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Abstract

The recent advances in the field of soft robotics have made autonomous soft robots working

in unstructured dynamic environments a close reality. These soft robots can potentially collaborate

with humans without causing any harm, they can handle fragile objects safely, perform delicate

surgeries inside body, etc. In our research we focus on origami based compliant mechanisms, that

can be used as soft robotic skeleton. Origami mechanisms are inherently compliant, lightweight,

compact, and possess unique mechanical properties such as– multi-stability, nonlinear dynamics,

etc. Researchers have shown that multi-stable mechanisms have applications in motion-sequencing

applications. Additionally, the nonlinear dynamic properties of origami and other soft, compliant

mechanisms are shown to be useful for ‘morphological computation’ in which the body of the robot

itself takes part in performing complex computations required for its control.

In our research we demonstrate the motion-sequencing capability of multi-stable mechanisms

through the example of bistable Kresling origami robot that is capable of peristaltic locomotion.

Through careful theoretical analysis and thorough experiments we show that we can harness multi-

stability embedded in the origami robotic skeleton for generating actuation cycle of a peristaltic-like

locomotion gait. The salient feature of this compliant robot is that we need only a single linear

actuator to control the total length of the robot, and the snap-through actions generated during this

motion autonomously change the individual segment lengths that lead to earthworm-like peristaltic

locomotion gait. In effect, the motion-sequencing is hard-coded or embedded in the origami robot

skeleton. This approach is expected to reduce the control requirement drastically as the robotic

skeleton itself takes part in performing low-level control tasks.

The soft robots that work in dynamic environments should be able to sense their surrounding

and adapt their behavior autonomously to perform given tasks successfully. Thus, hard-coding a

certain behavior as in motion-sequencing is not a viable option anymore. This led us to explore
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Physical Reservoir Computing (PRC), a computational framework that uses a physical body with

nonlinear properties as a ‘dynamic reservoir’ for performing complex computations. The compliant

robot ‘trained’ using this framework should be able to sense its surroundings and respond to them

autonomously via an extensive network of sensor-actuator network embedded in robotic skeleton.

We show for the first time through extensive numerical analysis that origami mechanisms can work

as physical reservoirs. We also successfully demonstrate the emulation task using a Miura-ori based

reservoir. The results of this work will pave the way for intelligently designed origami-based robots

with embodied intelligence. These next generation of soft robots will be able to coordinate and

modulate their activities autonomously such as switching locomotion gait and resisting external

disturbances while navigating through unstructured environments.
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Chapter 1

Introduction

In recent years, robotics has entered into all aspects of our everyday life. Robots have become

a ubiquitous and necessary, helping us with basic tasks such as cleaning and cooking to safely

transporting us for long distances and manufacturing amenities and products in mass quantities

necessary to live our lives comfortably. The current robots for the most part are non-collaborative

in nature; since they are made from rigid parts, complex, bulky but very accurately operating

electro-mechanical systems. In the age of advanced human-robot collaboration, the advantage of

soft robots is clear. The soft robots can be integrated safely in an unstructured dynamic environment

without causing any harm to nearby humans and things. In future, soft robots can be safely deployed

for disaster rescue, rehabilitation assistance, manipulation of fragile/ delicate objects, minimally-

invasive surgery, robotic wearables/exoskeletons, space/deep ocean exploration, remote monitoring

in hazardous environment, etc.

One major obstacle in the widespread implementation of soft robots is their control. They

are composed of soft and compliant materials that possess highly non-linear, large deformation

range accompanied with virtually infinite degrees of freedom. Due to their complex non-linear

dynamics, the accurate control of soft robots is very difficult and they usually need an array of soft,

flexible sensors and actuators to accurately control and determine their trajectory. Additionally,

the electronic hardware used for control and actuation of soft robots is largely rigid, which makes

untethered control of soft robots a difficult task.

Keeping the complexity in implementation of soft robotic control in mind, first we will re-

view the state-of-the-art of autonomous, untethered soft robots with special focus on soft robotic

1



Figure 1.1: Pneumatically/hydraulically actuated autonomous soft robots. (a) Resilient quadruped
robot [151], (b) octopus inspired octobot [163], (c) soft robotic fish capable of turning and diving
[67], (d) continuum robotic OctArm [44]

locomotion. The focus here is to summarize emerging and widespread actuation and control tech-

nologies that are strong candidates for future implementation in autonomous, embodied soft robots

and the field of morphological computation. Then, we will review origami mechanisms and Physi-

cal Reservoir Computing (PRC) from the point of view of their application to soft robotic control.

Finally, we will define the objective of this research work and pose research questions that connect

these topics together.

1.1 Autonomous Soft Robots

Pneumatic/hydraulic actuation has proven to be the most widespread method to design

completely soft and untethered robots. One major category of these robots is composed of a layer of

soft silicone-rubber like material with pre-defined internal cavities attached to a stiffer layer. When

the cavities are inflated with pressurized fluid the difference in the stiffness between the layers causes

the robot body to bend in various shapes depending on their internal structure. For example, Tolley

et al. [151] developed a resilient, untethered quadruped robot with PneuNet architecture, on-board

mini-air compressors and battery pack that can sustain limited exposure to fire, snow, water and

execute various gaits. Wehner et al. [163] developed an entirely soft, autonomous, octopus inspired

octobot which houses an onboard mono-propellant reactor with 50% aqueous hydrogen peroxide

2



Figure 1.2: Smart Material actuated autonomous soft robots. (a) Earthworm-inspired Meshworm
[143], (b) Bistability embedded swimming robot [12], (c) Cockroach inspired low profile robot [164],
(d) a millimeter scale jellyfish-like robot [131], (e) 3D printed ferromagnetic soft material[70]

(H2O2) as fuel and platinum as catalyst. Fluidic elastomer actuators have enabled the control of an

untethered autonomous soft robotic fish [67]. The propulsive forward swimming motion of the soft

tail is achieved by alternate actuation of both sides of the fluidic actuator. Yaw control is achieved

by retaining more average volume in one fluidic actuator half than the other and pitch control is

achieved by adjusting the attack angle of the dive planes.

Another category of pneumatically actuated soft robots uses pneumatic air muscles, also

called McKibben actuators/ Pneumatic artificial muscles (PAMs), which are akin to muscular hy-

drostats. OctArm [44, 161] is a continuum manipulator composed of high strain extensor actuators

divided into multiple sections with rigid end-plates. Each section possesses 3 DoFs (two-axis bending

and extension) and the total number of DoFs for OctArm is 3n, where n is number of sections present.

The OctArm can be mounted on a mobile platform and controlled wirelessly via joystick control.

Additionally, draw wire encoders are used to provide the shape feedback for effective operation.

Smart materials are also used to design completely soft, untethered robots. Due to their

low-profile nature, and in-built compliance they are an attractive option for soft robot actuation.

For example, Meshworm [143] is an earthworm-inspired peristaltic crawling soft robot with braided

3



mesh-tube structure that is actuated by Nickel-Titanium (NiTi) coil actuators spread throughout

the body. Under actuation, the braided mesh-tube structure provides antagonistic action of radial

contraction and longitudinal extension. The robot uses two longitudinal muscles composed of NiTi

coil spring actuators to incorporate steering capability. Researchers have also used Shape Memory

Polymer (SMP) muscles to produce snap-through instabilities in bistable beam element and actuate

an untethered, soft swimming robot with directional propulsion [12]. A fast and robust insect-scale

soft robot is based on a curved piezoelectric Polyvinylidene difluoride (PVDF) unimorph structure.

PVDF can produce periodic extension and contraction by the piezoelectric effect under an AC

driving voltage to change the shape of the robot [164]. Ren et al. have developed a millimeter scale

jellyfish-like robot that can generate multiple swimming gaits using its magnetic composite elastomer

lappets under magnetic actuation [131]. 3D printing of programmed ferromagnetic domains in soft

materials have enabled fast transformations between complex 3D shapes via magnetic actuation[70].

So far we have seen that pneumatic/hydraulic actuation is the most popular method to

design and actuate completely soft, untethered robots, followed by smart materials. The major

advantage of soft robots over their rigid bodied counterparts is their inherent compliance and variable

stiffness; which makes tasks that were hitherto unavailable or difficult for traditional ‘hard’ robots

look plausible. For example, manipulation and grasping of delicate objects, safe interaction with

humans, and mimicking behavior of biological systems. The biological/ nature inspired design of

these soft robots is however still lacking the control efficiency and intelligence we see in the natural

systems. The control strategies and the actuation techniques used in these soft robots are still

reminiscent of the principles used in traditional robotics. Most of these robots still use rigid internal

or external electronic components to provide digital control architecture. The control actions/

commands are computed in an external digital controller/hardware. The compliant robotic structure

merely responds to the actuation input applied and generates desired pre-programmed behavior.

The performance of these soft robots is still limited to a narrow operation regime. Additionally, it

is difficult to adapt to changing environmental conditions and the decision-making process is still

limited to the external brain / processing unit.

There is a growing trend in soft robotics community to use all mechanical components,

soft materials and/or systems that possess geometric non-linearity, and non-monotonous energy and

force-displacement curves. The goal here is to create soft control systems with mechanical logic

gates to minimize the presence of or to even get rid of rigid electronic components in the soft robotic
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Figure 1.3: Soft controllers for autonomous soft robots. (a) Artificial phototactic ray [120], (b) Soft
matter computer [40], (c) Bistable valve powered digital logic [126], (d) Vacuum powered buckling
actuator [167], (e) soft hexapod robot for extreme environments[94], (f) Vacuum-actuated pneumatic
muscle [168]

skeleton and/or digital processors. Such mechanical machines can still perform autonomously and

under extremely harsh conditions where traditional electronic devices cannot be used. Additionally,

researchers are looking at the ways to embed certain intelligence in the soft robots that will enable

them to autonomously/ internally process information, perform computations and respond to the

changing environmental conditions actively by generating the required control inputs.

In one interesting example, researchers designed a soft-robotic ray [120] inspired by stingrays

and skates. The integrated sensory-motor system of the robotic ray is composed of four-layers: a

three-dimensional elastomer [polydimethylsiloxane (PDMS)] body, a chemically neutral skeleton fab-

ricated by means of thermal evaporation of gold through a custom designed shadow mask; a thin

interstitial elastomer layer obtained by spin-coating,and a layer of optically responsive, live, rat car-

diomyocytes generated via microcontact printing of fibronectin. When immersed in a 37°C Tyrode’s

physiological salt solution containing glucose as energy reservoir, and upon optical stimulation, the

fabricated ray is propelled via the undulatory motion of its fins. In another example, researchers

developed a soft matter computer (SMC) using a pattern of Conductive Fluid Receptors (CFRs)

and insulating liquid as an input. This SMC can be directly integrated in robotic body to program

peristaltic-like locomotion gait, reflexes for soft robotic gripper, and behavior switching in 2-DoF
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soft actuator [40].

In an effort to design completely soft digital logic gates for soft robot embodiment, the re-

searchers have started leveraging the non-linear material and geometric properties of soft and com-

pliant mechanisms. For example, multi-stable and bistable mechanisms, inflatable fluidic actuators,

and compliant buckling beams possess non-monotonous energy and force-displacement relationship.

Under displacement/volume control, they undergo buckling/snap-through actions at constant total

length/volume, that are accompanied by large geometric deformations, volume/pressure changes

and spike in force exerted. Snap-through actions also cause the equilibrium path of multi-stable

systems/ serially connected inflatable fluidic segments to switch from one branch to another. Under

special conditions, the extension and contraction curves are different and result in a hysteresis-kind

of loop that can be used to create periodic actuation cycles or for hardware sequencing. In the

following paragraphs we focus on mechanisms that utilize bistability, multi-stability or buckling to

design soft control for soft robots.

The Whitesides group designed a pneumatically activated bistable valve [126, 147, 125]

that is composed of two cylindrical chambers separated by a hemispherical membrane. The air-

supply tubes passing through both the chambers are connected to a common output. The valve

has two stable states, unactuated and actuated. Chamber-1 is kept at atmospheric pressure while

the pressure in the chamber-2 (PM ) is controlled via external application. When PM ≤ Psnap, the

air supply tube of chamber-2 is kinked. Once the pressure in chamber-2 is increased above the

snap-through pressure i.e. PM ≥ Psnap, the membrane snaps and kinks the air supply tube in

chamber-1. So the output toggles between Patm and PM creating binary logic device and it is used

to create complex logic gates. The soft logic gates are applied to a human-operated, completely soft

gripper with toggle button, a semi-autonomous submersible robot, a soft ring oscillator for periodic

actuation of soft robots.

Vacuum-operated buckling elastomeric actuators [167] are composed of a network of air

chambers and elastomeric pillars. The application of vacuum collapses the air chambers inside the

actuators, buckles the pillars and leads to central axis rotation. This feature is used to design soft

grippers, swimmers and walkers. Mahon et al. developed a soft robot for extreme environments that

combines fluidic switches and vacuum-actuated muscle to design electronic-free control architecture

[94]. The soft robot uses fluidic switches, or transistors to create a logic for generating walk and

grasp states. The legs are actuated with vacuum-actuated muscle-inspired pneumatic structures
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that buckle under application of vacuum to generate linear motion [168].

Bifurcation based embodied logic [59] was demonstrated in a mechanical logic module fab-

ricated by Direct ink writing–an extrusion-based 3D printing technique. This logic module can

produce AND, OR, and NAND output in response to chemical inputs (water, toluene), depending

on which structures are placed inside the module (hydrogel valve,PDMS-GF15 bistable unit, etc).

Chalvet et al [11] designed a planar digital microrobot composed of four bistable modules that is

used for precise positioning of its end-effector. Due to its multi-stability the microrobot doesn’t need

energy to maintain its position, but just for switching states of different modules.

Overvelde et al. designed a soft actuator that consists of serially connected inflatable fluidic

segments (composed of latex tubes with stiffer outer braids) that undergo snap-through instabilities

under volume controlled actuation[117]. These instabilities arise when individual segments with

highly non-linear and non-monotonous pressure-volume relationship are connected together and

lead to rapid change in the length and volume of the individual segments at constant total volume.

The equilibrium path followed by such systems under inflation and deflation is different and makes

a hysteresis-like loop that can be used for various applications [97]. This principle is also used

for designing a pneumatically actuated, autonomous, quadruped compliant robot with embedded

actuator sequencing [42]. They showed that such embedded hardware sequencing can reduce the

input to a single fluidic supply tube and completely eliminate the internal valves with electrical

tethers.

These non-traditional control strategies integrate the soft robot morphology, actuation and

control architecture to develop mechanically intelligent soft robots. This new paradigm in soft

robotics research can lead to the design of completely soft autonomous, untethered robots. These

robots can potentially sense the environment around them and react/ or take decisions dynamically,

leading to truly intelligent soft robots. Inspired by these advances we introduce two novel methods to

embed hybrid mechanical-digital control in soft robotic skeleton, namely multi-stability for motion-

sequencing and Physical Reservoir Computing (PRC) with origami. The soft robots in this research

work are designed with origami and compliant mechanisms. We describe the research motivation

and questions in detail in the final section of this chapter.
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Figure 1.4: Origami applications in engineering. (a) Origami by Robert Lang, (b) Freeform Origami
Tessellations by Generalizing Resch’s Patterns[149], (c) Robotic origami metamorphosis [100], (d)
Deployable solar panel [174], (e) origami wheels for performance on unstructured terrain, (f) wireless-
powered gripper for medical applications [7], (g) self-assembling robot for search and rescue [28],
(h)Origami-based earthworm-like locomotion robots [26]

1.2 Origami Mechanics for Soft Robotic Control

Origami is an ancient art of paper folding, in which a flat sheet of material is folded at pre-

defined places called creases to create complex 3-D structures and mechanisms. The recent advances

in computational mathematics and algorithms have helped origami evolve into a sophisticated art-

form that boasts a deep connection with geometry and mathematics. In 2000s, researchers started

studying ways to design automated/ computational geometric folding algorithms [73, 18, 95] for

virtually any object. That led to the design of freeform origami ie. origami patterns or tessellations

to create any 3-D shape [148, 19]. Structural engineers also started studying origami for applications

in deployable mechanisms [174, 140, 32, 54, 72, 45]. In the ideal/ mathematical origami flat sheet

of material is of zero thickness, but real origami is composed of materials with finite thickness.

So researchers started to modify ideal origami for creating compatible thick origami designs [174,

13, 174]. Additional efforts are underway to study the folding mechanics via truss-frame based

formulations that can capture the non-linear deformations and folding motion accurately[138, 30, 86].

Origami mechanisms are inherently lightweight, compact, and compliant, which makes them

ideal candidate for designing soft robot skeletons. The origami mechanisms can exhibit many
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unique properties such as – multi-stability, non-linear stiffness, negative Poisson’s ratio and multi-

transformability – which are not found in nature [139, 84]. Thus, origami has found multitude of

applications in engineering and architecture. Origami-inspired and origami-derived designs have

started to appear in spacecraft solar panels [174], biomedical robots [63], vibration isolation applica-

tions [134, 136], energy harvesting applications [171], self-folding robots [133, 99, 28], crawling robots

[118, 26, 5, 130],programmed pop-ups in kirigami shells [129], DNA origami[162], mechanical logic

gates [152, 112], shape morphing [80], programmable meta-materials [32, 116, 22, 144, 84, 66, 111],

etc.

As explained in previous section, the multi-stable origami mechanisms also undergo buck-

ling/ snap-through actions. Some bistable and multi-stable origami patterns are – square twist

[145], Kresling [60] and its variant Flexigami [110] and reentrant Tachi-Miura Polyhedron (TMP)

origami [169], creased conical surface[77], waterbomb base [46], origami hyperbolic paraboloid or

hypar [34], and generic origami metasheet[160]. The pop-through defects created in the miura-ori

meta-materials were applied to design re-programmable meta-materials with varying modulus [144].

Researchers have implemented mechanical logic gates via differential humidity-driven folding of wa-

terbomb base origami [152]. In another example, researchers used magnetically actuated bistable

Kresling to design Schmitt Trigger based logic gates [112].

We propose to use the non-linear mechanics of folding to design embedded control for soft

origami robots. We started by examining the performance of fluidic origami cellular structures, since

pneumatic actuation is most popular method for actuation in soft robotics. In the study presented in

Chapter 2 we developed the truss-based lattice-framework for analyzing origami mechanisms. Using

the correct stiffness formulation is one of the most important aspect for comparing the theoretical

formulation with the experimental results. Next, we studied origami mechanisms that possess bista-

bility and multi-stability, as they are ideal for design of soft robotic skeletons. Chapter 3 describes

how we can hard-code/embed a periodic actuation cycle in a Kresling origami based multi-stable

crawling robot for peristaltic-like locomotion gait generation. Next section introduces the concept of

physical reservoir computing i.e. performing complex dynamic computations with physical bodies.

In chapter 5 we show that origami meta-materials can be used as dynamic reservoirs and we propose

design of soft origami robots with embedded physical reservoir computing power.
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Figure 1.5: Physical Reservoir Computing for Soft Robotic Control. (a) Generic mass-spring-damper
reservoir [49], (b) Tensegrity robot [9], (c) Octopus-inspired soft robot [14], (d) Compliant quadruped
robot [17]

1.3 Physical Reservoir Computing for Soft Robotic Control

The natural world is a great source of inspiration for the field of soft robotics [98, 76].

For example, researchers have developed soft, compliant robots that have mimicked – locomotion

of octopus [14],grasping of elephant trunk [47],flying of insects [90], swimming of jellyfish [64, 131]

and fish [67], crawling of snakes [130],insects [164] and earthworms [143], etc. These biological

systems all sport a a soft, compliant, variable stiffness skeleton with non-linear dynamic properties,

and a complex, highly interconnected network of sensors (neurons) and actuators (muscles) spread

throughout the body. The complex interplay between the brain, the sensor-actuator network and

the body enables an animal to interact with the environment, process information, take appropriate

decisions, and perform various tasks efficiently. Thus, the morphology of a body affects its actuation,

control, and ultimately the “brain’s” decision-making process. Therein lies the success of biological

systems brought about by millions of years of evolution.

Similar to the biological systems soft, compliant robots possess virtually infinite degrees of

freedom, non-linear dynamic properties with large non-linear deformation patterns, and an array

of actuators and sometimes sensors to facilitate control. The current state-of-the-art soft robots

however lack the high level of interactivity/information processing that exists between the robot

actuation-control system and its state/sensory system. Traditionally in robotics every effort is made

to reduce the effect of higher-order geometric and material non-linearities. But taking cues from the

workings of natural systems, an increasing number of researchers are now embracing the undesirable

nonlinear dynamics of soft and compliant bodies as computational resource to effectively create an

embodied intelligence and control [121, 122, 9, 49, 108, 150]. Thus, a new computational paradigm

called morphological computation[121, 122, 49, 9] has emerged in which the physical body of the
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robot itself takes part in performing low level control tasks, such as co-ordination and modulation

of locomotion gait simplifying the central controller architecture.

Reservoir computing (RC) is a computational framework based on artificial recurrent neural

networks (RNNs) [56, 57, 93, 92, 91, 89, 142, 150, 106]. RNNs are extensively applied to the

problems involving time-series prediction such as stock market and weather forecasting, robot gait

and/or manipulator motion planning, robotic control, text and speech recognition, etc. A recurrent

neural network is an artificial neural network where the output of the current time step depends

on the output of the previous time step, in addition to the current input. Since RNNs involve

forward as well as the back-propagation of input data, training them became a very difficult task.

To circumvent these difficulties, the concept of a fixed recurrent neural network was independently

introduced by Jaeger [56] as Echo State Networks (ESNs) and Maass [93] as Liquid State Machines

(LSMs). In the foreword of a book called ‘Reservoir computing’ Prof. Jaeger credits Kirby and

Day [71] as RC pathfinders [107]. In the RC setting, the neural network is randomly generated

with fixed interconnections and input weights, and only the output readout weights are updated

using simple techniques such as linear or ridge regression. The network dynamics are governed by

non-linear dynamical equations, which transforms the input data stream into a high-dimensional

non-linear state-space that can capture the non-linearities and time-dependent information in the

input stream. This fixed RNN is called a reservoir as it remains fixed throughout the computation

and this field of research has become known as Reservoir Computing.

Paul [121, 122] investigated the link between morphology and control for biped locomotion

and used morphology as a basis to develop tensegrity robots with reduced control requirements.

Taking this concept even further, Hauser et al. [49, 50] proved that a generic network of spring-

mass-damper system with non-linear spring and damper properties can be used as a morphological

computation device. In contrast, Caluwaerts et al. [10, 9] showed that geometric non-linearity of

tensegrity structures can be the basis of a dynamic physical reservoir without the need for non-

linear springs and dampers. Researchers have shown that physical dynamical systems can be used

as computational reservoirs to perform complex computation tasks such as approximating non-linear

dynamical systems [10, 9, 49, 50, 108, 150], pattern generation [10, 9, 49, 50, 108, 150], generating

and controlling robot locomotion gait [9, 150, 17, 1, 14], and even for speech recognition [29] and

machine learning[109, 150, 106, 102], etc. This paradigm is known as Physical Reservoir Computing

(PRC).
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We propose the use of origami meta-materials as dynamic physical reservoir, to leverage

the non-linear geometry and mechanics of folding. In Chapter 5 we demonstrate the reservoir

computing power of origami through multiple numerical experiments. We also demonstrate that

origami reservoir can perform emulation task through a proof-of-concept experiment.

1.4 Research Objective and Questions

In this section, we will formally define the research objective and frame the research questions

that will be answered throughout this research work.

Research Objective:

Developing design and analysis framework for hybrid mechanical-digital control of

soft robots: from mechanics-based motion sequencing to physical reservoir computing

Inspired by the advances in novel techniques for autonomous soft robotic control, we propose the

use of non-linear material and geometric properties of origami and compliant mechanisms to create

embedded actuation and control of soft robotic locomotion. We examine and compare two different

approaches for designing soft robots with embedded intelligence and computational power. The

research work is divided into two major topics:

1. Harness multi-stability of origami and compliant mechanisms for mechanics-based motion se-

quencing in soft robots.

In this approach the motion-sequencing is hard-coded or embedded in the origami robot skele-

ton. This approach is expected to reduce the control requirement drastically as the robotic

skeleton itself takes part in performing low-level control tasks.

However, such hard-coding does have its limitations. For example, we cannot add bending

capability and completely different mechanism has to be added to switch the gait from straight

line motion to bending motion. The robot cannot sense and react to the external disturbance

in such type of control and any malfunction leads to failure.

2. Develop framework for the design of Physical Reservoir Computing embedded soft origami

robots with distributed sensor and actuator network
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To overcome the short-comings from hard-coding/ embedding particular kind of behavior in

the soft robot, we examine PRC based approach for soft robot design. In this approach, a

distributed network of actuator and sensors is used instead of minimizing their use. Multiple

behaviors can be embedded in the robot simply by changing the output readout weights for

corresponding behavior. The training process generates robust closed-loop behavior, so that

small external disturbances can be resisted and robot performs well even in presence of noise.

Since, the robot is composed of a network of actuators and sensors, it can sense the surrounding

environment and can be trained to respond to the external inputs by switching or modulating

the behavior.

Research Questions:

We addressed following questions through the course of our research work:

1. How to examine the actuation performance of fluidic origami cellular structure through theo-

retical analysis, and validate FEA and experimental results?

Methods:

• Formulate Miura-ori design and rigid-folding kinematics and use virtual work principle

to calculate the final/steady-state folding angle at a given internal pressure.

• Develop a quasi-static equivalent truss-frame model to discretize the continuous fluidic

origami cellular structure into a network of pin-jointed stretchable truss elements with

torsional spring stiffness assigned at the folding and facet bending creases.

• Develop equivalent stiffness parameter formulation to correctly estimate truss stretching

stiffness, crease folding stiffness and facet bending stiffness from 3D printed extension

and contraction fluidic origami prototypes.

• Perform parametric analysis to study the correlation between actuator performance

metrics (free stroke and blocked force) and underlying Miura-ori design.

2. How to design Kresling origami based multi-stable robotic driving module?

Methods:
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• Design a generalized Kresling origami pattern to accommodate non-zero material

thickness and increase the design space available for tailoring the kinematics of

peristalsis crawling.

• Experimentally characterize the bistability of Kresling segment and multi-stability of

the compliant driving module composed of two serially connected Kresling segments.

3. How to design compliant mechanism based multi-stable robotic driving module?

Methods:

• Use Pseudo Rigid Body Modeling (PRBM) to synthesize the compliant multi-stable

mechanisms.

• Experimentally characterize the bistability and tri-stability of compliant segments and

multi-stability of the compliant driving module composed of two serially connected

tri-stable and bi-stable segments.

4. How to exploit the multi-stability embedded in Kresling origami/ compliant mechanism based

robotic skeleton to generate coordinated locomotion gait?

Methods:

• Formulate a potential energy-based optimization algorithm to identify the equilibrium

deformation trajectories of multi-stable mechanisms.

• Apply the optimization algorithm to the Kresling origami/ compliant mechanism based

driving module to generate a deterministic actuation cycle.

• Design passive foldable anchors that utilize the deformation of individual segments of

the driving module to imitate earthworm setae that anchor to the surrounding

environment and move the robot body forward.

• Combine the actuation cycle with foldable anchors, to embed peristaltic-like crawling

locomotion gait in the soft robot, that needs a single linear actuator and no digital

controllers to control the individual segment deformation.

• Design the experimental setup and fabricate the compliant robot working on these

principles, to validate the peristaltic-like locomotion induced by multi-stability.
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• Perform parametric analysis to uncover the correlations between peristalsis gait length

and Kresling origami design.

5. Prove that origami meta-materials can be used for Physical Reservoir Computing (PRC)

through extensive numerical simulations.

Methods:

• Develop lattice-framework based algorithm to analyze the dynamics of origami. This

algorithm needs to work for any origami for which initial crease pattern is given.

Implement gravitational, damping and external/ actuation forces and boundary

conditions/ constraints.

• Design the reservoir computing framework for an origami based reservoir.

• Perform benchmark reservoir computing tasks (e.g. emulation, pattern generation,

output modulation) to prove that origami can be used as dynamic physical reservoir.

• Perform parametric analysis to uncover the correlations between reservoir computing

performance and reservoir design parameters (underlying origami design, material

parameters, and actuator-sensor distribution).

6. Demonstrate origami meta-materials can be used for Physical Reservoir Computing (PRC)

through proof-of-concept experiments.

Methods:

• Develop experimental setup to perform benchmark reservoir computing task of

emulation.

• Perform multiple experiments with origami reservoir.

• Perform additional analysis with techniques such as multiplexing on the data gathered

from emulation task to improve the performance of reservoir.

7. How to design PRC embedded origami crawling and quadruped soft robots?

Methods:

• Enhance the dynamic model to simulate ground reactions and friction forces.
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• Design origami pattern for earthworm-inspired crawling robot and the quadruped robot

with optimum actuator-sensor network distribution.

• Implement PRC for forward locomotion gait generation in the soft robots and study the

performance of the robot under closed loop.
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Chapter 2

Actuation performance of fluidic

origami cellular structure:

Theoretical investigation

Abstract

Motivated by the sophisticated geometries in origami folding and the fluidic actuation prin-

ciple in nastic plant movements, the concept of fluidic origami cellular structure was proposed for

versatile morphing and actuation. The idea is to assemble tubular Miura-ori modules into a cellular

architecture, and apply fluidic pressure to induce folding and hence actuation. Despite the promising

potentials, the actuation capabilities of fluidic origami, such as free stroke and block force, are not

elucidated. In particular, the effects of the thick facet material stiffness and pressure-sealing end

caps are not understood. These gaps in our knowledge prevent the practical implementations of

fluidic origami. Therefore, We constructed CAD models of the fluidic origami modules based on

realistic design parameters to ensure that they can be fabricated via commercially accessible 3D

printers while remaining pressure proof. In this study, we use the equivalent truss frame model to

examine the actuation performance of fluidic origami actuators. We then comparing the results of

theoretical analysis with the results obtained from FEA and experiments to reveal the influences

of end caps and thick facet material stiffness. We also perform parametric analysis to study the
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correlation between actuator performance metrics (free stroke and blocked force) and underlying

Miura-ori design.

2.1 Introduction

Over the past several decades, the art of origami paper folding has been transformed into

a design and fabrication framework for developing different sheet materials into sophisticated 3D

shapes [73, 18, 95]. As a result, we are witnessing the rapid emergence of origami-inspired engineering

applications spanning from the large-scale deployable aerospace structures [174, 140], kinetic archi-

tectures [32, 13], and self-reconfigurable robots [28, 99] [8,9] to the small-scale biomedical devices

[63], mechanical meta-materials [139, 116, 22], and DNA machines [162]. These applications leverage

the folding-induced shape reconfiguration to achieve their target performance, which can be tailored

with an exceptionally large freedom by carefully designing the underlying crease patterns[148, 19].

This advantage is especially evident if the crease pattern is rigid-foldable, so that one can analyze

the shape reconfiguration by treating the origami facets as rigid panels revolving around hinge-like

crease lines – essentially a 3D linkage mechanism.

The versatile shape reconfiguration capability of origami is especially appealing for embed-

ded actuation because folding can be used to program sophisticated actuation motion paths. There-

fore, a fluidic origami cellular structure concept (referred simply as “fluidic origami” hereafter) was

proposed by the authors via combining the origami geometry and the actuation principles of plant

nastic movements [80]. Fluidic origami is essentially an assembly of tubular modules consisting of

carefully designed, rigid-foldable Miura-ori sheets (Figure 1). When these modules are pressurized

either pneumatically or hydraulically, they fold and generate effective actuation motion until the

maximum internal volume allowed by rigid-folding is reached. Such a distributed, pressure activated

actuation shares similar working principles to the rapid nastic movements in plants like Mimosa

pudica, which can selectively manipulate the turgor pressure in its motor cells to create an internal

bending moment for leaf folding [36, 20] (Figure 2.1(a)). Compared to other plant-inspired, pres-

sure activated cellular structure concepts such as PACS [43], pressure adaptive honeycombs [158],

and topologically optimized trailing edge [156, 83]; the fluidic origami has some unique advantages.

Firstly, folding is a fundamentally three-dimensional shape reconfiguration that can enable complex

motions like a combined extension and shear [22]. Secondly, the pressurized fluidic origami mod-
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Figure 2.1: The concept of plant-inspired fluidic origami cellular structure. (a) The nastic movements
in plants and (b) fluidic origami share the similar working principle: That is, the embedded and
distributed pressurization in the cellular structure can enable versatile actuation motion. In the
mimosa plant shown in (a), increase or decrease the turgor pressure can expand or shrink motor
cells to bend the leaves. (Image adopted from [154] with permissions) In the fluidic origami shown in
(b), an increasing internal fluidic pressure can induce large amplitude folding and generate actuation
motion in both L and W directions. Note that the folding kinematics shown in this figure is based
on idealistic model assuming rigid-folding, and the opening at the two ends of the fluidic origami
modules changes their shapes significantly

ules can be seamlessly integrated with non-pressurized origami sheets for large-scale and efficient

motions. Finally, the morphing and actuation capability of fluidic origami can be complemented by

other adaptive functions such as stiffness adaptation [80] and pressure-dependent multi-stability [82].

The stiffness adaptation, which can be achieved near instantaneously via simple on/off valve con-

trol, can reduce the power requirements for actuation without sacrificing the external load bearing

capacity. Meanwhile, the multi-stability can significantly amplify the actuation speed and magni-

tude similar to the impulsive trap closing motions in Venus flytrap [38]. Therefore, fluidic origami

has great potentials to advance state-of-the-art of many engineering systems that require embedded

actuation such as morphing airframe [157] and soft robots [75].

Despite these promising potentials, the actuation capabilities of fluidic origami such as free

stroke and block force are not yet fully elucidated. Especially, previous studies by the authors relied

on idealistic models assuming that 1) the origami facets have zero thickness, 2) the crease lines

act like simple hinges, and 3) the tubular modules are sealed by ideal end caps that can perfectly

accommodate the shape changes of their end openings. Indeed, similar assumptions have been

made by many other studies on origami-inspired structures and materials. These idealistic models

can reveal the working principles without unnecessary complexities, but they inevitably neglected
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many important factors in practical implementations. In particular, additive manufacturing or 3D

printing is considered as one of the most viable approaches to fabricate the complex geometries of

multi-cellular fluidic origami while maintaining internal pressure sealing. Thus the finite thickness

and compliance of the 3D printed facet and crease materials must be considered in order to examine

the realistic actuation performance of fluidic origami. Furthermore, a realistic pressure-sealing end

cap at the end openings of fluidic origami module can be incompatible with the folding-induced

shape changes (Figure 2.1). Therefore, end caps can reduce the actuation performance and such

negative effects must be analyzed carefully.

Therefore, the objective of this study is to conduct a holistic investigation of the actuation

performance of the fluidic origami by incorporating realistic considerations in its design and fabrica-

tion. This study is conducted based on the CAD models of fluidic origami modules featuring finite

facet material thickness and flat end caps. Various design variables, such as the material thinning

along the crease lines, are carefully chosen to ensure that the fluidic origami modules can be fabri-

cated via commercially accessible 3D printing machines. Two types of modules are designed based

on their initial folding configurations, one contracts along longitudinal L direction under pressur-

ization, and the other extends. Based on these CAD designs, we examine the free stroke and block

force of fluidic origami module using two different approaches. The first approach relies on the sim-

plified models used in authors’ previous publication [80] and many other studies on origami-inspired

engineering applications; and the second approach uses the more comprehensive finite element sim-

ulations. Comparing the results from these two different approaches can reveal the correlations

between the fluidic origami actuation performance and many practical design considerations includ-

ing Miura-ori geometry, facet thickness, material stiffness, and end caps. And understanding these

correlations will eventually enable us to identify the optimal fluidic origami design. Therefore, this

study can provide the practical guidelines for implementing fluidic origami as an active and adaptive

structure.

The rest of this chapter is organized as follows. Section 2.2 discusses the design and kine-

matics of the fluidic origami module. Section 2.3 and 2.4 contains the in-depth analysis of its free

stroke and block force performance, respectively. These two sections also include parametric analyses

revealing the correlation between the actuation performance and the underlying Miura-ori design.

Section 2.5 concludes this chapter with summaries and discussions.
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2.2 Miura-ori design and folding kinematics

The backbone of a fluidic origami module consists of two identical Miura-ori strips connected

along their zig-zag crease lines (Figure 2.2(a)). The design, stacking, and folding kinematics of the

Miura-ori sheets have been extensively discussed in previous studies [139, 22, 21]. Here we only

provide a brief overview for clarity. Miura-ori design is determined by three variables that remain

unchanged regardless of folding: they are the crease length a, b and the sector angle γ between

them. To describe the amount of folding, a folding angle θ is introduced as half of the dihedral

angle between adjacent facets of the two connected Miura-ori strips (Figure 2.2(a)). According to

rigid-folding kinematics that assumes rigid facets, hinge-like crease lines, and ideal end caps, the

folding angle can take any values from 0◦ to 90◦ (Figure 2.2(b)). θ = 0◦ indicates that the Miura-ori

is flat, and θ = 90◦ means it is fully-folded. The correlations among the external length L, width

W, enclosed internal volume V, and the folding angle θ are strongly nonlinear as follows [79],

L =
2nb cos θ sin γ√
1− sin2 γsin2 θ

W = 2a sin θ sin γ

V = na2bsin2 γ sin(2θ)

(2.1)

where n is the number of Miura-ori unit cells – the most elementary geometric identity –

along the length of a tubular fluidic origami module. For example, the module shown in Figure 2 has

three unit cells so n = 3. Clearly, the maximum volume always occurs when θ = 45◦ regardless of the

Miura-ori design; and this is the critical, locking configuration at which further pressurization could

not induce more actuation motion. Therefore, we can define two types of fluidic origami modules

based on their initial resting folding angle θ. The first type, which features a resting folding angle

less than 45◦, slightly contracts in length L but significantly expands in width W under internal

pressurization until the maximum volume configuration is reached (Figure 2.1(b)). For clarity, it

will be referred as the “contraction type” hereafter. The second type of fluidic origami module has

a resting folding angle bigger than 45◦, so it extends significantly in length L but slightly contracts

in width W (Figure 2.1(b)). We will refer it as the “extension type”.
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Figure 2.2: Design and ideal rigid-folding kinematics of a fluidic origami module. (a) A module
consists of two identical Miura-ori strips connected along their crease lines. The most elementary
unit cell and its important design parameters are highlighted. This particular module has three
unit cells. The inserted figure at the top right illustrates the definition of folding angle θ. (b) The
relationships among the folding angle, normalized length, width, and the internal enclosed volume
according to the rigid-folding kinematics. In this figureγ = 60◦. (c) Folded fluidic origami modules
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Figure 2.3: CAD design and 3D printing of the fluidic origami modules. (a, b) The facet thickness
is modelled by an inward offsetting from the Miura-ori backbone geometry. (c, d) V-grooves are
added along the crease lines to facilitate proper folding. (e) A finished CAD model for the fluidic
origami module that includes the facet thickness and all crease thinning. This model was then sent
directly to the 3D printers. (f) SLS printed, extension type of fluidic origami module using PEBA
materials. (g) FDM printed contraction type of fluidic origami using TPU materials. Flat end caps
are printed separately and glued to provide proper pressure sealing.

Table 2.1: Design parameters of the two fluidic origami prototypes shown in Figure 2.3 and Para-
metric studies

Design Parameters Extension Contraction Parametric study

a 62.5 mm 46.9 mm 31 mm
Miura-ori b 50 mm 37.5 mm 25 mm
backbone γ 60◦ 60◦ 60◦

geometry θ0 70.5◦ 16.1◦ 78◦

n 3 3 3

tf 4 mm 3 mm 4 mm
tc1 2 mm 1.5 mm 1 mm

Additional tc2 1 mm 4.5 mm 1 mm
design tc3 2 mm 2.3 mm 1 mm
variables wc1 8 mm 7.5 mm 4 mm

wc2 8 mm 1.5 mm 4 mm
dc3 3 mm 2.6 mm 2 mm
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2.3 Free Stroke Performance of the Fluidic Origami

Free stroke and block force are the two most commonly used performance metrics for ac-

tuators. In this study, the free stroke S of the fluidic origami module is defined as the ratio of

its averaged extension or contraction due to internal pressure over its initial dimensions, while no

external loads are applied. For effective actuation, we examine the longitudinal deformation of

the extension type of fluidic origami and transverse deformation of the contraction type. That is,

Sx = Xfinal/Xinitial − 1, where X = L for the extension type and X = W for the contraction type.

The free stroke of fluidic origami is a function of internal pressure, and its magnitude increases

monotonically with increasing pressure until the maxi-mum volume configuration is reached. More-

over, since the free stroke is associated to folding, its magnitude is dictated by the torsional stiffness

of creases. We investigate the free stoke of fluidic origami assuming rigid facets and ideal end caps.

Similar approaches have been used extensively for other rigid-foldable origami research. We also

conduct a parametric study to reveal the correlation between free stoke and underlying Miura-ori

designs.

2.3.1 Simplified approach for free stroke analysis

In this approach, we assume ideal end caps that can seal the internal pressure without

hindering the shape changes of the end opening. In this way, the pressure-induced deformations of

fluidic origami follow the rigid-folding kinematics defined in Equation 2.1, and the corresponding

total energy can be approximated as the summation of crease strain energies and the work done by

pressure:

Ut = Πc +Wp =
∑
i

1

2
kci (ϕi − ϕ0

i )
2 − P (V − V 0) (2.2)

where ϕi and kci are the dihedral opening angles and torsional stiffness of the crease lines,

respectively (Figure 2(a)). ϕ1 = π − 2θ, ϕ2 = 2θ, and ϕ3 = 2arcsin[cos θ(1 − sin2 θ sin2 γ)(1/2)]. ϕ0
i

and V 0 are initial crease angles and enclosed volume corresponding to the resting folding angle θ0.

The folding angle at a given internal pressure can be calculated by solving the following equation
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Figure 2.4: Free stroke analysis of the fluidic origami prototype. (a) Performance of extension type
of fluidic origami prototype along the length direction (b) Performance of the contraction type of
fluidic origami prototype along its width direction. Free stroke performance based on the simplified
approach (shown in dashed line), FEA (shown in solid line), and experimental measurements (shown
with red circles)

based on virtual work principle,

−P
dV

dθ
+
∑
i

kci (ϕi − ϕ0
i )
dϕi

dθ
= 0 (2.3)

The solution of θ can be inserted into Equation 2.1 to calculate the free stroke. It is evident

from equations 2.2 and 2.3 that the free stroke performance is directly related to the crease torsional

stiffness kci in that stiffer crease lines will reduce the free stroke at a given pressure level. The crease

torsional stiffness estimation for the 3D printed extension and contraction fluidic origami prototypes

are detailed in Appendix A. The calculated free stroke magnitude with respect to pressure are shown

as the dashed curves in Figure 2.4(a) and Figure 2.4(b).

2.3.2 Correlation between free stroke and underlying Miura-ori design

A unique advantage regarding fluidic origami is the possibility to program its actuation

performance by tailoring the underling Miura-ori design variables. According to the rigid-folding

kinematics, the normalized free stroke is only related to the sector angle γ and folding angle θ0,

therefore, we conducted parametric analyses to examine the correlations between the free stroke

in length direction and these two crucial design parameters using TPU material properties. We
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Figure 2.5: Parametric analyses illustrating the correlation between free stroke performance, the
sector angle γ, and resting folding angle θ0 of the underlying Miura-ori. (a) Results from the finite
element analysis, where each maker is a simulation result. (b) Results based on the rigid-folding
kinematics model. In both (a) and (b), the main figures show the free stroke of the extension type
of fluidic origami with θ0 > 45◦, and the small insert figures show those of contraction type. Note
that the Y axes are in logarithmic scale in the main figures and linear scale in the inserted small
figures.

compare the results of theoretical analysis with the results of FEA simulations (Figure 2.5). In this

parametric analysis, other design parameters such as the crease line lengths and thinning parameters

are chosen from a set of baseline designs listed in Table 2.2, and the internal pressure P is set at

34.5kPa. By carefully examining the results from this parametric study and the experiment results

discussed in previous two subsections, we can come to the following conclusions regarding free

stroke performance. 1) The extension type of fluidic origami actuators generate significantly more

free stoke along the length direction than the contraction type. The simplified model and finite

element simulations predict close to 100% of free stroke magnitude from the extension type, but

less than 10% from contraction type. 2) Among the extension types of actuators based on different

Miura-ori designs, those with resting folding angle close to 90◦ and sector angle close to 40◦ provide

the largest free stroke. Especially, the free stroke increases monotonically as the resting folding angle

θ0 increases. 3) The overall trends between free stroke and Miura-ori designs are the same between

the results from simplified model and finite element simulation. Therefore, the end caps do not

qualitatively change the relationship between free stroke and Miura-ori designs; instead, they only

reduce the magnitude of the achievable free stroke.
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2.4 Block Force Performance of the Fluidic Origami

Block force is another important performance metric because it directly indicates the load

carrying capacity of fluidic origami. In this study, block force is defined as the reaction force of the

fluidic origami when its stroke is held at zero, that is, the two ends of the fluidic origami are fixed.

To examine this performance metric without unnecessary complexities, we only investigate the block

force of the extension type fluidic origami in the length direction L using the baseline designs in

Table 3. We introduce a normalized block force B defined as follows:

B =
F

PA0
(2.4)

where F is the magnitude of the block force according to an internal pressurization P, and A =

2a2 sin θ0 sin γ
√
1− sin2 θ0 sin2 γ is the cross-section area of the fluidic origami at the initial resting

configuration. Unlike the free stroke, the block force is more closely related to the facet material

stiffness rather than crease torsional stiffness. Therefore in this section, we examine the block force

by using an equivalent truss-frame model that has been used extensively by many other studies on

origami-inspired structures and materials [32, 139, 80, 30]. A parametric study is also conducted

and discussed.

2.4.1 Block force analysis based on the truss frame model

The equivalent pin-jointed truss frame model used in this approach essentially converts

the continuous origami into a discrete system with a finite degrees of freedom. In this model, the

creases are represented by stretchable truss elements, and the facets are triangulated along the

short diagonals with additional truss elements to provide a first order estimation of their bending.

Torsional spring stiffness are assigned to the dihedral angles defined by the truss elements along the

creases and across facets to represent the crease torsional and facet bending stiffness, respectively

(Figure 2.6(a)). In this way, the truss frame model can establish the connection between block force

and facet compliance while assuming ideal end caps.

Three geometric transformation matrices and vectors are necessary for analyzing the pres-

sure-induced block force based on this truss frame model. They are 1) a compatibility matrix C

correlating the vector of pin-joint displacements dx to the vector of truss member stretches e so
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Figure 2.6: Block force analysis of the fluidic origami. (a) Illustration of the equivalent truss-
frame model. The solid lines are truss elements representing the crease lines, and dashed lines are
truss elements that triangulate the facets. Pin joints at the ends are highlighted as solid circles,
and their displacements along the x-axis are set to zero. (b) Parametric analyses illustrating the
correlations between block force performance, the sector angle γ, and the resting folding angle θ0

of the underlying Miura-ori. Besides γ and θ0 , other fluidic origami designs are chosen from Table
3, and the pressure is set at 34.5kPa. Some curves based on the truss-frame model show notable
dips regarding the block force magnitude, one of them is labeled by (ii) as an example. These dips
are related to the occurrence of non-uniform deformation. Here, (i),(ii), and (iii) are three fluidic
origami designs with the same sector angle but different resting folding angles, and their deformation
patterns under pressure are shown in detail in Figure 2.7

that e = Cdx; 2) a transformation matrix J correlating dx to the vector of crease angle changes dϕ

so that dϕ = Jdx; and 3) a row vector D correlating dx to the internal volume change dV so that

dV = Ddx The total stiffness matrix K of the fluidic origami truss frame model is the summation

of the facet stretching/shear stiffness Ks and the bending stiffness Kb. Ks equals to CTΛC where

Λs = diag(ks1, k
s
2, ..., k

s
n) is a diagonal matrix containing the equivalent stretch stiffness ksi of the

truss elements; Kb equals to JTΛbJ where Λb = diag(kc1, k
c
2, ..., k

c
m, kf1 , k

f
2 , ..., k

f
p ) is a diagonal

matrix containing the equivalent crease torsional stiffness kci and facet bending stiffness kfi . The

derivation of C, J, and D matrices have been discussed extensively in previous publications [80, 30],

and the necessary details for calculating ksi , k
c
i and, k

f
i are provided in Appendix A for clarity. To

analyze the block force while assuming ideal end caps, the longitudinal displacements of the end

nodes are assumed zero, however, their transverse displacements are not constrained (Figure 9(a)).

The vector of vertices displacement dx can be calculated as a function of internal pressure:

dx = PK−1DT (2.5)

and the reaction block force can be calculated as the summation of the internal forces from the truss
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Figure 2.7: The non-uniform deformation pattern of the fluidic origami based on truss-frame model
at 34.5kPa of internal pressure. All three fluidic origami modules shown here share the same sector
angle γ = 70◦, and their corresponding block force performance are labeled in Figure 2.6. It is
evident that fluidic origami module with a higher resting folding angle θ0 shows a stronger non-
uniform deformation, by which some unit cells contract in their length direction and other cells
extend significantly

stretches onto the end nodes and the pressure acting on cross-section area at the ends.

2.4.2 Block force v/s Miura-Ori designs

Similar to the free stroke, the block force performance of the fluidic origami module is directly

related to the underlying Miura-ori designs, such relationship can be illustrated by the parametric

study results in Figure 10. The magnitudes of the normalized block force vary significantly as the

sector angle and resting folding angle change. By examining the parametric analysis results from

both truss frame model and finite elements simulations, we can come to the following conclusions

regarding block force performance. 1) Fluidic origami modules with γ = 80◦ generates higher block

force than other tested sector angles. In particular, those with γ = 40◦ perform relatively poorly

regarding block force, even though they generate a large free stroke as shown in Figure 2.5. 2) The

block force performance peaks when the resting folding angle θ0 is designed in the range between 60◦
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and 70◦. This is also different from the free stroke analysis results, which recommends a close to 90◦

resting folding angle for large free stroke. 3) End caps do not qualitatively change the relationships

between the block force and Miura-ori designs. However, they significantly reduce the magnitude of

achievable block force.

Besides the block force magnitude, another significant difference between the truss-frame

model results and FEA simulation is the deformation pattern of fluidic origami. The truss-frame

model predicts that the fluidic origami with higher resting folding angle θ0 deforms non-uniformly,

that is, unit cells at one end of the fluidic origami module contract in the length L direction, while

the cells at the opposite end elongate significantly (Figure 2.7). This is because at higher folding

angles, the fluidic origami is close to be fully folded; its creases and facets are oriented in a way that

can easily accommodate the non-uniform deformations. That is, non-uniform deformations would

primarily invoke crease folding without inducing much facet deformations. A similar phenomenon

was also studied based on eigenvalue analysis in previous literature [32, 80], where interested readers

can learn more about the underlying physical principles. The finite element results, on the other

hand, do not show such non-uniform deformations. In the truss-frame model, the end caps of fluidic

origami module are assumed ideal, that is, they can seal the internal pressure and accommodate

the shape changes from folding. Moreover, the facets are assumed to have zero thickness. However

in the finite element model, the end caps are no longer ideal and the facets have finite thickness.

The non-ideal end caps and thick facets impose additional constraints to the deformation of fluidic

origami, preventing the non-uniform deformation from occurring.

2.5 Summary and Conclusion

Via analytical investigation, finite element simulation, experiment validation, and design

optimization, this study holistically examines the actuation performance of a plant-inspired fluidic

origami cellular structure. In particular, we aim to understand the influences of thick facet material

stiffness and pressure sealing end caps in order to obtain practical guidelines for implementing the

fluidic origami. To this end, we construct CAD models of the fluidic origami modules based on

realistic design parameters to ensure that they can be fabricated via commercially accessible 3D

printers while remaining pressure proof. Two fluidic origami prototypes based on different designs,

3D printing methods, and materials are fabricated for experimental validation.
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We then use two different approaches to examine the free stroke and block force performance

of fluidic origami. The first approach is to use simplified analytical models that assume zero facet

thickness and ideal end caps. In particular, for free-stroke analysis we use a model based on rigid-

folding kinematics; and for block force analysis we use an equivalent truss-frame model. These

analytical models have been used extensively for the previous studies of origami applications. The

second approach is to use the more comprehensive nonlinear finite element simulation. Comparing

the results from these different approaches can reveal the influence of thick facet material stiffness

and realistic end caps. It is found that the thick facets and end caps reduce the magnitude of free

stroke and block force. They also alter the deformation pattern of fluidic origami under pressure.

That is, in the free-stroke analysis, the end caps induce localized bending deformation at each end

of the fluidic origami module; in the block force analysis, the thick facet and end caps prevent the

non-uniform elongation and contraction predicted by the truss-frame model. However, thick facet

and end caps do not qualitatively change the relationships between the actuation performance and

the underlying Miura-ori design.

Based on these insights, we developed a customized generic algorithm, based on the finite

element model, to identify the optimal fluidic origami designs for actuation. We find an optimal

resting folding angle to maximize the actuation capability, while the sector angle in Miura-ori can

be tailored to effectively program the actuation performance. Therefore, this study provides the

practical guidelines for implementing fluidic origami for many applications that require embedded

actuation such as morphing air-frame and soft robots.
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Chapter 3

Peristaltic locomotion without

digital controllers: Exploiting

multi-stability in origami to

coordinate robotic motion

abstract

This study examines a novel approach to generate peristaltic-like locomotion in a segmented

origami robot. Specifically, we demonstrate the use of multi-stability embedded in the origami skele-

ton to eliminate the need for multiple actuators or digital controllers to coordinate the complex

robotic movements in peristaltic crawling. The crawling robot in this study consists of two serially

connected bistable origami segments, each featuring a generalized Kresling design and a foldable

anchoring mechanism. Mechanics analysis and experimental testing reveal that the nonlinear elastic

behaviors of this dual-segment module, especially its rapid deformation due to the non-monotonic en-

ergy landscape and force-displacement relationship, can create a deterministic deformation sequence

or actuation cycle. This cycle can then be used to generate the different phases in a peristaltic-like

locomotion gait. Instead of individually controlling the segment deformation like in earthworm and
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other crawling robots, we only control the total length of this robot. Therefore, this approach can

significantly reduce the total number of actuators needed for locomotion and simplify the control

requirements. Moreover, the richness in Kresling origami design offers us substantial freedom to

tailor the locomotion performance. The results of this study will contribute to a paradigm shift in

how we can use the mechanics of multi-stability for robotic actuation and control.

3.1 Introduction

Limbless and metameric invertebrates like the earthworm use peristalsis to crawl over uneven

surfaces, burrow through soil, and navigate in confined spaces with ease. The body of an earthworm

consists of many segments that are grouped into several “driving modules”. Each module includes

three types of segments according to their states of deformation: “contracting”, “anchoring”, and

“extending” [127] (Figure 3.1(a)). In a peristaltic locomotion cycle, the contracting segment expands

in diameter and contracts in length by engaging its longitudinal muscles (Figure 3.1(b)). The

extending segment deforms oppositely by engaging its circular muscles. When a contracting segment

reaches the fully-contracted shape, it becomes an anchoring segment, which can firmly attach itself

to its surrounding by further deploying hair-like bristles (aka. setae) on its surface. By carefully

coordinating the deformation of its segments, the earthworm can generate a retrograde peristaltic

wave that propagates towards the tail end of its body, thus driving itself forward (Figure 3.1(a)).

The locomotion performance of a peristaltic gait is easily tunable by changing the number

of these three types of segments in a driving module [24, 25]. The absence of complex external

appendages like legs or wings makes the driving module design compact and light. As a result,

peristaltic locomotion has been implemented in many worm-inspired crawling robots for field ex-

ploration and in-pipe inspection. However, these robots typically require many actuators—such as

pneumatic chambers [8, 65, 173], shape memory alloy (SMA) springs [26], electric motors [27], or

permanent magnets [137]—to activate their segments individually. Moreover, a complicated control

architecture is also necessary to coordinate the individual segment deformation to achieve peristaltic

locomotion (Figure 3.1(c)). This can lead to a cumbersome mechatronic setup that can significantly

constrain the overall application potential, especially when these robots need to be completely soft

and un-tethered [132].

To address this issue, we examine the use of non-monotonic energy landscape and force-
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Figure 3.1: The vision of using multi-stability to drastically simplify the mechatronic setup for gen-
erating peristaltic locomotion. (a) Peristaltic locomotion cycle in an earthworm. The earthworm
body moves forward while the peristaltic wave propagates backwards. For clarity, the earthworm
body consists of six identical segments and two driving modules. (b) The muscular actuation scheme
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displacement relationship in multi-stable origami to generate peristaltic-like locomotion without

relying on multiple actuators or digital controllers. A material or structure is multi-stable when

it possesses more than one stable equilibria (or states). It can remain at one of its stable states

without any external aid, and switch between these states by external or internal actuation. The

potential energy landscape of a multi-stable system has multiple peaks and valleys by definition,

which creates non-monotonic force-displacement relationships. Under certain loading conditions,

this non-monotonic behavior can induce large deformation through a rapid release of elastic energy

(also referred to as “snap-through” in some scenarios). This rapid deformation in multi-stable system

is the driving mechanism underpinning many nastic plant movements [37], and it has found various

engineering applications like energy harvesting [48, 16, 171], vibration isolation [61, 62, 53], as well

as actuation and morphing [119, 146, 4].

Regarding the applications in robotics, multi-stability also shows promise in amplifying the

authority and speed of robotic actuation [26, 69], actuating an untethered soft swimming robot [12]

or increasing the precision and repeatability of a micro-robotic end effector [11]. More importantly,

recent studies reveal that multi-stability can be harnessed to drastically reduce or even eliminate the

need for using digital controllers to generate soft robot locomotion [128], mechanical logic gates [152],

non-peristaltic crawling [147], and coordinated oscillation [125]. Logical programming for robotic

gripping is also proven feasible by using soft bistable valves [126]. It is worth emphasizing that in

some of these studies, the necessary condition to achieve robotic functions is the non-monotonic

energy landscape or force-displacement relationship, while multi-stability serves as a mechanism to

achieve the desired non-monotonic behavior.

In this study, we show that by exploiting the non-monotonic energy landscape in the multi-

stable Kresling origami, we can create peristaltic-like crawling locomotion with only one actuator and

without any digital controllers (Figure 3.1(d)). Origami is an ancient art of paper folding wherein

folding a 2D sheet along prescribed crease lines results in the creation of complex 3D shapes. Over the

past few decades, it has become a framework for constructing deployable structures [174], mechanical

metamaterials [84], and reconfigurable robots [133]. Origami mechanisms are inherently lightweight,

compact, and compliant. More importantly, they can exhibit unique mechanical properties—such

as auxetics, programmable nonlinear stiffness, and multi-stability [138, 169, 144, 145, 160, 33, 81,

23, 66]—due to the nonlinear kinematics of folding.

The crawling robot, in this study, consists of a driving module consisting of two serially
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connected Kresling segments and foldable anchors (Figure 3.1(e)). We designed the Kresling pat-

tern according to the desired kinematics and bistability so that these segments can exhibit both

longitudinal and radial deformation via folding. When its total length is increased and decreased by

a linear actuator, the dual-Kresling driving module can display a deterministic deformation sequence

(or “actuation cycle”) that includes two rapid “jumps”. We then designate different parts of this

actuation cycle as the phases of a peristaltic-like locomotion gait. By doing so, we can eliminate

the need for using individual actuators for each segment or using digital controllers to coordinate

these actuators. That is, the peristaltic locomotion is essentially “coordinated” by the nonlinear

mechanics of Kresling origami. Therefore, this study will contribute to a paradigm shift in how we

can use multi-stability for robotic actuation and control.

We first proposed this concept of peristaltic locomotion using Kresling origami mechanics

in a single case study without any experimental validation or in-depth investigation [6]. Therefore,

the propose of this letter is to examine the correlations between origami design, folding mechanics,

and locomotion performance comprehensively through both analytical and experimental efforts. The

following sections of this letter will (2) detail the design, analysis, and characterization of the elemen-

tary Kresling origami segments; (3) elucidate the creation of a deformation sequence (or “actuation

cycle”) using the rapid deformations caused by multi-stability; (4) discuss the experimental vali-

dation of the peristaltic-like locomotion using this actuation cycle and a comprehensive parametric

study of gait length; and (5) conclude this study with summary and discussion.

3.2 Generalized Kresling Origami Segment

The centerpiece of the peristaltic crawling robot in this study is a driving module consisting

of two serially connected Kresling origami segments. The Kresling pattern consists of a linear array

of mountain and valley folds defined by triangular facets (Figure 3.2(a)). By attaching the two

ends of this array (marked by *), we obtain a twisted polygonal prism with a regular polygon at

its top and bottom. These two end polygons remain rigid throughout the folding motion. Kresling

origami was initially studied as a buckling mode in thin cylindrical shells subjected to torsion [55, 72].

Since then, it has been used extensively as a template for deployable structures or robotic skeletons

[60, 110, 118]. Kresling origami suits this study well because it has the desired tubular cross-

section, and more importantly, it is inherently bistable, thus exhibits the desired non-monotonic
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energy landscape and force-displacement curve. A Kresling segment can settle in a fully-extended

or a fully-contracted stable state, and it shows a large deformation between these two states. This

bistability originates from its non-rigid-foldable nature. The triangular facets remain undeformed

at the two stable states, but must deform while folding between these two states. Indeed, if these

triangular facets were strictly rigid, the Kresling segment would not fold. For clarity, we refer the

fully-contracted stable state as the state (0) and the fully-extended stable state as the state (1)

hereafter.

3.2.1 Design of the generalized Kresling origami

The design of a traditional Kresling segment is fully defined by three independent parame-

ters: the number of sides of the base and top polygon N , the side length of the polygon P , and an

angle ratio λ, which is related to the angle between polygon side and valley crease in the triangular

facets (Figure 3.2(a)). The length of the valley and mountain creases are:

Di = 2R cos(γ − λγ), (3.1)

Bi =
√
P 2 +D2

i − 2PDi cos(λγ), (3.2)

where γ (= π/2−ϕ) is the angle between the diagonal and side of the end polygon, R (= 0.5P/ sinϕ) is

its circumscribed radius, and ϕ = π/N . The traditional Kresling design, however, has a shortcoming:

Its length at the fully-contracted stable state (0) is always zero. This is impossible in practice due to

the finite material thickness, more importantly, it significantly constrains the design space available

for tailoring the kinematics of peristalsis crawling. To address this issue, we created a generalized

Kresling pattern by adding the fourth independent design variable: a non-zero segment length at

stable state (0) (aka. L(0) in Figure 3.2(a)) [6]. The triangular facets are “stretched” as a result and

their geometry is adjusted accordingly:
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Figure 3.2: Design, analysis, and experimental characterization of the generalized Kresling origami.
a) Crease pattern and the folded segment of both traditional and generalized Kresling origami
showing the important design parameters and variables related to folding. The traditional Kresling
always has a zero-length at the fully-contracted state (0), while the generalized Kresling has a “user-
defined” L(0). b) The normalized strain energy versus length of three Kresling segment designs of
different angle ratios but the same L(0)(= 20mm), N(= 8), and P (= 30mm). Increasing the angle
ratio can increase the bistability strength and length of the segment at the fully-extended state (1). c)
Experimentally measured force-displacement curves of Kresling segments with different angle ratios
but the same L(0)(= 10mm), N(= 8), and P (= 30mm). One can clearly see the correlation between
angle ratio and bistability strength in terms of the maximum reaction force between stable states.
The inserted picture on the right shows the experimental setup. d) Results of parametric study
depicting influence of the normalized L(0) versus λ landscape showing bistability range for different
N . The designs in Region A are always bistable. The Kresling segments in inset are identical with
configuration in Region C as state (1) and the one in Region A as state (0). e) The normalized L(0)

versus λ (for λ ≥ 0.5) landscape showing bistability strength for different N . In these two plots, the
color map (labeled on the right) represents the height of the normalized energy barrier between two
stable states. Therefore, a darker color means weaker bistability and vice versa.
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Dg =
√
D2

i + L2
(0), (3.3)

Bg =
√
B2

i + L2
(0). (3.4)

θg = cos−1

(
P 2 +D2

g −B2
g

2PDg

)
(3.5)

Here, θg is the angle between polygon side and valley crease, the subscript “i” denotes the

traditional Kresling and “g” denotes the generalized Kresling. By using this generalized design, we

can freely assign non-zero lengths to the Kresling segment at both fully-contracted state (0) and

fully-extended stable state (1).

To characterize the bistability of generalized Kresling segments, we adopt the equivalent

truss frame approach [60]. This approach uses pin-jointed truss elements to represent the mountain

and valley creases and assumes that the valley creases do not change their length during folding

[110, 118]. In this way, the triangular facet deformations induced by folding between the two stable

states can be approximated as the stretching and compression of the truss elements along mountain

creases. More specifically, the mountain crease trusses are un-deformed at the two stable states, but

they are compressed as we fold the Kresling segment between its two states. To describe the Kresling

folding deformation, we use three variables: the relative rotation angle between the top and bottom

end polygon during folding (α), the overall length of the Kresling segment (l), and the length of

the truss element along mountain creases (b). These three variables apply to both traditional and

generalized Kresling, and they are inter-dependent. Notably, the values of α are the same between

the traditional and generalized Kresling, so we can use it as the independent variable and obtain a

closed-form solution describing the folding kinematics:

l(α) =
√
L2
(0) + 2R2

[
cos(α+ 2ϕ)− cos(α(0) + 2ϕ)

]
, (3.6)

b(α) =
√
2R2(1− cos(α)) + l2. (3.7)

Here, α(0)(= 2λγ) is the angle between top and bottom polygon at the fully-contracted stable state

(0). Angle α(1) corresponding to the fully-extended stable state (1) can be found by setting the

39



mountain crease length b equal to its undeformed length Bg:

α(1) = {min(α)|b(α) = Bg}. (3.8)

Alternatively, α(1) can be computed as:

α(1) = 2(1− λ)γ ∀ λ > 0.5 (3.9)

The equivalent strain (ϵ) and strain energy (U) due to folding are

ϵ =
b

Bg
− 1 and U =

1

2
Kϵ2, (3.10)

where K represents the constituent sheet material stiffness. For the purpose of this analysis, we

normalize the strain energy U by K, and define the non-dimensional strain energy as

E =
1

2
ϵ2. (3.11)

Figure 3.2(b) illustrates the normalized strain energy of three Kresling designs with the same L(0)

but different angle ratios λ. The two potential energy wells are evident in these analytical results.

Moreover, as the angle ratio increases, the effective strain ϵ increases, consequently increasing the

bistability strength in terms of the height of energy barrier between stable states. For a given L(0),

the transition from mono-stability to bistability takes place at λ = 0.5 and bistability is strongest

when λ = 1.

3.2.2 Experimental characterization

To confirm the correlation mentioned above between bi-stability strength and angle ratio; we

fabricated and tested prototypes of the generalized Kresling segments using paper (Daler - Rowney

Canford 150 gsm). We first prepared the 2D drawing of Kresling pattern in SOLID-WORKS™and cut

them out of paper with perforated creases on a plotter cutter (Cricut Maker®). We then manually

folded the cut pattern into the Kresling segment and attached its top and bottom polygons to the

universal testing machine (ADMET eXpert 5601). To accommodate the relative rotation of these

end polygons, we designed a custom rotation fixture consisting of a dual ball-bearing hub (Figure
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3.2(c)). Certain adjustments to the Kresling segment fabrication were necessary to facilitate smooth

folding and obtain consistent results for higher angle ratio designs. First, we cut the mountain

creases to alleviate any excessive stresses that can lead to tearing after a few loading cycles. A

similar approach is used in the “Flexigami” [110]. Secondly, we added triangular reinforcements to

the facets to increase their stiffness relative to the creases, strengthening overall bistability (Figure

3.2(c)).

Figure 3.2(c) also illustrates the measured force-displacement curves of several Kresling

segment prototypes. The correlation between angle ratio and bistability strength is evident in

that a segment with a higher angle ratio demands a more significant actuation force to be switched

between stable states. Moreover, we observe a hysteresis loop between the extension and contraction

cycles. The force-displacement curves remain almost identical under repeated measurement cycles;

unless we excessively extend the segment beyond its stable state causing tears in the creases. Thus

we think this hysteresis behavior is intrinsic to the system, and it probably originates due to the

contact between triangular facets and the plasticity of the paper. Nonetheless, we can minimize

this hysteresis by the cutting and reinforcement techniques so that it will not significantly affect the

generation of the actuation cycle.

3.2.3 Parametric design study on the Kresling bi-stability

We performed further parametric analyses to fully understand the correlation between design

parameters and stability properties of the generalized Kresling segment. In this study, we varied the

number of polygon sides N , the polygon side length P , the fully-contracted segment length (L(0)),

and the angle ratio (λ). To ensure consistency, we normalized the fully-contracted segment length

(L(0)) based on the base polygon side length (P ). Results of the parametric study show that changes

in P or N do not fundamentally alter the segment stability. The generalized Kresling segments are

always bistable regardless of the L(0) value if λ > 0.5 (Region A in Figure 3.2(d)). The segments are

always mono-stable if λ is precisely 0.5. If λ < 0.5, the generalized Kresling segments can transit

from being mono-stable to bi-stable as L(0) increases (Region B to C in Figure 3.2(d), respectively).

Decreasing N lowers the transition curve between Region B and C; thus decreasing the design space

available in mono-stable region. The magnitude of the critical L∗
(0) at the boundary between Region

B and C is

L∗
(0) =

√
2R2 (cos(2λγ) + cos(2λγ + 2ϕ)) (3.12)
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However, upon closer inspection, we find that the bistable segment designs in Region C are redun-

dant. That is, for any bistable Kresling design in Region C with an angle ratio of λ < 0.5, we can

find an identical one in Region A with an angle ratio of 1 − λ. Moreover, the “L(0)” in Region C

indeed represents the segment length at its fully-extended stable state. Therefore, we neglect the

bistable Kresling designs with λ < 0.5 hereafter.

Figure 3.2(e) shows the effects of adjusting segment N and L(0) on its bistability strength,

which is characterized by the normalized strain energy barrier between the two stable states. Higher

strain energy barrier corresponds to stronger bistability strength and vice-versa. Generally speaking,

increasing the L(0) while keeping other design parameters unchanged would decrease the bistability

strength. Therefore, Kresling segments with a smaller L(0) and a larger angle ratio λ exhibit stronger

bistability. Moreover, the polygon side length P is unrelated to bistability, while a reduction in N

can increase the bistability strength. These parametric design studies can help us tailor the crawling

locomotion gait performance in the following sections.

3.3 Actuation Cycle from the Multi-stable Driving Module

In this section, we use a case study to illustrate how to harness the multi-stability in the

Kresling origami to generate a deterministic deformation sequence (or “actuation cycle”) with only

one actuator. In this case study, the driving module consists of two generalized Kresling segments

of different angle ratios and bistability strengths (Figure 3.3(a)). Without any loss of generality, we

assume λI ⩾ λII, where the subscript “I” and “II” represents the two constituent Kresling segments,

respectively. The Kresling design parameters used for this dual-segment driving module are listed in

Table 3.1. To generate the actuation cycle, we stretch and compress this driving module at its two

ends without manipulating its two segments individually. That is, we only increase and decrease the

total length (lt) of the driving module without directly controlling the individual segment lengths.

Table 3.1: Design parameters of the two Kresling segments in the driving module.

Parameter Segment I Segment II
N 8 8

P (mm) 30 30
λ 0.8 0.6

L(0) (mm) 15 5

To identify the actuation cycle, we first need to find how the driving module strain energy
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Figure 3.3: Formation of the actuation cycle in the multi-stable Kresling driving module and the
corresponding peristaltic-like locomotion gait. (a) The design of the driving module and the nomen-
clature denoting the different phases in the actuation cycle. (b) Analytical prediction (up) and
experimental results (below) of the Segment I and II deformations versus the prescribed change in
the total length of the driving module. In the two plots of analytical prediction, the color map
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cycle and foldable anchors. Design parameters of the driving module are listed in Table 3.1.
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changes when the total length (lt) of the driving module is changed from its minimum to maximum

and vice versa. This will enable us to get the individual segment deformations and identify the path

the system follows as total length (lt) is changed. We applied a customized optimization algorithm

to the landscape of total strain energy (Figure 3.3(b)) [113]. In this optimization, the objective

function is the total strain energy Et = EI + EII according to Equation (3.11). The independent

variable is the segment length lI or lII, and they must satisfy the equality constraint lI+ lII = lt, and

be within the bounds lI min ≤ lI ≤ lI max, and lII min ≤ lII ≤ lII max. In this way, the optimization

problem becomes: Find the value for lI (or lII) which locally minimizes the scalar objective function

Et for a given a prescribed total length lt, and satisfies the given equality constraint. Results of

this optimization are shown as the “equilibrium paths” in Figure 3.3(b), and B details a more

comprehensive optimization procedure involving multiple Kresling segments.

We start by stretching the driving module when its two segments are both at its fully-

contracted stable state (0) (point a in Figure 3.3(b)). During the stretching, the Kresling segments

deform by following the equilibrium path a → g → b → c → d → e until both of them reach the

fully-extended stable state (1) (point e in Figure 3.3(b)). Then, we compress the driving module

and observe that the segments follow a different equilibrium path e → d → d∗ → f → g → a until

they come back to the state (0) (Supplemental Video A).

In these equilibrium paths, We observe two distinct “jumps” caused by the non-monotonic

energy landscape of the multi-stable origami. One occurs during the stretching from c → d, and

the other during the compression from f → g (Figure 3.3(b)). When these jumps occur, a branch

of local energy minima reaches its end so that the driving module is forced to deform to a distant

branch of energy minima quickly. During these jumps, the two Kresling segments change their

length significantly, while their total length (lt) remains almost the same. By combining parts of

these equilibrium paths and the two jumps, we can construct an “actuation cycle”: g → b → c →

d → d∗ → f → g. This actuation cycle consists of four consecutive “phases”: In Phase I (g → b → c),

Segment I increases in length significantly while Segment II remains almost fully extended. Phase II

(c → d) is the first jump, by which Segment I quickly reaches the fully-extended state, but Segment

II contracts significantly in length. In Phase III (d → d∗ → f), Segment II continues to contract in

length until reaching its fully-contracted state, Segment I also contracts but to a lesser degree. The

final Phase IV (f → g) is the second jump, by which Segment I quickly deforms to its fully-contracted

state, but Segment II extends in length significantly.
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Here, it is worth emphasizing that in this driving module, multi-stability of the two segments

is a sufficient but not necessary condition to cause the deterministic deformation sequence in the

actuation cycle. Indeed, similar deformation sequence could be achieved if the force-displacement

curve of at least one segment has a non-monotonic force-displacement relationship [117, 97].

We experimentally verified the formation of this actuation cycle in a paper-based prototype

of the driving module (Figure 3.3(b)) (Supplemental Video A). The fabrication procedure and exper-

imental set up are the same as the single Kresling segment tests. The universal testing machine was

used to prescribe the change in the total length of the driving module (lt). To accurately measure

the segment deformation, we obtained high-resolution video footage of the driving module and used

the MATLAB® Image Processing ToolboxTM to measure the length of Kresling segments (lI and

lII).

The measured actuation cycle, including the two jumps, agrees well with the analytical

predictions. The experiment is repeatable over multiple extension and contraction cycles. However,

there are slight discrepancies between the analytical prediction and experiment measurements. More

specifically; the measured total lengths at which the jumps occur are slightly different from the

predictions and the jump magnitudes are lower. The deviation from the ideal actuation cycle is

mainly attributed to the hysteresis observed in individual segment testing. Errors are also introduced

during the fabrication and measurement stages. The experimental results show that the equilibrium

path from g to b in Phase I is not fully closed as depicted in the analytical prediction. A further

experiment with the Phases of actuation cycle shows that the “real” Phase I slightly differs from the

observed equilibrium path during extension, but it doesn’t change the location of jumps in Phase

II and Phase IV (Figure 3.3(b)). Nonetheless, these discrepancies do not hinder the creation of

peristaltic-like locomotion as we will discuss in the following section.

3.4 Locomotion Gait Generation

In this section, we show how the actuation cycle, combined with foldable anchors, can create

peristaltic-like crawling locomotion. Segments in the earthworm body increase in diameter while

contracting in length and vice versa (Figure 3.1(b)). This is an important component for achieving

peristaltic locomotion because it provides a mechanism to anchor the fully-contracted segment to its

surroundings by the setae. The diameter of Kresling segment, on the other hand, does not change
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Table 3.2: Anchor design parameters, units in mm

Parameter Seg. I Seg. II

Foam
cube

Length 18 15
Width 15 15

Thickness 10 10

Connector
sheet

Length 15 15
Width 15 15

Thickness 0.5 0.5

when its length changes. This necessitates the design of anchors which mimic the radial deformation

of earthworm segments.

3.4.1 Anchor Design

We designed the anchors by taking advantage of the folding kinematics of Kresling segments.

These anchors are attached to the triangular facets, so they can deploy and increase the effective

diameter when the segments are contracting (Figure 3.4(a,b)). They have plastic foam cubes at

their tips to create sufficient friction and thus a strong anchorage to their surroundings (a pipe of

47.5mm radius in this case). Moreover, we define a “cut-off” length for each segment to ensure

proper anchor deployment. When the Kresling segment contracts longitudinally below its cut-off

length, its anchors should be deployed far enough to create an anchorage with its surroundings. For

Segment I, its cut-off length is the length at the point c on its equilibrium path as shown in Figure

3.3; for Segment II, its cut-off length corresponds to the point d. We then determined the dimensions

of these anchors according to these cut-off lengths, folding kinematics of the Kresling, and the pipe

inner diameter (Table 3.2). The anchors are designated as tail anchor and head anchor according

to their position on the robot. The tail anchor is attached to Segment I and the head anchor is

attached to the Segment II. In this way, the effective diameter of the Segment I is larger than the

pipe diameter during Phase I of the actuation cycle, while the diameter of Segment II is larger than

the pipe during Phase III (Figure 3.4(c)). Moreover, the anchoring location switches from Segment

I to II in the Phase II jump, and switches back from Segment II to I in the Phase IV jump.

3.4.2 Peristaltic-like Locomotion Gait

By combining the dual-segment multi-stable driving module and the properly designed an-

chors, we now complete the design of crawling robot and harness the actuation cycle to generate a
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peristaltic-like locomotion gait. More specifically, the four consecutive phases in the actuation cycle

can be used to alternate the anchoring locations between the head and tail of the driving module,

resulting in a net forward displacement as detailed below (Figure 3.3(c)):

In Phase I (g → b → c), the crawling robot is anchored at its tail because its Segment I is

below its cut-off length. Meanwhile, the robot body is increasing in its total length by the actuator

input, giving a net forward displacement.

In Phase II (c → d), the jump between the equilibrium paths switches the anchor location

from the tail to the head. No head or tail displacement occurs during this jump.

In Phase III (d → d∗ → f), the crawling robot is anchored at its head because its Segment II

is now below its cut-off length. Meanwhile, the robot body is contracting in its total length, moving

the tail forward.

In the final Phase IV (f → g), the second jump occurs and the anchor location switches

back from head to the tail. At the end of this phase, the crawling robot returns to its original

configuration of the actuation cycle, i.e. at the start of Phase I. The “gait length” is the total

forward movement of the crawling robot head after one actuation cycle. It is equal to the change

in driving module length (lt) between two jumps; i.e. Gait Length = lt(c → d) − lt(g → f). The

actuation cycle from Phase I to Phase IV can be repeated to drive the robot forward continuously.

To experimentally validate the peristaltic-like locomotion induced by multi-stability, we

fabricated and tested a proof-of-concept prototype of the crawling robot. This prototype features

the same Kresling origami and anchor designs as in the analytical case study (Table 3.1 and 3.2). A

compression spring-winch mechanism attached to the two end plates of this robot is used to control

its total length (Figure 3.4(d)). A 5V stepper motor drives this spring-winch mechanism, and the

motor rotation is pre-programmed using Ardruino METRO 328 and motor-shield v2.3. To decrease

driving module length, the robot’s stepper motor turns the winch, pulling in the attached tendon.

To increase the total length, the motor turns the winch in the opposite direction to release the

tendon. The compression spring provides the internal force to keep the tendon taut. To measure the

locomotion performance, we took high-quality video footage of the crawling robot in action and used

the Computer Vision Toolbox in MATLAB® (Supplemental Video B). We developed a computer

program using the Kalman filter based motion tracking algorithm to track the movement of the head

of the robot.

The experimental results summarized in Figure 3.4(e,f) agree quite well with the analyt-
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Table 3.3: Features and performance of the final origami crawler prototype

Feature Value
Mass 70 g
Maximum length 90 mm
Minimum length 55 mm
Average speed 3.3 mm/sec
Average gait length 22 mm
Average cycle duration 6.7 sec

ical predictions in Figure 3.3(c) regarding the segment deformation sequence and anchor location

switches. Moreover, the robot locomotion cycle is uniform and repetitive (Figure 3.4(e)). There

is a discrepancy regarding the magnitude of gait length between the experiment and analysis, and

two factors can contribute to this. One is that the analytical prediction uses an idealistic model

to characterize the Kresling bi-stability so it does not fully capture the behaviors of the physical

prototypes with anchors and actuators integrated (also evident in Figure 3.3(b)). The other factor

is the slippage between the pipe and robot anchors, which results from the temporary loss of contact

during the anchor switching in Phase II and IV. Regardless, this experiment firmly validates the

feasibility of using multi-stability in the Kresling origami to create the peristaltic-like locomotion

with only one actuator and without a complex control architecture to coordinate the segments.

That is, the deformation of the segments and anchorage locations are “coordinated” directly by the

mechanics of elastic multi-stability.

Table 3.3 summarizes the features and locomotion performances of the dual-segment multi-

stable origami crawler. It is important to highlight that the actuation cycle induced by multi-stability

is independent of the rate of stretching/compression in total length. Therefore, by changing the

rotational speed of the motor one can adjust the frequency of the locomotion cycle and thus the

averaged crawling speed, however, the motor speed does not affect the gait length in one locomotion

cycle. The gait length is only related to the Kresling origami design and the corresponding multi-

stability. We detail this further in the following parametric study.

3.4.3 Parametric Study: Gait Length

It is clear from the actuation cycle study that the locomotion gait length depends on the

driving module deformation between the two jumps and the magnitude of these jumps, and the

underlying Kresling design also plays an important role. To uncover the correlations between peri-
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Figure 3.5: Parametric Study depicting the influence of segment angle ratio (λ) and fully-contracted
length (L(0)) on the gait length of crawling robot. (a) Results of the parametric study depicting
the influence of segment bistability strengths on locomotion gait length for different fully-contracted
lengths (L(0)). Here, the color map represents the normalized locomotion gait length, and the color
bar on the right applies to all four plots. (b) Examples of equilibrium paths that do not exhibit any
properly defined, four-phased actuation cycles with certain combinations of segment angle ratios.
N = 8, P = 30mm.
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stalsis gait length and Kresling origami design, we performed a parametric study by combining two

segments of different bistability strength (aka. different angle ratios and λI ⩾ λII). To ensure con-

sistency, we normalize the gait length based on the fully-contracted length of the driving module

lt min. Results of the parametric study show that, for a given λI, normalized gait length increases

as λII increases. On the other hand, for a given λII, normalized gait length is insensitive to changes

in λI (Figure 3.5(a)). Moreover, the fully-contracted lengths of the segments (L(0)) have a signifi-

cant influence on the normalized gait length and permissible combinations of segment angle ratios.

Generally speaking, the normalized gait length decreases as L(0) increases. However, smaller L(0)

can make more combinations of angle ratios unfeasible for peristalsis locomotion as we detail below.

There are three possible scenarios by which peristaltic-like locomotion is unachievable. In the

first scenario, there are less than two jumps in the actuation cycle. If the jump during the contraction

phase does not occur (case (i) in Figure 3.5(b)), both segments will contract monotonically and

anchor to the pipe, thus preventing any further locomotion. If the jump during the extension phase

does not occur, both segments will elongate monotonically, thus losing proper anchorage at both

ends of the robot. In the second scenario, there are more than two jumps in the actuation cycle (case

(ii) in Figure 3.5(b)). It is difficult to generate anchorage switches from these jumps consistently,

and the resulting actuation cycle becomes unnecessarily complicated. Moreover, the presence of

multiple jumps during the extension or contraction phase may reduce the jump magnitude, making

peristaltic motion unachievable. Therefore, we choose not to perform any detailed study of this

multiple-jump scenario. The third scenario occurs when λI = λII (case (iii) in Figure 3.5(b)). In

this case, there are no discernible jumps that can create any actuation cycles.

3.5 Summary and Conclusion

In this study, we demonstrated the use of multi-stability embedded in a robotic origami

skeleton to create peristaltic-like locomotion without the need for multiple actuators or compli-

cated controllers. By combining two bistable Kresling origami segments into a driving module and

increasing/decreasing its total length, one can generate a deterministic deformation sequence (or

actuation cycle). This actuation cycle has two discrete “jumps” that can significantly change the

length of two constituent Kresling segments without affecting their total length. These jumps are

the result of the complicated non-monotonic energy landscape caused by the nonlinear mechanics of
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folding, and they naturally divide the actuation cycle into four distinct phases. We then designed

and experimentally validated a peristaltic-like robotic crawling by using two phases for moving the

robot forward and the other two for switching the anchoring locations. To ensure proper anchorage

to the surroundings, we designed and implemented foldable anchors according to the kinematics of

Kresling folding. The results of this work show that the nonlinear mechanics of multi-stability can

be used to directly coordinate the robotic motion and drastically simplify the mechatronic setup

and control of compliant robots.

While we have used a compression spring-winch based linear actuator to control the length

of the driving module, any other mechanism that can work in the required deformation range may be

used to actuate the robot. The scale independence of the origami mechanism ensures that the same

robot design principles can be used to create nano/micro-scale as well as large-scale robots. More-

over, it is worth highlighting that although Kresling origami is used in this study for its simplicity

and versatility, the principle of using elastic multi-stability to generate peristaltic-like locomotion is

applicable to any other segmented robot systems, as long as the segment can (i) exhibit a coupled

longitudinal and radial deformations (aka. expanding radially while shrinking longitudinally, and

vice versa) and (ii) exhibit a strong non-monotonic force-displacement relationship.

In future work, the fabrication and modeling precision of the generalized Kresling origami

will be improved to provide more accurate analysis of the locomotion performance. Origami possesses

many other unique properties, such as programmable stiffness and auxetics, which could also be

exploited for soft robotic applications. Finally, the results of this study can be used to create an

efficient and hybrid approach for soft robot control. In this approach, the lower-level control tasks

(such as locomotion gait generation) are taken up by the embedded mechanics of multi-stability in

the mechanical domain, while the high-level control tasks (such as adapting locomotion direction

and speed according to the working environment) are achieved by sensors and controllers in the

digital domain. In essence, folding induced multi-stability can impart a “mechanical intelligence” to

the robotic body as a foundation for this vision of hybrid soft robot control.
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Chapter 4

Bi-directional locomotion using

multi-stable compliant mechanisms

4.1 Introduction

Previously, we have shown that we can harness the multi-stability in compliant robotic

skeleton to generate peristaltic-like locomotion gait and simplify the control architecture significantly.

Specifically, we designed a compliant robot by serially connecting two bistable generalized Kresling

origami segments. We require only a single linear actuator to control the length of robot and

generate a coordinated actuation cycle for uni-directional peristaltic-like crawling gait. In this

study, we further explore the design space of multi-stable mechanisms to investigate whether bi-

directional locomotion is possible. We perform multi-stability analysis on the compliant robotic

skeleton composed of two serially connected ‘generic’ tri-stable and bi-stable mechanisms to study

the viability of bi-directional crawling locomotion gait. After multiple numerical studies we see that

such bidirectional locomotion is indeed possible, but the design space of useful mechanisms is very

small, making viable mechanisms very rare indeed. This means it becomes important to accurately

fabricate such mechanisms with appropriate hinge stiffness.

53



4.2 Synthesis of Compliant Mechanisms

We used Pseudo Rigid Body Modeling (PRBM) to synthesize the compliant multi-stable

mechanisms. Ideally, a segment of peristaltic crawling robot should satisfy two criteria: (a) exhibit

a large deformation range between the fully-extended and fully-contracted states; (b) contract ra-

dially when extended longitudinally and vice-a-versa. To satisfy the first requirement we chose a

‘generic’ compliant slider-crank bi-stable mechanism with a large deformation range between two

stable states as basis for synthesizing multi-stable mechanisms. We can attach foldable anchors to

the rigid links of the bi-stable mechanism to fulfill the second requirement. The planar bi-stable

mechanism is composed of two compliant slider-crank mechanisms that are mirror images of each

other (Figure 4.1(a)). The resulting planar mechanism still has a rotational degree of freedom about

axis perpendicular to the plane of the motion. Thus, one way to design a spatial stable mechanism

is to combine two such planar mechanisms orthogonally to create 3-D bistable compliant mecha-

nism that has a single translation DoF along the longitudinal axis (Figure 4.1(b)). We study one

tri-stable mechanism that is created by nesting two serially connected bi-stable mechanisms inside

a larger bi-stable mechanism (Figure 4.2(a)). We can then proceed to tailor the geometry of these

mechanisms to form appropriate multi-stable mechanism that can potentially generate bi-directional

crawling locomotion gait.

The bistable compliant mechanism design is parameterized using its length in fully-extended

state (L1), length in fully-contracted state (L0), link length l1 and link length l4. These lengths also

correspond to the two bistable states of the compliant mechanism. The link l1 is the base link, link

l2 is rigid link that can freely rotate about the hinge N1. Finally, we have the compliant link which

is composed of links l3 and l4 joined together at hinge N3 via a compliant hinge. The links l1 and

l4 are constrained to be parallel to each other throughout the motion of the mechanism. that is We

need one more parameter to fully-define the link lengths of the compliant mechanism. We choose

the angle between links l1 and l2 in fully-contracted state (θ02) as the third design parameter. Now

we use loop closure equations to find the lengths of links l2 and l3 and then angle θ03.
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l2 =
(L0 − L1)

2 sin θ02
(4.1)

l3 =

√
(l1 − l4 − l2 cos θ02)2 + (

L0 + L1

2
)2 (4.2)

θ03 = arcsin
(L0 + L1)

2l3
(4.3)

During the motion the energy is stored and released in the compliant hinge, which is de-

noted by the change in the angle of hinge N3 given by µ3. Additionally, there is energy difference

between two stable states, damping, and friction that has to be accounted for. We assume that it

is proportional to the change in hinge angle N2 given by µ2. We use MATLAB fmincon function

to find the intermediate values of angles θ2 and θ3 for different lengths L (L0 ≤ L ≤ L1), since we

can’t solve the equation directly. We agin invoke the loop closure equation to find the values of θ2

and θ3 that satisfy the following equations.

L = l2 sin θ2 + l3 sin θ3 (4.4)

l1 − l4 = l2 cos θ2 + l3 cos θ3 (4.5)

(4.6)

Let the compliant hinge stiffness be K3 and K2 refers to the stiffness introduced to account for the

friction between components, damping and the energy difference between two stable states. The

total energy of the bistable mechanism during the motion is then given as,

µ2 = (θ2 − θ02) (4.7)

µ3 = −(θ3 − θ03) (4.8)

E =
1

2
K2µ

2
2 +

1

2
K3µ

2
3 (4.9)

Now that we have expression for the energy of a compliant mechanism we combine multiple

such mechanisms to create the compliant robotic skeleton as described in following section.
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Table 4.1: Geometric Parameters for bidirectionally crawling robot driving module

Segment I Segment II
Tri-stable mechanism Bi-stable mechanism

Parameter Size Parameter Size

lt (mm) [20 32 70 20] lb [20 20 76 20]
ltb (mm) [20 20 40 20]
θit [4.19 1.34] θib [4.19 1.44]
θitb [4.19 1.32]
Kt 200 Kb 1100
Ktb 100

4.2.1 Compliant Robotic Skeleton

We start with the ‘generic’ bistable mechanism inspired from slider crank type mechanism.

One potential design for the driving module of the bidirectionally crawling robot is composed of

spatially arranged serially connected tri-stable and bi-stable mechanism as shown in figure 4.3(b).

The geometric parameters of these segments are detailed in Table 4.1. Next, we use the Equilibrium

paths search algorithm described in Appendix B to find the equilibrium path followed by the system

under extension and contraction phases. The energy plots of the individual segments in the driving

module are shown in Figure 4.2(a). We need only a single linear actuator to control the total length

(lt) of the robot and to generate bi-directional actuation cycles.

4.3 Actuation Cycle Formation

The numerical simulation for the compliant multi-stable mechanism described in table 4.1

leads to equilibrium path that can lead to the bidirectional locomotion. We start by stretching the

driving module when its two segments are both at its fully-contracted stable state (0) (point a in

Figure 4.2(b)). During the stretching, the compliant segments deform by following the equilibrium

path a → j → b → c → d → e → f until both of them reach the fully-extended stable state (1)

(point f). Then, we compress the driving module and observe that the segments follow a different

equilibrium path f → e → g → h → i → j → a until they come back to the state (0).

We observe four distinct jumps in these equilibrium paths. Two jumps occur during the

stretching: first one from b → c, and the second one from d → e. The next two jumps occur during

the compression: first one from g → h, and the second one from i → j (Figure 3.3(b)). When
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these jumps occur, a branch of local energy minima reaches its end so that the driving module

is forced to quickly “jump” to a distant branch of energy minima. During these jumps, the two

compliant segments change their length significantly, while their total length (lt) remains the same.

By combining parts of these equilibrium paths and the four jumps, we can construct two “actuation

cycles”:(Cycle-1) j → b → c → h → i → j; (Cycle-2) h → c → d → e → g → h.

Each of these actuation cycles consist of four consecutive “phases”: For Cycle-1, in Phase

I (j → b), both segments increase in length significantly until Segment II fully-extends. Phase II

(b → c) is the first jump, by which Segment I quickly extends to a large length, but Segment II

contracts to fully-contracted state. In Phase III (c → h → i), Segment I continues to contract in

length, and Segment I remains in a fully-contracted state. The final Phase IV (i → j) is the second

jump, by which Segment I quickly deforms to its fully-contracted state, but Segment II extends in

length.

For Cycle-2, in Phase I (h → c → d), both segments increase in length significantly until

Segment I fully-extends. Phase II (d → e) is the first jump, by which Segment I quickly contracts to

a small length, but Segment II extends to almost fully-extended state. In Phase III (e → g), Segment

II continues to contract in length, and Segment I remains at a semi-contracted state. The final Phase

IV (g → h) is the second jump, by which Segment I quickly extends to its almost fully-extended

state, but Segment II contracts to fully-contracted state.

4.4 Bidirectional Locomotion Gait Generation

We combine the dual-segment multi-stable driving module with the properly designed an-

chors to harness the two actuation cycles and generate a peristaltic-like bi-directional crawling

locomotion gait. We designate Cycle-1 as forward locomotion cycle and Cycle-2 as backward loco-

motion cycle. The anchors for Segment I are designed such that, in Cycle-1 the “active” anchors

are located on part B-1 and in Cycle-2 they are located on part B-2 (Figure 4.3(a)). This clever

alternate activation of the anchors on Segment I makes bi-directional locomotion possible. Now,

the four consecutive phases in the actuation cycle can be used to alternate the anchoring locations

between the head and tail of the driving module, resulting in a net forward/backward displacement

as detailed below:

In the forward locomotion Cycle-1 we have four phases as shown in Figure 4.4(a): In
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Figure 4.2: Actuation cycle formation for Bi-directional crawling locomotion gait. (a) The energy
plots for individual segments in the driving module. The stable configurations of tri-stable and
bi-stable compliant mechanisms are depicted underneath. (b) The equilibrium paths for the driving
module of bi-directionally crawling robot clearly show the formation two cycles with Cycle-1 depict-
ing forward locomotion actuation cycle and Cycle-2 depicting backward locomotion actuation cycle.
Green curve represents extension of the driving module and the red curve represents contraction.
The jumps are depicted by dashed lines with arrows showing direction of the jump. The energy
landscape for the driving module is superimposed for added clarity. The lighter color shows region
of high energy and vice-a-versa.
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Figure 4.3: The driving module of compliant robot for bidirectional locomotion (a) Tri-stable and
bi-stable segment schematic with anchors attached to the bi-stable elements. The “active” anchor
locations on Segment I are also shown. (b) Bi-directional crawling robot 3-D rendering with com-
pliant and rigid links.

Phase I (j → b), the crawling robot is anchored at its tail because its Segment I is below its cut-off

length. Meanwhile, the robot body is increasing in its total length by the actuator input, giving a

net forward displacement.

In Phase II (b → c), the jump between the equilibrium paths switches the anchor location

from the tail to the head. No head or tail displacement occurs during this jump.

In Phase III (c → h → i), the crawling robot is anchored at its head because its Segment II

is now below its cut-off length. Meanwhile, the robot body is contracting in its total length, moving

the tail forward.

In the final Phase IV (i → j), the second jump occurs and the anchor location switches

back from head to the tail. At the end of this phase, the crawling robot returns to its original

configuration of the actuation cycle, i.e. at the start of Phase I. The “gait length” is the total

forward movement of the crawling robot head after one actuation cycle. And the actuation cycle

from Phase I to Phase IV can be repeated to drive the robot forward continuously.

In the backward locomotion Cycle-2 we have four phases as shown in Figure 4.4(b): In

Phase I (h → c → d), the crawling robot is anchored at its head because its Segment II is below

its cut-off length. Meanwhile, the robot body is increasing in its total length by the actuator input,

giving a net backward displacement.

In Phase II (d → e), the jump between the equilibrium paths switches the anchor location

from the head to the tail. No head or tail displacement occurs during this jump.

In Phase III (e → g), the crawling robot is anchored at its tail because its Segment II is

now below its cut-off length. Meanwhile, the robot body is contracting in its total length, moving

the head backward.

In the final Phase IV (g → h), the second jump occurs and the anchor location switches
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Figure 4.4: Generation of bi-directional peristaltic-like crawling locomotion gait. (a) Forward lo-
comotion gait generation i.e. Cycle-1. The corresponding actuation cycle phases are depicted for
clarity. The anchors on part B-2 of Segment I are “inactive” for this cycle. The “active” anchors
on part B-1 of Segment I are depicted in pink and the same ones on Segment II are depicted in
orange. (b) Backward locomotion gait generation i.e. Cycle-2. The corresponding actuation cycle
phases are depicted for clarity. The anchors on part B-1 of Segment I are “inactive” for this cycle.
The “active” anchors on part B-2 of Segment I are depicted in pink and the same ones on Segment
II are depicted in orange.
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back from tail to the head. At the end of this phase, the crawling robot returns to its original

configuration of the actuation cycle, i.e. at the start of Phase I. The “gait length” is the total

backward movement of the crawling robot tail after one actuation cycle. And the actuation cycle

from Phase I to Phase IV can be repeated to drive the robot backward continuously.

To switch the locomotion gait from forward to backward and vice-a-versa we only need to

change the total length (lt) of the driving module between h and c. If we continue to increase length

of the driving module from h we will switch to backward locomotion Cycle-2. If we continue to

decrease length of the driving module from c we will switch to forward locomotion Cycle-1.

4.5 Compliant mechanism fabrication and experimental re-

sults

We 3-D printed the compliant links of bi-stable and tri-stable mechanisms out of polypropy-

lene material in Ultimaker-S5. We used circular contour type notch flexure hinge for compliant link

joint. The resultant mechanisms are depicted in Figure 4.1(b) and Figure 4.3(b). We experimented

with different hinge parameters and link thicknesses to find how the hinge stiffness and ultimately

the energy of the mechanism changes for different link lengths. As shown in Figure 4.5 we see that

higher hinge width and link thickness leads to larger compliant hinge stiffness K3. But the same

cannot be said true for K2. The variation in K2 are much harder to characterize, and it looks very

difficult that we would be able to tailor the energy of second stable state accurately with current

fabrication techniques. The 3-D printing errors and local material property variations, and fabrica-

tion errors also make it very difficult to replicate the experimental results for multiple mechanisms

with same design parameters.

4.6 Conclusion and summary

In our simulations we found that the design space for bidirectional locomotion generation us-

ing multi-stable mechanisms designed using current technique is quite narrow. The fabrication meth-

ods like 3-D printing are really good for prototyping and lead to successfully bistable compliant mech-

anisms every time. But it is difficult to replicate the experimental results for energy-displacement

curve and consequently the hinge stiffness values. Our initial investigations with Kresling origami
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bistable mechanism resulted in repeatable results and the bistability strength and characteristics

were function of mainly one parameter the angle ratio in the design space when other design param-

eters were held constant. In our parametric studies we found that the relative bistability strengths of

the two segments of the driving module in Kresling origami were sufficient to provide required actu-

ation cycle and there was certain flexibility in terms of choosing different designs, which guaranteed

the motion-sequencing for a large design space. In contrast to this behavior, the design space of the

driving module for bidirectional locomotion is quite narrow. It is also difficult to accurately predict

and fabricate the exact stiffness distribution that we want in the 3-D printed compliant mechanism,

so that led to failure to generate bidirectional actuation cycle in our experiment.

Theoretically if we could find bistable and tristable mechanisms with the energy-displacement

curves as shown in Figure 4.2 then we would definitely have bidirectional locomotion. Our initial

hypothesis was that with the advanced and accurate 3-D printer at our disposal we will be able to

have better control over the stiffness properties of the fabricated mechanisms, but the performance

of the 3-D printer for soft polymers cannot be guaranteed in the same way as the stiff polymers. The

material properties of the 3-D printer material also cannot be guaranteed to be uniform throughout.

That and the fact that the design space of the driving module capable of bidirectional locomo-

tion is too ‘narrow’ leads us to think that maybe we need to look for alternatives for the bistable

mechanisms. So we keep this topic as part of future research.
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Chapter 5

Physical Reservoir Computing

with Origami

Abstract

The field of soft robotics is extensively influenced by biological systems, which are com-

posed of a highly interconnected network of sensors and actuators spread throughout the body, that

interact with the environment and enable them to perform various tasks efficiently. Similarly, to

successfully implement the soft robots in an unstructured dynamic environment, the robot body

and the brain a.k.a. central controller have to continuously and efficiently exchange the informa-

tion about the current state of the robot and the surrounding environment and take appropriate

actions. Recently, a new paradigm has emerged in artificial recurrent neural network training called

physical reservoir computing, in which physical dynamical systems are used as computational reser-

voirs to perform complex computing tasks – such as, approximating non-linear dynamical systems,

pattern generation, and even machine learning. We propose that an origami meta-material can

also be used as a dynamic reservoir. Furthermore, we show how physical reservoir computing can

be implemented in soft origami robots through the example of an earthworm-inspired robot. The

results of this work will pave the way for intelligently designed origami-based robots with embodied

intelligence. These next generation of soft robots will be able to coordinate and modulate their

activities autonomously such as switching locomotion gait and resisting external disturbances while
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navigating through unstructured environments.

5.1 Introduction

The animal kingdom is an endless source of inspiration for soft robotics [98, 76]. Researchers

have constructed compliant robots that can mimic all kinds of animal motions, like octopus locomo-

tion [14], elephant trunk grasping [47], insect flying [90], jellyfish and fish swimming [64, 131, 67],

as well as snake and insects crawling [130, 164, 143]. These robots share many similarities with

animals regarding their shape and motion kinematics; however, their underlying sensing, actuation,

and control architectures could be fundamentally different. Our engineered soft robots typically

rely on a centralized controller (aka. an “electronic brain”) that takes up all computing work to

process sensor information, generate control commands, and make decisions. This approach often

struggles to achieve high actuation speed and control effectiveness as soft robots exhibit virtually in-

finite degrees of freedom and complicated dynamic characteristics. On the other hand, animals have

highly interconnected networks of nerves and muscles that can share the workload with the brain

[52, 74, 153]. The animal body’s morphology is an integral part of its actuation, control, and ulti-

mately its “brain’s” decision-making process, leading to far superior efficiency than our engineered

soft robots.

Motivated by this disparity, an increasing number of researchers have embraced soft bod-

ies’ nonlinear dynamics as a computational resource to create an embodied intelligence and control

[121, 122, 9, 49, 108, 105, 150]. As a result, a new computational paradigm called morphological

computation has emerged in which the physical body of the robot itself takes part in performing low-

level control tasks, such as locomotion coordination and modulation, to simplify the overall control

architecture significantly [121, 122, 49, 9, 39]. The contributions of body morphology to cognition

and control involve three major categories [105]: (1) Morphology facilitating control: wherein the

physical design enables certain behaviors such as motion sequencing (e.g., passive dynamic walker

[15]). (2) Morphology facilitating perception: wherein the physical design enables sensing (e.g., the

nonuniform distribution of cells in the compound eyes of fly [35]). (3) Morphological computation,

such as the physical reservoir computing (PRC), wherein a physical body performs genuine com-

putations. Among these, physical reservoir computing shows promising potentials because of its

balanced simplicity and versatility to perform applicable computation with encoding and decoding
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[105].

Reservoir computing is a computational framework based on artificial recurrent neural net-

works (RNNs), which have been used extensively for problems involving time-series prediction like

the stock market and weather forecasting, robotic motion planning and control, text and speech

recognition [56, 93, 92, 91, 89, 142, 150, 106]. In RNNs, the output of the current time step depends

on the results from the previous time step in addition to the current input. Since RNNs involve

both forward and back-propagation of input data, training them became a challenging task. To ad-

dress this difficulty, Jaeger introduced the concept of a fixed recurrent neural network as Echo State

Networks (ESNs) [56], and Maass introduced Liquid State Machines (LSMs) [93]. Later, these two

concepts merged under the umbrella of reservoir computing (RC). In RC, the neural network (aka.

the “reservoir”) has fixed interconnections and input weights, and only the linear output readout

weights are trained by simple techniques such as, linear or ridge regression. The reservoir’s dynamics

transforms the input data stream into a high-dimensional state space, capturing its nonlinearities

and time-dependent information for computation tasks.

More importantly, the reservoir’s fixed nature opens up the possibility of using physical

bodies — such as a random network of nonlinear spring and mass oscillators [49, 50, 102], tensegrity

structures [121, 122, 10, 9], and soft robotic arms [108, 85, 109] — to conduct computation, hence

the paradigm of Physical Reservoir Computing. These physical systems have been shown to possess

sufficient computational power to achieve complex computing tasks e.g. emulating other nonlinear

dynamic systems, pattern generation [10, 9, 49, 50, 108, 150], speech recognition [29], and machine

learning [109, 150, 106, 102]. More importantly, robotic bodies with sufficient nonlinear dynamics

can also perform like a physical reservoir and directly generate locomotion gait without using the

traditional controllers [9, 150, 17, 1, 155]. Despite the recent progress, physical reservoir computing is

still a nascent field, and it is worthwhile to examine the computing power of a wide variety of different

compliant mechanical systems, especially those with broad application potential in soft robotic

locomotion and intelligent structures. These dynamic physical reservoirs with embeded feedback can

function as soft robotic skeletons, and simultaneously generate and maintain the periodic trajectories

essential for animal-inspired locomotion gait generation.

One such compliant mechanism that has garnered much attention over recent years is

Origami – a traditional play of folding paper into sophisticated and three-dimensional shapes.

Origami mechanisms are compact, easy to fabricate, and scale-independent (aka. Origami robots can
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be fabricated at different scales but still follow similar folding principles [124, 133, 111, 104]). Origami

mechanisms with complex crease folding patterns and integrated actuator-sensor network exhibit

many desirable soft body properties. Similar to the soft and compliant biological systems, origami

features non-linear kinematics and dynamics, non-linearly varying stiffness, large deformation range,

compliance, and shape-morphing capability. The origami mechanisms are stiff enough to be used as

structural skeleton for robots, and at the same time are compliant enough to provide large deforma-

tion range required for soft robotic locomotion. Over the past decades, origami has evolved into an

engineering framework for constructing multi-transformable deployable structures [31, 103, 104, 96],

advanced materials and shape morphing structures [141, 144, 170, 84, 166, 66, 124, 111]. It is al-

ready a popular engineering platform for constructing soft robotic skeletons that mimic wide range

of animal motions, e.g. worm-like crawling, insect-like walking, and octopus arm-inspired manip-

ulation [133, 101, 100, 3, 114, 115, 165, 112, 26, 58, 130, 68]. Moreover, the nonlinear mechanics

and dynamics induced by folding could also enhance robotic performance [5, 172, 135]. Thus, we

investigate the use of origami as a physical reservoir and show that origami based robotic skeleton

can indeed generate the periodic patterns for autonomous locomotion gait generation.

We show that origami’s nonlinear folding dynamics possesses significant computing power,

which could add a valuable dimension to the field of origami-based engineering. A mechanical

system must exhibit several essential properties to perform as a reservoir [150]. The first one is high-

dimensionality, which allows the reservoir to gather as much information possible from the input

data stream, separating its spatio-temporal dependencies and projecting it onto a high-dimensional

state-space. The second one is nonlinearity so that the reservoir acts as a nonlinear filter to map

the information from the input stream. All the computation complexity is associated with this

nonlinear mapping, thus training the linear static readout becomes a straightforward task. The

third one is fading memory (or short-term memory), ensuring that only the recent input history

influences the current output. The fourth one is separation property to classify and segregate

different response signals correctly, even with small disturbances or fluctuations. Moreover, if two

input time series differed in the past, the reservoir should produce different states at subsequent

time points [78]. Our physics-informed numerical simulations prove that origami inherently satisfies

these four requirements and can complete computation tasks like emulation, pattern generation, and

output modulation.

Moreover, we conduct extensive numerical simulations to uncover the linkage between
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origami design and its computing power, providing the guideline to optimize computing perfor-

mance. Finally, we demonstrate how to directly embed reservoir computing in an origami robotic

body to generate earthworm-like peristalsis crawling without using any traditional controllers. This

study’s results could foster a new family of origami-based soft robots that operate with simple

mechatronics, interact with the environment through distributed sensor and actuator networks, and

respond to external disturbances by modulating their activities.

In what follows: Section (5.2) details the construction of an origami reservoir, including the

lattice framework used to simulate its nonlinear dynamics. Section 5.3 elucidates the origami reser-

voir’s computing power through various numerical experiments. Section 5.5 discusses the parametric

analysis that uncovers the linkages between computing performance and physical design. Section

5.6 applies the reservoir computing to an origami robot’s crawling problem. Finally, Section 5.7

concludes this paper with a summary and discussion.

5.2 Constructing The Origami Reservoir

In this study, we construct a physical reservoir using the classical Miura-ori sheets. We

can easily modify basic Miura-ori geometry to create complex structures such as curved Miura-ori

surfaces, stacked Miura-ori, or origami-tubes with various cross sections. We show that origami can

indeed act as a reservoir and even simplest of origami pattern can be turned into peristaltic crawling

robot powered by reservoir computing. Miura-ori is essentially a periodic tessellation of unit cells,

each consisting of four identical quadrilateral facets with crease lengths a b and an internal sector

angle γ (Figure 5.1(a)) [138, 141]. The folded geometry of Miura-ori can be fully defined with a

dihedral folding angle θ (∈ [0, π/2]) between the x-y reference plane and its facets (Figure 5.1(b)).

The reservoir size is defined as n×m, where n and m are the number of origami nodes (aka. vertices

where crease lines meet) in x and y-directions, respectively. N is the total number of creases in the

origami reservoir.

5.2.1 Dynamics Modeling of the Origami

To investigate this origami reservoir’s computing capacity, one must first obtain its time

responses under dynamic excitation. To this end, we adopt and expand the lattice framework

approach to simulate its nonlinear dynamics [138, 86, 41]. In this approach, origami creases are
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represented by pin-jointed stretchable truss elements with prescribed spring coefficient Ks. Folding

(or bending) along the crease line is simulated by assigning torsional spring coefficientKb. We further

triangulate the quadrilateral facets with additional ‘virtual’ truss elements to estimate the facet

bending with additional torsional stiffness (typically, Kb across the facets is larger than those along

the creases). The rationale behind adding these ‘virtual’ facet bending creases can be explained with

the example of Miura-ori structure. The ideal Miura-ori structure is rigid foldable when the in-plane

folding motion is the primary deformation mode. Meanwhile, Miura-ori also exhibits out-of-plane

twisting and saddle-shaped deformations that can be prominent in dynamic responses [138, 141].

More importantly, these non-rigid folding deformations are desirable for reservoir computing. The

presence of two out-of-plane deformation modes depends mainly on the ratio between facet bending

stiffness (kb,f ) and crease folding stiffness (kb). When kb,f/kb >> 1, we can assume Miura-ori to be

rigid-foldable. When kb,f and kb are comparable, out-of-plane deformation modes can be significant.

The non-rigid foldable behavior of many origami mechanisms and metastructures has been studied

with this approach, for example, square twist pattern [145], Kresling pattern [5], and Miura-ori

pop-through defect [86].

In essence, lattice framework approach discretizes the continuous origami sheet into a net-

work of pin-jointed truss elements connected at the nodes (Figure 5.1(c)). A typical reservoir consists

of an interconnected network of units governed by nonlinear dynamics. The origami reservoir, in

this case, consists of a network of nodes with their interconnections defined by the underlying crease

pattern. It’s important to note that our approach does not include the non-linear/ hyperelastic

material constitutive model, the effects due to finite material thickness, viscosity, and non-linear

stiffness changes, etc. The corresponding governing equations of motion, in terms of node #p’s

displacement (xp) as an example, are:

mpẍ
(j)
p = F(j)

p , (5.1)

where the superscript “(j)” represents the jth time step in numerical simulation, and mp is the

equivalent nodal mass. Unless noted otherwise, the mass of the origami sheet is assumed to be

equally distributed to all its nodes. F
(j)
p is the summation of internal and external forces acting on

this node in that

F(j)
p =

∑
F(j)

s,p +
∑

F
(j)
b,p + Fj

d,p + F(j)
a,p +mpg, (5.2)
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Figure 5.1: The nonlinear Truss-frame approach for simulating the origami dynamics. (a) The crease
pattern of the classical Miura-ori, with a unit cell highlighted. (b) The rigid-folding kinematics of the
Miura-ori. (c) The truss-frame approach discretizes the Miura-ori unit cell, showing the distribution
of truss elements along the creases and across the facets, as well as the nodal masses. (d) Detailed
kinematics and mechanics set up to analyze the bending and stretching along the truss #pq. Notice
that m(j) and n(j) are the current surface normal vectors defined by triangles #pqr and #pqv,
respectively. (e) The bending of the Miura-ori sheet under its weight. This simulation serves to
validate appropriate material property assignments.

where the five terms on the right hand side are the forces from truss stretching, crease/facet bending,

equivalent damping, external actuation, and gravity, respectively. The formulation of these forces

are detailed below.

Truss stretching forces: The truss elements are essentially elastic springs with axial

stretching stiffness (K
(j)
s = EA/l(j)). Here, EA is the material constant, and l(j) is the truss

element’s length at the current jth time step. Thus, the axial stiffness is updated at each time-step,

accommodating the truss element’s increase in stiffness as it is compressed and vice-a-versa. The

stretching forces from a truss connecting node #p and one of its neighbouring nodes #q is,

F(j)
s,p = −K(j)

s

(
l(j)pq − l(0)pq

) r
(j)
p − r

(j)
q

|r(j)p − r
(j)
q |

(5.3)

where l
(0)
pq is the truss length at its initial resting state. r

(j)
p and r

(j)
q are the current position vectors

of these two nodes, respectively. To calculate the total truss stretching forces acting on node #p,

similar equations apply to all of its neighbour nodes through trusses (e.g., node q, r, s, t, u, and v

in Figure 5.1(c)).
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Crease/facet bending forces: The crease folding and facet bending are simulated with

torsional spring coefficient (K
(j)
b = kbl

(j)), where kb is torsional stiffness per unit length. Here, we

adopt the formulation developed by Liu and Paulino [86]. For example, if the stored potential energy

due to the crease folding along the truss between #p and #q is: u
(j)
pq = 1

2K
(j)
b (φ

(j)
pq − φ

(0)
pq )2, then

the force acting on nodes #p is:

F
(j)
b,p = −∂u

(j)
pq

∂φ
(j)
pq

∂φ
(j)
pq

∂r
(j)
p

= −K
(j)
b (φ(j)

pq − φ(0)
pq )

∂φ
(j)
pq

∂r
(j)
p

(5.4)

where φ
(j)
pq is the current dihedral angle along truss pq (aka. the dihedral angle between the triangles

#pqr and #pqv in 5.1(d)), and φ
(0)
pq is the corresponding initial value. φ

(j)
pq can be calculated as

φ(j)
pq = η arccos

(
m(j) · n(j)

|m(j)||n(j)|

)
modulo 2π (5.5)

η =


sign

(
m(j) · r(j)pv

)
, m(j) · r(j)pv ̸= 0

1. m(j) · r(j)pv = 0

(5.6)

Here, m(j) and n(j) are current surface normal vector of the triangles #pqr and #pqv,

respectively, in that m(j) = r
(j)
rq × r

(j)
pq and n(j) = r

(j)
pq × r

(j)
pv . In addition, r

(j)
pq = r

(j)
p − r

(j)
q ,

r
(j)
rq = r

(j)
r − r

(j)
q , and r

(j)
pv = r

(j)
p − r

(j)
v . This definition of φ

(j)
pq ensures that the folding angle for

valley crease lies in (0, π] and the folding angle for mountain crease lies in (π, 2π]. The derivative

between folding angle φ
(j)
pq and the nodal #p’s current position vector is

∂φ
(j)
pq

∂r
(j)
p

=

(
r
(j)
pv · r(j)pq

|r(j)pq |2
− 1

)
∂φ

(j)
pq

∂r
(j)
v

−

(
r
(j)
rq · r(j)pq

|r(j)pq |2

)
∂φ

(j)
pq

∂r
(j)
r

(5.7)

where

∂φ
(j)
pq

∂r
(j)
r

=
|r(j)pq |
|m(j)|2

m(j), (5.8)

∂φ
(j)
pq

∂r
(j)
v

= − |r(j)pq |
|n(j)|2

n(j). (5.9)

Again, to calculate the total crease folding and facet bending forces acting on node #q,
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similar equations apply to trusses connected to this node (e.g., truss pq, pr, ps, pt, pu, and pv in

Figure 5.1(d)).

Damping forces: Estimating damping ratio and damping force is essential to achieve

realistic dynamic responses and reduce numerical simulation error accumulation. In this study, we

follow the formulation developed in [51, 41]. This formulation first calculates the average velocity

of a node with respect to its neighboring nodes (v
(j)
avg) to effectively remove the rigid body motion

components from the relative velocities and ensure that these components are not damped. Then

damping force F
(j)
d,p applied on node #p is given by

F
(j)
d,p = −c

(j)
d (v(j)

p − v(j)
avg) (5.10)

c
(j)
d = 2ζ

√
K

(j)
s mp (5.11)

where c
(j)
d is the equivalent damping coefficient, and ζ is the damping ratio.

Actuation force: In the origami reservoir, two types of creases receive actuation. The

first type is “input creases,” and they receive input signal u(t) required for emulation and output

modulation tasks. The second type is “feedback creases,” and they receive reference or current

output signal z(t) required by all computing tasks in this study except for the emulation task. In

the case of multiple outputs, different groups of feedback creases are present. Here, the selection of

input and feedback creases are random. There are many methods to implement actuation to deliver

input u(t) and reference/feedback signal z(t) to the reservoir. For example, the actuation can take

the form of nodal forces on a mass-spring-damper network [49, 50], motor generated base rotation

on octopus-inspired soft arm [108], or spring resting length changes in a tensegrity structure [10].

In origami, the actuation can take the form of moments that can fold or unfold the selected creases.

We assume that the resting angle φ(0) of the input and feedback creases will change — in response

to the actuation at every time step — to a new equilibrium φ
(j)
a,0 in that [123, 10]

φ
(j)
a,0 = Win tanh(u

(j)) + φ(0) for input creases; (5.12)

φ
(j)
a,0 = Wfb tanh(z

(j)) + φ(0) for feedback creases. (5.13)

where Win and Wfb are the input and feedback weight associated with these actuated creases.

They are assigned before the training and remain unchanged after that. u(j) and z(j) are the
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input and feedback signal at the jth time step. The magnitude of Win and Wfb are selected such

that φ
(j)
a,0 ∈ [0, 2π) and consistent with the folding angle assignment. This approach of assigning

new equilibrium folding angles is similar to traditional neural network studies that use tanh as a

nonlinear activation function to transform function z(t) into a new one with magnitudes between

[−1, 1]. Additionally, it prevents actuator saturation due to spurious extreme values of z(t). Denote

the torsional stiffness of actuated creases by K
(j)
b,a , and we can update Equation (5.4) for the actuated

creases (using node #p as an example)

F(j)
a,p = −K

(j)
b,a

(
φ(j)
pq − φ

(j)
a,0,pq

) ∂φ
(j)
pq

∂r
(j)
p

, (5.14)

The calculation of other terms in this equation are the same as those in the force from

crease folding and facet bending. In this work, we focus on compliant sheet materials that can easily

fold into origami shapes and provide sufficient compliance for soft robotic motions. We also want

to ensure that our numerical simulation results are applicable to different material selections. The

range of material parameters in aforementioned equations is set according to such considerations.

For example, the ks and kb values in the baseline designs come from (1) averaged results from our

prior experiments using folded thick paper and PET polymer sheets [68, 135], and (2) a careful

survey of relevant literature [138, 141, 31, 144, 145, 86, 87]. It is worth noting that obtaining the

equivalent ks and kb values is not trivial, and it depends on many material and geometric factors,

including the origami facets’ size and sheet material thickness, etc. Later in the parametric studies,

we choose a relatively wide range of material properties to accommodate for such complexity. More

importantly, we can also ensure the reservoir computing result can apply to origami reservoirs with

different polymer/plastic-like material selections.

Once the governing equations of motion are formulated with above considerations, they

are solved using MATLAB’s ode45 solver with 10−3 second time-steps. As an example, we show

a simulation of the Miura-ori sheet deformation under its own weight (Figure 5.1 (e)). Although

the governing equation of motions use nodal displacement x(j) as the independent variables, we use

the dihedral crease angles φ(j) as the reservoir state variables to characterize the origami’s time

responses. This is because measuring crease angles is easier to implement by embedded sensors, and

φ(j) can be directly calculated from x(j) via the Equations 5.5 and 5.6.
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Figure 5.2: The setup of physical reservoir computing with origami. (a) The training phase. The
feedback creases receive the reference (or targeted) output z(t); while white noise is added to the
reservoir state matrix Φ̄ before calculating output weights Wout; (b) The closed-loop phase. The
output weights obtained in the training phase are used to calculate the current output, which is fed
back to the feedback creases.

5.2.2 Setting Up Reservoir Computing

Similar to the actuated creases (aka. input creases and feedback creases), we designate

“sensor creases” for measuring the reservoir states. We denote Na as the number of actuated

creases, and Ns for sensor creases. It is worth noting that, the actuated creases are typically small

subset of all origami creases (i.e., Na < N). The sensor creases, on the other hand, can be all of the

origami creases (Ns = N) or a small subset as well (Ns < N).

Once the selections of input, feedback, and sensor creases are completed, one can proceed to

the computing. Physical reservoir computing for tasks that require feedback, and output modulation

consists of two phases: The “training phase” and “closed-loop phase.” While the emulation tasks

require the training phase only.

Training phase: In this phase, we use the teacher forcing to obtain the readout weights

Wout corresponding to every reservoir state (aka. the dihedral angles of the sensor creases). Suppose

one wants to train the reservoir to generate a nonlinear time series z(t) (aka. the reference output).

The feedback creases receive the reference output and it dynamically excites the origami reservoir

under an open-loop condition without feedback (Figure 5.2(a)). The reservoir states φ(j) at every

time step are measured and then compiled into a matrix Φ.
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Table 5.1: Design of a baseline origami reservoir in this study

Reservoir size and material properties

Parameter Value

Size 9×9
Nodal Mass 7 g
EA 100 N
kb,a 1 N/(m-rad)
kb 0.2525 N/(m-rad)
Facets kb 10 N/(m-rad)
ζ 0.2

Geometric design of Miura-ori

Parameter Value

a 16 mm
b 10 mm
γ 50◦

θ 60◦

Actuator and sensor creases

Parameter Value

No. of sensors (Ns) N
No. of actuators (Na) 0.45N
No. of Feedback creases 0.3N
No. of Input creases 0.15N

Once the numerical simulation is over, we segregate the reservoir state matrix Φ into the

washout step, training step, and testing step. The washout step data is discarded to eliminate the

initial transient responses. We then calculate the output readout weights Wout using the training

step data via simple linear regression:

Wout = [1 Φ]+Z = Φ̄+Z (5.15)

where, [.]+ refers to the Moore-Penrose pseudo-inverse to accommodate non-square matrix. 1 is

a column of ones for calculating the bias term Wout,0 to shift the fitted function when necessary.

Z contains the reference signals at each time step, and it is a matrix if more than one references

are present. Lastly, we use testing step data to verify reservoir performance. It is worth noting

that white noise of amplitude 10−3 is superimposed on the reservoir state matrix during training to

ensure the robustness of the readout result against numerical imperfections, external perturbations

[50], and instrument noise in “real-world” applications.
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Closed-loop phase: Once the training phase is over and readout weights are obtained, we

run the reservoir in the closed-loop condition. That is, instead of using the reference output z(t),

the current output z∗(t) is sent to the feedback creases (Figure 5.2(b)), and

z∗(t) = Wout,0 +

Ns∑
i=1

Wout,iφi(t) = WT
outΦ̄ (5.16)

where, Ns is the number of sensor creases, and Φ̄ = [1 Φ]. Thus, the reservoir runs autonomously

in the closed-loop phase without any external interventions.

We study the closed loop performance of reservoir by calculating the Mean Squared Error

(MSE) using M time-steps as follows:

MSE =
1

M

M∑
j=1

(z(j)− z∗(j))
2

(5.17)

To estimate performance when multiple reference outputs are present, we combine the MSEs

by taking a norm over the individual MSEs.

5.3 Computation Tasks By the Origami Reservoir

In this section, we use the origami reservoir to emulate multiple nonlinear filters simulta-

neously, perform pattern generation, and modulate outputs. The baseline variables for the origami

geometric design, material properties, and reservoir parameters are given in Table 5.1.

5.3.1 Emulation Task

This sub-section shows that the origami reservoir can emulate multiple nonlinear filters

simultaneously using a single input. Such emulation is a benchmark task for evaluating the perfor-

mance in RNN training [2] and prove the multi-tasking capability of physical reservoirs [49, 108].

Note that the emulation task involves only the training phase, so there are no feedback creases in

this case. Consequently, we excite the reservoir by sending the input function u(t) to the input

creases and train it to find three sets of readout weights in parallel via linear regression. Here, u(t)

is a product of three sinusoidal functions with different frequencies, and the three target nonlinear

filters are 2nd-order nonlinear dynamic system z1(t), a 10th-order nonlinear dynamic system z2(t),
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Examples of trajectories generated in the emulation task including (from top to bottom) input signal
u(t), 2nd order, 10th order system, and Volterra series. Dashed curves are the targeted trajectories,
and solid curves are the result of the reservoir. (c) Error analysis of the emulation tasks. Circles are
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Table 5.2: Emulation task functions

Type Functions in discretized form (at jth time step)

Input u(j) = 0.2 sin(2πf1j∆t) sin(2πf2j∆t) sin(2πf3j∆t)
f1 = 2.11 Hz, f2 = 3.73 Hz, f3 = 4.33 Hz, ∆t = 10−3

2nd order system z1(j + 1) = 0.4z1(j) + 0.4z1(j)z1(j − 1) + 0.6(u(j∆t))3 + 0.1

10th-order system z2(j + 1) = 0.3z2(j − 1) + 0.05z2(j − 1)

10∑
i=1

z2(j − i)

+1.5u((j − 10)∆t)u((j − 1)∆t) + 0.1

Discrete Volterra series z3(j + 1) = 100

T∑
τ1=0

T∑
τ2=0

h(τ1, τ2)u(j − τ1)u(nj − τ2)

h(τ1, τ2) = exp

(
(τ1∆t− µ1)

2

2σ2
1

+
(τ2∆t− µ2)

2

2σ2
2

)
µ1 = µ2 = 0.1, σ1 = σ2 = 0.05
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and discrete Volterra series z3(n) (detailed in Table 5.2).

We use a 9× 9 Miura-ori reservoir shown in Figure 5.3(a) in this task, exciting the reservoir

from complete rest and training it for 100 seconds. We discard the first 50 seconds of data as the

washout step, use the data from the next 45 seconds to calculate the optimum static readout weights,

and then use the last 5 seconds of data to calculate the MSE for performance assessments. Results

in Figure 5.3(b) show that the origami reservoir can emulate these three nonlinear filters. As the

nonlinearity and complexity of the nonlinear filter increases, MSE also increases (Figure 5.3(c)).

Moreover, we compare the emulation performance when all N creases are used as sensor

creases versus when only actuated creases are used as sensors (Ns = Na = pN). The increase in MSE

is marginal in the latter case. Therefore, the origami satisfies the previously mentioned nonlinearity

and fading memory requirements to be a physical reservoir, and one only needs to use the input

creases angles as the reservoir states to simplify the reservoir setup.

5.3.2 Pattern Generation Task

Pattern generation tasks are essential for achieving periodic activities such as robotic lo-

comotion gait generation and manipulator control where persistent memory is required. That is,

by embedding these patterns (or limit cycles) in the origami reservoir, one can generate periodic

trajectories in the closed-loop. We again use a 9× 9 Miura-ori reservoir and randomly select 30% of

its creases as the feedback creases (Figure 5.4(a)). This task does not require input creases. These

feedback creases are divided into two groups for the two components of 2D trajectories. We run the

training phase for 100 seconds for each pattern, discard the initial 15 seconds of data as the washout

step and use the next 51 seconds’ data to calculate the optimum output readout weights.

Generating nonlinear Limit cycles: In the following results, the origami reservoir

demonstrates its computation capability via generating quadratic limit cycle, Van der Pol oscil-

lator, and the Lissajous curve in closed-loop. The quadratic limit cycle is defined by two differential

equations:

ẋ1 = x1 + x2 − ϵ(t)x1

(
x2
1 + x2

2

)
,

ẋ2 = −2x1 + x2 − x2

(
x2
1 + x2

2

) (5.18)

where the parameter ϵ(t) determines the shape of the limit cycle (ϵ(t) = 1 in this case). The Van
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der Pol oscillator is defined by:

ẋ1 = x2,

ẋ2 = −x1 +
(
1− x2

1

)
x2

(5.19)

The Lissajous curve is a graph of two sinusoidal signals parameterized by their frequency ratio

(f1/f2 = 0.5) and phase difference (δ = π/2):

x1 = sin (f1t+ δ)

x2 = sin (f2t)

(5.20)

The Figure 5.4(b), Figure 5.4(c), and Figure 5.4(d) show the results of Quadratic limit cycle,

Van der Pol oscillator and Lissajous curve generation task, respectively. The origami reservoir can

generate all three periodic trajectories just by changing the output readout weights. The MSE for

Quadratic limit cycle, Van der Pol oscillator, and Lissajous curves, calculated using the data for first

10 seconds’ closed-loop run (M = 10000), are 3.28× 10−7, 2.03× 10−5, and 5.5× 10−4, respectively.

As expected, MSE increases as the complexity of the curve increases.

Stability and robustness of the pattern generation: After finding the readout weights,

we test the stability of these three limit cycles by starting the origami reservoir from total rest in

the close-loop and running it for more than 1000 seconds. The limit cycle is stable if and only it

can recover the pattern from zero initial conditions and stays on target for at least 1000 seconds of

simulation [50, 108]. The results in Figure 5.4 indicate that the torsional moments generated from

the feedback signals on the feedback creases are sufficient to recover and maintain the three limit

cycles from total rest. Small phase differences occur between generated trajectories and the targets

because the reservoir takes a slightly different path than the target, and the Lissajous curve takes

more than 15 seconds to recover fully. Nonetheless, the origami reservoir successfully passes this

test.

To further analyze the robustness of reservoir-generated limit cycles, we simulate actuator

and sensor failures. As the origami reservoir generates the Van der Pol limit cycles in these tests, all

feedback and sensor creases stop working (aka. their signals set to zero) for 10 seconds. We conduct

these tests when all creases are used as sensor creases (Ns = N) and when only feedback creases are

sensor creases (Ns = Na = 0.3N). The simulation results in Figure 5.4(e) show that, although the
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Figure 5.4: Stable pattern generation under closed-loop using the Miura-ori reservoir. (a) This
task’s origami reservoir includes two groups of feedback creases required to generate 2D limit cycles.
(b-d) The closed-loop trajectories of quadratic limit cycle, Van der Pol oscillator, and the Lissajous
curve, respectively. In these plots, the first row of time responses shows the closed-loop output after
100s of training. The third row of time responses shows how the trained reservoir can recover the
targeted limit cycles from an initial resting condition. The corresponding phase portraits are as
shown in the second row. Here, the dashed curves are targeted trajectories, and the solid curves are
the reservoir’s outputs. (e) Van der Pol limit cycle recovery after the temporary failure of sensor
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(Ns = N for the first test, Ns = 0.3N for the second). The insert figures show the corresponding
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limit cycle trajectories under closed-loop and the corresponding input signal ϵ(t). The results are
obtained after 500 seconds of training. (d) Closed-loop trajectory recovery from the initial resting
conditions.

reservoir diverges to a trajectory far away from the target during the actuator and sensor failure, it

can immediately recover the Van der Pol limit cycles after the end of these failures.

5.3.3 Output Modulation Task

Output modulation capability allows the reservoir to adjust its output according to a ran-

domly varying input signal without changing the readout weights. This ability is also essential

for soft robotic control applications because it allows the robot to switch behaviors according to

external stimuli or environmental changes. In this task, we randomly select input creases, which
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account for 15% of the total creases, in addition to the feedback creases (Figure 5.5(a)). Moreover,

all creases are used as sensor creases (Ns = N). The simulation results in Figure 5.5(b) shows

the generated quadratic limit cycles with modulated input (Equation (5.18)). We are also able to

recover the closed-loop trajectory from the initial resting conditions, as shown in Figure 5.5(c). The

phase portraits for the two tasks are depicted in Figure 5.5(d). The origami reservoir can react to

the input and modulate the magnitude of the quadratic limit cycles. The MSE is 3.8× 10−4, which

is remarkably small, considering this task’s complexity.

5.3.4 Output Modulation plus Emulation Task

We further show that it is also possible to combine the tasks described earlier to enrich

the multi-tasking capabilities of origami reservoir. To distinguish this task from the multi-tasking

capability demonstrated in emulation task, we call this ‘hybrid’ task.We can tap additional readouts

from the reservoir to sense the unknown external input that is being applied to the reservoir. These

inputs can be present due to environmental interactions, such as ground condition, or external

forces acting on the reservoir that are difficult to measure using traditional sensors. Additionally,

the reservoir can be trained to respond to the external input via change/ modulation in the output.

For example, we can combine quadratic limit cycle output modulation with emulation task as follows:

Pattern generation and modulation: We train the reservoir to generate a quadratic

limit cycle described in equation 5.18 autonomously and respond to changing external input (ϵ(t))

by changing the generated limit cycle. This process takes place under closed loop as shown in section

5.3.3, i.e. we feed the current output back to the reservoir feedback creases.

Emulation: We can sense the unknown input applied at input creases through an additional

readout. This process takes place under open loop as shown in section 5.3.1 , i.e. we only train the

readout.

5.4 Emulation Task Experiment

We demonstrate the origami reservoir’s computational power through a simple experiment

of the emulation task described earlier. The experimental setup consists of an APS Dynamics

vibration exciter (shaker), power amplifier, National Instruments DAQ, a laptop to generate input

command, and a camera to capture the vertical vertices displacements. Detailed origami reservoir
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Figure 5.7: Proof-of-concept experiment showing the emulation task with the origami reservoir.
(a) The experimental setup depicting the excitation table and paper-based Miura-ori reservoir with
sensor node markers attached. The base of the reservoir is fixed to the base plate of the exciter.
Notice that additional mass are added at random locations to break the origami’s symmetry. (b)
The base-plate displacement/input signal (u(t)) and recorded nodal displacements in y-direction. (c)
Examples of trajectories generated in the emulation task including (from top to bottom) input signal
u(t), 2nd-order, 10th-order system, and Volterra series. Dashed curves are the targeted trajectories,
and solid curves are the result of the reservoir. (d) The effect of multiplexing parameter τ on
reservoir performance. (e) Examples of trajectories generated in the emulation task for τ = 17
including (from top to bottom) input signal u(t), 2nd-order, 10th-order system, and Volterra series.
Dashed curves are the targeted trajectories, and solid curves are the result of the reservoir.
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Table 5.3: Design of the origami reservoir in the emulation task expriment

Reservoir size and material properties

Parameter Value

Size 9×9
Mass of the reservoir 20 g

Geometric design of Miura-ori

Parameter Value

a 31 mm
b 39.2 mm
γ 50.73◦

θ 60◦

Actuator and sensor creases

Parameter Value

No. of total nodes (N) 81
No. of sensor nodes (Ns) 27

design parameters are in Table 5.3. The reservoir is placed vertically on the vibration exciter and

fixed rigidly to its base plate, as shown in Figure 5.7(a). The external input (u(t)) is provided to the

base of origami. To experimentally demonstrate the origami reservoir’s computing power without

unnecessary hardware complexities, we use the vertical (y-direction) displacement of origami nodes

as the reservoir state vector. We capture the deformation of origami through a slow-motion video

camera at 480 fps with 720p resolution. The nodal displacement in the y-direction is measured

through post-processing of the video data in MATLAB. The training procedures for the emulation

task remain the same. The results in Figure 5.7 clearly show that the physical origami reservoir can

indeed emulate the three non-linear systems described in Table 5.2.

It is worth emphasizing that using a single base excitation as external input and the vertical

nodal displacements as the reservoir states only taps into a part of the origami’s high dimensional

dynamics. Therefore, the mean square error in the experiment is more significant than those with

embedded sensors and actuators (Figure 5.3). Distributing sensors and actuators on the origami

creases will provide better control over the shape of origami, as shown in the example of soft robotic

crawling. Nevertheless, this experiment serves as physical proof that the Miura-ori based reservoir

can perform complex computational tasks.
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5.4.1 Improving reservoir performance through Multiplexing

We can further improve the results obtained from the experiment via a technique called

‘multiplexing’. This step occurs in the post-processing stage. In multiplexing we increase the num-

ber of total nodes available for computation via introduction of virtual nodes. These virtual nodes

are composed of state information from τ previous time-steps and it is called the ‘multiplexing

parameter’. If during the experiment we receive state information from Ns nodes, then using mul-

tiplexing we increase the total number of nodes available for computation to (Nsτ + 1) with one

nodes added as a bias node for optimum weight calculation. As a result, we introduce different

timescale between reservoir dynamics and the input to output computation, which results in higher

computation power [109].

To study the effect of multiplexing parameter τ we change it from τmin = 0 to τmax = 20,

effectively introducing delayed state information from up to 20 previous time-steps. Figure 5.7(d)

shows introduction of τ indeed improves the emulation task performance as the NMSE for all 3

tasks goes on decreasing monotonically as τ increases. Comparing the plots in Figure 5.7(c) and

(e)we see that the performance for emulating 10th-order system, and Discrete Volterra series can be

dramatically improved by adding time-step delay.

5.5 Correlating Physical Design and Computing Performance

In this section, we use the mean squared error (MSE) as the metric to examine the con-

nections between the origami reservoir’s design and computing performance. In particular, This

analysis aims to investigate the sensitivity of MSE to different parameter changes and identify the

optimal origami designs. To this end, in-depth parametric analyses are conducted to examine the

effect of (1) reservoir size and material properties, (2) crease pattern geometry, and (3) feedback

and sensor crease distribution. We use both Van der Pol and quadratic limit cycle generation tasks

to ensure the broad applicability of parametric study results.

5.5.1 Reservoir Size, Material Properties, and Vertices Perturbation

Figure 5.8(a) and Figure 5.8(b) show the results of parametric analyses for Quadratic limit

cycle and Van der Pol oscillator limit cycle generation, respectively. We observe that feedback

crease distribution affects reservoir computing performance quite significantly. In particular, poorly
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Table 5.4: Variables for reservoir size and material properties parametric study

Parameter Base value Distribution

Nodal mass (g) 7 [1,50]

Geometric Standard σ = χ exp(
−||(Ni−Nj)||

l )
imperfections Miura-ori µ = 0, χ = 0.4a, l = 4a

Truss torsional kb,a = 1, kb,a = 1,
stiffness N/(m-rad) kb = 0.2525 kb ∈ [0.005, 0.5]
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Figure 5.8: Effect of reservoir size and material properties on the reservoir computing performance.
(a) The distribution of MSE from the Quadratic limit cycle simulations using random feedback
crease distributions and different design parameter distributions. Here “FB” stands for feedback
crease distribution, “M” stands for nodal mass distribution, “V” stands for origami vertices geometry
perturbation, and “Kf” stands for crease torsional stiffness distribution. It is worth emphasizing
that the “FB” results come from one parametric study of 72 unique designs, and the “M,” “V,” and
“Kf” are results of the subsequent simulation. The bar charts depict the average value, standard
deviation (circles), and extreme values (horizontal bars) of MSE. (b) A similar result from the Van
der Pol limit cycle generation task. (c) The feedback crease distributions of the four different baseline
designs used in this parametric study.
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distributed feedback creases might result in failed pattern generating tasks. Therefore, we first

conduct numerical simulations by randomly changing the feedback crease distributions (72 unique

designs in total) and identifying the best performing one (with the least MSE). We refer to this

best performing feedback crease distribution as the base design (Figure 5.8(c)) for the following

parametric studies. Then, we conduct another parametric study regarding the nodal mass, crease

stiffness, and vertices perturbation. We vary these three parameters, one at a time, for 72 randomly

selected designs (six batches of jobs in parallel on a computer with 12 cores). The baseline values

and range of the parameters are in Table 5.4.

The origami reservoir performance turns out to be highly sensitive to the nodal mass varia-

tion. As opposed to the uniform nodal mass in base design, a randomly distributed nodal mass can

significantly increase or decrease the MSE for both pattern generation tasks. However, randomly

distributing mass in an origami sheet is quite challenging in practical applications. So the use of

varying mass distribution should be judicially done based on the particular application at hand. On

the other hand, the origami performance is much less sensitive to the crease torsional stiffness. By

randomly changing the stiffness, one can achieve performance at par with the base design.

Moreover, we investigate the effects of random geometric imperfection in the base designs

of origami reservoir. To this end, we adopt the formulation introduced by Liu et al. [87], which

introduce small perturbations to the nodal positions in folded origami. Such imperfections are

inevitable in practice due to various manufacturing defects. It is found that these small imperfections

do not worsen the MSE significantly and in fact could reduce the MSE by a moderate degree.

It is also worth noting that the larger 9 × 9 Miura origami reservoir performs better than

the smaller one because larger origami contains more folding angles to constitute the reservoir state

matrix. Therefore, the high-dimensionality of a reservoir is desirable to produce smaller MSE.

5.5.2 Origami Design

A unique advantage of origami based structures and materials is their considerable freedom

to tailor the geometric design. To this end, we start from the Base Design IIa and IIb of 9 × 9

Miura-ori reservoir, vary its crease length ratio (a/b) and internal sector angle (γ), and then run

the quadratic limit cycle and Van der Pol limit cycle tasks with 100 crease length and sector angle

combinations at three folding angles. The results of the parametric analysis for θ = 50◦, θ = 60◦,and

θ = 70◦ are shown in Figure 5.9(a), Figure 5.9(b), and Figure 5.9(c), respectively. We observe that,
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at lower folding angles (flatter origami), the origami reservoir has a higher possibility to fail the

pattern generation tasks. The computing performance improves significantly with a reduced MSE

as the origami folds more (or as θ increases). This trend is probably because highly folded origami

offers an increased range of folding motion.

Moreover, there are two design sets with the lowest MSE: a/b ≈ 1.5, γ ≈ 45◦, and a/b ≈ 2.5,

γ ≈ 60◦. Figure 5.9(d) shows unit cell geometry of four representative designs in this range. Gen-

erally speaking, a moderate to high crease-length ratio and small sector angles can create “skewed”

origami patterns that appear to give better computing performance across all values folding angles.

The best designs here have MSEs at the order of 10−7, which is of the same magnitude as we found

previously by tailoring the nodal mass and crease stiffness.

5.5.3 Actuator and Sensors Distribution

Finally, it is important, for practical applications, to find the minimum amount of in-

put/feedback and sensor creases required for achieving acceptable computing performance. To this

end, we start with the 9 × 9 Miura-ori reservoir and conduct two tests. In the first test, we vary

the percentage of feedback creases (Na = 0.2N, 0.3N, 0.4N, 0.5N , each with 24 randomly generated

crease distributions) while using all crease dihedral angles to constitute the reservoir state matrix

(i.e., Ns = N). In the second test, we use the same feedback crease design and only use these

feedback creases’ dihedral angles to formulate the reservoir state matrix (i.e., Ns = Na).

We find that if only 20% of crease are used for feedback, the origami reservoir might fail the

quadratic limit cycle task. On the other hand, the MSE reduces only marginally as we increase the

91



percentage of feedback creases beyond 30% (Figure 5.10). Therefore, we can conclude that using

only 30% − 40% of total creases as the feedback and sensors crease will provide us an adequate

computing performance. This result is significant because it shows that, even though a large size

(high-dimensionality) of the reservoir is essential for computing performance, one does not need to

measure (readout) every reservoir state. In this way, the practical implementation of the origami

reservoir can be significantly simplified.

In conclusion, the parametric analyses lay out the strategy to optimize the origami reservoir

performance by tailoring the underlying physical and computational design. A larger origami with

a higher-dimension can ensure low computational error, but one only needs to use 30% 40% of its

creases as the feedback and sensor creases to tap into the origami’s computing capacity. Meanwhile,

the distribution of these feedback and sensor creases must be carefully chosen with extensive simu-

lations. To further improve computing performance, one can tailor the origami’s mass distribution,

crease stiffness, and geometric design. Among these options, optimizing the folding geometry should

be the most effective because it is easy to implement in practical applications.

5.6 Application to soft robotics

This section demonstrates the application of origami reservoir computing to design soft

robots with embedded sensor-actuator network. We apply PRC to design a peristaltic crawling soft

robot and a quadruped soft robot. Finally, we apply PRC to design origami based manipulator to

generate desired end-effector trajectory.

5.6.1 Soft robotic crawling

This section demonstrates the application of origami reservoir computing to generate an

earthworm-inspired peristaltic crawling gait in a robotic system. The earthworm uses peristalsis to

navigate uneven terrain, burrow through soil, and move in confined spaces. The lack of complex

external appendages (aka., legs or wings) makes earthworm-inspired robots ideal for field explo-

ration, disaster relief, or tunnel drilling [8, 65, 26]. The body of an earthworm consists of segments

(metamerism) grouped into multiple “driving modules” [127, 5]. Each driving module includes

contracting, anchoring, and extending segments actuated by antagonistic muscles (Figure 5.11(a)).

During peristaltic locomotion, these segments alternately contract, anchor (to the environment with
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Figure 5.11: Reservoir computing powered crawling origami robot. (a) The kinematics of a peristaltic
locomotion cycle in an earthworm. For clarity, the earthworm body is simplified and consists of six
identical segments organized into two driving modules. The earthworm body moves forward while
the peristaltic wave of anchoring segments (or driving modules) propagates backward. (b) The design
of an earthworm inspired origami crawling robot that features two stripes of Miura-ori connected
by a zig-zag shaped “ridge.” This robot has four groups of feedback creases. (c) The closed-loop
trajectory generated by the feedback creases after training (shown in solid lines) superimposed with
the targetted trajectory (shown in dashed lines). (d) Peristaltic locomotion cycle in the origami
robot as a result of the generated trajectory.

the help of setae), and extend to create a propagating peristalsis wave, thus moving the body

forward.

We design an earthworm-inspired origami robot consisting of two 3× 9 Miura-ori reservoir

connected via a stiff central bridge (5.11(b)). The left and right half of the robots are symmetric in

design, and the central bridge design allows differential motion between the two halves to facilitate

turning in response to the external input. In each origami reservoir, we embed two groups of feedback

creases (Figure 5.11(b)) with feedback weights assigned such that their values for the front and back-

half are equal but opposite to each other. This arrangement reduces the number of reference outputs

needed to generate a crawling gait. To create a peristalsis locomotion gait, we train the origami

reservoirs to generate multiple harmonic signals with a phase difference of π/2 among them (aka.

a pattern generation task). We train the robot for 100 seconds and discard the first 15 seconds of

data as the washout step.

The ground reactions are modeled by setting the vertical velocity of masses (i.e. point

contact with node) touching the ground to zero and the horizontal friction coefficient to be infinite.
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Inspired from the setae in earthworm, we assume presence of passive foldable anchors that lose/grip

anchoring to the ground periodically. We apply ideal anchors to the bottom origami creases that are

in contact with the surface below. These anchors are assumed to be kinematically attached to the

ground when the associated origami crease folds and relaxed as the crease unfolds (or flattens). Such

anchor design is feasible by leveraging the origami facets’ folding motion, as shown in the author’s

previous study [5]. This is a hard constraint that can impact the nature and the performance of

locomotion. However, it simplifies the study of the body influence by assuming perfect friction

conditions in every simulation.

Figure 5.11(c) depicts the closed-loop response and the limit cycle recovery from total rest

(MSE is 3.9×10−04). Figure 5.11(d) (and Supplemental Video A) illustrates the robotic locomotion

generated by reservoir computing. As the origami reservoir generates the multiple harmonic signals

with a phase difference, its folding motion naturally “synchronizes” to these signals, generating a

peristaltic wave of folding and unfolding. As a result, the robot crawls forward like an earthworm,

without using any traditional controllers.

5.6.2 Quadruped Robot

In this section we design a quadruped robot embedded with PRC. We combine four mirror

symmetric 4 × 7 arc-Miura patterns to create a four-legged soft origami robot structure (Figure

5.12). We add a 11 × 3 Miura-ori bridge between left and right side to provide additional freedom

for movement between two sides, and a potential location for electronic hardware placement. The

quadruped robot is designed such that each leg receives different feedback signal and can move

independently of another. We assume ideal ground contact conditions, similar to the ones used for

crawling robot studies. The resulting robot can exhibit different quadruped gaits e.g. walk, trot

and bound. We use simplified sinusoidal equations to simulate walking, trotting and bounding gait

as shown below. We have fixed the actuation frequency f to 1Hz for this study. The robot can

successfully generate the gaits under closed loop and rhythmically move its legs corresponding to

the required gait (Figure 5.12).
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The equations for walking gait are given by,

x1 = sin(2πft)

x2 = sin(2πft+
3π

2
)

x3 = sin(2πft+ π)

x4 = sin(2πft+
π

2
)

(5.21)

The equations for trotting gait are given by,

x1 = sin(2πft)

x2 = sin(2πft+ π)

x3 = sin(2πft+ π)

x4 = sin(2πft)

(5.22)

The equations for bounding gait are given by,

x1 = sin(2πft)

x2 = sin(2πft+ π)

x3 = sin(2πft)

x4 = sin(2πft+ π)

(5.23)

This example shows the versatility of origami mechanisms as an excellent platform for de-

signing soft robotic structures and skeletons. Such origami robot when embedded with the PRC

framework can autonomously generate the desired locomotion gait trajectories, and physically mov-

ing the appendages as suitable for the movement.

5.7 Summary and Conclusion

We demonstrate the physical reservoir computing capability of origami via extensive bench-

mark simulations and parametric studies. First, we develop a simulation environment to study

the nonlinear origami dynamics and detail the origami reservoir setup. This reservoir successfully

achieves many computing tasks such as emulation, pattern generation, and modulation, all of which
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Figure 5.12: PRC embedded Origami quadruped robot: (a) The crease pattern (left) and folded
robot (right) depicting feedback creases and boundary conditions applied. (b) Trotting gait: (top)
Sample trajectories generated for over 600s when system was switched to closed loop after 120s of
training. (below) The gait generation in the robot corresponding to the actuation trajectories. Leg-1
and 4 are moving in phase and Leg-2 and 3 are moving in phase. (c) Walking gait: (top) Sample
trajectories generated for over 600s when system was switched to closed loop after 120s of training.
(below) The gait generation in the robot corresponding to the actuation trajectories. All the legs are
moving out of phase from each other by 90 degrees. (d) Bounding gait: (top) Sample trajectories
generated for over 600s when system was switched to closed loop after 120s of training. (below) The
gait generation in the robot corresponding to the actuation trajectories. Leg-1 and 2 are moving in
phase and Leg-3 and 4 are moving in phase.
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are relevant to robotic applications. We also conduct comprehensive parametric analysis to uncover

the linkage between origami reservoir design and its computing performance. This new knowledge

base offers us a guideline to optimize computing performance. To the authors’ best knowledge, this

is the first study to rigorously examine the performance of physical reservoir computer from the lens

of the physical design. Finally, we demonstrate how to embed reservoir computing into an origami

robot for control without traditional controllers through the example of peristaltic crawling and

quadruped robot.

We list four requirements for a mechanical system to be a reservoir in the introduction,

and origami satisfies all these requirements. The tessellated origami structures are inherently high-

dimensional. For example, a 7× 7 Miura-ori with 49 nodes contains N = 60 crease dihedral angles,

all or a small portion of them can serve as the reservoir states. The nonlinearity of origami partly

originates from the nonlinear kinematic relationships between these crease angles and external ge-

ometry. Also, since origami patterns are highly structured (ordered), small perturbations in the

material properties, imperfections of crease geometry, and the introduction of local actuation are

sufficient to destroy the regularity and create disorder. These properties make origami highly non-

linear dynamic reservoirs. The origami reservoir’s performance in the emulation task proves that

it can act as a nonlinear filter and satisfies fading memory property. Nonlinear patterns can be

embedded into the origami reservoir, and the resulting pattern generation is robust against external

disturbances and recoverable under different initial conditions, proving separation property. Finally,

adding the feedback can create persistent memory, which is conducive to learning new tasks.

For future robots to work autonomously in unstructured and dynamic environments, the

robot body and brain have to work together by continuously exchanging information about the cur-

rent condition, processing this information, and taking appropriate actions. The physical reservoir

computing embodied robots shown in this study presents a step toward this vision. The reservoir

embedded in the robot body directly gathers information from the distributed sensor-actuator net-

work to perform low-level control tasks like locomotion generation. The resulting soft robot can

generate the global target behavior autonomously without controlling every element individually.

Moreover, the generated trajectories could be robust against external disturbances and modulated

according to changing working conditions.

A challenge in implementing physical reservoir computing is the many sensors and actuators

required, even though these sensors and actuators can be simple individually. Our results contribute
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in this regard by showing that only a small portion of origami creases are required to be equipped

with sensors and actuators to tap into the reservoir computing power. The essential advantage of an

origami reservoir compared to a typical neural reservoir is that it can serve as the physical body of

the robot and at the same time perform nonlinear computation for control tasks. Meanwhile, it will

be imprudent to directly compare origami reservoirs’ computing performance with other physical

reservoirs. Only a handful of studies examined the use of soft physical bodies for reservoir computing

(e.g., soft silicone arms, tensegrity structures, compliant spine robot). And these systems are often

constrained by other non-computing-related requirements. Thus, a comparative study between

different physical reservoirs is a worthy topic for future research.

In summary, origami reservoir computing provides an attractive pathway for facilitating

synergistic collaboration between the soft robot’s body and the brain. The reservoir computing,

coupled with unique mechanical properties that origami can offer — multi-stability [84, 66, 159],

nonlinear stiffness [84, 141, 144, 66], and negative Poisson’s ratio [84, 141, 66] — opens up new

avenues to the next generation of soft robots with embedded mechanical intelligence.
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Chapter 6

Major Contributions and Future

Work

We repeat the research objective stated in Chapter 1. In this section we summarize the major

contributions of this work and expound upon the future directions for extending this research. As a

researcher I have understood that when we find an answer to some question; more often than not it

leads to more questions and introduces us to new avenues and directions which are yet unexplored.

The summary given here will hopefully do the same and lead us to exploring more exciting avenues

in the field of soft robotic control and design.

Research Objective

Developing design and analysis framework for hybrid mechanical-digital control

of soft robots: from mechanics-based motion sequencing to physical reservoir comput-

ing
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6.1 Multi-stability and motion sequencing

Harness multi-stability of origami and compliant mechanisms for mechanics-based

motion sequencing in soft robots

In our research, the motion-sequencing is hard-coded or embedded in the origami robot

skeleton. We wanted to emulate earthworm inspired peristaltic locomotion gait in an origami robot.

We started with two Kresling origami mechanisms with different bistability strengths and serially

combined them to create a driving module for robot. The multi-stability analysis of such a driving

module produces a deterministic and periodic cycle during extension and contraction phase. We

combine part of the extension phase, part of contraction phase and two snap-through actions gener-

ated during the displacement controlled actuation of the driving module to form an actuation cycle

that is repeated for periodic actuation of the robot. As a result, we only need a single linear actuator

to control the total length of the robot. Additional actuators and digital controllers are not required

to generate a robust locomotion gait, as the individual segment deformations are controlled by the

embedded multi-stability. Thus, this approach reduces control requirement drastically. Addition-

ally, the locomotion speed can be increased or decreased by increasing the operating frequency of

actuator. This is an instance of ‘morphological control’ wherein the robotic skeleton itself takes part

in performing low-level control tasks.

We also experimentally demonstrated the motion-sequencing in the multi-stable Kresling

origami robot skeleton. After extensive experiments we proved the existence of periodic actuation

cycle in the driving module composed of Kresling origami similar to peristalsis in earthworm. We also

successfully fabricated a proof-of-concept prototype of a Kresling origami robot that could uniformly

generate peristaltic locomotion actuation cycle. The Kresling robot is actuated via a linear actuator

composed of a stepper motor-compression spring assembly. The central controller for the robot is

arduino based controller that moves the stepper motor back and forth to change the length of the

driving module of the robot. This resulting actuation mechanism is much simpler than the complex

logic required to individually control the segment lengths in multi-segmented peristaltic gait robot.

The future extension of this work can be to design a compliant mechanism that will make the robot

truly soft and compliant. This will also enable addition of bending capability to the robot. One

more avenue to explore would be to find a way to switch the bistability strength of driving module

segments, because that is a pretty straightforward way to reverse the direction of locomotion of the
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robot. There are many bistable mechanisms that could be even more suitable for motion-sequencing

bases peristaltic crawling robot. It will be interesting to study performance of different mechanisms

and exploration of the rich design space available to these mechanisms.

The compliant robot described above is only capable of unidirectional locomotion. To

expand the functionality of such robot, we also studied a compliant mechanism based driving module,

that is composed of a tri-stable and a bistable mechanism. Our theoretical investigations suggested

that it’s indeed possible to generate two actuation cycles with this driving module. The complex

energy landscape of such multi-stable mechanism leads to four snap-through actions, which when

aligned properly make bidirectional locomotion possible. One actuation cycle is for forward-moving

locomotion and the other one is for backward-moving locomotion. Again, we only need to change the

total length of driving module to generate peristaltic locomotion actuation cycle and to switch from

forward-moving to backward-moving locomotion cycle. Our experimental efforts to design a viable

driving module for bidirectional locomotion were unfortunately not successful. We started with

compliant crank-slider inspired mechanism, which gave really good theoretical results. Our initial

attempts at fabricating a 3-D printed compliant mechanism however failed to generate repetitive

behavior. We could not fabricate identical mechanisms and the 3-D printed mechanisms failed

to have graded bistability strengths for various hinge parameters leading to a failure to generate

reproducible bistability strength for different fabricated mechanisms. The further attempt use steel

shims as compliant hinge also failed to generate reproducible results required for estimation of

stiffness variations in tri-stable and bistable mechanism. This just goes to show that we still have to

learn a lot about precision fabrication of compliant mechanisms. Nevertheless, this topic is worthy

for future research and spans many interesting areas from material science, compliant mechanism

design and 3D printing technology.

The aim of this study was to develop a detailed framework for harnessing multi-stability of

origami and compliant mechanisms. Such mechanisms are very useful for motion sequencing appli-

cations, where a sudden jump or snap-through to a distant equilibrium path can lead to a completely

new configuration. Additionally, such behavior is generally repetitive in compliant mechanisms, as

opposed to catastrophic failure that occurs in stiff materials. Hard-coding such periodic and/ or

repetitive behavior has led to design of mechanical logic gates, memory units, motion-sequencing for

robotic movement, etc. Multi-stability is just one of many attractive properties that the origami and

compliant mechanisms possess – for example, negative and variable stiffness, auxeticity, modularity
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and multi-transformability, etc. Till now these properties were mainly curious but powerful ideas

that were out of reach due to the gap between theoretical analysis and the available state-of-the-art

technology. However, in recent years the field of soft robotics has advanced remarkably. Many re-

searchers are developing stretchable, elastic and bendable sensors and actuators, flexible electronics,

novel smart materials, 4D printing techniques; that can actually be implemented as the components

of compliant robotic skeleton. Availability of such technology will greatly enhance the efforts to

harness unique mechanical properties of origami and compliant mechanisms.

In summary, the results from our research suggest that a rich multi-stable mechanism energy

landscape with multiple peak and valleys can potentially provide more functionality to the design of

soft robot and a possibility to embed multiple behaviors in the same robotic skeleton, with simplest

of controllers.

6.2 Physical Reservoir Computing with origami

Develop framework for the design of Physical Reservoir Computing embedded soft

origami robots with distributed sensor and actuator network

The physical reservoir computing is a very nascent field of research, with only a handful of

publications in the field of soft robotics. PRC takes inspiration from related research in Recurrent

Neural networks (RNNs) called Reservoirs with the neural network considered as a black box non-

linear dynamical system that includes only training the output readout which is mostly linear and

static. The implications of this lead to a powerful result proved by Hauser and group, that a network

of non-linear spring-mass-damper dynamic system can be used as a Reservoir. This gave way to

what we now know as physical reservoir computing where a highly non-linear dynamic reservoir is

used to perform complex computations. Since soft and compliant mechanisms satisfy this criteria it

naturally led to connections with morphological computation with applications in autonomous soft

robotic control.

This research intends to provide fundamental framework to design and analyze next-generation

of intelligent, autonomous soft origami robots. We hope that PRC is a major stepping stone towards

fully autonomous soft robots with adaptive functionality. The central idea of PRC is to use soft,

compliant bodies with non-linear dynamic behavior and distributed actuation-sensor networks as

physical reservoirs, so origami is a natural choice to design dynamic reservoirs for soft robotic appli-
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cations. Origami also offers versatile approach for creating complex 3-D mechanisms with periodic

tessellations and multiple curvatures, from flat-foldability to transformative property. Thus complex

and sophisticated transformable robots can be designed via using principles of origami.

We showed through extensive numerical simulation that origami reservoir can indeed func-

tion as a dynamic reservoir to perform task such as emulation, pattern generation, output modu-

lation, multi-tasking, etc. We also performed multiple parametric studies to uncover the effect of

different geometric and material parameters on the reservoir performance. The studies suggest that

the feedback crease distribution has the highest impact on the reservoir computing power. Still,

more work needs to be done to find optimum design for given computational tasks that reservoir

needs to perform. The big question still remains if there exists a truly optimum configuration that

gives best performance for all the tasks imaginable. We still have to figure out what the overall

limitations of the origami reservoir are in terms of computing power and the kind of computations

that it can perform. This work being the first one in this area.

The next major area of research is the practical implementation of reservoir computing

framework to origami reservoir. We experimentally demonstrated the reservoir computing power of

Miura-ori based origami reservoir for emulation tasks. This task is performed in the open loop so

we can observe the reservoir state remotely. So it does not require embedded sensors and actuators.

But that is not the case for closed loop task with origami reservoir. Until we find ways to design

origami reservoirs with low-profile, embedded sensing and actuation technology their widespread use

for soft robotics will remain out of reach.

In this research we also designed multiple robots with earthworm inspired crawling, and

quadruped robots with multiple locomotion gaits. We also showed that it’s possible to control end-

effector trajectory of a soft manipulator with PRC. We successfully embedded locomotion patterns

in the robots that are capable of producing prescribed locomotion gaits theoretically. These loco-

motion gaits were initially simulated under idealized conditions where the effect of ground reactions

and friction conditions was not taken into account. This is an important constraint in practical im-

plementation and real-life deployment. We enhanced the capability of our dynamic simulation with

introduction of impulse-based model to simulate ground collisions and friction. There are still many

limitations to such simulation. First, the origami mechanism is simulated as a discrete network of

extendable, massless trusses joined together at the origami vertices which are point masses. The

origami folding is simulated with rotational hinges connecting the facets of the origami. This formu-
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lation is powerful enough to simulate effects of external forces and the resulting folding motion, but

it has limited capability to simulate ground contact, since we only have point contact with ground

instead of surface as in real-life. Thus, improving the model to create realistic simulations that can

help in designing the robot virtually is an active research topic.

With these things in mind, the immediate extension of our work would be to understand

the intricacies in soft robotic implementation of PRC framework. For example, the possible designs

of origami pattern for earthworm-inspired crawling robot and the quadruped robot with optimum

actuator-sensor network distribution. Finding ways to add more functionality to the soft robot by

implementing gait modulation, gait switching (addition of turning gait for crawling robot and smooth

switching of walking, trotting, bounding gait for quadruped robot). Performing parametric analysis

to uncover the correlations between the robot performance and robot design parameters (underlying

origami design, material parameters, and actuator-sensor distribution) is also an important topic.

In future, the PRC coupled with unique mechanical properties that origami and compliant

mechanisms can offer – multi-stability, nonlinear stiffness and negative Poisson’s ratio – will open up

new avenue of research in designing next generation of soft origami robots with embedded mechanical

intelligence. Thus, we can take advantage of versatile mechanical properties of origami to create

truly powerful, adaptable, multi-functional soft robots. For example, it might be possible to design

a robot with embedded multi-stability and in combination with PRC can be used to modulate the

behavior of soft robot, by switching from one stable state to another.

In summary, the scope of research in the highly multi-disciplinary field of soft robotics is

no longer limited to just robotics. The application of reservoir computing for soft robot design

and control just proves how deeply intertwined and exciting the research in this area is to various

branches of engineering and fundamental science. Our research has paved the way for a new type of

soft robots with ability to perform online computations using their complex dynamics. The results

of our work will hopefully lead towards new instances of Embodied Intelligence for truly autonomous

robots.
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Appendix A Equivalent stiffness parameter formulation

This section details the formulation used for defining the stiffness parameters used in this

study: They are the equivalent crease torsional stiffness kci facet bending stiffness kfi and facet

stretching stiffness ksi where the sub-index i identifies the different creases or facets in the fluidic

origami module. The simplified free-stroke analysis Section 2.3 uses only the crease torsional stiff-

ness, while the truss-frame model in Section 2.4 uses all three stiffness parameters. Much of the

published work on such stiffness calculation is applicable to uniform thin sheets made of linearly

elastic materials, but the fluidic origami modules are fabricated from 3-D printed hyperelastic mate-

rials. Moreover, the fabricated modules feature v-grooves along the crease lines to facilitate proper

folding. Currently, there is no universal framework to describe mechanical properties of such struc-

tures, so we resort to careful approximation techniques to describe these stiffness properties. In

the subsections below, we present the stiffness parameter formulation which approximates the fold-

ing characteristics of the 3D printed fluidic origami as seen in the experiments and finite element

analyses.

A.1 Crease torsional stiffness

The crease torsional stiffness characterizes the elastic folding and unfolding behaviors along

the crease lines. To derive this parameter, we approximate the crease as a non-uniform cantilever

beam subjected to an external moment M (Figure 1). The magnitude of this moment is chosen

such that it creates crease deformations of the same order as seen in finite element simulations.

The applied moment is higher in the free-stroke analysis than in the block force analysis; because

the crease folding is more significant in the former case. To simplify the analysis, we neglect the

constraining effects due to surrounding facets so that the crease stiffness parameter is calculated

based on the following equations:

kci =
M

ϕ(wi)
(1)
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Figure 1: An example of the cross-section area of half of a crease, which is modeled as a non-uniform
cantilever beam for crease torsional stiffness characterization.

where the crease folding angle ϕ(wi) is related to the applied moment M and resting crease dihedral

angle ϕ0 is defined at the stress-free state:

ϕ(wi) =

∫ bi

0

M

EI(x)
dx+ ϕ0 (2)

and

I(x) =

{
1
12 li(di + (ti − di)

x
wi

)3 0 ≤ x ≤ wi
1
12 lit

3
i wi ≤ x ≤ bi (3)

The crease geometry parameters li, di, wi, ti and bi are chosen based on the 3D CAD designs shown

in Chapter 2. The ideal end caps are simulated by assigning zero crease stiffness at the boundary.

Since the crease stiffness is a function of resting dihedral opening angle ϕ0, it is dependent on the

Miura-ori resting folding angle θ0.

A.2 Facet bending stiffness

The facet bending stiffness is added to the truss elements that triangulates the facets in the

equivalent truss-frame model. The facet bending is not considered in the rigid-folding kinematics,

but it’s important to be taken into account for the fluidic modules fabricated from realistic materials.

The 3D printed modules show notable facet bulging when the internal pressure is very high. To derive
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this stiffness parameter, we use the formulation introduced by Lobkovskey et al. for small bending

angle de-formations (≤ 0.1radian) [88]. This assumption is consistent with the facet deformations

seen in experiments and finite element simulation. We define a scaling parameter SF to ensure that

the equivalent facet bending stiffness kfi is at least an order higher than the crease stiffness kci so

that

kfi = SF
Et3fi

12(1− ν2)
(
ldi
tfi

)(1/3) (4)

where the elastic modulus E is estimated based on the dog bone tests shown in Figure 4,ν = 0.45 is

the Poisson’s ratio, and tfi is the facet thickness. Note that the facet bending stiffness is function of

diagonal truss element length ldi which in turn is related to the crease lengths a, b and facet sector

angle γ.

A.3 Facet stretching stiffness

The facet stretching stiffness is assigned to all of the truss elements in the truss-frame

model. Filipov et al. introduced a stretching stiffness formulation to model thin sheets in origami

[32]. They assumed isotropic material properties and uniform sheet thickness to describe in-plane

stretching and shearing behavior of initially unbent facets. We adopt the same formulation, which

provides satisfactory results to qualitatively describe the fluidic origami actuator performance. The

equivalent stretching stiffness ksi for the truss element is calculated by,

kski = E
Aki

kki
(5)

where the sub-index k = a, b, or d represents the different truss members in the facet #i (Figure

2(a)), so that

Abi =
tf (a

2 − νb2)

2a(1− ν2)
, Aai =

tf (b
2 − νa2)

2b(1− ν2)
, Adi =

νtf (a
2 + b2)1.5

2ab(1− ν2)
(6)

and

lbi = b , lai = a , ldi =
√

a2 + b2 − 2ab cos γ (7)
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Table 1: The normalized stiffness parameters of four examples of fluidic origami design shown in
Figure 2

Stiffness γ = 20◦, θ0 = 77.9◦ γ = 20◦, θ0 = 88◦ γ = 60◦, θ0 = 1◦ γ = 60◦, θ0 = 77.9◦

kc/a 3.9 3.8 4.5 3.9

kf/a 103.3 103.3 139.8 139.8

ksa ksa = ksb = 1.4e−3 ksa = ksb = 1.4e−3 ksa = ksb = 1.4e−3 ksa = ksb = 1.4e−3

ksd = 8.5e−3 ksd = 8.5e−3 ksd = 3.4e−3 ksd = 3.4e−3

l
bi

γ

l
ai

l
di

γ=20°, θ°=77.9°

γ=20°, θ°=88°

γ=60°, θ°=1° γ=60°, θ°=77.9°

(a) (b)

Figure 2: Estimating the facet bending and stretching stiffness.(a) The schematic diagram of a
facet showing the truss-frame elements and geometric variables. (b) The four different examples of
Miura-ori designs, and their corre-sponding stiffness parameters are summarized in Table A.3.

Thus, the stretching stiffness is inversely proportional to the length of truss elements. Based on

the formulations above, we can calculate the stiffness parameters for every facet and crease, and

use them for the parametric analysis of free-stroke and block force. Table A.3 shows the calculated

stiffness parameters corresponding to four different examples of Miura-ori designs (Figure 2(b)).

Results in this table clearly show the connection between the stiffness parameters and the Miura-ori

designs. The crease folding stiffness kci decreases when θ0 increases. while change in γ doesn’t have

any effect on its value. The facet bending stiffness kfi increases when γ increases, while change in

θ0 doesn’t have any effect on its value. The crease stretching stiffness ksa and ksb is independent of

the changes in θ0 and γ; while the facet stretching stiffness ksd decreases with an increasing γ.
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Appendix B Equilibrium Paths Search

In this section, we elucidate how to calculate the equilibrium paths of a driving module con-

sisting of any number of serially connected bistable segments. We calculate the “equilibrium path”

followed by the driving module via searching for its local potential energy minima at a prescribed

total length. The total potential energy (Et) and total length (lt) of a driving module of n bistable

segments are defined as,

Et =

n∑
i=1

Ei(li), and lt =

n∑
i=1

li, (8)

where li is current length of the ith segment and Ei is the corresponding strain potential energy.

The search for equilibrium paths can be defined as an optimization problem. The objective

function of this optimization is the total strain energy Et (a scalar function), and it is to be minimized

over the Rn−1 vector space of individual segment lengths L = [l1 . . . ln−1]. An equality constraint

regarding the prescribed total length must be satisfied so that ln = lt −
∑n−1

i=1 li. Therefore, the

optimization problem can be described as follows:

Minimize Et =

n−1∑
i=1

Ei(li) + En(lt −
n−1∑
i=1

li)

satisfying the bounds li min ≤ li ≤ li max and ln min ≤ ln ≤ ln max,

where i = 1, 2...n− 1 (9)

The optimization problem described in equation 9 is solved for every prescribed total length of the

driving module lt, which is increased from its minimum to the maximum value with an incremental

step ∆lt,

lmin
t =

n∑
i=1

li (0),

lmax
t =

n∑
i=1

li (1),

and m =
(lmax
t − lmin

t )

∆lt
, (10)

where m is the total number of increments. li (0) and li (1) are the ith segment’s length at its fully-
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contracted stable state (0) and fully-extended stable state (1), respectively. Notice that li (0) is

different from li min by definition, and typically li min ≤ li (0). Similarly li max ≥ li (1).

For the jth increment in ljt (j = 2...m), the solutions of the optimization problem are the

vectors of individual segment lengths Lj = [lji ...l
j
n−1] corresponding to a local minima of Et. The

following pseudo-code describes the optimization algorithm used to search for the equilibrium path

of driving module when it is stretched from lmin
t .

Step 1: Initialize the optimization problem using the segment lengths at their fully-

contracted stable states (aka. li (0)). We do not have to perform optimization for this first increment

because it already corresponds to an energy minima. For segments i = 1, 2...n− 1 define,

l1i = li (0) and l1t = lmin
t

L1 = [l11 . . . l
1
n−1]. (11)

Step 2: Initiate the next increment step j = 2 so that,

l2t = l1t +∆lt

L2
0 = [l11 . . . l

1
n−1] = L1. (12)

Here, l2t is the total length of driving module at this increment step, and L2
0 is the initial input

needed to solve the optimization problem.

Step 3: Solve the optimization problem described in Equation 9. Here, L2
0 is the first guess

for finding the optimized lengths of individual segments and the optimized result is recorded as L2.

The length of the last segment is calculated as,

l2n = l2t −
n−1∑
i=1

l2i . (13)

The corresponding total energy of the module is then written as,

E2 min
t =

n∑
i=1

E2
i (l

2
i ) (14)

Step 4: Prepare the next increment step by setting Lj+1
0 = Lj and ljt = lmin

t + (j − 1)∆lt,

(j = 3...m). Then solve the optimization problem again using the procedures in Step 3. Notice that
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the optimization output Lj in the jth increment step is always used as the initial guess Lj+1
0 of the

next (j + 1)th increment step.

Step 5: Repeat Steps 2 to 4 until j = m.

Equations 13 and 14 together provide the segment lengths and potential energy along the

equilibrium path of this driving module when it is stretched from the minimun length lmin
t . The

equilibrium path for compressing the driving module need not be same as the path for stretching

it. Thus, the similar procedure can be used to search for the other equilibrium path of the driving

module when it is compressed from the maximum length lmax
t .
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Appendix C Origami Dynamics and PRC framework Algo-
rithms

This section presents the basic algorithms for emulation and closed loop pattern generation
tasks, so that the results described in this work can be reproduced. We also provide algorithms
for Quadruped robot origami pattern design, since they involve modifications in the basic Miura-ori
pattern, that is used in earlier demonstration studies. The algorthms are all developed in MATLAB®

and use ode solver and regression functions in-built in the software.

C.1 Code for Emulation task of PRC with Miura-ori metasheet

clc

clear

thetai = 0; % starting with flat state

xN = 3; % no. of cells in x-direction

yN = 3; % no. of cells in y-direction

zeta = 0.2; % damping coefficient

theta0 = [60]*pi/180; % target folded state angle

b = 10; % miura unit-cell-length

a = 1.1*b; % miura unit-cell-length

angle = 50*pi/180;% miura unit-cell-angle

[NODESi,SPRINGS,CREASEi,Kcr,N_S,LE,RE,BE,TE,S_N] = Miura_geometry ...

(a,b,angle,thetai,xN,yN);

% defining miura-geometry with nodes and truss elements

[NODES0]=miura_geom(a,b,angle,theta0,xN,yN); % folded state of miura-ori

Ncr = [a b]; %

[INPUT,op_N,Ns,Ss,Srow,Scol,Fold_Sp,CREASE] = input_para(NODES0,SPRINGS,CREASEi,Kcr, a,Ncr);

% defining feedback and input creases

%% setting spring stiffnesses; Material constants; fixed nodes

EA = 100;

Kaxial = EA;

Kfacet =10;

Kmin = 0.005;

Kmax = 0.5;

m = 0.01*ones(1,Ns); % constant nodal mass

% Kcrease = 1*ones(Ss,1); % constant crease stiffness

Kcrease = Kmin+(Kmax-Kmin)*rand(Ss,1); % variable crease stiffness

Kcrease([INPUT]) = 1;

% I set higher stiffness at input creases, you can try playing with this parameter.

for i = 1:Ss

if Kcr(i)==-1

Kcrease(i) = Kfacet; % facet stiffness

end

end

% boundary conditions: fixed nodes

Fix_x = [LE(1:2:length(LE))];

Fix_y = [LE(1)];

Fix_z = [LE(1:2:length(LE)) RE(1:2:length(RE))];

FIXED = [Fix_x Fix_y Fix_z];
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% plotting 3-D geometry

AA = (1:Ss).*any(CREASE’);

k = 1;

for j = find(AA)

facets(k,:) = CREASEi(j,[1 3 4]);

facets(k+1,:) = CREASEi(j,[2 3 4]);

k = k+2;

end

for i = 1:length(facets)

fill3(NODES0(facets(i,:),1),NODES0(facets(i,:),2),NODES0(facets(i,:),3),[0.9 0.9 0.9])

hold on

end

p7 = plot3(NODES0(Fix_x,1),NODES0(Fix_x,2),NODES0(Fix_x,3),’*b’);

p8 = plot3(NODES0(Fix_y,1),NODES0(Fix_y,2),NODES0(Fix_y,3),’+m’);

p9 = plot3(NODES0(Fix_z,1),NODES0(Fix_z,2),NODES0(Fix_z,3),’or’);

for j = 1:length(INPUT)

p10 = fill3([NODES0(Srow(INPUT(j)),1) NODES0(Scol(INPUT(j)),1)],[NODES0(Srow(INPUT(j)),2) ...

NODES0(Scol(INPUT(j)),2)],[NODES0(Srow(INPUT(j)),3) NODES0(Scol(INPUT(j)),3)], ...

[0.5 0],’EdgeColor’,’r’);

end

legend([p7,p8,p9,p10],{’X’,’Y’,’Z’,’INPUT’})

hold off

axis ’equal’

view([70 60])

li = zeros(Ss,1);

for k = 1:Ss

li(k) = norm(NODES0(SPRINGS(k,1),:)-NODES0(SPRINGS(k,2),:)); % nominal length

end

phi0 = zeros(Ss,1);

for k = find(AA)

[phi0(k),~,~,~,~] = find_phi_dphi(NODES0,CREASE(k,:)); % nominal fold angle

end

%% Adding effect due to gravity

ic = zeros(1,6*Ns); % initial conditions

tspan = 0:10^-3:10; % simulation time in seconds

res = 10^-6;

tic

options = odeset(’RelTol’,res,’AbsTol’,res);

[~,Yg] = ode45(@(t,Y) myode_gravity(t,Y,Ss,Ns,SPRINGS,N_S,li,phi0, Kaxial,Kcrease,CREASE, ...

NODES0,zeta, m,Fix_x,Fix_y,Fix_z), tspan, ic,options); % solving the ODE

toc

Pxg = Yg(:,1:Ns);

Pyg = Yg(:,Ns+1:Ns+Ns);

Pzg = Yg(:,2*Ns+1:2*Ns+Ns);

NODES0fg = NODES0 +[Pxg(end,:);Pyg(end,:);Pzg(end,:)]’; % equilibrium nodes

phi0 = zeros(Ss,1);

for k = find(AA)

[phi0(k),~,~,~,~] = find_phi_dphi(NODES0fg,CREASE(k,:)); % equilibrium fold angle
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end

li = zeros(Ss,1);

for k = 1:Ss

li(k) = norm(NODES0fg(SPRINGS(k,1),:)-NODES0fg(SPRINGS(k,2),:)); % equilibrium length

end

% plotting equilibrium shape of miura

figure

for i = 1:(Ss)

fill3([NODES0fg(Srow(i),1) NODES0fg(Scol(i),1)],[NODES0fg(Srow(i),2) NODES0fg(Scol(i),2)], ...

[NODES0fg(Srow(i),3) NODES0fg(Scol(i),3)],[0.5 0],’EdgeColor’,’black’)

hold on

end

p7 = plot3(NODES0fg(Fix_x,1),NODES0fg(Fix_x,2),NODES0fg(Fix_x,3),’*b’);

p8 = plot3(NODES0fg(Fix_y,1),NODES0fg(Fix_y,2),NODES0fg(Fix_y,3),’+m’);

p9 = plot3(NODES0fg(Fix_z,1),NODES0fg(Fix_z,2),NODES0fg(Fix_z,3),’or’);

for j = 1:length(INPUT)

p10 = fill3([NODES0fg(Srow(INPUT(j)),1) NODES0fg(Scol(INPUT(j)),1)],[NODES0fg(Srow(INPUT(j)),2) ...

NODES0fg(Scol(INPUT(j)),2)],[NODES0fg(Srow(INPUT(j)),3) NODES0fg(Scol(INPUT(j)),3)], ...

[0.5 0],’EdgeColor’,’r’);

end

legend([p7,p8,p9,p10],{’X’,’Y’,’Z’,’INPUT’})

hold off

grid on

axis ’equal’

view([70 60])

xlabel(’x’)

ylabel(’y’)

zlabel(’z’)

%% TRAINING the OUTPUTS

delt = 1*1E-3; % time-step

time = 0:delt:1.0; % training time

endT = length(time);

% setting up input

f1 = 2.11*0.001;

f2 = 3.73*0.001;

f3 = 4.33*0.001;

eps =@(t) 0.5*(0.1*sin(2*pi*f1*t).*sin(2*pi*f2*t)+2).*square(t*pi/80)+ ...

0.2*(0.2*sin(2*pi*f1*t).*sin(2*pi*f3*t)+2).*square(t*pi/150)+ ...

0.1*(0.1*sin(2*pi*f2*t).*sin(2*pi*f3*t)+2).*square(t*pi/200)+2;

xin =@(t) 0.5*(eps(t));

% TRAINING the OUTPUTS

win = zeros(Ss,1);

win(INPUT) = 1;

tic

ic = zeros(1,6*Ns);

tspan = time;

options = odeset(’RelTol’,res,’AbsTol’,res);

[~,Y] = ode45(@(t,Y) myode(t,Y,Ss,Ns,SPRINGS,N_S,li,phi0,Kaxial,Kcrease,CREASE,NODES0fg, ...

zeta,m,win,INPUT,xin,Fix_x,Fix_y,Fix_z,time), tspan, ic,options);
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Px = Y(:,1:Ns);

Py = Y(:,Ns+1:Ns+Ns);

Pz = Y(:,2*Ns+1:2*Ns+Ns);

toc

% find current spring folding angle matrix

gamma = 1*1E-3; % max. noise amplitude

L = zeros(endT,length(Fold_Sp));

for count = 1:endT

NODES = NODES0fg+[Px(count,:);Py(count,:);Pz(count,:)]’;

noise1=-gamma+(2*gamma)*rand(length(Fold_Sp),1); % adding noise

phi = zeros(Ss,1);

for k = Fold_Sp

[phi(k),~,~,~,~] = find_phi_dphi(NODES,CREASE(k,:));

end

L(count,:) = phi(Fold_Sp) + noise1;

end

figure

plot(time,L)

%

%% Training readout using Linear Least Squares

% Setup the function you want to emulate here as emu_fun.

n_wash = 30000;

t_train = n_wash+1:floor(2*endT/3);

t_test = floor(2*endT/3)+1:endT;

%

[Wout1,bint1,r1,rint1,stats1] = regress(emu_fun(t_train),[ones(length(t_train),1) L(t_train,:)]);

emu_result=sum(Wout1(2:end).*L(t_test,:)’)+Wout1(1); % emulation task output

stats1(1)

%%

% save data.mat

%% all the related functions

function [NODES,SPRINGS,CREASE,Kcr,N_S,Left_Edge,Right_Edge,Bottom_Edge,Top_Edge,S_N] = Miura_geometry(a,b,gamma,thetai,xN,yN)

[NODES,L,W,V,fa]=miura_geom(a,b,gamma,thetai,xN,yN);

x_max = max(NODES(:,1));

y_max = max(NODES(:,2));

Ncr = [a b fa];

Fcr = [fa];

Ns = length(NODES);

eps = 1E-4;

% Node Connections

N_N = zeros(Ns,Ns);

for k = 1:length(Ncr)

for i = 1:Ns

for j = setdiff(1:Ns,1:i)

if abs(norm(NODES(i,:)-NODES(j,:))-Ncr(k))<=eps
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N_N(i,j)=1;

end

end

end

end

% Spring definition

[Srow,Scol]=find(N_N);

SPRINGS = [Srow,Scol];

Ss = length(SPRINGS);

% Facet definition

Facet_Spring = zeros(Ss,1);

for k = 1:length(Fcr)

for i = 1:Ss

li(i) = norm(NODES(SPRINGS(i,1),:)-NODES(SPRINGS(i,2),:)); % nominal length in flat state

if abs(li(i)-Fcr(k))<eps

Facet_Spring(i)=1;

end

end

end

%Creases definition

Left_Edge=[];

Right_Edge=[];

Bottom_Edge=[];

Top_Edge=[];

for i = 1:Ns

if abs(NODES(i,1)-0)<eps

Left_Edge = [Left_Edge i];

elseif abs(NODES(i,1)-x_max) <eps

Right_Edge = [Right_Edge i];

end

if abs(NODES(i,2)-0)<eps

Bottom_Edge = [Bottom_Edge i];

elseif abs(NODES(i,2)-(y_max)) <eps

Top_Edge = [Top_Edge i];

end

end

[CREASE,Kcr,N_S,S_N] = get_creases(SPRINGS,Ss,Ns,Facet_Spring);

end

%-----

function [CREASE,Kcr,N_S,S_N] = get_creases(SPRINGS,Ss,Ns,Facet_Spring)

for j = 1:Ss

if Facet_Spring(j)==1

Kcr(j)= -1 ;

else

Kcr(j)= +1 ;

end
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kka = ones(Ss,1);

kkb = ones(Ss,1);

for i = 1:Ss-1

k = setdiff(1:Ss,j);

[~,ia] = intersect(SPRINGS(k(i),:),SPRINGS(j,1));

[~,ib] = intersect(SPRINGS(k(i),:),SPRINGS(j,2));

kka(k(i)) = isempty(ia);

kkb(k(i)) = isempty(ib);

end

arr = sort([SPRINGS(kka==0,1); SPRINGS(kka==0,2); SPRINGS(kkb==0,1); SPRINGS(kkb==0,2)]);

[C,~,ic] = unique(arr);

a_counts = accumarray(ic,1);

value_counts = [C, a_counts];

mp = setdiff(value_counts(:,1).*(a_counts==2),[SPRINGS(j,:) 0]);

if length(mp)>=2

CREASE(j,1:4) = [mp(1:2); SPRINGS(j,:)’];

else

CREASE(j,1:4) = zeros(1,4);

Kcr(j) = 0;

end

end

% Creating Node to Spring and Nodes Matrix

for i = 1:Ns

for j = 1:Ss

if ismember(i,SPRINGS(j,:))==1

N_S(i,j) = setdiff(SPRINGS(j,:),i);

else

N_S(i,j) = 0;

end

end

end

% Kcr = 0 for boundary crease, +1 for M/V , -1 for facet

S_N = zeros(Ns,10);

for i = 1:Ns

[~,Sco] = setdiff(N_S(i,:),0);

S_N(i,1:length(Sco)) = Sco’;

end

end

%-----

function [phi,dphidpx,dphidpy,dphidpz,cosphi] = find_phi_dphi(NODES,CREASE)

Pl = NODES(CREASE(1),:);

Pi = NODES(CREASE(2),:);

Pj = NODES(CREASE(3),:);

Pk = NODES(CREASE(4),:);

m = cross((Pi-Pj),(Pk-Pj));

n = cross((Pk-Pj),(Pk-Pl));
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cosphi = dot(m,n)/norm(n)/norm(m);

if dot(m,(Pk-Pl))==0

phi = mod(1*real(acos(cosphi)),2*pi);

else

phi = mod(sign(dot(m,(Pk-Pl)))*real(acos(cosphi)),2*pi);

end

dphidpl = -norm(Pk-Pj)/(norm(n))^2*n;

dphidpi = norm(Pk-Pj)/(norm(m))^2*m;

dphidpj = (dot((Pi-Pj),(Pk-Pj))/(norm(Pk-Pj))^2-1)*dphidpi - ...

dot((Pk-Pl),(Pk-Pj))/(norm(Pk-Pj))^2*dphidpl;

dphidpk = (dot((Pk-Pl),(Pk-Pj))/(norm(Pk-Pj))^2-1)*dphidpl - ...

dot((Pi-Pj),(Pk-Pj))/(norm(Pk-Pj))^2*dphidpi;

dphidpx = [dphidpl(1) dphidpi(1) dphidpj(1) dphidpk(1) ];

dphidpy = [dphidpl(2) dphidpi(2) dphidpj(2) dphidpk(2) ];

dphidpz = [dphidpl(3) dphidpi(3) dphidpj(3) dphidpk(3) ];

end

%-----

function [NODES,L,W,V,fa]=miura_geom(a,b,gamma,theta,xN,yN)

Ht = a*sin(gamma)*sin(theta);

L = b*tan(gamma)*cos(theta)./(sqrt(1+cos(theta).^2*tan(gamma)^2));

W = a*sqrt(1-sin(theta).^2*sin(gamma)^2);

V = b./sqrt(1+cos(theta).^2*tan(gamma)^2);

A = [0 0 0];

B = [L V 0];

C = [2*L 0 0];

D = [0 W Ht];

E = [L W+V Ht];

F = [2*L W Ht];

G = [0 2*W 0];

H = [L 2*W+V 0];

I = [2*L 2*W 0];

NODESb = [A; B; C; D; E; F; G; H; I];

% Add periodic copies of miura in x and y direction

xNodes = [repmat(B,xN,1); repmat(C,xN,1); repmat(E,xN,1); repmat(F,xN,1); repmat(H,xN,1); ...

repmat(I,xN,1)+repmat([[1:xN]’*2*L zeros(xN,2)],6,1);

yNodes = [];

for i = 1:yN

yNodesm = [D; G; E; H; F; I; xNodes((2*xN+1):end,:)]+repmat([0 i*2*W 0],6+length(xNodes)-(2*xN),1);

yNodes = [yNodes; yNodesm];

end

NODES = [NODESb;xNodes;yNodes];

fa = sqrt(a^2+b^2-2*a*b*cos(pi-gamma));

end

%-----

function [INPUT,op_N,Ns,Ss,Srow,Scol,Fold_Sp,CREASE] = input_para(NODES0,SPRINGS,CREASEi,Kcr,a,Ncr)

Ns = length(NODES0);
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Ss = length(SPRINGS);

Srow = SPRINGS(:,1);

Scol = SPRINGS(:,2);

li = zeros(Ss,1);

for i = 1:Ss

li(i) = norm(NODES0(SPRINGS(i,1),:)-NODES0(SPRINGS(i,2),:)); % nominal length in flat state

end

AA = (1:Ss).*any(CREASEi’);

%correcting mountain-valley assignment: dist is negative then mountain ;

% dist is positive then valley

% phi>pi for mountain; phi<pi for valley

CREASE = CREASEi;

for j = find(AA)

% CREASE(j,:)

mid1 = (NODES0(CREASEi(j,1),:)+NODES0(CREASEi(j,2),:))/2; % facet

mid2 = (NODES0(CREASEi(j,3),:)+NODES0(CREASEi(j,4),:))/2; % crease

[phi,~,~,~,~] = find_phi_dphi(NODES0,CREASEi(j,:));

if abs(li(j)-a)<10^-6

dist = mid1(3)-mid2(3);

if dist<0 && phi<pi || dist>0 && phi>pi

CREASE(j,1:4) = CREASEi(j,1:4);

elseif dist<0 && phi>pi || dist>0 && phi<pi

CREASE(j,1:2) = fliplr(CREASEi(j,1:2));

end

else

dist = mid1(3)-mid2(3);

if dist>0 && phi<pi || dist<0 && phi>pi

CREASE(j,1:4) = CREASEi(j,1:4);

elseif dist>0 && phi>pi || dist<0 && phi<pi

CREASE(j,1:2) = fliplr(CREASEi(j,1:2));

end

end

end

% figure

% Gr = graph(SPRINGS(:,1), SPRINGS(:,2),phi0);

% plot(Gr,’EdgeLabel’,Gr.Edges.Weight)

Fold_Sp = intersect(find(Kcr==1),AA);

y_cr = [];

for k = 1:length(Ncr)

for i = Fold_Sp

if abs(li(i)-Ncr(k))<10^-5

long_crk = i;

else

long_crk = [];

end

y_cr = [y_cr long_crk];

end

end
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y_c = unique(y_cr);

op_N = length(Fold_Sp);

INPUT = y_c(randperm(length(y_c),ceil(op_N*25/100))); % selecting 25% creases as input creases

end

%-----

function [dYdt] = myode_gravity(t,Y,Ss,Ns,SPRINGS,N_S,li,phi0i,Kaxial, ...

Kcrease,CREASE,NODES0,zeta,m,Fix_x,Fix_y,Fix_z)

Px = Y(1:Ns);

Py = Y(Ns+1:Ns+Ns);

Pz = Y(2*Ns+1:2*Ns+Ns);

vx = Y(3*Ns+1:3*Ns+Ns);

vy = Y(4*Ns+1:4*Ns+Ns);

vz = Y(5*Ns+1:5*Ns+Ns);

NODES = NODES0+[Px Py Pz];

l = zeros(Ss,1);

for i = 1:Ss

l(i) = norm(NODES(SPRINGS(i,1),:)-NODES(SPRINGS(i,2),:));

end

Faxialx=zeros(Ss,Ns);

Faxialy=zeros(Ss,Ns);

Faxialz=zeros(Ss,Ns);

Fcreasex=zeros(Ss,Ns);

Fcreasey=zeros(Ss,Ns);

Fcreasez=zeros(Ss,Ns);

for j = 1:Ss

[NSco] = setdiff(N_S(:,j),0);

% Axial Force Calculations

dldpi = (NODES(NSco(2),:)-NODES(NSco(1),:))/norm(NODES(NSco(2),:)-NODES(NSco(1),:));

Faxialx(j,NSco) = -Kaxial/l(j)*(l(j)-li(j))*[-dldpi(1) dldpi(1)];

Faxialy(j,NSco) = -Kaxial/l(j)*(l(j)-li(j))*[-dldpi(2) dldpi(2)];

Faxialz(j,NSco) = -Kaxial/l(j)*(l(j)-li(j))*[-dldpi(3) dldpi(3)];

phi0 = phi0i;

phi = phi0i;

end

AA = (1:Ss).*any(CREASE’);

for j = find(AA)

% Crease folding force Calculations

[phi(j),dphidpx,dphidpy,dphidpz,~] = find_phi_dphi(NODES,CREASE(j,:));

Fcreasex(j,CREASE(j,:)) = -Kcrease(j)*l(j)*(phi(j)-phi0(j))*dphidpx;

Fcreasey(j,CREASE(j,:)) = -Kcrease(j)*l(j)*(phi(j)-phi0(j))*dphidpy;

Fcreasez(j,CREASE(j,:)) = -Kcrease(j)*l(j)*(phi(j)-phi0(j))*dphidpz;

end

% Damping Force Calculations

Fdampingx = zeros(1,Ns);

Fdampingy = zeros(1,Ns);

Fdampingz = zeros(1,Ns);
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for i = 1:Ns

[Nco,Sco] = setdiff(N_S(i,:),0);

dVdampx(1:length(Nco)) = (vx(Nco)-vx(i))/2;

dVdampy(1:length(Nco)) = (vy(Nco)-vy(i))/2;

dVdampz(1:length(Nco)) = (vz(Nco)-vz(i))/2;

cdamp = 2*zeta*sqrt(Kaxial./l(Sco)*m(i));

Fdampingx(i) = (sum(cdamp.*dVdampx’));

Fdampingy(i) = (sum(cdamp.*dVdampy’));

Fdampingz(i) = (sum(cdamp.*dVdampz’));

clear dVdampx dVdampy dVdampz

end

% Add gravity

Fg = -9.81*m;

% Calculating New Velocity and Position

Fx = sum(Faxialx)+sum(Fcreasex)+(Fdampingx);

Fy = sum(Faxialy)+sum(Fcreasey)+(Fdampingy);

Fz = sum(Faxialz)+sum(Fcreasez)+(Fdampingz)+Fg;

ax = (Fx)./m;

ay = (Fy)./m;

az = (Fz)./m;

ax(Fix_x) = 0;

ay(Fix_y) = 0;

az(Fix_z) = 0;

dYdt = [Y(3*Ns+1:3*Ns+3*Ns); [ax ay az]’];

end

%-----

function [dYdt] = myode(t,Y,Ss,Ns,SPRINGS,N_S,li,phi0i,Kaxial,Kcrease,CREASE,NODES0, ...

zeta,m,win,INPUT,xin,Fix_x,Fix_y,Fix_z,time)

Px = Y(1:Ns);

Py = Y(Ns+1:Ns+Ns);

Pz = Y(2*Ns+1:2*Ns+Ns);

vx = Y(3*Ns+1:3*Ns+Ns);

vy = Y(4*Ns+1:4*Ns+Ns);

vz = Y(5*Ns+1:5*Ns+Ns);

NODES = NODES0+[Px Py Pz];

l = zeros(Ss,1);

for i = 1:Ss

l(i) = norm(NODES(SPRINGS(i,1),:)-NODES(SPRINGS(i,2),:));

end

Faxialx=zeros(Ss,Ns);

Faxialy=zeros(Ss,Ns);

Faxialz=zeros(Ss,Ns);

for j = 1:Ss
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[NSco] = setdiff(N_S(:,j),0);

% Axial Force Calculations

dldpi = (NODES(NSco(2),:)-NODES(NSco(1),:))/norm(NODES(NSco(2),:)-NODES(NSco(1),:));

Faxialx(j,NSco) = -Kaxial/l(j)*(l(j)-li(j))*[-dldpi(1) dldpi(1)];

Faxialy(j,NSco) = -Kaxial/l(j)*(l(j)-li(j))*[-dldpi(2) dldpi(2)];

Faxialz(j,NSco) = -Kaxial/l(j)*(l(j)-li(j))*[-dldpi(3) dldpi(3)];

end

Fcreasex=zeros(Ss,Ns);

Fcreasey=zeros(Ss,Ns);

Fcreasez=zeros(Ss,Ns);

phi = zeros(Ss,1);

phi0 = phi0i;

phi0(INPUT) = win(INPUT)*tanh(xin(t))+phi0i(INPUT);

AA = (1:Ss).*any(CREASE’);

for j = find(AA)

% Crease folding force Calculations

[phi(j),dphidpx,dphidpy,dphidpz,~] = find_phi_dphi(NODES,CREASE(j,:));

Fcreasex(j,CREASE(j,:)) = -Kcrease(j)*l(j)*(phi(j)-phi0(j))*dphidpx;

Fcreasey(j,CREASE(j,:)) = -Kcrease(j)*l(j)*(phi(j)-phi0(j))*dphidpy;

Fcreasez(j,CREASE(j,:)) = -Kcrease(j)*l(j)*(phi(j)-phi0(j))*dphidpz;

end

% Damping Force Calculations

Fdampingx = zeros(1,Ns);

Fdampingy = zeros(1,Ns);

Fdampingz = zeros(1,Ns);

for i = 1:Ns

[Nco,Sco] = setdiff(N_S(i,:),0);

dVdampx(1:length(Nco)) = (vx(Nco)-vx(i))/2;

dVdampy(1:length(Nco)) = (vy(Nco)-vy(i))/2;

dVdampz(1:length(Nco)) = (vz(Nco)-vz(i))/2;

cdamp = 2*zeta*sqrt(Kaxial./l(Sco)*m(i));

Fdampingx(i) = (sum(cdamp.*dVdampx’));

Fdampingy(i) = (sum(cdamp.*dVdampy’));

Fdampingz(i) = (sum(cdamp.*dVdampz’));

clear dVdampx dVdampy dVdampz

end

% Calculating New Velocity and Position

Fx = sum(Faxialx)+sum(Fcreasex)+(Fdampingx);

Fy = sum(Faxialy)+sum(Fcreasey)+(Fdampingy);

Fz = sum(Faxialz)+sum(Fcreasez)+(Fdampingz);

ax = (Fx)./m;

ay = (Fy)./m;

az = (Fz)./m;

ax(Fix_x) = 0;

ay(Fix_y) = 0;

az(Fix_z) = 0;

dYdt = [Y(3*Ns+1:3*Ns+3*Ns); [ax ay az]’];
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% size(dYdt)

end

C.2 Code for Closed loop task of PRC with Miura-ori metasheet

clc

clear

thetai = 0; % starting with flat state

xN = 3; % no. of cells in x-direction

yN = 3; % no. of cells in y-direction

zeta = 0.2; % damping coefficient

theta0 = [60]*pi/180; % target folded state angle

b = 10; % miura unit-cell-length

a = 1.1*b; % miura unit-cell-length

angle = 50*pi/180;% miura unit-cell-angle

[NODESi,SPRINGS,CREASEi,Kcr,N_S,LE,RE,BE,TE,S_N] = Miura_geometry(a,b,angle,thetai,xN,yN);

% defining miura-geometry with nodes and truss elements

[NODES0]=miura_geom(a,b,angle,theta0,xN,yN); % folded state of miura-ori

Ncr = [a b]; %

[FEEDBACK1,FEEDBACK2,INPUT,op_N,Ns,Ss,Srow,Scol,Fold_Sp,CREASE] = ...

input_para(NODES0,SPRINGS,CREASEi,Kcr,a,Ncr); % defining feedback and input creases

FB = [FEEDBACK1 FEEDBACK2];

%% setting spring stiffnesses; Material constants; fixed nodes

EA = 100;

Kaxial = EA;

Kfacet =10;

Kmin = 0.005;

Kmax = 0.5;

m = 0.01*ones(1,Ns); % constant nodal mass

Kcrease = 1*ones(Ss,1); % constant crease stiffness

% Kcrease = Kmin+(Kmax-Kmin)*rand(Ss,1); % variable crease stiffness

Kcrease([FB INPUT]) = 1;

for i = 1:Ss

if Kcr(i)==-1

Kcrease(i) = Kfacet; % facet stiffness

end

end

% boundary conditions: fixed nodes

Fix_x = [LE(1:2:length(LE))];

Fix_y = [LE(1)];

Fix_z = [LE(1:2:length(LE)) RE(1:2:length(RE))];

FIXED = [Fix_x Fix_y Fix_z];

% plotting 3-D geometry

AA = (1:Ss).*any(CREASE’);

k = 1;

for j = find(AA)

facets(k,:) = CREASEi(j,[1 3 4]);

facets(k+1,:) = CREASEi(j,[2 3 4]);
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k = k+2;

end

for i = 1:length(facets)

fill3(NODES0(facets(i,:),1),NODES0(facets(i,:),2),NODES0(facets(i,:),3),[0.9 0.9 0.9])

hold on

end

p7 = plot3(NODES0(Fix_x,1),NODES0(Fix_x,2),NODES0(Fix_x,3),’*b’);

p8 = plot3(NODES0(Fix_y,1),NODES0(Fix_y,2),NODES0(Fix_y,3),’+m’);

p9 = plot3(NODES0(Fix_z,1),NODES0(Fix_z,2),NODES0(Fix_z,3),’or’);

for j = 1:length(FEEDBACK1)

p10 = fill3([NODES0(Srow(FEEDBACK1(j)),1) NODES0(Scol(FEEDBACK1(j)),1)], ...

[NODES0(Srow(FEEDBACK1(j)),2) NODES0(Scol(FEEDBACK1(j)),2)],[NODES0(Srow(FEEDBACK1(j)),3) ... NODES0(Scol(FEEDBACK1(j)),3)],[0.5 0],’EdgeColor’,’r’);

end

for j = 1:length(FEEDBACK2)

p11 = fill3([NODES0(Srow(FEEDBACK2(j)),1) NODES0(Scol(FEEDBACK2(j)),1)], ...

[NODES0(Srow(FEEDBACK2(j)),2) NODES0(Scol(FEEDBACK2(j)),2)],[NODES0(Srow(FEEDBACK2(j)),3) ... NODES0(Scol(FEEDBACK2(j)),3)],[0.5 0],’EdgeColor’,’b’);

end

legend([p7,p8,p9,p10,p11],{’X’,’Y’,’Z’,’FEEDBACK1’,’FEEDBACK2’})

hold off

axis ’equal’

view([70 60])

li = zeros(Ss,1);

for k = 1:Ss

li(k) = norm(NODES0(SPRINGS(k,1),:)-NODES0(SPRINGS(k,2),:)); % nominal length

end

phi0 = zeros(Ss,1);

for k = find(AA)

[phi0(k),~,~,~,~] = find_phi_dphi(NODES0,CREASE(k,:)); % nominal fold angle

end

%% Adding effect due to gravity

ic = zeros(1,6*Ns); % initial conditions

tspan = 0:10^-3:10; % simulation time

res = 10^-6;

tic

options = odeset(’RelTol’,res,’AbsTol’,res);

[~,Yg] = ode45(@(t,Y) myode_gravity(t,Y,Ss,Ns,SPRINGS,N_S,li,phi0,Kaxial, ...

Kcrease,CREASE,NODES0,zeta,m,Fix_x,Fix_y,Fix_z), tspan, ic,options); % solving the ODE

toc

Pxg = Yg(:,1:Ns);

Pyg = Yg(:,Ns+1:Ns+Ns);

Pzg = Yg(:,2*Ns+1:2*Ns+Ns);

NODES0fg = NODES0 +[Pxg(end,:);Pyg(end,:);Pzg(end,:)]’; % equilibrium nodes

phi0 = zeros(Ss,1);

for k = find(AA)

[phi0(k),~,~,~,~] = find_phi_dphi(NODES0fg,CREASE(k,:)); % equilibrium fold angle

end

li = zeros(Ss,1);

for k = 1:Ss
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li(k) = norm(NODES0fg(SPRINGS(k,1),:)-NODES0fg(SPRINGS(k,2),:)); % equilibrium length

end

% plotting equilibrium shape of miura

figure

for i = 1:(Ss)

fill3([NODES0fg(Srow(i),1) NODES0fg(Scol(i),1)],[NODES0fg(Srow(i),2) NODES0fg(Scol(i),2)], ...

[NODES0fg(Srow(i),3) NODES0fg(Scol(i),3)],[0.5 0],’EdgeColor’,’black’)

hold on

end

p7 = plot3(NODES0fg(Fix_x,1),NODES0fg(Fix_x,2),NODES0fg(Fix_x,3),’*b’);

p8 = plot3(NODES0fg(Fix_y,1),NODES0fg(Fix_y,2),NODES0fg(Fix_y,3),’+m’);

p9 = plot3(NODES0fg(Fix_z,1),NODES0fg(Fix_z,2),NODES0fg(Fix_z,3),’or’);

for j = 1:length(FEEDBACK1)

p10 = fill3([NODES0fg(Srow(FEEDBACK1(j)),1) NODES0fg(Scol(FEEDBACK1(j)),1)], ...[NODES0fg(Srow(FEEDBACK1(j)),2) NODES0fg(Scol(FEEDBACK1(j)),2)],[NODES0fg(Srow(FEEDBACK1(j)),3) ... NODES0fg(Scol(FEEDBACK1(j)),3)],[0.5 0],’EdgeColor’,’b’);

end

for j = 1:length(FEEDBACK2)

p11 = fill3([NODES0fg(Srow(FEEDBACK2(j)),1) NODES0fg(Scol(FEEDBACK2(j)),1)], ...

[NODES0fg(Srow(FEEDBACK2(j)),2) NODES0fg(Scol(FEEDBACK2(j)),2)],[NODES0fg(Srow(FEEDBACK2(j)),3) ...

NODES0fg(Scol(FEEDBACK2(j)),3)],[0.5 0],’EdgeColor’,’g’);

end

for j = 1:length(INPUT)

p12 = fill3([NODES0fg(Srow(INPUT(j)),1) NODES0fg(Scol(INPUT(j)),1)],[NODES0fg(Srow(INPUT(j)),2) ... NODES0fg(Scol(INPUT(j)),2)],[NODES0fg(Srow(INPUT(j)),3) NODES0fg(Scol(INPUT(j)),3)],[0.5 0],’EdgeColor’,’r’);

end

legend([p7,p8,p9,p10,p11,p12],{’X’,’Y’,’Z’,’FEEDBACK1’,’FEEDBACK2’,’INPUT’})

hold off

grid on

axis ’equal’

view([70 60])

xlabel(’x’)

ylabel(’y’)

zlabel(’z’)

%% TRAINING the OUTPUTS

delt = 1*1E-3; % time-step

time = 0:delt:500.0; % training time

endT = length(time);

% setting up input

f1 = 2.11*0.001;

f2 = 3.73*0.001;

f3 = 4.33*0.001;

eps =@(t) 0.5*(0.1*sin(2*pi*f1*t).*sin(2*pi*f2*t)+2).*square(t*pi/80)+ ...

0.2*(0.2*sin(2*pi*f1*t).*sin(2*pi*f3*t)+2).*square(t*pi/150)+ ...

0.1*(0.1*sin(2*pi*f2*t).*sin(2*pi*f3*t)+2).*square(t*pi/200)+2;

xin =@(t) 0.5*(eps(t));

%

ic = [0.5 0.5];

[x1s,x2s] = reference(time,ic,eps); % Reference output

% setting up feedback weights

wfbv = zeros(1,length(FB));

for k = 1:length(FB)
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kk = FB(k);

if phi0(kk)>pi

wfbv(k) = (2*pi-0.2-phi0(kk))/tanh(max(x2s));

elseif phi0(kk)<pi

wfbv(k) = (0.2-phi0(kk))/tanh(min(x2s));

end

end

wfbval = mean(wfbv);

phi0A = phi0;

% TRAINING the OUTPUTS

wfb = zeros(Ss,1);

wfb(FB) = wfbval;

win = zeros(Ss,1);

win(INPUT) = 1;

tic

ic = zeros(1,6*Ns);

tspan = time;

options = odeset(’RelTol’,res,’AbsTol’,res);

[~,Y] = ode45(@(t,Y) myode(t,Y,Ss,Ns,SPRINGS,N_S,li,phi0,Kaxial,Kcrease,CREASE,NODES0fg,zeta,m,win, ...

INPUT,xin,Fix_x,Fix_y,Fix_z,wfb,x1s,x2s,FEEDBACK1,FEEDBACK2,time), tspan, ic,options);

Px = Y(:,1:Ns);

Py = Y(:,Ns+1:Ns+Ns);

Pz = Y(:,2*Ns+1:2*Ns+Ns);

toc

% find current spring folding angle matrix

gamma = 1*1E-3; % max. noise amplitude

L = zeros(endT,length(Fold_Sp));

for count = 1:endT

NODES = NODES0fg+[Px(count,:);Py(count,:);Pz(count,:)]’;

noise1=-gamma+(2*gamma)*rand(length(Fold_Sp),1); % adding noise

phi = zeros(Ss,1);

for k = Fold_Sp

[phi(k),~,~,~,~] = find_phi_dphi(NODES,CREASE(k,:));

end

L(count,:) = phi(Fold_Sp) + noise1;

end

figure

plot(time,L)

%

% Training readout using Linear Least Squares

n_wash = 30000;

t_train = n_wash+1:floor(2*endT/3);

t_test = floor(2*endT/3)+1:endT;

%

[Wout1,bint1,r1,rint1,stats1] = regress(x1s(t_train),[ones(length(t_train),1) L(t_train,:)]);

[Wout2,bint2,r2,rint2,stats2] = regress(x2s(t_train),[ones(length(t_train),1) L(t_train,:)]);

y1tL=sum(Wout1(2:end).*L(t_test,:)’)+Wout1(1); % current output-1

y2tL=sum(Wout2(2:end).*L(t_test,:)’)+Wout2(1); % current output-2
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stats1(1)

stats2(1)

%% Closed loop simulation

time1=time(endT):delt:500.0+time(endT); % simulation time

endT1=length(time1);

tic

ic = Y(endT-1,:);

tspan = time1;

options = odeset(’RelTol’,res,’AbsTol’,res);

[~,YcL] = ode45(@(t,Y) myodeC(t,Y,Ss,Ns,SPRINGS,N_S,li,phi0,Kaxial,Kcrease,CREASE,NODES0fg,zeta,m, ...

Fix_x,Fix_y,Fix_z,wfb,win,INPUT,xin,Wout1,Wout2,FEEDBACK1,FEEDBACK2,Fold_Sp), tspan, ic,options);

PxcL = YcL(:,1:Ns);

PycL = YcL(:,Ns+1:Ns+Ns);

PzcL = YcL(:,2*Ns+1:2*Ns+Ns);

toc

% find current spring folding angles, outputs

LcL = zeros(endT1,length(Fold_Sp));

for count = 1:endT1

NODES = NODES0fg+[PxcL(count,:);PycL(count,:);PzcL(count,:)]’;

phi = zeros(Ss,1);

for k = Fold_Sp

[phi(k),~,~,~,~] = find_phi_dphi(NODES,CREASE(k,:));

end

LcL(count,:) = phi(Fold_Sp);

end

Y1cL=sum(Wout1(2:end).*LcL’)+Wout1(1); % current output-1

Y2cL=sum(Wout2(2:end).*LcL’)+Wout2(1); % current output-2

%% plotting closed loop

icRL = [Y1cL(1) Y2cL(1)];

[x1L,x2L] = reference(time1,icRL,eps);

MSE1 = sum((Y1cL(1:10000)-x1L(1:10000)’).^2)/10000

MSE2 = sum((Y2cL(1:10000)-x2L(1:10000)’).^2)/10000

MSE = sqrt(MSE1^2+MSE2^2)

figure

plot(time1,x1L,time1,x2L,time1,Y1cL,time1,Y2cL)

figure

plot(x1L,x2L,Y1cL,Y2cL)

%% closed loop starting from rest

time2=0:delt:500.0; % simulation time

endT2=length(time2);

tic

ic = zeros(1,6*Ns);

tspan = time2;

options = odeset(’RelTol’,res,’AbsTol’,res);

tic
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[~,YcL0] = ode45(@(t,Y) myodeC(t,Y,Ss,Ns,SPRINGS,N_S,li,phi0,Kaxial,Kcrease,CREASE,NODES0fg,zeta,m, ...

Fix_x,Fix_y,Fix_z,wfb,win,INPUT,xin,Wout1,Wout2,FEEDBACK1,FEEDBACK2,Fold_Sp), tspan, ic,options);

toc

PxcL0 = YcL0(:,1:Ns);

PycL0 = YcL0(:,Ns+1:Ns+Ns);

PzcL0 = YcL0(:,2*Ns+1:2*Ns+Ns);

% find current spring folding angles, outputs

LcL0 = zeros(endT2,length(Fold_Sp));

for count = 1:endT2

NODES = NODES0fg+[PxcL0(count,:);PycL0(count,:);PzcL0(count,:)]’;

phi = zeros(Ss,1);

for k = Fold_Sp

[phi(k),~,~,~,~] = find_phi_dphi(NODES,CREASE(k,:));

end

LcL0(count,:) = phi(Fold_Sp);

end

%

Y1cL0=sum(Wout1(2:end).*LcL0’)+Wout1(1); % current output-1

Y2cL0=sum(Wout2(2:end).*LcL0’)+Wout2(1); % current output-2

x1L0 = x1s(1:endT2);

x2L0 = x2s(1:endT2);

figure

plot(time2,x1L0,time2,x2L0,time2,Y1cL0,time2,Y2cL0)

figure

plot(x1L0,x2L0,Y1cL0,Y2cL0)

%%

% save Quad_modulation_9b9_G_m0p01_3new.mat

%% all the related functions

function [NODES,SPRINGS,CREASE,Kcr,N_S,Left_Edge,Right_Edge,Bottom_Edge,Top_Edge,S_N] = ...

Miura_geometry(a,b,gamma,thetai,xN,yN)

[NODES,L,W,V,fa]=miura_geom(a,b,gamma,thetai,xN,yN);

x_max = max(NODES(:,1));

y_max = max(NODES(:,2));

Ncr = [a b fa];

Fcr = [fa];

Ns = length(NODES);

eps = 1E-4;

% Node Connections

N_N = zeros(Ns,Ns);

for k = 1:length(Ncr)

for i = 1:Ns

for j = setdiff(1:Ns,1:i)

if abs(norm(NODES(i,:)-NODES(j,:))-Ncr(k))<=eps

N_N(i,j)=1;

end

end

end
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end

% Spring definition

[Srow,Scol]=find(N_N);

SPRINGS = [Srow,Scol];

Ss = length(SPRINGS);

% Facet definition

Facet_Spring = zeros(Ss,1);

for k = 1:length(Fcr)

for i = 1:Ss

li(i) = norm(NODES(SPRINGS(i,1),:)-NODES(SPRINGS(i,2),:)); % nominal length in flat state

if abs(li(i)-Fcr(k))<eps

Facet_Spring(i)=1;

end

end

end

%Creases definition

Left_Edge=[];

Right_Edge=[];

Bottom_Edge=[];

Top_Edge=[];

for i = 1:Ns

if abs(NODES(i,1)-0)<eps

Left_Edge = [Left_Edge i];

elseif abs(NODES(i,1)-x_max) <eps

Right_Edge = [Right_Edge i];

end

if abs(NODES(i,2)-0)<eps

Bottom_Edge = [Bottom_Edge i];

elseif abs(NODES(i,2)-(y_max)) <eps

Top_Edge = [Top_Edge i];

end

end

[CREASE,Kcr,N_S,S_N] = get_creases(SPRINGS,Ss,Ns,Facet_Spring);

end

function [CREASE,Kcr,N_S,S_N] = get_creases(SPRINGS,Ss,Ns,Facet_Spring)

for j = 1:Ss

if Facet_Spring(j)==1

Kcr(j)= -1 ;

else

Kcr(j)= +1 ;

end

kka = ones(Ss,1);

kkb = ones(Ss,1);

for i = 1:Ss-1

k = setdiff(1:Ss,j);
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[~,ia] = intersect(SPRINGS(k(i),:),SPRINGS(j,1));

[~,ib] = intersect(SPRINGS(k(i),:),SPRINGS(j,2));

kka(k(i)) = isempty(ia);

kkb(k(i)) = isempty(ib);

end

arr = sort([SPRINGS(kka==0,1); SPRINGS(kka==0,2); SPRINGS(kkb==0,1); SPRINGS(kkb==0,2)]);

[C,~,ic] = unique(arr);

a_counts = accumarray(ic,1);

value_counts = [C, a_counts];

mp = setdiff(value_counts(:,1).*(a_counts==2),[SPRINGS(j,:) 0]);

if length(mp)>=2

CREASE(j,1:4) = [mp(1:2); SPRINGS(j,:)’];

else

CREASE(j,1:4) = zeros(1,4);

Kcr(j) = 0;

end

end

% Creating Node to Spring and Nodes Matrix

for i = 1:Ns

for j = 1:Ss

if ismember(i,SPRINGS(j,:))==1

N_S(i,j) = setdiff(SPRINGS(j,:),i);

else

N_S(i,j) = 0;

end

end

end

% Kcr = 0 for boundary crease, +1 for M/V , -1 for facet

S_N = zeros(Ns,10);

for i = 1:Ns

[~,Sco] = setdiff(N_S(i,:),0);

S_N(i,1:length(Sco)) = Sco’;

end

end

%----

function [phi,dphidpx,dphidpy,dphidpz,cosphi] = find_phi_dphi(NODES,CREASE)

Pl = NODES(CREASE(1),:);

Pi = NODES(CREASE(2),:);

Pj = NODES(CREASE(3),:);

Pk = NODES(CREASE(4),:);

m = cross((Pi-Pj),(Pk-Pj));

n = cross((Pk-Pj),(Pk-Pl));

cosphi = dot(m,n)/norm(n)/norm(m);

if dot(m,(Pk-Pl))==0

phi = mod(1*real(acos(cosphi)),2*pi);

else

phi = mod(sign(dot(m,(Pk-Pl)))*real(acos(cosphi)),2*pi);
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end

dphidpl = -norm(Pk-Pj)/(norm(n))^2*n;

dphidpi = norm(Pk-Pj)/(norm(m))^2*m;

dphidpj = (dot((Pi-Pj),(Pk-Pj))/(norm(Pk-Pj))^2-1)*dphidpi - ...

dot((Pk-Pl),(Pk-Pj))/(norm(Pk-Pj))^2*dphidpl;

dphidpk = (dot((Pk-Pl),(Pk-Pj))/(norm(Pk-Pj))^2-1)*dphidpl - ...

dot((Pi-Pj),(Pk-Pj))/(norm(Pk-Pj))^2*dphidpi;

dphidpx = [dphidpl(1) dphidpi(1) dphidpj(1) dphidpk(1) ];

dphidpy = [dphidpl(2) dphidpi(2) dphidpj(2) dphidpk(2) ];

dphidpz = [dphidpl(3) dphidpi(3) dphidpj(3) dphidpk(3) ];

end

%-----

function [NODES,L,W,V,fa]=miura_geom(a,b,gamma,theta,xN,yN)

Ht = a*sin(gamma)*sin(theta);

L = b*tan(gamma)*cos(theta)./(sqrt(1+cos(theta).^2*tan(gamma)^2));

W = a*sqrt(1-sin(theta).^2*sin(gamma)^2);

V = b./sqrt(1+cos(theta).^2*tan(gamma)^2);

A = [0 0 0];

B = [L V 0];

C = [2*L 0 0];

D = [0 W Ht];

E = [L W+V Ht];

F = [2*L W Ht];

G = [0 2*W 0];

H = [L 2*W+V 0];

I = [2*L 2*W 0];

NODESb = [A; B; C; D; E; F; G; H; I];

% Add periodic copies of miura in x and y direction

xNodes = [repmat(B,xN,1); repmat(C,xN,1); repmat(E,xN,1); repmat(F,xN,1); ...

repmat(H,xN,1); repmat(I,xN,1)]+repmat([[1:xN]’*2*L zeros(xN,2)],6,1);

yNodes = [];

for i = 1:yN

yNodesm = [D; G; E; H; F; I; xNodes((2*xN+1):end,:)]+repmat([0 i*2*W 0],6+length(xNodes)-(2*xN),1);

yNodes = [yNodes; yNodesm];

end

NODES = [NODESb;xNodes;yNodes];

fa = sqrt(a^2+b^2-2*a*b*cos(pi-gamma));

end

%-----

function [FEEDBACK1,FEEDBACK2,INPUT,op_N,Ns,Ss,Srow,Scol,Fold_Sp,CREASE] = ...

input_para(NODES0,SPRINGS,CREASEi,Kcr,a,Ncr)

Ns = length(NODES0);

Ss = length(SPRINGS);

Srow = SPRINGS(:,1);

Scol = SPRINGS(:,2);

li = zeros(Ss,1);

for i = 1:Ss
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li(i) = norm(NODES0(SPRINGS(i,1),:)-NODES0(SPRINGS(i,2),:)); % nominal length in flat state

end

AA = (1:Ss).*any(CREASEi’);

%correcting mountain-valley assignment: dist is negative then mountain ;

%dist is positive then valley

% phi>pi for mountain; phi<pi for valley

CREASE = CREASEi;

for j = find(AA)

% CREASE(j,:)

mid1 = (NODES0(CREASEi(j,1),:)+NODES0(CREASEi(j,2),:))/2; % facet

mid2 = (NODES0(CREASEi(j,3),:)+NODES0(CREASEi(j,4),:))/2; % crease

[phi,~,~,~,~] = find_phi_dphi(NODES0,CREASEi(j,:));

if abs(li(j)-a)<10^-6

dist = mid1(3)-mid2(3);

if dist<0 && phi<pi || dist>0 && phi>pi

CREASE(j,1:4) = CREASEi(j,1:4);

elseif dist<0 && phi>pi || dist>0 && phi<pi

CREASE(j,1:2) = fliplr(CREASEi(j,1:2));

end

else

dist = mid1(3)-mid2(3);

if dist>0 && phi<pi || dist<0 && phi>pi

CREASE(j,1:4) = CREASEi(j,1:4);

elseif dist>0 && phi>pi || dist<0 && phi<pi

CREASE(j,1:2) = fliplr(CREASEi(j,1:2));

end

end

end

% figure

% Gr = graph(SPRINGS(:,1), SPRINGS(:,2),phi0);

% plot(Gr,’EdgeLabel’,Gr.Edges.Weight)

Fold_Sp = intersect(find(Kcr==1),AA);

y_cr = [];

for k = 1:length(Ncr)

for i = Fold_Sp

if abs(li(i)-Ncr(k))<10^-5

long_crk = i;

else

long_crk = [];

end

y_cr = [y_cr long_crk];

end

end

y_c = unique(y_cr);

op_N = length(Fold_Sp);

fbs = y_c(randperm(length(y_c),ceil(op_N*45/100)));

FEEDBACK1 = fbs(1:ceil(1*length(fbs)/3));
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FEEDBACK2 = fbs(1*ceil(length(fbs)/3)+1:ceil(2*length(fbs)/3));

INP = fbs(ceil(2*length(fbs)/3)+1:end);

INPUT = INP(1:10);

% INT = setdiff(fbs,FB);

% INPUT = INT(randperm(length(INT),17));

end

%-----

function [dYdt] = myode_gravity(t,Y,Ss,Ns,SPRINGS,N_S,li,phi0i,Kaxial,Kcrease,CREASE, ...

NODES0,zeta,m,Fix_x,Fix_y,Fix_z)

Px = Y(1:Ns);

Py = Y(Ns+1:Ns+Ns);

Pz = Y(2*Ns+1:2*Ns+Ns);

vx = Y(3*Ns+1:3*Ns+Ns);

vy = Y(4*Ns+1:4*Ns+Ns);

vz = Y(5*Ns+1:5*Ns+Ns);

NODES = NODES0+[Px Py Pz];

l = zeros(Ss,1);

for i = 1:Ss

l(i) = norm(NODES(SPRINGS(i,1),:)-NODES(SPRINGS(i,2),:));

end

Faxialx=zeros(Ss,Ns);

Faxialy=zeros(Ss,Ns);

Faxialz=zeros(Ss,Ns);

Fcreasex=zeros(Ss,Ns);

Fcreasey=zeros(Ss,Ns);

Fcreasez=zeros(Ss,Ns);

for j = 1:Ss

[NSco] = setdiff(N_S(:,j),0);

% Axial Force Calculations

dldpi = (NODES(NSco(2),:)-NODES(NSco(1),:))/norm(NODES(NSco(2),:)-NODES(NSco(1),:));

Faxialx(j,NSco) = -Kaxial/l(j)*(l(j)-li(j))*[-dldpi(1) dldpi(1)];

Faxialy(j,NSco) = -Kaxial/l(j)*(l(j)-li(j))*[-dldpi(2) dldpi(2)];

Faxialz(j,NSco) = -Kaxial/l(j)*(l(j)-li(j))*[-dldpi(3) dldpi(3)];

phi0 = phi0i;

phi = phi0i;

end

AA = (1:Ss).*any(CREASE’);

for j = find(AA)

% Crease folding force Calculations

[phi(j),dphidpx,dphidpy,dphidpz,~] = find_phi_dphi(NODES,CREASE(j,:));

Fcreasex(j,CREASE(j,:)) = -Kcrease(j)*l(j)*(phi(j)-phi0(j))*dphidpx;

Fcreasey(j,CREASE(j,:)) = -Kcrease(j)*l(j)*(phi(j)-phi0(j))*dphidpy;

Fcreasez(j,CREASE(j,:)) = -Kcrease(j)*l(j)*(phi(j)-phi0(j))*dphidpz;

end

% Damping Force Calculations

Fdampingx = zeros(1,Ns);

Fdampingy = zeros(1,Ns);

135



Fdampingz = zeros(1,Ns);

for i = 1:Ns

[Nco,Sco] = setdiff(N_S(i,:),0);

dVdampx(1:length(Nco)) = (vx(Nco)-vx(i))/2;

dVdampy(1:length(Nco)) = (vy(Nco)-vy(i))/2;

dVdampz(1:length(Nco)) = (vz(Nco)-vz(i))/2;

cdamp = 2*zeta*sqrt(Kaxial./l(Sco)*m(i));

Fdampingx(i) = (sum(cdamp.*dVdampx’));

Fdampingy(i) = (sum(cdamp.*dVdampy’));

Fdampingz(i) = (sum(cdamp.*dVdampz’));

clear dVdampx dVdampy dVdampz

end

% Add gravity

Fg = -9.81*m;

% Calculating New Velocity and Position

Fx = sum(Faxialx)+sum(Fcreasex)+(Fdampingx);

Fy = sum(Faxialy)+sum(Fcreasey)+(Fdampingy);

Fz = sum(Faxialz)+sum(Fcreasez)+(Fdampingz)+Fg;

ax = (Fx)./m;

ay = (Fy)./m;

az = (Fz)./m;

ax(Fix_x) = 0;

ay(Fix_y) = 0;

az(Fix_z) = 0;

dYdt = [Y(3*Ns+1:3*Ns+3*Ns); [ax ay az]’];

end

%----

function [x1,x2] = reference(time,ic,eps)

options = odeset(’RelTol’,10^-12,’AbsTol’,10^-12);

% tspan = time;

% [t,y]=ode45(@(t,y) VanderPol(t,y), tspan, ic,options);

% x1 = y(:,1);

% x2 = y(:,2);

%

% function dydt = VanderPol(t,y)

% dydt(1,1) = y(2);

% dydt(2,1) = -y(1)+(1-y(1)^2)*y(2)*1;

% end

%------

tspan = time;

[~,y]=ode45(@(t,y) QuadraticLC(t,y), tspan, ic,options);

x1 = y(:,1);

x2 = y(:,2);
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function dydt = QuadraticLC(t,y)

dydt(1,1) = y(1)+y(2)-eps(t)*y(1)*(y(1)^2+y(2)^2);

dydt(2,1) = -2*y(1)+y(2)-y(2)*(y(1)^2+y(2)^2);

end

% %------

% f1 = 1;

% f2 = 2;

% delta = pi/2;

% x1 = f2*sin(2*pi*f1*time+delta)’;

% x2 = f2*sin(2*pi*f2*time)’;

end

%-----

function [dYdt] = myode(t,Y,Ss,Ns,SPRINGS,N_S,li,phi0i,Kaxial,Kcrease,CREASE,NODES0,zeta,m, ...

win,INPUT,xin,Fix_x,Fix_y,Fix_z,wfb,x1,x2,FEEDBACK1,FEEDBACK2,time)

Px = Y(1:Ns);

Py = Y(Ns+1:Ns+Ns);

Pz = Y(2*Ns+1:2*Ns+Ns);

vx = Y(3*Ns+1:3*Ns+Ns);

vy = Y(4*Ns+1:4*Ns+Ns);

vz = Y(5*Ns+1:5*Ns+Ns);

NODES = NODES0+[Px Py Pz];

l = zeros(Ss,1);

for i = 1:Ss

l(i) = norm(NODES(SPRINGS(i,1),:)-NODES(SPRINGS(i,2),:));

end

Faxialx=zeros(Ss,Ns);

Faxialy=zeros(Ss,Ns);

Faxialz=zeros(Ss,Ns);

for j = 1:Ss

[NSco] = setdiff(N_S(:,j),0);

% Axial Force Calculations

dldpi = (NODES(NSco(2),:)-NODES(NSco(1),:))/norm(NODES(NSco(2),:)-NODES(NSco(1),:));

Faxialx(j,NSco) = -Kaxial/l(j)*(l(j)-li(j))*[-dldpi(1) dldpi(1)];

Faxialy(j,NSco) = -Kaxial/l(j)*(l(j)-li(j))*[-dldpi(2) dldpi(2)];

Faxialz(j,NSco) = -Kaxial/l(j)*(l(j)-li(j))*[-dldpi(3) dldpi(3)];

end

Fcreasex=zeros(Ss,Ns);

Fcreasey=zeros(Ss,Ns);

Fcreasez=zeros(Ss,Ns);

phi = zeros(Ss,1);

phi0 = phi0i;

fb1 = interp1(time,x1’,t);

fb2 = interp1(time,x2’,t);

phi0(FEEDBACK1) = wfb(FEEDBACK1)*tanh(fb1)+phi0i(FEEDBACK1);

phi0(FEEDBACK2) = wfb(FEEDBACK2)*tanh(fb2)+phi0i(FEEDBACK2);

phi0(INPUT) = win(INPUT)*tanh(xin(t))+phi0i(INPUT);

AA = (1:Ss).*any(CREASE’);
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for j = find(AA)

% Crease folding force Calculations

[phi(j),dphidpx,dphidpy,dphidpz,~] = find_phi_dphi(NODES,CREASE(j,:));

Fcreasex(j,CREASE(j,:)) = -Kcrease(j)*l(j)*(phi(j)-phi0(j))*dphidpx;

Fcreasey(j,CREASE(j,:)) = -Kcrease(j)*l(j)*(phi(j)-phi0(j))*dphidpy;

Fcreasez(j,CREASE(j,:)) = -Kcrease(j)*l(j)*(phi(j)-phi0(j))*dphidpz;

end

% Damping Force Calculations

Fdampingx = zeros(1,Ns);

Fdampingy = zeros(1,Ns);

Fdampingz = zeros(1,Ns);

for i = 1:Ns

[Nco,Sco] = setdiff(N_S(i,:),0);

dVdampx(1:length(Nco)) = (vx(Nco)-vx(i))/2;

dVdampy(1:length(Nco)) = (vy(Nco)-vy(i))/2;

dVdampz(1:length(Nco)) = (vz(Nco)-vz(i))/2;

cdamp = 2*zeta*sqrt(Kaxial./l(Sco)*m(i));

Fdampingx(i) = (sum(cdamp.*dVdampx’));

Fdampingy(i) = (sum(cdamp.*dVdampy’));

Fdampingz(i) = (sum(cdamp.*dVdampz’));

clear dVdampx dVdampy dVdampz

end

% Calculating New Velocity and Position

Fx = sum(Faxialx)+sum(Fcreasex)+(Fdampingx);

Fy = sum(Faxialy)+sum(Fcreasey)+(Fdampingy);

Fz = sum(Faxialz)+sum(Fcreasez)+(Fdampingz);

ax = (Fx)./m;

ay = (Fy)./m;

az = (Fz)./m;

ax(Fix_x) = 0;

ay(Fix_y) = 0;

az(Fix_z) = 0;

dYdt = [Y(3*Ns+1:3*Ns+3*Ns); [ax ay az]’];

% size(dYdt)

end

%-----

function [dYdt] = myodeC(t,Y,Ss,Ns,SPRINGS,N_S,li,phi0i,Kaxial,Kcrease,CREASE,NODES0,zeta,m, ...

Fix_x,Fix_y,Fix_z,wfb,win,INPUT,xin,wout1,wout2,FEEDBACK1,FEEDBACK2,Fold_Sp)

Px = Y(1:Ns);

Py = Y(Ns+1:Ns+Ns);

Pz = Y(2*Ns+1:2*Ns+Ns);

vx = Y(3*Ns+1:3*Ns+Ns);

vy = Y(4*Ns+1:4*Ns+Ns);

vz = Y(5*Ns+1:5*Ns+Ns);
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NODES = NODES0+[Px Py Pz];

l = zeros(Ss,1);

for i = 1:Ss

l(i) = norm(NODES(SPRINGS(i,1),:)-NODES(SPRINGS(i,2),:));

end

Faxialx=zeros(Ss,Ns);

Faxialy=zeros(Ss,Ns);

Faxialz=zeros(Ss,Ns);

Fcreasex=zeros(Ss,Ns);

Fcreasey=zeros(Ss,Ns);

Fcreasez=zeros(Ss,Ns);

phi = zeros(Ss,1);

for j = Fold_Sp

[phi(j),~,~,~,~] = find_phi_dphi(NODES,CREASE(j,:));

end

L = phi(Fold_Sp) ;

Y1=sum(wout1(2:end).*L)+wout1(1); % current output-1

Y2=sum(wout2(2:end).*L)+wout2(1); % current output-2

for j = 1:Ss

[NSco] = setdiff(N_S(:,j),0);

% Axial Force Calculations

dldpi = (NODES(NSco(2),:)-NODES(NSco(1),:))/norm(NODES(NSco(2),:)-NODES(NSco(1),:));

Faxialx(j,NSco) = -Kaxial/l(j)*(l(j)-li(j))*[-dldpi(1) dldpi(1)];

Faxialy(j,NSco) = -Kaxial/l(j)*(l(j)-li(j))*[-dldpi(2) dldpi(2)];

Faxialz(j,NSco) = -Kaxial/l(j)*(l(j)-li(j))*[-dldpi(3) dldpi(3)];

end

phi0 = phi0i;

phi0(FEEDBACK1) = wfb(FEEDBACK1)*tanh(Y1)+phi0i(FEEDBACK1);

phi0(FEEDBACK2) = wfb(FEEDBACK2)*tanh(Y2)+phi0i(FEEDBACK2);

phi0(INPUT) = win(INPUT)*tanh(xin(t))+phi0i(INPUT);

AA = (1:Ss).*any(CREASE’);

for j = find(AA)

% Crease folding force Calculations

[phi(j),dphidpx,dphidpy,dphidpz,~] = find_phi_dphi(NODES,CREASE(j,:));

Fcreasex(j,CREASE(j,:)) = -Kcrease(j)*l(j)*(phi(j)-phi0(j))*dphidpx;

Fcreasey(j,CREASE(j,:)) = -Kcrease(j)*l(j)*(phi(j)-phi0(j))*dphidpy;

Fcreasez(j,CREASE(j,:)) = -Kcrease(j)*l(j)*(phi(j)-phi0(j))*dphidpz;

end

% Damping Force Calculations

Fdampingx = zeros(1,Ns);

Fdampingy = zeros(1,Ns);

Fdampingz = zeros(1,Ns);

for i = 1:Ns

[Nco,Sco] = setdiff(N_S(i,:),0);

dVdampx(1:length(Nco)) = (vx(Nco)-vx(i))/2;

dVdampy(1:length(Nco)) = (vy(Nco)-vy(i))/2;

dVdampz(1:length(Nco)) = (vz(Nco)-vz(i))/2;
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cdamp = 2*zeta*sqrt(Kaxial./l(Sco)*m(i));

Fdampingx(i) = (sum(cdamp.*dVdampx’));

Fdampingy(i) = (sum(cdamp.*dVdampy’));

Fdampingz(i) = (sum(cdamp.*dVdampz’));

clear dVdampx dVdampy dVdampz

end

% Calculating New Velocity and Position

Fx = sum(Faxialx)+sum(Fcreasex)+(Fdampingx);

Fy = sum(Faxialy)+sum(Fcreasey)+(Fdampingy);

Fz = sum(Faxialz)+sum(Fcreasez)+(Fdampingz);

ax = (Fx)./m;

ay = (Fy)./m;

az = (Fz)./m;

ax(Fix_x) = 0;

ay(Fix_y) = 0;

az(Fix_z) = 0;

dYdt = [Y(3*Ns+1:3*Ns+3*Ns); [ax ay az]’];

end

C.3 Code for crease pattern design generation for Quadruped Robot

clc

clear

% Input parameters for Miura-ori based design (in mm)

b = 10; % quadrilateral facet crease length-1

a = 1.1*b; % quadrilateral facet crease length-2

gamma = 70*pi/180; % angle between the Miura-ori quadrilateral facets

xN1 = 3; % nodes in x direction should be odd number for kinematic compatibility with both legs

yN1 = 4; % nodes in y direction

% Arc-Miura design for quadruped leg

l1 = 8; % quadrilateral facet crease length-1

b1 = b; % quadrilateral facet crease length-2

gamma1 = gamma; % angle-1 between the Miura-ori quadrilateral facets

gamma2 = 50*pi/180; % angle-2 between the Miura-ori quadrilateral facets

xN2 = 5; % should be odd for matching left and right leg

yN2 = yN1;

th_Ai = pi;

xN3 = xN1; % miura nodes in the bridge

yN3 = 3; % minimum 3 nodes required for kinematic compatibility

Ns11 = (xN2-1)*yN2;

Ns1 = xN1*yN1;

Ns21 = (xN2-1)*yN2;

Nsf1 = Ns11+Ns1+Ns21;

Nsf2 = xN3*yN3;

140



Nsf3 = Ns11+Ns1+Ns21;

% initial geometry

[NODESi1,x_max1,y_max1,vi,fa,vzi] = miura_original(a,b,gamma,xN1,yN1,th_Ai);

[NODESi2,l2,b1,b2,f_l,v1,v2,x_max2,y_max2] = Arc_Miura(l1,b1,gamma1,gamma2,xN2,yN2);

[NODESi3,x_max3,y_max3,vi3,fa3,vzi3] = miura_original(a,b,gamma,xN3,yN3,th_Ai); % middle bridge

% Assembling arc-miura, miura and arc-miura to form 2 legs

x_movei = x_max1-vi;

NODESi21 = NODESi2(yN2+1:end,:);

NODESi21(:,1) = NODESi2(yN2+1:end,1)+x_movei;

NODESi11 = NODESi2(1:(xN2-1)*yN2,:);

if mod(yN1,2)==0

NODESi11(:,1) = NODESi2(1:(xN2-1)*yN2,1)-NODESi2(end,1)+v1;

else

NODESi11(:,1) = NODESi2(1:(xN2-1)*yN2,1)-NODESi2(end,1);

end

NODESi = [NODESi11;NODESi1;NODESi21];

NODESif1 = NODESi;

NODESif1(:,1) = NODESi(:,1)-NODESi11(1,1); % left side

% Assembling other side

NODESif2 = NODESi3;

NODESif2(:,1) = NODESi3(:,1)+x_max2-v1;

NODESif2(:,2) = (NODESi3(:,2))+y_max1+y_max3/2; % middle bridge

NODESif3 = NODESif1;

NODESif3(:,2) = flip(NODESif1(:,2))+y_max1+2*y_max3; % right side

NODESif = [NODESif1; NODESif2; NODESif3;];

x_max = max(NODESif(:,1));

y_max = max(NODESif(:,2));

Ncr = [a l1 l2 b b1 b2 fa f_l]; % truss element lengths to be selecetd for crease folding

Fcr = [fa f_l]; % truss element lengths to be selecetd for facet bending

Ecrx = [0 vi x_max x_max-v2 x_max-v1]; % left and right edge x-dirn

Ecry = [0 y_max]; % bottom and top edge y-dirn

Mcrx = [x_max2-vi x_max2 x_max2-vi+x_max3 x_max2-vi+x_max3-vi3]; % middle edges x-dirn

Mcry = [y_max2 y_max2+2*y_max3]; % middle edges y-dirn

center = 0;

% generating crease to node matrix, dihedral angle matrix, truss element

% assignment matrix, facet and crease assignment matrix ,and assigning left, right, top, and bottom edges

[SPRINGS,CREASEi,Kcr,N_S,LE,RE,BE,TE,S_N,Ss,Ns,Srow,Scol] = ...

Reservoir_geometry(NODESif,Ncr,Fcr,Ecrx,Ecry,x_max,y_max,Mcrx,Mcry,Nsf1,Nsf2,xN3,yN1,center);

AA = (1:Ss).*any(CREASEi’);

k = 1;

for j = find(AA)

facets(k,:) = CREASEi(j,[1 3 4]);

facets(k+1,:) = CREASEi(j,[2 3 4]);

k = k+2;

end

% folded configuration

Ss1 = (3*yN2-2)*(xN2-1)+yN2-1;

Ss2 = (3*yN1-2)*(xN1-1);
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Ss3 = (3*yN2-2)*(xN2-1);

Ss4 = (3*yN3-1)*(xN3-1)+yN3+2;

% CREASE(Ss1+Ss2+Ss3+Ss4:end,1:2) = fliplr(CREASE(Ss1+Ss2+Ss3+Ss4:end,1:2));

th_A = [0.99 0.9 0.8 0.6 0.4]*pi;

figure

for k = 3

[NODES01,x_max01,y_max01,v01,fa,vz0] = miura_original_fold(a,b,gamma,xN1,yN1,th_A(k));

[NODES021,~,~] = arc_miura_pattern_fold(l2,b1,l1,gamma1,gamma2,xN2,yN2,th_A(k),1);

[NODES011,~,~] = arc_miura_pattern_fold(l2,b1,l1,gamma1,gamma2,xN2,yN2,th_A(k),2);

[NODES03,x_max03,y_max03,v03,fa3,vz03] = miura_original_fold(a,b,gamma,xN3,yN3,th_A(k));

% Assembling arc-miura, miura and arc-miura to form 2 legs

x_movef = x_max01-v01;

z_movef = vz0;

NODES01f = NODES01(yN1+1:(xN1-1)*yN1,:);

NODES01f(:,1) = NODES01(yN1+1:(xN1-1)*yN1,1)-NODES011(1,1);

NODES021f = NODES021;

NODES021f(:,1) = NODES021(:,1)+x_movef-NODES011(1,1);

NODES021f(:,3) = NODES021(:,3)+z_movef;

NODES011f = NODES011;

if mod(yN1,2)==0

NODES011f(:,1) = NODES011(:,1)-NODES011(1,1)+v01;

else

NODES011f(:,1) = NODES011(:,1)-NODES011(1,1);

end

NODES011f(:,3) = NODES011(:,3)-NODES011(end,3)+z_movef;

NODES0 = [NODES011f;NODES01f;NODES021f];

NODES0f1 = NODES0;

NODES0f1(:,1) = NODES0(:,1)-NODES0(1,1);

NODES0f1(:,3) = NODES0(:,3)-NODES0(1,3);

% Assembling other side

NODES0f2 = NODES03;

NODES0f2(:,1) = NODES03(:,1)-NODES011(1,1)-v01;

NODES0f2(:,2) = (NODES03(:,2))+2*y_max03;

NODES0f2(:,3) = NODES03(:,3)-NODES0(1,3); % middle bridge

NODES0f3 = NODES0f1;

NODES0f3(:,2) = flip(NODES0f1(:,2))+y_max01+2*y_max03; % right side

NODES0f = [NODES0f1; NODES0f2; NODES0f3;];

% plots

for i = 1:Ss

fill3([NODES0f(Srow(i),1) NODES0f(Scol(i),1)],[NODES0f(Srow(i),2) ...

NODES0f(Scol(i),2)],[NODES0f(Srow(i),3) NODES0f(Scol(i),3)],[0.5 0],’EdgeColor’,’black’)

hold on

end

title([’Folding Angle = ’,num2str(th_A(k)*180/pi)])

end

axis ’equal’

grid on

xlabel(’x’)

ylabel(’y’)
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zlabel(’z’)

NODES0f(:,3) = NODES0f(:,3)+1; % Raising the origami above ground

function [NODESi,x_max,y_max,v,fa,vz] = miura_original(a,b,gamma,xN,yN,th_A)

et_Z = acos(sin(gamma)^2*cos(th_A)+cos(gamma)^2);

et_A = acos(1-(4*cos(gamma)^2/(1+cos(et_Z))));

k = 1;

for i = 1:xN

for j = 1:yN

if mod(j,2)==0

x = (i-1)*a*sin(et_A/2)+b*cos(et_Z/2);

else

x = (i-1)*a*sin(et_A/2);

end

y = (j-1)*b*sin(et_Z/2);

if mod(i,2)==0

z = a*cos(et_A/2);

else

z = 0;

end

NODESi(k,:) = [x y z];

k = k+1;

end

end

x_max = max(NODESi(:,1));

y_max = max(NODESi(:,2));

v = b*cos(et_Z/2);

vz = a*cos(et_A/2);

fa = sqrt(a^2+b^2-2*a*b*cos(pi-gamma));

end

function [NODES0,x_max,y_max,v,fa,vz] = miura_original_fold(a,b,gamma,xN,yN,th_A)

et_Z = acos(sin(gamma)^2*cos(th_A)+cos(gamma)^2);

et_A = acos(1-(4*cos(gamma)^2/(1+cos(et_Z))));

k = 1;

for i = 1:xN

for j = 1:yN

if mod(j,2)==0

x = (i-1)*a*sin(et_A/2)+b*cos(et_Z/2);

else

x = (i-1)*a*sin(et_A/2);

end

y = (j-1)*b*sin(et_Z/2);

if mod(i,2)==~0

z = a*cos(et_A/2);

else

z = 0;

end

NODES0(k,:) = [x y z];

k = k+1;
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end

end

x_max = max(NODES0(:,1));

y_max = max(NODES0(:,2));

v = b*cos(et_Z/2);

vz = NODES0((xN)*yN,3);

fa = sqrt(a^2+b^2-2*a*b*cos(pi-gamma));

end

function [NODES,l2,b1,b2,f_l,v1,v2,x_max,y_max] = Arc_Miura(l1,b1,gamma1,gamma2,xN,yN)

b2 = b1*sin(gamma1)/sin(gamma2);

w = b2*sin(gamma2);

v2 = b2*cos(gamma2);

v1 = b1*cos(gamma1);

l2 = l1+b2*cos(gamma2)-b1*cos(gamma1);

f_l = sqrt(l2^2+b1^2-2*l2*b1*cos(pi-gamma1));

f_min = sqrt(l2^2+b2^2-2*l2*b2*cos(gamma2));

a1 = l1+l2;

k = 1;

for i = 1:xN

for j = 1:yN

if mod(i,2)==~0 && mod(j,2)==~0

x = (i-1)/2*a1;

elseif mod(i,2)==0 && mod(j,2)==~0

x = i/2*a1-l2;

elseif mod(i,2)==0 && mod(j,2)==0

x = v1 + i/2*a1-l1;

elseif mod(i,2)==~0 && mod(j,2)==0

x = v1 + (i-1)/2*a1;

end

y = (j-1)*w;

z = 0;

NODES(k,:) = [x y z];

k = k+1;

end

end

%

x_max = max(NODES(:,1));

y_max = (yN-1)*w;

% figure

% plot(NODES(:,1),NODES(:,2),’o-’)

% grid on

end

function [NODES0n,x_max,y_max] = arc_miura_pattern_fold(l2,b1,l1,gamma1,gamma2,xN,yN,th_A,ii)

cos_et_VZ = sin(gamma2)^2*cos(th_A)+cos(gamma2)^2;

et_VA = acos(1-4*cos(gamma2)^2/(1+cos_et_VZ));

cos_et_MZ = sin(gamma1)^2*cos(th_A)+cos(gamma1)^2;
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et_MZ = acos(cos_et_MZ);

et_MA = acos(1-4*cos(gamma1)^2/(1+cos_et_MZ));

zeta = et_VA-et_MA;

R1 = sqrt((l1^2+l2^2-2*l1*l2*cos(et_VA))/(2*(1-cos(zeta))));

R2 = sqrt((l1^2+l2^2-2*l1*l2*cos(et_MA))/(2*(1-cos(zeta))));

zetaa2 = acos((R1^2+R2^2-l2^2)/(2*R1*R2));

zetab1 = acos((2*R1^2-b1^2*cos(et_MZ/2)^2)/(2*R1^2));

k = 1;

for i = xN

for j = yN

if mod(j,2)==~0 && mod(i,2)==~0

thmax = (i-1)*(zeta)/2;

elseif mod(j,2)==0 && mod(i,2)==~0

thmax = (i-1)*(zeta)/2+zetab1;

elseif mod(j,2)==~0 && mod(i,2)==0

thmax = (i-2)*(zeta)/2+zeta-zetaa2;

elseif mod(j,2)==0 && mod(i,2)==0

thmax = (i-2)*(zeta)/2+zetab1+zetaa2;

end

end

end

for i = 1:xN

for j = 1:yN

if mod(i,2)==~0

r = R1;

else

r = R2;

end

if mod(j,2)==~0 && mod(i,2)==~0

th = (i-1)*(zeta)/2;

elseif mod(j,2)==0 && mod(i,2)==~0

th = (i-1)*(zeta)/2+zetab1;

elseif mod(j,2)==~0 && mod(i,2)==0

th = (i-2)*(zeta)/2+zeta-zetaa2;

elseif mod(j,2)==0 && mod(i,2)==0

th = (i-2)*(zeta)/2+zetab1+zetaa2;

end

y = (j-1)*b1*sin(et_MZ/2);

if ii==1

z = r*cos(th);

x = r*sin(th);

elseif ii==2

z = r*cos(th-thmax);

x = r*sin(th-thmax);

end

NODES0(k,:) = [x y z];

k = k+1;

end
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end

NODES0(:,3) = NODES0(:,3)-NODES0(1,3);

NODES0n = NODES0;

x_max = max(NODES0n(:,1));

y_max = max(NODES0n(:,2));

end

function [SPRINGS,CREASE,Kcr,N_S,Left_Edge,Right_Edge,Bottom_Edge,Top_Edge,S_N,Ss,Ns,Srow,Scol] = ...

Reservoir_geometry(NODES,Ncr,Fcr,Ecrx,Ecry,x_max,y_max,Mcrx,Mcry,Nsf1,Nsf2,xN3,yN1,center)

Ns = length(NODES);

eps = 1E-4;

% Node Connections

N_N = zeros(Ns,Ns);

for k = 1:length(Ncr)

for i = 1:Ns

for j = setdiff(1:Ns,1:i)

if abs(norm(NODES(i,:)-NODES(j,:))-Ncr(k))<=eps

N_N(i,j)=1;

end

if i == 40 && j == 67 || i == 69 && j == 109 %for 7 y nodes in leg

% if i == 32 && j == 51 || i == 53 && j == 85 %for 5 y nodes in leg

N_N(i,j)=0;

end

end

end

end

% Spring definition

[Srow,Scol]=find(N_N);

SPRINGS = [Srow,Scol];

Ss = length(SPRINGS);

% Facet definition

Facet_Spring = zeros(Ss,1);

for k = 1:length(Fcr)

for i = 1:Ss

li(i) = norm(NODES(SPRINGS(i,1),:)-NODES(SPRINGS(i,2),:)); % nominal length in flat state

if abs(li(i)-Fcr(k))<eps

Facet_Spring(i)=1;

end

end

end

%Creases definition

Left_Edge=[];

Right_Edge=[];

Bottom_Edge=[];

Top_Edge=[];

for i = 1:Ns

if abs(NODES(i,1)-0)<eps

Left_Edge = [Left_Edge i];
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elseif abs(NODES(i,1)-x_max) <eps

Right_Edge = [Right_Edge i];

end

if abs(NODES(i,2)-0)<eps

Bottom_Edge = [Bottom_Edge i];

elseif abs(NODES(i,2)-(y_max)) <eps

Top_Edge = [Top_Edge i];

end

end

[CREASE,Kcr,N_S,S_N] = get_creases(SPRINGS,Ss,Ns,Facet_Spring,NODES,center);

end

function [CREASE,Kcr,N_S,S_N] = get_creases(SPRINGS,Ss,Ns,Facet_Spring,NODES,center)

for j = 1:Ss

kka = ones(Ss,1);

kkb = ones(Ss,1);

for i = 1:Ss-1

k = setdiff(1:Ss,j);

[~,ia] = intersect(SPRINGS(k(i),:),SPRINGS(j,1));

[~,ib] = intersect(SPRINGS(k(i),:),SPRINGS(j,2));

kka(k(i)) = isempty(ia);

kkb(k(i)) = isempty(ib);

end

arr = ([SPRINGS(kka==0,1); SPRINGS(kka==0,2); SPRINGS(kkb==0,1); SPRINGS(kkb==0,2)]);

[C,~,ic] = unique(arr);

a_counts = accumarray(ic,1);

value_counts = [C, a_counts];

mp = setdiff(value_counts(:,1).*(a_counts==2),[SPRINGS(j,:) 0]);

if length(mp)>=2

CREASE(j,1:4) = [mp(1:2); SPRINGS(j,:)’];

else

CREASE(j,1:4) = zeros(1,4);

Kcr(j) = 0;

end

if Facet_Spring(j)==1

Kcr(j)= -1 ;

else

Kcr(j)= +1 ;

end

end

% Creating Node to Spring and Nodes Matrix

for i = 1:Ns

for j = 1:Ss

if ismember(i,SPRINGS(j,:))==1

N_S(i,j) = setdiff(SPRINGS(j,:),i);

else

N_S(i,j) = 0;

end
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end

end

% Kcr = 0 for boundary / undriven crease, +1 for M/V , -1 for facet

S_N = zeros(Ns,10);

for i = 1:Ns

[~,Sco] = setdiff(N_S(i,:),0);

S_N(i,1:length(Sco)) = Sco’;

end

end

function [FEEDBACK1,FEEDBACK2,FEEDBACK3,FEEDBACK4,IN,Kaxial,Kcrease,op_N, ...

phi0,dt,Ns,Ss,m,Fold_Sp,li,CREASE] = ...

input_para(NODES0,SPRINGS,LE,BE,RE,TE,CREASEi,Kcr,Ncr,Ss1,Ss2,Ss3,Ss4,center)

Ns = length(NODES0);

Ss = length(SPRINGS);

for i = 1:Ss

li(i) = norm(NODES0(SPRINGS(i,1),:)-NODES0(SPRINGS(i,2),:)); % nominal length in flat state

end

AA = (1:Ss).*any(CREASEi’);

Fold_Sp = intersect(find(Kcr==1),AA);

y_cr = [];

for k = 1:length(Ncr)

for i = Fold_Sp

if abs(li(i)-Ncr(k))<10^-5

long_crk = i;

else

long_crk = [];

end

y_cr = [y_cr long_crk];

end

end

y_c = unique(y_cr);

op_N = length(Fold_Sp)

fbs1 = intersect(y_c,1:Ss1);

fbs2 = intersect(y_c,Ss1+Ss2+Ss3+Ss4+1:Ss1+Ss2+Ss3+Ss4+Ss1+2);

fbs3 = intersect(y_c,Ss1+floor(2*Ss2/3)+1:Ss1+Ss2+Ss3);

fbs4 = intersect(y_c,Ss1+Ss2+Ss3+Ss4+Ss1+floor(2*Ss2/3)+1:Ss)

FEEDBACK1 = [fbs1(1:2:4) fbs1(7:2:9)]

FEEDBACK2 = [fbs2(1:2:4) fbs2(7:2:9)]

FEEDBACK3 = [fbs3(1+3:2:4+3) fbs3(7+3:2:9+3)]

FEEDBACK4 = [fbs4(6:2:9) fbs4(7+5:2:9+5)]

% FEEDBACK1 = fbs1(randperm(length(fbs1),ceil(op_N*5/100)))

% FEEDBACK2 = fbs2(randperm(length(fbs2),ceil(op_N*5/100)))

% FEEDBACK3 = fbs3(randperm(length(fbs3),ceil(op_N*5/100)))

% FEEDBACK4 = fbs4(randperm(length(fbs4),ceil(op_N*5/100)))

ins = [48 50 53 108 114 116 174 176 178 181]

% IN = ins(randperm(length(ins),ceil(op_N*5/100)));

IN = ins;

FB = [FEEDBACK1 FEEDBACK2 FEEDBACK3 FEEDBACK4];
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% setting spring stiffnesses; Material constants

EA = 1000;

m = 0.01*ones(Ns,1);

Kaxial = EA*ones(Ss,1);

Kmin = 0.005;

Kmax = 1;

Kfold = 2;

Kfacet =100;

Kcrease(FB) = 10;

% wmax = max(sqrt(Kaxial./m));

dt = 1;

%correcting mountain-valley assignment: dist is negative then mountain ;

%dist is positive then valley

% phi>pi for mountain; phi<pi for valley

CREASE = CREASEi;

for j = find(AA)

% CREASE(j,:)

mid1 = (NODES0(CREASEi(j,1),:)+NODES0(CREASEi(j,2),:))/2; % facet

mid2 = (NODES0(CREASEi(j,3),:)+NODES0(CREASEi(j,4),:))/2; % crease

rad1 = norm(mid1-[center(1) center(2)+mid1(2) center(3)]);

rad2 = norm(mid2-[center(1) center(2)+mid2(2) center(3)]);

dist = rad1 - rad2;

[phi,~,~,~,~] = find_phi_dphi(NODES0,CREASEi(j,:));

if dist>0 && phi<pi || dist<0 && phi>pi

CREASE(j,1:4) = CREASEi(j,1:4);

elseif dist>0 && phi>pi || dist<0 && phi<pi

CREASE(j,1:2) = fliplr(CREASEi(j,1:2));

end

end

phi0 = zeros(Ss,1);

Kcrease = zeros(Ss,1);

for i = find(AA)

[phi0(i),~,~,~,~] = find_phi_dphi(NODES0,CREASE(i,:),phi0(i)); % target fold angle

%---

if Kcr(i)==1

Kcrease(i) = Kfold;

elseif Kcr(i)==-1

Kcrease(i) = Kfacet;

end

end

% Kcrease(FEEDBACK1) = 5*10^-3*(Kaxial);

end

function [phi,dphidpx,dphidpy,dphidpz,cosphi] = find_phi_dphi(NODES,CREASE,phi0)

Pl = NODES(CREASE(1),:);

Pi = NODES(CREASE(2),:);

Pj = NODES(CREASE(3),:);

Pk = NODES(CREASE(4),:);

m = cross((Pi-Pj),(Pk-Pj));
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n = cross((Pk-Pj),(Pk-Pl));

cosphi = dot(m,n)/norm(n)/norm(m);

if dot(m,(Pk-Pl))==0

phi = mod(1*real(acos(cosphi)),2*pi);

else

phi = mod(sign(dot(m,(Pk-Pl)))*real(acos(cosphi)),2*pi);

end

dphidpl = -norm(Pk-Pj)/(norm(n))^2*n;

dphidpi = norm(Pk-Pj)/(norm(m))^2*m;

dphidpj = (dot((Pi-Pj),(Pk-Pj))/(norm(Pk-Pj))^2-1)*dphidpi - ...

dot((Pk-Pl),(Pk-Pj))/(norm(Pk-Pj))^2*dphidpl;

dphidpk = (dot((Pk-Pl),(Pk-Pj))/(norm(Pk-Pj))^2-1)*dphidpl - ...

dot((Pi-Pj),(Pk-Pj))/(norm(Pk-Pj))^2*dphidpi;

dphidpx = [dphidpl(1) dphidpi(1) dphidpj(1) dphidpk(1) ];

dphidpy = [dphidpl(2) dphidpi(2) dphidpj(2) dphidpk(2) ];

dphidpz = [dphidpl(3) dphidpi(3) dphidpj(3) dphidpk(3) ];

end
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flexible mechanical metamaterials. Science Robotics, 4(29):eaav7874, 2019.

[129] Ahmad Rafsanjani, Lishuai Jin, Bolei Deng, and Katia Bertoldi. Propagation of pop ups
in kirigami shells. Proceedings of the National Academy of Sciences of the United States of
America, 116(17):8200–8205, 2019.

[130] Ahmad Rafsanjani, Yuerou Zhang, Bangyuan Liu, Shmuel M. Rubinstein, and Katia Bertoldi.
Kirigami skins make a simple soft actuator crawl. Science Robotics, 3(15):1–8, 2018.

[131] Ziyu Ren, Wenqi Hu, Xiaoguang Dong, and Metin Sitti. Multi-functional soft-bodied jellyfish-
like swimming. Nature Communications, 10(1), 2019.

[132] S I Rich, R J Wood, and C Majidi. Untethered soft robotics. Nature Electronics, 1(2):102–112,
feb 2018.

[133] D Rus and M T Tolley. Design, fabrication and control of origami robots. Nature Reviews
Materials, 3(6):101–112, jun 2018.

[134] S Sadeghi and S Li. Fluidic origami cellular structure with asymmetric quasi-zero stiffness for
low-frequency vibration isolation. Smart Materials and Structures, pages 11–14, 2019.

[135] Sahand Sadeghi, Samuel Allison, Blake Betsill, and Suyi Li. TMP Origami Jumping Mecha-
nism with Nonlinear Stiffness. Smart Materials and Structures, 2021.

[136] Sahand Sadeghi and Suyi Li. Dynamic folding of origami by exploiting asymmetric bi-stability.
Extreme Mechanics Letters, 40:100958, 2020.

[137] Norihiko Saga and Taro Nakamura. Development of a peristaltic crawling robot using mag-
netic fluid on the basis of the locomotion mechanism of the earthworm. Smart Materials and
Structures, 13(3):566–569, 2004.

[138] M. Schenk and S. D. Guest. Origami folding: A structural engineering approach. In Origami
5 Fifth International Meeting of Origami Science Mathematics and Education, pages 1–16,
2011.

[139] M Schenk and S D Guest. Geometry of miura-folded metamaterials. Proc. Natl. Acad. Sci.,
110:3276–3281, 2013.

[140] M Schenk, A D Viquerat, K A Seffen, and S D Guest. Review of inflatable booms for deployable
space structures: packing and rigidization. J. Spacecr. Rockets, 51:762–778, 2014.

[141] Mark Schenk and Simon D. Guest. Geometry of Miura-folded metamaterials. Proceedings of
the National Academy of Sciences, 110(9):3276–3281, feb 2013.

[142] Benjamin Schrauwen, David Verstraeten, and Jan Van Campenhout. An overview of reservoir
computing: theory, applications and implementations. In Proceedings of the 15th european
symposium on artificial neural networks. p. 471-482 2007, pages 471–482, 2007.

[143] Sangok Seok, Cagdas Denizel Onal, Kyu Jin Cho, Robert J. Wood, Daniela Rus, and Sangbae
Kim. Meshworm: A peristaltic soft robot with antagonistic nickel titanium coil actuators.
IEEE/ASME Transactions on Mechatronics, 18(5):1485–1497, 2013.

159



[144] J L Silverberg, A A Evans, L McLeod, R C Hayward, T C Hull, C D Santangelo, and I Cohen.
Using origami design principles to fold reprogrammable mechanical metamaterials. Science,
345(6197):647–650, aug 2014.

[145] J L Silverberg, J H Na, A A Evans, B Liu, T C Hull, C D Santangelo, R J Lang, R C Hayward,
and I Cohen. Origami structures with a critical transition to bistability arising from hidden
degrees of freedom. Nature Materials, 14(4):389–393, mar 2015.

[146] J Sun, Q Guan, Y Liu, and J Leng. Morphing aircraft based on smart materials and structures:
A state-of-the-art review. Journal of Intelligent Material Systems and Structures, 27(17):2289–
2312, feb 2016.

[147] Z Suo, D J Preston, L Belding, P Rothemund, S Kurihara, A Ainla, and G M Whitesides. A
soft, bistable valve for autonomous control of soft actuators. Science Robotics, 3(16):eaar7986,
2018.

[148] T Tachi. Freeform variations of origami. J. Geom. Graph., 14:203–215, 2010.

[149] Tomohiro Tachi. Designing Freeform Origami Tessellations by Generalizing Resch’s Patterns.
Journal of Mechanical Design, 135(11):111006, oct 2013.

[150] Gouhei Tanaka, Toshiyuki Yamane, Jean Benoit Héroux, Ryosho Nakane, Naoki Kanazawa,
Seiji Takeda, Hidetoshi Numata, Daiju Nakano, and Akira Hirose. Recent advances in physical
reservoir computing: A review. Neural Networks, 115:100–123, 2019.

[151] Michael T. Tolley, Robert F. Shepherd, Bobak Mosadegh, Kevin C. Galloway, Michael Wehner,
Michael Karpelson, Robert J. Wood, and George M. Whitesides. A Resilient, Untethered Soft
Robot. Soft Robotics, 1(3):213–223, 2014.

[152] Benjamin Treml, Andrew Gillman, Philip Buskohl, and Richard Vaia. Origami mechanologic.
Proceedings of the National Academy of Sciences, page 201805122, jun 2018.

[153] Deepak Trivedi, Christopher D. Rahn, William M. Kier, and Ian D. Walker. Soft robotics:
Biological inspiration, state of the art, and future research. Applied Bionics and Biomechanics,
5(3):99–117, 2008.

[154] T Tsuchiya, K Kameyama, Y Kishi, M Yoshimura, N Kanzawa, and M Sameshima. Tyrosine
phosphorylation in plant bending. Nature, 407:37–37, 2000.

[155] Gabriel Urbain, Jonas Degrave, Benonie Carette, Joni Dambre, and Francis Wyffels. Mor-
phological properties of mass-spring networks for optimal locomotion learning. Frontiers in
Neurorobotics, 11(MAR):1–13, 2017.

[156] S Vasista and L Tong. Topology-optimized design and testing of a pressure-driven morphing-
aerofoil trailing-edge structure. AIAA J., 51:1898–1907, 2013.

[157] S Vasista, L Tong, and K C Wong. Realization of morphing wings: a multidisciplinary chal-
lenge. J. Aircr., 49:11–28, 2012.

[158] R Vos and R Barrett. Mechanics of pressure-adaptive honeycomb and its application to wing
morphing. Smart Mater. Struct., 20, 2011.

[159] S Waitukaitis, R Menaut, B G Chen, and M van Hecke. Origami multistability: from single
vertices to metasheets. Physical Review Letters, 114(5):055503, feb 2015.
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