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Utilizing Compliance To Address Modern Challenges in
Robotics

Abstract

Mechanical compliance will be an essential component for agile robots as they begin to leave the
laboratory settings and join our world. The most crucial finding of this dissertation is showing how
lessons learned from soft robotics can be adapted into traditional robotics to introduce compliance.
Therefore, it presents practical knowledge on how to build soft bodied sensor and actuation mod-
ules: first example being soft-bodied curvature sensors. These sensors contain both standard elec-
tronic components soldered on flexible PCBs and hyperelastic materials that cover the electronics.
They are built by curing multi-material composites inside hyper elastic materials. Then it shows, via
precise sensing by using magnets and Hall-effect sensors, how closed-loop control of soft actuation
modules can be achieved via proprioceptive feedback.

Once curvature sensing idea is verified, the dissertation describes how the same sensing method-
ology, along with the same multi-material manufacturing technique can be utilized to construct soft
bodied tri-axial force sensors. It shows experimentally that these sensors can be used by traditional
robotic grippers to increase grasping quality.

At this point, I observe that compliance is an important property that robots may utilize for dif-
ferent types of motions. One example being Raibert’s 2D hopper mechanism. It uses its leg-spring
to store energy while on the ground and release this energy before jumping. I observe that via soft
material design, it would be possible to embed compliance directly into the linkage design itself. So I
go over the design details of an extremely lightweight compliant five-bar mechanism design that can
store energy when compressed via soft ligaments embedded in its joints. I experimentally show that
the compliant leg design offers increased efficiency compared to a rigid counterpart. I also utilize the
previously mentioned soft bodied force sensors for rapid contact detection (≈5-10 Hz) in the hopper
test platform.

In the end, this thesis connects soft robotics with the traditional body of robotic knowledge in
two aspects: a) I show that manufacturing techniques we use for soft bodied sensor/actuator designs
can be utilized for creating soft ligaments that add strength and compliance to robot joints; and
b) I demonstrate that soft bodied force sensing techniques can be used reliably for robotic contact
detection.
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1
Introduction

Robotics is a new field and making robots more agile and safe to interact with is one of its open re-

search areas. It is useful to overview the history of robotics in order to thoroughly comprehend how

the field has progressed towards developing more agile robots. The field has not truly existed until

the second half of the twentieth century. Although there are historical machines that are occasion-

ally presented as early examples of robots, such as the toy horse machine76, one of the first papers
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Figure 1.1: Left:Amechanicalhorsedesign.Horse-likemotionisachievedthroughcomplicatedusageofgearboxes
andmechanisms.Unfortunatelysuchamechanismwouldonlyhaveasinglemodeofoperationanditwouldcreate
routinemotions.Middle:Oneofthefirsttrialsinmakingrobotsmoreagileisbycombiningmechanicallegdesignswith
controlelectronics.Right:Twodifferentpathstocreatingagilerobots.Path1utilizeshighqualityelectricalactuation
withprecisemotionplanningandPath2utilizessoftmaterialdesigninsmartways.

explicitly mentioning electronic control of multiple actuators for manipulation and locomotion is

published in 196963. Figure 1.1 shows a brief history of robotics, emphasizing on the trend to create

agility via two paths: Path-1 is an introduction of compliance via motion planning and electrical

drive trains with high torque/velocity bandwidth, and Path-2 is to introduce agility via new material

design techniques. Two examples in the right bottom part of Figure 1.1 use extremely soft materials

to achieve new types of agile robotic motion.

Before going further into details, it is also beneficial to think about why robotics has taken off in

the last decades and how compliance can help to achieve even more. It is possible to think of histori-

cal mechanical machines as predecessors of modern robots but I tend to think that this is misleading.

There is the problem of computation. Without silicon-based chip technology, it is not possible to
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pack enough processing power to make a machine control its movements, sense its environment,

and reason at a high level about its tasks. Therefore, without the computational power there is no

connection between mechanics and electronics of the system. The nineteenth-century industrial rev-

olution was based on machines that either had mechanical or steam based feedback loops and these

machines were designed at the factory to do one thing well. Compare that to our PCs, which can

allow us to trade online, write books, listen to music, or communicate. Only through the integra-

tion of computational power with mechanics, we have seen the first examples of what one might call

robots.

A fundamental question can be framed as follows: With the increase of computational power

why aren’t we seeing more capable robots? Today, we have microcontroller units clocked at 400 MHz

that are small enough to be packed inside human-sized robots. It would be possible to attach a high-

frequency microcontroller not just to each robot but to each joint/actuator of every robot. We are

capable of creating amazingly fast, distributed robotic control systems. Each one of these microcon-

trollers could run video games of the 1990s while performing mission-critical functionality at the

same time. Unfortunately, an increase in processing power did not translate directly into making

robots more capable. The question this thesis asks is how we can benefit from material properties to

improve the agility of modern robots given that we have enough processing power.

I believe that mechanism stiffness, compliance, and flexibility are parts of the answer to creating

more agile machines. One reason for this is that we do not have a clear understanding of how much

of what humans and animals in nature achieve is due to computational power and how much of

it is due to mechanism properties. For example, the rainbow trout 3 swims upstream even when it
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is dead, so it certainly does not compute a complex motion trajectory and it cannot execute a set of

motor commands. To swim upstream, it amazingly relies on complex environmental dynamics and

compliance coming from its own body configuration.

Another example comes from two different schools of thought in legged robotics. Zero Moment

Point96 (ZMP) based walkers versus dynamic walkers/hoppers inspired by Raibert74. The ZMP is a

precise and computationally heavy approach. One needs to find a stable set of ZMP trajectories and

then map them to the robot’s center of mass positions and eventually obtain actuator commands

from the stable mapping. This approach works but usually comes with mechanistic and inefficient

locomotion patterns. On the other hand, Raibert’s hoppers utilize a linear spring, which is the com-

pliant part in the mechanism, to reason about how much the robot body would travel during stance

period to compute foot trajectories. This computationally simple approach works remarkably well

for creating dynamic legged machines.

We also have the emerging trend in completely soft-bodied robots. These are machines that use,

most of the time, quite simple control algorithms to achieve seemingly complex tasks. Achieving

fish-like escape maneuvers using soft-bodied actuators is one example64,95,52,100. If one looks at the

examples out there, it seems agility emerging from robot compliance is a good direction to start

searching for smarter robots. Throughout the thesis, I will walk the reader on how I used my practi-

cal and theoretical knowledge in building compliant mechanisms to create soft-bodied modules and

integrate novel material designs into existing robotic systems and control algorithms.

At this point, it is convenient to write about how I became interested in compliance in robotics,

too. I started academic research by working on a completely rigid bipedal robot named SURALP 22.
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The mechanism had 29 independent degrees of freedom driven by brushed DC motors attached

to gearboxes. It is not very hard to imagine how such a machine would create artificial and non-

compliant motions. Some of the rigidity comes from mechanical design and some from the algo-

rithm that forces the system to track believed-to-be-stable state trajectories via high gain tuning of

brushed gearbox motors. Looking back now, these type of robots were the exact opposite of what I

worked with for my doctoral research. However, having first-hand experience with them led me to

think about the problem of compliance in robotics for the first time.

When I arrived in the Soft Robotics Lab at Worcester Polytechnic Institute, I shifted my research

direction. Instead of rigid components, I was working with soft polymers: Trying to embed elec-

tronics into them for measurements and trying to figure out different ways to actuate them and

eventually control them. The main reasoning behind compliant mechanisms was the hope that we

could achieve what was difficult or even impossible to accomplish with rigid bodies. As an exam-

ple the snake built in the Soft Robotics Lab (SRL) at Worcester Polytechnic Institute (WPI) would

create undulatory47 locomotion with simple open-loop valve on-off signals. Traditionally, such mo-

tions would be much harder to replicate with standard robotic parts. Not surprisingly, during the

first part of my PhD, I worked on improving the control architecture of the newly developed snake

system. I developed soft-bodied curvature sensors that could be embedded into the snake system for

real-time sensing68. One of the claims of the proposed sensor was its ability for feedback control of

each individual soft snake module. I demonstrated experimentally that it was possible to do feed-

back control with the soft sensors by mapping the data from the sensors as pulse width modulation

(PWM) duty cycles to the valves69. Finally, we showed in the lab that multiple modules could be
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cascaded to create an autonomous soft-bodied snake46.

Personally, I thought combining my hands-on experience with both soft robotics and legged

locomotion could give me a chance at solving the problem of introducing agility into robotics. I was

impressed by Marc Raibert’s original control algorithm developed for single legged hoppers and how

it utilized compliance to its benefit. A spring attached to a rigid leg and a hip actuator, as it turns

out, was all the required actuation hardware to achieve impressive dexterous jump/run patterns.

The controller running inside the original hopper is very simple. One could code it in less than 200

lines and make it work, assuming the hardware is functional.

So I started thinking about how to make use of my skills in soft robotics to make an advancement

in dynamic locomotion. Soon, I figured soft-bodied manufacturing and soft-bodied sensing work I

have conducted so far could be useful in two points: a) A soft-bodied force sensor that is fast enough

to handle high frequency impacts during hopping b) A compliant leg mechanism manufactured via

methods quite similar to what I use for building the soft sensors/actuators.

The result of my work was a hopping platform built with off-the-shelf electronic components. It

included a fivebar mechanism manufactured via folding a polyethylene terephthalate (PET) sheet.

The folded mechanism was reinforced with fiberglass mat to increase its strength. The introduc-

tion of fiberglass mat with a certain resin I used also created the compliance that was also needed in

the original Raibert hopper. As opposed to a robot leg manufactured with rigid materials and a dis-

crete mechanical spring, compliance introduced by the folded leg design came with reduced overall

weight. Finally, I demonstrate experimentally, the effect of passive compliance on the hopping effi-

ciency of the mechanism. The folded fivebar mechanism, which is functionally the leg of the system,
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introduces efficiency at a lower weight.

The contributions of each chapter to the academic body of robotics literature can be summarized

as follows:

• Robust and precise curvature feedback with rapid response for soft-bodied robots.

• Feedback control of soft bodied bending segments.

• Tri-Axial force measurements via soft bodied mechatronics design for grasping and ground
contact detection

• Utilization of soft bodied material design for manufacturing an extremely lightweight hop-
per leg design

• Efficiency benefits of the compliant leg design.

The rest of the thesis is organized as follows. First, I write about details of soft-bodied sensing,

actuation, and control based on the work I have done. The soft-bodied curvature sensor and con-

trol of a soft-bodied segment are shown in Chapters 2 and 3. The soft-bodied force sensor, which

is an extension of the magnetic sensing idea I utilized in the curvature sensor, is presented in Chap-

ter 4. Finally, the compliant leg mechanism and the hopper platform is presented in Chapter 5. This

mechanism uses the soft force sensors for high frequency contact detection, and its leg mechanism is

inspired by the ideas I learned while building soft-bodied modules. For the conclusion, I will discuss

the state of soft and compliant robotics, how my work contributed to the field and my thoughts on

the future of the field.
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2
Soft-Bodied Curvature Sensor

Soft-bodied robots are interesting but they are not capable of achieving a wide range of use-

ful tasks. This is not because they are inherently incapable of achieving them and the reason can be

likely attributed to the fact that we as humans and as engineers like to linearize things and try to find

solutions to linearized versions of complex problems. Sometimes this approach works remarkably
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Figure 2.1: Thesoft-bodiedsnakerobotdesign,whichiscompletedbyagroupofstudentsworkinginWPISoft
RoboticsLab,isshown.Curvaturesensorsareembeddedineachsoftmoduleforsensingrobotconfiguration.The
platformIdesignedinSRLallowedmetoaddressthedesignchallengesinextremelyflexiblemechanismsandpaved
groundforintroducingahallsensorbasedcurvaturesensordesign.Left:ComputerAidedDesignofthesensorassem-
blyisshown.Numberdefinitions:1)Flexiblesubstrate,2)HalleffectIC,3)Magnet,4)Circuitpathsandcomponents.
Redandbluearrowsindicatehorizontal(x-axis)andvertical(y-axis)directionsrespectively.Right:Thesensorisbuilt
tobeintegratedintothemiddleofthesoftsnakerobotforproprioceptivecurvaturemeasurements.

well: As in designing a 7 DoF robot manipulator and linearizing its dynamics and inversing them in

real time so the controller can cancel them out and the control engineer can write the equation gov-

erning the motion of the mechanism. This is the fundamental idea behind many, if not all industrial

robots, working in the real world. It does not work well with more organic designs, as of today.

The snake robot in Figure 2.1 is one example where a well engineered approach is not found for

control purposes. We do not know how to model continuously deformable dynamics as well as we

know how to write the Lagrangian function of atomically discrete sets of masses. Even if we had a

set of dynamics equations we could understand and manipulate, we are further constrained by lack

of actuators and sensors that can be integrated into them. Not surprisingly, my first work when I

arrived in Soft Robotics Lab was to design a sensor for the snake robot68 that could replicate the

functionality of an encoder in a traditional robot.

As it turns out, obtaining kinematic configuration information of soft-bodied robots is one of
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the current challenges in the field. The traditional approach to determine the configuration of a

rigid kinematic chain is to obtain discrete angle measurements from each joint. In contrast, soft-

bodied robots possess indefinitely many passive degrees of freedom91,78 as a result of continuously

deformable segmented bodies 29,45, emphasizing the need for new sensing techniques.

This chapter explores the capabilities of a novel embedded soft curvature sensor designed to cap-

ture configuration information from soft robotic bending segments68. It is equally important to

mention that constant curvature assumption for individual bending segments hold true under cer-

tain assumptions. Fro example, if we were to include 3D motions, as opposed to planar motions in

the snake robot, a single curvature value for each segment would not be enough to determine the

shape of the segment. As mentioned in the opening, the emerging field of soft robotics suffers from

a lack of modeling and control efforts for both kinematic configuration and dynamic properties.

Soft manipulators and soft-bodied mobile robots can expand their capabilities through accurate

models, and corresponding feedback controllers. For example the octopus arm 12 could utilize high

resolution curvature/spline sensors attached to its tentacles. Similarly, the soft manipulator 51 can

utilize curvature sensor attached to its segments. Eventually, robots with soft segments 80,42,87 can

improve their autonomy by improved sensing technologies. Inspired by the approach to model the

configuration of a soft robot based on defining the bending deformation of soft segments as curva-

tures45,65,50 instead of discrete angles I present a curvature sensor for soft-bodied modules. When

one thinks of a soft module in this way the orientation and position of every point on a continu-

ously deformable segment becomes uniquely defined with respect to its curvature. Robot configu-

ration is then modeled as a kinematic chain of segments, where each segment is defined by a single
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curvature value. In prior work, my colleagues in SRL were able to model and reproduce lateral un-

dulation for a soft robotic snake comprising four soft bidirectional bending segments47,65.

Encouraged by the preliminary work, my early research68 details the design, fabrication, and

experimental verification of a soft curvature sensor comprising a miniature magnet and a Hall effect

measurement integrated circuit (IC). The magnet is positioned in a specific way with respect to the

Hall element on a flexible circuit (see Figure 2.1) to measure the curvature of bidirectional out-of-

plane deformations in a standalone package, without the need for external electronics. This is a

versatile approach, which can be adapted to measure other physical deformations in a soft body.

For example, a setup consisting of a magnet mounted over a Hall Effect sensing component can be

used for measuring normal forces. In this work, I focus my attention to curvature sensing due to its

practical applications on the soft robotic snake47,65.

Hall elements are compact, accessible, and inexpensive. The quick response (less than 10 microsec-

onds is listed as response time for MLX91207) and accuracy of Hall elements for traditional robotic

applications have previously been verified for joint angle proprioception7,18 as well as tactile extero-

ception90,31. Contact-free sensing capabilities are highly desired for soft robotic research 17. Thus, a

unique advantage of my non-contact magnetic field measurement approach is its negligible effect on

material stiffness. As a trade-off, isolating the magnetic field generated by the magnet is a challenge

to be considered during design. Industrial designs guarantee this by isolating the sensor and magnet

couple mechanically.

Alternative solutions to curvature sensing include commercial resistive flex sensors, optical fiber

Bragg gratings, and embedded liquid metals. Resistive flex sensors offer a compact and straightfor-
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ward solution for embedded sensing in soft robotics. Nevertheless, I conclude that they suffer from

dynamic artifacts, such as delayed response and drift.

Optical fiber Bragg grating is a powerful sensing solution for deformable bodies which is used

successfully for force measurements on a soft finger70, and shape reconstruction99. Fabry-Perot in-

terferometer based curvature sensors 58 are also an option for optical curvature sensor measurement.

Although these technologies facilitate highly accurate curvature measurements using a thin and

flexible optical fiber, the required supporting hardware disables embedded operation especially for

tetherless mobile robots with many degrees of freedom.

A novel and specialized sensor technology for soft robots is the use of liquid metals embedded

in rubbers, a technology stemming from mercury-in-rubber strain gauges 27. Thus, dimensional

changes due to deformations in the substrate are reflected as resistance changes by the liquid metal.

Recent work incorporates fluidic channels inside silicone rubber filled with eutectic Gallium-Indium

(eGaIn) to measure joint angles of a finger 37 and for a tactile sensing array 38. The eGain sensing has

matured and there exists a short survey on sensors94. An interesting work that applies eGaIn sensors

to a suit for gait detection was published 56. Main limitation of eGaIn sensor is a relatively compli-

cated fabrication phase. They require a 3D mold with channels. Afterwards eGaIn is injected from

one side of the mold while air inside the channels is vacuumed from the other side. Thus, repeatabil-

ity and complexity in manufacturing these sensors may be a challenge.

To address the fundamental challenge of providing accurate and dynamic proprioceptive feed-

back for soft-bodied robots, this chapter proposes a novel soft curvature sensor, based on the state of

the art in flexible sensing technologies. Specific contributions of my work were as follows:
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• Robust and precise curvature feedback with rapid response for soft-bodied robots.

• Integrated measurement of kinematic configuration for soft-bodied arms and mobile robots
composed of soft bending segments.

• A custom test platform for soft-bodied curvature sensors.

Nearly two years after publishing my work on curvature sensors, I observe the following: First,

I think generating magnetic fields inside soft materials is a strong medium for sensing flexible body

configuration. The same idea is actually proven to be quite useful in industrial applications where

a magnetic field is utilized via encoders to measure absolute joint angles. Second, the knowledge

obtained for manufacturing composite for materials can be adapted to different sensor designs; fur-

thermore, it can be used to create multi-material compliant mechanisms as well. These implications

are discussed in the following chapters of the thesis.

The following section explains the fundamentals of design, modeling, and fabrication. I provide

detailed information on positioning of the magnet-sensor pair, design specifications, and manufac-

turing steps. I also present results of numerically simulating the sensor response to different curva-

tures. The simulation results inform the positioning of discrete elements, gain and offset adjustment.

I present a test platform to repeatably characterize and verify soft curvature sensors under static and

dynamic loading conditions. Section 2.2 displays and discusses results obtained from the proposed

curvature sensor using the custom test platform, reporting experimental results on calibration, re-

peatability, as well as static and dynamic verification of the proposed soft curvature sensors.
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2.1 Methods

2.1.1 Curvature Sensor Design

The main requirements for a curvature sensor for soft robotics are flexibility and minimal effect to

material stiffness. Along with structural specifications, accurate, precise and fast responses are also

required for feedback control applications based on proprioceptive curvature sensing.

I adopted locomotion parameters of a soft-bodied snake robot45 as a set of design specifications

to achieve an embedded curvature sensing module that is consistent and compatible with the lit-

erature. The soft robotic snake deforms between 0.2 cm-1 and 0.4 cm-1 and the frequency of trav-

eling curvature waves to achieve undulatory locomotion is around 2 Hz. Thus, a curvature sensor

working at frequencies above around 3 Hz without dynamic attenuation is expected to provide an

accurate reconstruction of the robot configuration.

An accurate mapping is required to convert measurements to curvature values. Two desired prop-

erties of the calibration function are linearity and injectivity. To show that such a mapping exists, I

developed a simulation platform that considers both finite element analysis of a magnet and its theo-

retical model. Once the sensor is calibrated, and a mapping is obtained, curvature measurements are

absolute (i.e. not subjected to initial conditions or temporal variations).

Theoretical modeling of magnetic flux density vectors around a magnet provides intuition on

the curvature sensor response. A simple dipole model of magnetism approximates these vectors, but

it does not include volumetric constraints. A more accurate 2-D analytical model of a rectangular
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magnet also exists 1. According to this model, the Cartesian magnetic field vector components in the

magnet frame can be written as:

Bx(x, y) =
μ0Ms
2π

(
arctan

2h(x+ w)
(x+ w)2 + y2 − h2 − arctan

2h(x− w)
(x− w)2 + y2 − h2

)
, (2.1)

By(x, y) =
μ0Ms
4π

(
ln

(x+ w)2 + (y− h)2
(x+ w)2 + (y+ h)2 − ln

(x− w)2 + (y− h)2
(x− w)2 + (y+ h)2

)
. (2.2)

In the equations above, Bx and By are magnetic flux density vector components in different (x, y)

positions with respect to the magnet. The coordinates and the origin of the frame, in which equa-

tions are defined, can be seen in Figure 2.2. X-axis and Y-axis are parallel to horizontal and vertical

lines respectively, and the origin of the magnet frame is attached to the middle of the cube magnet.

μ0 is the relative magnetic permeability of the medium. Mx is the surface magnetization magnitude

of the magnet. Finally, h and w are the height and width of the rectangular magnet.

To maximize accuracy, I used the magnetic flux density vector data obtained from finite element

analysis (FEA), using the COMSOL package, to develop a kinematic simulation within the working

range of the sensor. COMSOL allows users to model magnets with respect to remnant magnetic

induction. Also, it is trivial to get a 3D surface with magnetic flux density vectors around the magnet.

Figure 2.2 displays magnetic field density vectors around a magnet along with the trajectory covered

by the Hall element during the simulation. The design space of this sensing approach comprises

multiple parameters such as: magnet size and orientation, the distance between the sensor and the

magnet, and the sensitivity of the Hall element. For example, if the magnetization axis of the magnet

is not perpendicular to sensing direction, the mapping from voltage to curvature would not be bi-
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Figure 2.2: (A)FEAdataobtainedfromasimulationofsensormotion.Thedashedgreencurveisthetrajectoryofthe
sensorfrom−1.5cm-1to1.5cm-1.Arrowindicatesthesensingdirectionthatisalwaystangentialtothetrajectory.An
inherentoffsetduetoverticalleveldifferencebetweenmagnetandsensingsurfacecanalsobeobservedfromthe
mid-pointofthetrajectory.(B)showstheverticalandhorizontaloffsetbetweenthemagnetandthesensor.(C)Sensed
magneticfluxdensityvectormagnitudewascomputedbetween0.5cm-1and2.0cm-1.Thedashedredcurveisaleast
squaresfitobtainedfromvoltagemeasurementsfrom30differentcurvatures.Thesolidbluecurveisthevoltage
versuscurvatureresultfromtheFEAsimulation.Thedottedpurplecurveisthesimulationresultobtainedfromthe
theoreticalmodelbetween0.5cm-1and2.0cm-1.Bothinsimulationsandintheapplication,Iuseacubemagnetwitha
sidelengthof3mm.Themagnetizationvalueforsimulationsis8.0x105 A/m.

directional. This numerical approach provided us with rapid evaluation of all design parameters to

serve as preliminary values for fabrication.

I exported the FEA data to MATLAB as a lookup table for magnetic flux density vectors at differ-

ent positions around the magnet. The position of the Hall element with respect to the magnet is a

function of curvature expressed as:

x = 1
κ sin(κs),

y = 1
κ(1 − cos(κs)),

(2.3)

17



where x and y are positions along the length of the segment, κ is the curvature of the segment

in cm-1 units, s is the normalized arc-length, s ∈ [0, 1]65. x and y positions are defined in the magnet

frame and axis representations can be seen in Figure 2.2. The Hall element measures the magnetic

flux density vector component in the perpendicular direction to its surface, which is taken into ac-

count in the both analytical calculations and numerical simulations.

Figure 2.2 displays simulated magnetic flux density vector magnitude on the Hall element for cur-

vature values between 0.2 cm-1 and 2 cm-1. The horizontal distance between magnet and sensor in

this simulation was picked as 6 mm and the vertical distance was picked as 0.2 mm. The horizon-

tal distance was obtained by looking at the simulated and the real sensor data making sure distance

between sensor and magnet is small enough while not saturating the voltage measurements. The

vertical distance emerged from the package of the sensor and the size of the cuboid magnet. Hori-

zontal and vertical distance definitions can also be seen in Figure 2.2. Results from this simulation

suggest that there exists a one-to-one, nearly linear mapping between the measured component of

the magnetic field vector and curvature.

Sensitivity and offset of the magnetic field measurement circuitry depend on the positioning of

the magnet, as well as the vertical distance between the magnet and the Hall element. Simulation

results suggest that the sensitivity of magnetic field measurement should be around 40 mV/G, to

utilize 70 % voltage range between 0 − 5 V in positive and negative directions. Due to directional

bias, a voltage offset of 0.35 V was added to achieve bi-directional measurement without saturation.

I also looked into the effects of crosstalk between other sensors or ferromagnetic materials in

the environment inside the simulation. I placed another magnet at three different distances in the
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Figure 2.3: Asecondmagnetisplacedatdistances12,18,and24mmneartheHallelementtoanalyzetheeffects
ofacascadedsensorsystem.Resultssuggestthatanothersensorpaircanbeplacedat18mm,anditwillnotcreate
significantinterferenceinthesensedmagneticfluxdensity.Thesketchontheleftisnottoscale.

horizontal direction and observed their effect on the Hall element. The horizontal distance between

the surface layer and the magnet is 6 mm. Through simulations, I discovered that crosstalk between

sensors might become an issue when another sensor is placed between 12-18 mm. I also discovered

that crosstalk has an effect on measured data in high curvature values around -1.5 cm−1 and 1.5 cm−1.

Results can be seen in Figure 2.3.

2.1.2 Manufacturing

Manufacturing of the curvature sensor is composed of two stages: printing electronics and mold-

ing silicone rubber. Electronic circuitry is printed on two substrates, copper-clad FR4 and copper-

foil laminated polyester, using a standard solid-ink printer. The flexible substrate is then etched to

obtain circuit traces and discrete components are populated manually to result in a fully custom-

printed flexible circuit. The Hall Effect IC is AD22151. A B222G-N52 magnet is bonded to the

etched sheet at the desired location based on my simulation results.
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Figure 2.4: Left:Isometricviewofthemoldisshown.Siliconerubberispouredintotheinnerchamberfromtheopen
spacethatcanbeseeninfrontandisometricviews.Thelength,widthandthicknessoftheinnerchamberare60mm,
30mmand5.6mmrespectively.Thelength,widthandthicknessoftheoverallmoldare50mm,70mmand11mm,
respectively.Right:Acurvaturesensorprototypeisshown.TheHalleffectIC(A),themagnet(B),andcircuittraces
(C)canbeseeninthefigure.Aflexiblecircuitlayerispositionedinthemiddleofthesiliconelayer.TheHalleffectIC
hasaninternalop-ampforoffsetandsensitivityadjustments.Circuitryandresistancesarealsoembeddedinsidethe
silicone.Thetotalthicknessofthesensoris7mm.

For greater compatibility with bending type soft actuators, the curvature sensor circuit is em-

bedded inside EcoFlex 0030 silicone rubber from Smooth-On. The choice of material was made by

considering the material choice for the soft snake robot, which is also EcoFlex 0030. It is possible to

use another soft silicone, such as Dragon Skin, as well. Although mixing soft materials with different

tensile strengths will create different dynamic behaviors when they are actuated via air pressure. 3-D

printed mold design for the sensor is shown in Figure 2.4. Screws passing through the flexible sheet

and two pieces of the mold guarantee the flat mounting. Silicone rubber is then introduced inside

the mold and cured at 60 ◦C for 40 minutes. The curing operation finalizes the manufacturing of

the sensor. An example of the soft sensor segment can be seen in Figure 2.4.

Provided with electronic components, circuit design, and molds; overall manufacturing time to
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Figure 2.5: LeftPanel:Actualtestplatformwiththeellipsetrackisshown.RightPanel:CADmodelsoftheplatform
areshown.(A)isthemountingplatformforthesensor.Itcanmoveinasingledirectionalongthealuminumrods.The
connectionismadewithlinearbearingstoreducefriction.Thereisarodcomingdownfromtheplatformthatisat-
tachedtothesensor.Thisrodpullsthesensorinsidethetrackasthemotorturnsit.(B)3Dprintedellipticaltrack.(C)
Amotorismountedbelowthesquareshapedaluminumplatformanditiscoupledtothe3Dprintedtrack.Theedge
lengthoftheplatformis30cm.Thethicknessoftheellipticaltrackis4.5cmincludingthemotorcoupling.

build the sensor from scratch is approximately two hours. Printing circuit traces and etching takes

30 minutes. Components can be manually soldered in under 15 minutes and curing silicone rubber

takes around 40 minutes. Note that all these processes can be automated and performed in parallel

to speed up the manufacturing process for larger volumes.

2.1.3 Test Platform

Deforming a silicone rubber segment into known curvatures, repeatedly and precisely is not a trivial

task. One way to achieve it is to attach soft bending actuators65 powered by pressure to the sensor

segment, and actuate it with different pressure values. The deformation could be tracked with a

visual system to compute the curvature of the segment.

A test platform composed of a soft actuator and sensor segment is undesirable. Pneumatic soft
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actuators typically possess relatively low bandwidth. Therefore, it constitutes a bottleneck for mea-

suring dynamic responses of the sensor. Moreover, the magnet-Hall couple requires precise and

repeatable calibration. Using soft actuators would introduce unnecessary complexity during the

calibration phase.

To calibrate the sensor independent of external effects, and verify its static and dynamic response,

I consider a custom test platform shown in Figure 2.5. Form-closed modular tracks that constrain

the sensor segment to deform into exactly known curvature values are designed. The tracks can be

rotated to desired angles or at desired velocities by a DC motor. A platform on top of the track holds

the curvature sensor on a pin (see Figure 2.5), which pulls the sensor as the track advances.

The sensor needs to be deformed into known curvature values and kept at those values for cali-

bration. For this task, I use an Archimedean spiral track and conduct static curvature tests. To ver-

ify accuracy and precision under dynamic curvature waveforms, I use an elliptical track. Figure 2.6

shows the spiral and ellipse plots along with their CAD models.

The curvature on any point on the spiral and the ellipse can be obtained by (2.4) and (2.5), re-

spectively. Here, a and b are standard ellipse and spiral parameters, θ ∈ [−π,π] is the angle

of rotation around the center, and t ∈ [−π,π] is a parametric variable for the ellipse, where

tan(t) = (a/b) tan(θ). Simultaneous angle measurements were taken to calculate the expected

curvature values during all experiments. The spiral track was used to collect data points for calibra-

tion, and for static response tests. Dynamic response tests were performed with the elliptical track.
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Figure 2.6: Curvatureprofilesinsidespiralandellipseareshownasfunctionsofanangleina)andb).Thespiralparam-
etersarea = 15cmandb = 35cm.Parametersforellipsearea = 10cmandb = 5cm.Standardpolarequationsfor
spiralandellipseareusedforcalculations.Solidsurfacemodelsoftheshapesaregiveninc)andd).Curvatureprofiles
arepassingthroughthemidpointofpathsinbothsolidsurfacemodels.

κs =
1√

a2 + b2 + b2θ2 + 2ab
(2.4)

κe =
ab

[(b cos t)2 + (a sin t)2]3/2
(2.5)

A Maxon graphite brushed 200-W DC motor with 81:1 reduction was used for calibration. Ac-

curate tracking was obtained with a 500-counts-per-turn optical encoder. Controller for this motor

was programmed in an Arduino UNO board. Reference speed and angle values can be given to the

controller through a user interface running on a PC through serial communication. PC-side user

interface, and serial communication were programmed in Processing.

For speed tests, a 50-Watt motor with 19:1 reduction was used. An optical encoder with 64 counts
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per turn was used for tracking the angle. For analyzing the dynamic response of the sensor, the el-

liptical track was turned under different speeds in open loop, using a constant voltage input to the

electric motor. Data from the soft curvature sensor and motor encoder was obtained through an NI

SCB-68A board. The sampling rate of data acquisition was 10 kHz.

Spiral and elliptical tracks are made of 3D printed ABS tracks. Initially, I performed tests with

Ecoflex as the contact surface with the ABS tracks. This choice resulted in high friction. To over-

come this issue I covered the sensor segment with 12.7 μm thick PET film and used industrial grease

to further reduce friction.

2.2 Results and Discussion

This section discusses my results from calibration, static loading and dynamic loading cases. I also

give out characterization data of the proposed sensor design in Section 2.2.4.

2.2.1 Calibration

Based on simulations and previous experimentation with the sensor, the horizontal distance be-

tween the magnet and Hall element was set as 6 ± 0.5 mm. The vertical distance between the center

of the magnet and the surface of the Hall element was dictated by the components to be approxi-

mately 0.2 mm. Horizontal and vertical distances can be seen in Figure 2.2. I also verified the static

response of the curvature sensor using the test platform as a tool for automated calibration.

For automated calibration, sensor is driven to 30 points with different curvatures inside the spi-

ral. This process was repeated three times for accuracy. A non-linear least squares fit was obtained
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Figure 2.7: Calibrationfunctionobtainedfromdatapointsinsideaspiral.Itshowschangeinvoltagefrom0.1cm-1

to2cm-1.Calibrationismadeforasingledirection.Threedifferentvoltagedatasetsareobtainedfrom30different
curvaturepointsinsidethespiralforthreedifferentsensors.

between voltage and curvature values. A representative calibration fit for one of the tested sensors is

shown in Figure 2.7. The calibration function is a third order polynomial with the following coeffi-

cients. c0 = 2.32, c1 = 0.98, c2 = 0.61 and c3 = −0.20.

Each sensor needs to be calibrated individually due to small manufacturing tolerances. Figure 2.7

shows mean and standard deviation of three calibration results from three sensors. Differences in

magnet-sensor orientation and distance result in variations in calibration functions, although after a

single initial calibration step, the curvature measurements are absolute. Results show that a precise

positioning process would ensure repeatability.

2.2.2 Static Response

To verify the static response of a calibrated curvature sensor, I drove the sensor inside the spiral track.

To show repeatability, results are demonstrated from two sensors. The calculated curvature inside
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Figure 2.8: Staticresponseoftwodifferentcurvaturesensorsinsidethespiraltrackusing5◦ increments.Eachsensor
wasdriveninsidethespiraltrackthreetimes.Thedashedredcurveistheactualcurvatureandthesolidbluecurveis
themeanofthemeasuredcurvatures.Theshadedareadisplaysthestandarddeviationofcurvaturemeasurements.

the spiral is given in (2.4) and Figure 2.6 displays the curvature of the spiral track for a rotation an-

gle range of 0◦ — 1440◦. A calibrated sensor is expected to follow a similar path. To this end, sen-

sors were driven inside the spiral, with 5◦ increments and waited 5 seconds at each curvature value

for four full turns. The measured curvatures inside the spiral in comparison to expected values dis-

played in Figure 2.8 verify the ability of my sensor to measure curvatures accurately in a static set-

ting.

2.2.3 Dynamic Response

After verifying the ability of the proposed curvature sensors for static measurements, I tested the ac-

curacy of its response under dynamic deformations. For speed tests, I used the elliptical track instead

of a spiral. Just as the spiral track, walls of the ellipse controllably and repeatably deform the sensor

into different and known curvature values, as a DC motor turns the platform, subjecting the sensor
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Figure 2.9: Acloseupofthesensorresponseforspeedtests.Theleftcolumnshowsdataobtainedfromthesensor
withoutalow-passfilter;therightcolumnshowstheresponseafterthefilter.Ellipsesurfaceisturnedatconstantvolt-
agesof8V,12V,and16V,correspondingtoaverageangularvelocitiesof11.6rad/sec(3.69Hz),21.8rad/sec(6.93Hz),
and23.8rad/sec(7.57Hz)fortheleftcolumn,and16.9rad/sec(5.37Hz),22rad/sec(7.00Hz)and24.6rad/sec
(7.83Hz)fortherightcolumn,fromtoptobottom.

to a periodic curvature waveform.

A curvature sensor, moving inside the elliptical track is expected to register the periodic curvature

changes continuously in a dynamic setting. A detailed explanation of the elliptical shape and the

curvature values can be seen in Figure 2.6. I drove the elliptical track under different input voltages

resulting in different angular velocities. I collected angle information from the attached encoder
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Figure 2.10: Measuredandcalculatedcurvaturevaluesaredisplayedwithrespecttotherotationangleoftheelliptical
track.Thetoppanelshowsdataobtainedfromasensorwithoutalow-passfilter;thebottompanelshowsaresponse
afterthefilter.Theellipticaltrackwasturnedatconstantvoltagesof8V,12Vand16V.Thecorrespondingangular
velocitieswere11.6rad/sec(3.69Hz),21.8rad/sec(6.93Hz)and23.8rad/sec(7.57Hz)fortoppanel,and16.9rad/sec
(5.37Hz),22rad/sec(7.00Hz)and24.6rad/sec(7.83Hz)bottompanel.

and curvature information from the sensor itself, to compare measured and calculated curvature

values. Using (2.5), angle data can be readily converted to calculate the expected curvature. Likewise,

voltage information from the curvature sensor is passed through the calibration function to obtain

measured curvature values. Raw curvature measurements are displayed in Figure 2.9 for two sensors

in the elliptical track running at different velocities. These sensors represent two extremes: without
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any filtering, and using a low-pass filter circuit with a very low cut-off frequency. The root mean

square (RMS) errors of all dynamic tests can be seen in Table 2.1.

High noise can be observed in the left panel of Figure 2.9. The low-pass filter attached to the

output channel reduces noise, as shown in the right panel of Figure 2.9. I used 3.2 Hz as cutoff

frequency to study its effect on the dynamic response. The filtered sensor was successful in yield-

ing reduced noise, at the expense of an attenuated response to higher frequency deformations. A

lagged behavior can be observed in the right column of Figure 2.9. As expected, when the sensor

is deformed faster, it is not able to settle on the calculated curvature values. Thus, a low pass filter

with an appropriate cutoff frequency is required. The intended application, the soft snake robot

undulates at frequencies up to 2 Hz and my choice of 3.2 Hz cutoff is sufficient. Measured curvature

versus angle of the ellipse results are shown in Figure 2.10. When the low-pass filter is used for noise

cancellation, a deterioration in peak to peak difference is observed. The peak-to-peak amplitude re-

sponse of both sensors with noise cancellation to bending under different frequencies is displayed in

Figure 2.11.

In addition to verifying the measurement capability of the proposed curvature sensors, experi-

mental studies also informed us with details on manufacturing requirements. For example accurate

and repeatable positioning of the magnet and Hall element pair is crucial for obtaining the expected

calibration function, since the curvature response due to magnetic field measurements is very sen-

sitive in the proposed arrangement. However, I have shown that, even for manual fabrication, a

monotonically increasing, one-to-one mapping function exists.

During dynamic bending experiments, it was determined that among the two substrates, copper-
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Figure 2.11: Peak-to-peakcurvatureresponsesofeachsensorinFigure2.10isgivenalongwiththecalculatedpeak-to-
peakresponsefromellipsesurface.Overshootinthesensorwithoutfilter(dot)anddecayinthefilteredsensor(dash)
duetodelaycanbeobserved.Thevarianceofpeaktopeakcurvatureresponsesisindicatedasshadedareas.

With Filter Without Filter

8 V 0.021 0.026
12 V 0.037 0.023
16 V 0.030 0.024

Table 2.1: RootmeansquareerrorsbetweenmeasuredandreferencecurvaturedatafromFigure2.9.Unitofmeasure-
mentiscm−1.Theellipticalplatformisdriveninanopenloopwiththreedifferentconstantvoltagevalues:8V,12V
and16V.

clad FR4 sheets exhibited reduced strength. For periodic loading of curvature waves, the chemically

bonded copper traces eventually failed due to bending stresses and fatigue, especially for larger fre-

quencies in Figure 2.9. However, copper foil tape laminated on polyester (PET) films exhibited

improved endurance to this failure mode (the first curvature sensor made using this substrate is still

functional), since the flexible adhesive layer can deform and absorb the bending stresses. Thus, all

dynamic tests were performed on curvature sensors printed on copper foil laminated PET substrates

for reliability.
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Figure 2.12: Left:Errorbetweenreferencecurvatureandmeasuredcurvaturewhentheellipticaltrackisturnedwith
anangularvelocityof23.8rad/sec.Nofilteringisapplied.Right:Relationshipbetweenvoltageandcurvaturewhen
curvatureisbentfrom0.05cm−1 to0.45cm−1 andbackto0.05cm−1.Nohysteresisisdetected.

2.2.4 Discussion

Hysteresis, linearity and accuracy of the sensor are shown in Figure 2.12. No hysteresis was detected

when the elliptical track was rotated at different speeds. A linear relationship between the voltage

output from the sensor and curvature is also observed in the right panel in Figure 2.12. The root

mean square for the error signal between the actual curvature and reference curvature is 0.0239 cm−1.

The slope of a linear fit on the curve in Figure 2.12 is 0.00056 cm−1/mV. This suggests that curva-

tures as small as 0.0012 cm−1 can be measured using a 12 bit digital-to-analog converter. In reality,

that level of accuracy cannot be achieved without reducing the noise in the sensor. During the speed

tests for dynamic loading, the maximum peak to peak value of intrinsic noise without filtering was

measured as 0.05 cm−1, which also represents the minimum detectable curvature in my current set-

tings without filtering.
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2.3 Conclusion

In this chapter, I presented a novel soft curvature sensor concept and its rigorous testing. The soft

sensor is specifically designed to be used with a soft snake for measuring curvatures, although it can

be adapted to measuring various deformations in soft bodies through minor modifications.

The proposed curvature sensor system can be built on assembly lines. Consecutive phases in man-

ufacturing, such as printing circuit traces, etching, populating components, and molding silicone

rubber can be connected by basic pick-and-place operations. I also discovered that hand calibrat-

ing each sensor using a calibration ruler is prone to human error and requires a skilled individual

for accurate calibration. For an automated calibration phase as well as repeatable dynamic testing

of curvature sensors, I described a custom test platform using continuously changing form-closed

tracks.

I demonstrated the accuracy of the sensor under dynamic loading. Results suggest that the pro-

posed sensors are accurate and reliable. They can be used to reconstruct configuration for control

applications that require accurate sensing.

The same idea behind the sensing modality can be adapted to measuring different physical quan-

tities, such as force applied on a soft structure as a function of distance. My future work considered

a tri-axis, soft-bodied force sensor. Interestingly, the potential application for the tri-axis force sen-

sor, I had in mind with my adviser when this work was published was to use them for human health

monitoring.

Instead, I have used the force sensors in robotic grasping and detecting contact state of dynamic
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hopper mechanism. Details of those works are described in the following chapters. The force ranges

in both works were quite different. Grabbing a 250 gr bottle requires measurement of forces nearly

an order of magnitude smaller when compared to detecting forces of a hopping robot weighting 250-

500 gr. Just by swapping materials, from Ecoflex 00-30 to Dragonskin 30 (manufactured by Smooth-

On), I was able to make measurements for both tasks. Moreover, it was shown that undesired effects

such as hysteresis did not affect the sensing quality.
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3
Soft-Bodied Module Control

Once the sensing problem is at a reasonable state, it is meaningful to think about prelim-

inary control algorithms on soft-bodied materials. As I have shown in my curvature sensor work, the

sensors are able to map differences in magnetic field change to curvature values and feed them into a

microcontroller at a sufficient bandwidth for control.
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Pneumatic actuation is a common choice in soft-bodied robots 87,47. Usually, a network of cav-

ities can be embedded inside soft material during manufacturing. The design space during cavity

network creation can result in unconventional motions (snake movement46, elephant trunk 26 or

octopus arm 12) that are of interest to researchers. The increase in design space comes at a cost, as

with most things in life and engineering. The compliant nature of these robots, which is one of their

most significant advantages, stymies traditional efforts to sense their state due to the infinite passive

degrees of freedom provided by flexible links. In addition, the dynamic behavior of soft actuators in-

cludes a non-linear and non-trivial time delay as pressurized air is introduced through solenoid valve

commands. Thus, new methods of on-board sensing and control need to be developed to allow soft

robots to be used in real environments to solve practical problems.

To address a lack of proprioceptive sensing in soft robotics research, my paper introduced68 a

soft bending actuator module with embedded curvature measurements as a solution to sensing and

control challenges related to soft robots. This is a significant step towards autonomous soft robots

with self-contained modules.

Figure 3.1 displays the proposed module design. Among alternatives, integrated sensing can be

achieved through Hall effect elements or resistive flex sensors embedded in the constraint layer (neu-

tral bending axis) for curvature measurement. For segment control, we previously presented an

approach that used pulse width modulation (PWM) of miniature solenoid valves to regulate pres-

sure inside chambers 81. The work in this chapter utilizes this controller with embedded sensing to

control the curvature of a soft segment.

Numerous novel motions that were previously not achievable by their rigid counterparts were
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Figure 3.1: Isometric(a),right(b)andfront(c)viewsofthesensorassemblyareshown.Itiscomposedofthreedistinct
parts:asoftbendingactuator,aconstraintlayerinthemiddleof(a)andacurvaturesensor.Picturedhereismycustom
HallEffectsensor,thoughtheflexsensorfitsintothesamelayer.Circuittracksformysensorareetchedonaflexible
sheet.Ahalleffectandmagnetpairisusedformeasurementsandtheycanbeseenin(c).

recently demonstrated using soft-bodied robot designs: serpentine locomotion65, octopus arm in-

spired soft manipulator 53,54, deformable manipulation system 51, a soft bodied legged mechanism 87,

soft robotic fish 52. We believed, in WPI Soft Robotics Lab, the field to be mature enough and it re-

quired a stronger understanding of controllers, sensors and actuators that would help soft robots

achieve an increased level of autonomy. Soft robots can have very different configurations depend-

ing on the design. Indeed one advantage of soft robots is the ability to achieve relatively complex mo-

tions such as quadruped locomotion through simple designs 80. Nevertheless, more complex tasks

or locomotion in uncontrolled, open environments would eventually need feedback controllers.

In this chapter, I focus attention on developing low-level curvature controllers and corresponding

sensor systems appropriate for the recent soft robot designs46,50.

Accurate and embedded sensing along with a controller for regulating deformation are required

for robots made out of soft bending actuators. Our snake robot65,46 is able to move without feed-
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Figure 3.2: Manufacturingstepsoftheactuatorareshowninthefigure.Thefigureshowsmolddesignsfortheactua-
tionchamberandtheconstraintlayeralongwithinformationonhowtoattachthem.TheactuatorinStepVIIIcanonly
bendinonedirection,asecondactuationchambercanbeattachedtotheoppositesideforbi-directionalactuation.

back control using a predefined gait pattern to generate a traveling curvature wave of its segments.

Nevertheless, even simple tasks, such as steering, or finding its way through constrained environ-

ments and narrow spaces, would require some sort of feedback for motion control and planning. In

a serial arrangement of bending segments, positions of points on each segment can be defined by a

single curvature value. This is due to a uniform bending moment being applied on the segment by

our fluidic soft actuators47. Thus, kinematically stitching constant-curvature arcs, the configuration

of the whole body can be obtained using curvature measurements of each segment. This particular

arrangement assumes no external forces including out of plane gravity and contact forces. When an

external force is applied the constant curvature assumption breaks.

There are a number of approaches to sensorizing soft-bodied segments 38,56,94 and they also pro-

vide ways of measuring the curvature of bending soft bodies. For example, a specific type of elas-
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tomer curvature sensor49 uses conductive liquids to address this issue. Finding appropriate channel

geometries for required curvature ranges and manufacturing difficulties are two reasons for avoid-

ing conductive liquids in my work. Creating channels inside silicone and injecting liquid material is

a challenge. Optical fiber Bragg grating is another technology used for curvature measurements99.

Authors 17 use light sensors along with mirrors and a light source to detect concavity and convexity

to measure deflections. This solution is not practical for my system. The sensors have to be embed-

ded inside silicone rubber and effect of material properties on opacity and dispersion may be un-

certain. Commercially available resistive curvature sensors were recently used to detect soft finger

curvature28. These sensors use materials that change resistance under strain to measure bending of a

substrate. Resistive sensing, while convenient, is expected to suffer from thermal and drift effects, es-

pecially under dynamic loading. To test this last point, this chapter compares my proposed approach

with a resistive curvature sensor (Spectra Symbol, Flex Sensor).

For the scope of the module control work, I specifically picked a magnetic Hall-effect sensing

modality due to its accessibility, simple manufacturing steps, accurate response, and lack of external

processing circuitry requirements. With a magnetic operational principle, this sensor is capable of

accurately measuring curvature at a high bandwidth. Moreover, I have already showed that a flexible

layer sensorized by a magnet and a Hall effect IC (AD22151 - Analog Devices) can deliver accurate

curvature measurements under repeated loadings as fast as 7 Hz.

To achieve a complete soft-robotic system in the future, this chapter details the design of a soft

module composed of a pneumatic soft actuator, a soft-bodied curvature sensor, and a control algo-

rithm designed specifically for soft segments. I propose a composite bending soft actuation module
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with embedded curvature sensing located at the neutral bending axis to show that such a module

can be controlled reliably using on-board feedback.

3.1 Composite Soft Bending Module

3.1.1 Actuation

The mechanical design of the composite module is based on an already developed soft bending actu-

ator47. The actuator design can endure pressures up to 10 psi. Settling time for maximum deforma-

tion is approximately 0.8 seconds. Compared to serpentine air channels in our earlier work64, these

improved performance values were due to the addition of external threading along with a single

chamber design.

Manufacturing steps of the soft actuator and integrated sensing elements are shown in Figure 3.2.

The actuator body is composed of three separately molded components: two semi-circular actuation

chambers and one constraint layer. Nylon sewing is tightly wrapped around the actuation chambers

and bonded using a layer of silicone. In the constraint layer, I embed electronics on a flexible PCB to

achieve a composite structure. The electronics layer is inextensible. It is created by applying a copper

foil tape (0.01 mm thick) on to a thin PET film (0.12 mm thick). The circuit traces are printed on the

copper foil using a Xerox ColorQube printer and it is etched in a Ferric Chloride tank.
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Figure 3.3: Observedmagneticfluxdensityisshownfordifferentcurvaturevalues.MagneticFluxDensitiesareob-
tainedfromfiniteelementanalysisasalook-uptable.PositioncalculationsarecodedinMatlab.Thedistancebetween
themagnetandtheHallelementis8mm.

3.1.2 Sensing

As mentioned previously, I embedded two different curvature sensors inside the constraint layers

of the self contained segments in Figure 3.2. The first is my custom design with a Hall effect sensor

and a magnet couple. The second one is the commercially available resistive flex sensor. The resistive

flex sensor is positioned in the middle of the curvature sensing segment, same as the hall effect based

design.

The operational principle of the proposed magnetic curvature sensor is based on the measure-

ment of magnetic flux density around a magnet using a Hall element, when a soft segment bends

into different curvatures. The sensor and magnet couple are displayed in Figure 3.4. The measured

voltage is then inserted into a calibration function which maps voltage measurements to curvature

values. This concept requires one-to-one mapping and monotonic increase to produce useful re-

sults. Magnet position and orientation settings, which would result in such mapping are discovered
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Figure 3.4: Anadhesivecoppersheetisplacedbetweentwoselflaminatingsheets.Thetoplaminatingsheethaslaser
cutholesforcomponentplacements.Theassemblyispassedthroughalaminationmachine.MagnetandtheHall-
effectICareshown.Redandbluecolorlabelsofthemagnetindicatenorthandsouthpolesrespectively.Theedge
lengthofthecubemagnetis0.8mmandtheoverallthicknessofthecurvaturesensingsegmentis1.5 ± 0.15mm.

through modeling the magnet using COMSOL Multiphysics and simulating the model parame-

ters in a constant-curvature bending simulation of the silicone rubber segment. To show that this

approach is suitable for actual implementation, I present the results of a simulation in Figure 3.3.

A more detailed discussion about this curvature sensing approach and experimental analysis of its

response is provided in 2.

The magnetic curvature sensors are manufactured on custom flexible circuits using a copper tape

with a printed circuit trace pattern and plastic laminate film. The copper tape is bonded onto the

laminate sheet and covered by another laminate sheet layer to increase the strength of the traces

for protection. Openings for circuit components are laser-cut on the top laminate sheet to allow

for a proper fit. Figure 3.4 shows the detailed view of the flexible sensor. Once the flexible circuit

board is completed, circuit components are populated using manual pick-and-place, which takes

approximately 30 min.
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For calibration, I use infrared reflective markers for tracking four points on the segment by a mo-

tion capture system, to monitor the angle of both ends of the segment. Experimental setup for the

segment with markers is shown in Figure 3.6. Assuming a constant curvature along the arc-length of

the segment (due to uniform moment loading), obtaining the curvature of the segment from these

four points is a simple geometric operation. The voltage data and reference curvatures are matched

in Matlab with a fourth-order calibration polynomial, which can be seen in Figure 3.5.

The flex sensor changes resistance as a function of curvature, which can be measured using a sim-

ple voltage divider given by:

Vo =
R+ CΔκ

R+ Re + CΔκVin, (3.1)

where R is the internal resistance and it is treated as an unknown. Re is the known external resis-

tance of the voltage divider. C is a constant parameter, which relates curvature to resistance change.

Cwas calculated using calibration data and a least-squares fit in a similar way to the magnetic curva-

ture sensor.

The resistive flex sensor output is measured by a simple voltage divider, so a linear model was

found to be an accurate calibration function. On the other hand, the Hall-effect response was more

non-linear than I expected. Therefore, I use a higher order polynomial. The non-linearity in the

magnetic sensor response can be reduced through design optimization by varying magnet position

and orientation, and a more repeatable manufacturing method. During the experiments, calibration

coefficients of each sensor was slightly different due to differences resulting from manual manu-

42



Figure 3.5: Ninedifferentdatapointsarematchedbetweencurvaturesfromvisualtrackingandanalogvoltagemea-
surements.Blackcirclesrepresentthesepoints.Eventually,theyareusedtofitafourthordercalibrationpolynomial.

facturing. It would be possible to use the same calibration polynomial for all sensors with an auto-

mated manufacturing process.

3.1.3 Control

I use a constant pressure source in my setup along with high-speed, on-off solenoid valves. Our

previous work in SRL demonstrated that average pressure inside soft actuation chambers can be

regulated through PWM using valves 81. The segment is driven by two actuation chambers. Incom-

ing pressure, which is not measured in real time for the purpose of feedback control, to the cham-

bers is regulated using the PWM duty cycles of the solenoid valves at a frequency of 40 Hz. Thus,

this is a system with two inputs (the PWM duty cycles on the valve of each actuator) and a single
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Figure 3.6: Thevisualmarkersforfourpointsareshownintheleftfigure.Anglesoftwolinessegmentsarecalculated
fromthem.Theseanglescanbeusedalongwiththearclengthforcomputingcurvatureofthesegmentundercircular
deformations.ThisistheapproachIimplementforcalibratingthehalleffectsensorthroughvisuallytrackedpoints.
Thedistancebetweenthetopandbottomlinesare3.5cm.Thearclengthdoesnotchangewhenthesegmentisactu-
atedbecausethesensorlayeractsasaninextensibleconstraintlayerinthemiddle.Whenactuatedwithfulldutycycle
under8.0psi,thesegmentcanbendupto0.15[1/cm].
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output (the curvature of the segment). For simplicity, we developed a scheme where only a single

actuator was being driven at a time to reach a desired curvature value. Using this simplification, the

two-actuator system could be reduced to a single control input, which was translated to actuation of

Actuator A when positive, and Actuator B when negative.

To control the curvature of the bending actuator, we adapted an iterative sliding mode con-

troller 81, the final control law of which is given as:

u(t) = u(t− Δt) + K(ėx +Dxex), (3.2)

where u(t) is the control input, u(t − Δt) is the control input from the previous time step, ex =

κdesired − κmeasured is the curvature error, ėx is the derivative of the error, andK andDx are control

weights. u(t) is given to the system as the PWM duty cycle and it is saturated between 0.0 − 1.0.

3.2 Experimental Results

To characterize the sensors, I perform step loading experiments showing the behavior of each sensor

when actuated to a constant curvature before returning to its original straight configuration. The

results of these experiments can be seen in Figure 3.7 for the resistive flex sensor and Figure 3.8 for

the magnetic curvature sensor.

The resistive flex sensor in Figure 3.7 seems indifferent to small changes once the actuator is pres-

surized up to 8 psi (after around 4 seconds). This is the first limitation of using a resistive sensor.

Another interesting part of these experiments was when the actuator was depressurized and the seg-
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Figure 3.7: Asegmentwiththeresistiveflexsensorisactivatedforfivesecondsunder8psi.Meanvalueofvisu-
allytrackedcurvatureis0.1545cm−1,whenthesegmentisactivated.Meanvalueofmeasuredcurvaturebetween
2.5 − 7.5secondsis0.164cm±0.008cm−1.Alargeovershootofapproximately%75isobservedasthepressureis
released.

Figure 3.8: Inthisfigure,thesegmentwiththecustommagneticcurvaturesensorisactivatedforfivesecondsun-
der8psi.Noovershootisobservedonthewayback.Meanvalueofvisuallytrackedcurvaturewhenactivatedis
0.1247cm−1.Ontheotherhandmeanvalueofcurvaturemeasurementfromthemagneticcurvaturesensoris0.1308
±0.015cm−1.Noovershootisobserved.
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Figure 3.9: Twostepwaveswithmagnitudes0.04cm−1 and0.15cm−1 aretrackedusingtheflexsensor(a)and
0.04cm−1 and0.1cm−1 withthehalleffectsensor(b).Adampedcontrollerwithsamecontrolgainsisimplemented
forbothsensors:Kp = 0.25andKd = 60.Maximumpressureis8psiforbothoftheexperimentsandaverage
pressureisregulatedthroughPWM.FeedbackcontrollerisimplementedontopofPWM.Differencesbetweenvi-
suallytrackedcurvatureandmeasuredcurvatureforhighamplitudestepwavewere0.008cm−1 forflexsensorand
0.0014cm−1 fortheHallEffectsensor.Themeasured5%settlingtimeforthelargestepsignaltrackingwiththeHall
effectsensoris1sec.
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Table 3.1: Comparisonofsensorsfrommaximumpressureactivation

Flex Sensor Magnetic Sensor
Sensor overshoot 75% 0.0%
Steady state measurement error [1/cm] 0.01 0.005
Peak-to-peak noise magnitude [1/cm] 0.008 0.015

ment returned to its original state. When this occurred, the Hall effect sensor followed accurately,

though still exhibiting noise. The resistive flex sensor, on the other hand, significantly overshot to

a negative value of curvature nearly equal in magnitude to the pressurized curvature, before slowly

settling back towards 0 to match the actual segment behavior. From Fig. 3.7, it can be observed the

flex sensor still doesn’t return to reading the correct value even 2.5 seconds after the segment reached

0 curvature. In fact, it takes 10 seconds from depressurization for the flex sensor to reach 5% of the

actual value, indicating significant limitations in the accuracy of resistive measurements under dy-

namic conditions.

Next, to investigate the effect of using both sensors on feedback control, I perform closed-loop

control with the system using step reference curvatures for both the resistive flex sensor and the

magnetic curvature sensor, while simultaneously recording ground-truth curvature values using

external motion tracking to evaluate the accuracy of the two curvature sensing modalities. Results

can be seen in Figures 3.9-a and 3.9-b for the flex sensor and magnetic curvature sensor, respectively.

These results show that the control scheme is functional as it supplies the necessary control in-

puts for both segments to reach the desired curvatures based on their on-board curvature sensor

measurements. The Hall effect sensor has noisy data, but it brings the segment to the correct cur-
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Figure 3.10: Overshootintheresponseoftheflexsensorisshowedduringactivecontrol.Thecontrollerdrivesthesys-
temtozerocurvaturebasedonreferencesignalafter6.5seconds.Nevertheless,theactualcurvatureofthesegment,
whichismeasuredbythevisualtracking,floatsaround0.02[1/cm]forasignificantperiodoftime.

vature. The flex sensor, on the other hand, returns clean but somewhat inaccurate data; its final

curvature being at a small offset from the desired value by around 0.008 cm−1. This offset is in dif-

ferent directions for the trials shown, indicating its complexity as well as highlighting the difficulty

of compensating for this sensor behavior. The analysis of the sensor responses is given in Table 3.1.

Figure 3.10 shows the inconsistency between the visually tracked curvature and the sensed curva-

ture through the flex sensor once the system is referenced to go to zero curvature. In addition, the

active control test showed that the overshoot in the resistive flex response caused the segment to stop

short of the actual 0 curvature point by a significant margin, though less than the negative spike

from the open-loop experiment in Figure 3.7.
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3.3 Conclusion and Discussion

This chapter introduces the design, fabrication, and experimental evaluation of a new composite soft

bending actuation segment with embedded curvature sensing to enable proprioception and closed-

loop control in soft robotics. I fabricate two different versions of the segment: one with a commer-

cially available resistive flex sensor and the other with a magnetic curvature sensor of my own design,

and used a motion capture system to calibrate and verify the validity of these two sensors. In addi-

tion, I use an iterative sliding mode controller to drive the segment through step reference functions

to demonstrate the performance of the proposed composite sensing and actuation segments as well

as compare the usability of the two sensors.

I find that the segment is capable of reaching specified curvatures with speed and precision using

the controller for both sensors. Moreover, it is observed that my magnetic sensor returned noisy

but accurate data, while the resistive flex sensor had an offset at steady state. When returning to the

neutral position, the resistive flex sensor exhibits a large overshoot in the negative direction before

slowly returning to the actual curvature. I perform additional experiments on this and I show that

this phenomenon caused feedback control of the segment to significantly undershoot when return-

ing to the zero curvature position. This demonstrates that the magnetic curvature sensor represents

an improvement for use in soft robot closed-loop control, perhaps using an appropriate low-pass

filter to reduce noise will be useful in future implementations.

Even though the measurement scheme with the constant curvature assumption is useful for pla-

nar movements under no external forces, effect of gravity would significantly complicate the sensing
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and the control system. If an external force was applied to the segment in the plane of actuation, the

segment would no longer have a constant curvature. Thus, a single curvature sensor measuring a sin-

gle degree of freedom would be unable to accurately describe the kinematic state of the segment. A

flexible array of sensors inside the segment would be needed to reconstruct this complex shape. Sim-

ilarly, to extend the sensing approach to 3-D bending measurements, a potential solution is to use

3-D magnetometers to detect the full magnetic field vector, and hence 3-D bending and potentially

other deformations.

On the practical side, I experienced cracking of circuit traces when the sensor circuitry was exces-

sively bent. This problem was observed when the flexible circuit board substrate was 0.1 mm-thick

FR4. To overcome this issue, I use copper foils laminated to plastic sheets. The change in structural

material of the circuit resulted in circuits that were more durable under repeated bending.

I also had a number of problems with the segments, particularly with regards to pressure leakages.

The problem areas were the interfaces between the pressure chambers and the pressure lines as well

as the seal between the pressure chamber and the inextensible constraint layer. A redesigned system

for improved reliability, will allow to perform more detailed experiments as well as use them more

effectively in soft robots.

This point in my progress as a researcher also marks the shift from soft bending modules and

robots that utilizes them to my interest in combining soft and compliant technologies with legged

locomotion. Even though my work on both curvature sensors and their control was used by Luo46,

I did not have a deep understanding of material science to improve the condition of actuation. For

example, the snake robot utilized passive wheels for locomotion. This was convenient for prelimi-
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nary results but it limited the robot to planar surfaces only, reducing its autonomy significantly. A

skin-like material that would replicate the ideal friction behaviour of the wheels (high friction in the

direction perpendicular to segment neutral axis and low friction in the axis parallel to neutral axis)

is currently unknown outside of biological lifeforms such as snakes. Moreover I was skeptical of the

utility of soft actuators inspired by nature and preceding robotic arms. Also, I was thinking, that

developing control structures mimicking the previous rigid bodied robots could be seen as preparing

for the previous war: as in new control structures for new type of soft robots could be fundamen-

tally different from what we had imagined before, therefore rendering our over-engineered control

efforts fruitless.

Because of these risks I shifted my attention to a topic I already had both theoretical and practical

knowledge: dextrous legged locomotion. I knew that the approach utilizing zero moment point and

exact control of center of mass trajectories in robot locomotion gave interesting results but I was also

aware of more dynamic mechanisms that utilized mechanism compliance to achieve what was once

believed to be complex motions with simple algorithms. I shifted my research focus to integrating

my knowledge in soft robotics to creating compliant structures for more efficient legged locomotion.

Before going into the details and results of that work, next chapter goes over the details of a soft-

bodied force sensor. The work on force sensor is one of the connection points between soft robotics

and designing compliant mechanisms to achieve more dexterous robot motions.
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4
Soft-Bodied Force Sensors

The robots and mechanisms discussed so far existed without a well defined application

space. This chapter introduces the soft-bodied sensing technology to a core problem in robotics:

contacts. By a contact I mean any rigid bodied collision event. They are both hard to model mathe-

matically and equally hard to detect and handle via real time controllers. From my work on magnetic
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curvature sensor, I already knew the sensing bandwidth was high enough for preliminary control

tasks and I hoped that if one could find a mapping between magnetic field measurement and curva-

ture values, it would also be possible to find a similar well-behaved function for mapping magnetic

field measurements to forces. So the force sensor in this chapter is created due to the need for them

in robotics and my realization that soft-bodied sensing was a good candidate for the task.

Direct force and tactile sensing remains an open technical problem in robotics 14,59,101. To address

this problem, new sensing mechanisms and modeling approaches need to be developed to achieve

compliant, safe, and aware interactions between robots, human users, and the environment. I ob-

serve three fundamental challenges that impede progress 13. First, it is difficult to obtain a reliable

sensing modality between external forces and a measurable change in a physical medium, without

detrimental nonlinearities or other artifacts such as hysteresis or time delay. Second, modeling to

obtain a reliable map between the external force and the measured physical change is challenging,

especially for multi-dimensional measurements. Finally, scalability tends to be a challenge, to ob-

tain useful spatial resolution over a surface, while avoiding crosstalk between sensing elements. This

chapter addresses each challenge by presenting a magnetic sensing modality and neural network

based modeling of a small tri-axial soft sensing element.

In terms of sensing medium, tactile sensing literature may be classified into: 1) stimuli responsive

and/or composite materials that mainly employ resistive or capacitive measurements, and 2) using

embedded discrete electronic components or other physical quantities such as optical or magnetic

signals within the sensor body. Resistive sensing has been a popular method, although it may suffer

from dynamic artifacts 32,61,34,82. Wood et al.95 uses a conductive fluid (eGaIn) placed in channels cre-
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Figure 4.1:1)Designoftheproposedtri-axialsoftforcesensorutilizesaminiaturemagnet(A),HallEffectIC
(B),andacircuitlayeronanacrylicsheet(C),embeddedinapyramidshapedsiliconerubbersubstrate.2)
Thesensorprototypeis8mmtallwithan12mmwidesquarebase.

ated on a soft matrix to measure applied forces. These are multi-axis force sensors and can measure

forces in normal and shear directions. But fabrication using eGaIn involves a number of challenges 33.

Alternatively, pressure (or force) can be measured in the normal direction by the change in capac-

itance between two PDMS layers filled with carbon nanotubes43. A similar measurement idea is

realized via conductive textiles93. Authors98 present pressure and position sensors made of conduc-

tive elastomers co-printed into a soft actuator in a single process without assembly. These sensors

are capable of providing feedback because of their innovative design and the piezoresistive effect of

conductive elastomers. The micro, tri-axial force sensor71 is an example where sensing medium is

reflective measurements obtained from optical fibres.

In another work 86, a commercially available barometric IC is embedded in a soft elastomer, to

perform as a 1-D tactile sensor to measure normal forces. Yi et al.99 presents a tactile sensor using

optical fiber Bragg grating based on phase modulation of the optical source to determine the forces

applied on the sensor. Sohgawa et al. 82 proposes a resistive tactile sensor using piezo-resistive can-

tilevers embedded in a soft matrix. It is important to note that these existing solutions suffer from
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various inherent challenges such as a lack of 3-D force sensing capability, relatively complex fabrica-

tion and signal processing circuitry, or hysteresis and time delay.

Regardless of the sensing medium, modeling and obtaining a reliable mapping between the force

and the measured physical change is crucial and challenging, especially for multi-axis force sensing.

Youssefian et al. 102 employs multiphysical finite element analysis (FEA) to describe the behavior of

a dome-shaped magnetic tactile sensor. Using FEA models are useful but in a multiphysics environ-

ment small errors and initial settings reflect heavily during the actual experimental testing of the

sensors and since elastomers (e.g. Ecoflex 0030) are known to be highly nonlinear, FEA modeling is

not straightforward. In addition, such models are usually not applicable for real-time computation.

Authors94 approximate the sensor’s resistance change response as linear and create a calibration

matrix using least mean squares method. A similar approach was taken by Cho et al. 10, where a lin-

ear regression model was employed to find the relationship between force applied and the corre-

sponding change in voltage. The linearity approximation makes these models simple enough to

calculate the force mapping in real-time, but they are highly simplistic and thus, prone to errors. Re-

sponse reliability is also important. Lipomi et al.43, mentions carbon nanotubes not being aligned

after repetitive loading. The resulting hysteresis can be reduced by depositing carbon nanotubes

at a pre-stretched state, which may increase complexity and repeatability issues. These limitations

motivated us to consider approaches that use machine learning as a method for estimating the com-

plex relationship between the applied force and the measured change in the magnetic field vector in

the proposed sensor to offer both accurate modeling and real-time computation for the nonlinear

sensory mapping.
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Figure 4.2:Manufacturingprocessoftheproposedtri-axialsoftforcesensor

Using an embedded miniature magnet and flexible electronics in a soft substrate, I have previ-

ously shown that sensing local changes in magnetic field is suitable for accurate and high-speed mea-

surements on the curvature of a flexible bending body68. In previous research, my objective was to

obtain curvature measurement from soft silicone rubber segments for a specific type of bending soft

actuator utilized in a snake robot46. This article employs similar design principles to force/contact

measurements on a soft deformable substrate and in a small form factor.

Hall effect based sensors have gained prominence recently 101,39,30,88,90,89. Tomo et al. 88 presents a

soft sensor which utilizes a magnet for detecting forces in multiple axes. 16 Hall-effect ICs are used

in total for one sensor module, hence adding to the complexity of the design. Valdastri et al. also has

shown similar succesful results in 3D force sensing via MEMS92,4. In this work, I present accurate

force measurement results using a single IC with a magnet on top. The sensors also do not need any
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explicit noise filter thus enabling them to retain a faster response.

The sensor design utilizes a 3-axis Hall effect sensor IC and a small magnet placed over it at a de-

fined location, embedded inside a soft elastomer substrate. This gives the composite mechatronic

structure the compliance required for force sensing. A 3-D model is shown in Figure 4.1. Any force

applied on the soft matrix produces a deformation on it, which changes the position of the embed-

ded magnet and this in turn causes changes in the magnetic flux values around the Hall element.

This measured change has a non-trivial relation to the force applied on the sensor module. A limi-

tation of magnetic force sensing is shielding the sensing volume from external magnetic and ferro-

magnetic influences. The proposed sensor design needs to be mechanically shielded for real world

implementation. For example: proper shielding would be needed if sensor is utilized for picking up

ferromagnetic objects.

I introduce two main novel contributions with this chapter. With the help of a master student,

who was quite interested in finding a way to implement machine learning inside novel robot hard-

ware design, we used a neural network to calibrate the force sensor in 3-D and demonstrate its gen-

eralization ability to other materials and loading conditions. We showed that the network is able to

learn to respond to a large range of force directions whereas only small number of training forces

are applied at pre-determined directions. We also showed that the same network can be used with

sensor prototypes that were not in the training set. This means that the network is able to overcome

minor manufacturing differences and it can be used to scale up the sensing resolution without scal-

ing up the calibration efforts. Recently the usage of machine learning has seen great interest for cap-

turing complex relationships between the input space (forces) and the output space (the sensor mea-
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surement) 23. Fully connected neural networks (FCNs) are explored for characterization 88. However,

the results show that the network is not able to generalize beyond the training conditions. Here, we

present FCNs based on the Net2Net initialization technique9, which provides better regularization

of the network. We show that the network is able to generalize very well in Section 4.2.

The second novelty is the pyramid shape. One of the main factors that affect the dependability

of a tactile magnetic sensing element is its shape41. The shape of the contact surface that tapers to a

point helps in restricting and channeling the movement of the magnet inside the soft matrix. There

are other shapes used for designing force sensors as well, we see a dome-shaped magnetic soft sensor

with the magnet immediately below the dome which helps in obtaining a highly accurate model of

the sensor 101. In another work, the shape of the soft matrix is a cuboid and the magnet is placed over

the Hall element 88. A considerable problem with these designs is that the applied force may cause

rotation of the magnet about its own axis in unmodeled ways, thus requiring additional calibration

data and also reducing measurement dependability. In this work, I utilized the shape of a pyramid

with the magnet embedded within the pyramid (as close to the centroid as practically possible). The

advantage of this shape is that off-center forces acting on the sensor would tend to act about the

centroid of the sensor and thus the tendency of rotation of the magnet about its own axis is reduced,

greatly improving reliability.

This chapter is organized as follows: In Section 4.1 I discuss the design and manufacturing meth-

ods for the proposed soft 3-D force sensor. I include detailed information on electronics and fabrica-

tion process. In Section 4.2 I discuss in detail how data is collected for characterization and how it is

used to map the function space of the sensor by a Neural Network. In Section 4.3, I discuss the re-
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Figure 4.3:ForceversuscompressiondataisobtainedfromthreesensorsandcomparedtoasolidEcoflex
0030segment,indicatingminimaleffectonthematerialcompliancebytheembeddedmagnetandelectron-
ics.

sults for the dynamic response tests on the sensor and also present a use case application of the force

sensor by performing force control on the fingers of a Jaco arm. Finally, I conclude the chapter and

discusses future plans in Section 4.4.

4.1 Sensor Design and Fabrication

The proposed 3-D force sensor utilizes tri-axial measurement of the magnetic field vector created by

a miniature permanent magnet embedded in a pyramid shaped silicone rubber body as shown in

Fig. 4.1. Magnetic fields are measured locally using a Hall element on an embedded custom circuit

board. The magnet is displaced under external forces, which creates a corresponding change in the

3-D magnetic field measurement. The sensor has a pyramidal shape, which ensures that the sensor

contacts the environment mostly with its tip. In addition, the magnet is embedded deep within the
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pyramidal shape. This location is chosen to limit the motion of the magnet under off-center forces

(to ensure that the magnet translates with minimal rotation).

The sensor is fabricated using a multi-stage composite molding process as shown in Fig. 4.2. For

embedded electronics, a custom printed circuit board (PCB) was printed and etched. Standard cir-

cuit components and the Hall Effect IC (Melexis MLX90363) were soldered manually. The circuit

communicates with a master device using the Serial Peripheral Interface (SPI) protocol. Once pro-

grammed, the circuit sends 8-byte messages of magnetic flux measurements in three axes with 14-bit

resolution in each axis. An Arduino control board as the master data acquisition device was used

and the information was sent to Matlab where data processing is performed.

The first step of the fabrication process is bonding the custom PCB to an acrylic plate which

has been cut into the shape of the PCB but with extensions on two sides. These extensions help

maintain the orientation of the PCB during molding, after which they can be snapped off. The

remaining acrylic provides a rigid base to the PCB. This custom acrylic PCB is assembled with two

3-D printed molds, which also includes an extruded negative of the magnet shape to create a cavity

for the magnet. As silicone rubber (Smooth-On Ecoflex 0030) is cured in this mold assembly, the

sensor is demolded, the magnet is placed in its place, and a layer of silicone rubber is injected in the

cavity above the magnet to seal it completely within the sensor body.

A major concern in soft sensing is to ensure that the additional embedded components do not

drastically modify the mechanical response of the soft body. To validate this property for the sen-

sor design (comprising an acrylic plate, a miniature magnet, electronic components and silicone

rubber substrate), a compressive testing of three prototypes was performed. The mechanical force-
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Figure 4.4:ExperimentalsetupforstaticloadingshownasaCADmodel(A)andtherealsystemduringoper-
ation(B).Theforcesensorplacedbelowtheloadcell.Thebottomstagecanberotatedtoadesiredangleto
createshearforcesatadefinedangle.Loadgenerationonthesensorisachievedthroughloweringtheload
cellonthesensorbythemotionstage.Thus,eventhoughtheloadcellmeasuressingleaxisforcedata,itis
decoupledintonormalandshearcomponentsusingtheanglesetatthebottomstage.

displacement response of these complete prototypes to the material response of solid silicone rubber

(Ecoflex 0030) was compared with the same geometry but without the embedded components. The

results in Fig. 4.3 show that material properties are similar between different batches of the sensor. A

significant change in material response due to the composite structure was not observed.

4.2 Learning Sensor Model using a Neural Network

A multi-layer perceptron (MLP) also known as fully-connected neural (FCN) network was used to

learn the function space for sensor characterization. This function space is high-dimensional and

nonlinear. For instance, the soft material deformation can be described using a hyper-elastic material

model such as Mooney-Rivlin or Ogden, which requires multiple experimentally characterized pa-

rameters. In addition, since the relation between the magnet pose and magnetic flux is a nonlinear

transformation, an analytical physics based model is intractable and a multi-physical finite element
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model may prove computationally expensive to operate in real-time. Thus, this work considers the

use of MLPs to represent the sensor response under force loading.

Let fW(Xi) be the function that maps Hall Effect voltages to 3-D forces. The input space is the

Hall Effect voltages measured by the sensor, where X⃗i = [Vx,Vy,Vz]′ ∈ R3×1 and the force vector

corresponding to these magnetic flux values is defined as y⃗i = [Fx, Fy, Fz]′ ∈ R3×1. The goal of the

network is to learn a set of weightsW for fW in the generic expression: yi = fW(Xi).

4.2.1 Data Acquisition

The training data was obtained by applying known forces on the proposed soft force sensor proto-

types and then measuring the corresponding Hall Effect voltage readings. The applied forces were

measured using a load cell (TAL220) and corresponding amplifier circuit (Sparkfun HX711). This

setup measures loads up to 10 N with errors up to 5 mN. The load cell on a tri-axis Cartesian stage

(Newport 9064-XYZ-PPP) was mounted as shown in Figure 4.4. An articulating base was designed

and used to mount the sensor at desired angles with respect to the load cell, thus the force vector is

decomposed into normal and shear components at known combinations. The load cell, the tri-axis

stage, and the articulating base were made up of materials which do not interfere with the magnetic

flux measured by the sensor.

Experimental data was collected from four different sensor prototypes. The data from three sen-

sors were used to train the neural network and the fourth sensor was used for validating the network.

Four different loading configurations were considered. These include pure normal force loading (at

0◦), and shear loading at angles of 30◦, 45◦, and 60◦ with respect to the sensor normal. For pure nor-
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mal loading, the sensor was subjected to a maximum of 1.1 N, and for shear loading the maximum

load applied was 1.5 N. These limits were chosen based on the saturation range of the Hall element

and the amplifier circuit and correspond to tactile contact-level forces. Data for forces at 45◦ shear

loading was retained only for the validation dataset and was not part of the training data. This was

to see how well the trained mapping function is generalized to forces at different loading conditions.

Table 4.1:MSELossintrainingduringwideningoperationonPyramidalSensor

Number of Neurons in
First Hidden Layer 2 4 8 16 18

MSE Loss (N2) 0.0678 0.0325 0.0084 0.0045 0.0041

Table 4.2:MSELossintrainingduringdeepeningoperationonPyramidalSensor

Number of
Hidden Layers 1 2 3 4 5

MSE Loss (N2) 0.0041 0.0023 7.07x10−4 2.45x10−4 1.16x10−4

Table 4.3:ResultsontheTestDatasetduringwideningoperationonPyramidalSensor

Number of Neurons in
First Hidden Layer 2 4 8 16 18

MAE (N) 0.23 0.13 0.092 0.053 0.052

Mean Error (N) -
0.0016

-
0.0026

-
0.0037

-
0.0048 0.0039

σ(N) 0.2606 0.179 0.0917 0.0664 0.0632
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Table 4.4:ResultsontheTestDatasetduringdeepeningoperationonPyramidalSensor

Number of Hidden
Layers 1 2 3 4 5

MAE (N) 0.052 0.0258 0.015 0.007 0.0056
Mean Error (N) 0.0039 0.0028 0.0033 0.00094 0.00025

σ(N) 0.0632 0.0464 0.0262 0.0112 0.0092

4.2.2 Learning Approach

The technique used for learning the unknown mapping function was based on the Net2Net initial-

ization technique9, which performs learning in a sequential manner starting with small MLPs and

then scaling the neural network up to a larger size in width and depth by using the previous smaller

network as a teacher to the new larger student network. This approach avoids the usage of a very

large initial network and then re-learning the entire network from scratch if the performance is not

suitable. In addition, it was expected this approach would help avoid overfitting and provide map-

ping functions that generalized well to different loading conditions and sensor prototypes. The scal-

ing of the network is performed by initialising the student network with the weights of the teacher

network and then widening or deepening it. Widening involves adding additional neurons to a layer.

Deepening involves adding a new hidden layer to the network. The advantage of the method is that

it ensures that the student network improves upon the teacher network.
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4.2.3 Metrics for Evaluation

The neural network performance was measured using mean absolute error (MAE) and standard

deviation (σ). Specifically, as each sensor data (Xi) is passed through the network, a prediction (pi) is

obtained and the error (ei) is defined as the difference between this prediction and the actual force

(yi). ei = pi − yi where, pi = fW(Xi). MAE and σ are calculated in standard form:

MAE =

∑N
i=1 ei
N , (4.1)

σ =

√∑N
i=1 e2i
N . (4.2)

4.2.4 Training, Testing, and Validation

The total data points were split into training and testing datasets following the 80-20 convention.

Data points obtained from the fourth sensor prototype and for 45o loading were excluded from this

dataset.

The technique used for training all the Net2Net networks utilized the following hyper parame-

ters. All the models were trained with Adam as the optimizer and mean-squared-error (MSE) was

used as the cost metric to train the network since this is a regression problem. The learning rate was

scheduled with initial value being the default 1e−3 (for Adam optimizer). A reduction in learning

rate by a factor of 10 was effected whenever the loss failed to reduce in 3 consecutive epochs. When
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the “Learning Rate Scheduler” function is evoked, the best weights (in terms of least loss) obtained

until the function call are loaded and training is continued from there. Training was performed for

550 Epochs for each teacher network. Scaling of the network was done by widening the network first

and then deepening it. Widening operation was done to a maximum of 18 neurons and then deepen-

ing operations were performed up to 5 hidden layers. The final network used for learning the sensor

model contains 5-hidden layers with 18 neurons at each layer. The network implemented models

using the software package Keras 11.

4.2.5 Training Results

The MSE obtained during training is shown in Table 4.1 (for widening operation) and Table 4.2

(for deepening operation). Data from Table 4.1 indicate that the training loss converges and does

not improve from 16 neurons to 18 neurons during the widening operation. This is the primary

reason why the widening operations were not pursued after 18 neurons. As hidden layers are added,

the training loss is almost halved for every added layer. The reduction shows that the network is

learning the function space effectively based on the training data. After adding the 5th hidden layer

it was concluded that further increase in depth will be prone to overfitting. However, this does not

provide any insight into the capability of the network to generalize for different loading conditions

and sensor prototypes. Section 4.3.1 will demonstrate the response of the neural network for loading

conditions and sensor prototypes that were not included in the training set.
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4.2.6 Testing Results

Table 4.3 shows the results obtained on the test dataset during widening operations. As the neurons

in the first layer were scaled, it was observed that the Mean Absolute Error (MAE) and the Standard

Deviation (σ) were reduced. This decrease was very rapid initially and then slowly converged to

steady state at a layer width of 18 neurons. Comparing the MAE results from the 16 Neuron and

18 Neuron architectures, we see that there was negligible difference between them. This pattern was

also seen in the training data and this trend showed that further increase in the number of neurons

would not provide better results. Hence widening operation was stopped at 18 Neurons and we

move to performing deepening operations with 18 Neurons in each hidden unit.

Table 4.4 shows the results when deepening operation is performed while keeping the number

of neurons in each layer constant at 18 Neurons. It was seen that MAE and σ are halved everytime

a new hidden layer is added. Increase operation was stopped at 5 hidden layers as adding more lay-

ers would affect the time taken for prediction during test time. At the 5th layer, a MAE of 5.6 mN

and a σ of 9.2 mN was observed which demonstrated strong prediction capability of the proposed

network after both widening and deepening operations of Net2Net learning.

4.3 Experimental Results

To validate the accuracy and utility of the proposed 3-D soft force sensor and neural network based

modeling approach, three sets of experiments were performed. First, known static and dynamic

forces were applied on the sensors and compared the outputs from the neural network with the
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Figure 4.5:ValidationDatasetErrorAnalysis

applied forces in a validation dataset. Next, a proof of concept force controlled pick and place ex-

periment was performed using the proposed soft triaxial force sensor mounted on the gripper of a

commercial robotic manipulator to demonstrate a usage scenario where this common manipulation

task greatly benefits from real-time 3-D force measurements.

4.3.1 Static Validation Results

As previously discussed, the data obtained from the fourth sensor was not included in the training

set and it was reserved for validation. The final neural network with 5 hidden layers was used to

predict the forces for this sensor, and 1000 randomly sampled error points are shown in Figure 4.5.

Figure 4.6 displays the actual forces (on the horizontal axis of these curves) that were applied on

the sensor for pure normal loading, and shear (plus normal) loading at 30◦, 45◦, and 60◦, all about

the XZ plane and with the corresponding forces measured by the sensor using the neural network

model (shown on the vertical axis). Only the relevant forces which were subject to change are plot-
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Figure 4.6:ForcesmeasuredfromloadcellareplottedonX-axiswhereasforcesmeasuredfromthesoftforce
sensorareplottedonY-axis.Thecirclesrepresentthemeanmeasurementvalueandastandarddeviation
foreachpointisalsoprovided.ThetoprowpresentstheNormalForcescase.Thesecond,third,andfourth
rowsrepresent30,45and60degreecases,respectively.SincetheshearforceswereappliedintheXZplane,
forcesalongY-axisandinNormalForcecasecanbeomitted,whichremainclosetozero.
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Figure 4.7:PyramidalsensorwithDragonskin30asthesoftsubstrate.Thecomparisonoflinearregression
(dashedmagentalineswithcirclemarkers)andtrainedneuralnetworkforces(dash-dotblacklineswith
squaremarkers)areoverlaid.ForcesmeasuredfromloadcellareplottedontheX-axiswhereasforcesmea-
suredfromthesoftforcesensorareplottedontheY-axis.Thetoprowpresentspurenormalloading.The
second,third,andfourthrowsrepresent30,45,and60degreeloadingcases,respectively.Sincetheshear
forceswereappliedintheXZplane,weomitforcesalongY-axisandinNormalForcecaseweomitforces
alongbothXandYaxes.
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Figure 4.8:RectangularsensorwithEcoflex0030asthesoftsubstrate.Thecomparisonoflinearregression
(dashedmagentalineswithcirclemarkers)andtrainedneuralnetworkforces(dash-dotblacklineswith
squaremarkers)areoverlaid.ForcesmeasuredfromloadcellareplottedontheX-axiswhereasforcesmea-
suredfromthesoftforcesensorareplottedontheY-axis.Thetoprowpresentspurenormalloading.The
second,third,andfourthrowsrepresent30,45,and60degreeloadingcases,respectively.Sincetheshear
forceswereappliedintheXZplane,weomitforcesalongY-axisandinNormalForcecaseweomitforces
alongbothXandYaxes.

72



ted in the figure (i.e. the shear measurements in Y-axis remain at zero and are not shown). We see

that the actual to measured force curve closely follows the expected diagonal line with a slope of 1,

thus showing that the applied forces are measured accurately by the sensor using the proposed neu-

ral network model. We also see that the deviation of the measurements from actual forces is minimal

at low forces and more pronounced at higher loads. This could be due to the Hall element approach-

ing the saturation limit and reducing its linearity between voltage to magnetic field values. A MAE

of 11.7 mN was obtained on the magnitude of the forces on this dataset. Also, the FCN network is

able to accurately measure the forces for shear loading at 45◦, (a loading condition for which it was

not trained and on a sensor prototype which was not included in training). From these experiments,

it can be concluded that the network is able to generalize very well on new sensors and loading con-

ditions. The time required for predicting forces during validation for each input vector (three Hall

voltages) to the neural network was 0.34 msec and thus the FCN does not introduce time delay into

the sensing system during real-time operation. One point we did not test was sensor response to

coupled forces coming from edges of the pyramidal shape. Although the results obtained suggest

that those cases can be learned as well, force measurements not acting along cardinal planes would be

needed to verify the claim.

It is true that complex modeling schemes are usually undesirable and thus, there is a need to jus-

tify the choice of using a neural network model to calculate the 3-D forces from Hall voltage signals.

To show neural network modeling is useful for soft force sensors with complex shapes and hyper

elastic materials, sensor measurements from the neural network were compared with a simpler cal-

ibration approach, linear regression. The results are shown in Figure 4.7. Sensed forces from the
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Figure 4.9:Dynamictestingresultsindicatethatappliedandmeasuredforcesfollowa1-1diagonal(left).
Hysteresisofloadingandunloadingfortheappliedandmeasuredforce-displacementdataareinagreement
(middle).Thetrackingofappliedandmeasuredforcesduringdynamicloadingoverlapintimeaxis(7seconds
shownfromthe150-secondexperiment)(right).

FCN outperformed linear regression results in all cases. An MAE of 1.23 N was observed on the vali-

dation data when trained with linear regression. The MAE from the the neural network on the same

dataset was 0.3014 N. In the 45◦ case, which was not included in the training set for either approach,

linear regression significantly underperformed as well.

The sensor data shown in Figure 4.7 was obtained from a sensor made with Smooth-On Drag-

onskin 30 as opposed to Ecoflex 0030. Since Dragonskin 30 is a stiffer material, a corresponding

increase in the measured force range is observed. The results indicate that the same neural network

calibration approach adjusts well to different material types with the same sensor shape.

In addition, a justification is needed for the choice of using a pyramid shape for the sensor since

it is more complex than a simple rectangular block design. To this end, the same set of experiments

were made on a rectangular sensor design made from Ecoflex 0030 and kept the distance between

the magnet and the IC surface same as in the pyramidal shape sensor and following the same calibra-
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tion routine. Experimental results are shown in Figure 4.8. Just as with the Dragonskin 30 pyramid

design, forces obtained from neural network are more accurate as opposed to linear regression where

MAE on validation dataset was 0.1110 N and 0.2827 N, respectively. However, small deviations in

30◦, 60◦ and a large deviation in z-axis measurement in 45◦ suggests rectangular shape to be unde-

sirable for accurate force measurements. These deviations were attributed to free magnet rotations

when pushed at an angle on the rectangular surface. The pyramid shape, on the other hand, allowed

us to position the magnet near the centroid and reduce undesired rotations of the magnet, enabling

repeatable and accurate force measurements.

4.3.2 Dynamic Validation Results

Dynamic loading experiments were performed using an Instron Electroplus-e1000 Linear-Torsion

force testing instrument at WPI Biomedical Engineering Department. Only normal compressive

forces were applied on the sensor and the frequency of the applied forces was set at 0.6 Hz (limited

by the speed of the instrument) and the forces applied were between 0.3 N and 1.0 N as shown in

Figure 4.9. The sensor was pre-compressed using a force of 0.3 N to eliminate any potential shift-

ing of the sensor during the experiments. The application of dynamic forces on silicone rubber

results in hysteresis due to viscoelastic effects (i.e. the deflection of the material differs for the same

force during loading and unloading). The hysteresis plot is shown in Figure 4.9-Middle Panel. This

curve indicates that the measured forces follow the actual force closely. In other words, the proposed

sensor is able to map the effect of hysteresis very well and provide a measure of dynamic forces ac-

curately. Figure 4.9-Right Panel shows the time response during a representative dynamic loading
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Figure 4.10:Significanttimeintervalsfromthegraspexperimentareshown.Att1 robotisatitsinitialstate
andnoforceismeasuredonthesensor.Shearforceandnormalforcearedetectedasfingersgetincontact
withtheobjectduringt2.Theintervalt3 representsthemovementoftheobjectfrominitialpointtothetar-
getpoint.Thepeakinthisintervalisduetostabilizationoftheeggbetweentwofingers.Finallytheobject
isreleasedbydetectingthechangeiny-axisforceinintervalt4.Acoordinateframeattachedtothefirst
snapshotatt1 representsthemeasurementaxesoftheforcesensor.

experiment, where the sensor output tracks the applied dynamic forces. The accuracy of dynamic

force measurements is better inferred from Figure 4.9-Left Panel, which shows measured force with

respect to corresponding applied force. Here we see that the relationship between the measured and

applied forces follows a line with a slope equal to 1.0 with minimal variation.

4.3.3 Force Controlled Pick and Place Case Study

The proposed force sensor can be used to grasp soft or delicate objects with manipulators that are

not designed to handle such objects. To demonstrate this application, a pick and place experiment

with the Jaco arm (Kinova robotics, Boisbriand, QC, Canada) was performed for the purpose of

grasping an egg. The arm is a 6-degree-of-freedom (DOF) manipulator with a 3-finger gripper. With
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the proposed soft tri-axial force sensor contact detection was done sensitively and thus the manipula-

tor was able to transport the egg from one location to another without breaking it.

The arm was programmed to perform the pick and place task between two known locations on

a tabletop. The goal was for the arm to sense the forces applied on the egg in real time to establish

and maintain a gentle grip and release the egg when it touches the table top at the destination. The

software to operate the arm was developed using Robot Operating system (ROS)72. The manipula-

tor arm was configured to follow a trajectory in multiple phases. The corresponding forces measured

in the phases are shown in Figure 4.10. Here, the sensor was placed on the finger pad, where nor-

mal contact forces coincide with the z-axis (local normal) of the sensor and gravity is along the y-axis

(local shear). There are no expected forces along the x-axis, which is reflected in the measurements.

The gap in the gripper when fingers are fully closed was bigger than the size of the egg. Hence,

the gripper fingers were padded with a silicone rubber layer in order to reduce this gap. The weight

of the egg was 50 g. The arm could lift the egg without any damage following a simple force-control

process as shown as snapshots in Figure 4.10. The four phases during this task are defined as follows:

Gripper Closing Phase: Shown by the period t1 in Figure 4.10, here the gripper is at the initial

pose and the fingers start closing. All forces remain at 0 N throughout this period, taking about 6

seconds before the fingers make contact with the egg.

Grasping and Lifting Phase: Shown by the period t2 in Figure 4.10, here the gripper initiates con-

tact with the egg as seen by the increase in FZ. The fingers continue closing until a predefined thresh-

old is reached to produce a normal grasping force between contact surfaces to hold on to the object

due to friction, with negligible deformation. The value of the safe limit was determined through
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prior trials to be 0.15 N to 0.35 N (as measured by the force sensor) for the egg. After grasping the ob-

ject, the arm starts lifting up the egg at around 7 seconds. In this phase, the force sensor experiences

an increase in the shear force FY due to gravity.

Relocating Phase: Shown by the period t3 in Figure 4.10, here the arm moves the gripper along

with the egg over to a destination location while keeping the gripper position 10 cm above the desk

level. Slight disturbances are seen in this time period which could be attributed to a shaky move-

ment of the Jaco arm. The short pulse in this phase at 14 seconds coincides with a slight shift in the

position of the egg between the fingers.

Placing Phase: Shown by the period t4 in Figure 4.10, the gripper moves down towards the table.

As the egg makes contact with the table top, the shear force decreases. This decrease in shear force

allows the arm to recognise that the egg has been placed at the destination spot. At this time, the

Jaco arm opens its grip to release the egg and the arm goes back to the starting position.

The sensing of the shear forces while placing an object helps the manipulator to sense that the

object has made contact with the ground surface and allow it to place the object safely and gently at

the destination spot without dropping the object or strongly hitting the ground surface.

4.4 Conclusion and Future Work

In this chapter I describe the design, fabrication, characterization, and experimental validation of a

Hall effect based 3-D soft force sensor in a pyramid shaped soft elastomer matrix. For the scope of

this work, we train a fully-connected neural network for characterization and mapping of measured
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Figure 4.11:Complete5-Fingeredrobotichandisshown.Allfingersareidenticalmechanisms.Theyare
actuatedbyasinglemotorandcurlingmotionisgeneratedbytwocascadedfour-barmechanisms.3DSoft
Forcesensorsattachedtofingertipandbodyareshownindetail.

voltages to 3-D forces, in WPI Soft Robotics Lab. We show that the resulting mapping generalizes

well for sensors and loading conditions that are not part of the training dataset. The experimental

results show that the proposed sensor is highly accurate and it can measure forces in normal and

shear directions within a range of 0 N to 1.1 N and±1.5 N with an error of 2% and 2.2% of the full

scale reading in normal and shear, respectively. The bandwidth of the Melexis sensor IC can work

up to 400 Hz. Dynamic loading experiments indicate that the sensor is able to accurately follow

dynamic forces applied at 0.6 Hz despite the hysteresis exhibited by the material.

A comparison of the pyramidal Ecoflex 0030 sensor with commercially available and published
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force sensor designs is presented in Table 4.5. Hysteresis in piezoelectric and capacitive commercially

available sensors seems negligible but findings suggest viscoelasticity of soft materials adds signifi-

cant hysteresis and therefore other works that use similar materials are expected to exhibit hysteresis

effects. In most cases the range of the sensor can be adjusted by picking different soft materials or ad-

justing the gains of the amplifier attached to the sensor. The pyramidal Ecoflex 0030 sensor is quite

sensitive, measuring forces as small as 5 mN (error range of the load cell used for calibration) within

a suitable range of 0-1 N for tactile applications. In Table 4.5, Single Tact Sensor and embedded mi-

crofluidic channel based sensor design stand out as high sensitivity sensors within their maximum

force range. Single Tact Sensor, however is only capable of measurements in a single dimension. As

for sensitivity the Ecoflex 0030 Pyramid sensor (5 mN) is only outperformed by the commercial

OMD-10 sensor (2.5 mN). In terms of package size the Ecoflex 0030 Pyramid sensor has a volume of

380 mm3. Sensors having a smaller volume are Tekscan and Single Tact Sensor, which only provide

normal force measurements. This volume difference is expected since both sensors are fabricated on

a thin sheet and do not have soft substrates over them. Furthermore, package size of a magnetic force

sensor can be decreased by picking even smaller magnets, changing the sensitivity of the hall element

and reducing the distance between magnet and the IC. Overall, it can be concluded that the pyramid

sensor shape, magnetic field measurements, and a soft substrate as the force measurement medium

provides a good combination of size, measured axes, and sensitivity.

I mostly used a passive voice describing the experiments, design and results in this chapter, be-

cause the tri-axial force sensor idea was the first time where I managed a group of master students

to publish results in a peer reviewed venue21. It was apparent to me when I designed the curvature
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sensor that the technical knowledge could be transferred into tactile sensing units. I also realized this

was a challenge where grasping, manipulation and legged locomotion could benefit from. However,

contrary to curvature sensing, force sensing via elastic materials and Hall Effect units was already

published in the literature. Therefore, we wanted to push the limits of this sensing modality and

I guided two masters students, of which one was interested in machine learning techniques to real

robotic problems, to come up with results. We also tested a new shape (pyramidal soft substrate)

for accurately sensing forces and obtained promising results as compared to rectangular or semi-

spherical shapes.

In WPI Soft Robotics Lab, one of our philosophies is to test the systems we create for practical

purposes, as demonstrated in my soft module control work. As for the force sensor we performed a

simple pick and place experiment on an egg using the force sensor mounted on a Kinova Jaco arm.

We showed that the sensor provides stable output force data in real-time and we can use both shear

and normal force data to successfully perform fragile object manipulation.

The single experiment done with the simple Jaco Manipulator was not as rigorous as we wanted.

We included these preliminary results along with the sensor design 21. To demonstrate that the force

sensor was capable of improving grasping performance I recently conducted additional tests with

the force sensing unit on a custom robot manipulator design.Its finger and assembly can be seen in

Figure 4.11. I briefly show, in Figure 4.13 multiple results on how shear detection can be algorithmi-

cally introduced to pick and place operations and how it improved task quality by detecting contact

during placement phase.

Snapshots in Figure 4.12 indicate important events during the grasp execution. Experiment set-
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Figure 4.12:Snapshotsfromgraspexperimentareshown.T0 showstheinitialstateoftheexperiment.Hand
ismovedtothevicinityoftheobjectinT1.Graspisinitiatedandgripperison-stateatT2.Objectislifted
atT3,shearforceincreaseisobservedatthisstate.Objectismovedonairandpositiontotheplacement
locationatT4 andT5.DecreaseinshearforceiscapturedatT6 andgripperisturnedintooff-state.Finally,
robothandispositionedbackattheinitialstateinT7.

82



Figure 4.13:Figuresonrightcolumnshowdesiredangleforthumbandtheactualanglemeasuredbyjoint
potentiometer.Theyarenotreachingthecommandedanglevalueduetobeingincontactwiththeobject.
Figuresonleftcolumnshowmagneticfieldmeasurementsfromthe3Dsensor.Finallylastrowsonboth
columnsshowwhethergripperisinitson/offstate.Shearisdetectedonceobjectisgraspedbychecking
athresholdonBz measurement.AssoonasgroundcontactismadeBz dropsandgrippertransitioninto
off-state,autonomously.
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tings consists of the Jaco robot arm, our custom designed robotic hand is attached to it, and there is

a water bottle. The objective is to grab the water bottle and place it to another pre-determined loca-

tion, graciously. As we will see, if shear forces measured by the tri-axial force sensor are utilized, the

ground contact can be detected and the object can be released without forcing it into the table. In

Figure 4.13, the bottom two figures show the gripper on/off state.

Here, I go over the important stages of the pick and place experiment. At t0 and t1 gripper is ap-

proaching the water bottle and gripper state is turned off. In t2 gripper state is turned on. Increase

in measured magnetic field strengths in axial axis Bx is observed along with a delayed increase in By

and Bz values. The delayed increase in measured values correspond with bottle being lifted from

the table marked as t3 in Figure 4.12. Bottle is in contact with the ground at t6 and the decrease in

shear forces is observed by checking whether Bz field magnitudes is lower than a constant threshold

value. As soon as a sudden drop is observed, gripper state is turned off and object is released. The

gripper turn off instance and drop in Bz values are coincident in Figure 4.12. When the same exper-

iment is performed without a check on measured Bz values, the gripper does not release the object

with decrease in shear forces. This behaviour can be observed in Figure 4.14. The gripper stays on

for a constant amount of time in all experiments after a significant drop in the measured Bz field is

observed. More clearly, this means that manipulator is forcing to push the object into the ground

because it is oblivious to ground contact and fails to open the gripper appropriately at contact.

Having shown the capabilities of novel soft mechanisms, next chapter will focus on how I use my

previous experience to come up with a new compliant leg design for dynamic locomotion.
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Figure 4.14:Similartopreviousfigure,leftcolumnshowsdesiredangleforthumbandtheactualanglemea-
suredbyjointpotentiometer.Rightcolumnshowsmagneticfieldmeasurementsfromthe3Dsensor.Notice
thatgripperstatesarenotturnedoffwhengroundcontactismadeduetolackofsheardetectionthreshold
onBz measurements.
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Table 4.5:ComparisonofcommercialandpublishedforcesensorsalongwiththePyramidalEcoflex0030
sensorpresentedinthischapteralongimportantpropertiesofsize,samplingrate,hysteresis,measured
forceaxes,rangeandsensitivity.

Sensor
Name

L×W×H
(mm)

Sampling
Rate Hysteresis

Decoupled
Force/Torque

Axes

Range
(N) Sensitivity

Tekscan
(A101) 15×7×0.2 200 kHz * 4.5% FS 1 44 No data

provided
Single
Tact

Sensor
58×8×0.35 1000 Hz 4% FS 1 10 20 mN

OMD-10-
SE-10N 15×11×10 1000 Hz 2% FS 3

Fz = 10
Fx = ±2.5
Fy = ±2.5

2.5 mN

Embedded
Microflu-

idic
Chan-
nels95

50×60×7 100 Hz † Negligible
‡ 3

Fz = 6
Fx = ±1
Fy = ±1

10 mN

Tomo et
al. 88 55×55×8 100 Hz No data

provided § 3
Fz = 15
Fx = ±6
Fy = ±6

No data
provided

Nie et
al.60

Diameter:
60×11 400 Hz No data

provided 4

Fz = 40
Fx = 15
Fy = 15
Tz = 0.8

10 mN

ATI
Nano17

Diameter:
17×14.5 7 kHz No data

provided 6
Fz = 17
Fx = 12
Fy = 12

3 mN

Liu et
al.44

Diameter:
20×8 5 kHz No data

provided 3
Fz = 0.5
Fx = 0.5
Fy = 0.5

10 mN

This
Work:

Pyramidal
Ecoflex 0030

12×12×8 400 Hz Negligible
¶ 3

Fz = 1.1
Fx = ±1.5
Fy = ±1.5

5 mN

1The value is based on the response time of the piezoresistive material. The bandwidth may vary for different uses.
2Reported sampling rate.
3The material will exhibit viscoelastic properties.
4The material will exhibit viscoelastic properties.
5The pyramid sensor exhibits negligible hysteresis for force measurements. A higher hysteresis of 24% is observed
in force-displacement response. This behaviour is due to the viscoelastic nature of the material.
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5
Compliant Leg Mechanism Design

The classical Raibert Hopper, is an impressive mechanism. Not because of its mechanical

complexity but because of its simplicity in achieving a challenging task: e.g. running with legs. It

is also of natural interest to a researcher in my position, who has experience in both legged locomo-

tion and soft robotics, to investigate the merit of compliance in its design. The novel leg mechanism
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design described in this chapter connects and concludes my previous work on soft sensing, actua-

tion and control in two ways: I) a flexible and resilient folded leg is manufactured by step-by-step

molding process used for soft sensors and actuators fabrication, II) the force sensor described in the

previous chapter is utilized to detect contact states hence enabling reliable switching between dif-

ferent parts (states) of the Raibert controller. Instead of simply integrating the proposed compliant

leg, I present experimental evidence on improved efficiency during legged locomotion contributed

by the integrated compliant leg. Additionally, I point out the relevant vertical hopping literature to

explain the increase in efficiency.

One of the challenges in soft robotics is integrating new material design and fabrication approaches

into the existing body of knowledge. This challenge is also important to a researcher in the field be-

cause soft robotics has the potential to overcome the mismatch between mechanical compliance

of organic life and traditional robots48. The recent soft robotic publications 80,24,46 are laudable in

terms of their novelty towards that potential. These robotic devices are extremely flexible thus mak-

ing them safe to interact with. They conform to their surrounding environment, giving them the

potential to move into spaces that were once deemed impossible. As another example, soft robotic

skins ? have the potential to change how tactile data is measured and obtained in the decades to

come.

However, efforts on making robots softer and more compliant do not always translate well into

the real life by generating useful motions or improve our understanding of how to engineer more

agile mechanisms. This is not a limitation of researchers but a natural result of our effort to under-

stand and mimic nature. Usually, understanding nature comes with a challenge whose solution is
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Figure 5.1:LeftCADfigureshowstheoverallhoppermechanismwhere(A)representsthecontrollerboard,
motorsandmotordrivecircuitryattachedtotherobotbody;and(B)representsthefivebarlegmechanism
drivenbytwoindependentBLDCmotors.Panel-Ashowstheorigamiinspiredtriangularbeam&jointde-
sign.Panel-Bshowsthefiberreinforcementlayertothejointindetail.Cuts(PB-A)aremadebetweentwo
ofbases.Fiberglasscloth(PB-B) ismountedonthecutsbeforefoldingandcoveredwithSimpact85Ure-
thanerubber(PB-C).

easy to verify but difficult to solve. Unfortunately, overemphasis on this fact of nature can lead to

less than desired results. For example, despite their significant contributions, the soft quadruped

designs 87,85 do not help us understand how to engineer agile robotic systems inspired by biological

mammalian quadrupeds. Thus, there appears to be a gap between advances in soft robotics and their

integration with the rest of the knowledge in the greater field of robotics.

Some unique soft robotic systems have the potential to create new capabilities that are simply not

possible with a rigid body. A good example for a soft machine that exhibits new useful behavior is

the universal gripper6. Using a deformable design, it provides a convenient solution to the prob-
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lem of grasping, which is traditionally believed to be algorithmically complex. Another example is

the robotic fish ? , which generates a new motion type with simple algorithms due its utilization of

mechanism compliance and softness. However, these examples are rare, and the problem of finding

useful, interesting, and new ways to integrate materials into robots remains challenging and impor-

tant.

The main goal of this chapter is to demonstrate how existing theoretical and practical knowledge

in the field of hopping robots can benefit from novel mechanical design approaches: namely soft

robotics and origami based foldable mechanisms. To this end, I create a compliant leg mechanism in-

spired by a modern hopper leg design 15. Instead of using standard mechanical components for con-

structing the leg, I use an origami-inspired foldable approach to create the leg body and added fiber-

glass mat between plastic layers of the origami sheet to increase the leg strength. Figure 5.1 shows the

CAD concept of the proposed leg design with plastic layers and fiberglass reinforcement. To my sur-

prise the weight of the foldable leg is significantly lower than a rigid leg machined from acrylic pieces

and assembled using standard mechanical components. Moreover, the rigid leg is not as efficient as

the foldable/flexible counterpart during jumping experiments. This is an expected result due to the

dynamics of hopping 55 which favors elastic energy storage to increase efficiency. The benefit of the

fiberglass-reinforced foldable leg design is that the mechanism possesses inherent elasticity around

a neutral shape due to the addition of the fiberglass layer without the need for additional spring

elements as commonly used in dynamic legged locomotion.

I experimentally demonstrate that the proposed leg design results in superior performance, in

terms of efficiency, compared to a rigid counterpart. The mechatronic system I use to conduct ex-
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Figure 5.2:Manufacturingstepsareshownstartingfromleftandendingattherightmostpanel.TheA,B,C,
D,ElabelsinStep1demonstrate;foldlines,openingforresintopassthroughlayers,holesforplacingthe
locks,mountingcirclestotherotoroftheBLDCandlockstokeepthefoldintact.Sidea-b-cofthetriangular
beamareshownin2DcreasepatternatStep1andtheirrespectivepositionsinthe3Dstructureareshown
inStep5.

periments is inspired by Raibert’s original 2D hopper mechanism75. I also provide a theoretical

background for the experimentally observed performance improvements. I go over the details of

the controller and the mechatronic system that implements it.

The main contributions of this chapter are as follows. I introduce a novel leg mechanism: a

folded, fiberglass-reinforced, compliant leg design. It is designed to work with hopping robots where

relatively high frequency (5-10 Hz) impact exists with loads ranging between 0.3-0.5 kg. The results

from the new mechanism are experimentally validated and compared with a rigid counterpart. The

folded leg design exhibits compliance, which results in %189 improved mechanical efficiency over

jump cycles, and it has a lower leg mass (20-25 g) compared to its rigid counterpart (70-80 g). The

secondary contributions can be stated as making a theoretical and practical link between novel

robotic manufacturing trends, such as origami and soft robotics, with dynamic legged locomotion

and modern system design for hopping platforms. Especially the soft-bodied, tri-axial force sen-
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sor recently presented by our group 21 plays a crucial role in contact detection and I experimentally

demonstrate that soft force sensors find practical use in settings with frequent and heavy loading.

It is convenient for readers to address what I mean by origami design and soft robotics while

presenting them as novel mechanical design and fabrication approaches. Origami based design

can mean multiple things. For example, origami inspired structure is utilized 5 to create a modular

robot. In this chapter when I write origami based design what I mean is using 2D crease patterns,

which can be folded into 3D shapes, to create mechanisms. My use of the word is similar to designs

pioneered by Onal et al.67. Similar to origami design patterns, soft robotics covers a wide range of

meanings due to the rapid popularity it has seen in recent years. I embed a fiberglass mat and a soft

resin into the origami structure via manufacturing techniques inspired by recent developments in

soft robotics. It is common knowledge to use molds to create organic, complex, flexible/soft shapes 35.

In my leg mechanism, the origami structure becomes the mold where I cure a soft polyurethane and

fiberglass cloth together. Resulting mechanism exhibits elasticity at joints with a desired neutral

angle, which is useful for passive energy storage during the stance phase.

5.1 Compliant Five-bar Leg Design

A five bar linkage is a suitable 2 degree-of-freedom (DoF) mechanism for planar manipulation.

It is possible to mount two independent motors and drive the end effector to Cartesian coordi-

nates within a workspace. In the following, I first explain the details on how to build a lightweight,

compliant and folded five-bar mechanism using our proposed approach. Next, I go through the
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kinematic optimization process of the mechanism for a 2-DoF hopper leg, which presents a non-

trivial optimization problem to find a set of link lengths that reach a desired workspace with a well-

behaved Jacobian.

Manufacturing Details

I use 2-D crease patterns to generate 3-D shapes by folding. In particular I use patterns to create tri-

angular beams, which are used as links of the leg design. A simple 2-D pattern of three rectangles

stacked coincidentally is sufficient to create a triangular shape which is geometrically stable when

folded. Lock and key features are included at the connecting edges of the rectangles to affix the struc-

ture in its folded and final 3-D shape. The outer layers of the rectangle are laser machined onto a

polyethylene terephthalate (PET) film using an Epilog Zing laser engraver. Fold lines are cut in per-

forations to mark creases with reduced stiffness and make manual folding convenient. The funda-

mental design concepts behind the way in which I use origami in robotic structures are explained in

detail in previous work from our group66. Recent examples of folded robots 83,2 show how similar

linkage and joint design patterns via origami can be applied to a hexapod. A more recent work77

extends the foldable design pattern to continuum manipulators.

The next challenge is figuring out how to integrate links in series by joints. A flexure fold joint

is designed to connect two separate rectangular patterns. This method generates a structure that

functionally acts like a revolute joint, when folded. Moreover, I increase the number of rectangles

surrounding the joint to add second or third layers to the structure. In other words, the link has a

triangular cross section with multiple triangles stacked radially together by wrapping multiple layers
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of folded plastic. This stacked pattern makes it structurally stronger. The 2-D crease pattern of two

links connected by a joint and its relevant features are shown in Figure 5.2 along with a 3D model of

its folded shape. The full crease pattern of the five bar is just a serial connection of the shown crease

pattern with appropriate link lengths.

A foldable leg design made out of PET for a jumping robot weighing 0.5-1.0 kg is a significant

and novel challenge. Making the legs as light as possible is crucial in legged locomotion to reduce in-

ertial effects and in an autonomous application where battery life is a concern. However, my prelim-

inary work has shown that this idea is not feasible with the original approach utilizing pure origami

folding of plastic films. The joints are too weak to handle high frequency (5-10 Hz) mechanical im-

pacts and they get torn easily even with multiple layers.

One way to strengthen the mechanism is trying to increase the number of folded layers. Unfortu-

nately, increasing the number of layers indefinitely is not a realistic option for two reasons. First, it

becomes increasingly difficult to fold a linkage mechanism with more than three layers; second the

size of the crease pattern increases with the number of layers, making the pattern exceed the area lim-

itations of the laser cutter. Therefore another approach is required if one wants to benefit robotic

legs from the lightweight design patterns of origami.

My proposed approach for adding strength to the leg mechanism is embedding fiberglass (3M

Bondo) in between folded layers of the PET sheet during the fold process. However simply mount-

ing the fiberglass is not an option. Without curing the fiberglass in a material that acts as a resin,

it wouldn’t add extra strength let alone keep its shape intact. The suggested resin for the fiberlass

mat makes the composite material too thick and rigid, and hence, the folded structure loses its flex-

94



ure joint properties. Through experimenting with different resin candidates I found Simpact 85A

polyurethane rubber from Smooth On (Shore Hardness 85A) to be a good fit. It significantly in-

creases the strength of the joint while maintaining its flexural property. Manufacturing steps of

integrating a folded structure with fiberglass mat and resin are as follows: 1) A 2-D crease pattern is

lasercut on PET film with 0.17 mm thickness. 2) Small pieces of fiberglass mat are attached to coin-

cide with the flexural fold joints. 3) Simpact 85A is poured on fiberglass mat. 4) The crease pattern

is folded to its 3D shape to allow Simpact 85A to be distributed to all layers inside the pattern, com-

pletely covering the fiberglass mat. 5) The 3-D form is left to cure for 6-8 hours at room temperature.

The resulting mechanism exhibits stronger joints with inherent compliance at a lighter weight

(20-25 g) compared to a rigid mechanism design (70-80 g) made from laser-machined acrylic sheets

and standard mechanical components.

Kinematics

Several points were taken into account while designing a leg with desired kinematics, which can

be seen in Figure 5.3. The five-bar linkage kinematics is non-trivial due to the complex mapping

between input angles θ2 and θ5 to the knee angles. Even though close form solutions of θ3 and θ4

exist62, they alone are not enough to obtain a set of link lengths for mechanism design. Throughout

the chapter I use the standard variable convention described by Norton62 for convenience. A sketch

of five-bar angles is also given in Figure 5.4 for further clarification.

As I will explain in Section 5.2 the jumping controller used in this chapter can be kinematically

reduced to a revolute-prismatic (RP) manipulator, whose workspace can be defined with two param-
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Figure 5.3:Relevantanglesandlinklengthsareshown.αdenotesangleoftheRPmanipulatorandr its
length.Theθi valuesareinputandoutputanglesofthefivebarmechanism.Whereasli denotesfivebar
linklengths.

eters (in polar coordinates): α for joint angle and r for radial displacement. The tip of the five-bar

mechanism ideally needs to be able to reach all points within the minimum and maximum limits of

α and r in a desired workspace.

Once a good match between the ideal RP and five-bar workspaces is obtained, the Jacobian of

the five-bar mechanism should also be examined. It is well known that a mechanism loses its ability

to apply independent forces in Cartesian space near singularity. Furthermore, all contact forces act

along the prismatic joint in the RP manipulator but that is not the case for the five-bar mechanism.

To avoid having instabilities between input torques and output forces, a well designed five-bar leg

should not magnify the small changes in the joint spaces to the Cartesian space.

96



I use the condition number 84,57 of the Jacobian to check if the force-to-torque response of the

mechanism is well behaved and find the set of link lengths that will minimize the integral of the

condition number computed over θ2 and θ5. The limits of the integral are determined by upper and

lower values of α and r.

The condition number κ is defined as:

κ(J(θ2, θ5)) =
∥∥J−1∥∥ ∥J∥ , (5.1)

where θ2 and θ5 are five-bar input angles, J is the 2 × 2 Jacobian matrix and ∥̇∥ is chosen as 2-norm.

I compute,

G = n−1
rmax∑

r=rmin

αmax∑
α=αmin

κ(J) (5.2)

for all values of α and r. The mapping between RP manipulator space parameters and θ2 and θ5

can be computed via well known inverse kinematic methods, such as using inverse Jacobian or its

transpose. The functionG denotes the sum of all condition numbers over the RP manipulator

workspace. The number n denotes total number of points in the workspace. Note that n depends

on the discretization of the workspace and its limits. Finally αmin, αmax, rmin and rmax denote limits

of the RP workspace.

Since the optimization problem above is too complex to have a closed form solution I perform a

numerical analysis over the upper and lower link lengths of the five-bar linkage. Note that the search

space is significantly reduced if five-bar link lengths are assumed to be symmetric. The optimization

97



Figure 5.4: Themiddlerowshowstheglobalconditionnumber(G.C.I.)foralllinklengthsboundedbetween
aminimumandamaximumnumber.Theinitialdesignchoiceismarkedwithgreenoutlinecircleonthe
surface.TheminimumvalueoftheG.C.I.isobtainedatthecirclewithredoutline.Topandbottomfigures
showCartesianworkspaceandconditionnumberoftheinitialdesignchoiceandthelinklengthsresultingin
minimumG.C.I.,respectively.

results and graphical representations of relevant parameters are provided in Figure 5.4. The set of

link lengths obtained from the minimum value of theG function results in 58 mm and 100 mm for

upper- and lower-link lengths. The initial design set I manually determined, 62 mm and 89 mm

for upper/lower links, resulted in slightly reduced reachable area and higher condition numbers

throughout the workspace.
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5.2 Vertical Jump Theory and Raibert Controller

Planar Vertical Jump

Koditschek 36 discusses the dynamic behaviour of vertically hopping mechanisms. A hopping robot

in a single axis can be described by two separate dynamic systems switching between a spring-loaded

mass model and a free-fall model. The switch mechanism depends on the state vector of the system.

Typically, such systems are called hybrid dynamical systems 16. I use the following system definition

to show the effect of active impedance on the efficiency:

fbf =

0 1

0 0

 x +

 0

−g

 (5.3)

fgls =

 0 1

− k
m − b

m

 x +

 0

−g

 (5.4)

fdct =

0 1

0 − b
m

 x +

 0

Fin
m

 , (5.5)

where the functions fbf, fgls and fdct depict systems of differential equations representing ballistic

flight, gravity-loaded spring, and damped constant-thrust phases of vertical hopping. The param-

etersm, b, k, and g represent mass, damping, spring coefficient, and gravitational constant, respec-

tively. The state vector x =

[
r, ṙ

]⊺
contains spring length and its time derivative. Note, I keep the
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Figure 5.5:Theenergeticsofaverticalhopperisshown.Blacksolidlineisthesystemmode(flight(0),stance
(1)orthrust(2)).Dottedredcurveisthekineticenergyanddash-dotbluecurveisthepotentialenergy.Note
thattheirsumisconstantthroughoutflightanddecreasesduringstance.ThisisbecauseIdonotinclude
springenergyinsidethepotentialterm.ThesolidmagentalinePa indicatesinputpowerduringstancefor
activecompliance.Theinputpowertosystemconsistsofspringcomponentandathrustcomponent.The
solidcyanlinePp isthepowerinputtothesystemwithpassivecomplianceanditisonlycomposedofthrust
forcerequiredtoregainlostenergyduetolossesatjump.

notation consistent with the RP workspace discussed in the previous section. Thrust is injected dur-

ing fdct phase via Fin for a constant time interval. Transition between phases fbf and fgls is achieved via

guard function g(x)i = r and transition between fgls and fdct is guaranteed via g(x)ii = ṙ. After Fin

is applied in fdct, the system can reset back to fbf or fgls depending on its state. The flows with discrete

transition can be used to describe the hybrid dynamics of vertical hopping.

Here, I make a distinction between active and passive impedance. If the system has only passive

impedance, which means that the leg contains spring elements, the only power input to the system

is during fgls via the Fin term. On the other hand if actuators are to generate a spring-like effect, then
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Figure 5.6:Architecturaloverviewofthesystemisshown.MatlabrunningonthemissionPCsendsthetrig-
gertostartthehoppingcontrolleranditcapturesdataforapredeterminedperiodoftime.TheRaibert
controllerisimplementedinsideNucleo144alongwithmeasurementsfromthreeencodersforobtaining
hopperorientation/position.BLDCdriversareimplementedonseperatemicrocontrollerboards,which
isLPC1768,forfastexecutionofBLDCphaselogics.ThepanelinthemiddleshowsthehopperbodyCAD
model.Forclarity,Imarkmicrocontroller,currentsensinganddriverboards.Ialsoshowthedoublebearing
mountpiececonnectingthebodytothepostandtheBLDCmotors.Therightpanelshowsaphotographof
theoveralltestingplatform.

spring and damping coefficients in (5.4) and (5.5) are actually generated by the actuator to achieve

a specific impedance, which increases the power input to the system. This distinction is well estab-

lished in robotics79 and usually it is believed that passive dynamics increases efficiency at the cost of

making the system less re-configurable and vice versa for active impedance. Interestingly, active and

passive components of locomotion has also been observed in insects 19, but evidence is inconclusive

whether it is used for efficiency or for damping the motion during high frequency impacts.

The efficiency effect of active/passive impedance in the simple vertical example is shown in Fig-

ure 5.5. In this figure, the cyan curve represents the power to generate thrust during passive case and

magenta curves show the effect of active impedance on energy usage. The flows are numerically com-
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puted usingm = 1 kg, g = 9.81 m/s2, r = 0.07 m , k = 200 N/m, b = 1 N/(m/s), Fin = 40 N and

Tf = 50 ms (thrust period).

Raibert Controller

The real model of jumping and moving is more complex than the simple vertical hopping explained

in the previous section. The seminal Raibert controller considers both the vertical hopping and the

stepping control of a two link RP manipulator. While the full dynamics of such a system is outside

the scope of this chapter, for the interested reader the work by Ghigliazza et al. 25 is a good starting

point to discover more about such dynamics.

Here, I go over the two governing equations of the Raibert controller since they are embedded

inside the control architecture and give us an idea about the active versus passive dynamics of differ-

ent leg designs. The Raibert Control inherently switches between different controllers (to generate

thrust, to maintain body orientation, and to maintain linear speed) depending on the state of the

system.

The controller running during the flight phase regulates the leg angle so that the foot is posi-

tioned at a neutral location for initiating the next jump cycle. This control rule is as follows:

xn =
ẋTst
2

+ kpf(ẋd − ẋ), (5.6)

where xn denotes the desired neutral position of the foot (assumed to be a point at the tip of the

five-bar leg mechanism between links 3 and 4), ẋ is the horizontal speed of the hopper body, Tst is

102



the stance period from the previous jump, kpf is a gain coefficient regulating the forward and back-

ward acceleration. A tip position away from the body center point would decelerate and closer to

the body would accelerate the hopper. ẋd denotes the desired forward speed. Inverse kinematics so-

lutions are performed in real time to obtain the required θ2 and θ5 values from the xn position. Note

that the radial component can be set as a constant number indicating virtual RP leg length (for a

rigid leg) or it can be set to the neutral length of the leg spring (for a compliant leg).

During the stance phase, a separate controller stabilizes the body orientation via the friction cone

at the ground contact. The following control rule is used during stance:

T = kpt(γd − γ) + kdtγ̇, (5.7)

where T is the torque required to stabilize the hopper body. It is generated by the revolute joint in

the RP manipulator. The gains kpt and kdt are proportional and derivative terms acting on body

angle γ and its derivative γ̇. Last, γd is the desired body angle. Usually, it is picked as zero.

For the rigid leg experiments, I use an active impedance term composed of spring and damping

components acting along a virtual leg connecting the five-bar tip with its mid-base position. This

active impedance (normal) component along with the body angle control (tangential) component

can be passed to the mechanism Jacobian to obtain required joint torques.
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5.3 System Overview

This section explains electrical, mechanical and software architectures of the hopper platform in de-

tail. In essence it is a smaller version of the original Raibert hopper platform. My design philosophy

is to replicate it using modern microcontroller architectures with mostly off-the-shelf components

for ease of replication. Its mechanical components are either laser-machined or made from foldable

structures for the same reason.

Hopper Platform

The overall platform comprises three components. A PC running a Matlab script, which triggers

the experiment and is used for data collection and visualization. The serial communication port

transmits data back and forth with the main hopper controller. The telemetry, which contains en-

coder readings, motor currents and other mission critical data, is broadcast at 1 kHz to the Matlab

script. In total, this data consists of 44 bytes and occupies %17 of the serial bandwidth which runs at

2 MHz.

The second component, where the main hopper controller is attached, is the post as shown in the

right panel of Figure 5.6. The post measures three angles of the robot body. They represent the body

orientation (rotation around the bar connecting the post and the hopper platform), position of the

hopper (running in a circle around the post), and another angle measurement to compute the height

of the hopper. All encoders, including the ones attached to BLDC motor shafts, in the system are

AS5048A. They are 14-Bit absolute encoders with SPI connection. I choose SPI over I2C due to the
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known number of connected devices and low overhead in package sizes, with the aim to optimize

for speed, precision, and accuracy. The length of the rod connecting the post to the hopper body is

475 mm. The neutral length of the leg is chosen between 60 and 100 mm. A thorough discussion on

leg length to rod length for meaningful approximation to running in a 2-D plane can be found in

the literature97. Finally, contacts are detected via a 3-D soft-bodied force sensor, whose details can be

found in our prior work21.

The main hopping controller is embedded inside a Nucleo 144 board powered by an STM32F767ZI

chip clocked at 216 MHz. It is attached to the post base and generates PWM signals, which are

passed to motor drivers over SPI at 1 kHz. The Nucleo 144 board handles communications with

the PC, post encoders, and motor drivers as shown in Figure 5.6. In addition to encoder measure-

ment, the motor currents are passed to the Nucleo 144 board through analog-to-digital converters

provided by the STM32 chip.

Brushless DC Motor Drivers

The third component is the brushless DC (BLDC) motor and its driver. There are two BLDC mo-

tors (T-Motors Anti Gravity 4006) on the system, attached to the robot body. They directly drive

the upper links of the five-bar mechanism. I use six VNH5019 drivers (12 A continuous supply at 24

V) to drive the gate logic of the two motors. An LPC1768 microcontroller board running at 96 MHz

sets the correct motor state based on the absolute encoder readings attached to the motor shaft. The

currents drawn by motors are measured by sensors attached in series between the power supply and

the VNH5019 drivers.
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Figure 5.7:Contactdetectionresultsviasoftforcesensor.Thered,greenandbluecurvesrepresentsnot
filteredmagneticfiltermeasurementsnormalizedto1.0,inx,yandzaxes,respectively.Dashedblackedges
representcontactstate.X-Axisrepresentstimeinmillisecond.Resultisfromtheoptimizedfoldableleg
designexperiments.

Typical commutation schemes for BLDC consist of trapezoidal, sinusoidal, and field oriented

control. In this platform design, I use trapezoidal commutation due to its simplicity in implemen-

tation. Since I use the same scheme to analyze different leg designs, any inefficiency coming from

the BLDC driver is expected to have a similar effect on all leg performances. A thorough analysis of

different BLDC drive schemes is made by Lee et al.40.
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Table 5.1: Comparisonbetweenthethreedifferentcasestested
Experiment Name Hopper Mass [g] Leg Mass [g] Average System Energy [J] Average Input Energy [J] μ = Esys/Ein

Not Opt. Rigid 350 74.2 0.09 ± 0.010 13.04 ± 1.55 0.69
Not Opt. Foldable 350 23.9 0.08 ± 0.007 5.88 ± 0.73 1.36

Opt Foldable 350 22.1 0.16 ± 0.027 7.97 ± 2.54 2.00

5.4 Experiment Results

The performance of Raibert controller depends heavily on contact detection and separating differ-

ent states of the motion from one another. In my experiments, all ground contacts were detected

precisely by our custom tri-axial soft-bodied force sensors. Contact detection results using these

sensors are shown in Figure 5.7. In this figure, it is apparent that the z-axis force measurements (in

blue, representing vertical force) are more prominent than other axes. This is expected as this axis

corresponds to forces due to the whole weight of the robot and the impact forces. The red curve

represents forces in the horizontal direction, it represents shear forces. The green curve should the-

oretically be zero, because this is a 2-D hopper. However, some deviation is observed, which may

be due to a slight angle of the body as it makes contact with the ground (i.e. the connecting rod not

being strictly horizontal but moving in a circular arc around the post pivot). It can be seen from

dashed black lines that this data can be utilized with no filtering to track contact states.

I conduct vertical hopping experiments by setting the desired forward speed for the Raibert con-

troller to zero. The same approach is applied to three different leg designs to compare their perfor-

mance experimentally: rigid, foldable, and an optimized iteration of the foldable leg. I measure the

robot height and its numerical derivative through the absolute encoder attached to the rod, which
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connects the hopper body to the post, for obtaining kinetic and potential energies in each experi-

ment. Current sensors attached to the BLDC motor drivers and the voltage level of the power sup-

ply are used to measure the power drawn by the system in each one of the experiments. Results of

these measurements for 2.5 s of experiments can be seen in Figure 5.8. The sum of kinetic and poten-

tial energies and their individual curves are similar for all experiments.

The frequency of jumps is similar in rigid and manually designed foldable leg experiments (7

jumps in 2.5 s) and slightly lower (5 jumps in 2.5 s) in the optimized foldable design, mostly due to

changes in the dynamic behaviour via the introduction of compliance and kinematics of the op-

timized five-bar. PID control gains are system dependent and it is hard to reuse them. However,

their relative values may be of value. For the stance phase kp being tuned as 1200 for the rigid leg,

as 500 in foldable leg, and as 400 in the optimized the foldable leg indicate the level of effort re-

quired to apply thrust to the robot with each leg prototype for repeated hopping. The governing

kp gain in both foldable designs was similar whereas kp in the rigid leg was significantly larger. Note

that this choice is required for the rigid leg due to the lack of passive energy storage capacity. There-

fore all the impedance during stance, along with the thrust force, needs to be generated actively by

BLDC motors. On the other hand the foldable designs can store the kinetic energy at the impact

due to their embedded elasticity at their joints. This storing capacity results in lower kp gains during

stance mode, which significantly reduces the power consumed in the foldable designs. The power

consumption of both BLDC motors on each experiment can be seen on the magenta curves in Fig-

ure 5.8 and the right-hand-side y-axis represent power consumed at each control cycle in watts. Sig-

nificant power consumption during active impedance and thrust phases in the rigid design can be
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observed when compared with the foldable counterpart.

A surprising observation is the near-constant energy consumption during flight phases of the

foldable legs. This is due to slight position differences between the neutral length of the compliant

leg and the programmed reference point. It tells us that the leg is consuming energy to stay in its

ballistic flight configuration. Note that this phenomenon is not observed in the rigid leg, whose

energy curves return near zero during the flight phase.

A skeptic might wonder whether extra power consumption of foldable legs during flight can

counterbalance their benefits during the stance phase. That is not the case as can be observed in the

bottom row of Figure 5.8. Using average jump period timings (flight and stance phase periods added

together) in each experiment I compute the moving average energy input to the each system and

used this number to compute the efficiency, as μ = Esystem/EInput, at each control cycle. Foldable

designs outperform rigid legs consistently. Significant parameters and results of the experiments are

tabulated in Table 5.1.

The efficiency curves are periodic. At the bottom-most point of the jump, vertical speed and po-

sition are zero, driving the system energy to zero, too. However in the foldable case the spring effect

of the leg helps the motors lift the body upwards. The spring energy in the foldable designs is not

included in the plots since this is an internal potential energy stored within the system. The overall

efficiency of the mechanism is between%0.05 and%3.25. This value is lower compared to the effi-

ciency of the human muscular system measured as%20.0 − 30.073. Nevertheless the improvement

of the compliant leg design over the rigid counterpart persists.

Snapshots from a single jump period along with time series data of vertical position and speed
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are shown in Figure 5.9 for the optimized foldable leg prototype. Vertical position, which is the

solid blue curve, follows a periodic trajectory. At time instance t0 the robot is under free fall. The

height change in this phase behaves like a parabola and there is an approximately linear decrease in

the speed, shown as a solid red curve. As the robot is entering stance phase depicted in t1, the linear

decrease in speed is disturbed due to complex ground contact dynamics. As the robot leg compresses

the height decreases as well. Shortly after the body up speed changes sign, thrust period is entered as

shown in t2. At this point, a small amount of power is injected to recover the lost energy from the

previous cycle. Due to passive compliance of the leg design, speed gain in stance period right before

thrust is generated by the leg itself. In t3, hopper reaches the maximum flight height and enters the

next jump cycle.

5.5 Discussion

This chapter introduced a new foldable, fiberglass-reinforced, and compliant mechanism design to

be used as 2-DoF legs in robotic platforms as the main contribution. Integrating this new design and

fabrication methodology with a well-known control problem in robotics, that is the Raibert hop-

ping controller, has shown that this new design is relevant to the existing body of robotics knowl-

edge. Due to the uncertain nature of research and difficulty of creating new and useful machines,

there is an abundance of conceptual robots with no real application. My leg design has shown im-

proved performance in a canonical robotic system demonstrating a use case for new design and man-

ufacturing methods that embrace soft materials and body compliance in general.
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As a secondary contribution, I describe a simple and effective hopping platform, its electrical

details, and controller architecture. I use an off-the-shelf microcontroller and sensor boards along

with rapid-prototyped parts, making the design accessible to others in this field. I also provide an

algorithmic approach to designing desired workspaces for five-bar mechanisms with well behaved

Jacobians, which is especially important for flexural folded mechanisms under heavy periodic loads.

I consider these to be valuable technical contributions.

The comparison for efficiency is made between a rigid leg design and a folded-compliant leg de-

sign. The rigid leg is designed with acrylic and it does not contain any spring elements. It is reason-

able to expect that a rigid leg design with torsional spring at joints (or a linear spring connecting

multiple joints/points on the mechanism) would increase efficiency similar to the folded design.

However, this efficiency increase would come with more detailed/potentially-complex mechani-

cal design and with additional weight. For the scope of the compliant hopper leg work, we use the

non-compliant rigid leg design as a benchmark for showing efficiency increase.

One challenge I encountered was folding the fiberglass reinforced sheets with the liquid resin.

Even though it is not time consuming, this process takes significant manual experience to be com-

pleted properly. I believe additive manufacturing, especially recent techniques developed for flexible,

soft, and multi-material components will make it much easier to build similar designs 100.

Force sensor shielding was another challenge. Contact detection threshold for the force sensor

would change under external effects from ferromagnetic materials and this difference could cause

sensor failure. Another challenge related to magnetic sensor was small cuboid magnets flipping in-

side soft substrate during rapid hopping movements. This was solved by wrapping the magnet with
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a small acrylic frame and embedding the composite inside the soft silicone.

As for future work and final remarks I would like to discuss three points. First one is agility in

robotic design. Soft and compliant robotics grew out of the very real need to make robots more like

natural organisms: less rigid components, more mechanical compliance, multi-material links/joints,

and variable stiffness capabilities. The result of this endeavour has introduced novel modes of loco-

motion, grasping and more natural physical behaviours by the growing soft robotics community.

Occasionally what was deemed algorithmically difficult has been solved by mechanical properties of

compliant mechanisms.

One way to solve the agility problem is to change rigid parts with softer or more flexible designs.

In that case using previous controllers and theories are important for creating valuable use cases and

verifying experimentally obtained results in comparison with traditional approaches that use rigid

mechanisms. The future, unfortunately, might not be like the past. Instead of writing down exact

equations for describing motions of dynamic systems, we might want to anchor them in strong

theories like for vertical hopping and develop new control algorithms that embrace body elasticity.

Second potential future work would be programmable compliance. Passive compliance not being

reconfigurable is a limitation of my current work. However, through material optimization and

precise torque control via BLDC motors, the problem of non-reconfigurable compliance can be

addressed. More advanced drive technologies such as field oriented control would allow the system

to be programmed to different stiffness values. If improved energy efficiency is needed, the system

should be driven near its neutral setting. To this end, advanced material characterization of fiber

reinforced leg design and automating its manufacture process would be important the next steps.
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Last direction for future work is incremental improvements over the current compliant design.

Scaling up the mechanism is an interesting idea. It would be trivial to increase link lengths by a cou-

ple of times their current lengths but developing folded structures for a mechanisms that is more

than a single magnitude of order larger would be complex due to detailed crease patterns for rein-

forcing extra material. Performing life-cycle tests on mechanisms and comparing different material

compositions on overall mechanism compliance would also be interesting areas for research.
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Figure 5.8: Energy(sumofkineticandpotential)andpowerinputtothesystemwhendrivenwitheachleg
designisshownontopthreerows.Thelastrowcomparesefficiencyofthreelegdesigns.Iuseamoving
averagewithawindowsizeequivalenttoaveragejumpperiodtocomputeenergyinputfrompowervalues
computedateachcontrolcycle.Solidblackedgesindicateballisticflight,stancephaseandthrustphase.
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Figure 5.9: Phasesequenceduringasinglejumpwiththefoldableoptimizedlegisshown.Thesequences
demonstratetheballisticflightbeforetouchdownt0,legbeingloadedunderweightofthehoppert1,thrust
generatingenergyforthenextjumpcyclet2 andmaximumjumpheightatthenextjumpcyclet3.Thex-axis
representtimeins,thelefty-axisishopperheightinmandtherighty-axisrepresentshopperspeedinm/s.
Theredandbluecurvesrepresentheightandspeed,respectively.Finally,thesolidblackedgesrepresent
jumpphases.
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6
Conclusion

Throughout the thesis, I wrote about most of the work on material compliance I have done during

my PhD. One paper I omit was my collaborative work on soft biological tissue palpation 8, where I

created a soft actuation and sensing module to automatically detect potentially cancerous tissue by

measuring contact stiffness. By the time I completed my work on the curvature sensor, soft module

control, and force sensing, I had gained significant practical knowledge on how to manufacture and
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build highly flexible/stretchable mechatronic sensors, actuators and corresponding control systems

aimed to be used with robots.

I was interested in continuum manipulator control and design. However, I saw a number of

shortcomings in the existing octopus-inspired manipulation approaches. I also thought replicating

the joint-linkage structure with soft modules was not the best way to utilize these mechanisms.

I already knew about Raibert’s work from my previous experience with ZMP-based robot walk-

ers. My hunch was that his control ideas, which naturally embrace compliance, could create a con-

nection to soft-bodied robot design. While reading through Raibert’s book75, I was inspired by his

forecast on how a flexible bodied legged robot could potentially use its flexibility to achieve cheetah-

like running with extremely simple controllers. Very simply, one can imagine a virtual leg connect-

ing the middle of the curved body to the touch point of the legs. It is important to remember that

at each stance, feet are positioned close to one another so that they all act like a single leg. In theory,

such a mechanism would be able to replicate the original single leg hopper mechanism.

My original goal was to create an autonomous walking system that utilized my knowledge from

soft and origami inspired robotics. However, it turned out that building a complete running sys-

tem from scratch with such novel soft robotic design elements is a little too much for a single PhD

thesis. So I pivoted to working on a single leg design and how legged robotics can benefit from it by

making it quite compliant and lightweight using manufacturing techniques that can be found in

the previous chapter of my thesis. Moreover, the leg mechanisms demonstrated the sensing quality

of my tri-axial force sensors, discussed in the earlier chapters. Interestingly, researchers in 20 built a

quadruped mechanism using standard mechanical components. Therefore next steps along this line
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could be creating compliant body motions with multi-material design patterns and anchoring the

motion trajectories of them in simpler theories of running.

Robotics have improved along with computer science over the past half decade and there is an

overemphasis in robotics community on finding algorithmic solutions to physical problems. My

research tries to balance this trend by putting emphasis on smart mechanism design. Especially, my

work on compliant leg mechanism experimentally shows that we should be reasoning about material

properties and algorithms simultaneously, while designing agile robots. The result of this multi-

disciplinary way of thinking is increased mechanical efficiency. I think the trend to make robots

more agile will continue and we will see complex mechanisms handling complicated tasks in the real

world with seamless effort. This kind of future will require smart mechanical design combined with

good algorithms to exploit mechanism dynamics efficiently.
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