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ABSTRACT
In this paper we introduce a new multiscale shape-based
approach for leaf image retrieval. The leaf is represented
by local descriptors associated with margin sample points.
Within this local description, we study four multiscale trian-
gle representations: the well known triangle area representa-
tion (TAR), the triangle side lengths representation (TSL)
and two new representations that we denote triangle ori-
ented angles (TOA) and triangle side lengths and angle rep-
resentation (TSLA). Unlike existing TAR approaches, where
a global matching is performed, the similarity measure is
based on a locality sensitive hashing of local descriptors. The
proposed approach is invariant under translation, rotation
and scale and robust under partial occlusion. Evaluations
made on four public leaf datasets show that our shape-based
approach achieves a high retrieval accuracy w.r.t. state-of-
art methods.

keywords: shape descriptor, leaf image retrieval, plant iden-
tification, multiscale triangle representation, local descrip-
tion

1. INTRODUCTION
The large number of existing plant species in the world
makes human identification of them tedious and time con-
suming, particularly for non-expert stakeholders such as land
managers, foresters, agronomists, amateur gardeners, etc.
Hence, an automatic plant identification tool should speed
up the plant species identification task. This identification
tool may be useful even for experienced botanists.
Plant identification is based on the observation of its organs,
i.e. buds, leaves, fruits, stems, etc.. An interesting review
of existing approaches developed for plant species identifi-
cation can be found in [11]. A large amount of information
about the taxonomic identity of a plant is contained in its

leaves. This is due to the fact that leaves are present on the
plants for at least several months, which is not generally the
case for other organs such as fruits or flowers. Therefore,
most plant identification tools based on Content-Based Im-
age Retrieval techniques [20, 27, 5, 8, 7, 3, 9, 10] work on
leaf image databases. Leaves can be characterized by their
shape, color and texture. Leaf color may vary with the sea-
sons and geographical locations. In addition, different plant
species can have almost the same color leaves. Thus, color
is not sufficiently discriminant to be used alone in a plant
identification task.
In this paper, we focus on the shape of the leaf and on shape-
based approaches for leaf recognition.
To describe the shape of a leaf, one can develop a specific
approach or adapt a generic shape retrieval method to the
particular case of leaves.
Specific approaches [13, 8] are based on the botanical charac-
terization of leaf shapes. They extract morphological char-
acters such as: Aspect Ratio, Rectangularity, Convex Area
Ratio, Convex Perimeter Ratio, Sphericity, Circularity, Ec-
centricity and Form Factor.
Shape feature extraction techniques (cf. [26] for a survey)
can be subdivided into two families: global approaches, where
the shape is represented by one feature descriptor, and local
approaches, where a set of local descriptors are computed at
some interesting points of the shape. When global features
are extracted, a global measure is used to compute the sim-
ilarity of the shapes. The Curvature Scale Space approach
[28] has been tested on leaves in [28, 8]. Fourier-based de-
scriptors have also been used [41, 32, 30]. Multiscale ap-
proaches [20, 28, 2, 12, 23] have been introduced to enrich
the shape description and render it more robust to noise and
contour deformations.
Local approaches compute local features of landmark points
of the object. Landmark points can be boundary points [6,
25] or salient points [29] of the shape. Then, a feature-to-
feature matching is performed to retrieve the most similar
pairs of points of two different shapes. A 2D histogram de-
rived from the shape context [6] computing inner distances
and angles between sample points of the leaf margin has
been proposed in [25, 5]. Local approaches obtained good
results on the Swedish leaf dataset [25] and on the Image-
CLEF2011 plant identification task [29].
We want to benefit here from the advantages of both the
multiscale approaches and the local ones. For this purpose,



Figure 1: Three triangles having the same area

we associate a multiscale local description of the shape based
on triangles to a sample of the shape contour points. Before
describing our approach, let us study the possible triangle
representations.
Several authors have proposed representations based on tri-
angles built from feature points [18, 19, 36]. Tao an Grosky
[36] describe the shape by a Delaunay triangulation and es-
timate the density of triangles discrete angles by a global
histogram. In [18, 19], the authors use the angles given
by the medians of the triangles, joining the labelled feature
points to encode their spatial relationships.
Multiscale schemes based on triangles have been introduced
to describe the contour of a shape [21, 34, 33, 14, 2]. All
of them represent the triangles by their areas at each scale.
Shen et al. [21] showed that the triangle area representation
(TAR) is affine-invariant and proposed a fast error minimiza-
tion algorithm for computing correspondence matching. El
Rube et al. [14] suggested computing TAR at multiscale
wavelet levels (MTAR) to reduce the noise effect on the
shape boundary. More recently, Alajlan et al. [2, 1] made
the triangle normalization locally for each scale and used a
dynamic space warping matching to compute the optimal
correspondence between two shapes.
Although TAR is affine-invariant and robust to noise and
deformation, it has a high computational cost since all the
boundary points are used. Moreover, TAR has two major
limitations:
- The area is not informative about the type of the triangle
(isosceles, equilateral, etc.) considered, which may be cru-
cial for a local description of the boundary.
- The area is not accurate enough to represent the shape of
a triangle. Figure 1 shows three triangles that are equal in
area but which have different shapes.
In fact, the triangles in Figure 1 are not similar triangles.
They do not fulfill any of the following three properties:
(i) All three pairs of corresponding side lengths are in the
same proportion.
(ii) All three pairs of corresponding angles are the same.
(iii) Two pairs of side lengths have the same proportion and
the included angle is equal.
To our knowledge, the Triangle Area Representation has not
been really compared to other triangle representations (us-
ing side lengths, angles, etc.). We want here to take into
account the similarity property in our triangle representa-
tion. Thus, in Section 2, we present three other triangle
descriptions (TSL, TSLA and TOA), based on the triangles
side lengths, their angles, or both, and integrate these repre-
sentations in a multiscale based approach. Experiments are
made on four public leaf datasets and presented in Section
3.

(a) (b) (c)

Figure 2: Multiscale triangular representation. (a)
N boundary points of the leaf. Here N = 22. (b)
Ns boundary points are selected on each side of
pi. pi is represented by two triangles (Ns = 2 with
d(1) = 2 and d(2) = 4) (c) pi is represented by four
triangles and logarithmic distance between triangle
points (Ns = 4 with d(1) = 1, d(2) = 2, d(3) = 4 and
d(4) = 8)

2. MULTISCALE TRIANGLE REPRESEN-
TATION

The shape boundary is represented by a sequence of N sam-
ple points p1, ...pN uniformly distributed over the contour
and numbered in a clockwise order. Then, each contour
point pi is represented by Ns triangles computed at differ-
ent scales (see Figure 2). Ns is then the number of triangles
and the number of scales. Unlike other multiscale triangu-
lar representations, we introduce d(k) the distance between
the triangle points at scale k, expressed in the number of
boundary points, with 1 ≤ k ≤ Ns and d being an increas-
ing function such that d(Ns) ≤ N/2. In addition, to describe
pi, we do not systematically use all the remaining boundary
points. We select only two sets of Ns points on both sides of
pi. The choice of Ns depends on whether we are seeking to
capture local or global information. The distance d(k) may
be either uniform or logarithmic (cf. Figure 2).

In what follows, each boundary point pi is associated with
Ns triangles T 1

i , ..., T
Ns

i , T k
i being the triangle defined by

the contour points pi−d(k), pi and pi+d(k), 1 ≤ k ≤ Ns.
Four triangle representations associated to each pi are intro-
duced:
TAR(pi) = (TAR(T 1

i ), ...,TAR(TNs

i )),

TSL(pi) = (TSL(T 1
i ), ...,TSL(T

Ns

i )),

TSLA(pi) = (TSLA(T 1
i ), ...,TSLA(TNs

i )) and

TOA(pi) = (TOA(T 1
i ), ...,TOA(TNs

i )).
The shape is then described by N feature vectors T (pi); 1 ≤
i ≤ N , T being either TAR, TSL, TSLA or TOA triangle
representation. We will show that all these triangle repre-
sentations are invariant to translation and rotation of the
shape. By normalizing the description locally, we also ob-
tain a scale invariant description of the shape.

2.1 Triangle area representation(TAR)
Here, for each triangle T , TAR(T ) = A(T ), where A(T ) is
the signed area of T . TAR is affine-invariant, robust to noise
and provides information about local concavities or convex-
ities at a given boundary point as the signed area is com-
puted. Let (xi−d(k), yi−d(k)), (xi, yi) and (xi+d(k), yi+d(k))
be the respective coordinates of the points pi−d(k), pi and



Figure 3: Three triangles having the same TSL rep-
resentation

pi+d(k). The signed area of the triangle formed by this triplet
is given by:
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A normalization is made locally with respect to the maxi-
mum area in each scale as in [2]. However, the TAR used in
this paper is quite different from the original TAR.
- We consider here a subset of points on the contour, unlike
the original TAR where all boundary points are used.
- We define the number of scales as a parameter (Ns). In [2],
N

2
− 1 scales are systematically used where N is the number

of points on the contour.
- The matching process is different. A dynamic space wrap-
ping is used in [2] to compare global signatures of the shapes
at each scale. Here, the feature associated to a contour point
takes into account all the selected scales and then a similar-
ity measure based on a locality sensitive hashing is used to
find similar points.

2.2 Triangle side lengths representation (TSL)
TSL uses only the side lengths to represent a triangle.
Let L1k, L2k and L3k be the three side lengths sorted in
ascending order (L1k ≤ L2k ≤ L3k) of triangle T k

i formed
by the points pi−d(k), pi and pi+d(k), k ∈ {1, ..., Ns} of the
shape contour. Let Mk = L1k/L3k and Nk = L2k/L3k .
Then TSL(T k

i ) = (Mk, Nk).
The three side lengths of T k

i are proportional toMk, Nk and
1; this is also the case for any triangle similar to T k

i . Thus
similar triangles have an equal TSL representation and TSL
is invariant under scale, translation, rotation and reflection
around the contour points.
Figure 3 shows an example of four triangles having the same
TSL representation. T2 is a result of a rotation of T1 around
pi while T3 is the mirror image of T1 w.r.t. a horizontal
line. Note that the vertex angle pi of T4 is different from
the vertex angle pi of the other triangles. However, the TSL
representation is the same since the triangle side lengths are
sorted.

2.3 Triangle represented by two side lengths
and an angle (TSLA)

Let θ be the absolute value of the vertex angle at point pi
of triangle T k

i . TSLA representation of T k
i is the triplet

(Mk, Nk, θ), where (Mk, Nk) = TSL(T k
i ). TSLA is more ac-

curate than TSL. For example, the similar triangles T1 and

p
k

p
i

p

ϕ

ψ
i+d(1)
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p
k−d(1)

Figure 4: TOA representation

T4 in Figure 3 have different TSLA representations because
the respective angles at pi are distinct. On the other hand,
TSLA(T1) and TSLA(T3) are equal. Like TSL, the TSLA
representation is invariant under scale and reflection around
the contour points.

2.4 Triangle represented by two oriented an-
gles (TOA)

TOA uses only angle values to represent a triangle.
Let φk = ∠pi−d(k)pipi+d(k) and ψk = ∠pipi+d(k)pi−d(k) two

successive oriented angles of triangle T k
i . Then TOA(T k

i )=
(φk, ψk).
The angle orientation provides information about local con-
cavities and convexities (cf. Figure 4). In fact, an obtuse
angle means convex, an acute angle means concave. TOA
is not invariant under reflection around the contour point:
here, only similar triangles having equal angles at pi will
have equal TOA values.

2.5 Matching Method
TSL, TSLA and TOA represent local descriptions of contour
points. In fact, a feature vector Fi is associated to each con-
tour point pi i ∈ {1, .., N}. The size of the signature using
TSL, TSLA and TOA depends on the number of scales Ns.
Size[(TSL(pi))] =Size[(TOA(pi))] = 2 x Ns.
Size[(TSLA(pi))] = 3 x Ns

Size[(TAR(pi))] = Ns

When a small number of scales is used, we obtain a compact
representation of each contour point. The matching process
is a feature-to-feature comparison. It is the same for all the
triangle descriptors presented above. The features matching
is done by an approximate similarity search technique based
on a Locality Sensitive Hashing (LSH) method [31]. We
use the Multi Probe Locality Sensitive Hashing technique
[22] and the distance L2 to compute the similarity between
two feature vectors. The principle of this algorithm is to
project all the features in an L-dimensional space and to
use hash functions to reduce the search and the cost time.
At query time, the features F1, F2, ..., Fn of the query image
are mapped onto the hash tables and the k-nearest neighbors
(k − nn) of each feature Fi are searched for in the buckets
associated to Fi. These n lists of candidate feature matches
are used as input for a voting system to rank images accord-
ing to the number of matched features.

3. EXPERIMENTAL RESULTS ON LEAVES
Our descriptors have been tested on four leaf datasets: the
Swedish leaf dataset[35], the Flavia dataset [38], the Im-
ageCLEF dataset in 2011 [16] and in 2012 [17]. In all the



Figure 5: Results per class on the Swedish leaf dataset
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Figure 6: Overview of the Swedish leaf dataset. One
image per species is kept.

experiments, a leaf image contains a single leaf on an unclut-
tered background. A preprocessing step is required to isolate
the leaf area. First, we apply the Otsu threshold method to
remove the background and keep only the mask correspond-
ing to the leaf. A closed contour is then extracted from the
leaf mask. Note that the input of all the representations de-
scribed above is a sequence of N boundary points regardless
of other leaf features like texture, color and venation.

3.1 The Swedish leaf dataset
The Swedish leaf dataset [35] contains 1125 images of leaves
uniformly distributed in 15 species. Figure 6 shows sample
leaves. The Swedish leaf dataset is very challenging because
of its high inter-species similarity. One can notice the sim-
ilarity of shapes of the first, third, and ninth species. To

(a) TSLA (b) TAR

Figure 7: classification results of the first, the third
and the From Flaviaes

Method Classification rate
TSLA 96.53%
TSL 95.73%
TOA 95.20%
TAR 90.40%

Shape Tree [15] 96.28%
SPTC+DP1 95.33%

MDS+SC+DP1 95.33%
IDSC + DP1 94.13%

IDSC + learned distance [4] 93.80%
sPACT (on contour) [37] 90.77%

Fourier1 89.60%
SC + DP1 88.12%

Söderkvist [35] 82.40%

Table 1: classification rates on the Swedish leaf
dataset.

compare our approach with existing ones, we adopted the
evaluation protocol used in [35, 25, 37, 4]. We randomly
split each class into two sets: a training set containing 25
images and a testing set consisting of the remaining 50 im-
ages; we computed the classification rate given by the near-
est neighbor (1-NN).
Table 1 shows the classification rate of the different repre-
sentations compared to shape-based methods found in the
literature. The number of boundary points is the same for
all the proposed descriptors (N = 400). We are positioned
first using the TSLA representation with 6 scales (Ns = 6)
and a logarithmic periodicity between scales (d(k) = 2k).
TSLA outperforms all state-of-art methods while the TSL
representation obtains the third best score with 95.73% us-
ing 7 scales (Ns = 7) and a logarithmic distance between
triangles at different scales. The parameters that give the
best results for the TOA and the TAR descriptors are re-
spectively Ns = 64, d(k) = 2 x k and Ns = 4, d(k) = 2k.

To compare the triangular representations, we use the same
parameters that give the best classification rate (96.53%)
with TSLA and we apply them on TSL, TOA and TAR.
The performance of the descriptors for each class is shown
in Figure 5. Examining the results per class on the Swedish
leaf dataset, we notice that:

1methods tested in [25]



Figure 8: Sample leaves from the Flavia dataset.
One image per species is shown.

- The lowest classification rates are obtained on the first class
for TSL, TSLA and TOA. However, the TSLA descriptor
performs better than all the other representations. This is
due to the leaf shape similarity between the first, the third
and the ninth classes.
Figure 7 shows that classification errors are due to the confu-
sion between these classes. - The TSLA descriptor performs
either as well as or better than the TSL descriptor on 14
out of 15 classes. This confirms our initial assumption: by
adding an angle to the TSL representation, we obtain a more
accurate description of the contour.
- The TSL, TSLA, TOA descriptors give higher classification
rates than the TAR descriptor on 14 out of 15 classes. The
difference is significant in the third, fourth and fifth class.
This confirms that the triangle side lengths and angles are
more informative than area about the shape of the triangle.

3.2 The Flavia dataset
The Flavia dataset is composed of 1907 scans of leaves be-
longing to 32 species (see Figure 8). Several methods were
tested in [24] on Flavia. To compare our approach with
these methods, we used the same evaluation metrics as those
in [24]: the Mean Average Precision (MAP) and the re-
call/precision curves. The precision P and the recall R val-
ues are given by:

P =
#relevant images

#retrieved images

R =
#retrieved relevant images

#relevant images

The MAP value is measured on a set of queries Q and is
defined as follows:

MAP =

∑

q∈Q

AP (q)

|Q|

where the average precision score AP (q) is computed for
each query q:

AP (q) =

n
∑

k=1

(P (k) x f(k))

#retrieved relevant images for q

P (k) is the precision at cut-off k in the list of retrieved im-
ages and f(k) is equal to 1 when the image at rank k is
relevant and 0 otherwise. The results are reported in Ta-
ble 2. The TSL, TOA, and TSLA descriptors significantly

Methods in [24] D2 MSDM GEDT REM
MAP 42.82 47.91 48.01 57.21

Ours TAR TSL TOA TSLA
MAP 50.81 65.94 68.37 69.93

Table 2: Mean Average Precision on the Flavia
dataset

Figure 9: Recall/Precision curves on the Flavia
dataset

outperform other methods. In this experiment, we used the
same parameters for all the representations: 400 boundary
points and 10 scales (N = 400, Ns = 10). Despite the high
similarity of the shapes of different species, our approach
shows a high capability to discriminate between species.

The recall/precision curves in Figure 9 show the perfor-
mance of our descriptors on the Flavia dataset. We ob-
serve that TSL, TOA, TSLA perform in a similar way. The
TAR representation gives the lowest performance. The re-
call/precision curves also prove that the angular information
(TSLA, TOA) enhances the retrieval performance.

3.3 Comparison with ImageCLEF2011 results
Let us now introduce the context of the plant identification
task of ImageCLEF 2011[16]. The ImageCLEF2011 dataset
contains three categories of images:
- scans of leaves acquired using a flat-bed scanner
- scan-like leaf images acquired using a digital camera
- free natural photos
For each category, the images are divided into two sets: a
training set and a test set. The goal of the task is to find
the correct tree species of each test image. The identification
score is quite different from the classic measures such as the
MAP value and recall-precision curves. Two assumptions
guided the identification score S definition:
- The leaves from the same tree may be more similar than
leaves from different trees (the classification rate on each



individual plant is averaged).
- Photos taken by the same person will have nearly the same
acquisition protocol (S measures the mean of the average
classification rate per user).
Then, S is defined as follows in ImageCLEF 2011:

S =
1

U

U
∑

u=1

1

Pu

Pu
∑

p=1

1

Nu,p

Nu,p
∑

p=1

su,p,n

U : number of users (who have at least one image in the test
data).
Pu: number of individual plants observed by the uth user.
Nu,p: number of pictures taken of the pth plant observed by
the uth user.
su,p,n: classification score (1 or 0) for the nth picture taken
of the pth plant observed by the uth user.
We focus on scans and scan-like images. The first cate-
gory contains 2349 images for training and 721 test images.
For the scan-like category, 717 images are used for training
and 180 images for testing. Table 4 shows the identifica-
tion scores of our descriptors compared to other submit-
ted runs of ImageCLEF2011. Our identification scores are
higher than all the scores of the other methods on scans as
well as scan-like images. If we average the score between
the two categories, the TOA representation is slightly bet-
ter. Note also that the identification score using TOA is
nearly the same on scans and scan-like images, although the
noise that may exist in scan-like images (shadows, cluttered
background, etc.). This demonstrates that a shape-based
approach is suitable for a plant identification task.

run id Scans Scan-like
IFSC USP run2 0.562 0.402

inria imedia plantnet run1 0.685 0.464
IFSC USP run1 0.411 0.430

LIRIS run3 0.546 0.513
LIRIS run1 0.539 0.543

Sabanci-okan-run1 0.682 0.476
LIRIS run2 0.530 0.508
LIRIS run4 0.537 0.538

inria imedia plantnet run2 0.477 0.554
IFSC USP run3 0.356 0.187
DFH+GP [39] 0.778 0.725

TSL 0.802 0.757
TOA 0.794 0.780
TSLA 0.796 0.779
TAR 0.721 0.636

Table 3: Normalized classification scores of the scan
and scan-like images on the ImageCLEF2011 dataset
using the evaluation metric of [16]

3.4 Comparison with ImageCLEF2012 results
The formula used to rank the runs in the ImageCLEF2012
plant identification task [17] is nearly the same as in 2011
(see [17] for details). The scan dataset contains 4870 images
for training and 1760 test images. The scan-like category
contains 1819 images for training and 907 images for test-
ing. We obtain the second best results for all the triangle de-
scriptors on the scan images and the three descriptors TSL,
TSLA and TOA outperform the ImageCLEF2012 runs for
the scan-like images. Note that the method that achieved

Scans Scan-like
Top 3 Scores 0.58 0.59

0.49 0.55
0.47 0.54

TSL 0,52 0.61
TOA 0.54 0.63
TSLA 0.53 0.63
TAR 0.52 0.51

Table 4: Normalized classification scores of the scan
and scan-like images using the evaluation metric of
[17] (ImageCLEF2012)

the best score on scans (0.58) used a set of 27 features de-
scribing the shape, the texture and the color of the leaf [40].
In our case, we used only one shape descriptor.

3.5 Robustness to partial occlusion
In this experiment, we evaluate the performance of the pro-
posed shape representation under partial occlusion. Partial
occlusion may be due to uneven lighting conditions or over-
lapping objects. We picked five leaf images from the Flavia
dataset and we applied three different types of occlusion:
lobe occlusion, half leaf occlusion and multi occlusions. This
eliminates from 20% up to 50% of the contour points. (cf.
Figure 11). Taking into account that some boundary points
are more sensitive to occlusion than others, we simultane-
ously applied multi occlusions of different parts of the leaf
for the image I5 in Figure 11.
In fact, the robustness of the descriptor depends on the
choice of the number of triangles Ns. Here, the descrip-
tor parameters are the same as those used previously on the
Flavia dataset. Five retrieval tests were carried out using the
occluded leaf images as queries. The results are presented
in Table 5. We compare the obtained results to the scores of
classification when original images are used as queries (100%
for all the descriptors with knn = 15).

I1 I2 I3 I4 I5 Average Lost
TSL 100 86.6 93.3 100 93.3 94.4 5.4
TSLA 100 100 93.3 100 60 90.6 9.4
TOA 100 100 100 100 80 96 4
TAR 93.3 86.6 80 100 73.3 86.6 13.4

Table 5: Classification rates of occluded images.

I1 I2 I3 I4 I5

Figure 10: Partial occlusions on Flavia leaf images.
First row: original images. Second row: occluded
leaves
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Figure 11: Examples of retrieval queries. The query image is framed by a solid blue line. False positives are
framed by a dashed red line (a) the original image is used as a query image (b) the occluded image (I5) is
used as a query image

The percentage of lost information is less than 10% for TSL,
TSLA and TOA. The TOA descriptor obtained the best
average score of classification (96%) over the five occluded
images. The TSL description is the the best in term of
robustness against multi occlusions applied on the image I5.
Retrieval queries using I5 can be seen in Figure 10.

4. CONCLUSION
In this paper, we have presented a multiscale shape-based
approach for leaf classification. We have compared four tri-
angle representations based either on area (TAR) or side
lengths and angles. We have introduced two triangle rep-
resentations: TSLA and TOA. The experiments carried out
on four leaf datasets show that using angles and side lengths,
is more appropriate than the area for triangle description.
However, to compare our descriptors to the original TAR,
a matching method based on dynamic programming should
be developed. Moreover, the angular information provides a
more precise description when it is jointly used with the tri-
angle side lengths. Our approach is invariant to translation,
rotation and scale. We have also shown that the different
local descriptors are robust under partial occlusion.
In our future work, we want to include other leaf features
such as venation points.
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[17] H. Goëau, P. Bonnet, A. Joly, I. Yahiaoui, D. Barthélémy,
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