883 research outputs found

    Comparing HLA Shared Epitopes in French Caucasian Patients with Scleroderma

    Get PDF
    Although many studies have analyzed HLA allele frequencies in several ethnic groups in patients with scleroderma (SSc), none has been done in French Caucasian patients and none has evaluated which one of the common amino acid sequences, 67FLEDR71, shared by HLA-DRB susceptibility alleles, or 71TRAELDT77, shared by HLA-DQB1 susceptibility alleles in SSc, was the most important to develop the disease. HLA-DRB and DQB typing was performed for a total of 468 healthy controls and 282 patients with SSc allowing FLEDR and TRAELDT analyses. Results were stratified according to patient’s clinical subtypes and autoantibody status. Moreover, standardized HLA-DRß1 and DRß5 reverse transcriptase Taqman PCR assays were developed to quantify ß1 and ß5 mRNA in 20 subjects with HLA-DRB1*15 and/or DRB1*11 haplotypes. FLEDR motif is highly associated with diffuse SSc (χ2 = 28.4, p<10−6) and with anti-topoisomerase antibody (ATA) production (χ2 = 43.9, p<10−9) whereas TRAELDT association is weaker in both subgroups (χ2 = 7.2, p = 0.027 and χ2 = 14.6, p = 0.0007 respectively). Moreover, FLEDR motif- association among patients with diffuse SSc remains significant only in ATA subgroup. The risk to develop ATA positive SSc is higher with double dose FLEDR than single dose with respectively, adjusted standardised residuals of 5.1 and 2.6. The increase in FLEDR motif is mostly due to the higher frequency of HLA-DRB1*11 and DRB1*15 haplotypes. Furthermore, FLEDR is always carried by the most abundantly expressed ß chain: ß1 in HLA DRB1*11 haplotypes and ß5 in HLA-DRB1*15 haplotypes

    Lack of HLA predominance and HLA shared epitopes in biliary Atresia

    Get PDF
    Biliary atresia (BA) is characterized by progressive inflammation and fibrosis of bile ducts. A theory of pathogenesis entails autoimmune-mediated injury targeting bile duct epithelia. One of the strongest genetic associations with autoimmunity is with HLA genes. In addition, apparently dissimilar HLA alleles may have similar antigen-binding sites, called shared epitopes, that overlap in their capacity to present antigens. In autoimmune disease, the incidence of the disease may be related to the presence of shared epitopes, not simply the HLA allelic association. Aim: To determine HLA allele frequency (high-resolution genotyping) and shared epitope associations in BA. Results: Analysis of every allele for HLA-A, -B, -C, -DRB1, -DPB1 and -DQB1 in 180 BA and 360 racially-matched controls did not identify any significant HLA association with BA. Furthermore, shared epitope analysis of greater than 10 million possible combinations of peptide sequences was not different between BA and controls. Conclusions: This study encompasses the largest HLA allele frequency analysis for BA in the United States and is the first study to perform shared epitope analysis. When controlling for multiple comparisons, no HLA allele or shared epitope association was identified in BA. Future studies of genetic links to BA that involve alterations of the immune response should include investigations into defects in regulatory T cells and non-HLA linked autoinflammatory diseases. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/2193-1801-2-42) contains supplementary material, which is available to authorized users

    Modelling cross-reactivity and memory in the cellular adaptive immune response to influenza infection in the host

    Full text link
    The cellular adaptive immune response plays a key role in resolving influenza infection. Experiments where individuals are successively infected with different strains within a short timeframe provide insight into the underlying viral dynamics and the role of a cross-reactive immune response in resolving an acute infection. We construct a mathematical model of within-host influenza viral dynamics including three possible factors which determine the strength of the cross-reactive cellular adaptive immune response: the initial naive T cell number, the avidity of the interaction between T cells and the epitopes presented by infected cells, and the epitope abundance per infected cell. Our model explains the experimentally observed shortening of a second infection when cross-reactivity is present, and shows that memory in the cellular adaptive immune response is necessary to protect against a second infection.Comment: 35 pages, 12 figure

    Molecular mimicry, genetic homology, and gene sharing proteomic “molecular fingerprints” using an EBV (Epstein-Barr virus)-derived microarray as a potential diagnostic method in autoimmune disease

    Get PDF
    EBV (Epstein-Barr Virus) and other human DNA viruses are associated with autoimmune syndromes in epidemiologic studies. In this work, immunoglobulin G response to EBV-encoded proteins which share regions with human immune response proteins from the human host including ZEBRA (BZLF-1 encoded protein), BALF-2 recombinase expressed primarily during the viral lytic replication cycle, and EBNA-1 (Epstein-Barr Virus Nuclear Antigen) expressed during the viral latency cycle respectively were characterized using a laser-printed micro-array ( PEPperprint.com ). IgG response to conserved "A/T hooks" in EBV-encoded proteins such as EBNA-1 and the BALF-2 recombinase related to host DNA-binding proteins including RAG-1 recombinase and histones, and EBV-encoded virokines such as the IL-10 homologue BCRF-1 suggest further directions for clinical research. The author suggests that proteomic "molecular fingerprints" of the immune response to viral proteins shared with human immune response genes are potentially useful in early diagnosis and monitoring of autoantibody production and response to therapy in EBV-related autoimmune syndromes

    Behaviour of non-donor specific antibodies during rapid re-synthesis of donor specific HLA antibodies after antibody incompatible renal transplantation

    Get PDF
    Background: HLA directed antibodies play an important role in acute and chronic allograft rejection. During viral infection of a patient with HLA antibodies, the HLA antibody levels may rise even though there is no new immunization with antigen. However it is not known whether the converse occurs, and whether changes on non-donor specific antibodies are associated with any outcomes following HLA antibody incompatible renal transplantation. Methods: 55 patients, 31 women and 24 men, who underwent HLAi renal transplant in our center from September 2005 to September 2010 were included in the studies. We analysed the data using two different approaches, based on; i) DSA levels and ii) rejection episode post transplant. HLA antibody levels were measured during the early post transplant period and corresponding CMV, VZV and Anti-HBs IgG antibody levels and blood group IgG, IgM and IgA antibodies were quantified. Results: Despite a significant DSA antibody rise no significant non-donor specific HLA antibody, viral or blood group antibody rise was found. In rejection episode analyses, multiple logistic regression modelling showed that change in the DSA was significantly associated with rejection (p = 0.002), even when adjusted for other antibody levels. No other antibody levels were predictive of rejection. Increase in DSA from pre treatment to a post transplant peak of 1000 was equivalent to an increased chance of rejection with an odds ratio of 1.47 (1.08, 2.00). Conclusion: In spite of increases or decreases in the DSA levels, there were no changes in the viral or the blood group antibodies in these patients. Thus the DSA rise is specific in contrast to the viral, blood group or third party antibodies post transplantation. Increases in the DSA post transplant in comparison to pre-treatment are strongly associated with occurrence of rejection

    T‐cell epitope content comparison (EpiCC) of swine H1 influenza A virus hemagglutinin

    Get PDF
    Background: Predicting vaccine efficacy against emerging pathogen strains is a significant problem in human and animal vaccine design. T‐cell epitope cross‐conservation may play an important role in cross‐strain vaccine efficacy. While influenza A virus (IAV) hemagglutination inhibition (HI) antibody titers are widely used to predict protective efficacy of 1 IAV vaccine against new strains, no similar correlate of protection has been identified for T‐cell epitopes. Objective: We developed a computational method (EpiCC) that facilitates pairwise comparison of protein sequences based on an immunological property—T‐cell epitope content—rather than sequence identity, and evaluated its ability to classify swine IAV strain relatedness to estimate cross‐protective potential of a vaccine strain for circulating viruses. Methods: T‐cell epitope relatedness scores were assessed for 23 IAV HA sequences representing the major H1 swine IAV phylo‐clusters circulating in North American swine and HA sequences in a commercial inactivated vaccine (FluSure XP®). Scores were compared to experimental data from previous efficacy studies. Results: Higher EpiCC scores were associated with greater protection by the vaccine against strains for 23 field IAV strain vaccine comparisons. A threshold for EpiCC relatedness associated with full or partial protection in the absence of cross‐reactive HI antibodies was identified. EpiCC scores for field strains for which FluSure protective efficacy is not yet available were also calculated. Conclusion: EpiCC thresholds can be evaluated for predictive accuracy of protection in future efficacy studies. EpiCC may also complement HI cross‐reactivity and phylogeny for selection of influenza strains in vaccine development

    The post-2009 influenza pandemic era : time to revisit antibody immunodominance

    Get PDF
    The current inactivated influenza vaccines rely on the induction of neutralizing antibodies against the head domain of the viral hemagglutinin (HA). The HA head contains five immunodominant antigenic sites, all of which are subject to antigenic drift, thereby limiting vaccine efficacy. Bypassing the immune system's tendency to focus on the most variable regions of the HA may be a step toward more broadly protective influenza vaccines. However, this requires a better understanding of the biological meaning of immunodominance, and of the hierarchy between different antigenic sites. In this issue of the JCI, Liu et al. determined the immunodominance of the five antigenic sites of the HA head in experimentally infected mice, guinea pigs, and ferrets. All three species exhibited different preferences for the five sites of the 2009 pandemic H1N1 strain. Moreover, human subjects exhibited yet a different pattern of immunodominance following immunization with the standard inactivated influenza vaccine. Together, these results have important implications for influenza vaccine design and interpretation of animal models

    The Members of the Plakin Family of Proteins Recognized by Paraneoplastic Pemphigus Antibodies Include Periplakin

    Get PDF
    Sera of patients with paraneoplastic pemphigus (PNP) characteristically immunoprecipitate five proteins, observations confirmed with the sera examined in this study. The proteins characterized thus far as autoantigens in PNP all belong to the plakin family of proteins and include desmoplakin, the 230kDa bullous pemphigoid antigen, and envoplakin. The pattern of bands precipitated from metabolically labeled human keratinocyte extracts by each PNP serum was different, suggesting varying titers of antibodies against unique epitopes in various plakin family members. To further characterize this PNP antibody response, we produced fusion proteins of the homologous tail region of five plakin family members, including the recently cloned periplakin. Immunoblotting of equal amounts of each plakin tail-glutathione S-transferase fusion protein with PNP sera revealed a strong reaction with the envoplakin tail domain. Each sera also recognized periplakin, and certain sera recognized desmoplakin and plectin, and, weakly, bullous pemphigoid antigen 1. PNP sera were affinity purified with periplakin and envoplakin tail fusion proteins. Immunoprecipitation and immunoblotting with these affinity purified antibodies revealed shared as well as unique epitopes in the tail domains of these plakins. This study indicates that a homologous region in the carboxy-terminus of plakins, including the newly characterized periplakin, serves as an antigenic site in PNP

    Rapid characterization of binding specificity and cross-reactivity of antibodies using recombinant human protein arrays.

    Get PDF
    Antibodies are routinely used as research tools, in diagnostic assays and increasingly as therapeutics. Ideally, these applications require antibodies with high sensitivity and specificity; however, many commercially available antibodies are limited in their use as they cross-react with non-related proteins. Here we describe a novel method to characterize antibody specificity. Six commercially available monoclonal and polyclonal antibodies were screened on high-density protein arrays comprising of ~10,000 recombinant human proteins (Imagenes). Two of the six antibodies examined; anti-pICln and anti-GAPDH, bound exclusively to their target antigen and showed no cross-reactivity with non-related proteins. However, four of the antibodies, anti-HSP90, anti-HSA, anti-bFGF and anti-Ro52, showed strong cross-reactivity with other proteins on the array. Antibody-antigen interactions were readily confirmed using Western immunoblotting. In addition, the redundant nature of the protein array used, enabled us to define the epitopic region within HSP90 of the anti-HSP90 antibody, and identify possible shared epitopes in cross-reacting proteins. In conclusion, high-density protein array technology is a fast and effective means for determining the specificity of antibodies and can be used to further improve the accuracy of antibody applications

    Hashimoto's thyroiditis and autoimmune gastritis

    Get PDF
    The term "thyrogastric syndrome" defines the association between autoimmune thyroid disease and chronic autoimmune gastritis (CAG), and it was first described in the early 1960s. More recently, this association has been included in polyglandular autoimmune syndrome type IIIb, in which autoimmune thyroiditis represents the pivotal disorder. Hashimoto's thyroiditis (HT) is the most frequent autoimmune disease, and it has been reported to be associated with gastric disorders in 10-40% of patients while about 40% of patients with autoimmune gastritis also present HT. Some intriguing similarities have been described about the pathogenic mechanism of these two disorders, involving a complex interaction among genetic, embryological, immunologic, and environmental factors. CAG is characterized by a partial or total disappearance of parietal cells implying the impairment of both hydrochloric acid and intrinsic factor production. The clinical outcome of this gastric damage is the occurrence of a hypochlorhydric-dependent iron-deficient anemia, followed by pernicious anemia concomitant with the progression to a severe gastric atrophy. Malabsorption of levothyroxine may occur as well. We have briefly summarized in this minireview the most recent achievements on this peculiar association of diseases that, in the last years, have been increasingly diagnosed
    corecore