997 research outputs found

    DEVELOPMENT OF A SOFT PNEUMATIC ACTUATOR FOR MODULAR ROBOTIC MECHANISMS

    Get PDF
    Soft robotics is a widely and rapidly growing field of research today. Soft pneumatic actuators, as a fundamental element in soft robotics, have gained huge popularity and are being employed for the development of soft robots. During the last decade, a variety of hyper-elastic robotic systems have been realized. As the name suggests, such robots are made up of soft materials, and do not have any underlying rigid mechanical structure. These robots are actuated employing various methods like pneumatic, electroactive, jamming etc. Generally, in order to achieve a desired mechanical response to produce required actuation or manipulation, two or more materials having different stiffness are utilized to develop a soft robot. However, this method introduces complications in the fabrication process as well as in further design flexibility and modifications. The current work presents a design scheme of a soft robotic actuator adapting an easier fabrication approach, which is economical and environment friendly as well. The purpose is the realization of a soft pneumatic actuator having functional ability to produce effective actuation, and which is further employable to develop modular and scalable mechanisms. That infers to scrutinize the profile and orientation of the internal actuation cavity and the outer shape of viii the actuator. Utilization of a single material for this actuator has been considered to make this design scheme convenient. A commercial silicone rubber was selected which served for an economical process both in terms of the cost as well as its accommodating fabrication process through molding. In order to obtain the material behavior, \u2018Ansys Workbench 17.1 R \u2019 has been used. Cubic outline for the actuator aided towards the realization of a body shape which can easily be engaged for the development of modular mechanisms employing multiple units. This outer body shape further facilitates to achieve the stability and portability of the actuator. The soft actuator has been named \u2018Soft Cubic Module\u2019 based on its external cubic shape. For the internal actuation cavity design, various shapes, such as spherical, elliptical and cylindrical, were examined considering their different sizes and orientations within the cubic module. These internal cavities were simulated in order to achieve single degree of freedom actuation. That means, only one face of the cube is principally required to produce effective deformation. \u2018Creo Perametric 3.0 M 130\u2019 has been used to design the model and to evaluate the performance of actuation cavities in terms of effective deformation and the resulting von-mises stress. Out of the simulated profiles, cylindrical cavity with desired outcomes has been further considered to design the soft actuator. \u2018Ansys Workbench 17.1 R \u2019 environment was further used to assess the performance of cylindrical actuation cavity. Evaluation in two different simulation environments helped to validate the initially achieved results. The developed soft cubic actuator was then employed to develop different mechanisms in a single unit configuration as well as multi-unit robotic system developments. This design scheme is considered as the first tool to investigate its capacity to perform certain given tasks in various configurations. Alongside its application as a single unit gripper and a two unit bio-mimetic crawling mechanism, this soft actuator has been employed to realize a four degree ix of freedom robotic mechanism. The formation of this primitive soft robotic four axis mechanism is being further considered to develop an equivalent mechanism similar to the well known Stewart platform, with advantages of compactness, simpler kinematics design, easier control, and lesser cost. Overall, the accomplished results indicate that the design scheme of Soft Cubic Module is helpful in realizing a simple and cost-effective soft pneumatic actuator which is modular and scalable. Another favourable point of this scheme is the use of a single material with convenient fabrication and handling

    Design and Analysis of Soft Actuator with Enhanced Stiffness with Granular Jamming

    Get PDF
    The field of soft robotics has been increasing popularity and importance in last decade with its groundbreaking applications in the field of delicate food handling industry and rehabilitation of limbs and fingers of stroke affected patients. The area of soft robotics seeks to improve robot safety, allowing them to function in circumstances where standard robots cannot. This research is focused on pneumatically actuated soft robots as they are efficient, easily controlled, affordable, and well researched. These robots consist of one or more soft actuators, made of silicone elastomers with low material hardness. Low hardness silicone actuators are structurally weak and cannot generate functional forces, which can be rectified by simply increasing the hardness of the material, resulting in compromising softness of the robot. This research attempts to provide a solution to increase structural stability and force output of soft actuator without compromising softness of the material. These were achieved in two ways; one, by improving the cross-sectional profile of the actuator, with an addition of vacuum functionality which increases degree of freedom by one. Two, by attaching a granular jamming component to the actuator, which can change its stiffness actively based on the vacuum applied to it. In this research, the soft actuator was made of Eco-Flex 00-30 silicone and ground coffee was used as granular material for jamming. The actuator was designed on CATIA, and simulation analysis was carried out in ANSYS. A simulation study is conducted to optimize the design parameters to improve bending angle. The jamming components are attached on either side of the actuator and filled with ground coffee which provides controlled stiffness. The actuator was fabricated by molding, all molds are 3D printed with polylactic acid. The actuator was powered by an electric air pump. The actuator is evaluated for bending angle and blocking force at the tip. 280% more bending was achieved under vacuum when compared to conventional design. The blocking force was increased by 270% upon implementing jamming component. The force output obtained per unit pressure applied when compared to present literature increased by 4 times. Lastly, these methods can be implemented to improve the performance of any soft pneumatic actuators

    Developing Design and Analysis Framework for Hybrid Mechanical-Digital Control of Soft Robots: from Mechanics-Based Motion Sequencing to Physical Reservoir Computing

    Get PDF
    The recent advances in the field of soft robotics have made autonomous soft robots working in unstructured dynamic environments a close reality. These soft robots can potentially collaborate with humans without causing any harm, they can handle fragile objects safely, perform delicate surgeries inside body, etc. In our research we focus on origami based compliant mechanisms, that can be used as soft robotic skeleton. Origami mechanisms are inherently compliant, lightweight, compact, and possess unique mechanical properties such as– multi-stability, nonlinear dynamics, etc. Researchers have shown that multi-stable mechanisms have applications in motion-sequencing applications. Additionally, the nonlinear dynamic properties of origami and other soft, compliant mechanisms are shown to be useful for ‘morphological computation’ in which the body of the robot itself takes part in performing complex computations required for its control. In our research we demonstrate the motion-sequencing capability of multi-stable mechanisms through the example of bistable Kresling origami robot that is capable of peristaltic locomotion. Through careful theoretical analysis and thorough experiments, we show that we can harness multistability embedded in the origami robotic skeleton for generating actuation cycle of a peristaltic-like locomotion gait. The salient feature of this compliant robot is that we need only a single linear actuator to control the total length of the robot, and the snap-through actions generated during this motion autonomously change the individual segment lengths that lead to earthworm-like peristaltic locomotion gait. In effect, the motion-sequencing is hard-coded or embedded in the origami robot skeleton. This approach is expected to reduce the control requirement drastically as the robotic skeleton itself takes part in performing low-level control tasks. The soft robots that work in dynamic environments should be able to sense their surrounding and adapt their behavior autonomously to perform given tasks successfully. Thus, hard-coding a certain behavior as in motion-sequencing is not a viable option anymore. This led us to explore Physical Reservoir Computing (PRC), a computational framework that uses a physical body with nonlinear properties as a ‘dynamic reservoir’ for performing complex computations. The compliant robot ‘trained’ using this framework should be able to sense its surroundings and respond to them autonomously via an extensive network of sensor-actuator network embedded in robotic skeleton. We show for the first time through extensive numerical analysis that origami mechanisms can work as physical reservoirs. We also successfully demonstrate the emulation task using a Miura-ori based reservoir. The results of this work will pave the way for intelligently designed origami-based robots with embodied intelligence. These next generation of soft robots will be able to coordinate and modulate their activities autonomously such as switching locomotion gait and resisting external disturbances while navigating through unstructured environments

    Modular soft pneumatic actuator system design for compliance matching

    Get PDF
    The future of robotics is personal. Never before has technology been as pervasive as it is today, with advanced mobile electronics hardware and multi-level network connectivity pushing âsmartâ devices deeper into our daily lives through home automation systems, virtual assistants, and wearable activity monitoring. As the suite of personal technology around us continues to grow in this way, augmenting and offloading the burden of routine activities of daily living, the notion that this trend will extend to robotics seems inevitable. Transitioning robots from their current principal domain of industrial factory settings to domestic, workplace, or public environments is not simply a matter of relocation or reprogramming, however. The key differences between âtraditionalâ types of robots and those which would best serve personal, proximal, human interactive applications demand a new approach to their design. Chief among these are requirements for safety, adaptability, reliability, reconfigurability, and to a more practical extent, usability. These properties frame the context and objectives of my thesis work, which seeks to provide solutions and answers to not only how these features might be achieved in personal robotic systems, but as well what benefits they can afford. I approach the investigation of these questions from a perspective of compliance matching of hardware systems to their applications, by providing methods to achieve mechanical attributes complimentary to their environment and end-use. These features are fundamental to the burgeoning field of Soft Robotics, wherein flexible, compliant materials are used as the basis for the structure, actuation, sensing, and control of complete robotic systems. Combined with pressurized air as a power source, soft pneumatic actuator (SPA) based systems offers new and novel methods of exploiting the intrinsic compliance of soft material components in robotic systems. While this strategy seems to answer many of the needs for human-safe robotic applications, it also brings new questions and challenges: What are the needs and applications personal robots may best serve? Are soft pneumatic actuators capable of these tasks, or âusefulâ work output and performance? How can SPA based systems be applied to provide complex functionality needed for operation in diverse, real-world environments? What are the theoretical and practical challenges in implementing scalable, multiple degrees of freedom systems, and how can they be overcome? I present solutions to these problems in my thesis work, elucidated through scientific design, testing and evaluation of robotic prototypes which leverage and demonstrate three key features: 1) Intrinsic compliance: provided by passive elastic and flexible component material properties, 2) Extrinsic compliance: rendered through high number of independent, controllable degrees of freedom, and 3) Complementary design: exhibited by modular, plug and play architectures which combine both attributes to achieve compliant systems. Through these core projects and others listed below I have been engaged in soft robotic technology, its application, and solutions to the challenges which are critical to providing a path forward within the soft robotics field, as well as for the future of personal robotics as a whole toward creating a better society

    Soft Robot-Assisted Minimally Invasive Surgery and Interventions: Advances and Outlook

    Get PDF
    Since the emergence of soft robotics around two decades ago, research interest in the field has escalated at a pace. It is fuelled by the industry's appreciation of the wide range of soft materials available that can be used to create highly dexterous robots with adaptability characteristics far beyond that which can be achieved with rigid component devices. The ability, inherent in soft robots, to compliantly adapt to the environment, has significantly sparked interest from the surgical robotics community. This article provides an in-depth overview of recent progress and outlines the remaining challenges in the development of soft robotics for minimally invasive surgery

    Utilizing Compliance To Address Modern Challenges in Robotics

    Get PDF
    Mechanical compliance will be an essential component for agile robots as they begin to leave the laboratory settings and join our world. The most crucial finding of this dissertation is showing how lessons learned from soft robotics can be adapted into traditional robotics to introduce compliance. Therefore, it presents practical knowledge on how to build soft bodied sensor and actuation modules: first example being soft-bodied curvature sensors. These sensors contain both standard electronic components soldered on flexible PCBs and hyperelastic materials that cover the electronics. They are built by curing multi-material composites inside hyper elastic materials. Then it shows, via precise sensing by using magnets and Hall-effect sensors, how closed-loop control of soft actuation modules can be achieved via proprioceptive feedback. Once curvature sensing idea is verified, the dissertation describes how the same sensing methodology, along with the same multi-material manufacturing technique can be utilized to construct soft bodied tri-axial force sensors. It shows experimentally that these sensors can be used by traditional robotic grippers to increase grasping quality. At this point, I observe that compliance is an important property that robots may utilize for different types of motions. One example being Raibert\u27s 2D hopper mechanism. It uses its leg-spring to store energy while on the ground and release this energy before jumping. I observe that via soft material design, it would be possible to embed compliance directly into the linkage design itself. So I go over the design details of an extremely lightweight compliant five-bar mechanism design that can store energy when compressed via soft ligaments embedded in its joints. I experimentally show that the compliant leg design offers increased efficiency compared to a rigid counterpart. I also utilize the previously mentioned soft bodied force sensors for rapid contact detection (~5-10 Hz) in the hopper test platform. In the end, this thesis connects soft robotics with the traditional body of robotic knowledge in two aspects: a) I show that manufacturing techniques we use for soft bodied sensor/actuator designs can be utilized for creating soft ligaments that add strength and compliance to robot joints; and b) I demonstrate that soft bodied force sensing techniques can be used reliably for robotic contact detection

    Design, modeling and implementation of a soft robotic neck for humanoid robots

    Get PDF
    Mención Internacional en el título de doctorSoft humanoid robotics is an emerging field that combines the flexibility and safety of soft robotics with the form and functionality of humanoid robotics. This thesis explores the potential for collaboration between these two fields with a focus on the development of soft joints for the humanoid robot TEO. The aim is to improve the robot’s adaptability and movement, which are essential for an efficient interaction with its environment. The research described in this thesis involves the development of a simple and easily transportable soft robotic neck for the robot, based on a 2 Degree of Freedom (DOF) Cable Driven Parallel Mechanism (CDPM). For its final integration into TEO, the proposed design is later refined, resulting in an efficiently scaled prototype able to face significant payloads. The nonlinear behaviour of the joints, due mainly to the elastic nature of their soft links, makes their modeling a challenging issue, which is addressed in this thesis from two perspectives: first, the direct and inverse kinematic models of the soft joints are analytically studied, based on CDPM mathematical models; second, a data-driven system identification is performed based on machine learning techniques. Both approaches are deeply studied and compared, both in simulation and experimentally. In addition to the soft neck, this thesis also addresses the design and prototyping of a soft arm capable of handling external loads. The proposed design is also tendon-driven and has a morphology with two main bending configurations, which provides more versatility compared to the soft neck. In summary, this work contributes to the growing field of soft humanoid robotics through the development of soft joints and their application to the humanoid robot TEO, showcasing the potential of soft robotics to improve the adaptability, flexibility, and safety of humanoid robots. The development of these soft joints is a significant achievement and the research presented in this thesis paves the way for further exploration and development in this field.La robótica humanoide blanda es un campo emergente que combina la flexibilidad y seguridad de la robótica blanda con la forma y funcionalidad de la robótica humanoide. Esta tesis explora el potencial de colaboración entre estos dos campos centrándose en el desarrollo de una articulación blanda para el cuello del robot humanoide TEO. El objetivo es mejorar la adaptabilidad y el movimiento del robot, esenciales para una interacción eficaz con su entorno. La investigación descrita en esta tesis consiste en el desarrollo de un prototipo sencillo y fácilmente transportable de cuello blando para el robot, basado en un mecanismo paralelo actuado por cable de 2 grados de libertad. Para su integración final en TEO, el diseño propuesto es posteriormente refinado, resultando en un prototipo eficientemente escalado capaz de manejar cargas significativas. El comportamiemto no lineal de estas articulaciones, debido fundamentalmente a la naturaleza elástica de sus eslabones blandos, hacen de su modelado un gran reto, que en esta tesis se aborda desde dos perspectivas diferentes: primero, los modelos cinemáticos directo e inverso de las articulaciones blandas se estudian analíticamente, basándose en modelos matemáticos de mecanismos paralelos actuados por cable; segundo, se aborda el problema de la identificación del sistema mediante técnicas basadas en machine learning. Ambas propuestas se estudian y comparan en profundidad, tanto en simulación como experimentalmente. Además del cuello blando, esta tesis también aborda el diseño de un brazo robótico blando capaz de manejar cargas externas. El diseño propuesto está igualmente basado en accionamiento por tendones y tiene una morfología con dos configuraciones principales de flexión, lo que proporciona una mayor versatilidad en comparación con el cuello robótico blando. En resumen, este trabajo contribuye al creciente campo de la robótica humanoide blanda mediante el desarrollo de articulaciones blandas y su aplicación al robot humanoide TEO, mostrando el potencial de la robótica blanda para mejorar la adaptabilidad, flexibilidad y seguridad de los robots humanoides. El desarrollo de estas articulaciones es una contribución significativa y la investigación presentada en esta tesis allana el camino hacia nuevos desarrollos y retos en este campo.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidenta: Cecilia Elisabet García Cena.- Secretario: Dorin Sabin Copaci.- Vocal: Martin Fodstad Stole

    Elastic Inflatable Actuators for Soft Robotic Applications

    Get PDF
    The 20th century’s robotic systems have been made out of stiff materials and much of the developments in the field have pursued ever more accurate and dynamic robots which thrive in industrial automation settings and will probably continue to do so for many decades to come. However, the 21st century’s robotic legacy may very well become that of soft robots. This emerging domain is characterized by continuous soft structures that simultaneously fulfil the role of robotic link and robotic actuator, where prime focus is on design and fabrication of the robotic hardware instead of software control to achieve a desired operation. These robots are anticipated to take a prominent role in delicate tasks where classic robots fail, such as in minimally invasive surgery, active prosthetics and automation tasks involving delicate irregular objects. Central to the development of these robots is the fabrication of soft actuators to generate movement. This paper reviews a particularly attractive type of soft actuators that are driven by pressurized fluids. These actuators have recently gained substantial traction on the one hand due to the technology push from better simulation tools and new manufacturing technologies including soft-lithography and additive manufacturing, and on the other hand by a market pull from the applications listed above. This paper provides an overview of the different advanced soft actuator configurations, their design, fabrication and applications.This research is supported by the Fund for Scientific Research-Flanders (FWO), and the European Research Council (ERC starting grant HIENA)

    Elastic Inflatable Actuators for Soft Robotic Applications

    Get PDF
    The 20th century’s robotic systems have been made out of stiff materials and much of the developments in the field have pursued ever more accurate and dynamic robots which thrive in industrial automation settings and will probably continue to do so for many decades to come. However, the 21st century’s robotic legacy may very well become that of soft robots. This emerging domain is characterized by continuous soft structures that simultaneously fulfil the role of robotic link and robotic actuator, where prime focus is on design and fabrication of the robotic hardware instead of software control to achieve a desired operation. These robots are anticipated to take a prominent role in delicate tasks where classic robots fail, such as in minimally invasive surgery, active prosthetics and automation tasks involving delicate irregular objects. Central to the development of these robots is the fabrication of soft actuators to generate movement. This paper reviews a particularly attractive type of soft actuators that are driven by pressurized fluids. These actuators have recently gained substantial traction on the one hand due to the technology push from better simulation tools and new manufacturing technologies including soft-lithography and additive manufacturing, and on the other hand by a market pull from the applications listed above. This paper provides an overview of the different advanced soft actuator configurations, their design, fabrication and applications.This research is supported by the Fund for Scientific Research-Flanders (FWO), and the European Research Council (ERC starting grant HIENA)
    • …
    corecore