-ssp126-2-1-f Hurtt et al. (2017a)
SSP2-4.5 UofMD-landState-MESSAGE-ssp245-2-1-f Hurtt et al. (2018)
SSP3-7.0 UofMD-landState-AIM-ssp370-2-1-f Hurtt et al. (2017b)
SSP4-3.4 UofMD-landState-GCAM-ssp434-2-1-f Hurtt et al. (2017c)
SSP5-3.4-over UofMD-landState-MAGPIE-ssp534-2-1-f Hurtt et al. (2019b)
SSP5-8.5 UofMD-landState-MAGPIE-ssp585-2-1-f Hurtt et al. (2017d)

Table A3
Input4MIPs Forcing Data Sets Used for Emissions

Experiment Data set ID Data set citation
PI, historical VUA-CMIP-BB4CMIP6-1-2 van Marle et al. (2016)

CEDS-2017-08-30 Hoesly et al. (2017a)
CEDS-2017-08-30-supplemental-data Hoesly et al. (2017b)

SSP1-1.9 IAMC-IMAGE-ssp119-1-1 Gidden et al. (2018c)
SSP1-2.6 IAMC-IMAGE-ssp126-1-1 Gidden et al. (2018d)
SSP2-4.5 IAMC-MESSAGE-GLOBIOM-ssp245-1-1 Gidden et al. (2018e)
SSP3-7.0 IAMC-AIM-ssp370-1-1 Gidden et al. (2018a)
SSP4-3.4 IAMC-GCAM4-ssp434-1-1 Gidden et al. (2018b)
SSP5-3.4-over IAMC-REMIND-MAGPIE-ssp534-over-1-1 Gidden et al. (2018f)
SSP5-8.5 IAMC-REMIND-MAGPIE-ssp585-1-1 Gidden et al. (2018g)
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Table A4
Input4MIPs Forcing Data Sets Used for Ozone

Experiment Data set ID Data set citation
PI, historical UReading-CCMI-1-0 Hegglin et al. (2016)
SSP1-1.9 UReading-CCMI-ssp119-1-1 Hegglin et al. (2019a)
SSP1-2.6 UReading-CCMI-ssp126-1-0 Hegglin et al. (2018a)
SSP2-4.5 UReading-CCMI-ssp245-1-0 Hegglin et al. (2018b)
SSP3-7.0 UReading-CCMI-ssp370-1-0 Hegglin et al. (2018c)
SSP4-3.4 UReading-CCMI-ssp434-1-1 Hegglin et al. (2019b)
SSP5-3.4-over UReading-CCMI-ssp534os-1-1 Hegglin et al. (2019c)
SSP5-8.5 UReading-CCMI-ssp585-1-0 Hegglin et al. (2018d)

Table A5
Input4MIPs Forcing Data Sets Used for Nitrogen Deposition

Experiment Data set ID Data set citation
PI, historical NCAR-CCMI-2-0 Hegglin et al. (2016)
SSP1-1.9 NCAR-CCMI-ssp119-1-0 Hegglin et al. (2019a)
SSP1-2.6 NCAR-CCMI-ssp126-2-0 Hegglin et al. (2018a)
SSP2-4.5 NCAR-CCMI-ssp245-2-0 Hegglin et al. (2018b)
SSP3-7.0 NCAR-CCMI-ssp370-2-0 Hegglin et al. (2018c)
SSP4-3.4 NCAR-CCMI-ssp434-1-0 Hegglin et al. (2019b)
SSP5-3.4-over NCAR-CCMI-ssp534os-1-0 Hegglin et al. (2019c)
SSP5-8.5 NCAR-CCMI-ssp585-2-0 Hegglin et al. (2018d)

Table A6
Input4MIPs Forcing Data Sets Used for Natural Forcing (PI, Historical, and Future)

Forcing Data set ID Data set citation
Volcanic IACETH-SAGE3lambda-3-0-0
Solar SOLARIS-HEPPA-3-2 Matthes et al. (2017)

Table A7
Input4MIPs Forcing Data Sets Used for SST and Sea Ice

Experiment Data set ID Data set citation
AMIP PCMDI-AMIP-1-1-3 Durack and Taylor (2017b)

Table A8
Forcing Index Definition for CMIP6 Metadata

Forcing index GC3.1 UKESM1
f1 v6.1.1; no ozone remapping Not used
f2 v6.2.0; no ozone remapping v6.2.0
f3 v6.2.0; with ozone remapping v6.2.0; historical simulations use 1850 forcing for stratospheric SAD

The exceptions to the use of v6.2.0 are the piControl, 1pctCO2, and abrupt-4xCO2 simulations with
GC3.1-N216ORCA025, which were started with v6.1.1 before the updates in v6.2.0 were released. There are
two differences between v6.1.1 and v6.2.0:

• Aircraft emissions of all species are corrected. GC3.1 makes no use of aircraft emissions so this difference
has no impact.

SELLAR ET AL. 22 of 27



Journal of Advances in Modeling Earth Systems 10.1029/2019MS001946

• Historical stratospheric aerosol properties are updated to remove errors in some years. The update was
applied in such a way as to preserve the global mean radiative forcing of the historical 1850–2014 aver-
age, which acts as the forcing data set for preindustrial simulations. Therefore, for the purposes of the
piControl, 1pctCO2, and abrupt-4xCO2 experiments, v6.1.1 is consistent with v6.2.0.

The CMIP6 metadata conventions enable the encoding of forcing configuration via the “f” component of
the variant-id file attribute. We have used this to record the use of v6.1.1 versus v6.2.0 in the published
simulation data, as indicated in Table A8. Table A8 also shows how this index is used to record the use of
ozone remapping for GC3.1 (see section 3.5.1) and the SAD configuration in UKESM1 historical simulations
(see section 3.2.2).
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