5,171 research outputs found

    On the Topology Maintenance of Dynamic P2P Overlays through Self-Healing Local Interactions

    Full text link
    This paper deals with the use of self-organizing protocols to improve the reliability of dynamic Peer-to-Peer (P2P) overlay networks. We present two approaches, that employ local knowledge of the 2nd neighborhood of nodes. The first scheme is a simple protocol requiring interactions among nodes and their direct neighbors. The second scheme extends this approach by resorting to the Edge Clustering Coefficient (ECC), a local measure that allows to identify those edges that connect different clusters in an overlay. A simulation assessment is presented, which evaluates these protocols over uniform networks, clustered networks and scale-free networks. Different failure modes are considered. Results demonstrate the viability of the proposal.Comment: A revised version of the paper appears in Proc. of the IFIP Networking 2014 Conference, IEEE, Trondheim, (Norway), June 201

    Performance Analysis of Publish/Subscribe Systems

    Full text link
    The Desktop Grid offers solutions to overcome several challenges and to answer increasingly needs of scientific computing. Its technology consists mainly in exploiting resources, geographically dispersed, to treat complex applications needing big power of calculation and/or important storage capacity. However, as resources number increases, the need for scalability, self-organisation, dynamic reconfigurations, decentralisation and performance becomes more and more essential. Since such properties are exhibited by P2P systems, the convergence of grid computing and P2P computing seems natural. In this context, this paper evaluates the scalability and performance of P2P tools for discovering and registering services. Three protocols are used for this purpose: Bonjour, Avahi and Free-Pastry. We have studied the behaviour of theses protocols related to two criteria: the elapsed time for registrations services and the needed time to discover new services. Our aim is to analyse these results in order to choose the best protocol we can use in order to create a decentralised middleware for desktop grid

    Mobile Computing in Digital Ecosystems: Design Issues and Challenges

    Full text link
    In this paper we argue that the set of wireless, mobile devices (e.g., portable telephones, tablet PCs, GPS navigators, media players) commonly used by human users enables the construction of what we term a digital ecosystem, i.e., an ecosystem constructed out of so-called digital organisms (see below), that can foster the development of novel distributed services. In this context, a human user equipped with his/her own mobile devices, can be though of as a digital organism (DO), a subsystem characterized by a set of peculiar features and resources it can offer to the rest of the ecosystem for use from its peer DOs. The internal organization of the DO must address issues of management of its own resources, including power consumption. Inside the DO and among DOs, peer-to-peer interaction mechanisms can be conveniently deployed to favor resource sharing and data dissemination. Throughout this paper, we show that most of the solutions and technologies needed to construct a digital ecosystem are already available. What is still missing is a framework (i.e., mechanisms, protocols, services) that can support effectively the integration and cooperation of these technologies. In addition, in the following we show that that framework can be implemented as a middleware subsystem that enables novel and ubiquitous forms of computation and communication. Finally, in order to illustrate the effectiveness of our approach, we introduce some experimental results we have obtained from preliminary implementations of (parts of) that subsystem.Comment: Proceedings of the 7th International wireless Communications and Mobile Computing conference (IWCMC-2011), Emergency Management: Communication and Computing Platforms Worksho

    Self-Healing Protocols for Connectivity Maintenance in Unstructured Overlays

    Full text link
    In this paper, we discuss on the use of self-organizing protocols to improve the reliability of dynamic Peer-to-Peer (P2P) overlay networks. Two similar approaches are studied, which are based on local knowledge of the nodes' 2nd neighborhood. The first scheme is a simple protocol requiring interactions among nodes and their direct neighbors. The second scheme adds a check on the Edge Clustering Coefficient (ECC), a local measure that allows determining edges connecting different clusters in the network. The performed simulation assessment evaluates these protocols over uniform networks, clustered networks and scale-free networks. Different failure modes are considered. Results demonstrate the effectiveness of the proposal.Comment: The paper has been accepted to the journal Peer-to-Peer Networking and Applications. The final publication is available at Springer via http://dx.doi.org/10.1007/s12083-015-0384-

    Highly intensive data dissemination in complex networks

    Full text link
    This paper presents a study on data dissemination in unstructured Peer-to-Peer (P2P) network overlays. The absence of a structure in unstructured overlays eases the network management, at the cost of non-optimal mechanisms to spread messages in the network. Thus, dissemination schemes must be employed that allow covering a large portion of the network with a high probability (e.g.~gossip based approaches). We identify principal metrics, provide a theoretical model and perform the assessment evaluation using a high performance simulator that is based on a parallel and distributed architecture. A main point of this study is that our simulation model considers implementation technical details, such as the use of caching and Time To Live (TTL) in message dissemination, that are usually neglected in simulations, due to the additional overhead they cause. Outcomes confirm that these technical details have an important influence on the performance of dissemination schemes and that the studied schemes are quite effective to spread information in P2P overlay networks, whatever their topology. Moreover, the practical usage of such dissemination mechanisms requires a fine tuning of many parameters, the choice between different network topologies and the assessment of behaviors such as free riding. All this can be done only using efficient simulation tools to support both the network design phase and, in some cases, at runtime

    GCP: Gossip-based Code Propagation for Large-scale Mobile Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSN) have recently received an increasing interest. They are now expected to be deployed for long periods of time, thus requiring software updates. Updating the software code automatically on a huge number of sensors is a tremendous task, as ''by hand'' updates can obviously not be considered, especially when all participating sensors are embedded on mobile entities. In this paper, we investigate an approach to automatically update software in mobile sensor-based application when no localization mechanism is available. We leverage the peer-to-peer cooperation paradigm to achieve a good trade-off between reliability and scalability of code propagation. More specifically, we present the design and evaluation of GCP ({\emph Gossip-based Code Propagation}), a distributed software update algorithm for mobile wireless sensor networks. GCP relies on two different mechanisms (piggy-backing and forwarding control) to improve significantly the load balance without sacrificing on the propagation speed. We compare GCP against traditional dissemination approaches. Simulation results based on both synthetic and realistic workloads show that GCP achieves a good convergence speed while balancing the load evenly between sensors

    Overlay networks for smart grids

    Get PDF

    A component-based middleware framework for configurable and reconfigurable Grid computing

    Get PDF
    Significant progress has been made in the design and development of Grid middleware which, in its present form, is founded on Web services technologies. However, we argue that present-day Grid middleware is severely limited in supporting projected next-generation applications which will involve pervasive and heterogeneous networked infrastructures, and advanced services such as collaborative distributed visualization. In this paper we discuss a new Grid middleware framework that features (i) support for advanced network services based on the novel concept of pluggable overlay networks, (ii) an architectural framework for constructing bespoke Grid middleware platforms in terms of 'middleware domains' such as extensible interaction types and resource discovery. We believe that such features will become increasingly essential with the emergence of next-generation e-Science applications. Copyright (c) 2005 John Wiley & Sons, Ltd

    GRIDKIT: Pluggable overlay networks for Grid computing

    Get PDF
    A `second generation' approach to the provision of Grid middleware is now emerging which is built on service-oriented architecture and web services standards and technologies. However, advanced Grid applications have significant demands that are not addressed by present-day web services platforms. As one prime example, current platforms do not support the rich diversity of communication `interaction types' that are demanded by advanced applications (e.g. publish-subscribe, media streaming, peer-to-peer interaction). In the paper we describe the Gridkit middleware which augments the basic service-oriented architecture to address this particular deficiency. We particularly focus on the communications infrastructure support required to support multiple interaction types in a unified, principled and extensible manner-which we present in terms of the novel concept of pluggable overlay networks
    • 

    corecore