1,243 research outputs found

    A shape-based approach for leaf classification using multiscaletriangular representation

    Full text link

    A shape-based approach for leaf classification using multiscale triangular representation

    Get PDF
    International audienceIn this paper we introduce a new multiscale shape-based approach for leaf image retrieval. The leaf is represented by local descriptors associated with margin sample points. Within this local description, we study four multiscale triangle representations: the well known triangle area representation (TAR), the triangle side lengths representation (TSL) and two new representations that we denote triangle oriented angles (TOA) and triangle side lengths and angle representation (TSLA). Unlike existing TAR approaches, where a global matching is performed, the similarity measure is based on a locality sensitive hashing of local descriptors. The proposed approach is invariant under translation, rotation and scale and robust under partial occlusion. Evaluations made on four public leaf datasets show that our shape-based approach achieves a high retrieval accuracy w.r.t. state-of-art methods

    Similarity Measurement of Breast Cancer Mammographic Images Using Combination of Mesh Distance Fourier Transform and Global Features

    Get PDF
    Similarity measurement in breast cancer is an important aspect of determining the vulnerability of detected masses based on the previous cases. It is used to retrieve the most similar image for a given mammographic query image from a collection of previously archived images. By analyzing these results, doctors and radiologists can more accurately diagnose early-stage breast cancer and determine the best treatment. The direct result is better prognoses for breast cancer patients. Similarity measurement in images has always been a challenging task in the field of pattern recognition. A widely-adopted strategy in Content-Based Image Retrieval (CBIR) is comparison of local shape-based features of images. Contours summarize the orientations and sizes images, allowing for heuristic approach in measuring similarity between images. Similarly, global features of an image have the ability to generalize the entire object with a single vector which is also an important aspect of CBIR. The main objective of this paper is to enhance the similarity measurement between query images and database images so that the best match is chosen from the database for a particular query image, thus decreasing the chance of false positives. In this paper, a method has been proposed which compares both local and global features of images to determine their similarity. Three image filters are applied to make this comparison. First, we filter using the mesh distance Fourier descriptor (MDFD), which is based on the calculation of local features of the mammographic image. After this filter is applied, we retrieve the five most similar images from the database. Two additional filters are applied to the resulting image set to determine the best match. Experiments show that this proposed method overcomes shortcomings of existing methods, increasing accuracy of matches from 68% to 88%

    Combining Leaf Salient Points and Leaf Contour Descriptions for Plant Species Recognition

    Get PDF
    International audienceManual Plant identification done by experts is tedious and time consuming. This process needs to be automatic and easy to handle by the different stakeholders. In this paper, we propose an original method for plant species recognition, based on the leaf observation. We consider two sources of information: the leaf margin and the leaf salient points. For the leaf shape description, we investigate the shape context descriptor and two multiscale triangular approaches: the well-known triangle area representation (TAR) and the triangle side length representation (TSL). We propose then their combination with a shape-context based descriptor that represents the spatial correlation between the leaf salient points and the leaf margin. Experiments are carried out on three public leaf datasets. Results show that our approach achieves a high retrieval accuracy and outperforms state-of-art methods

    Shape-based invariant features extraction for object recognition

    No full text
    International audienceThe emergence of new technologies enables generating large quantity of digital information including images; this leads to an increasing number of generated digital images. Therefore it appears a necessity for automatic systems for image retrieval. These systems consist of techniques used for query specification and re-trieval of images from an image collection. The most frequent and the most com-mon means for image retrieval is the indexing using textual keywords. But for some special application domains and face to the huge quantity of images, key-words are no more sufficient or unpractical. Moreover, images are rich in content; so in order to overcome these mentioned difficulties, some approaches are pro-posed based on visual features derived directly from the content of the image: these are the content-based image retrieval (CBIR) approaches. They allow users to search the desired image by specifying image queries: a query can be an exam-ple, a sketch or visual features (e.g., colour, texture and shape). Once the features have been defined and extracted, the retrieval becomes a task of measuring simi-larity between image features. An important property of these features is to be in-variant under various deformations that the observed image could undergo. In this chapter, we will present a number of existing methods for CBIR applica-tions. We will also describe some measures that are usually used for similarity measurement. At the end, and as an application example, we present a specific ap-proach, that we are developing, to illustrate the topic by providing experimental results

    Scale Issues in Remote Sensing: A Review on Analysis, Processing and Modeling

    Get PDF
    With the development of quantitative remote sensing, scale issues have attracted more and more the attention of scientists. Research is now suffering from a severe scale discrepancy between data sources and the models used. Consequently, both data interpretation and model application become difficult due to these scale issues. Therefore, effectively scaling remotely sensed information at different scales has already become one of the most important research focuses of remote sensing. The aim of this paper is to demonstrate scale issues from the points of view of analysis, processing and modeling and to provide technical assistance when facing scale issues in remote sensing. The definition of scale and relevant terminologies are given in the first part of this paper. Then, the main causes of scale effects and the scaling effects on measurements, retrieval models and products are reviewed and discussed. Ways to describe the scale threshold and scale domain are briefly discussed. Finally, the general scaling methods, in particular up-scaling methods, are compared and summarized in detail
    • …
    corecore