
Research Article
Mental Task Evaluation for Hybrid NIRS-EEG
Brain-Computer Interfaces

Hubert Banville, Rishabh Gupta, and Tiago H. Falk

Energy, Materials, and Telecommunications, Institut National de la Recherche Scientifique,
University of Quebec, Montreal, QC, Canada

Correspondence should be addressed to Hubert Banville; hubert.banville@emt.inrs.ca

Received 6 April 2017; Revised 27 July 2017; Accepted 29 August 2017; Published 18 October 2017

Academic Editor: Manuel Rosa-Zurera

Copyright © 2017 Hubert Banville et al.This is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Based on recent electroencephalography (EEG) and near-infrared spectroscopy (NIRS) studies that showed that tasks such as
motor imagery and mental arithmetic induce specific neural response patterns, we propose a hybrid brain-computer interface
(hBCI) paradigm in which EEG and NIRS data are fused to improve binary classification performance. We recorded simultaneous
NIRS-EEG data from nine participants performing seven mental tasks (word generation, mental rotation, subtraction, singing and
navigation, and motor and face imagery). Classifiers were trained for each possible pair of tasks using (1) EEG features alone,
(2) NIRS features alone, and (3) EEG and NIRS features combined, to identify the best task pairs and assess the usefulness of a
multimodal approach. The NIRS-EEG approach led to an average increase in peak kappa of 0.03 when using features extracted
from one-second windows (equivalent to an increase of 1.5% in classification accuracy for balanced classes). The increase was
much stronger (0.20, corresponding to an 10% accuracy increase) when focusing on time windows of high NIRS performance.The
EEG and NIRS analyses further unveiled relevant brain regions and important feature types. This work provides a basis for future
NIRS-EEG hBCI studies aiming to improve classification performance toward more efficient and flexible BCIs.

1. Introduction

A brain-computer interface (BCI) is a communication sys-
tem between a brain and a computer that bypasses the
normal brain output pathways [1]. Such systems can be
useful to replace, restore, enhance, supplement, or improve
the natural output of the central nervous system [2], and
have found applications in clinical as well as nonclinical
contexts such as entertainment and education [3]. BCIs rely
on the recording of brain activity using imaging modalities
like electroencephalography (EEG), magnetoencephalogra-
phy (MEG), near-infrared spectroscopy (NIRS), functional
magnetic resonance imaging (fMRI), and others [4–10].
Although most of today’s BCI designs use EEG alone to
recognize user intent [11], other modalities offer different
information about the underlying brain activity and can
therefore complement the information obtained with EEG
alone.The hybrid BCI (hBCI) approach thus consists of using
more than one modality at a time, including at least one

brain modality, but possibly including nonneurophysiologi-
cal modalities as well [12, 13], to improve on the performance
and usability of a unimodal system.

BCIs typically rely on the recognition of one or multiple
distinguishable brain activity patterns.Themost frequent pat-
terns mentioned in the hBCI literature include event-related
desynchronization/synchronization (ERD/ERS) elicited by
motor imagery, the P300 event-related potential (ERP),
and the steady-state visually evoked potential (SSVEP) [11].
Through their extensive use in the literature, these brain
activity patterns have been shown to be highly recognizable
when used in BCI designs; however, they may not be optimal
for all BCI users. First of all, intersubject variability, a phe-
nomenon that describes how neurophysiological signals can
differ significantly from an individual to another, inevitably
makes particular tasks better suited to some users than others
[11]. Finding the optimal set ofmental tasks for a user can thus
significantly improve the performance and usability of a BCI.
Moreover, users who have suffered a brain injury may lose
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normal functioning of regions of their brain associated with
the above-mentioned patterns. For these users who are often
the target of BCI systems, it is thus necessary to use different
brain activity patterns that recruit other regions of the brain.
Finally, BCI paradigms based on P300 and SSVEP, so-called
reactive BCIs, rely on external visual stimuli to elicit the
necessary brain activity patterns. These external stimuli can
induce fatigue in the users when used for extended periods
of time [14] and can necessitate additional hardware and
software components. Internally triggered mental tasks are
more attractive from this perspective as they do not require
external stimuli.

To alleviate these problems, a promising approach aims
at identifying and validating new brain activity patterns for
use in BCI paradigms. Various mental tasks that recruit
different parts of the brain, such as mental subtraction and
mental rotation, were thus investigated in recent studies using
EEG [15–25], NIRS [26–34], transcranial Doppler imaging
(TCD) [35, 36], NIRS-TCD [37], and fMRI [38]. The most
frequently used mental tasks in these articles were mental
subtraction, mental object rotation, various verbal fluency
tasks, motor imagery, and auditory imagery. These studies
attempted either binary or multiclass classification of mental
tasks, usually between tasks or against a resting state, and in
most cases aimed at finding the combination of tasks that
would yield the highest performance in a BCI context as
measured by a classification metric.

Among studies that evaluated four ormore different tasks
in EEG, combinations of a brain teaser, that is, a task that
involves mental work, and a dynamic imagery task were
usually found to yield the highest performance. In Sepulveda
et al., binary classification of mental singing and mental
calculation (either addition or subtraction) was found to be
in the top five of the best combinations in four of five subjects,
with values above 93% in accuracy [17]. Although aiming
to differentiate a mental task from resting state instead of
from another mental task, Faradji et al. found that a mental
multiplication task could produce a maximal true positive
rate above 70% while maintaining a zero false negative rate
[18]. Research by Friedrich and colleagues has supported the
combination of a brain teaser and a dynamic imagery task
as an optimal pair numerous times [21, 22, 25]. Pairs formed
from a total of seven different mental tasks were evaluated
on nine subjects [21]. Word association, mental subtraction,
mental rotation, and motor imagery were identified as the
most discriminative tasks, leading to Cohen’s 𝜅 (an interrater
agreement metric) values above 0.7. The ERD/ERS patterns
evoked by brain teasers and dynamic imagery tasks were
found to exhibit different characteristics which could explain
why this type of combination is optimal [21]. In addition,
in that study the authors characterized the subjective appre-
ciation of each task, finding that while ratings were highly
variable and no significant differences between tasks were
found, word generation received the best rating and mental
subtraction received the worst. Similarly, in a separate study,
a combination of mental subtraction and motor imagery
was found to produce consistent intersession performance
in seven out of nine subjects (kappa higher than 0.6) [22].
Other work byHortal et al. showed four-class classification of

right- and left-hand imagined movement, mental counting,
andmental alphabet recitation in two subjects [39]. Although
the study did not aim at identifying the best pair of tasks, the
trained classifier was better at distinguishing different motor
imagery tasks from one another than from other tasks, which
could be explained by the centrally focused montage. Finally,
in another study, eight subjects were trained to control a
4-class BCI in which mental tasks were selected based on
an individual basis [25]. The most frequently selected task
combinations included motor imagery, mental rotation, and
additional brain teaser and dynamic imagery tasks, leading to
average performances varying between 44 and 84% accuracy.

Only two studies were found to look at classifying more
than two tasks at once using NIRS. In Herff et al. [31], using
the hemodynamic information from the prefrontal cortex it
was shown that binary classification accuracies around 60%
could be obtained with pairs formed of mental subtraction,
word generation, and mental rotation on 10 subjects. A more
complete assessment ofmental tasks usingNIRSwas reported
in Hwang et al. [5], using a full head coverage. Classification
accuracies around 71%were found for combinations ofmotor
imagery, mental multiplication, and mental rotation tasks on
seven subjects.

Some studies explored the effect of adding supplementary
modalities to the classification of various mental tasks to
either improve the number of classifiable tasks or improve the
robustness of a precise task. Combinations of NIRS and EEG
for recognizing motor imagery or execution tasks have been
studied following three different approaches. Fazli et al. used
a classifier fusion procedure based on the individual classifi-
cation of EEG and NIRS data to distinguish left- from right-
handmotor execution and imagery [40]. Using this approach,
an average 5% increase in accuracy was obtained for 13 out
of 14 subjects for the motor imagery task when EEG and
NIRS were used simultaneously, yielding an average accuracy
of 83.2%. The authors recognized the drawbacks of the long
hemodynamic response delay that typically precludes the use
of NIRS in practical BCIs. A different approach was explored
by Khan et al. to increase the number of input commands in
the context of four-direction movement control [41]. While
the left and right movements were controlled with motor
imagery as measured with EEG, the forward and backward
movements were controlled with either counting or mental
subtraction tasks measured in NIRS. A binary classification
of each task against rest was used. Average classification
accuracies of 94.7% and above 80% were obtained for EEG
tasks and NIRS tasks, respectively. Finally, in another study,
NIRS was used to detect the occurrence of a motor imagery
task and trigger its classification as left or right imagery using
EEG [42]. This approach led to a low false positive rate of 7%
and a true positive rate of 88%.

NIRS has also been combinedwith peripheral physiologi-
cal signals such as heart rate, respiration, blood pressure, skin
temperature, and electrodermal activity measurements. For
example, the impact of environment noise on music imagery
detection was assessed using NIRS, physiological signals, and
a combination of the two [29]. An average accuracy of 83%
over eight participants was obtained when NIRS was used
in conjunction with physiological signals, corresponding
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to a 12% gain from a NIRS-only system. Using a similar
methodology, Zimmermann et al. explored the detection
of a motor execution task [43]. The authors found that
adding physiological signals to NIRS significantly improved
classification accuracies by around 9% average in seven
subjects. Joining the hemodynamic information obtained
fromNIRSwith the ones obtained fromTCD, amodality that
measures blood flow velocity in the cerebral main arteries,
was also shown to be beneficial in the classification of a
mental task. Indeed, this approach helped improve unimodal
classification of a verbal fluency task by around 7% average
across nine subjects in a separate study in [37].

In light of these results, the purpose of the present
article is to gain further ground in the investigation of
new BCI control tasks, by adopting a hybrid BCI approach
in which NIRS and EEG are simultaneously recorded. We
seek to complement previous studies such as [21, 33] by
carefully analyzing the functioning of such a hybrid system
and assessing whether it can provide a gain in performance
over standard unimodal approaches. The rest of this paper is
structured as follows. Section 2 presents the methods used
to collect and analyze the data. Section 3 shows the results
of the analysis in terms of spatial patterns, selected features,
and classification performance. Section 4 discusses the results
in light of previous related studies. Finally, the conclusions
drawn from this work are presented in Section 5. A more
comprehensive description of the work can be found in [44].

2. Methods

2.1. Participants. Twelve participants (5 females, 3 left-
handed, mean of 24.6 years old), fluent in English and/or
French, took part in our NIRS-EEG study. Participants had
to complete three separate recording sessions of two to three
hours, inside a period of three to five weeks. Participants
declared having no history of neurological disorders and had
no previous experiencewith BCIs. Amonetary compensation
was given after each completed session. Each participant
agreed with the terms and conditions of the study, which
was approved by the university ethics committee. Two par-
ticipants were rejected because their data contained a high
number of artifacts; a third participant was rejected because
they did not complete the three required sessions. Therefore,
the data from a total of nine participants was used in this
study.

2.2. Mental Tasks. Participants were asked to perform seven
different types of mental tasks that are believed to elicit
specific neural response patterns, based on previous studies
using EEG and NIRS [21, 33].

Mental Rotation (ROT). Two 3-dimensional L-shaped figures,
either identical or mirrored, but in each case in a different
state of rotation, were presented to the participants. Partici-
pants had to imagine rotating one of the two figures in order
to find if they were the same or if they were mirrored images.

Word Generation (WORD). Participants had to generate as
many words as possible starting with a randomly chosen

letter presented on the screen. Words in either English or
French, depending on the participant’s chosen language, were
requested.

Mental Subtraction (SUB). Participants had to perform suc-
cessive subtractions of two 1- or 2-digit numbers to a 3-digit
number (e.g., 214 − 9 = 205 and 205 − 13 = 192).

Mental Singing (SING). Participants had to imagine singing a
song that they chose beforehand, if possible with lyrics, while
focusing on the emotional response it elicits.

Mental Navigation (NAV). Participants had to imagine walk-
ing from one point to another in their current or a previous
home, while focusing on their spatial orientation (e.g., walk-
ing from their bedroom to the refrigerator).

Motor Imagery (MI). Participants had to imagine performing
a finger tapping task with their right hand.

Face Imagery (FACE). Participants had to imagine the face of
a friend, as recalled from a picture they were asked to bring
to the recording session and memorize.

Following Friedrich et al.’s description of task types [21],
we classify mental rotation, word generation, and mental
subtraction as brain teasers, since they require problem-
solving skills; mental singing, mental navigation, and motor
imagery as dynamic imagery tasks; and face imagery as a
static imagery task.

Before the recording started, participants were first
guided through each task and asked to complete them in
an overt manner. This step was used to make sure each
participant performed the tasks appropriately and in the same
manner. For example, for a mental rotation task, participants
had to say aloud if the two figures were the “same” or
“mirrored,” for a mental subtraction task they had to give the
experimenter their final answer, and so on. Participants were
then asked to repeat the same tasks but in a covert manner, as
they were then asked to during the experiment.

2.3. Experimental Paradigm. The experimental paradigm for
a single session of our study is summarized in Figure 1. A
session consisted of four subsessions in which each mental
task typewas randomly repeated four times, yielding a total of
28 task completions per subsession. Participants also had to
complete a subjective evaluation questionnaire between the
second and third subsession of each session. Each subsession
started and finished with a 30 s baseline period in which
participants were asked to remain in a neutral mental state
and fixate the cross at the center of the screen. Before
each trial, a 3 s countdown screen indicated the task to be
performed next using the associated pictogram as shown
in Figure 1. Once the countdown was over, participants
had to execute the required mental task for a period of
15 seconds. Instructions were given to carry out the tasks
as many times as possible and to start again tasks such as
rotation, subtraction, and navigation if completed before the
end of the 15 s period. Each trial was then followed by a
rest period of random duration between 10 and 15 s, sampled
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Figure 1: Diagram of a trial of the experimental paradigm. A trial is composed of (A) a 3 s countdown period in which participants are
instructed about the coming mental task, (B) an imagery period where they execute the given task for 15 s, and (C) a randomized 10 to 15 s
rest period.

Figure 2: EEG and NIRS topology used in this study (adapted from [59]). EEG electrodes (black rectangles), NIRS detectors (red circles),
and NIRS sources (green diamonds) were placed following the 10-5 system. NIRS channels are represented by dark straight lines connecting
the sources to the detectors. Brain regions used to compute artificial NIRS channels are grouped in light blue.

from a uniform distribution. This randomization keeps the
participants from expecting the exact start of the next trial
and avoids the synchronization of systemic processes inNIRS
with the paradigm. Once a subsession was over, participants
were allowed to take asmuch time as desired to lightly stretch,
drink, or eat a snack before resuming the experiment. The
stimuli and questionnaire were both implemented using the
Presentation software package (Neural Behavioral Systems,
USA).

2.4. Data Collection

2.4.1. EEG and Physiological Signals. EEG data was recorded
using an ActiveTwo system (Biosemi B.V., Amsterdam, The
Netherlands) with 62 probes (plus two mastoids and CMS

and DRL electrodes) and four EOG electrodes, digitized at
512Hz. No online filtering was applied. A standard 10-10
system was used for electrode placement, but without AF7
and AF8, whose holes were used for NIRS probes instead (see
Figure 2).

2.4.2. NIRS. NIRS data was recorded using a NIRScout
system (NIRx Medical Technologies, Los Angeles, USA),
with 16 sources (wavelengths of 760 and 850 nm) and 24
detectors. Optodes were placed together with EEG electrodes
on the same cap, as shown in Figure 2. The frontal, central,
temporal, and parietal lobes were targeted by the used
montage, following the extended 10-5 system. Coverage was
not extended to the occipital lobe due to the low quality
of NIRS signals in this region and because of the restricted
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Table 1: Questionnaire items and description based on the NASA TLX test. The first five questions were given a rating between 1 and 10.

Dimension Question
Mental demand How mentally demanding was the task?
Temporal demand How hurried or rushed was the pace of the task?
Performance How successful were you in accomplishing what you were asked to do?
Effort How hard did you have to work to accomplish your level of performance?
Frustration How insecure, discouraged, irritated, stressed and annoyed were you?
Task ranking Which are your preferred tasks, in order of importance?

number of available optodes. Source-detector pairs separated
by approximately 3 cmwere used as channels, giving a total of
60 NIRS channels, each sampled at 4.46Hz. Amplifier gains
were adjusted following an automatic calibration procedure
handled by the NIRStar recording software.

2.4.3. Questionnaire and Subjective Ratings. At each record-
ing session, participants were asked to fill out a questionnaire
reporting their appreciation of the tasks. The questions were
based on the first part of the widely used NASA Task Load
Index (TLX) test [45], with the French version by Cegarra
and Morgado [46]. Additionally, participants were asked to
rank the mental tasks in order of preference. Table 1 shows
the various items that were measured.

2.5. EEG Analysis

2.5.1. Preprocessing. The raw EEG data was preprocessed
using EEGLAB [47]. The data was referenced to Cz and
then downsampled to 256Hz before filtering with a bandpass
(0.5–100Hz) and notch filters (60Hz). Bad channels were
visually assessed and removed if they were constantly bad
across trials of the same session. Epochs of 25 seconds with
5 seconds of baseline before and after task execution were
extracted for each trial, as well as for rests periods at the
beginning and end of each subsession. Epochs contaminated
by strong movement and physiological artifacts were visually
identified and rejected. On average, 6.1% of the epochs
were rejected, yielding an average of 315.4 valid epochs per
subject (out of a possible 336). Further signal cleaning was
performed by applying a semiautomatic method based on
independent component analysis (ICA, with the Infomax
algorithm [48]) to detect and subtract remaining artifacts and
noise components [49]. Bad channelswere reinterpolated and
all channels were rereferenced to the average of all electrodes.
Finally, baseline correction was applied to each epoch using
the 300ms period before the beginning of the tasks.

2.5.2. Descriptive Analysis. ERD is a phenomenon occurring
when idle parts of the brain become active following some
event or stimulus. A specific rhythmical activity can then be
measured, such as 𝜇 and 𝛽 waves over the primary motor
cortex in motor execution and imagery tasks [50]. Similarly,
ERS occurs when this activity ceases and the recruited brain
regions return to an idle state.The intertrial variance method
proposed in [51] was used to compute the ERD/ERS values for

each type of mental task and baseline over all three sessions
of a participant.

2.5.3. Feature Extraction. Previous EEG studies mainly used
band powers and Common Spatial Patterns-based (CSP)
features to describe the neural activity patterns induced by
mental tasks such as motor imagery [11]. In our case, since we
are especially interested in the interpretation of the extracted
features, and given the explicit link between band powers and
measurements of ERD/ERS [52], we focused our classification
analysis on classical power bands. Each trial was subdivided
in nonoverlapping time windows of one second. Log-power
features were then extracted in the following seven frequency
bands with a Fast Fourier Transform: 𝜃 (4–8Hz), 𝛼low
(8–10Hz), 𝛼high (10–12Hz), 𝛽low (12–21Hz), 𝛽high (21–30Hz),
𝜃 to 𝛽 (4–30Hz), and total spectrum (0.1–100Hz). Individual
features for the 𝛿 (0–4Hz) and 𝛾 (30–80Hz) bands were not
extracted in order to reduce the impact of ocular and muscle
artifacts [20, 21, 24]. Moreover, the following ratios of band
powers were computed: 𝛼total/𝛽total and 𝜃/𝛽total. This yielded
a total of 620 features per window, which were finally log-
transformed.

2.6. NIRS Analysis
2.6.1. Preprocessing. NIRS was preprocessed using the open
source toolboxHOMER2 [53]. First, raw light intensities were
converted to optical densities (OD) by computing the nega-
tive logarithmof the normalized intensities (using the average
value of each channel over the entire recording). Second,
channels with a low signal-to-noise ratio were identified by
correlating the bandpass filteredOD (between 0.8 and 1.2Hz)
of channels S15-D1 and S15-D2 on the left and channels S16-
D13 and S16-D14 on the right, with each left side or right
side channel, respectively. These 4 frontal channels being the
shortest in the used montage, and usually being clear of any
hair, are expected to carry a clear cardiac pulse in the 45 to
100 BPM range, which corresponds to standard resting heart
rate frequencies. Channels which significantly correlate with
these short-distance channels in this frequency range (𝑝 value
below 0.05) are thus expected to be of good quality, since
they carry physiological information. Channels were rejected
per session if the aggregate of their Pearson’s correlation 𝑝
value across all epochs was not significant.Third, the remain-
ing channels’ OD was bandpass-filtered between 0.01 and
0.30Hz [10] and converted to the concentration changes of
oxygenated, deoxygenated, and total hemoglobin (Δ[HbO],
Δ[HbR], andΔ[HbT]) using theModified Beer-Lambert Law
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[54]. Finally, 13 artificial channels were computed by averag-
ing the amplitude of neighboring channels in the prefrontal,
lateral-frontal, centrofrontal, temporoparietal, and central
regions (as shown in Figure 2).These steps produced 73 chan-
nels, each one measuring Δ[HbO], Δ[HbR], and Δ[HbT],
giving a total of 219 measurement channels for NIRS.

2.6.2. Descriptive Analysis. The average Δ[HbO], Δ[HbR],
and Δ[HbT] responses over sessions and participants were
computed for each task to reveal spatiotemporal patterns of
hemodynamic activation.

2.6.3. Feature Extraction. Classification of NIRS data is often
based on simple features such as Δ[HbO], Δ[HbR], and
Δ[HbT] averaged over time, their slope, or even the averaged
raw light intensity values [11]. In this study, the average
chromophore concentrations of each channel were extracted
using the same windows as for EEG feature extraction.
Features derived from NIRS channels that were rejected
during preprocessing were set to 0. This yielded a maximum
of 219 NIRS features.

2.7. Classification of EEG, NIRS, and EEG-NIRS. Each pre-
viously extracted feature set was then used to train a binary
classification model over a pair of tasks. First, the train-
ing procedure was applied to the EEG and NIRS datasets
separately to assess the individual performance of each
modality.Then, the same procedure was applied on a merged
dataset combining features from both EEG and NIRS to
assess the impact ofmultimodal information on classification
performance.

To avoid the overfitting problems linked to high-
dimensional datasets, especially in cases where only a few
training cases are available, feature selection procedures are
required to select the most informative features prior to or
during classifier training. In this study, we used a linear kernel
Support Vector Machine (SVM) classifier combined with
a sparsity-inducing 𝑙

1
penalty term to control the number

of features used in the model. As opposed to filter feature
selection methods, this embedded procedure allows the effi-
cient discovery of interdependent features, while alsomaking
better use of the available data by avoiding an additional
partitioning [55]. Combined with the robustness of SVMs
in high-dimensional spaces [56], this embedded feature
selection-classification procedure is designed tominimize the
detrimental effects of our high-dimensional dataset with few
examples.

A default value of 2.0 was used for the hyperparameter
𝐶 that controls the balance between the data-dependent loss
and the 𝑙

1
penalization of the weights. To account for the

varying number of data points in each classification task, 𝐶
was divided by the number of examples in the training set,
yielding a maximal value of 0.023 when all 96 epochs were
conserved.

A delay between the cue to execute a mental task and its
actual execution is expected; moreover, participants are likely
to get tired and stop executing the task before the end of the
15 s epoch. Therefore, to reveal the dynamics of mental task
execution, each time window was analyzed independently;

that is, a new classifier was trained for each time window
(e.g., 0-1 s and 1-2 s). This yields a series of performance
estimates that show how classification evolves as the task is
executed. The subject-specific classifiers were trained using
a 10 times 10-fold stratified cross-validation procedure. Nine
partitions were used for training, and the remaining one was
used for validation. Partitions were created so that relative
class frequencies were similar in each fold.The data was then
randomly shuffled and the partitioning procedure repeated
for another nine times. This yielded a total of 100 estimates
per classification task. For each division of training and
validation sets, each feature was then individually 𝑍-score-
normalized based on the mean and standard deviation of the
training set. Finally, the classifier was retrained on all 10 folds
to obtain the final weights 𝑤.

Since our study is targeted toward the eventual concep-
tion of a BCI, we focus the bulk of our analysis on models
trained with features extracted on windows of one second.
This allows a very short delay between the realization of the
mental task and the output of the system. Moreover, using
one-second windows allows a fine-grained analysis of the
temporal evolution of selected features and of classification
performance, which can uncover interesting physiological
insights.

The performance of the classifiers was evaluated using
Cohen’s 𝜅 as in [21], which measures the agreement between
two raters who classify 𝑁 examples into mutually exclusive
categories. This is useful here since an unequal number of
repetitions were kept for each type of tasks, leading to an
unbalanced number of examples in the dataset. In the case
of a perfectly balanced problem, 𝜅 values of 0, 0.4, and 1 are
equivalent to 50%, 70%, and 100% accuracy, respectively.

To identify the best pairs of tasks for each modality
configuration, a procedure that takes into account both the
average and the variance of the 𝜅 sample across participants
was used. A two-tailed 𝑡-test was used to compare the 𝜅
values obtained with each pair of tasks to 0.4. Following this
test, the resulting 21 𝑡-statistics were ranked: the larger the 𝑡-
statistic, the greater the performance of a pair. Additionally, to
assess the impact of adding NIRS to EEG features, two-tailed
paired 𝑡-tests were used to compare the 𝜅 values obtained for
each pair of tasks of the EEG-only and NIRS-EEG cases. The
Holm-Bonferroni method was used to correct for multiple
comparisons [57].

The best features can also be analyzed using the SVM
weights of thesemodels as a feature rankingmetric [58]. Since
the features are normalized before training, the weights of
the linear model effectively represent the importance of each
feature. A feature with a high absolute weight can thus be
thought of as being more important than one with a weight
closer to 0. In the present study, the absolute values of the
weights of a particular feature were averaged and then ranked
against the other features.

3. Results

3.1. Descriptive Analysis
3.1.1. EEG. The ERD/ERS maps for each task in the low 𝛼,
high 𝛼, low 𝛽, and high 𝛽 bands are shown in Figure 3. In
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Figure 3: ERD/ERS maps for each task in the low 𝛼, high 𝛼, low 𝛽, and high 𝛽 bands. ERD/ERS values are computed using the intertrial
variance method [51] over the time window spanning 0.5 to two seconds after stimulus onset, using a baseline of −2 to 0 seconds before trial
onset. Blue represents ERS while red represents ERD. Note that color ranges differ between power bands.

mental rotation, high amplitude ERDpatternsweremeasured
in the occipital region for all four bands. A pattern of weak
ERS was observed over the two motor cortices in all bands
except low 𝛽. Word generation produced ERS patterns over
the left temporal lobe in the low 𝛼 and high 𝛼 bands. Patterns
elicited by mental subtraction showed consistently high ERD
in the occipital lobe, especially around PO7 and PO8 (both
among the most important features identified in Table 3). In
mental singing, ERD patterns over the left hemisphere in the
low and high 𝛽 bands were observed, as well as predominant
all-band ERS in the occipital region. Mental navigation led to
left hemispheric ERD in the low 𝛼 and low 𝛽 bands, as well
as left and right prefrontal ERD in the high 𝛽 band. In motor
imagery, left hemispheric ERD patterns were dominant in the
first three bands, except for a bilateral high 𝛼 ERD pattern in
the prefrontal lobe, similar to the one observed for NAV but
of lower intensity. Finally, face imagery led to ERDpatterns in
the frontal (again, similar to the ones observed for NAV and
MI in the high 𝛽 band) and temporal lobes, as well as high 𝛼
power in the occipital lobes.

3.1.2. NIRS. Figure 4 shows the average Δ[HbO], Δ[HbR],
and Δ[HbT] topographical maps for each task during the
time window spanning 10 to 15 seconds after stimulus onset.
Mental rotation led to a decrease in Δ[HbO] and Δ[HbT]
over the frontal lobe, as well as an increase in Δ[HbR]
over the prefrontal lobe. In turn, word generation yielded
an increase in Δ[HbO] over the left temporal lobe and a
decrease in Δ[HbR] over the left and right temporal lobes.
This was accompanied by a widespread increase in Δ[HbT]
over the posterior left hemisphere. In mental subtraction, an
increase in Δ[HbO] and Δ[HbT] over both the right and
left temporal lobes, as well as a decrease in the prefrontal
region, was observed. Oppositely, Δ[HbR] increased over the
midline but decreased in both temporal lobes.Mental singing
provoked a subtle decrease in Δ[HbR] over the temporal

lobes, similar to WORD and SUB. The mental navigation
task led to decreased Δ[HbR] levels over both temporal
lobes and increased Δ[HbO] levels in the same regions. A
large increase in Δ[HbO] and Δ[HbT] was observed over
the left hemisphere for the motor imagery task, without any
patterns of similar amplitude inΔ[HbR]. Finally, face imagery
led to an increase in the levels of all chromophores on the
midline. A consistently high Δ[HbR] pattern over the right
centroparietal region can also be seen in most tasks.

3.2. Subject-Wise Mental Task Classification. In this section,
the results of EEG-only and NIRS-only classification are
described, followed by the results of NIRS-EEG fusion clas-
sification. Specifically, the peak classification performance
across subjects and across task pairs, the evolution of kappa
across time, and the feature selection results are described.

3.2.1. EEG Only. The peak classification performance of
classifiers trained on one-second window EEG features, for
each subject and pair of tasks, is shown in Table 2. The peak
classification performance is defined as the highest 𝑘𝑎𝑝𝑝𝑎
obtained across the 15 seconds of task execution. All subjects
achieved satisfactory or high performance for most task pairs
andwith an average 𝜅 greater than 0.4.High performancewas
achieved for at least three different task pairs in all subjects
but S04 and S09, and three subjects (S10, S03, and S06)
showed an average peak 𝜅 greater than 0.7.

Twelve pairs of tasks yielded 𝜅 values significantly greater
than 0.4. The seven best performing task pairs were combi-
nations of a brain teaser and an imagery task: either ROT or
SUB with SING, FACE, MI, or NAV. For instance, the ROT-
MI pair had an average 𝜅 of 0.83. However, pairs of dynamic
and static imagery tasks, including SING, FACE, NAV, and
MI, showed a consistently lower 𝜅; for example, SING-FACE
led to the lowest average 𝜅 of 0.4.
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Table 3: Top five features for the five best task pairs of each modality combination, using the average absolute values of the SVM weights
as ranking metric. The models trained on the best performing one-second window were used (three to four seconds after stimulus onset for
EEG-only and 11 to 12 seconds for NIRS-only and fusion of signals).

(a) EEG only

ROT-MI ROT-FACE ROT-SING SUB-MI SING-SUB
(1) pwr high alpha O2 pwr high alpha O2 pwr t4 30 P8 pwr high alpha PO7 pwr alpha/beta PO8
(2) pwr low alpha CP6 pwr t4 30 P10 pwr t4 30 O2 pwr alpha/beta Iz pwr total PO7
(3) pwr high alpha CP6 pwr alpha/beta O1 pwr high alpha PO8 pwr total PO8 pwr high alpha Iz
(4) pwr high alpha O1 pwr high alpha PO7 pwr t4 30 P10 pwr theta/beta O2 pwr total PO8
(5) pwr t4 30 P8 pwr low beta P7 pwr alpha/beta PO8 pwr theta/beta P9 pwr total P7

(b) NIRS only

ROT-MI ROT-SING ROT-FACE SUB-MI ROT-WORD
(1) mean S15-D1 HbO mean S15-D1 HbO mean S15-D1 HbO mean S14-D22 HbR mean S15-D5 HbO
(2) mean S10-D17 HbR mean S1-D2 HbT mean S10-D14 HbO mean S15-D1 HbR mean S13-D24 HbR
(3) mean S1-D2 HbT mean S6-D9 HbR mean S3-D6 HbR mean S15-D5 HbT mean S16-D17 HbR
(4) mean S13-D24 HbR mean S13-D22 HbR mean S10-D17 HbO mean S15-D1 HbO mean S13-D22 HbO
(5) mean S14-D24 HbR mean S14-D24 HbR mean S10-D17 HbR mean S1-D1 HbO mean S13-D24 HbO

(c) EEG-NIRS fusion

ROT-FACE ROT-MI ROT-SING SUB-MI SING-SUB
(1) mean S15-D1 HbO pwr theta/beta O2 mean S15-D1 HbO mean S14-D22 HbR pwr high alpha O2
(2) pwr t4 30 O2 pwr high alpha O1 pwr high alpha O2 pwr high alpha PO7 pwr t4 30 P9
(3) pwr theta/beta O2 pwr t4 30 O2 pwr t4 30 P9 pwr t4 30 O2 pwr high alpha P10
(4) pwr theta/beta PO7 pwr t4 30 PO8 pwr t4 30 O2 pwr high alpha O2 mean S15-D1 HbO
(5) pwr high alpha PO8 mean S14-D24 HbR pwr theta/beta O1 pwr high alpha PO8 pwr low alpha P9

HbO

HbR

HbT

−1

0

1

−5

0

5

−1

0

1

ROT WORD SUB SING MINAV FACE

×10−5

×10−5

×10−6

Figure 4: Average HbO, HbR, and HbT maps for each task. Reported HbO, HbR, and HbT values are normalized to their baseline values
and averaged across the time window spanning 10 to 15 seconds after stimulus onset. Red represents an increase in concentration of the
chromophore, while blue represents a decrease (in mmol/L).
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Figure 5: EEG-only classification 𝜅 over nonoverlapping one-
second windows for the six best task pairs. The classification 𝜅
obtained with one-second windows was averaged over participants
for each task pair. Each point is aligned with the middle of the
window from which the features were extracted. Baseline 𝜅 values
were not significantly greater than 0 (one-tailed 𝑡-tests).

The average classification 𝜅 over subjects, computed
across one-second windows, is shown in Figure 5 for the six
best task pairs. 𝜅 values increase quickly after stimulus onset
and reach a peak around four seconds later, as seen also in
Table 2. The performance then decreases gradually over the
remaining 11 seconds of the trial and returns to chance level
three seconds after the end of the task.

The 𝑙
1
-SVM algorithm selected a minimum of zero and a

maximumof 12 EEG features, with amedian of seven features.
The casewhere zero features are selected simplymeans that all
the SVMweights are zero, so that the classifier always outputs
the same decision, dependent on its bias. During the pre-
and postepoch baseline, only around one or two features are
selected. This number increases quickly after stimulus onset
and remains stable across the 15 seconds of the epoch. It is
interesting to note that S04, who obtained the lowest average
peak 𝜅, also consistently had the lowest number of selected
features.

The five most important features following the approach
described in Section 2.7 are listed in Table 3 for the five
task pairs that produced the highest performance. Note
that 𝛼- and 𝛽-related features showed strong importance,
while 𝜃 and wide-band features were typically not highly
ranked.Most of these features were extracted from electrodes
located in the parietal and occipital regions. To support this
observation, the average absolute values of the SVM weights
are visualized on a topographical map of the head to show the
importance of each channel according to the trained classifier
(see Figure 6). In almost every case, channels in the occipital
and parietal regions showed the highest feature importance.
High performance pairs (first three rows in Figure 6) all
displayed maximum feature importance for channels at the

back of the head. A pattern of high importance for channels
PO7 and PO8 can be noticed in many pairs (i.e., ROT-FACE,
SUB-FACE, ROT-NAV, SING-SUB, and WORD-NAV).

3.2.2. NIRS Only. The peak classification performance of
classifiers trained on one-second window NIRS features, for
each subject and pair of tasks, is shown in Table 4. The
best overall 𝜅 is again obtained by S10, with 13 different
pairs of tasks reaching high performance. S07, S04, and S11,
respectively, ranked fifth, last, and seventh in the EEG-only
analysis; all achieved an average 𝜅 above 0.50. On the other
hand, S03, who ranked second in the EEG-only analysis, was
ranked second to last in theNIRS-only case.The average peak
time across task pairs is 11.5 seconds and again shows high
variability.

Fifteen pairs of tasks were classified with average 𝜅 above
0.4, but only three yielded values significantly greater than
0.4. The best performing pairs were mostly a combination
of a brain teaser and an imagery task (ROT-MI, ROT-
SING, ROT-FACE, and SUB-MI), with the exception of ROT-
WORD. Pairs combining two imagery tasks, such as SING-
MI,NAV-FACE, FACE-MI, and SING-FACE,were constantly
classified with the lowest average 𝜅. Similar to the EEG-
only case, ROT-MI achieved top-3 performance, while FACE-
MI and SING-FACE achieved the lowest. ROT and SUB
tasks were the most useful overall when paired with passive
imagery tasks, whereas pairs of imagery tasks were all under
the 0.4 𝜅 threshold.

The average classification 𝜅 over subjects, computed
across one-second windows, is shown in Figure 7 for the six
best task pairs. The 𝜅 values of the best task pairs oscillated
around 𝜅 = 0 during the baseline and the first five seconds
of the trial. 𝜅 values then started rising approximately five
seconds after stimulus onset and reached a plateau around
six seconds later, which is consistent with the expected
hemodynamic response delay [8]. As shown in Table 4, this
leads to an average peak time of 11.5 s. Performance decreased
after approximately eight seconds and did not return to
preepoch baseline levels in the five seconds after the end of
the trial.

When applied to NIRS features, the 𝑙
1
-SVM algorithm

selected a minimum of zero and a maximum of 11 features,
with a median of three features. Only around one feature was
selected during the preepoch baseline and up to five seconds
after stimulus onset, after which this number increased and
remained more stable until the end of the task and the
postepoch baseline. Subject 10, who obtained the highest
average peak 𝜅, also consistently had the highest number of
selected NIRS features.

The five most important features are listed in Table 3 for
the five best task pairs. Sources 13 (CCP6) and 14 (PCP8)
over the right parietal cortex and sources 15 (AF7) and
16 (AF8) over the right and left prefrontal cortex led to
the highest ranking scores. Δ[HbR] and Δ[HbO] features
generally showed more importance than Δ[HbT] features.
To further identify regions of interest, the average absolute
values of the SVM weights are visualized on a topographical
map of the head in Figure 8. Channels in the prefrontal region
showed consistently high importance for pairs including
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Figure 6: Topographical maps of the average absolute value of the SVMweights, when trained on EEG features only. Darker regions are those
that are more important when classifying each task pair. Note that distinct color ranges are used for each map. This figure uses the models
trained on the one-second window occurring three to four seconds after stimulus onset, which corresponds to the average peak time for EEG
classification (see Table 2). The pairs are plotted in descending order of average 𝜅 (left to right and top to bottom) as presented in Table 2.
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Figure 7: NIRS-only classification 𝜅 over nonoverlapping one-second windows for the six best task pairs. The classification 𝜅 obtained with
one-second windows was averaged over participants for each task pair. Each point is aligned with the middle of the window from which the
features were extracted. Baseline 𝜅 values were not significantly greater than 0 (one-tailed 𝑡-tests).

ROT and SUB tasks, whereas channels in the left prefrontal
region showed consistent high feature importance in pairs
that include the WORD task.

3.2.3. Fusion of Signals. The peak classification 𝜅 values
obtained for models trained on concatenated EEG and NIRS
features are shown in Table 5. The three best pairs of tasks
remained the same as for EEG-only classification (ROT-
FACE, ROT-MI, and ROT-SING), as did the three worst
pairs (SING-MI, FACE-MI, and SING-FACE). Again, most
of the highest ranked task pairs were a combination of a
brain teaser and an imagery task. Moreover, the task-wise
𝜅 values exhibited the same top-7 ranking as for EEG-
only classification. Subject-wise, the four best participants
(S10, S03, S07, and S06) were the same as for EEG-only
classification.Theother five subjects saw their ranking change
by one or two positions. On the other hand, the peak time
increased to an average of 6.4 seconds.

The average classification 𝜅 over subjects, computed
across one-second windows, is shown in Figure 9 for the
six best task pairs. Two peaks can be observed: first, at
three seconds after trial onset, corresponding to the peak
𝜅 obtained with EEG features alone; and second, at around
11 seconds after trial onset, corresponding to the peak 𝜅
obtained with NIRS features alone. More specifically, when
comparing these values to the ones obtained with EEG alone,
we see that the improvement seems small in the first eight
seconds of the task (as reported in Table 5) but is more
noticeable in the last five seconds of the task, wheremore than
one NIRS feature was originally selected.

To get a better idea of how feature fusion of EEG and
NIRS impacted classification performance, Table 6 shows the
increase in peak 𝜅 obtained by adding NIRS to EEG features,
evaluated at the time windows where NIRS classification
yielded the highest performance (as reported in Table 4).The

average increase was of 0.20, while the highest increase was
of 0.84, achieved by S10 on task pair SING-SUB. Average
performance gains were the highest for S04 (Δ𝜅 = 0.40), S11
(Δ𝜅 = 0.30), and S07 (Δ𝜅 = 0.28).

The seven best task pairs included either WORD or NAV
(or both), while task pairs that includedFACEorMIbenefited
less from fusion on average.

The 𝑙
1
-SVM algorithm selected a minimum of zero and

a maximum of 15 features with a median of seven features
when trained on the concatenated EEG-NIRS dataset. The
behavior is almost identical to that exhibited by EEG-only
models, until around 11 seconds after stimulus onset, where a
slight increase in the number of selected features is observed.
This effect is particularly apparent for S04, who benefited the
most from the fusion.

The five most important features per task are listed in
Table 3 for the five best task pairs. Most of the previously
chosen features are selected again. Figure 10 shows the relative
importance of each subtype of feature (band power and
chromophore type) for the same six task pairs. We see that 𝛼-
related features were generally the most important, followed
by 𝛽-related features. On the other hand, the 𝜃, 4–30Hz,
and 0.1–100Hz bands were usually less important. In NIRS,
HbR-related features showed the strongest importance (while
still inferior to 𝛼-related features), followed closely by HbO-
related features. HbT did not show much importance. In
some participants (S03, S07, and S11), HbR-related features
were consistently more important than HbO-related ones,
while it was the opposite for S04 and S09 (results not shown).

3.3. Questionnaire. The average ratings, as well as the task
rankings, are shown in Figure 11. Overall, the SUB task
induced the most mental and temporal load, effort, and
frustration, led to the poorest perceived performance, and
was the least preferred. Other brain teasers (WORD and
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Figure 8: Topographical maps of the average absolute value of the SVM weights, when trained on NIRS features only. Darker regions are
those that are more important when classifying each task pair. Note that distinct color ranges are used for each map. This figure uses the
models trained on the one-second window occurring 11 to 12 seconds after stimulus onset, which corresponds to the average peak time for
NIRS classification (see Table 4). The pairs are plotted in descending order of average 𝜅 (from left to right and top to bottom) as presented in
Table 4.



Computational Intelligence and Neuroscience 17

0.8

0.6

0.4

0.2

0.0

−0.2
0 5 10 15

Time (s)



SING-SUB

SUB-FACE
SUB-MI

ROT-SING

ROT-MI
ROT-FACE

Figure 9: EEG and NIRS classification 𝜅 over nonoverlapping one-second windows for the six best task pairs. The classification 𝜅 obtained
with one-second windows was averaged over participants for each task pair. Each point is aligned with the middle of the window from which
the features were extracted. Baseline 𝜅 values were not significantly greater than 0 (one-tailed t-tests).
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ROT) induced amedium load, effort, and frustration butwere
ranked high against other tasks in terms of preference. On
the other hand, dynamic imagery tasks (SING, NAV, andMI)
induced a relative low load, did not require much effort, and
were the least frustrating, while leading to high perceived
performance but mixed preference rankings. Finally, the
only passive imagery task (FACE) required high mental
load and effort but low temporal load and led to slightly

lower performance and higher frustration levels, while being
ranked among the least preferred tasks.

4. Discussion

4.1. Optimal Mental Task and Combinations. In this work,
we studied seven different mental tasks (mental rotation,
word generation, mental subtraction, mental singing, mental
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navigation, motor imagery, and face imagery) from an
electrophysiological and neurohemodynamic perspective in
order to uncover the most promising contenders. In the
following sections, we discuss the results obtained with each
mental task individually and highlight its potential usability
in an online BCI.

4.1.1. Mental Rotation. Task pairs with mental rotation were
always ranked among the best pairs, in all modality config-
urations. Pairs including ROT and any task other than SUB
yielded peak 𝜅 higher than average. These results confirm
the findings of previous studies [21, 33], in which ROT
was also among the best tasks. However, in our study ROT
was performed in a slightly different way: participants were
shown two figures and had to rotate one to evaluate if it was
the same as the other one or a mirrored version, instead of
simply imagining a single figure rotating. The introduction
of a clear goal puts this task in the brain teaser category with
WORD and SUB, which were previously shown to yield high
performance. However, the average increase in performance
brought in by feature fusion was among the lowest of any
tasks.

The features selected for the high performing pairs using
ROT were consistently more important at the back of the
head in EEG and in the left prefrontal region for NIRS.
The ERD/ERS analysis supports this observation: high levels
of ERD were observed in the occipital regions in all four
plotted bands, suggesting that these regions were recruited
during mental rotation. In another study [21], similar ERD
patterns were found for the low 𝛽 band between 0.5 and
2 seconds after the beginning of the task, with additional
ERD in the prefrontal region. A distinct pattern over the
two motor cortices can be seen in both 𝛼 and 𝛽, suggesting
motor imagery might have been used by some participants to
help mentally rotate the L-shaped figures. The first findings
are confirmed by a review looking at 32 fMRI and Positron

Emission Tomography (PET) neuroimaging studies that con-
cluded that the posterior occipital cortex was consistently
activated during mental rotation [60]. In this review, the
author also notes the activation of focused prefrontal cortex
regions and more precisely the left inferior frontal cortex
for studies that encouraged motor simulation (i.e., when
participants were asked to imagine manipulating the objects
to be rotated). Although this was not precisely the case here,
participants were not given specific instructions as to how
they should perform the rotation, and so some might have
used this approach, explaining the strong HbO decrease in
the prefrontal regions.

Although ranked as third most demanding, frustrating,
and effort-inducing task, ROT was often among the three
user-preferred tasks. Therefore, even though ROT might
induce fatigue more rapidly than other tasks, its high per-
formance in both NIRS and EEG and its good preference
ranking make it an excellent candidate for a BCI.

4.1.2. Word Generation. Word generation led to above aver-
age classification performance for all three modality configu-
rations and usually ranked third or fourth among tasks.These
results are similar to those observed in EEG for WORD pairs
in another study [21]. The fusion proved to be particularly
useful for WORD. Indeed, four task pairs with WORD
yielded significant 𝜅 increases with EEG-NIRS fusion.

The selected features were predominantly in the left
temporal region in EEG and in the left frontotemporal
region in NIRS. In terms of ERD/ERS, this effect was mostly
noticeable in the low 𝛼 and high 𝛽 bands, in which the left
temporal region undergoes desynchronization. The low 𝛽
pattern characterized by desynchronization in the occipital
and central left regions is very similar to the one found in
Friedrich et al. (2012) [21]. The temporal regions were also
highlighted in NIRS, with strong HbO increase over the left
temporal lobe and HbR decrease over both sides. Again,
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these findings are further confirmed by recent fMRI studies
focused on anatomical regions supporting different aspects of
language [61]. Indeed, Price found that the leftmiddle frontal
cortex and the left pars operculariswere consistently activated
duringword retrieval tasks.These brain areas overlapwith the
regions identified in our results.

Similarly to ROT, WORD ranked as the second most
demanding, frustrating, and effort-inducing task but was
still among the three user-preferred tasks. Contrary to ROT
though, participants often rated their performance for the
WORD task as low. This might be explained by the purely
random selection of the first letter from which words had to
be generated: some letters are rarely found at the beginning
of a word (such as Z, X, or Q), and so participants who were
given these letters probably performed worse. The difficulty
of the WORD task would need to be adjusted in a future
implementation by limiting the selection of some rarer letters.
Overall, word generation is a good candidate for a BCI due
to its high performance in both NIRS and EEG and its good
subjective evaluation.

4.1.3. Mental Subtraction. Mental subtraction ranked second
in terms of average classification performance for all three
modality configurations. SUB is the task that benefited the
most from the feature fusion, with two of the largest average
increases in 𝜅. These results confirm the findings of [21] in
EEG, but not of [33] in NIRS. Indeed, Hwang et al. found
mental subtraction to be on par with other imagery tasks
(SING, MI) in terms of how often it led to classification
accuracy above 70%. However, the authors defined their SUB
task as the successive subtraction of two “simple numbers”
(suggesting one-digit numbers) from a three-digit number,
which is simpler than the task used in our study. Moreover, a
mentalmultiplication task (of two two-digit numbers), which
was not used here, led to the best performance in their work.
Since some fMRI studies have found the two operations to be
similarly encoded in the brain (although some studies found
differences) [62], and since the difficulty level of Hwang et
al.’s multiplication task might be closer to our subtraction
task, we hypothesize that they could have achieved similar
performance with harder subtractions.

The selected features revealed consistent importance at
electrode positions PO7 and PO8 in EEG and in the pre-
frontal and right temporoparietal regions inNIRS.This is also
seen in the ERD/ERS patterns as a strong desynchronization
in low and high 𝛼 as well as low 𝛽 in the occipitoparietal
regions and part of the prefrontal regions. FMRI studies
identified the involvement of the precuneus, located in the
midline portion of the centroparietal region, and of frontal
regions as commonly activated during the execution of
different arithmetic operations [63]. Interestingly, in the same
study, Fehr et al. found a statistically significant increase
in activity in the bilateral inferior parietal regions when
comparing a complex subtraction task to a simple one, which
could explain these clear patterns of importance for PO7
and PO8 features. As for the prefrontal patterns found in
NIRS, theymight be related to an increased workingmemory
load, which would result in the activation of the dorsolateral
prefrontal cortex [64]. The patterns of HbR decrease in both

temporal lobes being very similar to the ones observed in
WORD; we hypothesize that participants might have used a
speech-based strategy to perform the subtractions.

As a brain teaser, SUB ranked as the most demanding,
frustrating, and effort-inducing task, making it the worst
perceived for performance and the least preferred task. Before
using SUB in a BCI, it might be useful therefore to further
assess its optimal difficulty level to avoid tiring or frustrating
the user. Additionally, alternative arithmetic operations such
asmental multiplicationmight yield better results and should
therefore be studied [33], again at optimal difficulty levels.
In either case, SUB can definitely benefit from a EEG-NIRS
fusion approach and is thus recommendable if such a system
is already in use.

4.1.4. Mental Singing. Task pairs using mental singing led to
below average performance for all three modality configu-
rations. Analogous results were obtained for EEG [21] and
for NIRS [33] in previous studies comparing many mental
tasks. Similarly, in a prefrontal NIRS study, Power et al. (2011)
compared the performances of rest-SING and rest-SUB pairs
and found that mental singing led to poorer performance on
average [28].

It is difficult to determine if consistent brain regions
were recruited in the mental singing task based on the
feature importance analysis, as in both EEG and NIRS the
topographical maps show varying patterns for pairs using
SING. Indeed, in EEG, the following regions all showed
strong importance: parietooccipital (with ROT), bilateral
parietal (with SUB), left parietal and right occipital (with
NAV), left temporal (with SING), leftmotor cortex (withMI),
and occipital (with FACE). Similar disparate patterns were
found in NIRS. This high variability in importance of brain
regions is most likely due to the low discriminability of the
physiological processes behind mental singing, especially in
the studied modalities, that are essentially limited to cortical
structures. Indeed, if little information from singing could
be decoded in EEG and NIRS, a classifier would focus on
features provided by the second task to make its decision
and thus would not choose consistent features across pairs
containing SING.

Neuroimaging studies of covert singing identified activa-
tion in the frontoparietal regions (bilateralmotor cortices and
Broca’s area) [65, 66]. This could explain the ERD patterns
in the low and high 𝛽 band located in the left hemisphere
and the similar HbR patterns over the temporal and central
lobes. These studies also provide insights into why mental
singing did not produce distinguishable patterns: first, Gunji
et al. (2007) used MEG to compare the oscillatory processes
of humming, speaking, and overt and covert singing and
found that covert singing consistently recruited the least
cerebral area [66]. A very small area of activation will make
it harder for modalities such as EEG and NIRS to pick
up relevant activity when restricted to a small number of
sensors. Second, in their study of opera singers, Kleber et al.
(2007) found significant activation of emotion-related deep
brain structures such as the insula, the amygdala, and the
hippocampus [65]. Since in our study we specifically asked
the participants to focus on the emotions produced by singing
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a song they personally chose, it is possible that these regions
were activated but that the depth limitations of EEG and
NIRS prevented these patterns from being measured. The
strong 𝛼 and 𝛽 ERS visible in Figure 3 further supports
this hypothesis. Indeed, the high increase in these oscillatory
processes indicates that most cortical structures were not
activated during singing. The strong ERS patterns in the
occipital region thus suggest the cortical idling of visual
processing centers during mental singing.

SING induced the lowestmental demand, effort, and frus-
tration and was reasonably well ranked by participants. Since
pairing SING with brain teasers led to high classification
performance, it seems reasonable to use it in a BCI context.
Nevertheless, because of the apparent low discriminability
of mental singing in EEG and NIRS, it would be important
to first assess how it compares to baseline data: if it is not
different enough from the baseline, this task could eventually
provoke false negatives in a BCI using a no-control state.
It is to be noted that this analysis was not performed here
due to baseline periods being used for normalization of the
features, thus limiting the significance of such an analysis on
our dataset.

4.1.5. Mental Navigation. Task pairs using mental navigation
led to below average performance for all three modality
configurations, making them very similar in terms of per-
formance to pairs including mental singing, and yielded
the lowest average 𝜅 increase in fusion. Similar results were
obtained in another study [21] for EEG-only classification,
whereas no previousNIRS results were found in the literature.

ERD/ERS patterns for mental navigation showed mostly
left hemispheric activation, particularly in the low 𝛼 and low
𝛽 bands. These results are consistent with the low 𝛽 patterns
found in Friedrich et al. (2012) above the left hemisphere [21]
and are further supported by the results of an fMRI study
looking at 16 subjects engaged in mental navigation of famil-
iar places [67]. In their work, Ino et al. reported statistically
significant activation in the left premotor area, the left angular
gyrus (parietal lobe), and deeper brain structures such as the
bilateral retrosplenial areas, parts of the hippocampus, and
the cerebellum [67].These patterns are not easily discerned in
the feature importance topographical maps, where different
brain regions seem informative for each pair in both EEG
and NIRS, as was the case for SING. However, Ino et al. used
a more complex navigation task in which participants were
instructed to imagine walking through Kyoto while counting
the number of turns theymade. Since both our study and [21]
obtained poor performance with this task, we hypothesize
that increasing the difficulty level might have helped produce
stronger and clearer activation.

NAV ranked as the third least demanding, frustrating,
and effort-inducing task and led to high perceived perfor-
mance. Ranked as fourth favorite task on average, NAV, like
SING, should be considered for implementation in a BCI
mostly because it led to good performance when paired with
brain teasers. Increasing the difficulty level of the task might
however lead to superior performance. Finally, its low 𝜅
increase in the multimodal case makes it less useful to use
with a NIRS-EEG approach.

4.1.6. Motor Imagery. Motor imagery is the most often used
mental task in the hBCI literature [11], providing a wealth
of previous articles to compare our results to. Whereas
MI was the second worst task in NIRS, it achieved third
and fourth best performance in EEG-only and EEG-NIRS
configurations, respectively. MI was also the second worst
task in terms of performance improvement when feature
fusion was used. Although using a different processing and
classification pipeline, Fazli et al. worked toward a similar
hybrid EEG-NIRS-BCI as in our study but only evaluated
the use of a left-hand versus right-hand MI paradigm [40].
The authors found that EEG-NIRS fusion could improve
the classification accuracy by 5% on average in 90% of
subjects, which is hard to compare to our study because
of methodological differences. However, we also noted a
marked improvement across participants (Δ𝜅 = 0.13), even
though this improvement was among the lowest in our seven
tasks.

Although patterns induced by MI are most likely
obscured by those of brain teasers in most pairs (as was the
case for SING and NAV), feature importance analysis shows
the importance of left and rightmotor cortex features inNAV-
MI, SING-MI, and FACE-MI in EEG. This phenomenon
seems to occur only for the NAV-MI pair in NIRS, but this
might reveal in fact a pattern proper to NAV, as the NAV-
FACE map shows similar feature importance. The ERD/ERS
patterns in the first three bands showed activation of the
motor cortices, with the left hemisphere being predominant,
as expected from the right-hand movement to be imagined.
Classical BCI experiments have shown this pattern multiple
times [68, 69], and the particular pattern in low 𝛽 is very
similar to the one reported in [21]. This is further supported
by strong HbO and HbT increases over the left hemisphere.
However, desynchronization of both the left and right frontal
cortices is visible in the high 𝛽 band, a phenomenon not
reported in the aforementioned literature. Similar bilateral
frontal ERD patterns were found for almost every task in
high 𝛽, suggesting that there might have been an unexpected
brain activity-inducing event affecting this band. As is the
case for SING, strong ERS in the low and high 𝛼 bands,
predominantly in the occipital lobe, suggests that visual
functions were not recruited during motor imagery.

MI induced either the lowest or second lowest demand,
effort, and frustration, yielded the highest perceived perfor-
mance, and was ranked as the most pleasant task on average.
Pairing MI with brain teasers led to high classification
performance in our case and was shown in the literature to
yield good EEG and NIRS performance when paired with
another imagery task (such as another MI task performed
with the other hand) [40]. We thus conclude that MI is a
useful task that deserves its predominant place in the BCI
literature.

4.1.7. Face Imagery. Face imagery was the worst task in all
modality configurations. Fusion improved the classification
performance of FACE, but not differently from most other
tasks.These results are in line with those of Friedrich et al. for
EEG [21], whereas no reference for NIRS-based classification
of face imagery could be found.
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The main brain structure known to be activated specif-
ically in response to face stimuli is the fusiform gyrus,
found in the posterior part of the cortex [70]. In addition,
in reaction to famous faces, activation of subsets of the
inferior occipital gyri, lateral fusiform gyri, superior temporal
sulcus, and amygdala was identified in [70]. The fact that the
main structure recruited (fusiform gyrus) is farther from the
cortical layers accessible with EEG and NIRS could certainly
account for the difficulty in classifying FACE tasks.This could
also explain the disparate feature importance topographical
patterns observed in both EEG and NIRS.

The ERD/ERS pattern observed in the low 𝛽 band was
similar to the one reported in [21]: desynchronization of
the central and frontal lobes, with synchronization of the
temporal lobes. Moreover, 𝛼 bands showed distinctly high
power in the occipital lobes, which could be explained by
some low mental load-induced drowsiness. This is especially
relevant since some of the brain structures mentioned above
are located in the parietal and occipital brain regions.

Although inducing low temporal demand, the FACE task
was almost on par with brain teasers for mental demand and
effort, suggesting participants found it difficult to imagine
the face of their closest friend. Falling among the three
least preferred tasks, FACE is however not a good candidate
for a BCI, as it produced consistently low unimodal and
multimodal performance, and was generally not particularly
appealing to users.

4.1.8. Best Task Pairs. Based on these results, we conclude that
out of the 21 task pairs studied in our study combinations of
a brain teaser (ROT, SUB, or WORD) and an imagery task
(MI, FACE, NAV, and SING) are most likely to yield good
performance. This confirms the previous results of previous
studies [21, 33]. More specifically, the ROT-MI combination
performed the best in our experiments. In the case where a
NIRS-EEG system is available for the implementation of the
BCI, our results show that pairs based on WORD and NAV
might benefit the most from feature fusion.

4.2. Evaluation of Fusion Performance in a Realistic Context.
A few methodological points would have to be approached
differently in a realistic context application. First, the analysis
of the effect of fusion on classification performance was done
in two parts. The peak 𝜅 achieved by fusion was compared
to the peak 𝜅 of EEG alone, leading to small increases on
the order of Δ𝜅 = 0.02. By looking at the evolution of
performance across time (Figures 5, 7, and 9), NIRS was
found to provide additional information around 11 seconds
into the task. We thus chose to report the performance
increase for the one-second window between 11 and 12
seconds after stimulus onset to highlight the added value of
a fusion approach. In contrast, many NIRS studies extracted
the same feature over windows of many different sizes and
combined them as different features of the same mental task
instance [28–30, 33, 34]. While this approach can hamper
classifier performance by increasing the dimensionality of the
input, it also provides more information and thus can lead to
better accuracy.

Another critical point highlighted in many of the afore-
mentioned studies is the hemodynamic response delay in
NIRS. Indeed, in our study, we found it took around 11
seconds for NIRS features to yield peak performance. This
is a long time to wait when trying to operate an active BCI,
making a unimodal NIRS-BCI poorly usable in most con-
texts. In turn, some participants saw their EEG performance
decrease steadily across a trial, probably due to them being
bored or tired, reducing the quality of their mental imagery
and solving skills. However, by combining NIRS with EEG,
we could reach satisfactory performance in the first seconds
after stimulus onset, while still benefiting from increased
performance later in the trial.

Despite these limitations, several applications could bene-
fit from the peculiarities of our hBCI paradigm. For example,
one could design a BCI where a decision has to be sustained
over a few seconds before an output is given to ensure a
certain level of certainty. Our system would be useful to
recognize a specific mental task over longer periods of time,
while also providing increased classification performance.

Another example of how the fusion of EEG and NIRS
features might be useful was shown in our analysis for
participant S04. Indeed, this participant had the lowest EEG-
only performance and did not reach peak 𝜅 above 0.7 for a
single task pair when using EEG features only. However, this
participant’s NIRS-only performance proved much better,
and when EEG and NIRS were combined S04 benefited
from the largest performance increase across participants and
achieved high performance in seven task pairs. This pattern
was observed for many participants: usually, one modality
led to better performance than the other, and combining
both EEG and NIRS allowed improvements in many task
pairs. For example, this means a BCI user with poor EEG-
only control would still be able to achieve high performance,
thus potentially helping tackle the so-called BCI illiteracy
problem.

5. Conclusion

In this work, we investigated the use of two noninvasive
functional neuroimaging techniques, EEG and NIRS, for the
binary classification of seven different mental tasks. We iden-
tified optimal mental task pairs across nine participants, for
EEG-only, NIRS-only, and EEG-NIRS fusion classification
schemes, and assessed the impact of a multimodal approach
on the classification performance.

Pairs formed of a brain teaser, that is, a mental task that
requires problem-solving skills (ROT, SUB, andWORD), and
an imagery task (MI, FACE, and SING) consistently yielded
the best classification performance for unimodal EEG and
NIRS schemes, as well as for a multimodal fusion scheme.
In contrast to unimodal performance results on par with
those of previous reports, the multimodal approach led to
an average increase of 0.03 in peak Cohen’s 𝜅 when using
features extracted from one-second windows (equivalent to
a 1.5% accuracy increase in balanced settings). Similarly, a
0.20 increase in 𝜅 (10% accuracy increase) was obtainedwhen
focusing on the optimal NIRS windows.
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The analysis of the trained classification models unveiled
interesting spatial patterns of brain activity and the impor-
tance of feature subtypes in modality fusion. Particularly, 𝛼-
and 𝛽-related EEG features proved to be the most useful, fol-
lowed by HbO or HbR amplitude NIRS features, depending
on the individual. The occipital and parietal regions yielded
the most important EEG features, whereas NIRS features
extracted from the prefrontal and frontal regions were the
most informative. Our proposed feature analysis approach
made it possible to delve deeper into the classification results,
and shed light on the role of different neurophysiological
modalities toward more efficient and flexible BCIs.

An important future research direction should be the
implementation of online BCIs based on the optimal mental
task pairs we identified. The restrictions induced by a real-
time implementation (setup time, computing efficacy, robust-
ness to noise, etc.) will all have to be overcome to yield a truly
usable brain-computer interface.
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Silva, “Mu rhythm (de)synchronization and EEG single-trial
classification of different motor imagery tasks,” NeuroImage,
vol. 31, no. 1, pp. 153–159, 2006.

[70] A. Ishai, J. V. Haxby, and L. G. Ungerleider, “Visual imagery
of famous faces: effects of memory and attention revealed by
fMRI,” NeuroImage, vol. 17, no. 4, pp. 1729–1741, 2002.



Submit your manuscripts at
https://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


