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Abstract

Biliary atresia (BA) is characterized by progressive inflammation and fibrosis of bile ducts. A theory of pathogenesis
entails autoimmune-mediated injury targeting bile duct epithelia. One of the strongest genetic associations with
autoimmunity is with HLA genes. In addition, apparently dissimilar HLA alleles may have similar antigen-binding
sites, called shared epitopes, that overlap in their capacity to present antigens. In autoimmune disease, the
incidence of the disease may be related to the presence of shared epitopes, not simply the HLA allelic association.
Aim: To determine HLA allele frequency (high-resolution genotyping) and shared epitope associations in BA.
Results: Analysis of every allele for HLA-A, -B, -C, -DRB1, -DPB1 and -DQB1 in 180 BA and 360 racially-matched
controls did not identify any significant HLA association with BA. Furthermore, shared epitope analysis of greater
than 10 million possible combinations of peptide sequences was not different between BA and controls.
Conclusions: This study encompasses the largest HLA allele frequency analysis for BA in the United States and is the
first study to perform shared epitope analysis. When controlling for multiple comparisons, no HLA allele or shared
epitope association was identified in BA. Future studies of genetic links to BA that involve alterations of the
immune response should include investigations into defects in regulatory T cells and non-HLA linked
autoinflammatory diseases.
Biliary atresia is the most common neonatal cholestatic dis-
order, occurring in approximately 1 in 10,000-15,000 live
births in the United States. The disease is characterized by
complete fibrotic obliteration of the lumen of all or part of
the extrahepatic biliary tree within three months of life and
progressive inflammation and fibrosis of intrahepatic bile
ducts (Sokol et al. 2003). There are two proposed types of
BA; the embryonic form and the perinatal form. The em-
bryonic form (~15% of cases) may be due to defective de-
velopment of the extrahepatic biliary tract and is associated
with other congenital anomalies. The perinatal or acquired
form occurs in ~85% of cases and the bile duct damage
has been theorized to be due to an initial virus infection of
the biliary tree that triggers a secondary autoimmune-
mediated injury targeting bile duct epithelia. The conti-
nued autoimmune response would lead to progressive
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intrahepatic bile duct injury and sclerosis, resulting in
cirrhosis (Mack et al. 2007). Despite clinical improvement
following a portoenterostomy procedure at the time of
diagnosis, up to 80% of children with BA will eventually
require liver transplantation (Sokol et al. 2003).
Compelling evidence for autoimmunity has been gained

from mouse studies, where autoreactive T cells targeting
bile duct epithelia have been identified. Two groups have
demonstrated that autoreactive T cells specific to bile duct
epithelia are present in the rotavirus-induced mouse
model of BA and are associated with bile duct inflamma-
tion and injury (Mack et al. 2006; Shivakumar et al. 2007).
In vitro analyses demonstrated significant increases in liver
T cells from BA mice that generated IFN-γ in response to
either virus or self-bile duct epithelial antigens (Mack
et al. 2006). In addition, adoptive transfer of liver T cells
from BA mice into immunodeficient recipients led to bile
duct-specific inflammation and injury (Mack et al. 2006;
Shivakumar et al. 2007). This induction of bile duct path-
ology occurred in the absence of detectable transferred
virus, suggesting that bile duct antigens were the target of
the T cells. Human studies pertaining to autoimmunity in
BA are limited. Identification of oligoclonal populations,
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Table 1 Racial distribution of subjects

Race BA n (%) Controls n (%)

HLA-A,B

Black 25 (14.2) 47 (14.3)

Caucasian 114 (64.8) 213 (64.7)

Hispanic 23 (13.1) 43 (13.1)

Asian 14 (8.0) 26 (7.9)

Total 176 329

HLA-C

Black 25 (14.1) 50 (14.3)

Caucasian 115 (65.0) 226 (64.6)

Hispanic 23 (13.0) 46 (13.1)

Asian 14 (7.9) 28 (8.0)

Total 177 350

HLA-DP

Caucasian 111 (100) 91 (100)

HLA-DQ

Black 25 (14.0) 48 (14.0)

Caucasian 116 (65.2) 223 (65.2)

Hispanic 23 (12.9) 44 (12.9)

Asian 14 (7.9) 27 (7.9)

Total 178 342

HLA-DR

Black 25 (14.0) 96 (14.0)

Caucasian 116 (65.2) 446 (65.2)

Hispanic 23 (12.9) 88 (12.9)

Asian 14 (7.9) 54 (7.9)

Total 178 684
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defined as T cells expressing similar T cell receptor vari-
able regions of the β-chain, from BA livers at the time of
diagnosis suggests specific antigen-driven inflammation
(Mack et al. 2007). It remains unknown what the potential
antigens are (e.g. viral proteins, bile duct epithelial proteins)
that are responsible for T cell activation and bile duct
injury.
One of the strongest genetic associations with auto-

immunity is with the human leukocyte antigen (HLA)
genes. HLA is a region on chromosome 6 that contains
more than 50 genes known to be involved in the immune
response. HLA class I (HLA-A,-B and -C) are single poly-
peptide chains that present endogenous peptides to CD8+

T cells and HLA class II molecules (HLA-DR, -DP
and -DQ) are heterodimers expressed predominantly on
hematopoietic cells that present exogenous peptides to
CD4+ helper T cells (Abbas & Lichtman 2000). HLA
associations with BA have been reported with conflicting
results (Silveira et al. 1993; A-Kader et al. 2002; Donaldson
et al. 2002; Yuasa et al. 2005), mainly due to the sample size
analyzed and the level of resolution used to identify the
HLA alleles.
The vast majority of HLA polymorphisms are located

within the antigen-binding cleft of the HLA molecule that
comes in contact with the peptide or T cell receptor. Pep-
tide binding to HLA-DRB1 molecules, for example, is con-
trolled by 6 pockets within the cleft, each pocket with
multiple polymorphic amino acids that create millions of
potential peptide binding epitopes (Stern et al. 1994). The
peptide fits into a binding groove in the HLA molecule;
the residues that are available to interact with peptides in
the HLA are located in this groove, and are found to be
highly polymorphic among the population, with different
residues corresponding to different HLA alleles. Appa-
rently dissimilar HLA alleles may have similar antigen-
binding sites, called shared epitopes, and thereby overlap
in their capacity to present antigens (Gregersen et al.
1987). Thus in autoimmune and immune-mediated
diseases, the incidence and severity of the disease may be
related to the presence of shared epitopes, not simply the
HLA allelic association (Klareskog et al. 2004).
In this study we sought to determine HLA allele fre-

quency and shared epitope associations in BA patients in
the United States, through high-resolution HLA genotyp-
ing of all class I and II alleles as well as shared epitope
analysis. Identification of potential HLA associations with
BA would provide clues to the immune-mediated patho-
genesis of this disease.

Methods
Study subjects
Biliary atresia
Peripheral blood samples were obtained from participants
already enrolled in two ongoing NIDDK-funded clinical
studies that are being conducted through the Childhood
Liver Disease Research and Education Network (ChiL-
DREN). The NIDDK-funded repository at Rutger’s Univer-
sity processed the blood samples and either stored the
DNA directly or developed EBV transformed cell lines,
followed by DNA extraction. Our study utilized DNA
samples from patients with the perinatal/acquired form of
BA, excluding those BA subjects with biliary atresia
splenic malformation syndrome and those with other
major congenital malformations. Information obtained at
the time of sample collection or during the course of the
research studies included: sex, race, ethnicity, age at sam-
ple collection, age at liver transplant, and outcome (alive
with native liver, death or transplant). A total of 178 BA
patient DNA samples were available for analysis (Table 1):
76 patients (42.7%) had undergone liver transplant or died
within the first two years of life (severe course); 71 patients
(39.9%) were 5 years of age or older and had not yet
received a liver transplant (mild course); and 31 (17.4%)



Table 2 HLA-A single amino acid polymorphisms**

Positions† Amino acid Patients (176) n (%) Controls (329) n (%) Odds Ratio Pu value* Pc value*

9 F 134(76.14) 251(76.29) 1.0 0.97 NS

9 S 47(26.70) 108(32.83) 0.8 0.16 NS

9 T 31(17.61) 55(16.72) 0.9 0.80 NS

9 Y 70(39.77) 123(37.39) 0.9 0.60 NS

44 K 44(25.00) 84(25.53) 1.0 0.90 NS

56 R 21(11.93) 39(11.85) 1.0 0.98 NS

62 E 33(18.75) 89(27.05) 0.7 0.04 NS

62 G 82(46.59) 160(48.63) 1.0 0.66 NS

62 Q 113(64.20) 197(59.88) 0.9 0.34 NS

62 R 57(32.39) 94(28.57) 0.9 0.37 NS

63 N 57(32.39) 94(28.57) 0.9 0.37 NS

65 G 32(18.18) 89(27.05) 0.7 0.03 NS

66 K 104(59.09) 223(67.78) 0.9 0.05 NS

66 N 152(86.36) 257(78.12) 0.9 0.02 NS

67 M 44(25.00) 84(25.53) 1.0 0.90 NS

70 H 157(89.20) 310(94.22) 0.9 0.04 NS

70 Q 92(52.27) 164(49.85) 1.0 0.60 NS

73 I 20(11.36) 37(11.25) 1.0 0.97 NS

74 D 163(92.61) 296(89.97) 1.0 0.33 NS

74 H 82(46.59) 160(48.63) 1.0 0.66 NS

76 A 66(37.50) 112(34.04) 0.9 0.44 NS

76 E 55(31.25) 119(36.17) 0.9 0.27 NS

76 V 151(85.80) 270(82.07) 1.0 0.28 NS

77 D 151(85.80) 270(82.07) 1.0 0.28 NS

77 N 102(57.95) 187(56.84) 1.0 0.81 NS

79 R 46(26.14) 111(33.74) 0.8 0.08 NS

80 I 46(26.14) 111(33.74) 0.8 0.08 NS

81 A 46(26.14) 111(33.74) 0.8 0.08 NS

82 L 46(26.14) 111(33.74) 0.8 0.08 NS

83 R 46(26.14) 111(33.74) 0.8 0.08 NS

90 D 85(48.30) 150(45.59) 0.9 0.56 NS

95 I 152(86.36) 259(78.72) 0.9 0.04 NS

95 L 37(21.02) 104(31.61) 0.7 0.01 NS

95 V 76(43.18) 145(44.07) 1.0 0.85 NS

97 I 109(61.93) 184(55.93) 0.9 0.19 NS

97 M 74(42.05) 175(53.19) 0.8 0.02 NS

97 R 99(56.25) 198(60.18) 0.9 0.39 NS

99 F 32(18.18) 89(27.05) 0.7 0.03 NS

105 P 92(52.27) 167(50.76) 1.0 0.75 NS

105 S 158(89.77) 297(90.27) 1.0 0.86 NS

107 G 164(93.18) 296(89.97) 1.0 0.23 NS

107 W 82(46.59) 161(48.94) 1.0 0.62 NS

114 H 108(61.36) 232(70.52) 0.9 0.04 NS

114 Q 48(27.27) 85(25.84) 0.9 0.73 NS
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Table 2 HLA-A single amino acid polymorphisms** (Continued)

114 R 109(61.93) 193(58.66) 0.9 0.48 NS

116 D 142(80.68) 241(73.25) 0.9 0.06 NS

116 Y 108(61.36) 232(70.52) 0.9 0.04 NS

127 K 115(65.34) 250(75.99) 0.9 0.01 NS

127 N 143(81.25) 243(73.86) 0.9 0.06 NS

142 I 157(89.20) 284(86.32) 1.0 0.35 NS

142 T 94(53.41) 191(58.05) 0.9 0.32 NS

144 Q 77(43.75) 138(41.95) 1.0 0.70 NS

145 H 94(53.41) 191(58.05) 0.9 0.32 NS

145 R 157(89.20) 284(86.32) 1.0 0.35 NS

149 T 28(15.91) 41(12.46) 0.8 0.28 NS

150 V 44(25.00) 84(25.53) 1.0 0.90 NS

151 R 59(33.52) 112(34.04) 1.0 0.91 NS

152 A 57(32.39) 119(36.17) 0.9 0.40 NS

152 E 65(36.93) 96(29.18) 0.8 0.07 NS

152 V 140(79.55) 291(88.45) 0.9 0.01 NS

156 L 143(81.25) 257(78.12) 1.0 0.41 NS

156 Q 40(22.73) 101(30.70) 0.7 0.06 NS

156 R 44(25.00) 84(25.53) 1.0 0.90 NS

156 W 49(27.84) 93(28.27) 1.0 0.92 NS

158 V 44(25.00) 84(25.53) 1.0 0.90 NS

161 D 44(25.00) 56(17.02) 0.7 0.03 NS

163 R 79(44.89) 144(43.77) 1.0 0.81 NS

166 D 73(41.48) 155(47.11) 0.9 0.23 NS

166 E 163(92.61) 295(89.67) 1.0 0.28 NS

167 G 73(41.48) 155(47.11) 0.9 0.23 NS

167 W 163(92.61) 295(89.67) 1.0 0.28 NS

*Pu, uncorrected P values; Pc, corrected P values.
† Polymorphic amino acid positions 3, 9, 12, 14, 17, 19, 31, 35, 43, 44, 56, 62, 63, 65, 66, 67, 70, 73, 74, 76, 77, 79, 80, 81, 82, 83, 90, 95, 97, 99, 102, 105, 107, 109,
114, 116, 127, 142, 144, 149, 150, 151, 152, 156, 158, 161, 163, 166, 167, 171.
** Not displaying amino acid residues that were present in 90% or greater in both patient and control groups, or were present in 10% or fewer in both patient
and control groups.
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were between the ages of 2-5 years and were with or with-
out liver transplant (moderate course).
Controls

Access to complete HLA genotyping on over 6,600 cord
blood samples from the state of Colorado was available
through ClinImmune Labs. Two control samples were
analyzed for every one BA sample (n=329-350) with the
exceptions of HLA-DP (n=91) and HLA-DR (n=684).
There were slight differences in the availability of vari-
ous racial and ethnic groups in the control samples,
therefore, racially and ethnically-balanced groups for
each of the various HLA molecules were created from
sequentially-selected controls subjects (Table 1).
High resolution HLA genotyping
High resolution allele typing was performed for HLA-A,
HLA-B, HLA-C, HLA-DRB1, HLA-DQB1, and HLA-
DPB1. Automated capillary electrophoresis sequencing
(sequenced-based typing, SBT) was performed on all
samples with fluorescent dye technologies (ABI Big Dye,
version 1.1). A generic PCR amplification precedes se-
quencing in both directions using intronic class I primers.
HLA-A,B,C sequencing covered exons 2, 3 and 4. Class II
SBT for HLA-DRB1, DQB1, and DPB1 covered exon 2.
Sequences were interpreted with computer-assisted Assign
Software (version 3.5) against current IMGT sequencing
libraries (January 2008 to April 2010). The raw sequence
electropherograms were archived for future retrieval.
Every homozygous sequencing result was confirmed with



Table 3 HLA-B single amino acid polymorphisms**

Positions† Amino acid Patients (176) n (%) Controls (329) n (%) Odds Ratio Pu value* Pc value*

9 D 29(16.48) 52(15.81) 1.0 0.84 NS

9 H 57(32.39) 118(35.87) 0.9 0.43 NS

11 A 154(87.50) 303(92.10) 1.0 0.09 NS

11 S 85(48.30) 174(52.89) 0.9 0.33 NS

12 M 149(84.66) 298(90.58) 0.9 0.05 NS

12 V 95(53.98) 187(56.84) 0.9 0.54 NS

24 A 92(52.27) 172(52.28) 1.0 1.00 NS

24 S 110(62.50) 205(62.31) 1.0 0.97 NS

24 T 88(50.00) 173(52.58) 1.0 0.58 NS

32 L 79(44.89) 162(49.24) 0.9 0.35 NS

41 T 80(45.45) 157(47.72) 1.0 0.63 NS

45 E 115(65.34) 210(63.83) 1.0 0.74 NS

45 K 72(40.91) 147(44.68) 0.9 0.42 NS

45 M 43(24.43) 83(25.23) 1.0 0.84 NS

45 T 71(40.34) 137(41.64) 1.0 0.78 NS

46 A 43(24.43) 83(25.23) 1.0 0.84 NS

62 G 19(10.80) 37(11.25) 1.0 0.88 NS

63 E 122(69.32) 245(74.47) 0.9 0.22 NS

63 N 136(77.27) 269(81.76) 0.9 0.23 NS

65 R 22(12.50) 40(12.16) 1.0 0.91 NS

66 N 22(12.50) 40(12.16) 1.0 0.91 NS

67 C 49(27.84) 78(23.71) 1.2 0.31 NS

67 F 68(38.64) 139(42.25) 0.9 0.43 NS

67 M 22(12.50) 40(12.16) 1.0 0.91 NS

67 S 110(62.50) 215(65.35) 1.0 0.52 NS

67 Y 56(31.82) 97(29.48) 1.1 0.59 NS

69 A 75(42.61) 144(43.77) 1.0 0.80 NS

70 Q 55(31.25) 96(29.18) 1.1 0.63 NS

70 S 22(12.50) 40(12.16) 1.0 0.91 NS

71 A 78(44.32) 146(44.38) 1.0 0.99 NS

74 D 107(60.80) 193(58.66) 1.0 0.64 NS

74 Y 151(85.80) 291(88.45) 1.0 0.39 NS

77 N 94(53.41) 183(55.62) 1.0 0.63 NS

77 S 155(88.07) 276(83.89) 1.0 0.21 NS

80 I 50(28.41) 106(32.22) 0.9 0.38 NS

80 N 154(87.50) 277(84.19) 1.0 0.32 NS

80 T 66(37.50) 118(35.87) 1.0 0.72 NS

81 A 94(53.41) 183(55.62) 1.0 0.63 NS

81 L 158(89.77) 290(88.15) 1.0 0.58 NS

82 L 104(59.09) 197(59.88) 1.0 0.86 NS

82 R 154(87.50) 277(84.19) 1.0 0.32 NS

83 G 154(87.50) 277(84.19) 1.0 0.32 NS

83 R 104(59.09) 197(59.88) 1.0 0.86 NS

94 I 85(48.30) 163(49.54) 1.0 0.79 NS
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Table 3 HLA-B single amino acid polymorphisms** (Continued)

95 I 91(51.70) 166(50.46) 1.0 0.79 NS

95 L 143(81.25) 256(77.81) 1.0 0.37 NS

95 W 49(27.84) 106(32.22) 0.9 0.31 NS

97 R 139(78.98) 245(74.47) 1.1 0.26 NS

97 S 80(45.45) 145(44.07) 1.0 0.77 NS

97 T 35(19.89) 83(25.23) 0.8 0.18 NS

97 W 24(13.64) 23(6.99) 2.0 0.01 NS

103 L 70(39.77) 103(31.31) 1.3 0.06 NS

113 Y 85(48.30) 147(44.68) 1.1 0.44 NS

114 D 133(75.57) 241(73.25) 1.0 0.57 NS

114 N 122(69.32) 227(69.00) 1.0 0.94 NS

116 D 52(29.55) 103(31.31) 0.9 0.68 NS

116 F 47(26.70) 67(20.36) 1.3 0.10 NS

116 L 28(15.91) 48(14.59) 1.1 0.69 NS

116 S 72(40.91) 135(41.03) 1.0 0.98 NS

116 Y 108(61.36) 221(67.17) 0.9 0.19 NS

131 R 89(50.57) 173(52.58) 1.0 0.67 NS

131 S 158(89.77) 299(90.88) 1.0 0.69 NS

143 S 14(7.95) 37(11.25) 0.7 0.24 NS

147 L 14(7.95) 37(11.25) 0.7 0.24 NS

152 E 108(61.36) 188(57.14) 1.1 0.36 NS

152 V 155(88.07) 281(85.41) 1.0 0.41 NS

156 D 63(35.80) 111(33.74) 1.1 0.64 NS

156 L 148(84.09) 275(83.59) 1.0 0.88 NS

156 R 40(22.73) 80(24.32) 0.9 0.69 NS

156 W 24(13.64) 37(11.25) 1.2 0.43 NS

158 T 17(9.66) 33(10.03) 1.0 0.89 NS

163 E 71(40.34) 149(45.29) 0.9 0.29 NS

163 L 123(69.89) 248(75.38) 0.9 0.18 NS

163 T 87(49.43) 148(44.98) 1.1 0.34 NS

167 S 46(26.14) 87(26.44) 1.0 0.94 NS

171 H 46(26.14) 93(28.27) 0.9 0.61 NS

177 D 81(46.02) 162(49.24) 0.9 0.49 NS

178 K 50(28.41) 109(33.13) 0.9 0.28 NS

180 E 81(46.02) 162(49.24) 0.9 0.49 NS

*Pu, uncorrected P values; Pc, corrected P values.
† Polymorphic amino acid positions 3, 9, 12, 14, 17, 19, 31, 35, 43, 44, 56, 62, 63, 65, 66, 67, 70, 73, 74, 76, 77, 79, 80, 81, 82, 83, 90, 95, 97, 99, 102, 105, 107, 109,
114, 116, 127, 142, 144, 149, 150, 151, 152, 156, 158, 161, 163, 166, 167, 171.
** Not displaying amino acid residues that were present in 90% or greater in both patient and
control groups, or were present in 10% or fewer in both patient and control groups.
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a secondary technology, such as Luminex SSO (One
Lambda) or PCR SSP (Life Technologies).

Sample size calculation for HLA genotyping
Power calculations, based on Chi square test with continu-
ity correction, without correction for multiple comparisons,
was used to determine the sample size required to find a
statistically significant difference between a control group
frequency of an HLA allele and the BA frequency with a
two-sided test using power of 0.8 and a significance level of
0.05. In order to detect a 10% increased frequency of a
given HLA allele in BA versus control (i.e. 35% frequency
in BA versus 25% in controls), a minimum of 157 patient
samples was required.



Table 4 HLA-C single amino acid polymorphisms

Position** Amino acid BA (177) n (%) Controls (350) n (%) Odds Ratio Pu value# Pc value#

9 S 43(24.3) 109(31.1) 0.78 0.12 NS

9 D 106(59.9) 190(54.3) 1.10 0.17 NS

9 Y 125(70.6) 236(67.4) 1.05 0.35 NS

11 S 56(31.6) 132(37.7) 0.84 0.20 NS

14 W 39(22.0) 98(28.0) 0.79 0.16 NS

21 H 61(34.5) 117(33.4) 1.03 0.74 NS

24 S 116(65.5) 208(59.4) 1.10 0.13 NS

24 A 149(84.2) 290(82.9) 1.02 0.50 NS

35 Q 49(27.7) 92(26.3) 1.05 0.68 NS

49 E 39(22.0) 98(28.0) 0.79 0.16 NS

66 N 48(27.1) 96(27.4) 0.99 1.00 NS

73 T 113(63.8) 230(65.7) 0.97 0.80 NS

73 A 136(76.8) 277(79.1) 0.97 0.71 NS

77 N 106(59.9) 227(64.9) 0.92 0.34 NS

77 S 153(86.4) 294(84.0) 1.03 0.30 NS

80 K 106(59.9) 227(64.9) 0.92 0.34 NS

80 N 153(86.4) 294(84.0) 1.03 0.30 NS

90 D 125(70.6) 255(72.9) 0.97 0.73 NS

90 A 129(72.9) 257(73.4) 0.99 0.94 NS

91 R 20(11.3) 31(8.9) 1.28 0.35 NS

# Pu, uncorrected P values; Pc, corrected P values.
**Polymorphic amino acid positions analyzed: 6, 9, 11, 14, 16, 21, 24, 35, 45, 49, 52, 63, 66, 69, 73, 76, 77, 80, 90, 91, 94, 95, 97, 99, 103, 113, 114, 116, 138, 143,
147, 152, 156, 163, 170, 173, 175, 177, 178, 180.
Not shown are amino acid residues that were present in 90% or greater in both patient and control groups, or were present in 10% or fewer in both patient and
control groups.
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Statistical analysis of HLA allele frequency
The number of individuals carrying at least one copy of
the allele were counted and compared with the number of
individuals not carrying the allele for BA patients and
controls, and similarly for comparisons between the mild
and severe course. The significance for each allele was
calculated using either a Chi square test or Fisher's exact
test, as appropriate depending on the number of subjects
in each contingency table. The resulting P value for each
allele (Pu= uncorrected P value) was corrected for mul-
tiple hypotheses testing using the false discovery rate
(FDR) method of Benjamini and Yekutieli (2005), to con-
trol the expected number of Type I errors (Pc= corrected
P value). This method did not assume independence of
tests as required by some FDR methods, and provided
more power than the conservative Bonferroni correction.

Epitope analysis
Epitope analysis was performed using the R software pa-
ckage version 2.6.1 (available online at http://www.r-pro-
ject.org). Combinations of 1-5 polymorphic amino acids at
positions 8-93 of HLA molecules DRB1, DPB1 and DQB1,
as well as combinations of up to 4 polymorphic residues
at positions 2-182 of HLA molecules A, B and C were
considered possible epitopes. Polymorphic residues outside
of these ranges are unlikely to influence peptide binding or
T cell receptor interactions, and were not considered in
this analysis. The number of individuals carrying at least
one copy of the possible epitope was compared with the
number of individuals not carrying it in both the BA group
and controls, and similarly for comparisons between the
mild and severe course. The epitope distribution among
the patient and control populations was calculated by 2 × 2
contingency tables and analyzed with either Fisher’s exact
test or Pearson’s chi-square test as appropriate. The P value
for each epitope was corrected for multiple comparisons
using the false discovery rate method described by
Benjamini and Yekutieli (2005) to control for Type I statis-
tical errors.

Results
HLA alleles in BA
Allele analysis for HLA-A, -B, -C, -DRB1, -DPB1 and -
DQB1 in BA and racially-matched healthy controls did
not identify any significant HLA association with BA
(Additional file 1: Table S1). Analysis of each allele inde-
pendently identified two possible alleles that may have
been associated with BA: HLA-A*30:02 and -DRB1

http://www.r-project.org/
http://www.r-project.org/


Table 5 HLA-DR single amino acid polymorphisms**

Positions† Amino acid Patients (178) n (%) Controls (684) n (%) Odds ratio Pu value* Pc value*

9 E 103(57.87) 207(30.26) 1.9 0.56 NS

9 K 150(84.27) 291(42.54) 2.0 0.81 NS

10 E 118(66.29) 242(35.38) 1.9 0.29 NS

10 Q 135(75.84) 277(40.50) 1.9 0.17 NS

11 D 32(17.98) 60(8.77) 2.0 0.90 NS

11 G 42(23.60) 77(11.26) 2.1 0.78 NS

11 L 49(27.53) 101(14.77) 1.9 0.63 NS

11 P 54(30.34) 97(14.18) 2.1 0.64 NS

11 S 118(66.29) 242(35.38) 1.9 0.29 NS

12 K 118(66.29) 242(35.38) 1.9 0.29 NS

12 T 138(77.53) 277(40.50) 1.9 0.35 NS

13 F 25(14.04) 53(7.75) 1.8 0.66 NS

13 G 42(23.60) 77(11.26) 2.1 0.78 NS

13 H 42(23.60) 76(11.11) 2.1 0.72 NS

13 R 49(27.53) 101(14.77) 1.9 0.63 NS

13 S 50(28.09) 96(14.04) 2.0 1.00 NS

13 Y 103(57.87) 211(30.85) 1.9 0.40 NS

14 E 42(23.60) 77(11.26) 2.1 0.78 NS

14 K 176(98.88) 338(49.42) 2.0 1.00 NS

16 H 25(14.04) 53(7.75) 1.8 0.66 NS

16 Q 176(98.88) 339(49.56) 2.0 1.00 NS

25 Q 42(23.60) 77(11.26) 2.1 0.78 NS

25 R 176(98.88) 338(49.42) 2.0 1.00 NS

26 F 39(21.91) 76(11.11) 2.0 0.94 NS

26 L 45(25.28) 73(10.67) 2.4 0.31 NS

26 Y 168(94.38) 322(47.08) 2.0 0.92 NS

28 D 82(46.07) 151(22.08) 2.1 0.68 NS

28 E 163(91.57) 315(46.05) 2.0 0.83 NS

30 C 18(10.11) 23(3.36) 3.0 0.17 NS

30 G 32(17.98) 60(8.77) 2.0 0.90 NS

30 H 42(23.60) 77(11.26) 2.1 0.78 NS

30 L 159(89.33) 316(46.20) 1.9 0.24 NS

31 F 39(21.91) 74(10.82) 2.0 0.94 NS

31 I 177(99.44) 339(49.56) 2.0 1.00 NS

32 H 85(47.75) 165(24.12) 2.0 0.92 NS

32 Y 158(88.76) 318(46.49) 1.9 0.10 NS

33 H 50(28.09) 96(14.04) 2.0 1.00 NS

33 N 171(96.07) 330(48.25) 2.0 0.81 NS

37 L 51(28.65) 95(13.89) 2.1 0.83 NS

37 N 75(42.13) 150(21.93) 1.9 0.71 NS

37 S 78(43.82) 147(21.49) 2.0 0.85 NS

37 Y 96(53.93) 185(27.05) 2.0 0.97 NS

38 L 178(100.00) 342(50.00) 2.0 1.00 NS

40 F 178(100.00) 342(50.00) 2.0 1.00 NS
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Table 5 HLA-DR single amino acid polymorphisms** (Continued)

47 F 123(69.10) 243(35.53) 1.9 0.64 NS

47 Y 134(75.28) 273(39.91) 1.9 0.23 NS

57 D 20(11.24) 44(6.43) 1.7 0.59 NS

57 S 58(32.58) 100(14.62) 2.2 0.43 NS

57 V 169(94.94) 322(47.08) 2.0 0.84 NS

58 A 32(17.98) 63(9.21) 2.0 0.90 NS

58 E 175(98.31) 340(49.71) 2.0 0.34 NS

60 S 58(32.58) 100(14.62) 2.2 0.43 NS

60 Y 175(98.31) 333(48.68) 2.0 0.76 NS

67 F 52(29.21) 107(15.64) 1.9 0.63 NS

67 I 114(64.04) 215(31.43) 2.0 0.79 NS

67 L 123(69.10) 223(32.60) 2.1 0.37 NS

70 D 20(11.24) 35(5.12) 2.2 0.72 NS

70 Q 125(70.22) 228(33.33) 2.1 0.41 NS

70 R 130(73.03) 254(37.13) 2.0 0.76 NS

71 A 43(24.16) 89(13.01) 1.9 0.64 NS

71 E 47(26.40) 78(11.40) 2.3 0.36 NS

71 K 58(32.58) 120(17.54) 1.9 0.57 NS

71 R 139(78.09) 264(38.60) 2.0 0.82 NS

73 A 77(43.26) 134(19.59) 2.2 0.37 NS

73 G 170(95.51) 321(46.93) 2.0 0.55 NS

74 E 26(14.61) 48(7.02) 2.1 0.86 NS

74 L 38(21.35) 70(10.23) 2.1 0.81 NS

74 Q 42(23.60) 77(11.26) 2.1 0.78 NS

74 R 153(85.96) 299(43.71) 2.0 0.64 NS

77 N 38(21.35) 71(10.38) 2.1 0.88 NS

77 T 175(98.31) 338(49.42) 2.0 0.70 NS

78 V 49(27.53) 90(13.16) 2.1 0.77 NS

78 Y 176(98.88) 336(49.12) 2.0 0.72 NS

85 V 178(100.00) 341(49.85) 2.0 1.00 NS

86 G 132(74.16) 265(38.74) 1.9 0.40 NS

86 V 133(74.72) 240(35.09) 2.1 0.27 NS

*Pu, uncorrected P values; Pc, corrected P values.
† Polymorphic amino acid positions 9, 10, 11, 12, 13, 14, 16, 25, 26, 28, 30, 31, 32, 33, 37, 38, 40, 47, 57, 58, 60, 67, 70, 71, 73, 74, 77, 78, 85, 86.
** Not displaying amino acid residues that were present in 90% or greater in both patient and control groups, or were present in 10% or fewer in both patient
and control groups.
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*15:01. However, neither was statistically significant when
controlled for multiple comparisons. Secondly, we sought
to determine if there was evidence for a HLA predomin-
ance in BA based on the severity of the disease: severe
disease course (death or liver transplant in the first 2 years
of life) vs. mild disease course (greater than 5 years of age
and alive with their native liver). A comparison of se-
vere and mild BA versus the controls yielded no signifi-
cant association. Additionally, there were no significant
differences between severe and mild BA when compared to
each other (Additional file 2: Table S2).
HLA shared epitope analysis in BA
An epitope analysis was performed using all possible
combinations of 1-4 amino acids for HLA-A (2,326,697
epitopes), HLA-B (3,129,345 epitopes), HLA-C (685,369
epitopes), and 1-5 amino acids for HLA-DRB1 (2,370,
369 epitopes), HLA-DQB1 (1,524,709 epitopes) and
HLA-DPB1 (65,853 epitopes). Shown in Tables 2, 3, 4, 5,
6, 7 are the data for single amino acid combinations for
each HLA group. None of 10,102,332 possible HLA
epitopes was significantly different between BA patients
and controls. Shared epitope analysis was also performed



Table 6 HLA-DP single amino acid polymorphisms**

Positions† Amino acid Patients (111) n (%) Controls (91) n (%) Odds Ratio Pu value* Pc value*

8 V 59(53.15) 39(42.86) 1.2 0.15 NS

9 H 8(7.21) 11(12.09) 0.6 0.33 NS

9 Y 53(47.75) 31(34.07) 1.4 0.05 NS

11 L 43(38.74) 35(38.46) 1.0 0.97 NS

35 Y 27(24.32) 10(10.99) 2.2 0.01 NS

36 A 85(76.58) 67(73.63) 1.0 0.63 NS

36 V 78(70.27) 66(72.53) 1.0 0.72 NS

55 A 86(77.48) 68(74.73) 1.0 0.65 NS

55 D 75(67.57) 64(70.33) 1.0 0.67 NS

56 A 88(79.28) 71(78.02) 1.0 0.83 NS

56 E 75(67.57) 64(70.33) 1.0 0.67 NS

57 D 36(32.43) 27(29.67) 1.1 0.67 NS

65 L 41(36.94) 26(28.57) 1.3 0.21 NS

69 E 44(39.64) 34(37.36) 1.1 0.74 NS

76 V 45(40.54) 32(35.16) 1.2 0.43 NS

84 D 60(54.05) 40(43.96) 1.2 0.15 NS

84 G 97(87.39) 80(87.91) 1.0 0.91 NS

85 E 60(54.05) 40(43.96) 1.2 0.15 NS

85 G 99(89.19) 80(87.91) 1.0 0.78 NS

86 A 60(54.05) 40(43.96) 1.2 0.15 NS

86 P 99(89.19) 80(87.91) 1.0 0.78 NS

87 M 99(89.19) 80(87.91) 1.0 0.78 NS

87 V 60(54.05) 40(43.96) 1.2 0.15 NS

*Pu, uncorrected P values; Pc, corrected P values.
† Polymorphic amino acid positions 8, 9, 11, 33, 35, 36, 55, 56, 57, 65, 69, 76, 84, 85, 86, 87 ** Not displaying amino acid residues that were present in 90% or
greater in both patient and control groups, or were present in 10% or fewer in both patient and control groups.
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comparing the severe and mild disease courses of BA.
Single amino acid epitope analysis on polymorphic amino
acid residues 2-182 for HLA-A, -B, -C and residues 8-93
for HLA-DRB1, -DPB1, and -DQB1 was performed in
these 2 groups. No significant differences were identified
between the severe and mild BA patients compared with
controls. Finally, the severe and mild BA groups were
compared to each other. 580 single amino acid epitopes
across HLA-A, -B, -C, -DRB1, -DQB1, and -DPB1were
compared between the severe and mild forms of BA and
no significant differences between the two groups were
identified (data not shown).

Discussion
This study encompasses the largest HLA allele frequency
analysis for BA in the United States and is the first study
to perform shared epitope analysis. When controlling for
multiple comparisons, no HLA allele or shared epitope
association was identified in BA. In previous HLA asso-
ciation studies, a serological phenotype technique was
performed on small numbers of BA patients and identi-
fied potential HLA associations with BA HLA-B12
(Silveira et al. 1993) and HLA-B8 and -DR3(A-Kader
et al. 2002). HLA genotyping is now based on DNA-
sequencing, which permits a greater number of HLA
loci and alleles to be tested with increased accuracy. To
that end, Donaldson et al. (Donaldson et al. 2002)
genotyped 101 BA children and found no significant
differences compared to controls. However, HLA-C was
not analyzed and the genotyping was performed at low
resolution, which limits the number of alleles that can
be analyzed. Our study expands on this work as it
measured all class I and class II HLA alleles by high
resolution genotyping. A Japanese study of 392 BA
patients and 828 controls analyzed 17 HLA-A, 19 HLA-B
and 16 HLA-DR antigens (Yuasa et al. 2005). Significantly
more BA patients expressed HLA-DR2 (DR15, DR16
in current nomenclature) (39%) compared to controls
(30.4%) (pc=0.03; OR 1.46). Two locus analysis revealed
that HLA-DR2 was not independently associated with
BA but rather the combined expression of HLA-A24-B52-
DR2 was significantly greater in BA patients (14.9%) ver-
sus controls (7.36%) (p=0.001; OR 2.2), a phenomenon
known as linkage disequilibrium. These results suggested



Table 7 HLA-DQ single amino acid polymorphisms**

Positions† Amino acid Patients (178) n (%) Controls (342) n (%) Odds ratio Pu value* Pc value*

9 F 56(31.46) 97(28.36) 1.1 0.46 NS

13 A 65(36.52) 133(38.89) 0.9 0.60 NS

14 L 57(32.02) 123(35.96) 0.9 0.37 NS

26 G 69(38.76) 149(43.57) 0.9 0.29 NS

26 L 149(83.71) 266(77.78) 1.1 0.11 NS

26 Y 65(36.52) 133(38.89) 0.9 0.60 NS

28 S 66(37.08) 129(37.72) 1.0 0.89 NS

30 H 84(47.19) 146(42.69) 1.1 0.33 NS

30 S 66(37.08) 129(37.72) 1.0 0.89 NS

30 Y 132(74.16) 265(77.49) 1.0 0.40 NS

37 I 66(37.08) 129(37.72) 1.0 0.89 NS

38 A 147(82.58) 284(83.04) 1.0 0.90 NS

38 V 110(61.80) 237(69.30) 0.9 0.09 NS

45 E 60(33.71) 120(35.09) 1.0 0.75 NS

46 E 66(37.08) 129(37.72) 1.0 0.89 NS

47 F 66(37.08) 129(37.72) 1.0 0.89 NS

52 L 66(37.08) 129(37.72) 1.0 0.89 NS

53 L 148(83.15) 277(80.99) 1.0 0.55 NS

53 Q 122(68.54) 213(62.28) 1.1 0.16 NS

55 L 66(37.08) 129(37.72) 1.0 0.89 NS

55 P 94(52.81) 192(56.14) 0.9 0.47 NS

55 R 130(73.03) 231(67.54) 1.1 0.20 NS

57 A 95(53.37) 179(52.34) 1.0 0.82 NS

57 D 132(74.16) 261(76.32) 1.0 0.59 NS

57 V 54(30.34) 100(29.24) 1.0 0.79 NS

66 D 83(46.63) 167(48.83) 1.0 0.63 NS

67 I 83(46.63) 167(48.83) 1.0 0.63 NS

70 G 110(61.80) 194(56.73) 1.1 0.27 NS

70 R 150(84.27) 280(81.87) 1.0 0.49 NS

71 A 57(32.02) 122(35.67) 0.9 0.41 NS

71 K 66(37.08) 129(37.72) 1.0 0.89 NS

71 T 144(80.90) 277(80.99) 1.0 0.98 NS

74 A 66(37.08) 129(37.72) 1.0 0.89 NS

74 E 144(80.90) 277(80.99) 1.0 0.98 NS

74 S 69(38.76) 149(43.57) 0.9 0.29 NS

75 L 144(80.90) 277(80.99) 1.0 0.98 NS

75 V 116(65.17) 244(71.35) 0.9 0.15 NS

77 R 105(58.99) 225(65.79) 0.9 0.13 NS

77 T 148(83.15) 290(84.80) 1.0 0.62 NS

84 E 122(68.54) 213(62.28) 1.1 0.16 NS

84 Q 148(83.15) 277(80.99) 1.0 0.55 NS

85 L 148(83.15) 277(80.99) 1.0 0.55 NS

85 V 122(68.54) 213(62.28) 1.1 0.16 NS

86 A 114(64.04) 206(60.23) 1.1 0.40 NS
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Table 7 HLA-DQ single amino acid polymorphisms** (Continued)

86 E 148(83.15) 277(80.99) 1.0 0.55 NS

87 F 69(38.76) 113(33.04) 1.2 0.19 NS

87 L 148(83.15) 277(80.99) 1.0 0.55 NS

87 Y 69(38.76) 134(39.18) 1.0 0.93 NS

89 G 122(68.54) 213(62.28) 1.1 0.16 NS

89 T 148(83.15) 277(80.99) 1.0 0.55 NS

90 I 122(68.54) 213(62.28) 1.1 0.16 NS

90 T 148(83.15) 277(80.99) 1.0 0.55 NS

*Pu, uncorrected P values; Pc, corrected P values.
† Polymorphic amino acid positions 9, 13, 14, 23, 26, 27, 28, 30, 37, 38, 45, 46,47, 52, 53, 55, 56, 57, 60 66, 67, 70, 71, 74, 75, 77, 84, 85, 86, 87, 89, 90.
** Not displaying amino acid residues that were present in 90% or greater in both patient and control groups, or were present in 10% or fewer in both patient
and control groups.
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that the gene for BA susceptibility is at a locus in close
proximity to the HLA locus.
One might argue that a larger BA population needed to

be studied in order to identify a HLA allele association.
Indeed, our power calculations to identify a 5% increase in
a specific HLA allele frequency in BA versus controls
(i.e. 15% BA versus 10% controls) would have required a
sample size of 316 BA patients. However, the shared epi-
tope analysis is extremely sensitive at identifying poten-
tial HLA associations and the evaluation of >10 million
epitopes most certainly would have identified an associ-
ation (Freed et al. 2011; Karp et al. 2010). For example,
Freed et al. performed shared epitope analysis on patients
with rheumatoid arthritis and assessed all possible
combinations of up to 5 amino acids within the peptide
binding groove of HLA-DRB1 (Freed et al. 2011). Several
HLA-DR4 alleles have previously been linked with
rheumatoid arthritis, with strong associations with
DRB1*04:01, *04:04, and *04:05, and weaker associations
with DRB1*01:01, *01:02, *10:01, and *14:02. These dispar-
ate alleles had been hypothesized to contribute to rheuma-
toid arthritis via the presence of a shared epitope at
the peptide-binding groove. Of the >2 million epitopes
examined, LA67,74 (leucine at position 67 and alanine at
position 74) exhibited the highest correlation with rheuma-
toid arthritis susceptibility (P=2 x 10-20). This same group
is presently analyzing for shared epitopes in diabetes and
chronic hepatitis C infection in order to predict disease
associations and prognoses.
One limitation of our study is that we did not analyze

the HLA-DRB3, DRB4, DRB5, DQA1, or DPA1 alleles.
We chose not to analyze these few alleles because the
literature examining disease associations with these loci is
sparse and these loci are linked to other loci that were
tested for and therefore would have identified the asso-
ciation. For example, DQA1 is tightly linked to DQB1, so
if there were a DQA1 link we would have seen it in the
DQB1 analysis. This is similarly true for DRB3, DRB4 and
DRB5, albeit they are less tightly linked (Thorsby & Lie
2005; Gough & Simmonds 2007; Shiina et al. 2004).
Based on our findings showing no HLA or shared epitope

association in BA, one must consider other possible genetic
influences that alter the immune response. Genome-wide
association studies have recently been performed to iden-
tify disease-specific genetic associations. A Chinese study
(Garcia-Barcelo et al. 2010) genotyped nearly half a million
single nucleotide polymorphisms (SNPs) in 200 BA patients
and 481 controls and identified a strong association of
BA with the SNP rs17095355 on chromosome 10q24.
Two genes in the region of this SNP include X-prolyl
aminopeptidase P1(XPNPEP1) and adducin 3 (ADD3).
XPNPEP1 is expressed in biliary epithelia and is involved in
the metabolism of inflammatory mediators. Genetic defects
of XPNPEP1 could result in deregulation of control of the
inflammatory response present in BA. ADD3 is expressed
in hepatocytes and biliary epithelia and is involved in the
assembly of spectrin-actin membrane protein networks at
sites of cell to cell contact. Defects in this gene could theo-
retically increase fibrosis. Importantly, if there was an HLA
association with BA in this Chinese population, it would
have been identified within the GWAS analysis detailed
above.
Future studies of genetic links to BA that involve

alterations of the immune response should include
investigations into defects in regulatory T cells (Treg) that
would allow inflammation to proceed unchecked. To that
end, we have recently identified significant deficits in per-
ipheral blood Treg frequencies in BA infants at the time
of diagnosis compared to age-matched controls (Brindley
et al. 2012). In the murine model of BA, Lages et al.
(2012) showed that adoptive transfer of total CD4+ T cells,
but not Treg-depleted CD4+ T cells, into RRV-infected BA
mice was associated with increased survival and decreased
bile duct targeted inflammation, suggesting that Tregs
protect from bile duct damage. Another avenue of fu-
ture research into the pathogenesis of BA should in-
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clude investigations into the possibility that BA is an
autoinflammatory disease. Autoinflammatory diseases
are not usually HLA-linked and are characterized by
exaggerated innate immune responses (Goldbach-Mansky
2012; Rigante 2012).

Additional files

Additional file 1: Frequencies of HLA alleles.

Additional file 2: Table S2. HLA allele frequencies of mild versus
severe BA.
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