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Brain-Computer Interfaces (BCIs) are systems that establish a direct communication

pathway between the users’ brain activity and external effectors. They offer the potential

to improve the quality of life of motor-impaired patients. Motor BCIs aim to permit severely

motor-impaired users to regain limb mobility by controlling orthoses or prostheses.

In particular, motor BCI systems benefit patients if the decoded actions reflect the

users’ intentions with an accuracy that enables them to efficiently interact with their

environment. One of the main challenges of BCI systems is to adapt the BCI’s signal

translation blocks to the user to reach a high decoding accuracy. This paper will

review the literature of data-driven and user-specific transducer design and identification

approaches and it focuses on internally-paced motor BCIs. In particular, continuous

kinematic biomimetic and mental-task decoders are reviewed. Furthermore, static and

dynamic decoding approaches, linear and non-linear decoding, offline and real-time

identification algorithms are considered. The current progress and challenges related to

the design of clinical-compatible motor BCI transducers are additionally discussed.

Keywords: brain-computer interfaces, continuous decoders, discrete decoder, dynamic/static, linear/non-linear,

feature extraction

1. INTRODUCTION

Brain-Computer Interfaces (BCIs) are systems that permit their users to utilize their brain activity
to control external devices without using their natural neuromuscular pathways (Leuthardt et al.,
2006b; Mak and Wolpaw, 2009). BCIs are particularly being investigated for use by severely
motor-impaired patients; for example, patients suffering from neuromuscular disorders such as
amyotrophic lateral sclerosis (Sellers and Donchin, 2006) or patients who have sustained a spinal
cord injury (WangW. et al., 2013). BCIs aim to overcome some of the resulting motor dysfunctions
by establishing a new communication pathway between the patient’s brain and an effector [e.g., a
robotic arm (Wodlinger et al., 2015), a speller (Yin et al., 2015), or a wheelchair (Rebsamen et al.,
2006)]. The type of effector integrated into a BCI system depends on the goal of the BCI, such as:
procuring patients the ability to communicate, to exert control over their environment, to displace
themselves, or to recover some motor control over their limbs (Mak and Wolpaw, 2009).

The present review focuses on motor BCIs, which endeavor to restore limb mobility in severely
motor-impaired patients by providing them with control over orthoses or prostheses (Figure 1A).
While motor BCIs rely on the same components as other BCIs (e.g., BCIs which offer patients
cursor control for communication or environmental purposes), they present particular challenges
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FIGURE 1 | (A) Example of an internally-paced motor BCI system. The user generates brain patterns specific to the movement that he or she intends to execute.

After having been acquired by the acquisition system, his or her neural signals are processed and converted into commands used to control the effector’s state (e.g.,

its position, velocity, aperture, etc.). (B) BCI components. Most BCI systems include a neural signal acquisition system, a transducer, an effector, and a feedback

system. The transducer is typically composed of a neural feature extraction block and a decoder, and it optionally includes a pre-processing and a post-processing

block. It is generally adapted to the user. The decoder’s user-specific identification/calibration block is fed with both neural features and the corresponding mental task

or kinematic parameters (e.g., instructions provided to the patient).

due to specific constraints associated with the control of physical
effectors. A high accuracy is particularly required to control
prostheses or orthoses. Consequently, research on motor BCIs
has only recently taken off, while communication BCIs have
already been commercialized. The first demonstrations of the
feasibility of neurally driven cursor control (Vidal, 1977) were
quickly followed by studies that were completed with invasive
neural signals and suggested that complex neural control over
protheses or orthoses could be achieved by exploiting both the
natural encoding of trajectory kinematics in neuronal activity
(Georgopoulos et al., 1982) and brain plasticity (Schmidt et al.,
1978). By the early-2000s, trajectory-tuned features had not
been profitably exploited in motor BCI systems and complex
effector control had not yet been achieved. Furthermore, only
simplistic prosthetic control based on motor imageries detected
through non-invasive neural signals had been reported (Guger
et al., 1999; Pfurtscheller et al., 2000). These motor BCIs
implemented decoding strategies similar to the strategies that
are frequently utilized for neural control for communication or
environmental control (e.g., exploitation of differences between
the neural patterns generated by a set of discrete cognitive tasks).
Complex motor effector control began to emerge at the same
time (Wessberg et al., 2000; Taylor et al., 2002; Carmena et al.,
2003). Finally, the first demonstrations of complex prosthesis
control were achieved in 2006 (Hochberg et al., 2006). Control
complexity has since steadily improved and it now relies on
much more complex decoding strategies (Hochberg et al., 2012;
Wodlinger et al., 2015).

BCI systems are based on the interpretation of brain activity
patterns. Specific and measurable patterns must be generated by
the user’s brain to trigger the execution of a particular movement
by the prosthesis or orthosis integrated into the motor BCI
system. Motor BCIs exploit either externally- or internally-paced
neural activities. Externally-paced brain patterns are responses
that are evoked by a visual, auditory or somatosensory stimulus
(Evoked Potential). By contrast, internally-paced BCIs rely on the
brain patterns that are voluntarily elicited by users, such as Slow-
Cortical Potentials (SCP) and Sensorimotor Rhythms (SMR)
(Waldert et al., 2009). BCI systems rely on several components
to translate internally- or externally-paced brain patterns into
prosthesis or orthosis movements, including the cerebral signal
acquisition system, the transducer permitting to translate brain
activity measurements into estimates of the user’s intention,
the controlled effector and the feedback provided to the user
(Schwartz et al., 2006) (Figure 1B).

Acquisition system: The acquisition system is used to sample,
amplify and digitize a measure of the user’s cerebral activity
(Homer et al., 2013). While the exploitation of magnetic or
metabolic neural signals is being investigated by several teams
(e.g., Naseer et al., 2014; Hong et al., 2015), most motor BCIs
currently rely on the measure of electrophysiological signals; that
is, on signals originating from the electrical currents generated by
neurons (Mak and Wolpaw, 2009). The use of Microelectrodes
Arrays (MEA) (Hochberg et al., 2012; Collinger et al., 2013;
Wodlinger et al., 2015), Electrocorticographic (ECoG) (Schalk
et al., 2008; Vansteensel et al., 2010; Kellis et al., 2012; Wang
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W. et al., 2013; Fifer et al., 2014; Kapeller et al., 2015) or
Electroencephalographic (EEG) arrays (Pfurtscheller et al., 2000;
Onose et al., 2012; Baxter et al., 2013) have been reported for
electrophysiological signal acquisition in motor BCI systems (see
Figure 2A). These devices measure electrical fields at different
distances from the cortex and, therefore, exhibit different degrees
of invasiveness and spatial resolutions (Schwartz et al., 2006).
MEAs are invasive arrays that directly sample neurons’ electrical
activity from within the brain (intracortical recordings) (Homer
et al., 2013). Preprocessing permits us to extract three signals
from this electrical activity, namely: Single-Unit Activity (SUA),
Multi-Unit Activity (MUA) and Local Field Potentials (LFP)
(Waldert et al., 2009). While MUA and SUA signals reflect the
spiking activity of the few neurons located in the immediate
vicinity of the electrode’s tip (Leuthardt et al., 2006a; Homer
et al., 2013), LFPs measure the superposed activity of a small
population of neurons located in the neighborhood of the
electrode’s tip (Leuthardt et al., 2006a; Homer et al., 2013).
ECoG arrays acquire the cerebral activity at the surface of the
brain (Mak and Wolpaw, 2009). In contrast to MEAs, ECoG
arrays are said to be semi-invasive (Rak et al., 2012). The EEG
is a non-invasive record of the brain’s electrical fields (Berger,
1929). In general, it mostly reflects extracellular currents that are
generated by synchronously activated group of neurons (mainly
from pyramidal neurons), which are recorded by channels placed
on the scalp (Lopes da Silva, 2013).

Transducers: The BCI transducer translates brain activity
measurements into estimates of the user’s intention. Transducers
are generally composed of several signal processing blocks
(Bashashati et al., 2007a). A first, optional step consists of
enhancing the raw cerebral signals. Features specifically
related to the user’s intentions are then extracted from
the cerebral signals (Mak and Wolpaw, 2009). A decoder,
also referred to as “translation algorithm” (Yuan and He,
2014) or “feature translator” (Bashashati et al., 2007a),
interprets the brain features and issues an estimate of
the user’s intention. Discrete decoders (i.e., classifiers) are
used to estimate discrete user intentions (e.g., movement
toward the right vs. movement toward the left). Meanwhile,
continuous decoders permit to decode continuous user
intentions (e.g., 3D position or velocity). After being optionally
enhanced by post-processing methods (Bashashati et al.,
2007a), intention estimates are conveyed to the effector’s
controller.

Effectors: Custom and commercialized hand (Pfurtscheller
et al., 2000; Murguialday et al., 2007; Chen et al., 2009; Ortner
et al., 2011; Bundy et al., 2017), upper- (Bougrain et al., 2012;
Webb et al., 2012; Baxter et al., 2013; Collinger et al., 2013;
Wang W. et al., 2013; Morinière et al., 2015; Wodlinger et al.,
2015), and/or lower limbs (Gancet et al., 2012; Do et al., 2013a;
Eliseyev et al., 2014; Nicolelis, 2014; Kwak et al., 2015; López-
Larraz et al., 2016) orthoses and prostheses have been neurally
manipulated by motor BCI users. Early results on the utilization
of Functional Electrical Stimulation (FES), which consists of
stimulating the user’s muscles, have been presented in a few
studies (King et al., 2015; Bouton et al., 2016; Vidaurre et al.,
2016) Finally, virtual effectors—such as cursors (Taylor et al.,

2002; Leuthardt et al., 2006a; Kim et al., 2008; Simeral et al.,
2011) or simulated robotic arms in virtual reality environments
(Ifft et al., 2013; Wang W. et al., 2013; Wodlinger et al., 2015)—
have regularly been exploited to facilitate early training phases.
Cursor-control BCI studies have, therefore, been included in the
present review.

Feedback: Volitional motor control is permitted by the
perception and exploitation of feedback regularly delivered to
users through different afferent pathways (Suminski et al., 2010),
such as proprioceptive, visual, auditory or tactile feedback. In the
vast majority of motor BCIs, the users are exclusively provided
with visual feedback about the transducer output [e.g., MEA-
(Kim et al., 2011; Hochberg et al., 2012; Collinger et al., 2013;
Wodlinger et al., 2015), ECoG- (Vansteensel et al., 2010; Kellis
et al., 2012; Milekovic et al., 2012; Yanagisawa et al., 2012;
Wang W. et al., 2013), and EEG-based clinical trials (Wolpaw
and McFarland, 2004; Yuan et al., 2007; McFarland et al., 2010;
Doud et al., 2011; LaFleur et al., 2013)]. The combination of
several types of feedback (e.g., visual and kinesthetic feedback
in Suminski et al., 2010; Bundy et al., 2017) has been shown
to facilitate upper-limb prosthesis control (Suminski et al.,
2010). Haptic feedback has additionally been used to improve
neural control over a hand prosthesis in (Murguialday et al.,
2007) and a few teams have completed preliminary studies
(Cincotti et al., 2007) or cursor control experiments (Chatterjee
et al., 2007) with vibrotactile feedback. Finally, the feasibility of
intracortical stimulation-based feedback has been demonstrated
(O’Doherty et al., 2011). Because feedback is regularly delivered
to users when BCI systems are deployed, BCI users are said
to be provided with so-called closed-loop control over the
effector.

The present article reviews the transducers that have been
integrated into MEA-, ECoG-, and EEG-based motor BCI
systems. In particular, user-specific data-driven transducers
are surveyed. However, recent efforts to develop user-
independent transducers (Fazli et al., 2009; Gaur et al.,
2016) are not reviewed, and attempts at discarding transducer
training and exclusively relying on user training (Ganguly
and Carmena, 2009) are not exhaustively debated. Finally,
transducers designed for externally-paced motor BCIs are not
included.

The rest of this review is organized as follows. The
remainder of the introduction is devoted to a presentation of
the user- and decoder-adaptation strategies utilized to reach
a high consistency between user intentions and transducer’s
estimates. It then includes insights on the two decoding
approaches that are most frequently exploited by motor
BCI transducers, namely: the biomimetic and mental-task
approaches. While the biomimetic approach relies on the
natural mapping between neural patterns and limb movements,
a new mapping is learned by users of mental-task motor
BCIs. The two main components of the transducer, namely
the feature extraction block and the decoder, are then
thoroughly reviewed in the second and third section. Finally,
the transducer-specific challenges that remain to be addressed
for motor BCIs to fully benefit motor-impaired patients are
discussed.
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FIGURE 2 | (A) Multichannel acquisition systems mostly used in motor BCIs. Invasive intracortical Microelectrodes Arrays (MEA), intracranial and noninvasive EEG

arrays, which measure the electrical activity generated by neurons, correspond to different trade-offs between invasiveness and spatial resolution. Sensors are located

at a distance which ranges from a few µm (MEA) to several cm (EEG) from the cortical neurons generating the currents of interest (Waldert et al., 2009). This distance

impacts the size of the neuronal population observed by sensors and, therefore, the spatial resolution of the acquired signals. (B) Local Field Potential (LFP) and Single

Unit/Multi Unit Action Potential (SUA/MUA) spike trains are extracted from MEA recordings by means of low/high pass filtering. Spike counts in spike trains result in

Firing Rate (FR) neural features. LFP, ECoG, EEG multi-channel recordings are considered in time/time-frequency domains to extract power-, magnitude,- or

phase-based features.

1.1. Designing User-Specific, Data-Driven
Decoders for Motor BCIs
Motor BCI systems benefit patients if the decoded actions reflect
the user’s intentions with a fidelity enabling them to efficiently
interact with their environment with the controlled effector.
Transducer design consists of constructing and adapting the
signal translation blocks to reach a high decoding accuracy. Data-
driven user-specific decoder design, which is more specifically
considered in the present review, generally relies on two
processes to reach a high consistency (accuracy) between user
intention and transducer’s output: decoder adaptation (i.e.,
identification) and/or user adaptation (i.e., training) (McFarland
and Wolpaw, 2011).

1.1.1. Decoder Adaptation
Decoder identification is performed by analyzing a dataset of
simultaneously acquired neuronal signals and intended effector
movements. It is carried out after a decoder structure has been
selected on the basis of preliminary studies and it consists of
tuning this decoder over this training dataset. This tuning phase
is also referred to as decoder “adaptation” (McFarland and
Wolpaw, 2011), “learning” (e.g., Hudson and Burdick, 2007),
“training” (e.g., Ifft et al., 2013) or “calibration” (e.g., Jarosiewicz
et al., 2013). The training dataset is often collected during open-
loop acquisition sessions; that is, sessions during which the
future BCI user is not given feedback on the output of the BCI
transducer but is generally cued to repeatedly generate action-
specific patterns.

Because of a context difference, open-loop neural patterns
differ from closed-loop patterns (Leuthardt et al., 2006a; Jackson
and Fetz, 2011; Jarosiewicz et al., 2013). Performance drops are
regularly observed when an open-loop decoder is applied during
closed-loop experiments (Tillery et al., 2003). Decoders trained

on data acquired during closed-loop control sessions have more
specifically been shown to outperform decoders calibrated with
open-loop data (Jarosiewicz et al., 2013).

However, the neural signals processed by the transducer only
reflect the possibly superposed activity of neurons localized in
restricted parts of the users’ brain areas involved in motor control
and they are liable to be substantially corrupted by noise. User
intentions estimated from neural signals thus exhibit limited
accuracy. This limitation makes user training indispensable.

1.1.2. User Adaptation
Training permits BCI users to adapt to imperfect decoders.
Thanks to the feedback that is provided to them, the users
are able to assess the difference between their intention and
the transducer’s output, and progressively learn to reduce it
by modifying their brain patterns (Figure 3A). User adaptation
exploits brain plasticity (McFarland and Wolpaw, 2011); that is,
the brain ability to reorganize to learn new tasks.

BCIs based on user adaptation have only been explored in
MEA-based preclinical studies (Ganguly and Carmena, 2009). In
particular, the limits of brain plasticity have been investigated in
a few studies (Ganguly and Carmena, 2009; Sadtler et al., 2014).
These findings suggest the limitations of users’ adaptation ability
and they support the relevance of the combination of decoder and
user adaptation.

1.1.3. Combining Decoder and User Adaptation
Several strategies have been reported to combine decoder
and user adaptation, the simplest being to let the user train
after an initial open-loop decoder initialization. More complex
strategies consist of re-identifying the decoder during closed-
loop BCI sessions (Gilja et al., 2012; Hochberg et al., 2012)
(Figure 3B). One or several (Hochberg et al., 2012; Wang W.
et al., 2013) blocks of successive decoder and user adaptation
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FIGURE 3 | Open- and closed-loop user-specific decoders identification and subject training. (A) Decoder identification is performed offline by analyzing a dataset of

simultaneously acquired neuronal signals and intended movements (open-loop data acquisition session). The resulting decoder is applied online on the user’s neural

signals so that he or she can train; that is, adapt his or her neural patterns to the imperfect decoder. Because the user progressively modifies his or her brain patterns,

one or several blocks of decoder re-identification can be completed. (B) Simultaneous decoder and user adaptation using adaptive/incremental learning algorithms

permits to directly identify a decoder associated with closed-loop neural patterns.

have particularly been reported in preclinical and clinical motor
BCIs (Shenoy and Carmena, 2014) (e.g., Wang W. et al., 2013;
Wodlinger et al., 2015).

1.2. Decoding Strategies
Different decoding (mapping) strategies are used to provide users
with control over orthoses or prostheses. They are thought to
impact the user’s ability to control multi-limb effectors along
multiple Degrees of Freedom (DoF) and also the mental load
associated with neural control.

1.2.1. Direct Decoding: Biomimetic Kinematic

Decoding
Biomimetic decoding exploits the mapping which relates
neuronal activity to limb movement before the patient began
to suffer from motor disabilities; that is, it uses the activity of
neurons naturally devoted to the control of a specific limb to
compute the commands sent to the corresponding prothesis
or orthosis. These decoders are often referred to as “direct”
decoders [“direct motor Brain Machine Interfaces” (Waldert
et al., 2009), “direct mapping” (Degenhart et al., 2018)]. Most
biomimetic decoders are kinematic. They directly extract the
effector’s continuously-valued kinematic parameters from the
corresponding neural signals, such as the position or velocity of
an orthosis endpoint.

Neural features correlated with the kinematic parameters of
the intended effector movement were first discovered in the
spiking activity of monkeys performing reaching movements
(Georgopoulos et al., 1982). Firing rate tuning has since
been extended to other trajectory characteristics (Scott, 2008).
Correlations have particularly been observed between motor
neurons’ spiking activity and hand speed (Churchland et al.,
2006), position (Paninski et al., 2004; Wang et al., 2007), velocity
(Paninski et al., 2004; Wang et al., 2007) and acceleration
(Ashe and Georgopoulos, 1994), joint motion (Vargas-Irwin
et al., 2010), or muscle activation (Koike et al., 2006). Neuron

tuning has additionally been found to persist when humans with
tetraplegia attempt to execute arm movements (Hochberg et al.,
2006), suggesting that the utilization of kinematic decoders is
achievable by motor-impaired patients.

While tuned features were discovered in neurons’ spiking
activity, an increasing number of studies have disclosed the
existence of features correlated with trajectory kinematics in the
activity of neuronal populations (Waldert et al., 2009), such as
in LFP (Mehring et al., 2003, 2004), EEG (Waldert et al., 2008;
Bradberry et al., 2010), ECoG (Gunduz, 2008; Ball et al., 2009;
Anderson et al., 2012; Nurse et al., 2015a), orMEG (Waldert et al.,
2008; Bradberry et al., 2009) signals.

To date, biomimetic kinematic transducers have mainly been
embedded in MEA-based BCI systems (e.g., Hochberg et al.,
2012; Collinger et al., 2013; Ifft et al., 2013; Wodlinger et al.,
2015), which have permitted users to achieve accurate MEA-
driven neural control over multiple degrees of freedom in
clinical studies (Collinger et al., 2013; Wodlinger et al., 2015).
Neuronal population features tuned to kinematic parameters
have principally been exploited in offline analyses, and have led to
fine movement reconstruction from LFP (Mehring et al., 2003),
ECoG (Chao et al., 2010; Shimoda et al., 2012; Bundy et al.,
2016), and EEG signals (Bradberry et al., 2010; Ofner andMüller-
Putz, 2012). Online 2D control based on kinematic decoding
has additionally been reported in primates implanted with ECoG
arrays in Marathe and Taylor (2013). Finally, while the feasibility
or use of biomimetic kinematic transducers has mostly been
investigated for upper-limb effectors, the results suggest that
they may also be considered for MEA-driven lower-limb effector
control (Fitzsimmons, 2009; Ma et al., 2017).

Although most kinematic decoders are biomimetic, another
type of MEA-based kinematic decoders has been explored
by a few teams, namely: biofeedback decoders (Ganguly and
Carmena, 2009; Sadtler et al., 2014). Biofeedback decoders also
focus on the activity of motor neurons but they rely on pure
user training rather than on the exploitation of the user’s natural
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map between neuronal activity and limb kinematic parameters.
While the respective relevance of biomimetic and biofeeback
decoders is still unclear, particularly in terms of training duration
(Jackson and Fetz, 2011; Carmena, 2013), most MEA-based
motor BCIs rely on biomimetic kinematic decoders that are
optimized through decoder and user adaptation (Hochberg et al.,
2012; Wodlinger et al., 2015).

1.2.2. Indirect Decoding: Mental-Task Decoding
A second approach consists in using the activity elicited in brain
areas that were not exclusively devoted to the control of the
limb of interest. For example, the brain patterns that are used
to control the prosthesis or orthosis movements are elicited by
mental tasks, such as motor imageries (somatotopic remapping),
and cognitive tasks. “Mental-task” decoding (Waldert et al., 2009)
or “abstract” mapping (Degenhart et al., 2018) are some of the
terms that have been used in the literature to refer to BCIs based
on unnatural motor imageries and cognitive tasks or strategies.
Various mental tasks have been used to elicit intention-specific
and distinguishable brain patterns for neural control in motor
BCI systems (Waldert et al., 2009). Motor imageries associated
with different limbs (e.g., tongue, foot, right arm, left arm etc.)
are routinely exploited in motor BCIs based on analog neural
population signals (Waldert et al., 2009) because they generate
patterns which are spatially distinguishable at amacroscopic scale
(Waldert et al., 2009), such as in EEG (McFarland et al., 2010)
and ECoG (Wang W. et al., 2013) signals. Several studies have
additionally focused on the discrimination between cognitive
tasks (Penny and Roberts, 1999; Curran et al., 2004); that is,
tasks not associated with patterns generated in the motor cortex
(Jackson and Fetz, 2011). Given that both motor imageries and
cognitive tasks can be utilized in motor BCI systems, studies
relying on either type of mental tasks have been included in the
present review.

Mental-task decoders are either continuous (Wang W. et al.,
2013) or discrete (Bhattacharyya et al., 2015; Hortal et al.,
2015). In the latter case, discrete- or continuously-valued effector
kinematic commands are subsequently inferred from the discrete
or probabilistic output (Milekovic et al., 2012) of the mental-
task decoder. A mental task is, for example, associated with
a movement toward a specific direction at a fixed speed, or
movement velocity is proportional to specific features detected
during a screening procedure as being easily modulated by the
user.

1.2.3. Applicability and Relevance of Biomimetic

Kinematic and Mental-Task Decoders
Although further studies are required to assess the limits of
biomimetic kinematic control, it is often presented as a profitable
feature for motor BCI systems (Chin et al., 2007; Yuan and
He, 2014). The associated neural control is expected to be more
intuitive (Schalk et al., 2007; Pistohl et al., 2008; Ashmore et al.,
2012; Nurse et al., 2015a) and more precise (Chin et al., 2007;
Nurse et al., 2015a) than mental-task-based neural control, thus
reducing the user’s mental load (Yuan and He, 2014) and the
user’s necessary training duration (Waldert et al., 2009).

However, these expected advantages of biomimetic kinematic
decoding are likely to be conditioned on the feasibility of
estimating highly accurate kinematic parameters from neural
features. It has, for example, been shown that the ability
of users to execute reaching movements is degraded when
estimated positions or velocities are not sufficiently correlated
with the user’s intentions; for example, when correlation is
equal or inferior to 0.75 or 0.5 in the case of position and
velocity decoding, respectively (Marathe and Taylor, 2011). This
finding suggests that biomimetic kinematic neural control of
the effector is profitable only when the estimated kinematic
parameters are highly accurate; that is, when highly tuned
features can be extracted from neural signals. While high
correlations between real and estimated kinematic parameters are
regularly reported in MEA-based trajectory reconstructions [e.g.,
coefficient of determination of 0.76 and 0.83 when regressing
3D position and velocity on neural signals (Wang et al., 2007)],
the feasibility of kinematic ECoG- and EEG-driven control
remains to be clearly established. Offline reconstruction of
upper-limb trajectories has been reported in EEG- (Waldert
et al., 2008; Bradberry et al., 2010; Jerbi et al., 2011; Úbeda
et al., 2017) and ECoG-based (Gunduz, 2008; Ball et al.,
2009; Anderson et al., 2012; Bundy et al., 2016) kinematic
decoder feasibility studies. The reported Pearson’ Correlation
Coefficients (PCC) between true and estimated trajectories
are, however, lower than those achieved with MUA/SUA or
LFP signals. Average PCCs inferior to 0.6 and 0.3 were
reported for ECoG- and EEG-based estimation of 3D positions
or velocities, respectively (Bundy et al., 2016; Úbeda et al.,
2017).

Mental-task decoders have the advantage of remaining
efficient when the acquired signals exhibit a limited spatial
resolution; that is, when they reflect the activity of neurons
located in a relatively large cortex area around the sensor.
Non-invasive and semi-invasive neuronal population recording
technologies are not capable of recording cortical activity at the
same spatial resolution as intracortical MEAs (millimeter and
centimeter scale for ECoG and EEG recordings, respectively,
Schalk and Leuthardt, 2011; Buzsáki et al., 2012). Most non-
invasive acquisition systems are thus associated with mental-task
transducers (Waldert et al., 2009; Milan and Carmena, 2010).
For example, 3D EEG neural control over a quadcopter has been
achieved in LaFleur et al. (2013) by using volitionalmodulation of
patterns elicited via motor imagery. Similarly, EEG-based neural
control permitted users to perform 3D reaching movements in
a virtual space in McFarland et al. (2010). Mental-task decoders
have also been used for cursor or prosthesis control from ECoG
signals (WangW. et al., 2013) and, occasionally, from SUA/MUA
signals (Hochberg et al., 2006). More specifically, most online
ECoG-driven motor BCI studies have been completed with
mental-task decoders (Leuthardt et al., 2004, 2006a, 2011;
Schalk et al., 2008; Vansteensel et al., 2010; Degenhart et al.,
2018).

However, the complexity of the control tasks achieved with
mental-task decoders (e.g., 3D control; LaFleur et al., 2013)
remains lower than the one reported with biomimetic kinematic
decoders (e.g., 10D continuous control; Wodlinger et al., 2015).
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2. FEATURE EXTRACTION

Once acquired, neural signal are processed within the transducer.
An optional first step consists in preprocessing these signals
(Schalk et al., 2007; Galán et al., 2008; Lew, 2012; Onose et al.,
2012; Shin et al., 2012; Hammer et al., 2013); for example, to
reduce or discard ocular or cardiac artifacts and/or to increase
the Signal-to-Noise-Ratio. Manual (Kubánek et al., 2009; Flint
et al., 2012) or automatic (López-Larraz et al., 2016) artifact
rejection is mainly performed for offline cleaning of training
data before model identification. Meanwhile, artifact removal
approaches aim to correct rather than rejecting neural signals
corrupted by artifacts and are suited for online application.
Temporal filtering (Sadeghian and Moradi, 2007; Herman et al.,
2008), linear regression (Ferreira et al., 2008), spatial filtering
(Brunner et al., 2007) or alternative strategies (Eliseyev and
Aksenova, 2014; Daly et al., 2015; Foodeh et al., 2016) are some
of the preprocessing methods which have been applied in motor
BCI systems. During a second step, which is carried out by the
majority of the transducers designed for motor BCIs, neural
features are extracted from the raw or pre-processed signals.

2.1. Neural Feature Extraction
Feature extraction permits us to build a new representation of
neural signals, bringing out the signals’ informative attributes
and discarding redundant or irrelevant characteristics. The
utilization of several methods has been reported for the
extraction of neural features in motor BCIs. Their applicability
depends on the considered neural signals; for example, spike
counts are exclusively extracted from MEA signals while time-
frequency features are generally used to characterize analog
neural population signals (Figure 2B).

2.1.1. Spike Count
MEAs permit the extracellular recording of action potentials
(spikes) that are mainly generated by neurons located within
the cerebral cortex. Most MEA-based motor BCIs relied on the
analysis of the activity of individual neurons rather than of
populations of neurons; that is, they exploited characteristics of
MUA or SUA signals (e.g., Collinger et al., 2013; Wodlinger et al.,
2015). Spike detection, which permits us to accessMUA signals, is
first performed by thresholding high-pass filtered neural signals
(> 300 Hz, Waldert et al., 2009). Manual or automatic spike
sorting is often carried out to obtain SUA signals; that is, to
decouple the activity of each observed unit or of groups of units
(Kemere et al., 2004; Hochberg et al., 2006; Ganguly et al., 2009;
Li et al., 2011; Wodlinger et al., 2015). The detected spikes are
generally characterized by their number of occurrence in short
time bins (firing rate, see Figure 2). Fine control over prostheses
has been achieved by users in several spike count-based motor
BCIs; see, for example, Hochberg et al. (2012), Collinger et al.
(2013), and Wodlinger et al. (2015). Alternative spike-base d
features have additionally been exploited in motor BCIs. Control
based on the point process filtering of instantaneous spiking
events has, for example, been reported in Shanechi et al. (2016)
and Shanechi et al. (2017).

2.1.2. Time-Frequency and Time-Scale Features
Motor BCI transducers generally characterize analog population
signal recordings via the temporal evolution of their frequency
content [i.e., LFP (Aggarwal et al., 2013; Flint et al., 2013), ECoG
(Chin et al., 2007; Yanagisawa et al., 2012; Wang et al., 2013a),
and EEG (Pfurtscheller et al., 2000; Trejo et al., 2006; Hortal et al.,
2015)].

The Fourier Transform is commonly used to disclose signals’
frequency content. It permits us to decompose a time-domain
signal x(t) ∈ R onto a basis of complex exponentials of frequency
fr ∈ R, yielding a frequency-domain complex signal s(fr) =
∫ +∞
−∞ x(t) e−i2π frt dt. Each frequency-specific component s(fr) is
characterized by its phase φ(fr) = arg(s(fr)) and its amplitude
∣

∣s(fr)
∣

∣; that is, s(fr) =
∣

∣s(fr)
∣

∣ eiφ(fr).
While the temporal variations of the neural signals’ frequency

content are expected to carry informations on the user’s intents,
the Fourier Transform does not permit us to readily describe
these variations. Although the temporal information associated
with a signal is contained in the phase φ(fr) = arg(s(fr)) of each
Fourier component, it is not readily interpretable. Alternative
approaches are thus used to describe the temporal evolution
of a neural signals’ spectral content. They generally consist of
projecting, at different instants, the signal of interest onto real or
complex oscillating components of different frequencies (e.g., a
wavelet, a windowed complex exponential, etc.). As stated by the
Eisenberg-Gabor uncertainty principle (Mallat, 2008), a perfect
characterization of the signal frequency content at each instant is
impossible. Therefore, these methods exhibit different time and
frequency resolutions. Motor BCIs frequently exploit amplitude-
and/or phase-based features extracted from the resulting real or
complex time-frequency representations (Figure 4C).

Amplitude-based features: Features extracted from the
amplitude of frequency-specific signals have been utilized in
offline motor BCI studies (Chin et al., 2007; Wang et al., 2013a;
Eliseyev and Aksenova, 2014) or online motor BCI systems
(Yanagisawa et al., 2012). The amplitude or instantaneous power
of frequency-specific components st(fr)—that is, their squared

amplitude
∣

∣st(fr)
∣

∣

2
—are typically considered (Figure 4C). The

utilization of the instantaneous value of these features measured
at specific time moments has been reported in several motor
BCIs, possibly after application of logarithm transform (Eliseyev
and Aksenova, 2014). A second reported strategy consists of
computing specific statistics associated with these features over a
temporal window before feeding them to the decoder (Ball et al.,
2009). The average is the statistic that is most frequently used
to characterize amplitude-based features. However, the use of
alternative statistics, such as the signal variance or other higher-
order statistics, has also been investigated in motor BCI studies
(Mahmoudi and Erfanian, 2002; Kevric and Subasi, 2017).

Phase-based features: Phase-based features (Figure 4C) have
been exploited in several offline or online motor BCI studies.
The phase information associated with each one of the channels
of ECoG arrays has, for example, been used to reconstruct 1D
trajectories in Hammer et al. (2013). A second class of phase
features is based on the phase difference between signals, which
permits us to characterize the coupling between channels. The
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Phase-Locking-Value (PLV) is defined as the average of the
instantaneous phase difference in a temporal windows (Wei et al.,
2007). The extraction of PLV features from EEG signals has
been reported for the classification of motor imaginary tasks
in several BCI studies (Gysels and Celka, 2004; Wang et al.,
2006; Wei et al., 2007; Pourbakhtiar et al., 2013). In addition,
the relevance of alternative phase-based features, such as the
instantaneous or mean phase difference between two channels,
has been investigated in the case of EEG signal in Hamner et al.
(2011).

2.1.2.1. Time-frequency representations
Amplitude and/or phase features are inferred from time-
frequency representations of the neural signals. Different
strategies have been implemented in motor BCIs’ transducers to
estimate the time-varying spectral content of the users’ neural
signals.

Short-Time-Fourier-Transform:The utilization of the Short-
Time-Fourier-Transform (STFT)—that is, the computation of
the Fourier Transform of temporally windowed neural signals
(Figure 4A)—has been reported for the extraction of time-
frequency features from ECoG (Chin et al., 2007; Yanagisawa
et al., 2012) or EEG signals (Herman et al., 2005) in offline or
online motor BCI studies. The amplitude (power) (Chin et al.,
2007; Yanagisawa et al., 2012) and phase (Hammer et al., 2013)
of the resulting time-frequency representation st(fr) ∈ C have
been exploited in motor BCI studies. Given that the length of the
window used to filter the signals is identical at all frequencies,
the temporal and spectral resolution of the STFT is similar for all
frequencies.

Filter banks: A filter bank is a set of band-pass filters.
The STFT can, for example, be interpreted as a complex filter
bank. Real-valued filter banks are also frequently applied to
neural signals to extract signal components whose frequency
content is included in a set of predefined frequency bands
(Brodu et al., 2011). Most BCI studies exploit filter banks
based on the Butterworth filter (e.g., Shin et al., 2012), which
represent a trade-off between distortion in the frequency and
time domains. For example, it has been used to extract time-
frequency features from EEG (Bashashati et al., 2015) or ECoG
signals (Nakanishi et al., 2013). In addition, the instantaneous
value of ECoG band-pass filtered signals were utilized for
trajectory reconstruction in Nakanishi et al. (2013). Filter banks
were used to extract EEG power features in Bashashati et al.
(2015). The instantaneous value of low-pass filtered neural
signals has more specifically been reported to be tuned to
upper-limb kinematic parameters and is regularly exploited in
ECoG- (Schalk et al., 2007; Pistohl et al., 2008; Ball et al., 2009;
Kellis et al., 2012; Milekovic et al., 2012; Wang et al., 2012;
Hotson et al., 2014; Hammer et al., 2016), EEG- (Bradberry
et al., 2010; Ofner and Müller-Putz, 2012) and LFP-based
motor BCIs (Perge et al., 2014). Low-pass filtering is frequently
performed by means of a Butterworth (Bradberry et al., 2010;
Hammer et al., 2016), Savitzky-Golay (Pistohl et al., 2008;
Ball et al., 2009; Kellis et al., 2012; Milekovic et al., 2012)
or Moving Average (Wang et al., 2012; Hotson et al., 2014)
filter. These temporal features are often combined with other

time-frequency or time-scale features (Schalk et al., 2007; Wang
et al., 2011).

Wavelet transform: Another approach reported in EEG-
(Lemm et al., 2004; Bhattacharyya et al., 2011; Bashashati et al.,
2015), ECoG- (Chao et al., 2010; Bhattacharyya et al., 2011;
Shimoda et al., 2012; Eliseyev and Aksenova, 2014) and LFP-
based (Bouton et al., 2016) motor BCI studies consists of
applying a Wavelet Transform to compute a time-frequency
representation of neural signals. The Wavelet Transform permits
us to decompose signals onto real or complex signals (“wavelets,”
see Figure 4B). Similarly to the STFT, it can be interpreted as a
special case of filter banks. The squared amplitude of a wavelet
transform is referred to as a “scalogram,” and the corresponding
features are “time-scale” features. Complex wavelets permit us to
decouple the signal’s phase and amplitude, and thus give access to
both characteristics independently (Torrence and Compo, 1998).
In contrast, real wavelets return real time-frequency signals,
which do not permit us to readily separate the amplitude and
phase of the oscillating signals composing the analyzed signal
(Torrence and Compo, 1998). The use of different wavelets has
been investigated by, for example, Daubechies (Bhattacharyya
et al., 2011; Bouton et al., 2016), Meyer (Eliseyev et al., 2012),
Haar (Kousarrizi et al., 2009) or real (Chao et al., 2010; Bashashati
et al., 2015), and complex (Lemm et al., 2004; Eliseyev and
Aksenova, 2014)Morlet wavelets. More specifically, the relevance
of different real and complex wavelets has been compared for
kinematic decoding from ECoG signals in Eliseyev et al. (2012).
Wavelet-based extraction of the instantaneous power (Chao
et al., 2010; Shimoda et al., 2012) or amplitude (Eliseyev et al.,
2012; Eliseyev and Aksenova, 2014) at specific instants has
been reported for offline trajectory reconstruction from ECoG
signals. Wavelet decomposition has also been embedded into the
transducer of a BCI system, which permitted a quadriplegic user
implanted with an intracortical array to control his own fingers
(Bouton et al., 2016). In contrast with the STFT, the temporal
resolution of the wavelet transform depends on the considered
frequency because the duration of a wavelet depends on its scale.

Hilbert transform: Time-frequency features have been
extracted by applying the Hilbert transform on band-pass filtered
signals in several ECoG- (Hotson et al., 2016) or EEG-based
(Gysels and Celka, 2004; Wang et al., 2006; Wei et al., 2007;
Pourbakhtiar et al., 2013) BCI studies. The Hilbert transform
permits us to compute the analytical signal xa(t) = x(t) +

jHx(t) ∈ C that is associated with a signal x(t), where Hx(t) is
obtained by convolving x(t) with 1

π t . The instantaneous phase
and amplitude of a signal are defined as the argument and
modulus of the corresponding analytical signal. The amplitude
and phase characteristics extracted by means of the Wavelet
and Hilbert transforms have been found to be highly similar
when specific wavelets and bandpass filters were utilized (Le Van
Quyen et al., 2001; Bruns, 2004). Hilbert-based time-frequency
representations have been used to estimate the high-gamma
power of ECoG signals utilized by users to control prosthetic
fingers in Hotson et al. (2016). Phase features have additionally
been extracted from Hilbert-transformed EEG signals in several
offline mental-task studies (Gysels and Celka, 2004; Wang et al.,
2006; Wei et al., 2007; Pourbakhtiar et al., 2013).

Frontiers in Neuroscience | www.frontiersin.org 8 August 2018 | Volume 12 | Article 540

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Schaeffer and Aksenova Motor BCI Transducer Design: A Review

FIGURE 4 | Extraction of phase, amplitude and power features from neural population recordings. (A) Short-Time-Fourier-Transform. The neural signal is windowed

before application of the Fourier Transform. (B) Complex Continuous Wavelet Transform. The neural signal is convolved with complex wavelets of different scales. (C)

Extraction of phase-, amplitude- and power features from a complex signal.

Empirical mode decomposition: Empirical Mode
Decomposition has been used in several EEG-based BCI
studies (Park et al., 2013; Gaur et al., 2015, 2016; Kevric and
Subasi, 2017). It relies on an iterative process to decompose
a signal into several oscillating components, referred to as
intrinsic mode functions (in particular, components which
exhibit with similar numbers of extrema and zero-crossings).
Contrary to the Fourier or Wavelet transforms, the shape of
these modes are data-dependent, and are thus liable to adapt to
the specificities of the signals. Empirical mode decomposition
features have been reported to outperform wavelet-based
features for EEG motor imagery classification (Abdalsalam
et al., 2018). The computational complexity of EMD algorithms
has additionally been shown to be similar to the one of the
Fast Fourier Transform (Wang et al., 2014). Some of the
drawbacks which may impair the efficiency of the EMD include
border effects and difficulties to select the stopping criterion
used to extract the intrinsic mode functions (Niang et al.,
2010).

Non-parametric spectrum estimation: The previously
enumerated methods are specifically designed to describe the
temporal evolution of a signal’s spectral content. An alternative
strategy that is frequently utilized in BCI studies consists
in applying generic power spectrum estimation methods
to signals extracted via a sliding window. Some examples
of the non-parametric methods used for power spectrum
estimation in BCI studies include the periodogram (Brodu
et al., 2011), Welch’s periodogram (Millan et al., 2002; Cincotti
et al., 2003) or multitaper analysis (Ball et al., 2009; Hasan

and Gan, 2011). Both Welch’s periodogram and multitaper
analysis (Thomson, 1982) rely on the averaging of multiple
spectra to reduce the variance of the corresponding spectrum
estimate.

Parametric spectrum estimation: Finally, parametric
spectrum estimation is a popular approach for the
characterization of both ECoG (Leuthardt et al., 2004, 2011;
Lal et al., 2005; Hill et al., 2006; Felton et al., 2007; Schalk
et al., 2007, 2008; Blakely et al., 2009; Ashmore et al., 2012;
Wang et al., 2012; Wang W. et al., 2013; Fifer et al., 2014)
and EEG signals (Schlögl et al., 2005; Argunşah and Çetin,
2010) in online (Leuthardt et al., 2004, 2011; Felton et al., 2007;
Blakely et al., 2009; Fifer et al., 2014) or offline (Schlögl et al.,
2005; Hill et al., 2006; Argunşah and Çetin, 2010) motor BCI
studies. The Auto-Regressive (AR) coefficients of the neural
signals can be estimated via the Yule-Walker (Herman et al.,
2008) or Burg method (Ashmore et al., 2012; Fifer et al., 2014).
Spectrum estimation is then readily inferred from the AR
parameters (Stoica et al., 2005). Although parametric estimation
is computationally efficient, it relies either on a predefined
and potentially suboptimal model order (Ashmore et al., 2012;
Fifer et al., 2014) or on a model order selected after a possibly
time-consuming optimization process (McFarland and Wolpaw,
2008). When it is based on Burg AR parameters, it is referred to
as a maximum-entropy spectral estimation. Maximum-entropy
spectral estimation has been performed in several offline ECoG
studies (Anderson et al., 2012; Bundy et al., 2016; Spüler et al.,
2016) and in an online motor EEG-based BCI system (Bundy
et al., 2017).
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2.1.2.2. Integrating spatial information:

time-frequency-space features
Most motor BCI transducers independently consider the
signals provided by multi-channel arrays. Time-frequency-space
features are thus obtained by concatenating the time-frequency
features extracted for each channel.

More sophisticated strategies for the integration of spatial
information into time-frequency features have been reported
for both EEG- (Onose et al., 2012; Vidaurre et al., 2016) and
ECoG-fed (Marathe and Taylor, 2013; Kapeller et al., 2015)motor
BCI transducers. These strategies generally rely on Common
Spatial Pattern (CSP) filters (Pfurtscheller and Neuper, 2001),
which construct class-discriminative virtual channels under the
criterion that their variance ratio is maximized between the two
considered classes (Blankertz et al., 2008). The development of
CSP variants is a particularly active research field. The Filter-
Bank CSP (FBCSP) (Ang et al., 2012), whose computational
efficiency has been reported in Aghaei et al. (2016), exploits
a bank of bandpass filters to obtain neural signal rhythms in
different frequency bands. The spatial features are then extracted
by applying a separate CSP on each frequency. Some examples
of the many CSP variants which have also been considered
for motor imagery classification include common spatio-spectral
patterns (Lemm et al., 2005), common sparse spectral spatial
patterns (Dornhege et al., 2006), SPECtrally-weighted CSPs
(Tomioka et al., 2006), iterative spatio-spectral patterns learning
(Wu et al., 2008), sub-band CSPs (Novi et al., 2007), optimal
spatiospectral filter networks (Zhang et al., 2011), filter bank CSPs
(Ang et al., 2012), discriminative FBCSPs (Thomas et al., 2009),
Bayesian spatio spectral filter optimization (Suk and Lee, 2013),
discriminative filter-bank CSPs (Higashi and Tanaka, 2013),
sparse filter band CSPs (Zhang et al., 2015) and bilinear separable
common spatio-spectral patterns (Aghaei et al., 2016).

2.1.2.3. Relevance of time-frequency features
Time-frequency representations: Comparative studies have
investigated the relevance of different time-frequency features
(e.g., features extracted by means of the STFT, wavelets,
parametric spectrum estimation, etc.) for the classification of
EEG signals elicited by motor imageries (Herman et al., 2008;
Brodu et al., 2011). Parametric approaches are known to
be particularly accurate when the considered signals can be
satisfyingly represented by the chosen parametric model (Stoica
et al., 2005). Non-parametric methods, e.g., non-parametric
spectrum estimates, on the other hand, are theoretically more
relevant when parametric models fail to closely approximate
the signals of interest (Stoica et al., 2005). The results
reported in comparative studies reflect this variable relevance
of parametric and non-parametric approaches. The periodogram
and parametric power estimation approaches are able to extract
features associated with the best classification accuracy in
Herman et al. (2008), whereas Morlet wavelet transforms have
been found to surpass alternative methods (e.g., parametric
power estimation) in Brodu et al. (2011). Similarly, wavelet-
based features bettered AR-based features for non-motor imagery
classification in Cabrera et al. (2010). These results seem to

confirm that the relevance of different time-frequency and time-
scale features partially depends on the datasets at hand.

Amplitude and phase features: Most motor BCI systems
rely on amplitude features and they do not exploit the phase
information of the neural signals. Nevertheless, phase-based
neural encoding of information has been disclosed in several
studies (Krusienski et al., 2011) and the interest of phase-based
features has been suggested in offline and online motor BCI
experiments. These have been shown to outperform amplitude
features for 1D kinematic offline reconstruction from ECoG
signals (Hammer et al., 2013) and they have permitted users
to control a 3-class virtual effector in Brunner et al. (2006).
However, the advantages of phase-related features to motor
BCIs remains unclear. For example, in Krusienski et al. (2012)
EEG phase and coherence features did not lead to an improved
motor imagery classification accuracy when compared to Fourier
features.

2.1.3. Decoder-Embedded Feature Extraction:

End-to-End Transducers
While feature extraction is a prerequisite for most motor BCI
decoding algorithms, end-to-end learning—that is, learning from
row data without any prior feature extraction—has recently been
reported in several offline motor BCI studies (Wang Z. et al.,
2013; Nurse et al., 2015b, 2016; Schirrmeister et al., 2017). In
these studies, raw or preprocessed neural signals are directly
fed to decoders. These models then learn how to both extract
and decode useful neural signal characteristics during model
identification. End-to-end learning has been investigated for
movement classification (Nurse et al., 2015b, 2016; Schirrmeister
et al., 2017) and trajectory prediction (Wang Z. et al., 2013)
from EEG (Nurse et al., 2015b, 2016; Schirrmeister et al., 2017)
and ECoG neural signals (Wang Z. et al., 2013) acquired either
during motor imagery tasks or movement execution. These
models generally rely on deep learning decoders, such as multi-
layer perceptrons (Nurse et al., 2015b) or convolutional neural
networks and their variants (Wang Z. et al., 2013; Nurse et al.,
2016; Schirrmeister et al., 2017).

End-to-end learning exhibits several advantages; for example,
it can be implemented with minimal preprocessing procedures
[e.g., centering (Wang Z. et al., 2013; Nurse et al., 2015b;
Schirrmeister et al., 2017), scaling (Wang Z. et al., 2013;
Schirrmeister et al., 2017), outlier removal (Nurse et al., 2016),
or band pass filtering (Yuksel and Olmez, 2015; Sturm et al.,
2016; Tang et al., 2017)]. It additionally holds the promise of
highly accurate decoding because of the joint optimization of
feature extraction and decoding. While statistically significant
performance improvements have been reported when comparing
end-to-end models with approaches combining CSP-based
feature extraction with generic classifiers (Yuksel and Olmez,
2015; Lu et al., 2017; Tang et al., 2017), end-to-end models have
not yet clearly outperformed state of the art methods (Nurse et al.,
2015b, 2016; Schirrmeister et al., 2017). Some of the difficulties
that may impair the efficiency of end-to-end approaches include
difficulties to fit end-to-end models, such as to gather enough
data, and/or properly regularize the models so as to avoid
overfitting.
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2.1.4. Other Features
The use of alternative features such as fractal dimension, entropy
measures or temporal sequence modeling has been proposed
in motor imagery-based EEG-driven BCI studies (Boostani
and Moradi, 2004; Coyle et al., 2005; Boostani et al., 2007;
Zhang et al., 2008; Vidaurre et al., 2009). The efficient offline
classification of EEG motor imageries has been achieved by
exploiting the covariance matrices associated with each trial,
and more specifically the Riemannian distance between these
covariance matrices (Barachant et al., 2010, 2012). Amplitude
coupling between a pair of channels has also been reported in
motor BCI studies (Wei et al., 2006, 2007; Krusienski et al., 2012).

2.2. Features for Effector Control
Both discrete and continuous dependent variables can be
estimated from neural signals to control prosthesis and orthosis
movements.

Continuous variables traditionally consist of position and/or
velocity of the effector’s endpoint, such as the wrist kinematic
parameters in the case of an upper-limb orthosis (Li, 2014), or of
the angular characteristics of effector joints (Ajiboye et al., 2012).
Wrist speed and acceleration (Hammer et al., 2013, 2016), force
profile (Carmena et al., 2003; Chen C. et al., 2014), and muscular
activity (Carmena et al., 2003; Koike et al., 2006; Choi et al., 2009;
Shin et al., 2012) have been reconstructed in offline preliminary
studies. The principal components of the effector’s position or
velocity have also been estimated from neural signals in offline
studies (Acharya et al., 2010; Wong et al., 2013; Hotson et al.,
2014).

Discrete variables in particular include the direction of the
effector’s movement (Bhattacharyya et al., 2015; Hortal et al.,
2015), the finger of interest (Hotson et al., 2016) or the
open/closed state in the case of hand prostheses or orthoses
(Pfurtscheller et al., 2000). Binary dependent variables are also
regularly used to characterize the state of the user during
asynchronous decoding; that is, an Intentional Control (IC) or
Non-Control (NC) state (Mason and Birch, 2000; Müller-Putz
et al., 2010).

2.3. Dimensionality Reduction
High dimensional and/or correlated features are liable to disrupt
decoder training. They may, for example, result in ill-poised
problems, in computational loads incompatible with real time
requirements, or in an important user mental load caused by the
acquisition of a large training dataset.

The reduction of the dimension of neural feature
representations is mainly performed in offline or online
motor BCI studies by means of projection methods, such as the
principal component analysis and its variants (Devulapalli, 1996;
Wu et al., 2003b; Kim S.-P. et al., 2006; Aggarwal et al., 2008; Ke
and Li, 2009; Wang W. et al., 2009; Argunşah and Çetin, 2010;
Suk and Lee, 2010; Bhattacharyya et al., 2011; Kao et al., 2013,
2017) or by means of feature selection methods, such as stepwise
forward (Brunner et al., 2007; Liang and Bougrain, 2012; Wang
et al., 2012; Hotson et al., 2014) or forward-backward (McFarland
et al., 2010) selection procedures, LASSO-based sparse modeling
methods (Least Absolute Shrinkage and Selection Operator)

(Fazli et al., 2011; Kelly et al., 2012; Wang et al., 2015), so-called
filter methods (Schalk et al., 2007; Spüler et al., 2016), genetic
algorithms (Flotzinger et al., 1994; Graimann et al., 2004; Wei
et al., 2006; Boostani et al., 2007; Fatourechi et al., 2007; Wei and
Tu, 2008) or alternative approaches such as distinctive sensitive
learning vector quantization (Flotzinger et al., 1994).

The optimal feature dimension depends on the complexity
of the neural control task (e.g., number of degrees of freedom),
on the number of parameters of the decoder, or on the
associated identification approaches. Consequently, the feature
dimension is generally treated as a hyperparameter that is not
predefined but optimized for each particular application during
the dimensionality reduction process.

3. DATA-DRIVEN DECODERS

Feature extraction is followed by the application of a decoder
which aims at translating features into estimates of the user’s
movement intention.

Let xt ∈ R
m be an independent, input variable and yt ∈ R

n or

yt ∈ Z denote a dependent, output variable. Let f̂ be an estimate
of the unknown model f such that yt ≈ f (xt). When motor BCIs
rely on the decoding of continuous variables yt ∈ R

n (Hochberg
et al., 2012; Collinger et al., 2013; Wodlinger et al., 2015), the

corresponding f̂ : R
m → R

n is referred to as continuous decoder
(a regression model for example). These continuous decoders are
typically used to build kinematic decoders. In the case of discrete

dependent variables, a discrete decoder f̂ : R
m → Z (classifier)

is applied on neural features (Tsui et al., 2007; Yanagisawa et al.,
2012; Hotson et al., 2016). Discrete decoders are generally used
for the task of mental-task-based effector control.

The adaptation of user-specific decoders is carried out in the
majority of motor BCIs. Machine learning methods are used to

build a relevant decoder f̂ to model the dependence between
neural features xt and user intentions yt . This model is designed
to maximize its decoding performance.

3.1. Performance Indicators
The performance of a decoder is generally measured by means
of one or several indicators. These indicators are used to choose
the decoder structure, optimize its hyperparameters, andmonitor
user training.

3.1.1. Open-Loop Performance
While the ultimate goal of a motor BCI system is the ability of
the patient to control an orthosis or prosthesis device, model
structure and hyperparameters are generally optimized on open-
loop data. Several different metrics have been used to assess the
open-loop performance of discrete and continuous decoders to
be embedded into motor BCI transducers.

Discrete decoders: Many performance indicators have been
proposed to assess the performance of discrete decoders (Mason
et al., 2006). Several indicators have been derived from the
confusion matrix (e.g., the classification accuracy or classification
error) and they are regularly used in motor BCI studies (Velliste
et al., 2014; Bundy et al., 2016). While these metrics are relevant
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measures of the global classification quality when classes are well
balanced (Mason et al., 2006; Thomas et al., 2013), alternative
indicators, such as the Kappa coefficient, Nykopp’s mutual
information (Mason et al., 2006) or the Area Under the ROC
(Receiver Operating Characteristic) Curve can be profitably used
in the case of unbalanced classes. Although the simultaneous
computation of the true positive rate and false positive rate
also provides useful insights on classification performance,
comparison between decoders is eased by the utilization of a
single metric. Finally, the information transfer rate is regularly
utilized to facilitate the comparison between decoders trained on
different classification tasks, such as binary or multi-class tasks.
This enables us to combine the decoding task difficulty with
the corresponding decoder performance (Schögl et al., 2007).
Guidelines for the choice of discrete performance indicators in
function of class balance and decoder bias are, for example,
available in Thomas et al. (2013).

Continuous decoders: The accuracy of continuous variable
estimates (e.g., the reconstruction of 3D trajectory) is typically
assessed via the Pearson Correlation Coefficient (PCC) and/or
the Root-Mean-Squared Error (RMSE) (Spuler et al., 2015), such
as in Velliste et al. (2014) and Bundy et al. (2016). The PCC
reflects the amount of linear dependence between the observed
y and estimated ŷ variables. The RMSE measures the ℓ2-error
between both variables. The mean absolute error, which indicates
the ℓ1-error between the vectors of observations, has sometimes
been used to assess the fidelity of trajectory reconstruction
(Eliseyev and Aksenova, 2014) because it is less sensitive to
outliers than the RMSE (Hyndman and Koehler, 2006). The
coefficient of determination associated with a regression model
is also frequently reported (Wang et al., 2007; Marathe and
Taylor, 2013). Meanwhile, alternative indicators generally focus
on trajectory delay and smoothness, which are liable to impact
the user control performance (Marathe and Taylor, 2015).
The interpretation of the level of such indicators (i.e., the
corresponding ability of a motor BCI user to execute daily life
movements) is not straightforward. PCCs superior to 0.75 or 0.5
have, for example, been shown to be required for patients to
efficiently execute reaching movements in the case of position
and velocity decoding, respectively (Marathe and Taylor, 2011).

3.1.2. Closed-Loop Performance
While open-loop indicators provide the necessary tools for the
analysis of open-loop data, specific performance indicators have
been considered for closed-loop BCIs. In particular, kinematic
BCIs are often evaluated by means of center-out reaching tasks.
Cursor speed, trajectory error, path efficiency, success rate, hold-
on-target error rate are some of the indicators regularly reported
in closed-loop motor BCI studies (Collinger et al., 2013; Gowda
et al., 2014; Wodlinger et al., 2015). It has additionally been
suggested to utilize the information transfer rate (Tehovnik et al.,
2013) to compare the performance of decoders for reach-out
tasks (Baranauskas, 2014).

3.2. Discrete Decoding: Classifiers
A discrete-valued dependent variable is usually referred to as
“class label.” The associated observation xt is said to belong to the

“class” identified by its label. The classification of neural patterns
[e.g., the discrimination between different mental tasks such as
motor imageries or idle states (Fifer et al., 2014)] has been used
as the basis of several EEG- and ECoG-driven motor BCIs (Tsui
et al., 2007; Yanagisawa et al., 2012; Hortal et al., 2015; Hotson
et al., 2016). The performance of various classifiers has been
investigated, either in offline preliminary studies or in online
preclinical or clinical studies. The classifier structures detailed in
this section are summarized in Figure 5.

3.2.1. Generative and Discriminative Classifiers
Both generative and discriminative classifiers have been used in
EEG- (Chae et al., 2012; Hortal et al., 2015), ECoG- (Yanagisawa
et al., 2012; Fifer et al., 2014; Kapeller et al., 2015), and LFP-based
(Aggarwal et al., 2013) offline or online motor BCI studies.

3.2.1.1. Generative classifiers
The first category of classifiers, namely generative classifiers,
focuses on the neural feature distribution within each class.
The use of generative classifiers has been reported in both
EEG- (Pfurtscheller et al., 2000; Tsui et al., 2007; Chae et al.,
2012; Vidaurre et al., 2016) and ECoG-based online motor BCI
studies (Fifer et al., 2014; Kapeller et al., 2015; Hotson et al.,
2016). The relevance of generative classifiers has additionally
been investigated in offline EEG- (Chiappa and Bengio, 2003;
Hasan and Gan, 2009; Bhattacharyya et al., 2011), ECoG- (Wang
et al., 2016) and MUA/SUA-based (Hatsopoulos et al., 2004)
preliminary studies; for example, for the classification of real
movements (Hatsopoulos et al., 2004; Wang et al., 2016) or of
mental tasks (Chiappa and Bengio, 2003; Hasan and Gan, 2009;
Bhattacharyya et al., 2011).

Generative classifiers model the joint probability P(xt , yt = i)
for each considered class i (Ng and Jordan, 2002). Once the
joint probability has been fitted for each class, the classification
of a new observation sample xt is performed by computing the
posterior probability P(yt = i|xt) with respect to each class
(Ng and Jordan, 2002). The equiprobable hypersurface defined
by P(yt = i|xt) = P(yt = j|xt) is referred to as “decision
boundary.” Its characteristics (e.g., linearity or non-linearity) are
not explicitly chosen but instead result from the distribution
used to model data generation within each class. The majority
of generative classifiers reported in motor BCIs or preliminary
studies relied on multivariate Gaussian distributions (e.g., Lemm
et al., 2004; Bhattacharyya et al., 2011; Aggarwal et al., 2013; Do
et al., 2013b; Wang et al., 2016) or Gaussian mixtures models
(Chiappa and Bengio, 2003; Hasan and Gan, 2009). By contrast,
the MUA/SUA firing rates of two non-human primates were
advantageously modeled by Poisson distributions in Hatsopoulos
et al. (2004). Finally, prior knowledge on the parameters of the
considered distributions can be integrated via Bayesian learning
strategies (Zhang et al., 2016).

While high-dimensional neural features are frequently
extracted from neural signals in offline and online motor BCI
studies (Kim et al., 2011; Bhattacharyya et al., 2015) (up to
285 and 630 features, respectively), fitting high-dimensional
multivariate distributions is a delicate matter (Fan et al., 2011).
To overcome this problem, the use of naive Bayes classifiers
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FIGURE 5 | Popular motor BCI decoders for biomimetic kinematic and mental-task decoding strategies. (A) Linear static classifier for discrete response variables

(Yanagisawa et al., 2012; Hotson et al., 2016). (B) Linear dynamic classifier for discrete response variables (Fifer et al., 2014). (C) Non-linear static classifier for discrete

response variables (Kayikcioglu and Aydemir, 2010; Bhattacharyya et al., 2011). (D) Non-linear dynamic classifier for discrete response variables. (E) Linear static filter

for continuous response variables (Collinger et al., 2013; Wodlinger et al., 2015). (F) Linear dynamic filter for continuous response variable (Wu et al., 2002; Hochberg

et al., 2012). (G,H) Switching static or dynamic decoders (Wu et al., 2003b; Bundy et al., 2016).

has been investigated by several teams (Hatsopoulos et al., 2004;
Santhanam et al., 2006; Bhattacharyya et al., 2011; Chestek et al.,
2013); for example, to classify eight wrist directions on the basis
of the firing rate of 32 to 143 neurons in Hatsopoulos et al. (2004).
Naive Bayes classifiers assume that features are independent
conditionally to the class. Therefore, classifier training consists
of fitting one univariate distribution per feature rather than one
multivariate distribution for the full feature set. The performance
of a Naive Bayes and of a Gaussian-based generative classifier
was compared for left- and right-hand movement classification
from more than 800 EEG features in Bhattacharyya et al. (2011).
The naive Bayes classifier reportedly surpassed the generic Bayes
classifier, both when the full EEG feature set was considered and
when its dimensionality had been preliminary reduced to 91 by
means of Principal Component Analysis.

3.2.1.2. Discriminative classifiers
Discriminative classifiers explicitly model the class decision
boundary. They have been utilized in both EEG- and ECoG-
driven motor BCIs; for example, for EEG-based displacement
of a robotic arm’s endpoint (Hortal et al., 2015) or for ECoG-
based control of a prosthetic arm (Yanagisawa et al., 2012). Their
performance has also been assessed in offline preliminary studies;

that is, for the classification of motor imageries (Schlögl et al.,
2005; Hill et al., 2006; Chin et al., 2007).

Discriminative classifiers directly model the posterior class
probability P(yt = i|xt) (Bishop, 2006). This makes the
use of discriminative classifiers particularly relevant when
the distribution of neural features within each class cannot
be approximated with classical distributions. Discriminative
classifiers are particularly relevant when xt is high-dimensional
or includes redundant (correlated) neural features (Sutton and
Mccallum, 2012) because non-discriminant features are not
considered during model training.

Some of the discriminative classifiers whose use has been
reported in offline or online motor BCI studies include Support-
Vector-Machine classifiers (Lal et al., 2005; Schlögl et al., 2005;
Hill et al., 2006; Sadeghian and Moradi, 2007; Bhattacharyya
et al., 2011; Yanagisawa et al., 2012; Hortal et al., 2015),
Logistic Regression (Tomioka et al., 2007; Chen W. et al.,
2014; Bashashati et al., 2015; Bundy et al., 2016), k-Nearest
Neighbors (Chin et al., 2007; Kayikcioglu and Aydemir, 2010)
and Artificial Neural Networks (Haselsteiner and Pfurtscheller,
2000; Hatsopoulos et al., 2004; Navarro et al., 2005; Nakayama
and Inagaki, 2006; Kumar et al., 2016; Nurse et al., 2016;
Sturm et al., 2016; Schirrmeister et al., 2017; Tang et al.,
2017).
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3.2.1.3. Generative vs. discriminative classifiers
The superiority of generative or discriminative classifiers for
mental states classification generally depends on the problem
at hand, particularly on the neural feature dimension, and
they cannot be established a priori. Both types of classifiers
are regularly utilized in offline and online motor BCI studies.
For example, Linear Discriminant analysis and Support-Vector-
Machine classifiers, both of which are widely popular within
the BCI community (Nicolas-Alonso and Gomez-Gil, 2012;
Bashashati et al., 2015) are a generative and a discriminative
classifier, respectively. Generative and discriminative classifiers
can be associated with linear or non-linear decision boundaries.

3.2.2. Linear and Non-linear Classifiers
Both linear (Tsui et al., 2007; Fifer et al., 2014; Hortal et al., 2015;
Kapeller et al., 2015; Hotson et al., 2016; Vidaurre et al., 2016) and
non-linear classifiers have been exploited in motor BCI systems
recently deployed during online experiments.

3.2.2.1. Linear classifiers
Several different linear classifiers have been applied and tested for
online or offline neural pattern classification for motor BCIs.

Linear discriminant analysis: Linear Discriminant analysis
(LDA) classifiers are generative classifiers that are based on
multivariate Gaussian distributions which covariance matrix is
shared among classes. LDA classifiers have been embedded in
several motor BCIs, such as in BCIs providing users with control
over hand prostheses or orthoses (Pfurtscheller et al., 2000; Fifer
et al., 2014; Hotson et al., 2016), lower-limb orthoses (Vidaurre
et al., 2016) or humanoid robots (Kapeller et al., 2015). LDA has
also been used for offline motor imagery classification in EEG
(Bhattacharyya et al., 2011), and for the discrimination between
motor states (e.g., idleness, movement, immobilization over a
target after a reaching movement) estimation in LFP (Aggarwal
et al., 2013) and MUA/SUA (Velliste et al., 2014) signals.

Support-Vector-Machines: Support-Vector-Machines
(SVM) have frequently been applied in motor BCI studies
(Schlögl et al., 2005; Yanagisawa et al., 2012; Hortal et al.,
2015) The SVM’s linear decision boundary is chosen so as to
maximize its margin with the nearest training samples (Bishop,
2006). SVM-based classification has for example enabled users
to control a prosthetic hand (Yanagisawa et al., 2012) and a
robotic arm (Hortal et al., 2015). SVMs are also regularly used
for offline motor imagery classification in ECoG (Lal et al.,
2005; Hill et al., 2006; Demirer et al., 2009; Yanagisawa et al.,
2012) and EEG (Schlögl et al., 2005; Sadeghian and Moradi,
2007; Bhattacharyya et al., 2011) signals. SVMs are attractive for
neural signal decoding (Lotte et al., 2007) because of their good
generalization abilities (Schlögl et al., 2005) and because of their
robustness in high-dimensional settings (Friedman et al., 2001).

Thresholded linear regression model: The application of
a threshold on the output of a linear regression model has
been reported in motor BCI studies, such as for ECoG-
driven asynchronous 2D cursor control (Williams et al., 2013).
This classification approach has also been used for offline
discrimination between active and idle states from ECoG signals
(Eliseyev et al., 2011, 2012; Costecalde et al., 2017).

Logistic regression: Logistic Regression (LR) is a discriminant
classifier that is based on generalized linear models, which extend
linear models in that a non-linear link function g is applied
on a linear combination of features (Bishop, 2006). In contrast
with linear regression-based classifiers, LR considers a discrete
dependent variable and assumes that P(yt|xt) follows a Bernoulli
distribution. Several teams have investigated its relevance for the
discrimination between motor imageries or actions from EEG
(Tomioka et al., 2007; Gouy-Pailler et al., 2009; Bashashati et al.,
2015) and ECoG signals (Chen W. et al., 2014; Bundy et al.,
2016).

The respective performance of linear classifiers for motor BCI
systems is still a matter of debate. LDA has been regularly used
to provide users with neural control over prostheses, orthoses,
and robotic devices, and it is particularly popular for EEG offline
linear classification (Bashashati et al., 2015). However, no clear
superiority of LDA decoding performance has been reported in
offline comparative studies (Schlögl et al., 2005; Wang W. et al.,
2009; Bashashati et al., 2015). In Bashashati et al. (2015), a LDA
classifier was slightly but not significantly surpassed by a LR-
based classifier for EEG decoding. In Wang B. et al. (2009),
LDA and SVM performed similarly for both motor imagery and
finger movement classification from EEG signals. In another
comparative study (Schlögl et al., 2005), LDA was significantly
outperformed by a SVM for 4-class motor imagery classification
in EEG signals. By contrast, it performed better than a SVMwhen
applied on low-dimensional EEG features in Bhattacharyya et al.
(2011). Its comparatively low robustness in high dimensions was
also illustrated in the same study (Bhattacharyya et al., 2011), as
LDA performance diminished when the dimension of the EEG
features had not been reduced beforehand (Bhattacharyya et al.,
2011).

3.2.2.2. Non-linear classifiers
Non-linear classifiers have mainly been applied in offline
preliminary studies, such as to discriminate between several
motor imageries (Schlögl et al., 2005; Bhattacharyya et al., 2011;
Sturm et al., 2016; Schirrmeister et al., 2017), cognitive tasks
(Nakayama and Inagaki, 2006) or real movements (Navarro et al.,
2005; Nurse et al., 2016).

Quadratic discriminant analysis: Several teams have
reported EEG mental task classification by means of Quadratic
Discriminant analysis (QDA) classifiers; that is, Gaussian-based
generative classifiers with class-specific covariance matrices
(Schlögl et al., 2005; Bhattacharyya et al., 2011).

Non-linear SVMs: The use of non-linear SVM has been
investigated for EEG feature classification in Bhattacharyya et al.
(2011) and Bashashati et al. (2015). Non-linear SVMs were
designed by means of non-linear kernels, typically Radial Basis
Functions (RBF), in Bhattacharyya et al. (2011) and Bashashati
et al. (2015).

Artificial neural networks: Artificial neural networks (ANNs)
attempt to mimic information encoding in biological neuron
networks (Bishop, 2006) by applying cascaded non-linear
functions on weighted combinations of features, resulting in a
highly non-linear model (Bishop, 2006). ANNs have been used
for offline, non-linear classification of motor imageries from EEG

Frontiers in Neuroscience | www.frontiersin.org 14 August 2018 | Volume 12 | Article 540

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Schaeffer and Aksenova Motor BCI Transducer Design: A Review

signals (Haselsteiner and Pfurtscheller, 2000; Mahmoudi and
Erfanian, 2002; Navarro et al., 2005; An et al., 2014; Ren and
Wu, 2014; Nurse et al., 2015b; Sakhavi et al., 2015; Yuksel and
Olmez, 2015; Kumar et al., 2016; Sturm et al., 2016; Lu et al.,
2017; Schirrmeister et al., 2017; Tabar and Halici, 2017; Tang
et al., 2017) or of real movements from EEG or ECoG signals
(Navarro et al., 2005; Nurse et al., 2016). The flexibility of ANNs
makes them attractive for the complex problem of neural signal
modeling. Among ANNs, Deep Neural Networks (that is, ANNs
which apply several layers rather than a single layer of functions
to the input features), have recently gained much popularity in
the machine learning community (LeCun et al., 2015). The use of
Deep Neural Networks has for example been reported for motor
imagery and real movement classification from EEG recordings
(Nurse et al., 2016; Schirrmeister et al., 2017).

k-nearest neighbors: Finally, the use of the k-Nearest
Neighbors (kNN) classifier has been investigated for offline
detection of motor imageries (Schlögl et al., 2005; Kayikcioglu
and Aydemir, 2010; Bhattacharyya et al., 2011) and/or actions
(Mason and Birch, 2000; Wang W. et al., 2009) from EEG
features, for real movement classification from ECoG data
(Chin et al., 2007) and for target estimation from primate
MUA/SUA signals (Ifft et al., 2013). In contrast with previously
reported classifiers, the kNN classifier is not parametric. A
new sample is assigned with the label which is the most
represented among its k nearest training samples (Bishop,
2006). Thus, kNNs do not require a time-consuming training
procedure to be completed. However, a high computational
load can be associated with the application of the kNN,
inasmuch as the latter necessitates computing the distance
between a new sample and all training samples. This shortcoming
may limit its applicability for motor BCIs, as online kNN-
based classification may introduce a large delay into the
system.

Mixed results have been reported in the comparative studies
completed on non-linear classifiers (Wang B. et al., 2009;
Kayikcioglu and Aydemir, 2010).

While ANNs exhibit a high capability of modeling non-
linear relationships between neural signals and dependant
variables, it has nevertheless been reported that they can
suffer from a few shortcomings, namely: difficulties to
select the optimal network architecture, to avoid overfitting
(Kayikcioglu and Aydemir, 2010), and to interpret results.
Consequently, it has been observed in comparative studies
that the accuracy of ANN-based mental task classification is
not systematically better than the one obtained with simple
non-linear models (Garrett et al., 2003; Wang B. et al.,
2009). In Kayikcioglu and Aydemir (2010), an ANN was
outperformed by a non-linear SVM for different training
dataset sizes. In Garrett et al. (2003), where non-linear SVMs
and ANNs were compared for a 5-class discrimination task
with EEG signals, the ANN was bettered by the SVM. Similar
results were obtained on two EEG datasets in Wang B. et al.
(2009).

Similar observations have been reported for kNN classifiers.
In Wang B. et al. (2009), a kNN performed similarly to a SVM
with a RBF kernel for the discrimination between EEG motor

imageries, and was only slightly surpassed by the same SVM-
based classifier for finger movement decoding from EEG signals.
This satisfying performance was obtained with low-dimensional
input features (respectively, of 2 and 14). In Kayikcioglu and
Aydemir (2010), a similar comparison was drawn between a
kNN, a RBF-based SVM and an ANN for 2-class classification
in the context of EEG-based up-down neural control of a cursor.
The kNN outperformed both the MLP and SVM for this specific
classification task and its performance was best maintained when
the researchers attempted to reduce the training dataset size.
However, the comparison was performed in a setting particularly
favorable to the kNN because the input features were only of
dimension two. By contrast, in Bhattacharyya et al. (2011), the
kNN was outperformed by a RBF-based SVM for two sizes of
independent variable (namely, 871 and 91 features).

3.2.2.3. Respective relevance of linear and non-linear models
The respective interest of non-linear and linear classifiers for
motor BCIs is still unclear. First, most of the previously
mentioned classifiers have not been used for online pattern
classification. Additionally, offline comparisons have generally
been completed for two or three classifiers only and the statistical
significance of the results has seldom been established. However,
a few studies have endeavored to assess the relative interest
of linear and non-linear classifiers for offline discrimination
between motor imageries or actions (Müller et al., 2003; Wang
B. et al., 2009; Bhattacharyya et al., 2011; Bashashati et al., 2015)
or between cognitive tasks (Garrett et al., 2003).

Linear models exhibited a lesser modeling ability in several
offline motor studies (Wang B. et al., 2009; Bhattacharyya et al.,
2011; Tang et al., 2017). A RBF-based SVM was found to
outperform a linear SVM as well as the other linear classifiers
for both motor imagery and finger movement classification in
Bhattacharyya et al. (2011) and Wang B. et al. (2009). In Tang
et al. (2017), a convolutional ANN bettered a linear SVM fed with
generic neural features.

The superiority of non-linear classifiers has not, however, been
systematically reported in offline motor BCI. For example, QDA
did not outperform LDA in two comparative studies (Wang B.
et al., 2009; Bhattacharyya et al., 2011). In Garrett et al. (2003),
a LDA classifier was compared to non-linear SVMs and to an
ANN for the classification of five mental tasks. The performance
of the non-linear classifiers was found to be only slightly more
efficient than the LDA’s one for this EEG classification task. In
Sturm et al. (2016), an ANN was bettered by a SVM fed with
CSP-based features. The training pitfalls associated with non-
linear models were illustrated in Schlögl et al. (2005), where a
kNN was significantly outperformed by a linear SVM and by
LDA for 4-class motor imagery discrimination from EEG signals.
Consequently, Müller et al. (2003) advocated the use of linear
methods except for some specific cases with “complex, large”
datasets. Correspondingly, linear classifiers like LDA (Bashashati
et al., 2015) are regularly chosen over non-linear models despite
their lesser modeling ability. In particular, most recent clinical
motor BCIs have relied on linear classifiers (e.g., LDA Tsui et al.,
2007; Fifer et al., 2014; Kapeller et al., 2015; Hotson et al., 2016;
Vidaurre et al., 2016 or SVM Hortal et al., 2015).
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Despite some trends, the relevance of a linear or non-
linear classifier ultimately depends on the problem at hand. In
Bashashati et al. (2015), for example, the two top classifiers for
self-paced data decoding were a linear and a non-linear classifier,
namely a LR classifier and an ANN. Classifier performance is
particularly related to the characteristics of the extracted neural
features, for example to their type (Bashashati et al., 2015) or
dimension (Bhattacharyya et al., 2011). In Bashashati et al. (2015),
the classifiers’ performance for synchronous data decoding was
not similar when classifiers were fed with band-pass- or with
wavelet-based features. In Bhattacharyya et al. (2011), differences
in performance ranking were observed if classifiers were applied
on a high-dimensional input variable or on the same variable
after PCA-based dimensionality reduction. Similarly, a RBF SVM
and a kNN were identified as the best classifiers for a task of
motor imagery decoding in Wang B. et al. (2009) but LDA
reportedly equalled a RBF-based SVM for finger decoding.

Finally, to the best of our knowledge, only limited comparative
studies have been completed on ECoG data (Shenoy et al., 2008).
The respective relevance of the above-mentioned classifiers thus
remains to be ascertained for ECoG data.

3.2.3. Static and Sequential Classifiers
The previously mentioned classifiers are static; that is they
don’t take into account possible dependencies between successive
independent or dependent variables. This assumption is
typically violated in motor BCI studies. More specifically,
such dependencies are likely to occur during closed-loop BCI
acquisition sessions, as users take the classifier’s past outputs into
account when determining their current movement intention.

A few teams have investigated the interest of taking into
account the sequential nature of the neural features or of the
class labels (Obermaier et al., 2001; Chiappa and Bengio, 2003;
Argunşah and Çetin, 2010). One strategy regularly utilized in
motor offline or online BCI studies, such as Kim et al. (2011),
Flamary and Rakotomamonjy (2012), and Eliseyev et al. (2012),
consists in extracting features from several time segments to
build a temporal sequence of feature vectors. This sequence is
then fed to a static classifier (Dietterich, 2002; Lotte et al., 2007).
Another approach, namely the application of dynamic classifiers,
has been reported for neural pattern classification in SUA/MUA
(Darmanjian et al., 2003), EEG (Obermaier et al., 2001; Argunşah
and Çetin, 2010), and ECoG-based (Onaran et al., 2011; Delgado
Saa et al., 2016) BCI studies. Dynamic classifiers directly exploit
time series temporal behavior (Lotte et al., 2007).

HiddenMarkovModels: The dynamic classification of neural
signals has been performed by means of Hidden Markov Models
(HMMs) in EEG (Obermaier et al., 2001; Štastný and Sovka,
2007; Gouy-Pailler et al., 2009; Argunşah and Çetin, 2010), ECoG
(Onaran et al., 2011) and SUA/MUA offline motor BCI studies
(Darmanjian et al., 2003; Wissel et al., 2013), and in a few online
motor BCIs (Fifer et al., 2014; Hotson et al., 2016).

HMMs consider a hidden state zt ∈ Z, which is generated
by a first order Markov process, such as P(zt+1 = k|z1 : t) =

P(zt+1 = k|zt) (Rabiner, 1989). The value of the observation
xt ∈ Z

m or xt ∈ R
m depends on the corresponding hidden state

value zt via the conditional probability P(xt|zt) (Rabiner, 1989).

Bayes filtering provides efficient recursive algorithms to infer the
most likely state label ẑt by combining prior knowledge about
the previous hidden state zt−1 with the likelihood of the current
observed features xt (Rabiner, 1989).

One approach reported for neural signal HMM-based
classification consists in associating one hidden state value zt = i
with each class label yt = i (Kemere et al., 2008; Fifer et al., 2014;
Hotson et al., 2016). This strategy has, for example, been used
for offline target estimation from SUA/MUA signals in (Kemere
et al., 2008). HMM-based classifiers have also applied for robust
online state detection in several closed-loop motor BCIs (Fifer
et al., 2014; Hotson et al., 2016; Kao et al., 2017). States were,
for example, associated to NC and IC classes (Fifer et al., 2014;
Hotson et al., 2016).

An alternative approach has been investigated in offline
preliminary studies (Obermaier et al., 2001; Darmanjian et al.,
2003; Argunşah and Çetin, 2010; Onaran et al., 2011;Wissel et al.,
2013). One HMM was associated with each considered class and
several states were thus used to model feature dynamic within
each class. Classification was performed by feeding each HMM
with a sequence ofN consecutive observations and by computing
the associated probability P(xt−N+1 : t|yt = i).

The sequence was assigned the class i, which maximized
P(xt−N+1 : t|yt = i). HMMs have been used for offline modeling
of the variations variations of neural features within No-Control
and Intentional Control states in SUA/MUA (Darmanjian et al.,
2003) and ECoG (Onaran et al., 2011), within finger movements
in ECoG signals (Wissel et al., 2013), or within motor imageries
in EEG signals (Obermaier et al., 2001; Argunşah and Çetin,
2010).

The use of HMM’s variants has been proposed for the
classification of EEG and ECoG mental tasks (Chiappa and
Bengio, 2003; Awwad Shiekh Hasan and Gan, 2010; Hasan and
Gan, 2011; Saa and Çetin, 2012; Saa and Çetin, 2013).

Input-output hidden Markov models: Input-Output Hidden
Markov Models (IOHMMs), which integrate both the modeling
of each hidden state’s dynamic and of class succession, have
been applied on EEG signals to discriminate between 3 mental
tasks in Chiappa and Bengio (2003). In contrast with HMMs,
IOHMMs are trained to distinguish between classes composed
of several hidden states, and directly map input features to the
non-stationary classes (Bengio and Frasconi, 1996).

Conditional random fields: Conditional Random Fields
(CRFs) are discriminative undirected graphical models
(Sutton and Mccallum, 2012), and linear-chain CRFs are
more specifically the discriminative counterpart of HMMs
(Sutton and Mccallum, 2012). CRFs have been used for EEG
offline modeling and decoding (Awwad Shiekh Hasan and
Gan, 2010; Hasan and Gan, 2011; Saa and Çetin, 2012; Saa
and Çetin, 2013), and for finger movement detection in ECoG
signals (Delgado Saa et al., 2016). While they have a better
ability to model long-term time dependencies (Lafferty et al.,
2001), their training is computationally expensive (Dietterich,
2002).

Dynamic Bayesian models: Dynamic Bayesian Models
(DBNs) are probabilistic graphical models which permit to
take into account the dependence between several random
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variables (Murphy, 2002). HMMs are a specific case of DBNs
and are, therefore, less flexible than DBNs. The dynamic of
EEG (Shenoy, 2005) and ECoG (Wang et al., 2012) signals has
been exploited by means of DBN (Murphy, 2002) in offline
studies.

Recurrent neural networks: Finally, the use of a time-
dependent ANN was reported for EEG dynamical classification
in Haselsteiner and Pfurtscheller (2000).

Most dynamic classifiers which were embedded in motor
BCIs were generic HMMs with state-class correspondence (Fifer
et al., 2014; Hotson et al., 2016; Kao et al., 2017). Although
the respective performances of more complex dynamical
classifiers has been investigated and compared in offline studies
(Chiappa and Bengio, 2003; Saa and Çetin, 2012; Saa and
Çetin, 2013), they have not assessed in closed-loop settings.
In Saa and Çetin (2012), HMM surpassed CRFs for the
classification of EEG signals, but were outperformed by a
CRF variant, namely a hierarchical CRF. In contrast, in Saa
and Çetin (2013), HMM-based EEG classification accuracy
was inferior to the CRF-based one. In Chiappa and Bengio
(2003), IOHMMs were found to outperform HMMs for EEG
dynamic classification. As both dynamic classifiers performed
similarly to their static counterparts (namely, a Gaussian
Mixture Model-based Bayes classifier and an ANN), the authors
concluded that ANNs surpassed Gaussian mixture model-based
generative classification for the considered EEG dataset. It
has correspondingly been suggested that multi-state dynamic
classifiers may have limited interest for asynchronous decoding
(Lotte et al., 2007).

3.2.3.1. Respective relevance of static and dynamic classifiers
In a few papers, the potential advantages of dynamic over static
modeling have been investigated in the case of offline data, such
as Cincotti et al. (2003) and Delgado Saa et al. (2016). In Cincotti
et al. (2003), HMMs were significantly outperformed by ANNs
for the classification of right and left hand motor imageries in
EEG signals. In Delgado Saa et al. (2016), an extension of CRFs
improved the discrimination between finger movements from
ECoG signals when compared to LR and sparse linear regression.
The interpretability of this result is nevertheless limited, because
the considered static and dynamic classifiers did not belong to the
same class of models, in contrast with the static-dynamic pairs
compared in Chiappa and Bengio (2003).

Finally, post-processing techniques, which rely on a priori
knowledge about specific characteristics of the user intended
effector movement, can be used to improve the movement
estimates. When applied on the output of a discrete decoder,
they are mainly used to take into account the a priori knowledge
that fast switches between classes are unlikely. Typical post-
processing methods include filtering of the classifier output
(Mason and Birch, 2000; Millán and Mouriño, 2003; Bashashati
et al., 2007b; King et al., 2015), triggering a state transition
after successive identical state estimates only (Townsend et al.,
2004; Pfurtscheller et al., 2010), or blocking state transitions for
a predefined duration after a performed transition (Townsend
et al., 2004; Pfurtscheller et al., 2010).

3.3. Continuous Decoding
Decoding of continuous dependent variables is mainly
performed within the framework MEA- and ECoG-based
motor BCI systems, such as kinematic motor BCIs (Hochberg
et al., 2006; Collinger et al., 2013; Wodlinger et al., 2015).
Continuous dependent variables typically characterize the
position or velocity of the effector’s endpoint, such as wrist
kinetics or kinematics in the case of an upper-limb orthosis (Li,
2014). The use of different classes of models has been explored in
BCI studies.

3.3.1. Linear and Non-linear Regression Models
Both linear and non-linear regression models have been applied
for kinematic parameter reconstruction from neural signals.

3.3.1.1. Linear regression models
Neural control over prostheses, orthoses, or virtual effectors
has been achieved by means of linear models in several online
motor BCI studies, both with human (Hochberg et al., 2006;
Collinger et al., 2013;Wodlinger et al., 2015) and primate subjects
(Taylor et al., 2002; Carmena et al., 2003; Velliste et al., 2008;
Suminski et al., 2010; Willett et al., 2013; Williams et al., 2013).
Offline trajectory reconstruction has also been performed by
means of linear models in several EEG-, ECoG-, and MUA/SUA-
based preliminary studies (Bradberry et al., 2010; Koyama et al.,
2010b; Liang and Bougrain, 2012; Eliseyev and Aksenova, 2014;
Bundy et al., 2016). Linear models rely on the assumption that
the dependent variable is a noisy linear combination of the
independent variable components; that is, of the neural features:

yt = Bxt + ǫ
t

where B ∈ R
n×m and ǫ

t ∈ R
n is the observation noise, and where

the neural features xt can embed a history of instantaneous neural
features x̃t , i.e., xt = x̃(t+1−τ2) : t to exploit neural signal temporal
characteristics (Dietterich, 2002; Lotte et al., 2007).

A linear model, namely the Population Vector Algorithm
(PVA), has been used for kinematic decoding in several
SUA/MUA-drivenmotor BCI systems (Taylor et al., 2002; Velliste
et al., 2008; Collinger et al., 2013; Wodlinger et al., 2015).
The PVA is based on the cosine directional tuning model
(Georgopoulos et al., 1986), which states that neurons of the
motor cortex fire preferentially in one specific direction. The
instantaneous firing rate of each neuron is used to weight the
corresponding preferred direction.

The use of different identification algorithms has been
reported in online and offline motor BCI studies. While
Ordinary Least Squares (OLS) corresponds to the maximum
likelihood estimator when the measurement noise is Gaussian,
the OLS estimator is unstable when the input variable xt is
high dimensional or composed of correlated explanatory features
(Friedman et al., 2001). The use of penalized approaches such
as pace regression (Kubánek et al., 2009), ridge regression
(Suminski et al., 2010; Shanechi et al., 2013; Willett et al., 2013)
and sparse linear regression (Williams et al., 2013) has, therefore,
been frequently proposed for trajectory model identification and
for Ridge regression; for example, outperformed OLS regression
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in the comparative study drawn in Li et al. (2009) for MUA/SUA-
based trajectory reconstruction. Accurate decoding from ECoG
high dimensional feature representations has additionally been
reported using partial least squares and its variants (Shimoda
et al., 2012; van Gerven et al., 2012; Eliseyev and Aksenova, 2014,
2016; Bundy et al., 2016).

3.3.1.2. Non-linear regression models
Linear regression models rely on unrealistic assumptions about
information encoding in motor neural signals, whose complexity
has been suggested in numerous studies (Scott, 2008). For
example, several teams have investigated the use of non-linear
models for neural signal decoding (Li, 2014), assuming that yt =
f (xt) + ǫ with f non-linear. These studies mainly consisted of
offline trajectory reconstructions (Kim K. H. et al., 2006; Eliseyev
and Aksenova, 2014; Spüler et al., 2016).

Generalized Additive Models (GAM) and Generalized Linear
Models (GLMs) constitute one class of non-linear models which
interest has been explored for motor BCI systems; for example,
for offline trajectory reconstructions from primate ECoG signals
in Eliseyev and Aksenova (2014) and Engel et al. (2017). GAMs
extend linear models by applying a non-linear function gi on
each component xti of the independent variable before using a
linear model to combine them. In the case of generalized linear
modeling, a non-linear function g−1 is directly applied on the
output of a linear filter β , i.e., yt = g−1(βxt). The non-linear
function g−1, which is referred to as “link” function, is fit on the
training data (Eliseyev and Aksenova, 2014; Engel et al., 2017).
A similar approach, namely a cascaded Wiener filter, has been
applied on SUA/MUA offline datasets in Flint et al. (2012), Flint
et al. (2013), and Scheid et al. (2013).

The application of non-linear regression models such as
Support Vector Machine Regression (SVR) (Mehring et al., 2003;
Kim K. H. et al., 2006) or ANN models (Sanchez et al., 2002;
Hatsopoulos et al., 2004; Kim K. H. et al., 2006; Kim S.-P. et al.,
2006) has been additionally proposed for SUA/MUA decoding,
and tested in offline preliminary studies or, more recently, in
online motor BCI studies (Sussillo et al., 2016). SVR- (Spüler
et al., 2016) and Gaussian Processes-based (Wang et al., 2010)
trajectory reconstruction has also been reported in ECoG-driven
offline BCI studies.

3.3.1.3. Respective relevance of linear or non-linear models

for continuous decoding
The findings of several offline preliminary studies are consistent
with the idea that non-linear regression models are likely to be
more realistic than linear ones for kinematic decoding: linear
decoders were outperformed by both GLM andGAM approaches
for ECoG signal decoding in monkeys’ (Eliseyev and Aksenova,
2014) signals, and by SVR in simulated primate SUA/MUA
signals (Kim K. H. et al., 2006). Because non-linear models are
more flexible than linear ones and, therefore, more prone to
overfit, fine identification procedures were often required for
non-linear models proper training. Difficulties were reported for
the training of the ANN used in Kim K. H. et al. (2006) for
trajectory decoding. They were presented as a possible cause
for the superior decoding performance of the SVR, which is

yet less flexible than ANNs (Kim K. H. et al., 2006). A specific
early-stopping procedure was utilized to prevent overfit during
ANN training in Hatsopoulos et al. (2004). The complexity of
ANNs’ possible structures (e.g., number of layers and number
of neurons per layer) additionally makes their optimization
time-consuming, which is the reason why proper optimization
of the ANN structure was not performed in Hatsopoulos
et al. (2004). Under these conditions, linear- and ANN-based
trajectory reconstructions fromMUA/SUA signals yielded similar
results in this study (Hatsopoulos et al., 2004).

Linear models are regularly chosen over their non-linear
counterparts in spite of their simplistic assumptions, particularly
in the case of MUA/SUA- (Taylor et al., 2002; Velliste et al., 2008;
Collinger et al., 2013; Wodlinger et al., 2015) and ECoG-driven
(Schalk et al., 2008; Wang W. et al., 2013) online motor clinical
BCI studies. Up to 10D- and 3D-control has been achieved
by means of linear filtering of MUA/SUA and ECoG signals,
respectively (WangW. et al., 2013;Wodlinger et al., 2015). Linear
models have additionally been shown to be reasonably efficient
for position, velocity, acceleration, speed and so on in offline
decoding (Wang et al., 2007; Bundy et al., 2016; Hammer et al.,
2016) and they generally involve simpler training procedures
than non-linear models.

Over the course of the last decade, another class of decoders,
namely dynamic models, has gained popularity in motor BCIs.

3.3.2. Dynamic Models

3.3.2.1. Stochastic state-space models
Linear or GAM-, GLM-, SVR- and generic ANN-based decoders
are static regression models; that is, they assume the existence of
a (parametric or non-parametric) linear or non-linear model f
so that yt ≈ f (xt). By contrast, most dynamic models utilized
for cursor or prosthesis control in several motor BCIs (Hochberg
et al., 2012; Ifft et al., 2013) consider stochastic state-space
models; that is,

yt+1 = g(yt)+ wt , (1)

xt = h(yt)+ vt . (2)

The noise processes wt and vt are generally independent
and identically distributed sequences of random variables
(Krishnamurthy, 2016). The continuous response variable yt ∈

R
n is here composed by the trajectory coordinates and derivatives

(velocity, acceleration etc.). The transition equation (1) explicitly
describes the dynamic of the hidden sequence yt ∈ R

n

(“movement model” Li, 2014). As expressed in (1), movement
models traditionally rely on a first-order Markovian temporal
dependencies used to constrain the trajectory smoothness
(Brockwell et al., 2004; Koyama et al., 2010b). The dependence
between measurements xt ∈ R

m and hidden state value yt ∈

R
n is described by the emission equation (2), where vt is the

observation noise. As the emission equation models how neural
features are generated conditionally to a given trajectory point,
state-space models are sometimes referred to as “generative
models” (Wu et al., 2002; Gao et al., 2003; Kim S.-P. et al., 2006).
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Recursive Bayesian estimation procedures are generally used
to infer the hidden trajectory yt ∈ R

n from the sequence of noisy
measurements xt ∈ R

m (Bishop, 2006).

3.3.2.2. Recursive Bayesian estimation: Kalman filter
The Kalman Filter (KF) is a recursive estimation procedure that
has been frequently utilized for online and offline trajectory
reconstruction. It was first applied for 2D offline hand trajectory
decoding from SUA/MUA signals in monkeys (Wu et al., 2002,
2003a), where it was found to surpass linear filtering (Wu et al.,
2003a). It has since then provided users with MUA/SUA-based
control over prostheses (Hochberg et al., 2012). It has additionally
been applied for trajectory decoding from ECoG signals in online
and offline studies (Pistohl et al., 2008; Kellis et al., 2012; Marathe
and Taylor, 2013; Wang et al., 2013b). KF applies to linear
Gaussian state-spacemodels (Bishop, 2006); that is, to state-space
models with linear emission and transition models associated
with Gaussian noises.

After training, typically performed using Ordinary Least
Squares (Wu et al., 2002), the KF issues the estimate ŷt =

E(yt|x1 : t).

3.3.2.3. Alternative recursive estimation procedures
To the best of our knowledge, dynamic modeling of ECoG
data has been restricted to Gaussian state-space models; that is,
Kalman filtering procedures. However, further investigations
have been carried out to ascertain the interest of non-linear
and/or non-Gaussian state-space modeling of MUA/SUA
data. While non-linear and/or non-Gaussian state-space
representations integrate more realistic emission and noise
models (e.g., Poisson noise for spiking counts), the associated
trajectory estimation procedures are often approximate and/or
computationally expensive (Koyama et al., 2010a) [e.g.,
Unscented Kalman Filter (UKF) in (Li et al., 2009, 2011; Ifft
et al., 2013), particle (Brockwell et al., 2004), point-process or
Laplace-Gaussian Filtering (LGF) (Velliste et al., 2014) in the
case of Poisson noise].

The relevance of non-linear emission model has been studied
for MUA/SUA offline decoding in Gao et al. (2003). The
emission model was modeled using linear models, GLM or GAM
associated with Poisson noises (Gao et al., 2003). Non-linear
models, and particularly GAM-based emission models, were
found to improve the quality of trajectory estimation. In Koyama
et al. (2010b), KF and the LGF (i.e., a procedure for non-linear
emission models and Poisson noise) performed similarly for
offline trajectory reconstruction from primate SUA/MUA signals.
An additional closed-loop study suggested a slight superiority of
the LGF over the KF (Koyama et al., 2010b). Analogously, the
UKF proposed in Li et al. (2009) surpassed traditional KF for a
task of trajectory reconstruction fromMUA/SUA signals.

3.3.2.4. Alternative dynamic models
The use of dynamic ANN (e.g., recurrent neural networks) has
recently been reported for MUA/SUA-based kinematic decoding
(Sussillo et al., 2016).

3.3.2.5. Static vs. dynamic models for continuous decoding
Over the last few years, dynamical models have emerged as
a promising and efficient alternative to static (typically linear)
models (Srinivasan et al., 2007; Li, 2014). Since its first application
in 2002, the Kalman filter and its variants have been increasingly
applied for both online and offline SUA/MUA decoding (Wu
et al., 2002; Hochberg et al., 2012; Aggarwal et al., 2013).
Because of the deterrent computational burden of its variants,
recursive estimation during closed-loop experiments has mainly
been achieved via Kalman Filtering (Li et al., 2009). While the
respective performance ofWiener and Kalman filters appeared to
depend on the decoding task at hand in Kim S.-P. et al. (2006), a
few systematic comparisons of static and dynamic models have
given a steady ground to the popularity of the Kalman filter:
static linear models were outperformed by dynamical ones for
open-loop (Aggarwal et al., 2009) and/or closed-loop SUA/MUA
decoding (Koyama et al., 2010b). The KF embedded approach
for smoothing has been identified as particularly efficient in both
open- and closed-loop studies (Koyama et al., 2010b).

By contrast, the respective suitability of static and dynamic
continuous models for ECoG decoding is still unclear. ECoG-
based neural control has been achieved by means of a linear
decoder both in non-human primates (Williams et al., 2013) and
human subjects (Wang W. et al., 2013) (2D and 3D effector
control, respectively). The use of linear decoding has also been
reported for ECoG offline trajectory reconstruction (Schalk et al.,
2007; Chao et al., 2010; Liang and Bougrain, 2012; Shimoda et al.,
2012; Hammer et al., 2013; Nakanishi et al., 2013; WangW. et al.,
2013; Williams et al., 2013; Hotson et al., 2014; Bundy et al.,
2016). Up to 7DoF have been reconstructed in offline feasibility
studies led on primate (Chao et al., 2010; Shimoda et al., 2012)
and human subjects (Schalk et al., 2007; Nakanishi et al., 2013).
Meanwhile, Kalman filtering has permitted to reconstruct 2D
kinematic parameters from ECoG signals (Pistohl et al., 2008;
Kellis et al., 2012; Marathe and Taylor, 2013; Wang et al., 2013b).
In a comparative study performed on ECoG data (Eliseyev and
Aksenova, 2016), static models outperformed Kalman filtering
for the reconstruction of kinematic parameters from high-
dimensional time-space-frequency feature representations. One
reason for these findings could be a lesser relevance of generative
approaches for high-dimensional ECoG data. In another study
led on ECoG data (Marathe and Taylor, 2013), Kalman-based
cursor control was more precise than linear-decoder-based
control.

Post-processing of a continuous movement estimate is
generally used with the aim of improving the smoothness
of the corresponding decoded trajectory, whose impact on
control has been investigated in Marathe and Taylor (2015).
The improvement of other trajectory characteristics requires
the existence of an a priori trajectory model, which is seldom
available. A complex a priori finger trajectory model based on
a switching non-linear dynamic model was for example built in
Wang et al. (2011). This model in particular integrated a priori
knowledge about the succession of rest, flexion and extension
states and about the maximal amplitude of finger movements.
The switching post-processing model was applied on the output
of a linear decoder fit on both idle and active samples, and
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permitted both to support idle state and accurately decode multi-
limb trajectories (Wang et al., 2011).

4. DISCUSSION

The many online and offline studies cited in the present
review attest to the efforts that have been made in the last
few years toward designing accurate decoders for motor BCI
systems. Decoding and training strategies have been confronted,
and modeling approaches have been compared in offline and
online studies so as to establish the respective relevance of
decoding solutions. Yet, in spite of sustained efforts and
of proofs of concept performed in laboratory environments
(Collinger et al., 2013; Wodlinger et al., 2015), motor BCIs
have not yet been deployed for everyday use (Mak and
Wolpaw, 2009). This lack of clinical motor BCIs contrasts
with the few communication or environmental control BCI
systems which have been commercialized (Mak and Wolpaw,
2009), e.g., EEG-driven spellers (G.tex, 2016). This is due to
the technical difficulties encountered to meet the particularly
demanding features required for motor BCIs to benefit patients
in their everyday life. While some of these technical obstacles
concern the acquisition system, such as the development of
safe and chronic acquisition systems which is still under
progress, several challenges are more specifically associated
with the BCI transducer. The challenges related to the design
of clinical-compatible motor BCI transducers include high
decoding accuracy, chronicity, asynchronicity, multiple DoFs
and/or multi-limb decoding.

4.1. Accuracy
The high fidelity of the transducer’s estimates to the user’s
intentions is generally deemed to be crucial for motor BCI
systems. It has been shown that an accurate extraction of
kinematic parameters from the neural signals is required for
upper-limb motor BCI systems to enable patients to interact with
their environment, such as perform efficient reachingmovements
(Marathe and Taylor, 2011). Most of the transducers that are
mentioned in the present review were designed with the implicit
or explicit objective of providing highly accurate estimates of
the user’s intended movements during periods of active effector
control. Correlations as high as 0.8 or 0.9 have been obtained
between real and MEA-based offline estimates of upper-limb
movements (Li et al., 2009; Vargas-Irwin et al., 2010).

Yet, despite the noteworthy algorithmical developments and
refinements which have resulted in considerable progress in the
reported decoding accuracies, the ability of motor BCI users
to interact with their environment remains limited. While a
normally functioning upper limb is associated with a score of
27 in the Action Research Arm Test (ARAT), scores ranging
from 14 to 17 and or averaging around 15.5 have been reported
after training of tetraplegic patients in two forefront studies
(Collinger et al., 2013; Wodlinger et al., 2015). The control
complexities obtained with semi- or non-invasive acquisition
technologies (i.e., with ECoG or EEG arrays), for their part,
have not yet equalled the performances achieved in these two
MEA-driven motor BCI systems. Similarly, even if they were to

be maintained in closed-loop experiments, the high accuracies
reported in offline studies (Li et al., 2009; Vargas-Irwin et al.,
2010) may not be sufficient to permit users to proficiently control
upper-limb protheses or orthoses. Therefore, decoding accuracy
is still an obstacle that preventmotor BCIs being of use to severely
motor impaired patients.

4.2. Chronicity
While chronic signal acquisition remains a critical problem for
invasive motor BCI systems because of the biocompatibility
issues associated with MEAs (Mak and Wolpaw, 2009), efficient
chronic decoding is no less challenging. Invasive MEA-
based motor BCI systems regularly require daily recalibrations
(Hochberg et al., 2012;Wodlinger et al., 2015; Bouton et al., 2016)
which may be cumbersome for long-term utilizations. These
recalibrations are made necessary by the instability of neural
motor representations, which have been disclosed for MUA/SUA
in Rokni et al. (2007). Similarly, adjustments to the parameters
of transducers embedded in non-invasive or semi-invasive BCI
systems seem beneficial. Several sources of signal instabilities
have, for example, been disclosed in the case of EEG signals, such
as instabilities caused by muscle tension, environmental noise,
attention, mood or fatigue (Mladenovic et al., 2017).

While both efficient adjustment of the transducer parameters
and decoder robustness to neural variability (Sussillo et al., 2016)
are desirable, they remain challenging tasks. Adaptive algorithms
are one of the paths currently explored by the BCI community
(Gürel and Mehring, 2012; Merel et al., 2013; Zhang and Chase,
2013).

4.3. Asynchronous Control
Another major issue for motor BCI clinical applications is
the ability to provide users with asynchronous control over
the effector (Graimann et al., 2009). Most motor clinical trials
have been completed using a synchronous protocol, i.e., user
intentions were not processed outside predefined, cued windows
(Hochberg et al., 2006; Wodlinger et al., 2015). Given that the
deployment of synchronous BCI systems requires the presence of
an operator to switch the system on and off, the impact of the BCI
system on users’ independence is limited. Potential BCI users,
however, express a strong desire for stand-alone BCI systems
(Blabe et al., 2015). Because asynchronous (or self-paced) BCI
transducers are continuously available to BCI users (Graimann
et al., 2009), they potentially correspond to stand-alone systems.
Asynchronicity is, therefore, an essential feature for practical
motor BCIs (Wolpaw et al., 2002).

In asynchronous mode, users generally alternate between
periods of Intentional Control (IC) and of No-Control (NC),
during which they do not intend to use the BCI system (Mason
et al., 2006). The limitation of erroneous activations of the BCI
system during NC states is all the more important when users of
motor BCIs physically interact with the effector (e.g., an orthosis)
in contrast to BCIs based on the control of a virtual effector (e.g., a
cursor on a computer screen). Because false activations are likely
to be particularly disturbing and stressful to users, NC support
(i.e., the prediction of neutral values during NC states) is highly
desirable for motor BCIs (Leeb et al., 2007).

Frontiers in Neuroscience | www.frontiersin.org 20 August 2018 | Volume 12 | Article 540

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Schaeffer and Aksenova Motor BCI Transducer Design: A Review

NC support has first been studied for brain-switches; that is,
BCI systems which integrate NC detection into discrete decoders
by considering and detecting a NC class (Bashashati et al.,
2007b; Pfurtscheller et al., 2010; Solis-Escalante et al., 2010).
Linear discriminant analysis (Pfurtscheller et al., 2010), support
vector machine (Solis-Escalante et al., 2010), logistic regression
(Blokland et al., 2014) or dynamic classifiers such as hidden
Markov models or HMM variants (Kemere et al., 2008; Gouy-
Pailler et al., 2009; Hotson et al., 2016) and conditional random
fields (Hasan and Gan, 2011; Delgado Saa et al., 2016) are some
of the classifiers which use has been reported to distinguish
NC states from motor imageries (Gouy-Pailler et al., 2009) or
movement execution (Delgado Saa et al., 2016).

Although asynchronous control has been considered in a
few motor clinical BCIs relying on discrete decoders, such
as in Hotson et al. (2016), NC states were not supported in
the majority of biomimetic kinematic motor BCIs, which were
deployed using synchronous paradigms (Hochberg et al., 2006,
2012; Wodlinger et al., 2015) . The integration of NC support
into kinematic decoders has only been partially addressed in the
literature. Although generic linear static and dynamic models
are favored for motor BCI kinematic decoders, they usually fail
to output zero-velocity (neutral) estimates when they are used
for asynchronous decoding and are applied to NC states (Chao
et al., 2010; Shimoda et al., 2012; Velliste et al., 2014). Several
different decoding strategies have been used to integrate NC
support into biomimetic kinematic neural signal decoders. While
most of them were validated with offline analyses, the integration
of NC support into a kinematic decoder was nevertheless utilized
for asynchronous control of a robotic arm in monkeys in Suway
et al. (2013).

A first approach to integrate NC support into biomimetic
kinematic decoders, namely post-processing, has been explored
for both SUA/MUA (Aggarwal et al., 2013; Velliste et al.,
2014) and ECoG signals (e.g., Wang et al., 2013b) decoding.
This consists in overwriting the output of the single kinematic
model with null-velocity (neutral) estimates when a NC state
is detected by a discrete NC/IC decoder. Different pairs of
discrete-continuous decoders have been considered. Kalman
filters and (non-Gaussian) variants have been gated by LDA in
SUA signals in Velliste et al. (2014) and Aggarwal et al. (2013) or
Bayes classifier in ECoG signals (Wang et al., 2013b), i.e., their
output was overwritten with neutral values when an independent
classifier detected a NC state (Aggarwal et al., 2013; Wang et al.,
2013b; Velliste et al., 2014). Finally, a dynamic post-processing
model permitted to integrate NC support into a finger kinematic
decoder in Wang et al. (2011).

Another approach to asynchronous decoding consists in
embeddingNC support into the decoder.While the use of generic
non-linear models has been considered in a few studies (e.g.,
GLM or GAM Eliseyev and Aksenova, 2014), the most popular
decoding approach consists in switching between continuous
models. Switching models rely on a latent discrete variable to
introduce state-specific non-linearities into a generic continuous
decoder (Wood et al., 2005; Srinivasan et al., 2007; Bundy et al.,
2016; Schaeffer and Aksenova, 2016), where some of states
are associated with NC periods. Both static (Williams et al.,

2013; Bundy et al., 2016) and dynamic (Wood et al., 2005;
Srinivasan et al., 2007) switching models have been considered
for asynchronous mono-limb decoding from ECoG (Williams
et al., 2013; Bundy et al., 2016) or MUA/SUA (Wood et al.,
2005) signals. In the case of dynamic switching models (e.g.,
the switching particle filter; Wood et al., 2005), the value of
the latent variable is used to switch between observation and/or
transition models. The transition model associated with NC
states explicitly takes into account the fact that null-velocity
estimates are expected during NC states.

However, despite the clear needs and considerable efforts, it is
likely that the level of false positive activation generally reported
in literature (e.g., Delgado Saa et al., 2016; Hotson et al., 2016)
is still too high for practical asynchronous motor BCI systems
(Fatourechi et al., 2008).

4.4. Multi-Limb Control
Although it may improve the daily lives of severely impaired
patients (e.g., patients with tetraplegia), multi-limb decoding
has been scarcely explored by the BCI community. While
numerous daily life tasks require bimanual movements (Swinnen
and Wenderoth, 2004), bimanual neural control has only been
reported over virtual effectors (Ifft et al., 2013). Similarly,
combined lower- and upper-limb control has yet to be thoroughly
explored by the BCI community. The integration of multi-limb
effector control into motor BCIs has only been considered in a
few studies focusing on upper limbs (Hochberg et al., 2012; Ifft
et al., 2013; Wodlinger et al., 2015; Bouton et al., 2016). Both
parallel and sequential multi-limb control have been investigated.

Parallel control consists in decoding and allowing the
movement of several effector at once, such as simultaneous
movements of hand and arm prostheses or orthoses. This is
generally performed by applying several limb-specific models on
neural features (Hochberg et al., 2012; Wodlinger et al., 2015).
Limb-specific models are trained jointly or independently.

In the case of sequential control, , one limb only is active
at each time moment. When several limb-specific models are
applied on neural features, the activation of one limb can result
in residual movements of the other limbs. Such noisy outputs
were, for example, observed in Nakanishi et al. (2014), where the
displacement of a finger resulted in small-amplitude movements
in the estimations of the other fingers’ position. A switching
model was thus considered for sequential asynchronous multi-
finger decoding in Flamary and Rakotomamonjy (2012). One
linear model was devoted to each finger, and applied when
deemed appropriate by a multi-class discrete decoder. These
switching models intrinsically prevent parallel activations as only
one active limb model is chosen at each instant.

The extension of mono-limb asynchronous decoding to
multi-limb asynchronous control is an additional challenge for
multi-limb BCI systems. The switching models designed for
asynchronous control can readily be applied for asynchronous
parallel multi-limb control. They can additionally be extended
for asynchronous sequential multi-limb neural control by
considering one or more states per limb and one state for NC
period.
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4.5. Summary on the Current Progress and
Conclusion
While EEG-based motor BCIs have the significant advantage of
being safe, a long training process is generally necessary before
the user is able to adapt to the mental-task decoder they embed.
To date, the corresponding complexity of control additionally
remains inferior to that associated with invasive and semi-
invasive BCIs. 2D-control over a robotic arm with four possible
directions (Hortal et al., 2015), 3D synchronous control (LaFleur
et al., 2013), or 2D control decomposed into sequences of 1D
movements (Bhattacharyya et al., 2015) have been reported in
EEG-based motor BCI systems.

The implantation of invasive or semi-invasive acquisition
systems (MEA, ECoG) is still associated with biocompatibility
and chronicity issues. However, their comparatively higher
informative content may make of them a promising alternative
to EEG for highly accurate, multiple DoF and multi-limb
control (Lebedev and Nicolelis, 2006). The feasibility of 3D
(Hochberg et al., 2012), 7D (Collinger et al., 2013), and 10D
(Wodlinger et al., 2015) neural control over a robotic arm has
been demonstrated in recent MEA-based studies. The integration
of multi-limb effector control into motor BCIs has particularly
been considered in a few studies (Hochberg et al., 2012; Ifft
et al., 2013; Wodlinger et al., 2015; Bouton et al., 2016). In
Hochberg et al. (2012), both sequential or parallel MEA-based
control over an upper-limb prosthesis endpoint and a prosthetic
hand were achieved by users with tetraplegia. Parallel control
over the wrist and hand of a robotic arm was additionally
reported in Wodlinger et al. (2015). Bimanual control has only
been reported over virtual effectors (Ifft et al., 2013). While
these studies suggest the relevance of MEA acquisition systems
and of the reported decoder structure and training strategy,
the issues pertaining to the MEA invasiveness—namely, safety
and chronicity (Vouga et al., 2017)—are to date only partially
addressed.

While ECoG arrays hold promise of chronic and stable signal
acquisition (Costecalde et al., 2017), the reported ECoG-driven
motor BCIs generally relied on mental-task decoders (Schalk
et al., 2008; Wang W. et al., 2013; Fifer et al., 2014; Kapeller
et al., 2015) and did not permit users to achieve complex effector
control. Control over a set discrete commands was achieved using
ECoG signals in Fifer et al. (2014) and Hotson et al. (2016),
and 3D (Wang W. et al., 2013), 2D (Schalk et al., 2008), and
1D control (Vansteensel et al., 2010; Leuthardt et al., 2011) has
been reported in a few studies. While kinematic control has not
yet been completed in human subjects, 2D kinematic control
was accomplished by monkeys in Marathe and Taylor (2013).
ECoG-based multi-limb control has mainly been considered
in the case of multi-finger offline trajectory reconstruction
(Kubánek et al., 2009; Wang W. et al., 2009; Acharya et al., 2010;
Flamary and Rakotomamonjy, 2012; Liang and Bougrain, 2012;
Wissel et al., 2013; Nakanishi et al., 2014; Delgado Saa et al.,
2016). Individual finger ECoG-based control was restored in
Hotson et al. (2016). To date, the degree of complexity achieved
with ECoG-driven control is consequently surpassed by those

reported for MEA-based BCIs. However, synchronous protocols
have mainly been considered and studies on ECoG-based effector
chronic control are still lacking. Therefore, the proof that chronic
asynchronous ECoG control over multi-limbmulti-DoF effectors
is feasible remains to be established. The development of chronic
and fully implantable signal acquisition systems compatible with
clinical applications remains critical for invasive motor BCIs
systems because of the associated biocompatibility issues and of
additional constraints such as the patients’ aspiration to wireless
signal transmission. The utilization of fully wireless neural signal
acquisition systems has recently been reported (Kohler et al.,
2017). For example, the wireless 64-channel ECoG implant
WIMAGINE R©, which has been designed for long-term signal
acquisition (Mestais et al., 2015) has recently been developed.
This is able to record brain activity on 64 low noise channels and
to wirelessly transmit data to a computer for further analysis. It
additionally complies with Active Implantable Medical Devices
standards. CLINATEC has more specifically developed an ECoG-
based BCI platform dedicated to chronic clinical use (Eliseyev
and Aksenova, 2014), with the goal of bringing the proof of
concept that it is feasible for a tetraplegic subject to control
complex effectors (e.g., a 4-limb exoskeleton) after training
thanks to the decoding of his cortical brain electrical. This
demonstration is the aim of a 5-year clinical trial approved by the
French competent authorities (ClinicalTrials.gov, 2016). These
implants may make ECoG a viable alternative to MEA for motor
BCI systems.

Despite the many examples of impressive progress, there
is still room for considerable improvements in the design
of transducers able to maintain high neural signal decoding
performance out of laboratory environments. Motor BCI systems
may particularly benefit from the transfer of advances from the
area of machine learning to the field of neural signal decoding.
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