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Abstract. A ‘second generation’ approach to the provision of Grid middleware 
is now emerging which is built on service-oriented architecture and web 
services standards and technologies. However, advanced Grid applications have 
significant demands that are not addressed by present-day web services 
platforms. As one prime example, current platforms do not support the rich 
diversity of communication ‘interaction types’ that are demanded by advanced 
applications (e.g. publish-subscribe, media streaming, peer-to-peer interaction). 
In the paper we describe the Gridkit middleware which augments the basic 
service-oriented architecture to address this particular deficiency. We 
particularly focus on the communications infrastructure support required to 
support multiple interaction types in a unified, principled and extensible 
manner—which we present in terms of the novel concept of pluggable overlay 
networks. 

1. Introduction 

Following initial offerings such as Legion [1] and Globus [2], a ‘second generation’ 
approach to the provision of Grid middleware is now emerging. This is taking Grid 
middleware forward from an era of ad-hoc platforms to a more architected approach 
built on service-oriented architecture and web services standards and technologies. It 
promises a more unified and principled approach to the support of Grid applications. 
However, despite these advances, the state of the art in Grid middleware is still 
inadequate to support advanced applications with demanding characteristics such as 
the following: high levels of heterogeneity in both end-systems and networking 
infrastructures; large scale; high complexity; real-time interactive collaboration; 
multiple media-types; QoS-sensitivity; and the need for dynamic reconfiguration in 
response to environmental change.  

An example of such an application is an environmental informatics scenario which 
is being developed at Lancaster University as a large scale inter-disciplinary 
collaboration [3]. In this application, a river, estuary and bay are instrumented with a 
range of types of sensors (e.g. to monitor temperature, water level, flow rate, pollution 
levels, coastal erosion etc.). Some of these sensors are networked using standard 
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wired technologies such as Ethernet (e.g. sensors in tidal-defence walls), while other 
employ various wireless technologies (e.g. IEEE 802.15.4 or 802.11 radios; or long-
wave radios for underwater use). Point-to-point microwave connectivity is also used 
to link individual sensor networks to gateways at which sensor data is collated and 
cached. In addition, networked, remotely controllable, surveillance cameras are 
distributed around the area to monitor coastal changes and near-shore waves and 
currents. And finally, broadband Internet access is available via a number of 
strategically-placed IP gateways. Given this infrastructure, scientists in widely-
dispersed locations can selectively store data for future analysis, integrate and process 
live sensor data on their workstations, cooperatively visualise this data in real-time 
(supported by a video conferencing system), and use both stored and live data to 
computationally steer long running environmental simulations. Many of the 
processing and visualisation activities additionally require the dynamic acquisition of 
large scale processing and storage services from the wider Grid. 

In terms of communication services, which are the focus of this paper, this 
application clearly requires more than merely the message-passing and request-reply-
based ‘interaction types’ that are offered by conventional service-oriented 
architecture. Some examples: request-reply-with-QoS is required for time sensitive 
sensor network queries; reliable/ unreliable messaging services are required for 
streaming sensor data; publish-subscribe interaction is required to register interests in 
specific sensor events; tuple-space interaction may be required for cooperation 
between large scale processors running computationally-intensive simulations; peer-
to-peer interaction may be needed for cooperation or resource discovery; media-
streaming-with-QoS is needed for video monitoring and conferencing; reliable/ 
unreliable group interaction is needed to support real-time collaboration between 
scientists; and workflow interaction is needed to automate common observe-archive-
visualise sequences. 

Although interaction types such as the above could be provided in an ad-hoc 
manner alongside the ‘classic’ interaction types offered by the service-oriented 
architecture, we believe that there are clear benefits in explicitly supporting 
interaction types in the middleware as ‘first class’ services [4]. In outline, this 
facilitates the provision of an extensible set of interaction types, and also enables 
these to be uniformly supported in terms of both API abstractions (thus easing the 
application programmer’s task), and underlying infrastructure (thus facilitating the 
sharing of infrastructure and optimal resource management).  

We have already explored in previous work ([4]) how to present interaction types 
as first class services at the API level. In this paper we focus on the underlying 
communications infrastructure required to support an extensible set of interaction 
types. Our approach at both levels is to promote extensibility by wrapping added 
functionality (i.e. interaction types and communications infrastructure elements 
respectively) as plug-in components that are hosted by appropriate component 
frameworks in a component-based middleware environment. This approach is fully 
consistent with the general architecture of our component-based Grid middleware, 
called Gridkit, which is entirely composed of such component frameworks [5].   

As detailed in section 2, we structure the bulk of the communications infrastructure 
layer as a component framework in which overlay networks are the unit of pluggable 
functionality. In outline, overlay networks [6] are virtual networks that ‘overlay’ the 
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physical network infrastructure with some value added functionality or semantic 
(which, in our case, are useful in supporting one or more interaction types). For 
example, a reliable multicast overlay [7] can be used to underpin a publish-subscribe 
interaction type. We believe that providing a plug-in framework for overlays is a 
powerful and general way of supporting a rich set of interaction types as required by 
advanced Grid applications. 

In the remainder of this paper we first, in section 2, provide an overview of the 
Gridkit architecture. Then, in section 3, we discuss Gridkit’s Overlays Framework in 
detail, and then provide an evaluation of our work to date in section 4. Finally, we 
survey related work in section 5 and present our conclusions in section 6. 

2. An Overview of Gridkit 

As illustrated in figure 1, the vision of Gridkit is to provide middleware support in 
each of four ‘domains’ which we identify as key in supporting Grid applications. 
These domains are as follows: 

 
• Service binding. This hosts pluggable interaction types (as defined in the 

introduction) and also provides generic APIs that allow the application 
programmer to uniformly create and use instances of selected interaction types.  

• Resource discovery. This provides service discovery and, more generally, 
resource discovery services. It supports the use of multiple pluggable discovery 
technologies to maximise the flexibility available to applications. Examples of 
alternative technologies are SLP or UPnP for more traditional service discovery, 
GRAM [8] for CPU discovery in a Grid context, and P2P protocols for more 
general resource discovery [9], [10]. 

• Resource management. This comprises both coarse-grained distributed resource 
management as currently provided by services such as GRAM [8], and fine-
grained local resource management (e.g. of channels, threads, buffers etc) that is 
required to build end-to-end QoS [11]. Again, our approach here is based on the 
notion of pluggable mechanisms and policies. 

• Grid security. This hosts pluggable services that support secure communication 
between participating nodes orthogonally to the interaction types in use.  

 

Fig. 1. The GRIDKIT Vision. 
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These four domains of middleware functionality are implemented in Gridkit as 
independent component frameworks (hereafter CFs). As well as being directly 
available to application developers, these can easily be combined to provide more 
complex middleware capabilities. For example, service bindings can integrate with 
Grid security to produce secure interactions. Crucially, all four domains are 
underpinned by the Overlays Framework. In the remainder of this paper, we focus on 
this, and on the service binding and resource discovery frameworks. We do not 
discuss resource management and security further in this paper.  

In terms of its ancestry, Gridkit is an instantiation of the generic OpenORB 
middleware platform [12], and hence follows the philosophy of building systems in 
terms of i) components (using the OpenCOM component model [13]), ii) CFs and iii) 
reflection [12]. Gridkit is also strongly based, at the source code level, on an existing 
web-services-based mobile computing framework called ReMMoC [14]. From this, it 
inherits high performance and a minimal memory footprint (around 250K), thus 
making it deployable in almost any system environment (e.g. both workstations and 
PDAs). 

 
Fig. 2. The Component Framework Model 

The generic architecture of a Gridkit/ OpenCOM CF is shown in figure 2. The CFs 
look from the outside just like a normal OpenCOM component: hence, each Gridkit 
CF implements an ICFMetaArchitecture interface which provides operations to 
inspect and dynamically reconfigure the CF’s internal structure (maintained as a 
‘graph’ of internal sub-components). Additionally, to ensure that dynamic changes  to 
the framework (such as occurs when a new plug-in component is inserted) are ‘valid’, 
each CF exports a receptacle (i.e. ‘required’ interface) named IAccept; different 
validation strategies can be plugged into this so that once a change is made to the 
CF’s structure, the plug-in checking strategy is executed, and if invalid the CF rolls 
back to its previous state. By default, the internal sub-component topology is checked 
against a set of XML-based architectural descriptions of valid component 
configurations. The IMetaInterface, ILifeCycle and IConnections interfaces shown in 
figure 2 are associated with the standard reflective meta-models provided by 
OpenCOM [14]. We do not discuss these further in this paper. 

Turning now to the specific aspects of Gridkit emphasised in this paper (i.e. the 
Overlays Framework, Service binding, and Resource discovery), figure 3 depicts a 
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three-layer architecture that is composed of: i) an abstract middleware layer, ii) a 
layer of abstract-to-concrete mappings, and iii) a concrete middleware layer. Each of 
these layers in turn consists of multiple CF instances. This renders the architecture 
inherently configurable and extensible so that components implementing specific 
functions can be plugged in when and where required. In addition, applications 
requiring only minimal middleware functionality (e.g. client-side only) need not incur 
the overhead of unwanted functionality. This is especially important for execution on 
devices with limited resources; e.g. mobile devices. 

 

 

 

 

 

 

 

 

 

Fig. 3. The GRIDKIT Architecture 

The ‘abstraction’ layer consists of a “Grid-oriented” API component framework that 
is built in terms of web services abstractions. Within this, the Service Binding API is 
used to create and use various sorts of user-to-service bindings, which may employ 
various interaction types. Abstract service interactions are described using the Web 
Services Definition Language (WSDL) which allows service interfaces to be 
uniformly specified irrespective of the underlying interaction type. This is achieved 
by exploiting WSDL’s approach of breaking interactions down into individual one-
way messages: any conceivable service operation, from the user’s perspective, can be 
described abstractly in terms of input or output messages (e.g. an RPC service is 
described as an output message followed by an input message; whereas a publish-
subscribe service is described, from the perspective of the subscriber, as an output 
message for the subscription followed by potentially many subsequent 
asynchronously-received input messages representing incoming publications).  

Discovery—of both services and resources—also forms part of the API CF. Again, 
WSDL is used to abstract over different modes of interaction with service and 
resource discovery mechanisms. This is relatively straightforward for conventional 
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service discovery protocols (e.g. SLP, UPnP, Jini and Salutation) because all of these 
tend to be based on advertisements of service types with service attributes.  

The ‘abstract to concrete’ mapping layer then takes the abstract information 
submitted through the abstract middleware layer and maps it to interfaces of the 
currently exposed concrete middleware implementation(s) in the layer below. This 
mapping is based on ReMMoC principles, a detailed discussion of which can be 
found in [14]. The CF allows multiple mapping components to be maintained in order 
for different services to be simultaneously hosted over different ‘concrete layer’ 
functionality.  

Finally, the ‘concrete’ layer itself is composed of three CFs organised in two 
layers. The top layer comprises CFs that support concrete service binding and 
resource discovery. The Service Binding CF provides a set of available interaction 
type implementations that are deployed as application-layer protocols, and wrapped as 
components and plugged into the framework. Again, multiple interaction types can 
operate in parallel; for example, figure 3 illustrates component plug-ins for SOAP and 
publish-subscribe operating side-by-side. The binding framework exposes its network 
requirements to the underlying Overlays Framework using the exposed receptacle 
technique illustrated in figure 2 and described above. The Discovery CF similarly 
allows multiple discovery technologies (e.g. SLP, UDDI, Jini, P2P-based etc.) to be 
simultaneously plugged into the framework. Furthermore, resource discovery requests 
and advertisements of resources can be executed in parallel over each of the plugged-
in mechanisms so that Grid applications can maximise the number of resources that 
are found, find them more quickly, and distribute their resources to a wider audience. 
Again, the discovery framework utilises the underlying Overlays Framework to 
enhance discovery—for example in the case of peer-to-peer based discovery plug-ins. 

Underpinning the Service Binding and Discovery CFs is the Overlays Framework 
which is discussed next. 

3. The Overlays Component Framework 

3.1 Background on Overlay Networks 

As mentioned, our approach to the provision of network-level communication support 
in Gridkit is to uniformly abstract all such support as overlay networks. The benefit of 
this is that it allows us to treat the diversity of communications support mechanisms 
in a consistent manner whether or not the underlying physical network supports the 
required mechanism (the special case of a standard IP network is handled by viewing 
it as a NULL overlay).  

Overlay networks are virtual communications structures that are logically ‘laid 
over’ an underlying physical network such as the Internet. They are typically 
implemented by deploying appropriate application-level routing functionality at 
strategic places in the network (in principle both the core and edges). Overlays have 
mainly been used in two areas: i) to alleviate the effects of slow or sporadic 
deployment of new services in the Internet (e.g. application-level multicast) [7]; and 
ii) to directly provide application-level functionality that is out-of-scope for the 
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underlying network (e.g. large-scale peer-to-peer file sharing) [15]. They basically 
consist of two parts: one part builds and maintains some kind of virtual network 
topology, and the other part routes messages over this virtual topology. 

At the most basic level, primitive wireless sensor network environments require 
specialised routing overlays to support even simple message-based interaction. At a 
higher level, publish-subscribe and group interaction can be underpinned in the 
Internet by multicast overlays such as SRM [7], or tree-based overlays [16]. Similarly, 
peer-to-peer interaction can be underpinned by unstructured overlays such as Gnutella 
[17], or by structured dynamic hashtable (DHT)-based overlays such as Chord [18]. 
We now examine specific overlay network technologies in more detail. 

DHT-based peer-to-peer overlays are primarily used to provide reliable resource 
discovery in large-scale distributed systems. Prime examples are Pastry [19], Chord 
[18], CAN [20] and Tapestry [21]. In these systems, application-specific elements 
(resources) and network nodes are both assigned unique identifiers (keys) from a 
structured ID space. For example, Chord, Pastry and Tapestry employ a circular 
identifier space of N-bit integers modulo 2N, whereas CAN uses a d-dimensional 
Cartesian identifier space. Then, resources are stored, as far as possible, at the node 
that bears the resource’s unique ID (or a node close to it). The network itself is 
structured in terms of the structure of the key space. For example, Chord is structured 
as a ring supplemented with additional links corresponding to ‘chords’ across the ring 
(each node maintains a routing table of the node IDs and IP addresses of both its 
neighbours in the ring and non-neighbours to which it is connected via ‘chord’ links). 
In terms of routing, messages are forwarded across the overlay to nodes whose IDs 
are progressively closer to the key in the identifier space. Each DHT type provides 
different mechanisms to establish the structure and to route messages through it, 
although generally, resource location is achieved in O(log N) messages where there 
are N nodes in the overlay. 

Unstructured overlays, such as Gnutella, organize their nodes in a ‘random’ graph, 
and resources are typically named and located by arbitrary keywords rather than by 
N-bit IDs. Search requests are forwarded using flooding or random walks, and each 
node that is visited by a request message evaluates the query locally on its own 
content before (potentially) forwarding it.  This makes it possible to search for weakly 
specified resources (i.e. we do not need to know the ID of a target resource as we do 
in DHT networks); but search is less reliable than in DHTs—unstructured overlays 
may fail to locate a desired resource even if it is present in the network. The greatest 
advantage of unstructured overlays is that they support arbitrarily complex queries, 
such as keyword search. However, they are relatively inefficient because queries for 
content that is not widely replicated must be sent (flooded) to a large percentage of 
the nodes. Such flooding mechanisms scale poorly, although they are better suited to 
small-scale ad-hoc and sensor networks. 

Apart from DHT and unstructured flooding networks, application-level multicast 
trees have been extensively used for large-scale deployment of multi, and anycast 
communication [16]. Like DHTs these are structured overlays. They are quite diverse 
in terms of the algorithms used both to build and maintain the overlay topology, and 
to route messages over it. Content distribution overlays are related to application-level 
multicast trees. These overlays, which are primarily used to broadcast media, add 
multiple channels and caching support to basic multicast functionality. A final type of 
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overlay network is the routing overlay used in ad-hoc or wireless sensor networks. As 
mentioned above, these can be based on unstructured flooding principles, but in 
practice they are strongly driven by resource-poor nature of their environment. This 
implies that routing algorithms must be careful to avoid redundant message sends and 
to minimise message hop count. 

The above technologies offer very specific services to application developers.  
Therefore, to increase flexibility there is now an emerging body of research which is 
examining mechanisms to add extra and/ or contrasting network services above 
existing overlay configurations i.e. to layer overlay networks atop other overlay 
networks. For example, Scribe [22] is a scalable application-level multicast overlay 
built on top of Pastry: it provides publish-subscribe capabilities on top of a standard 
DHT infrastructure. Any Scribe node may create a group; other nodes can then join 
this group, and multicast messages to all members of the group. To initiate a group, a 
Scribe node asks Pastry to route a CREATE message using the group ID as the key.  
When a Scribe node wishes to join a group, it asks Pastry to route a SUBSCRIBE 
message with the group’s group ID as the key. At each node along the route, Pastry 
invokes Scribe’s forward method. If it is already a forwarder it adds the child else it 
creates a new group and routes the join again. Other similar layering approaches have 
been attempted. For example, Structella [23] layers a Gnutella like overlay atop 
Pastry, while SplitStream [24] is a high-bandwidth content distribution system again 
built upon Pastry.  

This work on layering various application-focused network services over DHTs 
indicates how middleware functionality such as our binding and discovery framework 
can benefit from such an approach. Indeed, a survey of these technologies [25] has 
presented APIs for common overlay services such as distributed key-based routing, 
distributed hash-tables, distributed object lookup and multicast behaviour. Such APIs 
offer the potential to simplify the development of distributed systems based upon re-
usable overlay services. This is a novel approach that has heavily influenced the 
design of our Overlay Framework. However, we believe that this approach does not 
go far enough; it concentrates on DHT-based technologies and does not generalise to 
the many types of overlays that are available (as discussed above). Hence, we propose 
a more general approach whereby overlay networks can arbitrarily (albeit sensibly) 
depend upon one another. For example, a publish-subscribe overlay can be layered 
atop a DHT in one configuration, or a flooding-based overlay in another (e.g. in a 
small scale ad hoc or wireless sensor network). We examine this generalised 
architecture in the following section. 

3.2 Structure of the Overlays CF 

The goal of our research in this area is to develop ways of building fully 
customisable, extensible, and evolvable overlays by factoring out generic techniques 
and protocols (e.g., large-scale neighbour discovery, and network capability discovery 
techniques [16]), and enabling these to be composed, extended and dynamically 
reconfigured under the auspices of a well-defined CF. 

The role of the Overlay CF (see figure 4) is to provide overlay network services to 
the higher-level CFs: to route packets through virtual networks that are tailored to 
support the various service-level interaction types. Sophisticated communication 
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services, e.g. content distribution, P2P resource discovery and reliable multicast, can 
be supported by appropriate overlay configurations. As with the other CFs, multiple 
overlay personalities can be plugged in. Multiple service bindings can then operate 
over their selected overlay or overlay stack. The nodes of the (overlay) network will 
be composed of machines hosting appropriate Gridkit CFs, which will allow 
autonomic management of the overlay to support the application. That is, the 
algorithms to maintain the required network structures will be dynamically managed 
by communication between the low-level component frameworks in each of the 
nodes. 

Fig. 4. The overall architecture of the Overlay framework 

In turn, the contrasting interaction types, and discovery types, within Gridkit are 
supported by various overlay configurations. We believe that these configurations 
must be based both on the current environmental context (of the node) and on 
application requirements (e.g. operating in ad-hoc or sensor networks, requiring group 
communication etc.). Hence, it is these properties that drive both the initial 
configuration and dynamic reconfiguration of the overlay framework. Figure 4 
illustrates how the Overlay CF allows for multiple overlays to be configured, and for 
there to be dependencies between different overlays. For example, two overlays are 
shown depending on the Chord DHT CF, whereas the keyword search overlay 
operates atop a completely separate overlay. Each overlay in the framework also 
exposes its interface to the outside, allowing it to be used by higher-level service 
bindings and discovery mechanisms. In addition, there is also scope for coarse-
grained dynamic reconfiguration of the framework: for example, adding new overlays 
as and when the context or application requirements change. Thus a streaming overlay 
can be dynamically added above the DHT to supplement an existing group overlay. 
Alternatively, an existing implementation may be changed e.g. to a new or enhanced 
version. 

A key feature of the Overlay CF architecture is that it does not enforce a fixed 
layered architecture; overlays can depend upon one another in arbitrary combinations. 
However, we must clearly ensure that configurations are sensible. The overlay CF 
achieves this by maintaining a set of architectural rules defined in XML, which 
describe sensible configurations. In addition, the CF adopts common interfaces that 
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can be used by multiple plug in components. For example, the IGroupCF interface 
can be offered by a range of alternative underlying implementations, e.g. featuring 
either the probabilistic or DHT based multicast components. 

To build the individual overlay frameworks themselves, we require that plug-in 
overlays are internally structured into three separate elements: a control element, a 
forwarding element and a state element, (we refer to this as the “CFS” structure). The 
control element encapsulates the distributed algorithm used to establish and maintain 
the overlay structure, the forwarding element encapsulates the forwarding or routing 
algorithm itself, and the state element gives access to generic state such as a nearest 
neighbour list. Importantly, this CFS structure supports fine-grained layering and 
combining of overlays so that, for example, different forwarding elements can 
simultaneously be in operation over the same control elements. 

The CFS structure has two further advantages: i) the use of common architectural 
elements ensures that we can produce generalised dependencies between overlays (as 
we can implement overlays to well-defined common interfaces), and ii) we can 
perform fine-grained reconfiguration of individual overlays; i.e. we can add or change 
the individual behaviour of an overlay as and when the environmental context 
changes.  

Based upon the CFS structure, we develop individual overlays as small component 
frameworks that are composed of three plug-in components (the control component, 
the forwarding component and the state component). This is illustrated in figure 5. 
The three components interact within the individual overlay CF as shown by the bi-
directional arrows in figure 5. The exported interfaces and receptacles are then used to 
express dependencies with other overlay implementations. We have found that state 
does not particularly lend itself to commonality, therefore we do not propose a 
standard interface for this; instead just the control and forwarding components can be 
directly used by other overlays.  

 

Fig. 5. The Control – Forwarding – State structure 
 

The control component presents the IControl interface with common operations to 
create, join and leave an overlay; the implementation of the component determines 
how these operations are used to create the configuration between Gridkit nodes. The 
forwarding component has operations to route messages to nodes in the overlay, send 
messages to neighbour nodes, and receive any incoming messages. The control 
component also exports an IForward receptacle to allow it to forward control 
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messages via its own, or a different overlay’s, forwarding mechanism. Similarly, the 
control component exports an IDeliver interface; this is used by lower-level overlays, 
which, when they receive a message, pass it to the control component atop. Particular 
IDeliver implementations determine how to deal with incoming messages (e.g., react 
to it, forward it etc.). Finally, the forwarding component exports an IForward 
receptacle that allows it to directly forward messages using the underlying 
implementation. 

 

4. Evaluation 

4.1 Publish-Subscribe Experiments 

To evaluate our Overlay Framework we have performed initial experiments to 
determine how a publish-subscribe service binding can be supported by different 
overlay configurations. The publish-subscribe binding offers content-based event 
notification, and is influenced by the STEAM platform [26]; the use of group 
communication to distribute events (rather than centralised network brokers) ensures 
that the binding can be applied over a variety of overlay networks, e.g. flooding in ad-
hoc networks, DHTs, and large scale multicast trees. Figure 6 presents its component 
personality. Events are XML messages wrapped in SOAP envelopes; hence, there are 
components to publish, subscribe and filter events of this type. Notably, the 
personality exports an IGroup receptacle into which different overlay configurations 
can be connected. We have explored three configurations as follows. 
 

 
Fig. 6. The component configuration for the Publish-Subscribe Binding 

 
Configuration 1 (base implementation). Gridkit is initiated on a mobile device 
connected to an infrastructure-based wireless network (with support for IP multicast). 
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services are required and hence we do not plug an overlay into the personality; the 
binding simply functions atop standard IP multicast, as seen in Figure 6. We present 
this case to indicate that a binding can operate above a NULL overlay.  

Configuration 2 (ad-hoc networks). In this scenario, a mobile device is operating 
in ad-hoc mode. Hence, this time we require an overlay network to support group 
based message dissemination. Figure 7 illustrates the implementation of such an 
overlay; notably the common interfaces of control and forwarding are combined to 
create the IGroup interface, which is then plugged into the publish-subscribe binding. 
‘Probabilistic multicast’ is an unstructured overlay that intelligently floods messages 
in ad-hoc networks to support group communication. The node receives all messages, 
discarding the ones not from a member group, and then decides whether or not each 
message should be forwarded. This decision is based on the previous messages that 
the node has received; if a large number of duplicates of a message have already been 
received, the probability that the message will be forwarded reduces, i.e. 0 duplicates 
implies a probability of 1, whereas 2 duplicates implies a probability of 0.25. The 
implementation follows the CFS approach. The state component maintains two types 
of state, the group identifiers, and the message history of these groups. The 
IPMCastState interface provides specific operations to access this information, which 
is used by both the control and forwarding components. The control component has 
two behaviours: first it controls group participation by the node, and secondly it 
decides whether the received messages (from the forwarder) are passed up to the 
higher level binding through the IDeliver receptacle. Finally, the forwarding 
component transmits and receives messages across ad-hoc networks using a UDP-
based broadcast mechanism. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. The Probabilistic Multicast Layer 
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how our architecture implements Scribe over Pastry (as used for distributed group 
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communication) to underpin our own content-based publish-subscribe binding. Figure 
8 illustrates the layout of the Scribe and Pastry overlays.  

The Scribe overlay is implemented in the CFS mould, and its interfaces combine to 
form the IGroup interface, allowing it to be used by the publish-subscribe binding. 
The state component holds the individual topics (groups) that the node is participating 
in, along with the neighbour nodes for this topic. The forwarding component then 
allows messages to be published to the group (the underlying pastry forwarder is used 
to forward messages to the topics neighbours). The control component manages the 
creation of groups, joins and leaves above the existing pastry infrastructure i.e. it 
ensures that the topics are maintained correctly, and that the participation in the Pastry 
ring (by the node) is maintained. Furthermore, the control component uses Pastry 
forwarding to distribute control messages through the overlay (which in turn build the 
topic structures). Any messages received by the Pastry forwarder are passed up to the 
Scribe controller which decides whether they are application messages (in which case 
they are forwarded), or control messages (in which they are used to help build the 
overlay). 

Fig. 8. Multiple overlays building the overlay service 

 
4.2 Discovery Experiments 

Our second set of experiments investigates how we could similarly use overlay 
mechanisms to underpin discovery services. In particular, we have investigated the 
use of the Service Location Protocol (SLP) and Gnutella.  

The SLP protocol provides capabilities to perform traditional service discovery, i.e. 
service endpoints can be discovered for a particular service type. SLP is based on 
multicast communication: service agents listen on the SLP multicast address and 
respond to service requests and advertisements. Therefore, we utilise similar 
techniques to the publish-subscribe experiment to run SLP over a range of overlay 
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configurations. The configuration of components for SLP is illustrated in figure 9. It 
consists of components to construct SLP message headers for service and attribute 
lookup, and algorithms to send and receive SLP messages. It can be seen that the 
configuration again relies upon the exported IGroup receptacle to plug overlays into.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. The SLP discovery implementation 
 

As with publish-subscribe, we utilise different overlays to meet discovery 
requirements in different settings. When we wish to discover services in an ad-hoc 
network, the probabilistic multicast overlay of figure 7 is plugged into the discovery 
framework; whereas, when performing service discovery in a large-scale environment 
(say the Internet) the DHT-based overlay of figure 8 is plugged in. Hence, a key 
feature of Gridkit is the reusability of lower level overlays to underpin both differing 
binding and discovery implementations. 

Our final experiment investigated layering a Gnutella [17] like protocol above the 
Pastry DHT (in the style of Structella [23]). This configuration provides complex, 
keyword-based queries, not just service type, over a large-scale network.  

Figure 10 shows the structure of the two overlays, with the Gnutella overlay based 
upon the routing properties of the underlying DHT. The ISearch interface extends 
IForward and IControl to present service and keyword lookup semantics to the higher 
levels of Gridkit. The Structella overlay maintains the list of neighbour nodes (those 
to which it forwards queries) in the state component. The control component consists 
of ‘ping’ and ‘pong’ operations that sends messages to find and connect to nearby 
“connected” members of the overlay. Finally, Structella offers operations to create 
content query messages (from the Forward component) that are distributed throughout 
the Structella overlay. Incoming responses to queries and pings are delivered to the 
Structella control component, which determines whether they should be forwarded, 
responded to, or used by this node. 

Again, the use of the CFS structure allows for fine-grained changes to be made to 
the overlay; we can replace the Structella forwarding mechanism (flooding the Pastry 
ring, or random walk are possible alternatives). In addition, we are currently 
examining alternative layouts for Gnutella; for example, AGnuS [27] is an ‘altruistic’ 
Gnutella protocol that we are investigating how to layer above multiple overlay types. 
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Fig. 10. A Gnutella overlay atop a Pastry overlay 

5. Related Work 

We are not aware of any other work that is specifically addressing the provision of 
integrated and pluggable overlay network support for both Grid applications and 
sensor network environments. However, there is a considerable amount of related 
work in the various sub-areas. 

In terms of Grid middleware, there are platforms, notably ICENI [28], that support 
the notion of software components. However, these platforms, so far as we are aware, 
support components only at the application level: there is no infrastructure level 
componentisation. In terms of wider, non-Grid-specific, middleware, there are a 
number of platforms that take a component-oriented approach at the infrastructure 
level, and feature plug-ins to extend system functionality. Among these are 
DynamicTAO [29], UIC [30], Arctic Beans [31] and RAPIDware [32]. However, 
none of these support the notion of plug-in overlay networks; indeed neither do they 
support the range of configurable and reconfigurable interaction types provided by 
Gridkit. 

There is, of course, considerable research in the narrower field of overlay networks 
themselves; but this work is largely orthogonal to our focus: we are primarily 
interesting in wrapping and applying overlay technologies rather than in developing 
new ones (see also section 3.1). In terms of generic support platforms for overlays, 
researchers at the University of Toronto [33] have recently developed a generic 
platform called iOverlays that supports the implementation of overlay networks. 
Essentially, iOverlays is a low-level software cross-connect that forwards massages 
according to a script that embodies the semantics of a particular overlay. Macedon 
[34] provides higher level support by providing a domain specific language for 
describing overlays which is compiled to a workable implementation. iOverlays and 
Macedon are both orthogonal to our interests. They provide no API (e.g. no 
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interaction types) and are not Grid-integrated (i.e. they have no service-oriented 
architecture, no WSDL etc.). Our work also differs in focusing more on co-existence 
of, and cooperation across, multiple overlay instances which is required to 
simultaneously support multiple interaction types in the same application. 

Finally, in terms of sensor networks a lot of work has been done on message 
routing, particularly on schemes that aim to conserve scarce battery resources. A good 
example of early work in this is [35]. A more recent snapshot of research in the area is 
available in a special section of CACM on wireless sensor networks [36]. Again, 
however, this work is orthogonal to our main interests of wrapping and applying 
communications infrastructure, as opposed to developing new algorithms. 

6. Conclusions and Future Work 

In this paper we have described our approach to the provision of communications 
support in Grid middleware that must support advanced applications such as those 
outlined in the introduction. We have argued that our multi-level architecture, 
consisting of interaction types underpinned by overlay networks, has considerable 
power and generality in supporting such applications. The approach is easier for 
application programmers to learn and use as it offers a consistent programming model 
across different interaction types. It is also extensible in that new interaction types and 
new overlays can be developed and plugged into the middleware, even at runtime. 
And the approach also benefits from supporting multiple interaction types and 
overlays in the same environment. This means that interaction types/ overlays can be 
built in terms of value added extensions to existing plug-ins; and that both code and 
state (e.g. nearest neighbour state or forwarding algorithms) can be shared among 
multiple interaction types/ overlays. 

Empirically, we have demonstrated that our generalised architectural approach for 
the overlay CF fits to specific binding and discovery technologies. We have 
successfully demonstrated the use of publish-subscribe above a range of overlay 
technologies (in small scale ad-hoc networks, and large-scale networks); furthermore, 
we have implemented SLP and Gnutella, using similar techniques to illustrate our 
approach is equally applicable to resource discovery mechanisms.  

In our future work, we plan to further evaluate our middleware by building 
applications scenarios based on the environmental informatics work outlined in the 
introduction. Furthermore, we plan to explore the self-management of services and 
applications in Gridkit. This will build on the inherent openness of the (component-
based) platform but will require additional CFs that deal with areas such as 
monitoring, recovery strategy selection, and recovery strategy deployment. We have 
carried out initial explorations in this area [37], but Gridkit will provide a challenging 
context for these ideas. 
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