12 research outputs found

    Combination of Flex Sensor and Electromyography for Hybrid Control Robot

    Get PDF
    The alternative control methods of robot are very important to solved problems for people with special needs. In this research, a robot arm from the elbow to hand is designed based on human right arm. This robot robot is controlled by human left arm. The positions of flex sensors are studied to recognize the flexion-extension elbow, supination-pronation forearm, flexion-extension wrist and radial-ulnar wrist.The hand of robot has two function grasping and realeasing object. This robot has four joints and six flex sensors are attached to human left arm. Electromyography signals from face muscle contraction are used to classify grasping and releasing hand. The results show that the flex sensor accuracy is 3.54° with standard error is approximately 0.040 V. Seven operators completely tasks to take and release objects at three different locations: perpendicular to the robot, left-front and right-front of the robot. The average times to finish each task are 15.7 ssecond, 17.6 second and 17.1 second. This robot control system works in a real time function. This control method can substitute the right hand function to do taking and releasing object tasks

    Brain-Computer Interface for Control of Wheelchair Using Fuzzy Neural Networks

    Get PDF

    Brain–computer interface in the context of information retrieval systems in a library

    Get PDF
    Purpose – The subject of this paper is the idea of Brain–Computer Interface (BCI). The main goal is to assess the potential impact of BCI on the design, use and evaluation of information retrieval systems operating in libraries. Design/methodology/approach – The method of literature review was used to establish the state of research. The search according to accepted queries was carried out in the Scopus database and complementary in Google Scholar. To determine the state of research on BCI on the basis of library and information science, a specialist LISTA abstract database was also searched. The most current papers published in the years 2015–2019 in the English language or having at least an abstract in this language were taken into account. Findings – The analysis showed that BCI issues are extremely popular in subject literature from various fields, mainly computer science, but practically does not occur in the context of using this technology in information retrieval systems. Research limitations/implications – Due to the fact that BCI solutions are not yet implemented in libraries and are rarely the subject of scientific considerations in the field of library and information science, this article is mainly based on literature from other disciplines. The goal was to consider how much BCI solutions can affect library information retrieval systems. The considerations presented in this article are theoretical in nature due to the lack of empirical materials on which to base. The author’s assumption was to initiate a discussion about BCI on the basis of library and information science, not to propose final solutions. Practical implications – The results can be widely used in practice as a framework for the implementation of BCI in libraries. Social implications – The article can help to facilitate the debate on the role of implementing new technologies in libraries. Originality/value – The problem of BCI is very rarely addressed in the subject literature in the field of library and information science

    Cross-Platform Implementation of an SSVEP-Based BCI for the Control of a 6-DOF Robotic Arm

    Full text link
    [EN] Robotics has been successfully applied in the design of collaborative robots for assistance to people with motor disabilities. However, man-machine interaction is difficult for those who suffer severe motor disabilities. The aim of this study was to test the feasibility of a low-cost robotic arm control system with an EEG-based brain-computer interface (BCI). The BCI system relays on the Steady State Visually Evoked Potentials (SSVEP) paradigm. A cross-platform application was obtained in C++. This C++ platform, together with the open-source software Openvibe was used to control a Staubli robot arm model TX60. Communication between Openvibe and the robot was carried out through the Virtual Reality Peripheral Network (VRPN) protocol. EEG signals were acquired with the 8-channel Enobio amplifier from Neuroelectrics. For the processing of the EEG signals, Common Spatial Pattern (CSP) filters and a Linear Discriminant Analysis classifier (LDA) were used. Five healthy subjects tried the BCI. This work allowed the communication and integration of a well-known BCI development platform such as Openvibe with the specific control software of a robot arm such as Staubli TX60 using the VRPN protocol. It can be concluded from this study that it is possible to control the robotic arm with an SSVEP-based BCI with a reduced number of dry electrodes to facilitate the use of the system.Funding for open access charge: Universitat Politecnica de Valencia.Quiles Cucarella, E.; Dadone, J.; Chio, N.; GarcĂ­a Moreno, E. (2022). Cross-Platform Implementation of an SSVEP-Based BCI for the Control of a 6-DOF Robotic Arm. Sensors. 22(13):1-26. https://doi.org/10.3390/s22135000126221

    Compact and interpretable convolutional neural network architecture for electroencephalogram based motor imagery decoding

    Get PDF
    Recently, due to the popularity of deep learning, the applicability of deep Neural Networks (DNN) algorithms such as the convolutional neural networks (CNN) has been explored in decoding electroencephalogram (EEG) for Brain-Computer Interface (BCI) applications. This allows decoding of the EEG signals end-to-end, eliminating the tedious process of manually tuning each process in the decoding pipeline. However, the current DNN architectures, consisting of multiple hidden layers and numerous parameters, are not developed for EEG decoding and classification tasks, making them underperform when decoding EEG signals. Apart from this, a DNN is typically treated as a black box and interpreting what the network learns in solving the classification task is difficult, hindering from performing neurophysiological validation of the network. This thesis proposes an improved and compact CNN architecture for motor imagery decoding based on the adaptation of SincNet, which was initially developed for speaker recognition task from the raw audio input. Such adaptation allows for a very compact end-to-end neural network with state-of-the-art (SOTA) performances and enables network interpretability for neurophysiological validation in terms of cortical rhythms and spatial analysis. In order to validate the performance of proposed algorithms, two datasets were used; the first is the publicly available BCI Competition IV dataset 2a, which is often used as a benchmark in validating motor imagery (MI) classification algorithms, and a primary data that was initially collected to study the difference between motor imagery and mental rotation task associated motor imagery (MI+MR) BCI. The latter was also used in this study to test the plausibility of the proposed algorithm in highlighting the differences in cortical rhythms. In both datasets, the proposed Sinc adapted CNN algorithms show competitive decoding performance in comparisons with SOTA CNN models, where up to 87% decoding accuracy was achieved in BCI Competition IV dataset 2a and up to 91% decoding accuracy when using the primary MI+MR data. Such decoding performance was achieved with the lowest number of trainable parameters (26.5% - 34.1% reduction in the number of parameters compared to its non-Sinc counterpart). In addition, it was shown that the proposed architecture performs a cleaner band-pass, highlighting the necessary frequency bands that focus on important cortical rhythms during task execution, thus allowing for the development of the proposed Spatial Filter Visualization algorithm. Such characteristic was crucial for the neurophysiological interpretation of the learned spatial features and was not previously established with the benchmarked SOTA methods

    Mental Task Evaluation for Hybrid NIRS-EEG Brain-Computer Interfaces

    Get PDF
    Based on recent electroencephalography (EEG) and near-infrared spectroscopy (NIRS) studies that showed that tasks such as motor imagery and mental arithmetic induce specific neural response patterns, we propose a hybrid brain-computer interface (hBCI) paradigm in which EEG and NIRS data are fused to improve binary classification performance. We recorded simultaneous NIRS-EEG data from nine participants performing seven mental tasks (word generation, mental rotation, subtraction, singing and navigation, and motor and face imagery). Classifiers were trained for each possible pair of tasks using (1) EEG features alone, (2) NIRS features alone, and (3) EEG and NIRS features combined, to identify the best task pairs and assess the usefulness of a multimodal approach. The NIRS-EEG approach led to an average increase in peak kappa of 0.03 when using features extracted from one-second windows (equivalent to an increase of 1.5% in classification accuracy for balanced classes). The increase was much stronger (0.20, corresponding to an 10% accuracy increase) when focusing on time windows of high NIRS performance. The EEG and NIRS analyses further unveiled relevant brain regions and important feature types. This work provides a basis for future NIRS-EEG hBCI studies aiming to improve classification performance toward more efficient and flexible BCIs

    Study of non-invasive cognitive tasks and feature extraction techniques for brain-computer interface (BCI) applications

    Get PDF
    A brain-computer interface (BCI) provides an important alternative for disabled people that enables the non-muscular communication pathway among individual thoughts and different assistive appliances. A BCI technology essentially consists of data acquisition, pre-processing, feature extraction, classification and device command. Indeed, despite the valuable and promising achievements already obtained in every component of BCI, the BCI field is still a relatively young research field and there is still much to do in order to make BCI become a mature technology. To mitigate the impediments concerning BCI, the study of cognitive task together with the EEG feature and classification framework have been investigated. There are four distinct experiments have been conducted to determine the optimum solution to those specific issues. In the first experiment, three cognitive tasks namely quick math solving, relaxed and playing games have been investigated. The features have been extracted using power spectral density (PSD), logenergy entropy, and spectral centroid and the extracted feature has been classified through the support vector machine (SVM), K-nearest neighbor (K-NN), and linear discriminant analysis (LDA). In this experiment, the best classification accuracy for single channel and five channel datasets were 86% and 91.66% respectively that have been obtained by the PSD-SVM approach. The wink based facial expressions namely left wink, right wink and no wink have been studied through fast Fourier transform (FFT) and sample range feature and then the extracted features have been classified using SVM, K-NN, and LDA. The best accuracy (98.6%) has been achieved by the sample range-SVM based approach. The eye blinking based facial expression has been investigated following the same methodology as the study of wink based facial expression. Moreover, the peak detection approach has also been employed to compute the number of blinks. The optimum accuracy of 99% has been achieved using the peak detection approach. Additionally, twoclass motor imagery hand movement has been classified using SVM, K-NN, and LDA where the feature has been extracted through PSD, spectral centroid and continuous wavelet transform (CWT). The optimum 74.7% accuracy has been achieved by the PSDSVM approach. Finally, two device command prototypes have been designed to translate the classifier output. One prototype can translate four types of cognitive tasks in terms of 5 watts four different colored bulbs, whereas, another prototype may able to control DC motor utilizing cognitive tasks. This study has delineated the implementation of every BCI component to facilitate the application of brainwave assisted assistive appliances. Finally, this thesis comes to the end by drawing the future direction regarding the current issues of BCI technology and these directions may significantly enhance usability for the implementation of commercial applications not only for the disabled but also for a significant number of healthy users

    Secure indoor navigation and operation of mobile robots

    Get PDF
    In future work environments, robots will navigate and work side by side to humans. This raises big challenges related to the safety of these robots. In this Dissertation, three tasks have been realized: 1) implementing a localization and navigation system based on StarGazer sensor and Kalman filter; 2) realizing a human-robot interaction system using Kinect sensor and BPNN and SVM models to define the gestures and 3) a new collision avoidance system is realized. The system works on generating the collision-free paths based on the interaction between the human and the robot.In zukĂĽnftigen Arbeitsumgebungen werden Roboter navigieren nebeneinander an Menschen. Das wirft Herausforderungen im Zusammenhang mit der Sicherheit dieser Roboter auf. In dieser Dissertation drei Aufgaben realisiert: 1. Implementierung eines Lokalisierungs und Navigationssystem basierend auf Kalman Filter: 2. Realisierung eines Mensch-Roboter-Interaktionssystem mit Kinect und AI zur Definition der Gesten und 3. ein neues Kollisionsvermeidungssystem wird realisiert. Das System arbeitet an der Erzeugung der kollisionsfreien Pfade, die auf der Wechselwirkung zwischen dem Menschen und dem Roboter basieren

    Data-Driven Transducer Design and Identification for Internally-Paced Motor Brain Computer Interfaces: A Review

    Get PDF
    Brain-Computer Interfaces (BCIs) are systems that establish a direct communication pathway between the users' brain activity and external effectors. They offer the potential to improve the quality of life of motor-impaired patients. Motor BCIs aim to permit severely motor-impaired users to regain limb mobility by controlling orthoses or prostheses. In particular, motor BCI systems benefit patients if the decoded actions reflect the users' intentions with an accuracy that enables them to efficiently interact with their environment. One of the main challenges of BCI systems is to adapt the BCI's signal translation blocks to the user to reach a high decoding accuracy. This paper will review the literature of data-driven and user-specific transducer design and identification approaches and it focuses on internally-paced motor BCIs. In particular, continuous kinematic biomimetic and mental-task decoders are reviewed. Furthermore, static and dynamic decoding approaches, linear and non-linear decoding, offline and real-time identification algorithms are considered. The current progress and challenges related to the design of clinical-compatible motor BCI transducers are additionally discussed
    corecore