

Secure Indoor Navigation and Operation of

Mobile Robots

Dissertation

zur

Erlangung des akademischen Grades

Doktor-Ingenieur (Dr.-Ing.)

der Fakultät für Informatik und Elektrotechnik

der Universität Rostock

Mazen Ghandour, born on 10th, May 1986 in Latakia City, Syria

Rostock, Germany, 2016

zef007
Schreibmaschinentext
urn:nbn:de:gbv:28-diss2017-0060-4

Gutachter

1- Gutachter

 Prof. Dr.-Ing. habil. Kerstin Thurow.

 Institute for Automation, Universität Rostock, Germany.

2- Gutachter

 Prof. Dr.-Ing. Norbert Stoll.

 Institute for Automation, Universität Rostock, Germany.

3- Gutachter

 Prof. Dr. Yue Yang.

 School of Traffic & Transportation Engineering, Central South University, China

Datum der Einreichung: 01.December.2016.

Datum der Verteidung: 28.April.2017.

Acknowledgment

Implementing this doctoral dissertation is not an individual work, rather it is the

outcome of the efforts and contributions of several persons, whom I would like to

express my gratitude to them.

First of all, I express my deep sense of gratitude to my supervisors Prof. Dr.-Ing.

habil. Kerstin Thurow, and Prof. Dr.-Ing. Norbert Stoll. I thank them for their

priceless supervisory for the whole period of my research. I was always eager to

listen from them their recommendations and guidance, besides to their invaluable

scientific advisory they provided to me during my research. I got from them a high

experience related to scientific research methods. Moreover, I highly grateful for

their social concerns about my stay in Germany, besides to their priceless efforts to

fund my research period. Without their concerns, I wouldn’t complete this

dissertation.

Moreover, I would like to thank Prof. Dr.-Ing. Hui Liu for his scientific support he

provided to me during my research. I was so grateful to know him as a friend and as

a group leader who never hesitated to discuss with me scientific and practical

solutions for my research in robotics.

Furthermore, I highly appreciate the unlimited support I got from my colleagues in

the center for life science automation (Celisca). I am so blessed to meet experienced

and specialized people, who were always open and happy to provide me with

solutions and advises. Furthermore, I thank them for their help they offered to me

during my stay in Germany. I mention here Dr.-Ing. Steffen Junginger, Prof. Dr.-

Ing. Mohit Kumar, Dr.-Ing. Thomas Roddelkopf, Dr.-Ing. Sebastian Neubert, Dr.-

Ing. habil. Heidi Fleischer, Mr. Xiangyu Gu, Mr. André Geißler, Mr. Volker Gatz,

Mr. Mohamman Ruzaij, Mr. Ali Abdulla, Mr. Heiko Engelhardt, Ms. Anne Kadow,

and Mr. Lars Woinar.

I would like to express my gratitude to the German society, for their humaneness,

kindness and openness. I wish all the best for this amazing country and astonishing

people.

Moreover, I thank all of my friends I met in Germany, for their help and support, I

learnt from them a lot, and I wish them all the best in their life. I mention here Josef,

Sen, Romina, Luise, Stefano, Housam, Jose, Aude, Vinnie, Lorenz, Yaman, Anna,

Nikola, Nawar and Balint.

Finally, I dedicate this thesis to my awesome family. I thank them for believing in

me, and for their unlimited source of love, inspiration, and motivation. I wish that

Syria come to peace very soon, so we can retrieve our nice life together.

Table of Contents

I

Table of Contents

List of Figures………………………………………………………………….….IV

List of Tables……………………………………………………………………..VII

List of Abbreviations……………………………………………….…..…….……X

Chapter 1: Introduction and Motivation…………………………………………1

Chapter 2: Current State of Research and Technology……………..….…….….4

2.1 Localization and Navigation of Indoor Mobile Robots………..………...4

2.2 Human-Robot Interaction………………………………………….…...12

2.3 Collision Avoidance for Indoor Mobile Robots…………………….….20

Chapter 3: Goals of the Dissertation and Realization Concepts………….……31

3.1 Background and Work Description……………………………….……31

3.2 Improving the localization of indoor mobile Robots………….……….34

3.3 Human-Robot Interaction…………………………………………....…35

3.4 Collision Avoidance for Indoor Mobile Robots………………………..40

Chapter 4: Localization of Indoor Mobile Robots………….……………….…..42

4.1 Introduction …………………………………………….…….….……..42

4.2 Improving the StarGazer Localization using Kalman Filter……………43

4.3 The Improved Kalman Filter…………………..………….……………46

4.4 Experimental Results………………………………………..……….…47

Chapter 5: Human-Robot Interaction System for Indoor Mobile Robots…….50

5.1 Introduction………………………………………………..….….….….50

5.2 System Description…………………………………………..…...….…51

5.3 Support Vector Machine……………………………………..…………53

5.3.1 Model Description………………………………….……...…53

5.3.2 Model Training……………………………………….………56

Table of Contents

II

5.4 Back Propagation Neural Network……………………………..………57

5.4.1 Model Description…………………………………….…...…57

5.4.2 Model Training………………………………………….……60

5.5 System Implementation……………………………………………...…60

5.5.1 Kinect Position…………………………..……………………60

5.5.2 Human-Robot Interaction System Description………….....…60

5.5.3 Sensor False Inferred Data……………………………………62

5.6 Experimental Results………………………………………………...…63

5.6.1 Training the SVM…………………………………………….63

5.6.2 Training the BPNN Model……………………………...….....65

5.6.3 Comparison between SVM and BPNN………………….…...66

5.6.4 Human-Robot Interaction System Test…………………..…...67

Chapter 6: Collision Avoidance System for Indoor Mobile Robots Basing on

Human-Robot Interaction…………………………………….……………..……70

6.1 Introduction………………………………..………………...………….70

6.2 System Description………………………….…………………..….…..72

6.3 Collision Avoidance System…………………..……………………..…72

6.3.1. Cooperative Collision Avoidance based on Human-Robot

 Interaction………………….………………………………..76

6.3.2. Autonomous Collision Avoidance………………..………….79

6.4 Collision Avoidance Path Calculation…………………………..…...…80

6.5 Robot’s Linear and Angular Velocities Calculation………..…………..82

6.6 Software Implementation……………………………………..………...83

6.6.1 Development Tools……………………………………..….…83

6.6.2 System Realization…………………………………………...83

Table of Contents

III

6.6.2.1 Collision Avoidance Controller………………..…...86

6.6.2.2. Communication with the MFS……………………..87

6.6.2.3 Collision Avoidance User Interface……………..….88

6.7 Experimental Results…………………………………………………...89

6.7.1 Tests over the Cooperative Collision Avoidance……….……89

6.7.1.1 Move Forward……………………………..……..…89

6.7.1.2 Move Backward……………………………….....…90

6.7.1.3 Move Right…………………………….………...…91

6.7.1.4 Move Left………………………………….…….…93

6.7.2 Autonomous Collision Avoidance (ACA)………………..…..94

 6.7.3 Test of the Collision Avoidance for different Situations…….95

6.8 Discussion……………………………………………….……….....…100

Chapter 7: Conclusion and Outlook………………………………………........101

7.1 Conclusion……………………………………...……….………….…101

7.2 Outlook…………………………………………...………..………….103

REFERENCES……………………………………………………………..…….104

Appendix 1: The StarGazer Sensor………………………………………….…113

Appendix 2: The Kinect 2.0……………………………………………….…….114

Appendix 3: The complete experiments for the SVM model…………..……...115

Appendix4: The experiments for the human-robot interaction system……....117

Appendix5: The programming code for “Autonomous Collision Avoidance”

function……………………………………………….…………………………..120

Appendix6: The experiments for the collision avoidance system…………..…125

List of Figures

IV

List of Figures

Figure 2.1: Localization based on multiple ultrasonic sensors………………………5

Figure 2.2: The combined 2D maps from different reference nodes………………...7

Figure 2.3: The localization error in hybrid system………………………………….7

Figure 2.4: Comparison of the localization using odometer, and EKF……………...9

Figure 2.5: The filtration result of applying (a) extended Kalman filter, (b) the new

filter………………………………………………………………………………....10

Figure 2.6: Assisting the robot to stand via interaction…………………………….13

Figure 2.7: The human-robot tracking and interaction system…………………..…14

Figure 2.8: The experiment environment for controlling the robot arm to reach the

four locations...15

Figure 2.9: The integration between the Human and NAO robot based on

gestures……………………………………………………………………………..17

Figure 2.10: Extracted velocity vectors of the action “sitting”……………………..18

Figure 2.11: The motion imitation of the user’s arms by the robotics arms………..18

Figure 2.12: The motion of the robot for the Bug1, Bug2, and Maze path……..….22

Figure 2.13: The representation of velocity space in DWA…………………….….22

Figure 2.14: The general concept of potential field method………………………..24

Figure 2.15: The polar representation of the VFH and the direction selection……..24

Figure 2.16: The representation of obstacles, gaps, regions, and valley in nearness

diagram…………………………………………………………………………..…25

Figure 2.17: The concept of implementing collision-free path using SND

method……………………………………………………………………………...26

Figure 2.18: The vanishing point-based navigation………………………………...27

Figure 3.1: The integration of robotic tasks into the H20 robot……………………32

Figure 3.2: The structure of H20 Mobile Robot……………………………………33

List of Figures

V

Figure 3.3: False detection of landmark…………………………………………....35

Figure 3.4: The conflict in generating collision-free path between the robot and the

human……………………………………………………………………………….37

Figure 4.1: The principle of StarGazer Localization sensor…………………….….43

Figure 4.2: StarGazer sensor and the passive Landmarks………………………….43

Figure 4.3: The navigation under strong natural and fluorescent lights……………44

Figure 4.4: The flow chart for the proposed filter………………………………….47

Figure 4.5: The StarGazer measurements before and after filtering………………..49

Figure 5.1: The gestures used for the interaction with the robot…………………...53

Figure 5.2: The Principle of Support Vector Machines…………………………….54

Figure 5.3: The flow chart for building and training the L-SVM model…………...57

Figure 5.4: The k-fold sets for the L-SVM model………………………………….57

Figure 5.5: The hierarchy of the BPNN...58

Figure 5.6: Position of Kinect sensor and detection range……………………...….61

Figure 5.7: The control of the robot using Human-Robot Interaction……………...62

Figure 5.8: The false skeletal joints due to angle view limits of Kinect……………63

Figure 5.9: Representation of the test environment (dimensions in meter)………...67

Figure 6.1: Robot motion between a group of humans……………………………..71

Figure 6.2: The flow chart of the collision avoidance system……………………...73

Figure 6.3: Calculation of middle region…………………………………………...75

Figure 6.4: Calculation of the terminal region……………………………………...75

Figure 6.5: The bottleneck problem when the robot and human are moving in narrow

places……………………………………………………………………………….77

Figure 6.6: Cooperative Collision Avoidance via Interaction……………………...78

Figure 6.7: The flow chart of Autonomous Collision Avoidance………………….79

Figure 6.8: Autonomous search for the collision-free path………………………...80

List of Figures

VI

Figure 6.9: Collision-free path calculation between two humans………………….80

Figure 6.10: The generation of CA path for the terminal person …………………….81

Figure 6.11: The linear and angular velocities for different width of regions……...83

Figure 6.12: The general architecture of the transportation system………………...84

Figure 6.13: The general architecture of the Cooperative Collision Avoidance

System………………………………………………………………………………85

Figure 6.14: The flow chart of collision avoidance controller……………………..86

Figure 6.15: The XML messages between CA and MFS…………………………..87

Figure 6.16: The interface of the collision avoidance system……………………...88

Figure 6.17: The experiment for “move forward” function………………………...89

Figure 6.18: The experiment for “move backward” function………………………90

Figure 6.19: The experiments for the “Move Right” function……………………..92

Figure 6.20: The experiments for the “Move left” function………………………..93

Figure 6.21: The experiments for “autonomous collision avoidance”……………..94

Figure 6.22: The followed path in the first experiment…………...………………..96

Figure 6.23: The motion of the robot for three locations…………………………...97

Figure 6.24: The followed path in the second experiment…………………………98

Figure 6.25: The motion of the robot in the three locations for the second

experiment………………………………………………………………………….99

Figure A1.A: The IR sensor from Hagisonic- South Korea………………………113

Figure A1.B: HL2 Landmark with the hexadecimal values and the best

distribution………………………………………………………………………...113

Figure A2.A: The Kinect V2 sensor………………………………………………114

List of Tables

VII

List of Tables

Table 2.1: Localization error based on Ultrasonic sensors…………………………..5

Table 2.2: Comparison between different localization sensors…………………….12

Table 2.3: The experimental results for robot arm control based on brain signals…15

Table 2.4: The experimental results of training and testing the face recognition

model……………………………………………………………………………….16

Table 2.5: Summary of different systems for human-robot interaction……………19

Table 2.6: The comparison of different HRI methods based on Kinect and gesture

recognition………………………………………………………………………….20

Table 2.7: Comparison between collision avoidance systems……………………...28

Table 2.8: Comparison between different kinds of collision-avoidance sensors…..29

Table 4.1: The experimental results of the Kalman filter over the StarGazer

sensor……………………………………………………………………………….48

Table 5.1 The gestures used in the HRI system and their corresponding function...52

Table 5.2: The training results for the L-SVM model……………………………...64

Table 5.3: The outputs of the BPNN for the given gesture……………………...…65

Table 5.4: The result of training and testing the BPNN for several hidden

neurons…………………………………………………………………………...…66

Table 5.5: The summary of experiments over the HRI system………………….…68

Table 6.1: Summary of the experiments for “move forward” function…………….90

Table 6.2: Summary of the experiments for “move backward” function…………..91

Table 6.3: The experimental summary for the “Move Right” function…………….91

Table 6.4: The experimental summary for the “Move Left” function……………...94

Table 6.5: The experimental summary for the Autonomous Collision Avoidance...95

Table 6.6: The experimental results for the first path……………………………....97

Table 6.7: The experimental results for the second path……………….…………..98

List of Tables

VIII

Table A1.A: StarGazer Specifications…………………………………………….113

Table A2.A: Kinect 2.0 Specifications ……………………………………….…..114

Table A3.A: The complete experiments for the SVM model……………….…….115

Table A4.A: The experiments for the first person (height 165)…………….....….117

Table A4.B: The experiments for the second person (height 170)……………….118

Table A4.C: The experiments for the third person (height 177)……….……..….118

Table A4.D: The experiments for the fourth person (height 179)………………..119

Table A4.E: The experiments for the fifth person (height 188)…….……………119

Table A6.A: Experimental results for “move forward”…………………………...125

Table A6.B: Experimental results for “Move Backward”………………..……….126

Table A6.C: Experimental results for “move right”

𝑣𝑚𝑎𝑥 = 0.2 𝑚/𝑠 𝜔𝑚𝑎𝑥 = 0.4 𝑟𝑎𝑑/𝑠………………………………………….....127

Table A6.D: Experimental results for “move right”

𝑣𝑚𝑎𝑥 = 0.25 𝑚/𝑠 𝜔𝑚𝑎𝑥 = 0.3𝑟𝑎𝑑/𝑠…………………...………………………127

Table A6.E: Experimental results for “move right”

 𝑣𝑚𝑎𝑥 = 0.3 𝑚/𝑠 𝜔𝑚𝑎𝑥 = 0.5𝑟𝑎𝑑/𝑠……………………………………………128

Table A6.F: Experimental results for “move left”

𝑣𝑚𝑎𝑥 = 0.15 𝑚/𝑠 𝜔𝑚𝑎𝑥 = 0.3𝑟𝑎𝑑/𝑠…………………………………………..128

Table A6.G: Experimental results for “move left”

𝑣𝑚𝑎𝑥 = 0.2 𝑚/𝑠 𝜔𝑚𝑎𝑥 = 0.4 𝑟𝑎𝑑/𝑠…………………………………………..129

Table A6.H: Experimental results for “move left”

𝑣𝑚𝑎𝑥 = 0.3 𝑚/𝑠 𝜔𝑚𝑎𝑥 = 0.25 𝑟𝑎𝑑/𝑠…………………………………………129

Table A6.I: Experimental results for Autonomous CA

𝑣𝑚𝑎𝑥 = 0.15 𝑚/𝑠 𝜔𝑚𝑎𝑥 = 0.2 𝑟𝑎𝑑/𝑠…………………………………………130

List of Tables

IX

Table A6.J: Experimental results for Autonomous CA

𝑣𝑚𝑎𝑥 = 0.2 𝑚/𝑠 𝜔𝑚𝑎𝑥 = 0.5 𝑟𝑎𝑑/𝑠…………………………………………..130

Table A6.K: Experimental results for Autonomous

𝑣𝑚𝑎𝑥 = 0.3 𝑚/𝑠 𝜔𝑚𝑎𝑥 = 0.25 𝑟𝑎𝑑/𝑠………………………………………....131

List of Abbreviations

X

List of Abbreviations

ACA Autonomous Collision Avoidance

API Application Programming Interface

BPNN Back Propagation Neural Network

CA Collision Avoidance

CCA Cooperative Collision Avoidance

CG Closest Gap

DOF Degree Of Freedom

DTW Dynamic Time Warping

DWA Dynamic Windows Approach

EKF Extended Kalman Filter algorithm

GMM Gaussian Mixture Model

GPS Global Positioning System

HOVV Histogram of Oriented Velocity Vectors

HRI Human-Robot Interaction

IFR International Federation of Robotics

IMU Inertial Measurement Unit

IR Infrared

L_SVM Linear Support Vector Machine

LM Landmarks

LRF Laser Range Finder

MAE Mean Absolute Error

MbICP Metric-based Iterative Closest Point

MFS Multi Floor Navigation System

ND Nearness Diagram

List of Abbreviations

XI

OAL Obstacle Avoidance Layer

OL Orientation Layer

PCA Principal Component Analysis

PF Particle Filter

PID Proportional-Integral-Derivative controller

PIR Passive Infrared Sensors

RANSAC Random Sample Consensus

RRC Robot Remote Centre

RSSI Received Signal Strength Indicator

SLAM Simultaneous Localization And Mapping

SND Smooth Nearness Diagram

SUFR Speed Up Robust Features

SVM Support Vector Machine

UKF Unscented Kalman Filter

VFH Vector field histogram

VP Vanishing Point

XML Extensible Markup Language

Chapter 1 Introduction and Motivation

1

The motivation of building machines which are able to understand the human, help

them in their daily life and work in a same way as humans do is dated back to

hundreds of years [1],[2]. This motivation is kept unachievable due to the lack of the

advanced technology, which is needed to create such machines, till the middle of the

20th century. George Devol designed the first programmable robotic arm and sold it

to General Motors in 1960; while Elmer robot (1949) could be considered as the

first mobile robot, which is able to avoid obstacles and move to charging station.

Since that time, the robotics made great strides; thanks to the powerful processors,

artificial intelligence, sensory systems and many other fields which offered

promising applications for the mobile robotics in daily life. Nowadays, the world is

on the door of the fourth industrial revolution which robotics is one of the

fundamental pillars in it. That’s why, the major companies and research institutes

are investing intensively in this field. According to the International Federation of

Robotics (IFR), the total number of sold service robots in 2014 is 24,207 [3], and

this proves that the robotics technology brings promising solution in the close future.

Many robotic systems are put into investment, as robotic arms, quadrotors, drones,

indoor mobile robots, surgery, and space robots. The fast progress in mechanical

engineering, electric engineering, computer systems, and artificial intelligence will

lead to have robots in many other fields such as self-driving cars, military, industry

and life science laboratories.

In life science laboratories, preparing and handling of chemical and biological

samples need long times, and it requires 24 hours monitoring and processing for

these samples. In recent years, progressively automation systems have been applied

in chemical & biological laboratories [4-7]. These advances brought many facilities,

and decreased the processing time and number of employees.

Current research is ongoing on the development of fully automated chemical,

biological or analytical laboratories with minor human supervision [8-11]. To ensure

a complete automation, mobile robots are used as transport systems for the transfer

of samples and lab ware between different automated and manual islands. Recent

results include several steps toward having a complete autonomous transportation

Chapter 1

Introduction and Motivation

Chapter 1 Introduction and Motivation

2

system based on mobile robotics, such as multi floor navigation [12], arm

manipulation [13], charging [14], and path planning [15].

Mobile Robots are advanced engineering systems, which require a high integration

of electronic engineering, mechanical engineering, computer systems, sensory

systems and artificial intelligence. Robots must be equipped with several sub-

systems to work securely in the real applications, such as path planning, localization

and mapping, human-robot interaction, manipulation, collision avoidance, and

charging. The good implementation of these sub-systems, and the integration

between each other is the key-success for any mobile robotic system.

Unlike traditional automation and control systems, mobile robots will work in

unpredicted environments; i.e. the work conditions are changing so there are no

certain situations that the robot could be pre-programmed to adopt its control to

meet these situations. Taking into consideration that the robots will navigate nearby

human, this raises further challenges regarding the ability of the robots from

detecting the human and avoiding physical injury to him.

The main requirement for any engineering system is safety. In mobile robotics,

safety means the ability of the robots from avoiding accidents which could occur

when the robot loses its location within the map or when it collides with the

obstacles which might appear in its path.

The ability of the robots for a secure navigation in their work area is highly required

taking into consideration that in future life science laboratories, robots must navigate

in narrow paths, inside rooms with small free spaces. Thus, a robust localization

system is necessary to ensure that these robots are able to identify their positions

despite of the external noise over the sensors. If a robot fails to accurately identify

its position within the map, it is too possible that it collides with walls or doors, or

loses the positions of grabbing, charging, and elevators. Furthermore, the narrow

corridors and the small free spaces increase the strains of having a robust

localization system.

The robots and the human will work in the same area. Thus, the robots must detect

the human, interact with them and avoid the collision when both are located in the

same place. Thus, a robust human-robot interaction is necessary to enable the robots

from detecting the human and communicate with them. Furthermore, the robots

must be able to generate local paths to avoid the collision with those human and

keep moving to their destinations.

The aim of this dissertation is the development of suitable concepts for indoor

mobile robots to eliminate failures due to false localization in the work area, or due

Chapter 1 Introduction and Motivation

3

to the collision with humans, which are located near to the robots. This work can be

divided into three parts basing on the processed problem in mobile robots:

- Implementing a robust localization system for the indoor mobile robots, by

surveying the relevant sensory systems which fit the requirements of laboratory

environments, evaluate the performance of the selected sensors and find the

suitable methods to improve the performance of the localization system. The

StarGazer sensor is utilized for mapping and localization. The sensor is tested

under different conditions, and a modified Kalman filter algorithm is used to

eliminate the noisy measurements resulting from strong lights. The localization

system is discussed in chapter 4.

- Implementing a human-robot interaction system based on gesture recognition to

enable the robot to recognize the humans and interact with the orders given by

them via certain movements or the arms. The robot uses 3D vision to recognize

the human, and Back Propagation Neural Network model for processing the

data of the sensor. The interaction is used mainly to coordinate the generation of

the collision-free paths. Further details for the human-robot interaction system

are available in chapter 5.

- Designing a robust collision avoidance system for avoiding the humans existing

in the path of the robot. The system has to detect the human, calculate the

location of each person from the robot, and generate a new local collision-free

path to avoid accidents as it will be described in chapter 6.

The following thesis is organized as follows: Chapter 2 presents the current state of

art in the field of secure navigation and operations of indoor mobile robots. This

includes a comprehensive survey over current applications of the indoor mobile

robots, a review for the recent work of the localization and navigation systems,

human-robot interaction in mobile robotics, and a review for the collision avoidance

systems for indoor mobile robots. Chapter 3 discusses the goals of the dissertation

and realization concepts. Chapter 4 shows a framework for improving the

localization of indoor mobile robots. Chapter 5 details the implementation of the

human-robot interaction system. In chapter 6, the new method of collision

avoidance based on the interaction between the human and the robot is proposed.

Finally, chapter 7 shows the conclusion of the implemented work.

Chapter 2 Current State of Research and Technology

4

Mobile robots are machines, which are able to move in the navigation area and

modify their behaviour basing on the changes in the work conditions without the

need of human interventions. These robots could implement their tasks either in

small areas as homes and factories, or in vast areas as the space or deep sea robotics.

Several research groups are working on inventing mobile robots which are

appropriate for certain tasks, as hospitals [16], cleaning [17], material handling [18],

agriculture [19], and outdoor autonomous robots [20]. Each of these robots needs

sensory systems for localization and identifying the working environment.

2.1 Localization and Navigation of Indoor Mobile Robots

Different localization systems can be used in mobile robotics to serve the task of

indoor localization and mapping. These systems use different kinds of sensors which

work on providing the localization information to the robot, such as ultrasonic

sensors, wireless sensors, vision sensors, and IR sensors. This section shows the

common sensors and localization systems which are used for indoor mobile robots.

Each of these methods have its advantages and limitations.

Ultrasonic sensors have the advantages of linear performance, cheap cost, and it is

not effected by light noise. Still, these sensors suffer from the angle limitation

problem [21] since the transmitter issues ultrasonic waves with a limited angel, and

this limits the width of the sensed area, besides to noise effects caused by sound

waves. To compensate the limitations of this technology and overcome the noise

effects, a sensory fusion is used with the other kind of sensors.

Kim et al. [22] used a group of ultrasonic transmitters/receivers for robot

localization. A group of ultrasonic transmitters (beacons) were fixed in known

positions, and three ultrasonic receivers were fixed on the top of the robot. The

receivers measure the floating time of the received signal from transmitters to

estimate the robot’s location. Extended Kalman Filter algorithm (EKF) fuses the

measurements obtained from the encoder (in prediction phase), and ultrasonic

sensors (correction phase) to obtain optimal estimation of the robot position. Fig 2.1

Chapter 2

Current State of Research and Technology

Chapter 2 Current State of Research and Technology

5

shows the robot localization basing on distributed ultrasonic sensors. The

performance of this system is merely based on the efficient distributions of the

beacons in the navigation area. The localization system fails when the robot is

located in not covered areas. Furthermore, the experiments show that the

localization error could reach to 25.7 cm and 6°.

Alfonso et al. presented a comparison of EKF and unscented Kalman filter (UKF)

in estimating the localization of a mobile robot using a group of five ultrasonic

sensors [23]. The prediction phase of the filter is done basing on the readings of

encoders. The update step is done basing on the measurements of ultrasonic sensors.

The study focused on improving the localization basing on switching the ultrasonic

sensors for saving the battery energy. Table 2.1 shows the localization error for each

sensor (S1 to S5), the localization error of switching these sensors, and the

localization error of operating the whole sensors together (all).

Figure 2.1: Localization based on multiple ultrasonic sensors [22]

Table 2.1: Localization error based on Ultrasonic sensors [23]

Filter S1 S2 S3 S4 S5 Switching all

EKF

ɳ=0 4.354 6.698 5.056 4.964 4.784 6.007 3.358

ɳ=0.3 4.177 6.472 4.948 4.888 4.21 6.041 3.215

ɳ=0.7 4.42 6.1 4.734 4.628 4.037 6.088 3.298

UKF

ɳ=0 4.301 5.849 5.272 4.892 4.389 5.098 3.432

ɳ=0.3 4.129 5.544 4.838 4.647 3.830 5.446 3.358

ɳ=0.7 4.244 5.585 4.546 4.517 3.669 5.184 3.179

Chapter 2 Current State of Research and Technology

6

 ɳ represents the ratio of lost measurement (ɳ=0.3 means 30% of measurements

were lost). Experiments show that both UKF and EKF have close performance, and

the proposed method provides a localization error around 3.2 cm, when the whole

sensors are operated together [24 - 26].

Dobrev et al. built a localization system for indoor mobile robots by using a

combination of radar, ultrasonic, and encoder sensors [27]. The radar localization

system is composed of a reference node, and a mobile node which is located on the

robot. This sensor works well in detecting the location of the robot in halls and

foyers, but the performance is degraded when the robot moves in corridors because

the radar waves will reflect from the walls and this cause to lose the robot’s location.

Thus, the ultrasonic sensors work on improving the performance of radar sensor by

measuring the distance of the robot from the side walls of the corridor and corrects

the localization latency of the radar sensor. The measurements of the radar and

ultrasonic sensors are then fused with the encoder by using extended Kalman filter.

In the first experiment, the robot is navigated in wide hall, and the experiment shows

that the measurements of radar sensor is unreliable when the distance between the

reference and mobile nodes is more than 15m. Furthermore, the localization

accuracy is degraded when the robot moves in corridors by only using the radar

sensor. On the other hand, when using the integrated system, the experiments show

that 68.3% of the measurements have a localization error less than 5.1cm when the

robot moves into corridors.

Wireless sensor networks can be seen as an infrastructure, which is composed of

distributed sensing elements, and communication elements, which collect data and

measurements in a real environment [28]. Zigbee is a wireless technology which

uses the standard IEEE 802.15.4. This technology allows building wireless networks

by using a set of Zigbee nodes over the work area. This technology could be used in

the indoor localization of mobile robots.

Lin et al. developed a localization system based on a group of ZigBee nodes which

compose a wireless network distributed in the navigation area of the robot, and a

mobile node which is located over the robot [29]. The positions of the reference

nodes are stored on the onboard PC. The mobile node broadcasts measurement-

demand messages to all reference nodes; the reference nodes will then measure the

received signal strength (RSSI) and send it back to the mobile node. The localization

system is divided into two phases: calibration phase and localization phase. The

calibration is implemented by finding the relationship between the received signal

strength indicator RSSI and the distance of the mobile node from each reference

node. A 2D probability map is realized which plots the RSSI readings for different

distances for each reference point. In the localization phase, the location of the

Chapter 2 Current State of Research and Technology

7

mobile node is estimated by combining the 2D maps of different reference nodes.

Fig 2.2 shows the resulting augmented map with the estimation of the robot’s

location. The experimental results show that the localization average error is around

1.7m [30].

Alhmiedat et al. presented a hybrid localization system basing on the measurements

of received signal strength indicator (RSSI) and Inertia system [31]. A wireless

sensor network based on the ZigBee standard is used to obtain the measurements of

distributed RSSI. An onboard inertia system is composed of an acceleration sensor

and compass, which specify the direction and the speed of the robot. A hybrid

system is designed to integrate the RSSI and inertia systems. The results show that

using a hybrid localization system basing on data from wireless sensors and inertia

system is higher than using RSSI alone. Fig 2.3 shows the localization error using

the hybrid system. It can be seen that the localization error is around 0.6 meters

using the hybrid system [32] - [34].

Figure 2.3: The localization error in hybrid system [31]

Figure 2.2: The combined 2D maps from different reference nodes [29]

Chapter 2 Current State of Research and Technology

8

Vision sensors are popular in mobile robotics. Common vision sensors in mobile

robotics are Colour – depth cameras (RGB-D) [35], [36] and omnidirectional

cameras [37].

Fernandez et al. implemented a simultaneous localization and mapping system

(SLAM) for indoor mobile robot by processing the images provided by a visual

odometry [38]. In this system, the robot moves in unknown environment, and it has

to build a topological map for the area by capturing certain images which will

represent the reference nodes in the map. To describe each image, a Fourier

signature descriptor is employed. Each node represents a certain area, and contains

certain images describing it. After building the map, the robot can find its position

by comparing the descriptors of the current image with the descriptors of the images

stored in the database. Monte-Carlo algorithm is used to combine the visual

localisation based on the topological map with the robot’s odometry to create a

visual odometry. The experimental results show that the robot requires 200 to 2000

particles at each step of the robot to guarantee that it can always detect its position

within the map, and the computational cost is equal to 0.223s and 0.243s

respectively. [39], [40].

In localization based on laser range finder (LRF), the robot uses a laser sensor to

draw a map for the environment and specify its position within the map. Moreover,

the LRF could be used in human detection and obstacle avoidance [41].

Liu et al. presented a new method for indoor map building and localization using

2D laser scanner [42]. To build the map of the working area, the robot implements a

primary scan for the room to find the center of the location; and it will then rotate

360° in the center to implement a complete 2D scan for the room and build the map.

To reduce the processing time, the robot uses grid-based algorithm to remove the

redundant points, and then it will use least-square algorithm to extract the lines and

the boundaries in the room. After building the map, the robot uses metric-based

Iterative closest point (MbICP) algorithm to compare its current scan with the built

map and derive its translational and rotational displacement. Furthermore, EKF is

used to estimate the location of the robot. The EKF uses the measurements from the

odometer as a control input, and the observation from the LRF to estimate the

location. The experimental results for mapping and localizing using LRF and EKF

show that localization based on EKF is better than using dead-reckoning alone. Fig

2.4 shows the improved navigation results with the proposed system, compared to

the navigation with odometer sensor; it can be seen that the accumulative error in the

odometer will cause the robot to deviate from the path for around 30cm on Y axis,

while the navigation with the implemented system doesn’t suffer from the

accumulated error and it still has accurate localization [43], [44].

Chapter 2 Current State of Research and Technology

9

In localization based on Infrared (IR) landmarks, the robot identifies its location

based on a group of passive Landmarks (LM). These landmarks are composed of IR

reflecting materials. An IR camera analyses the reflected IR light and specifies the

location based on this analysis[45], [46].

Zhiwei et al. presented the use of the StarGazer sensor for the localization and

mapping of indoor mobile robots [47]. This sensor is composed of IR emitters and

an IR camera installed on a single board. The emitters release the IR beam to the

passive landmarks, and the reflected beam is captured by the IR camera. The study

shows that the sensor provides some false detection due to the noise which results

from strong light, and this causes the robot to lose its location. To overcome this

limitation, three filters are implemented and the performance is compared: extended

Kalman filter (EKF), particle filter (PF), and a new method which is based on

defining an error range for the sensor. The proposed method considers that the false

detection of the landmarks couldn’t be represented as a white Gaussian noise. Thus,

the PF and EKF won’t show satisfactory results. In the proposed filter, the

measurement error is defined within a certain range rather than considering it as

Gaussian; thus, if a new measurement is within the estimated measurement ± the

error, the measurement is considered true, else it will be considered false. Moreover,

the filter will implement a senor fusion for the local data of the relative position of

the robot (encoder), and the global data obtained from the StarGazer. Fig 2.5 shows

the results of applying extended Kalman filter (EKF), and the proposed filter over

the measurements. It could be seen that the EKF failed to detect the false

measurements with error > 3 m. On the other hand, the new filter was able to detect

Figure 2.4: Comparison of the localization using odometer (red), and EKF (blue) [42]

Chapter 2 Current State of Research and Technology

10

the false measurements with error >3m, and provide an accurate estimation for the

location of the robot. [48 - 54].

In summary, many localization and mapping methods and sensors are proposed in

the field of indoor mobile robots; each has its advantages and limitations. In

localization and mapping using ultrasonic technology, it shows fast processing time,

besides to its cheap cost. On the other hand, this technology requires a high number

of distributed transmitters due to its limited rang, and the landmarks are active,

which means there is a need to power each transmitter/receiver. Furthermore,

modifying the map will be more difficult comparing to the maps which use natural

landmarks [22].

Localization based on wireless sensor network and ZigBee still needs further

developments to cope the problems of fast fading in which the signal strength is

decreased significantly due to the existence of walls, and multi paths, especially in

indoor environments which include walls [55]. Furthermore, this kind of localization

has a low localization accuracy [29],[31], and this is not suitable for the tasks which

require accurate localization as in locations of grasping elements, and entering

narrow location as elevators.

Vision sensors provide rich information to the robot which could be used in

localization and mapping, obstacle avoidance, and human detection. Alternatively,

these sensors have high computational cost, besides to its affect to the changing in

the light conditions in the navigation area.

Localization based on LRF is an accurate technology; it could be used for mapping,

localization and obstacle avoidance. Still, this technology requires high

(a) (b)

Figure 2.5: The filtration result of applying (a) extended Kalman filter, (b) the new

filter. Blue dots represent the raw measurements of StarGazer sensor, and the red dots

represents the filter output [47]

Chapter 2 Current State of Research and Technology

11

computational costs since it requires processing a high amount of measured points

over the work area [42]. Furthermore, the laser sensor is not suitable to work in

environments, which include transparent surfaces like glass and plastic since these

materials could diffuse the beam rather than reflecting it [44], [56].

Localization based on IR sensors has the advantages of covering a wide area, uses

passive landmarks without the need to power them and it is not affected by radio

transmission. On the other hand, high fluorescent light or sunshine could cause false

detection of the landmark, and this will lead the robot to lose its location.

Table 2.2 summarizes the advantages and disadvantages of each method, and the

applicability of using this sensor for mobile robotics in life science applications.

Chapter 2 Current State of Research and Technology

12

2.2 Human-Robot Interaction

Human-Robot Interaction (HRI) is defined as the ability of a robot for recognizing

the human and interacting with them by implementing suitable responses to this

interaction. Several sensory systems and interaction methods are implemented for

Table 2.2: Comparison between different localization sensors

Sensor

Type

Advantages Disadvantages

Encoder

Easy to use

Linearity

The accumulated error limits

the efficiency of this sensor for

long distances

Ultrasonic

Easy to use,

Linear,

Low cost

Need to power the transmitter

and receiver, difficult to

modify the map

Effected by changes in

humidity and temperature

Wireless and

RSSI

Data transmission could be

implemented together with

sensing, no need for change

the direction of sensor to

measure the distance

Not constant, the existence of

walls effects the accuracy of

this system

Vision

Low cost,

Implement localization and

obstacle detection in one

sensor

High computation,

Affected by light conditions

Laser

High Accuracy

Used for several tasks in one

sensor

Lower performance in

detecting transparent materials

such as glass walls.

Stargazer

Easy to use

Map could be extended easily

No need for powering the

landmarks

Automatic height calibration

Affected by ambient light such

as strong sunlight and

fluorescent light.

Chapter 2 Current State of Research and Technology

13

the interaction; interaction systems are based on the type of the robot, and the

interaction method.

Ikemoto et al. presented a physical human-robot interaction system for teaching the

robot to stand up [57]. The human will help the robot in standing-up, and he will

inform it whether the attempt was correct of wrong. The robot consequently will

save the correct attempts in its database to train itself in a later step. Each training

vector is 52-dimentions which represent the angular values of robot’s joints. To

accelerate the training process, principal component analysis is used for dimensions’

reduction of the training set. The reduced data is passed to a Gaussian mixture

model (GMM) for adapting the performance of the robot in the standing-up task.

The experimental results show that reducing the training data allows the GMM

model to be trained online with few training data, while the robot develops its

behaviour after each training step. Fig 2.6 shows an experiment for the interaction

system.

Wearable sensors are another common method for implementing the interaction

between the human and the robot. Cifuentes et al. developed a human-following

system to track the human using LRF and a wearable inertial measurement unit

(IMU) [58]. Instead of following the human, the robot will move in front of the

human, enabling the human to monitor the motion of the robot without the need to

look behind. LRF is located over the robot, and it is used to track the legs position

and orientation of the human, while the IMU unit is fixed on the trunk of the person

to provide the trunk motion and rotation to the robot. The robot will adjust its

motion direction and velocity based on the obtained measurements to keep itself

moving in front of the human. The experimental results show that the parameters

estimation was accurate with estimation error less than 10% under curve-shaped

path.

Tseng et al. presented a robotic system for tracking one person or a group of human

and interacting with him/them [59]. In this system, the robot will differentiate

between seven situations; basing on whether there is one person, or several humans

in front of it. Furthermore, the robot will analyze the distances between the human,

and their orientations toward each other. For example, when the robot detects human

Figure 2.6: Assisting the robot to stand via interaction [57]

Chapter 2 Current State of Research and Technology

14

facing each other and having a discussion, the robot will come close to them, and

interact with them using voice commands to communicate available services as it

could be seen in Fig 2.7. In contrary, when two humans are close to each other, and

located in certain angles, the robot will know that these two human have private

discussion, so it won’t interrupt them. The system uses LRF for detecting and

tracking legs, high resolution color camera for face detection from far distances, and

depth camera for torso tracking. To decrease the processing time of face detection,

Haar feature based cascade classifier is used to detect the upper body, and then a

particle filter is used for face tracking. Furthermore, Kalman filter is used to track

the position of each person. The positions of humans, and their orientations are

analyzed using F-formation to receive the social cues. A decision tree will be used

by the robot to select the correct response. The experimental results show that the

average time to identify the social situation for a groups is 4.78 seconds, and the

accuracy ranges between 80-90%.

Hortal et al. implemented a brain-machine interface for enabling a user to control a

robotic arm using brain signals without the need to implement any physical activity

by the user [60]. The task is to control the robot arm to move forward, backward,

right, and left. The robot has to move to the right/left when the user thinks in

moving his right/left arm respectively; it will move forward when the user counts

down, and backward when the user thinks in alphabet in backward manner. The

brain signals are obtained using a wearable cap which has 16 channels to harvest the

signals from the scalp of the user. After amplifying and filtering the signals, it is

forwarded to a support vector machine model to classify the activities. The SVM is

trained offline first, and a k-fold algorithm is used to train the SVM and evaluate the

model before employing it online. To test the system, two users were asked to move

the robot between four points sequentially as it could be seen in Fig 2.8 and the

success rate is then averaged as it could be seen from table 2.3 which shows the

mean success rate for the two users are 74%, 72.78%.

Figure 2.7: The human-robot tracking and interaction system. The robot-to-group

situation, the robot specifies that the social situation is normal discussion, the robot will

come closer and interrupt the discussion asking for a service to do by itself [59]

Chapter 2 Current State of Research and Technology

15

Tsai et al. presented a human-robot interaction system for face identification, and

emotion recognition for four situations: sad, happy, anger, and smile [61]. The

training samples, which represent the face images for different human are reduced

using the Harr wavelet transform. The principal component analysis (PCA) is used

to extract the features of faces from the images. While the Euclidean distance

method is applied to measure the shortest distance between the training and testing

samples so the processing time is reduced. A support vector machine mode (SVM)

is then trained to classify the facial expressions of the user. The experimental results

show that when the model is trained with a higher number of training samples, the

training will take more time, but the model will be able after training to define the

face and classify the emotions with a shorter time and higher accuracy. Table 2.4

shows two experiments for two SVM models, the first model is trained with 120

samples, while the second model is trained using 240 sample. The first experiment

shows the face identification and emotion recognition success rates for the trained

SVM with the processing time when the model is trained with 120 samples, and the

second experiment shows the success rate and processing time for the SVM model

when it is trained using 240 samples. It could be seen that the SVM model which is

Figure 2.8: The experiment environment for controlling the robot arm to reach the four

locations [60]

Table 2.3: The experimental results for robot arm control based on brain signals [60]

Mean AB CD LH RH User

74.00 68.64 51.27 91.10 85.00 A

72.78 61.44 61.86 89.41 78.39 B

Chapter 2 Current State of Research and Technology

16

trained with a higher number of training samples (240) has a higher accuracy and

less processing time than the SVM model which is trained only with (120) samples.

Voice recognition is another common method for the interaction between the human

and the robot. Ding et al. developed a voice and user recognition system to interact

with humanoid robots using 10 commands [62]. A support vector machine model is

trained for speaker verification, a Gaussian mixture model is used for speaker

identification, and a dynamic time warping algorithm (DTW) is used for speech

recognition. When a user speaks, the SVM will decide whether the voice is from an

invalid user, if the voice is from a valid one, the GMM in the next step will decide

whether the user is authorized to control the robot or not. If the GMM shows that the

user is authorized, the DTW will be used for the speech recognition. The system

uses Kinect microphone array to obtain the voices. The experimental results show

that the proposed system is able to recognize 85% of the voices successfully.

3D vision sensors are widely used nowadays in human-system interaction for

gaming and robotics applications. Canal et al. used the Kinect 2.0 sensor in the

interaction task between the human and humanoid robots via recognizing the

gestures provided by the arms and the face of the human [63]. The system identifies

four gestures: pointing at, waving, nodding and negation. The pointing is used to

guide the robot to detect certain objects, which are identified with waving gestures

by analyzing the angular displacements of the arm for certain frames, while the

negation and nodding gestures are recognized by using the dynamic time wrapping

approach for analyzing the face movements. The experiments were implemented

over the NAO robot, with a wheeled platform which is used to carry the robot and

the sensor to the goal destination as it could be seen in Fig 2.9. The experimental

results show that the facial gestures have low recognition rates (33.33% for negate,

73.33% for nod) due to the misalignment of the face and the sensor plane, while the

recognition rate for wave and point gestures are 83.33% and 96.67% respectively.

The recognition requires processing times between 1.47 to 1.91 seconds.

Table 2.4: The experimental results of training and testing the face recognition model

[61]

Number of

training

samples

Face

identification

Processing

time

expression

recognition

Processing

time

120 90% 5.73 p/sec 84% 6.9 p/sec

240 92% 5.5 p/sec 89% 6.5 p/sec

Chapter 2 Current State of Research and Technology

17

Yang et al. presented the use of Kinect sensor in controlling NAO robot via gestures

[64]. The first step is tracking the skeleton, and filtering the joint angle of the human

controller. Kinematic analysis is used to transfer the human arm joints angles to

control commands to the robot. Finally, a limit breadth method was applied to the

system to protect the robot when the rotating angle of the controller exceeds the

permissible rotating angle of the robot. The experimental results show that the robot

is able to pass 92% of the experiments successfully.

Wang et al. presented a human-robot interaction system for controlling the Khebra

III robot by identifying the gestures of human arms which are provided by a Kinect

sensor [65]. The system defines 11 gestures from the human. The gesture

recognition algorithm uses 6 of 20 joints and monitors the angles between joints for

defining the gesture. The law of cosine is used for identifying the locations of joints

and identifies the required response. The experimental results show that the system

is able to successfully identify 96% of the experimental tests.

BouBou et al. implemented a new system for defining nine actions (sit, stand, wave,

walk, pick up, stretch, use hammer, draw a circle, and forward punishing) [66]. The

skeletal data of the tracked person is obtained from Kinect sensor, while a new

method called Histogram of Oriented Velocity Vectors (HOVV) is implemented to

describe the activities. Fig 2.10 shows the concept of the HOVV method. In HOVV,

the velocity vector and orientation of each joint is extracted from tracking the 3D

positions of the skeleton’s joints obtained from Kinect. The obtained vectors are

grouped into a spatial histogram. The histogram will be used to describe the actions.

The robot uses the built method to analyze the human activities. The experimental

results show that the system is able to classify the gestures with an average accuracy

of 88.75% and with computational latency equal to 0.055 seconds for one sample.

[67 - 73].

Figure 2.9: The integration between the Human and NAO robot based on gestures [63]

Chapter 2 Current State of Research and Technology

18

Du et al. presented a human-robot interaction system for controlling two robotic

arms [74]. The robotic arms imitate the movements of the right and left arms of the

human operator remotely. The system uses Kinect sensor to get the movements of

the operator’s arms, specifically the thumb finger, index finger, wrist, elbow, and

upper arm. The reference point of the user arms’ coordinates is the shoulder joint, so

even if the user body moved, the robotic arms won’t be effected by this movement,

and will consider only the movements of the arms related to the shoulder.

Furthermore, the system took into consideration the dithering of the user hands’ by

adding a damping model which ignores the minor movements of the user arms. Fig

2.11 shows the control of the robotic arms to catch an element without contact. The

experimental results show that the mean absolute error (MAE) is (3.65, 2.67, 3.83

mm) and (1.01°, 1.17°, 1.5°) for (X, Y, Z) respectively.

In conclusion, many systems are proposed for the interaction between the human

and the robots existing in the same work area. Designing these systems is mainly

Figure 2.11: The motion imitation of the user’s arms by the robotics arms [74]

Figure 2.10: Extracted velocity vectors of the action “sitting” [66]

Chapter 2 Current State of Research and Technology

19

based on the application domain, and the goal of using the robot. Table 2.5

summarizes the common methods which are used in human-robot interaction.

In conclusion, the interaction using the wearable sensors isn’t applicable in work

environments which many human move in it as restaurants, and laboratories, since it

requires a wearable device for each new person enters the work area. Moreover, the

interaction with voice orders is easy and natural method which is used between

human themselves. Still, this kind of interaction won’t be suitable in work

environments which include noise of machines and human, since it will limit the

ability of the robot from recognizing the voice, and this will force the human to

interact with the robot with short distances, and that won’t serve the goal of this

thesis to have a secure interaction. The interaction using color cameras won’t be

suitable when it is required to follow the gestures of several human, besides to the

high processing time to analyze the images and define the human. On the other

hand, the Kinect sensor has several advantages which serve the interaction between

the human and the robot; it offers several possibilities for interaction, as voice,

gesture and face interaction, besides to provide the 3d dimensions of the body.

Table 2.5: Summary of different systems for human-robot interaction

 Advantages Disadvantages

Wearable

Sensor

Obtain the measurements

directly from the user.

Not effected by noise resulted

from light and sound

Not applicable when the robot

works in social area since it

needed to let each person to wear

the device

Voice

recognition

Easy and natural interaction

method.

The robot could be trained for

a wide range of commands

Not suitable to detect humans on

large distances.

Can’t provide more information as

the distance of human(s).

Not suitable in social environment

in which include voice noises

Can’t distinguish the voice of

different humans.

RGB Provides rich information

which could be used in other

tasks as obstacle detection

Cheap sensors

Requires high processing

Additional landmarks could be

required to distinguish the human

Kinect Provides different HRI as

voice, gesture, and face.

Low cost, with low

computational cost

Affected by the vibration which

lead the sensor to lose the skeleton

frames

Chapter 2 Current State of Research and Technology

20

Moreover, this sensor could be used for collision avoidance for mobile robotics.

Thus, in this research, the Kinect sensor is adopted to serve the task of human-robot

interaction.

Table 2.6 summarizes the common methods for the gesture recognition using the

Kinect sensor. From the literature survey, it is noticed that the most methods which

are followed in gesture analysis are related to monitoring the angles between the

body’s joints. These methods are suitable when the Kinect is fixed in static position,

and facing the human face to face. In the real work environment, the robot will meet

the human with different angle of views; the human could meet the robot face to

face, or deviated with certain angles from the front plane of the Kinect sensor. Thus,

the previous methods won’t help, because the angles will be different. Thus, it is

expected that using machine learning and artificial intelligence will improve the

gesture detection if the models are trained with suitable training samples. Thus, two

models are selected in this research (Support Vector Machine, and Back Propagation

Neural Networks), and the performance of each model is analysed and compared.

Moreover, the models were trained using samples with different angle of views, to

enable the HRI system from defining the gesture even when the human and the robot

are not located face to face.

2.3 Collision Avoidance for Indoor Mobile Robots

Collision avoidance is a primary requirement for any robotic system. Many methods

are used in mobile robotics for avoiding dynamic and static obstacles. Some

methods generate obstacle-free path using control theory algorithms such as PID and

Fuzzy Logic controllers. Others take into consideration the robot’s dynamics. In

contrary, reactive collision avoidance methods avoid the obstacles using the

information provided by the robot’s sensor only, without care about the robot’s

Table 2.6: The comparison of different HRI methods based on Kinect and gesture

recognition

Method Success Rate

Analysis the angular displacement of the arms [63] 83.33% (waving)

96.67% (pointing at)

Extracting the joints’ angles of the skeleton [64] 92%

Law of cosine [65] 96%

Histogram of Oriented Velocity Vectors [66] 88.75%

Hidden Markov Model [68] 98.4%

Chapter 2 Current State of Research and Technology

21

dynamic. Here is a review for the common methods of collision avoidance, which

could be found in mobile robotics:

Fuzzy logic is a control algorithm which is developed by Lotfi Zadeh (1965) to

control the systems based on the “degree of truth” rather than the “crisp values” in

which the variable values are either “0” or “1”[75]. This controller has been used in

many obstacle avoidance systems.

Lee et al. used a fuzzy controller for navigation and obstacle avoidance in unknown

environments using ultrasonic and compass sensors [76]. The system is divided into

three layers: The orientation layer (OL) which controls the robot to reach the goal

destination when no obstacles are existed in its path, the obstacle avoidance layer

(OAL) which modifies the robot’s movement in the case of obstacles, and the

human control layer which has the highest priority, and enables the human to control

the robot. Each of OL and OAL represent a fuzzy controller, and the control output

of the robot is the fusion of the outputs of the both layers. The human control layer

represents a remote control panel which could be used by the human to control the

robot, and it has the highest priority over the other two layers. The experiments

show that when the path has no obstacles, the robot will be dominated by OL to

reach the goal, when the robot faces an obstacle, the robot will start decreasing its

speed and modifying its path due to the effect of the OAL layer, with the ability of

the human to interrupt the movement and control the robot at any time [77], [78]

[79].

Bug algorithm is one of the early work in the field of obstacle avoidance for mobile

robotics [80]. Two algorithms are proposed: Bug1, and Bug2. In Bug1, the robot

moves toward its goal location till it hits an obstacle. The robot will then implement

a complete travel around the obstacle, parallel to its boundaries till it reaches again

to the point that it hit the obstacle. If the goal is reached, the algorithm will stop, else

the robot will select the leaving point which has the shortest distance to the goal. In

Bug2 algorithm; instead of implementing a complete navigation around the obstacle,

the robot will move in parallel to the obstacle till it meets again the straight line

linking the starting point and goal point. It will then stop moving around the

obstacle, and direct itself to follow the starting-goal line. The experiments show that

each algorithm has some advantages and limitations. The performance that each

algorithm provides varies basing on the geometry of the path and the obstacle

distributions. Bug2 algorithm shows a faster performance than Bug1 when the robot

navigates in open and wide paths, since it doesn’t need to implement a complete

turnaround the obstacle as in Bug1, rather it will leave the obstacle soon when it hits

the leaving line. On the other hand, Bug1 algorithm shows faster performance when

the robot has to move in Maze paths, since the Bug2 will circulate several times till

Chapter 2 Current State of Research and Technology

22

it reaches the goal as it could be seen in fig 2.12-c. Moreover, the Bug1 algorithm is

more conservative than Bug2.

In methods, which are related to the robot’s dynamics, the robot specifies the

location of the obstacles, then it implements the obstacle avoidance path basing on

the robot’s dynamics as velocity and acceleration. Dynamic Windows Approach

(DWA) is a well-known algorithm in obstacle avoidance [81]. In this method, the

robot identifies the location of all obstacles in its path; then it will calculate the

whole admissible linear and angular velocities. The admissible velocities are the

velocities that the robot can use with the ability to decelerate and stop before

reaching to the closest obstacle. The robot will then consider only the velocities that

the robot can reach given the acceleration limitations of the robot. Fig 2.13 shows

how the robot specifies the admissible velocities for a given work area; the grey area

(a) Bug1 (b) Bug2 (c) Maze path

Figure 2.12: The motion of the robot for the Bug1, Bug2, and Maze path [80]

Figure 2.13: The representation of velocity space in DWA [81]

Chapter 2 Current State of Research and Technology

23

represents the non-admissible velocities that the robot mustn’t use. Finally, the robot

optimizes its velocities by taking into consideration the target direction, and the

distance of each obstacle from the robot [82]. The experiments show that the robot is

able correctly to avoid the obstacles and move in narrow corridors without

oscillations. Furthermore, tuning the parameters of optimization equation plays a

major rule in the motion of the robot.

Claes et al. presented a new method for multi-robots collision avoidance [83]. Each

robot should calculate its position and velocity, and then a communication network

is used to exchange the data of position and velocity. The robots will calculate the

admissible velocities that each of them can use without collision. The research

focuses on solving the corridor problem, when two robots are moving in the same

corridor. Since each robot is moving, the collision avoidance system should be

reactive to update its motion, and to inform the other robots about its direction. Each

robot exchanges the uncertainty to specify the movements, which each of them

should implement to pass the corridor. The experiments were done over two

Turtlebot robots in a narrow corridor (around 140cm); the diameter of each robot is

33.5cm and proved the ability of these robots of passing each other without collision

[84].

Reactive collision avoidance methods are those, which are based merely on the

sensory information rather than the robot’s dynamics. In these methods, the robot

uses the sensor’s reading to update its orientation and avoid the obstacles. Examples

of reactive methods are potential field [85], vector field histogram [86], nearness

diagram [87], smooth nearness diagram, and follow the gap [88].

Potential field local path planning which is developed by O. Khatib in 1985 is one

of the early real implementation related to obstacle avoidance in robotics [85]. In

this method, the goal location and the obstacles practice attractive and repulsive

fields over the robot. The goal location tries to attract the robot to it, while each

obstacle tries to push the robot away from it. The combination of all fields which

effect the robot, will lead the robot to move away from the obstacles, and move

toward the goal location. Unfortunately, this method is suffering from local minima

problem in which the robot will get stuck when the robot got into U shaped

locations, besides to the oscillating motion of the robot in narrow corridors. Fig 2.14

shows the concept of the potential field.

Chapter 2 Current State of Research and Technology

24

In 1991, Borenstein et al. developed a new method for collision avoidance by

representing the obstacles in a histogram [86]. This method is called Vector field

histogram (VFH). In VFH, the robot divides the sensed area into sectors; in each

sector, the robot measures the distance of the obstacle inside this sector. In a next

step, the sectors are plotted as a histogram which each bar of it describes the

distance between the robot and the obstacle existed in the specified sector. The 2D

histogram is mapped then to a one-dimensional polar histogram around the robot as

it could be seen in Fig 2.15. A candidate valley is a group of sectors that are less

than a certain threshold which represent a possible free area that the robot can

navigate in it. The robot will finally select the valley that is closest to the goal

location. The experiment is done by using a mobile robot with a diameter 0.8m, and

several obstacles are distributed in the work area with a spacing around 1.4m. The

Figure 2.15: The polar representation of the VFH and the direction selection [86]

Figure 2.14: The general concept of potential field method

Chapter 2 Current State of Research and Technology

25

robot used ultrasonic sensors to detect the obstacles, and the velocity is set to

0.58m/s. The robot could successfully create the polar histogram for obstacles’

distribution after each measurement update, and it reached to the goal without

collisions. On the other hand, the method is still suffering from dead-end situations

(as U shaped obstacle) which lead the robot to move around in circular paths without

the ability to implement a path out of the trap. Another improvements were added to

the method such as VFH+ [89] and VFH* [90].

Nearness Diagram is a reactive collision avoidance method which is developed by

Minguez in 2004 and follows the divide and conquer strategy in implementing the

local path planning [87]. In this method, the work area is represented in sectors; each

sector represents the nearness of the obstacle from the robot within this sector as it

be seen in Fig 2.16. The robot defines the gaps which represents a border line

between two adjacent sectors that the absolute difference between them is greater

than the robot’s diameter. Two adjacent sectors represent a region. Basing on the

region distributions, nearness of obstacles to the robot, and the wideness of the

regions, the robot will select one of five situations which to calculate the angular and

linear velocities which allow the robot to avoid collision with the obstacles. The

experiments are done over a mobile robot with a diameter 0.48m, which is equipped

with a laser rangefinder sensor, and a maximum velocity 0.3 m/s. The robot could

avoid obstacles keeping a distance 10cm from it. The time required by each path is

related to the density of obstacles and their nearness to each other, since the robot

will adjust its velocity based on the situations that it will face during its navigation

to the goal. Furthermore, the robot didn’t face the deadlock problems when it

avoided U shaped obstacles, and it doesn’t have local minima problems. An

improved version for the ND was implemented which added additional situation to

the previous ND method, and called ND+ [91].

Figure 2.16: The representation of obstacles, gaps, regions, and valley in nearness

diagram [87]

Chapter 2 Current State of Research and Technology

26

Smooth nearness diagram (SND) is an improved version of the ND+ method, and

developed by J. Durham in 2008 [92]. The main goal of the improvement is to

simplify the ND method by using single law which is valid for the whole scenarios

that the robot faces instead of using six scenarios. After detecting the regions, and

selecting the valley, the method defines three angles: the safe rising gap 𝜃𝑠𝑟𝑔, which

is the calculated angle from the selected gap; the 𝜃𝑚𝑖𝑑𝑑𝑙𝑒 which is the angle that

directs the robot to the middle of the selected valley, which is important to access

the narrow valleys, and the desiring heading angle 𝜃𝑑 which is equal to 𝜃𝑠𝑟𝑔 or

𝜃𝑚𝑖𝑑𝑑𝑙𝑒 whichever the closest angle to the angle of the rising gap. Fig 2.17 shows

the concept of the SND. The experimental results show that the SND completed a

given narrow path successfully within 135 seconds, while the ND+ crashed with the

last obstacle in the same path and it required 254 seconds to finish it. Furthermore,

the experiments show a smoother path by SND than ND+, due to the transitions

between situations implemented by ND+. In [93], it is shown that the SND suffers

from the deadlock problem which occurs since the method calculates the total

weighted deflection despite of the obstacles’ distribution. Thus, when the robot

moves in narrow path and more obstacles in one side than the other side, the

calculation of deflection will lead the robot to move far away from the side with

higher risk, causing the robot to collide with the obstacle with lower risk.

In 2010, Mujahad et al. presented a new collision avoidance system based on the

ND and SND methods called “Closest gap”(CG) [93]. In this method, instead of

evaluating the whole gaps, the robot will ignore the gaps that are included into other

gaps. Furthermore, the method tries to overcome deadlock problem which is faced in

SND, by distinguishing between the obstacles to the right and left sides of the robot,

and calculate the deflection issued by the obstacles located at each side and then

calculate the total net deflection resulted from the right and left deflections. The

experimental results show that the proposed method has smoother trajectory than the

ND and SND which caused by the motion oscillation of the robot when it tries to

plan its path to the goal, besides to avoiding the deadlock problems. Furthermore, a

Figure 2.17: The concept of implementing collision-free path using SND method [92]

Chapter 2 Current State of Research and Technology

27

simulation is done to compare the time required by SND and CG, and it shows that

the SND could reach the goal in 140s, while the CG reach the goal with only 125s.

Kim et al. presented a collision avoidance method based on extracting the borders

of the path, and the location of obstacles in the path [94]. The robot uses CCD

camera to extract the boundaries of the lane that it navigates through. These

boundaries meet in a point called vanishing point as it could be seen in Fig 2.18.

Extraction of the continuous lines is implemented using Hough transform; while

boundaries recognition is implemented by RANSAC algorithm. The robot uses the

vanishing point to guide itself through the path. When the robot meets an obstacle, it

will calculate the steering angle taking into consideration the angle of the obstacle,

and the angle of the vanishing point. When the robot avoids the obstacles, it will

direct itself to meet the vanishing point and resume its path. The experimental

results show that the method has a better performance than DWA and VFH in case

of travelling time, and travelling distance.

Hagiware et al. presented the use of Kinect sensor in navigation and obstacle

avoidance for the indoor mobile robots [95]. The robot records the path that it will

follow, and then it will detect its position and avoid obstacles by comparing the

captured frame with the recorded frames in its memory using three steps. In the first

step, the robot implements view matching by searching for the most similar recorded

frame to the current frame using SURF algorithm. In the second step, the robot uses

ego-motion algorithm to for estimating its relative linear and angular distances

between the recorded frame and the captured one, and the rotational and positional

vector of the robot is then extracted. When an obstacle is detected in the path, the

robot will calculate its position and the position of the obstacle by comparing its

current frame to the stored frames, and implement a diagonal collision-avoidance

path around the obstacle. The experimental results show that the robot is able to

estimate its location even when it strays from its recorded path, with the ability to

avoid the obstacles that it faces in its path. [96 - 105].

Figure 2.18: The vanishing point-based navigation [94]

Chapter 2 Current State of Research and Technology

28

To summarize the obstacle avoidance algorithms, table 2.7 shows the advantages

and limitations of the most common methods in obstacle avoidance for mobile

robotics; while table 2.8 shows the common sensors which are used to detect the

obstacles located in the path of the robot.

Table 2.7: Comparison between collision avoidance systems

 Advantages Limitations

Bug1 Doesn’t suffer from local

minima problems

Reliable method to reach the

goal location

Turning around each obstacle

causes the method to be slow

[106]

Bug2 Doesn’t suffer from local

minima problems

Faster than Bug1 in most

situations.

The method shows low

performance in maze paths.

[106]

PF The integration of the whole

obstacles together with the goal

location to generate the

collision-free path

Trap situation “local minima”

[107]

Oscillations in narrow

corridors [107]

VFH Insensitive to misreading of the

sensors [86]

Fast computation with fast

motion [86]

Difficult to tune threshold “a

threshold which is good for

cluttered path, not good for

obstacle-free path” [87]

Low performance with close

obstacles [93]

DWA Takes into consideration the

robot’s physical limits

(velocities, accelerations,...)

[81]

Experimental results show good

performance for the method.

Difficult to tune the parameters

Problems in avoiding the U-

shaped obstacles [87]

ND/ND+ Doesn’t require tuning (one

parameter in one situation) [87]

The method shows good

performance in moving in

cluttered and dense

environments [87]

Not suitable for noncircular

robots [87]

Changing between situations

limits the smoothness of the

path (sharp transitions) [92]

SND Smoother paths compared to

ND Single motion law instead

of six in ND [92]

When the robot faces more

obstacles in one side than

other, the method will guide

the robot far from the side with

more obstacles causing it to

collide with obstacles in the

other side [93]

Chapter 2 Current State of Research and Technology

29

CG Reduced path calculation,

faster, with less oscillations

compared to ND and SND [93]

Remove the gaps that are

contained in other gaps.

Overcome the deadlock

problem.

Since it is relatively new

method, no prove for a

limitation.

VP Higher travelling velocity

compared to VFH and DWA

[94]

Combine line following with

obstacle avoidance to generate

flexible obstacle avoidance

paths.

Implemented over straight

paths, without tests for the

curved paths with cluttered

obstacles.

Works only with vision-based

sensors

Table 2.8: Comparison between different kinds of collision-avoidance sensors

 Advantages Disadvantages

Ultrasonic

Linear Performance

Easy to program

Low current consumption

Can’t detect human body

Effected by voice noises

PIR

Human detection

Low power consumption

Doesn’t provide rich

information about the body

location and distance.

Passive sensor.

Effected by ambient light.

Vision sensors

(Eye cameras for

the H20 robot)

Low cost

Contains many data about the

environment

Difficult to program

Requires high computations

Kinect

Could be used as vision sensor

Gesture Recognition

3D vision (with depth)

Could be used for human-robot

interaction and obstacle

detection.

Effect of ambient lights

High power consumption

Depth camera can’t detect

obstacles located < 50 cm

from the robot

Noises over the skeletal

frames resulted from robot’s

vibration

LRF Accurate sensor with robust

obstacle detection.

Could be used for localization

and mapping.

Can’t detect transparent

obstacles.

In conclusion, many collision avoidance systems are proposed for mobile robots.

Each of them shows advantages with some limitations under certain conditions.

Chapter 2 Current State of Research and Technology

30

Moreover, different sensors are used in detecting the obstacles in the work area. It

could be seen that most of the collision avoidance methods gave much more focuses

on the static obstacles, with minor experiments over the dynamic obstacles,

especially the human which are considered as “intelligent” dynamic obstacle which

will also try to escape the robot by generating collision-free path. This is a short

come in the majority of the obstacle avoidance methods. Thus, in this work new

concepts will be proposed for the task of collision avoidance in the existence of

human in the same work area. The concepts will consider that both the human and

the robot have to incorporate in generating the collision-free paths, so they can avoid

each other safely.

Since the proposed collision avoidance system will be based on the interaction

between the robot and the human, the Kinect 2.0 sensor will be used in this work for

detecting the human and get the gestures from them. The Kinect 2.0 is a 3D sensor,

which has two cameras (RGB and Infrared) enabling the robot from identifying the

objects and human’s skeletons, which are existed in the area. Skeleton frame

provides the skeletal information of up to six human whom are located in the vision

area of the sensor. The detailed information regarding the proposed system together

with the implementation and experiments are shown in chapter 6.

Chapter 3 Goals of the Dissertation and Realization Concepts

31

3.1 Background and Work Description

The new technologies which appeared in the last few decades, changed the

techniques and work methods in different work sectors, and boosted the production

speed and quality. Laboratory is one of the work places which affected by these new

technologies [6]. Engineering changed drastically the fundamentals of preparing and

handling samples, with decreasing the processing time, and costs. This includes

sample processing and sample management [108], sample handling [8], laboratory

management [109], and robotics [110].

For any industrial product, the materials have to be processed and handled by

different machines, and transferred between these machines as fast as possible to

decrease the processing time and increase efficiency. Actually, conveyor belts and

robotic arms are widely used nowadays in manipulating the products, in chemical

laboratories as example. On the other hand, there is a dilemma of manipulating these

samples between different laboratories. Thus, one of the important link in the

integration chain is a global transportation system which is able to manipulate and

transport the different samples between these laboratories at any time. Such system

must be flexible so it can be easily modified to meet the adjustments in work area as

adding/removing laboratories or adjusting the pick and place locations. Furthermore,

the system has to be secure so it doesn’t cause accidents or failure during the

manipulation tasks.

Fortunately, the fast achievements in the field of indoor mobile robotics bring a

promising solution for bridging the gap of mobile transportation of samples and lab

ware between the laboratories without the need for human help.

In mobile robotics, several tasks have to run in parallel to guarantee a smooth and

safe operation for the robots during implementing the transportation tasks between

the laboratories. A global map for the work area is required for any mobile robot, to

enable the robot to define the goal location and the locations of other waypoints as

charging or grasping locations [12]. Furthermore, the robot must be able to localize

Chapter 3

Goals of the Dissertation and Realization

Concepts

Chapter 3 Goals of the Dissertation and Realization Concepts

32

itself robustly within the global map despite of the noises which may affect the

sensor’s measurements [111]. The robots will work side by side to human; they

must be able to recognize the human, interact with them, and obey the orders given

to the robot via interaction [112] [113]. Moreover, the robot must be able to avoid

the collision with the human located along its path using local path planning

strategies [12]. Also, the robot has to define the objects that it has to transport, grasp

them using its arms, and place them in the right locations [13]. Finally, the robot

must be able to work 24 hours, which means that they have to be able to reach the

charging stations and charge themselves autonomously [114]. Fig 3.1 shows the sub-

systems which are working in H20 robots, and which allow the robot to grasp

objects, transport them safely between different floors, interact with humans, avoid

collisions by modifying its path temporally, besides to communicate with the

process management system to receive the transportation requests and send reports

to the process management system regarding the robot situation.

For achieving the research goal (secure navigation), it should be taken into

consideration implementing a robust localization and mapping system which is able

to accurately localize the robot under different work conditions. Furthermore, it

should be taken into consideration that the work environment includes robots which

are working side by side with humans. Thus, safety is a major challenge to make the

manipulation system applicable.

Figure 3.1: The integration of robotic tasks into the H20 robot

Chapter 3 Goals of the Dissertation and Realization Concepts

33

From the previous discussion, it will be clear that any implemented system won’t be

applicable without being integrated with the other systems. Only this integration will

guarantee a successful transportation system based on mobile robotics. For instance,

the robot will move to the goal location based on the global map as long as no

obstacles are existing in the work area. When a person appears, the collision

avoidance and the human robot interaction systems must be activated and control the

robot and implement a local path to avoid the collision with the human, and return

the control to the global navigation system when no human are existing in the path.

The aim of this research is to improve the safety of the mobile robots which are

working in social environments, by finding robust sensors and developing

algorithms to enable the robots to identify their location, recognizing the

surrounding environment and interact with the changes in the environment by

modifying the behaviour in response to these changes. This work focuses on three

aspects, which are necessary for a safe navigation for indoor mobile robots, which

are localization, human-robot interaction, and collision avoidance. Fig 3.2 shows the

H20 humanoid robot, which is used in this dissertation for testing and

improvements.

Figure 3.2: The structure of H20 Mobile Robot [115]

The H20 humanoid mobile robot has dual arms with 6 degree of freedom (DOF); a

moving head with 6DOF and two RGB cameras. The maximum speed of the robot is

0.75 cm/sec. Moreover, the robot is equipped with a GPS localisation sensor based

Chapter 3 Goals of the Dissertation and Realization Concepts

34

on IR technology, 5 sonar sensors for collision avoidance tasks, 10 IR range sensors,

and two passive infrared sensors PIR. Furthermore, the robot is equipped with a

powerful on-board computer, with Kinect 2.0 sensor, and additional batteries to

power the Kinect sensors.

3.2 Improving the localization of indoor mobile Robots

For any mobile robotic system, robots require a map of the work environment, and

they need to identify their location in real time within this map. Any error in the

localization system could lead the robot to lose its location, and move in wrong

directions, which might lead to accidents. It could be seen from the previous

literature survey, that many localization methods are available for the mobile

robotics, and each has its limitations and advantages. Furthermore, most of these

methods require algorithms and further processing for the sensory data. A good

selection for the localization system depends on the application and the work

environment.

In general, the localization sensors can be divided into relative sensors and absolute

sensors. In relative sensors, the updated measurement will be based on previous

ones. Thus, the error in any step will affect the following measurements, and this

will lead to an accumulation of the errors, and the measurements will be totally false

after a time. Examples of relative sensors are encoders, inertia sensors, and dead-

rocking sensors. In absolute sensors, the sensors don't have accumulated errors; they

provide measurements basing on the current state, without the need for previous

knowledge of the location. On the other hand, the error in this kind of sensors will

be instantaneous, and could cause accidents when the robot fails in correctly detect

its location. In this work, StarGazer sensor from Hagisonic company (South Korea)

is selected for the localization and mapping [45]. This sensor is based on infrared

technology, and it is belonging to absolute sensory family. The sensor is composed

of an electronic chip which has an infrared camera and a group of infrared emitters,

and passive landmarks which are distributed over the work area. The sensor works

on analysing the received infrared beam from passive landmarks to obtain its

location. Unfortunately, this sensor is affected by light noises resulting from sunlight

and florescent lights. When the robot moves in noisy areas, the sensor will falsely

define its location in the global map. Fig 3.3 shows an example of a scenario for

false detection of a landmark for a certain period of time. The robot will start

moving from location 1 to location 2, and then it will move to location 3. Supposing

that the location 3 includes light noises, the robot will fail to detect the correct

location of the robot, and it will suppose that it is in location 6 as example.

Consequently, this will lead the robot to adjust its path to direct itself to the next

waypoint following location 6, while it is still in location 3.

Chapter 3 Goals of the Dissertation and Realization Concepts

35

To overcome this problem, the measurements of the StarGazer sensor must be

filtered to check the false measurements, and provide estimation for the location of

the robot under these noisy areas, to allow the robot from keeping its movement to

the goal location. In the literature survey, it is shown that the false detection doesn’t

always follow white Gaussian noise, so implementing recursive filters such as

Kalman filter won’t provide accurate estimation for the robot’s location. Thus, a

modified Kalman filter is applied to the measurements of the StarGazer sensor. In

this work, the adjusted filter will monitor the false measurements which are far from

the expected location of the robot, and remove it before implementing the Kalman

filter over the measurement. This filter uses the history measurements to predict the

location of the robot. When a new measurement is far from the predicted one, the

filter will know that this value is wrong, and the robot will use the predicted

measurement to keep moving in its path till the robot moves away from the noisy

location.

3.3 Human-Robot Interaction

Human-Robot Interaction (HRI) can be defined as the ability of a robot to recognize

the human, interact with them, and implement suitable activities as a response for

the interaction. The task of HRI varies; it could be used to teach the robot how to

implement certain tasks as it could be found widely in cognitive robotics; others

employ the HRI to help the human in their daily life as it could be seen in human-

Figure 3.3: False detection of landmark

Chapter 3 Goals of the Dissertation and Realization Concepts

36

assistive devices/robots, and in robotic arms which work with human in assembly

lines. Social robots also use the HRI to express the emotions either via voice

sentences or via physical behaviors as moving the head, eeyebrows, and mouth; and

the interaction which aims to control the motion of the robots and its behaviour.

For any engineering system, safety has the highest priority which the system has to

achieve. Furthermore, these systems must be equipped with facilities that enable the

human from interrupting the system and control it when needed. Such as stopping

the system, or controlling it in emergency situations.

In mobile robotics, robots will navigate in social environments, and they have to

guarantee the safety of the human who are working in the same area, by recognizing

the humans, interacting with them when needed and avoiding physical accidents to

them. Moreover, and as an engineering system, the robots must be controllable, and

interruptible by human when needed.

In the literature survey, there is no research took into consideration these concepts;

researches focused either on implementing collision avoidance systems which allow

the robot from navigating in narrow, cluttered areas with distributed obstacles, or on

implementing human-robot interaction systems that don’t serve the task of secure

operation.

In chapter 2, it is shown that the collision avoidance serves as a local path planner; it

allows the robot from adjusting its path temporary to avoid the collision with the

obstacles that are located in the detection range of the sensor. The majority of

collision avoidance systems handle the human as a dynamic obstacle, without taking

into consideration the reality that the human “as an intelligent moving object” will

also try to adjust its movement to avoid the robot. Fig 3.4 shows a scenario when the

robot and human meet in a certain location. It could be seen that the robot will adjust

its path trying to avoid the human on its right/left. Simultaneously, the human will

also try to avoid the robot, so he will adjust its path to avoid the robot taking the

left/right direction. This will make both the robot and the human confused about the

motion direction that the other will follow.

In some scenarios, the human might have better information regarding the obstacles

that are located in the path, and if he can interact with the robot, he might give it a

better direction for implementing the collision-free path. As example is when a

group of human are located in the path of the robot; then with the previous collision

avoidance systems, the robot will try to avoid the human autonomously, and this

will confuse the human who are located near the robot. If the human is able to

interact with the robot, and provides the direction of the collision avoidance to it,

Chapter 3 Goals of the Dissertation and Realization Concepts

37

then the robot and the human will know the behavior of the other and the direction

that each of them will follow.

In bottleneck problem which is described in [104], it is likely that the robot and the

human meet in a narrow corridor or in small locations so it is not possible for any of

them to keep moving. Most researches proposed systems for enabling the robot to

recalculate its path and adjust it autonomously with the goal of avoiding obstacles.

Consequently, when the robot meets human in a narrow area which is not wide

enough for avoiding each other, the robot will either stop, or keep moving and

collide with the human. Thus, the HRI will allow the human to interact with the

robot, and adjust its motion temporarily. The user can ask the robot to move forward

or backward for a certain distance, till the robot reaches a wide location which is

enough for the human to avoid the robot and keep moving.

In this work, the HRI will be employed to serve the task of secure operation of the

indoor mobile robots to guarantee the safety of the human and the robot, by

providing the facility for the human to interrupt the motion of the H20 humanoid

robot, and modify its motion in certain situations as guiding it to a certain location,

or to cooperate in avoiding collision when both of them located in narrow corridors

or in cluttered environments.

In this method, both the human and the robot will share the responsibility of

avoiding each other via interaction. The robot will execute the motion orders issued

by the human via interaction. When the robot meets human in its path, it will receive

the orientation, which the robot must go to avoid the human. This will guarantee that

both the human and the robot know to which direction they have to go to avoid

Figure 3.4: The conflict in generating collision-free path between the robot and the

human

Chapter 3 Goals of the Dissertation and Realization Concepts

38

collision. Furthermore, it is taken into consideration the distraction of human while

he gives orders to the robot. This is done by limiting the interaction to a single

person, and reading several gestures from the human for a certain period of time,

and executing the order when the whole gestures which are taken within this period

are identical.

From the literature survey, the HRI could be classified into three categories:

 The physical HRI: the robot obtains the interaction information from the

human using contact sensors which are in contact to human as wearable

sensors, and touch sensors.

 The non-contact HRI: the robot gets the interaction information from the

human without contact as gesture and voice recognition methods, using

microphones, RGB, 3D and LRF sensors.

 A combination of the two previous methods: as fusing the sensory

information of LRF and wearable sensor.

Since the interaction will serve the collision avoidance and human safety, it is

required to use a sensor which is able to detect the human and interact with them

remotely. Thus, the Kinect sensor is chosen for this work. This sensor provides

skeleton frames to the robot with a 3D description for the joints’ positions, without

describing the activities that a person is doing. Thus, the robot has to process the

joints’ orientations of each person in the skeletal frames provided by Kinect sensor

to extract and define the activities that the human is doing and implement the correct

response for these activities.

In literature survey, many methods were used to classify the gestures using the

Kinect sensor; each of these methods has its limitations and advantages. In methods

which depend on analyzing the relative positions of the joints, and the geometry

analysis of the joints’ angles will provide fast recognition of the gesture. On the

other hand, such methods are sensitive to the angular displacement of the human;

when the human and the robot are not located face to face, the angles between the

joints will be distorted, and the HRI system will fail in detecting the gesture. Thus,

in this thesis, machine learning and artificial intelligence algorithms were adopted to

train the models to detect the gestures of human even if they are not located face to

face with the robot. Two algorithms will be used and compared to classify the

gestures of the users. The first algorithm is Support Vector Machine (SVM), and the

second algorithm is Back Propagation Neural Network (BPNN). These two models

will be trained and employed to classify the joints’ coordinates of each person

detected by the Kinect sensor. Then the performance will be compared to select the

suitable one for classifying the gestures.

Chapter 3 Goals of the Dissertation and Realization Concepts

39

SVM is a machine learning method, which is based on statistical learning theory

(Vapnik 1995) [116], [117], [118]. Briefly, the SVM principle is based on

classifying the data into classes using separation planes. When the data is not

linearly separable, the SVM maps it into a higher dimensional space using kernel

functions as Gaussian, radial basis function, and Polynomial kernels, and then the

model searches for the optimal hyperplanes which are able to separate the mapped

data.

Back Propagation Neural Network is a supervised learning algorithm which is used

in several applications as in pattern classification, pattern recognition, and image

processing. The network is composed of three layers: Input layer, hidden layer and

output layer [119]. Each layer includes several neurons. Each neuron existed in a

certain layer is interconnected with each neuron in the following layer with a

weighted connection. Furthermore, each of the neurons in the hidden and output

layer has an activation function which stimulates the neuron to provide the output.

To train the network, a set of training data is used to tune the weights of each

connection. The training samples are applied to the input neurons, and the output is

compared with the expected output to calculate the error. This error is propagated

backward to update the weights of each connection to decrease the model error.

To use SVM and BPNN in real applications, the models have to be trained before

using them in classifying the gestures of the users obtained by the Kinect. Cross

validation techniques are statistical learning algorithms which split the available

training data into two sets: training set, and testing set. The training set is used to

train the model, while the testing set is used to validate and analyze the trained

model, to check how its performance before putting it into real application. The K-

fold cross validation method will be used in this work to train the model. In this

method, the training set is divided into equal subsets. At each training cycle, a subset

is selected as testing set, while the remaining data will be used to train the model.

Further details will be described in chapter 5.

After extracting the gestures and classifying them by the HRI system, the robot has

to implement suitable responses for each order issued by the user via interaction. In

this thesis, the interaction aims to guarantee the safety of the human, and avoid the

collision and bottleneck problems. The orders “move forward/backward” will allow

the robot to move toward/against the position of the user; the orders “move

right/left” will order the robot to search for the collision avoidance paths to the

right/left of the user; “stop” will make the robot keep stopped; and “master select”

which will be used to limit the interaction to one person in a group. Further details

can be found in chapter 5.

Chapter 3 Goals of the Dissertation and Realization Concepts

40

3.4 Collision Avoidance for Indoor Mobile Robots

Collision avoidance is a basic requirement for any robotic system, to guarantee the

safety of the robot and the human from physical accidents which could occur when

both of them meet in the same path.

Different collision avoidance systems have been implemented for mobile robotics.

Many of these systems proved their validity in avoiding static and dynamic

obstacles, and navigating in cluttered environments. Nevertheless, most of them

handle the human as dynamic obstacles, rather than as “intelligent obstacle”. This is

a short come since the human will also try to find a collision-free path, and this

could cause a confusion due to the lack of knowledge regarding the direction that the

other will take.

Out of this, a two-level collision avoidance system has to be implemented, which

takes into consideration the human obstacle as an “intelligent obstacle”. The system

gives a common responsibility for both the robot and the human in avoiding each

other. The method has two levels:

 Cooperative Collision Avoidance: When the robot meets a person in the path, it

will ask the human via voice messages for interaction to supervise the collision

avoidance process. The user in this case will be delegated by the robot to select

what it has to do. The user will then be able to order the robot to either move

forwards/backwards when they are located in narrow paths, or to move right/left

so the robot generates collision-avoidance path to the right/left of the user. In this

case, both the robot and the human know the motion of the other, and this avoids

a conflict when each one moves independently from the other.

 Autonomous Collision Avoidance: If no human interacted with the robot for a

certain period of time, the robot will calculate the collision avoidance path

autonomously, taking into consideration finding the closest collision-free path to

the goal location.

To realize these concepts, a robust collision avoidance system is implemented. In

this system, the robot will search for the whole navigable regions that are wide

enough to allow the robot from passing the human safely, taking into consideration

the width of human and the robot. Furthermore, the system will provide two

collision avoidance options: autonomous and cooperative.

The robot will stop and ask the human to interact with it; allowing a time period

3000 ms for the human to implement the interaction. If a user raises the right arm

vertically (180°) for a period around 400ms, the robot will know that it has to

interact with this user and execute his requests provided via the interaction, and the

Chapter 3 Goals of the Dissertation and Realization Concepts

41

robot will switch to cooperative collision avoidance. Thus the selection of the

collision-free path will be based on the direction provided by the master.

If no human interacted with the robot within the given period of time, the robot will

switch to autonomous collision avoidance. Thus, it will select the region that it will

generate the collision avoidance path across it basing on the next way-point that the

robot has to move based on the global map.

Finally, the collision avoidance system is equipped with a velocity controller which

adjusts the robot’s linear and angular velocities based on the width of the region that

it will pass. The controller will decrease the robot’s velocities when the selected

region is narrow, and vice versa, and this will promote the performance of the

collision avoidance system.

Chapter 4 Localization of Indoor Mobile Robots

42

4.1 Introduction

Localization is defined as the ability of the robot to estimate its position given a map

of the environment [120]. For successful indoor robot navigation, the robot requires

a map building for the workspace, and sensors for specifying its position within this

workspace. If a robot loses its position within a work environment, then it is

probable that fatal accidents occur, like colliding with walls or doors. In life science

laboratories, accurate localization is critical, due to narrow corridors and small free

spaces, which don’t enable robots to have wide localization tolerances.

Furthermore, accurate localization is important to make sure that robots are able to

reach pick-and-place stations, elevators, and charging places. The accurate

localization will be based mainly on selecting suitable sensors, which meet the

requirements of the work area, as specifying the possible disturbances, which may

exist in the place. There is a wide option for sensors, each has its benefits and

limitations, and a good selection for sensors must take into consideration the

application requirements.

For example, in life science laboratories, it should be taken into consideration that

these laboratories are subject to electromagnetic noise, ambient light, the existence

of narrow corridor and small free spaces, besides to the need to modify the

navigation map due to a change in the work environment etc. Based on the previous

survey, the StarGazer sensor (Hagisonic, South Korea) is selected for the tasks of

localization and mapping [45]. Fig 4.1 shows the principle of the sensor.

The sensor is equipped with an array of IR emitters, and an IR camera positioned in

one circuit. Furthermore, a collection of the passive Landmarks is distributed along

the navigation area in celisca. The passive landmarks are composed of 4x4 points,

which have a high reflective ability for IR beam. Each landmark has its unique ID

based on the points’ distribution over the landmark. Figure 4.2 shows the StarGazer

sensor and the landmarks. The StarGazer emits the IR beam to the landmark, which

in turn reflects the IR beam back to the StarGazer. The IR camera and the integrated

circuit analyses the camera’s data to obtain the position and orientation of the robot.

Chapter 4

Localization of Indoor Mobile Robots

Chapter 4 Localization of Indoor Mobile Robots

43

Figure 4.1: The principle of StarGazer Localization sensor [45]

From Fig 4.2, it could be seen that the passive landmarks are composed of several

small circles; each of these circles is composed of a reflective material which is able

to reflect the IR beam effectively. The StarGazer will then identify the location,

direction and the landmark ID by analyzing the reflected beam from the circles. The

StarGazer is able to recognize up to 4095 different landmarks for the landmarks

which are composed of 4x4 dots. Further information of the sensor could be found

in appendix 1.

Figure 4.2: StarGazer sensor and the passive Landmarks

4.2 Improving the StarGazer Localization using Kalman Filter

As it is mentioned in chapter 3, it is noticed that the StarGazer is effected from the

light noises which are resulted from strong sunlight, and from the fluorescent lights

when they are located near the landmarks of the StarGazer sensor. Fig 4.3 shows an

Chapter 4 Localization of Indoor Mobile Robots

44

example of a noisy path that includes lights which are located near the landmarks,

and path that is subject to sunlight. When the robot moves in such path, the false

detection of the sensor could occur and this will lead the robot to lose its location as

it is explained before in chapter 3, and Fig 3.3.

To improve the performance of the StarGazer sensor and filter the false

measurements, Kalman filter is employed for removing the false measurements and

providing estimation for the robot’s location under wrong measurements.

Kalman filter is a recursive data processing algorithm; which is able to incorporate

all provided information. The filter is able to process all the available measurements,

to estimate the current value of the variables of interest. Furthermore, the filter is

able to predict the state of the system based on previous measurements.

The filter has been used in several applications such as rocket navigation [121],

object tracking [122], wind energy [123], [124], power systems [125], speech

enhancement [126] etc.

To implement the Kalman Filter, it is required to model the system dynamics, and to

know the initial state of the system. The filter is composed of a set of mathematical

equations [127]:

�̂�𝑘+1
− = 𝐴𝑘�̂�𝑘 + 𝐵𝑘𝑢𝑘 + 𝑤𝑘 (4.1)

Figure 4.3: The navigation under strong natural and fluorescent lights

Chapter 4 Localization of Indoor Mobile Robots

45

𝑃𝑘+1
− = 𝐴𝑘𝑃𝑘𝐴𝑘

𝑇 + 𝐺𝑘𝑄𝑘𝐺𝑘
𝑇 (4.2)

𝑍𝑘 = 𝐻𝑘𝑋𝑘 + 𝑣𝑘 (4.3)

𝐾𝑘+1 = 𝑃𝑘+1
− 𝐶𝑘+1

𝑇 (𝐶𝑘+1𝑃𝑘+1
− 𝐶𝑘+1

𝑇 + 𝑅𝑘+1)−1 (4.4)

�̂�𝑘+1 = �̂�𝑘+1
− + 𝐾𝑘+1(𝑍𝑘+1 − 𝐶𝑘+1�̂�𝑘+1

−) (4.5)

𝑃𝑘+1 = (1 − 𝐾𝑘+1𝐶𝑘+1)𝑃𝑘+1
− (4.6)

Where:

𝑤𝑘 ∼ (0, 𝑄𝑘)

𝑣𝑘 ∼ (0, 𝑅𝑘)

represent the observation and measurement noises, which are assumed to be zero,

mean Gaussian white noise.

�̂�𝑘+1
− State Prediction 𝐻𝑘 Transformation Matrix

𝑃𝑘+1
− Covariance Matrix Prediction 𝑢𝑘 Control Vector

𝑍𝑘 Vector Measurement 𝐴𝑘 State Transition

𝐾𝑘+1 Kalman Gain 𝑃𝑘+1 Covariance Matrix Update

�̂�𝑘+1 State Estimation Update

The estimation step of the Kalman Filter is generated basing on the system dynamic,

while the correction step will be generated basing on the measurements of the

StarGazer sensor and the estimated state. In [47], it is mentioned that the noise of the

StarGazer sensor comes from two resources, the noise which is resulted from the

vibration of the sensor when the robot moves, and the noise which is resulted from

false detection of the landmarks. Furthermore, it is shown that the first type of noise

could be considered as a white Gaussian noise, while the second type of noise can’t

be represented as a white Gaussian noise so the recursive filters such as Kalman

filter won’t be suitable in filtering the measurements of the StarGazer sensor.

In the following, additional improvement to the Kalman filter is implemented, to

cope the problem of the errors that don’t follow the white Gaussian noise. By

considering that any engineering system can run with certain limits (velocities,

positions …) that it can’t exceed with a given period of time, so it would be possible

to detect and delete the wrong measurements that are far from the specified limits of

the system for a given time period.

Chapter 4 Localization of Indoor Mobile Robots

46

4.3 The Improved Kalman Filter

In Kalman filter, when the filter covariance’s and the gain reach the steady state, it

will be able to smooth the measurements by adding the magnified difference of the

actual measurement and the estimated one to the estimated measurement, as it can

be seen from equation (4.5). When a false measurement is forwarded to the filter, it

will update its parameters basing on this magnified difference. Consequently, if the

difference is too big, it will affect the performance of the filter, and this could lead to

unsatisfied results from the filter.

To implement the Kalman filter, the state estimate is calculated, and then the update

equation is calculated based on equation (4.5). In most dynamic systems, it is

possible to identify some certain domains for the monitored parameters when it is

known that these parameters can’t exceed certain limits for a given time domain. For

example, in H20 robots, since it is known that the maximum robot velocity is 0.75

m/s, it is possible to judge that after 1 second, the robot won’t move more than 0.75

meters in any direction (considering that the robot is moving in indoor environment

with no sloping paths).

The proposed method aims to improve the performance of the Kalman filter by

monitoring the absolute difference between the updated state �̂�𝑘+1 and estimated

state �̂�𝑘+1
− or |�̂�𝑘+1 − �̂�𝑘+1

− |. When this difference is out of the known domain, then

it is possible to neglect the updated state and use the predicted state as the new state

of the system. Since the updated state used a false measurement. Fig 4.4 shows the

flow chart for the proposed method. In this case, this adjustment over the filter will

contribute in providing better results of the Kalman filter [111].

An example of the method is the H20 robot, the robot moves in a maximum speed

75 cm/sec. Thus, considering that the sampling time of the filter is 200 ms, the

difference between two consequence states shouldn’t exceed 15 cm. Consequently,

it is possible to ignore the updated state when the difference between the predicted

and updated states exceeds 15 cm. In other meaning, a measurement is considered

false when the difference |�̂�𝑘+1 − �̂�𝑘+1
− | > 15 𝑐𝑚.

This algorithm can increase the performance of the Kalman filter, since it will

monitor the updated state and reject it as long as it is out of the specified domain.

This condition could be justified and tuned for other applications, which use Kalman

filter for measurements filtration.

Chapter 4 Localization of Indoor Mobile Robots

47

4.4 Experimental Results

The experiments were implemented with the Stargazer sensor, using 20 landmarks

of type HLD1-L, which cover a path of 25 m. The experiments were done in the

path which is shown in fig 4.3 and tested in different light conditions (fluorescent

and sun light). In each experiment, the complete distance the StarGazer moved is

100m. The experiments have been implemented for five times in different daylight

conditions.

Selecting the appropriate tolerance for the filter has a high importance for its

performance, and rejecting the false measurements. Thus, each measurement is

considered false when the value |�̂�𝑘+1 − �̂�𝑘+1
− | > 15 cm. Table 4.1 shows the

experimental results. The success rate represents the performance of the filter in

detecting false measurements and providing estimated ones. It could be seen that the

StarGazer provides higher false measurements in strong light conditions than when

the light is weak. Furthermore, it could be seen that the proposed filter proved the

ability from detecting the false measurements, and providing estimation for the

robot’s position instead of the false values.

Figure 4.4: The flow chart for the proposed filter

Chapter 4 Localization of Indoor Mobile Robots

48

To show the performance of the filter, the measurements of the StarGazer before and

after filtration are plotted as it could be seen in Fig 4.5. In the figure, the blue dots in

(a, b, c) represent the raw measurements of the StarGazer sensor for X, Y and θ. It

can be seen that some measurements are totally far from the expected motion curve

of the StarGazer.

Fig 4.5 (d, e, f) shows the results of applying the filter over these measurements. The

yellow dots represent the raw measurements from the StarGazer sensor, while the

blue dots represents the filtered measurements of the sensor. It can be seen clearly

that there are some irregular points which are not located on the expected curve. The

goal of the filter is to detect these wrong measurements and provide estimation for

the StarGazer location.

 It is clearly that the filter didn’t follow the false measurements, but it detected them,

and provided approximations for the position basing on the estimated measurements

generated by the estimation equation, after neglecting the filtered measurements

resulted from the update equation under these false values. Furthermore, it could be

seen that when the sensor provides correct measurement, the filter use this

measurement to update its state.

It is worthy to mention that the goal of the filter is not to improve the accuracy of the

StarGazer sensor, but to detect the false measurements and provide an accurate

estimation for the robot’s position even when the sensor provides false

measurements.

In [47], the implemented EKF failed in detecting the false measurements, even when

these measurements have high localization error (>3m). This is because the false

measurements don’t follow white Gaussian noise. In contrary, it could be seen that

Table 4.1: The experimental results of the Kalman filter over the StarGazer sensor

Experiment

Number

Travelled

Distance (m)

Total

measurements

False

measurements

Light

condition

Success

Rate

1 100 405 14 weak sun +

lights off

100%

2 100 407 21 moderate sun

+ lights on

100%

3 100 420 22 moderate sun

+ lights on

100%

4 100 415 28 strong sun +

lights on

100%

5 100 412 26 Strong sun +

lights on

100%

Chapter 4 Localization of Indoor Mobile Robots

49

the implemented Kalman filter is able to detect the false measurements, and provide

accurate estimation for the location of the robot under these false measurements.

Figure 4.5: The StarGazer measurements before and after filtering: (a, b, c) The raw

measurements of Stargazer sensor. The horizontal axis represents the number of raw

measurements. The vertical axis represents the value of (X, Y, θ) for (a, b, c)

consequently. (d, e, f) The result of applying the proposed filter over the StarGazer

sensor

Chapter 5 Human-Robot Interaction System for Indoor Mobile Robots

50

5.1 Introduction

In the future work environments, robot and human will work side by side in the

same place, and this raises big challenges related to the ability of each of them from

identifying the other, and interacting and exchanging the information when needed.

Thus, robots must be equipped with a robust human-robot interaction system to be

able from a secure work with the human.

Human-Robot Interaction is defined as the ability of a robot from distinguish a

human, understand his orders or emotions, and implement a suitable response as a

result of this interaction.

In recent years, the fast improvements in the field of artificial intelligence, machine

learning and computer engineering, led to several forms of the interaction with

human. It could be seen from the chapter 2, that the interaction formulation is based

on the goal of the interaction, the tasks that the robot is doing, and the used sensors

for the interaction.

In this work, the interaction will serve the task of human safety, by implementing a

human-robot interaction system which enables the robot from recognizing the

human and getting the motion information from him so both of them avoid the

collision when they meet in narrow locations.

Kinect V2.0 sensor (Microsoft, USA) is widely used in applications, which require

human and gesture detection [128]. This sensor has a RGB camera and an infrared

camera. The combination of these two cameras provides the robot with a 3D vision

of the work environment. The sensor uses time-of-flight to measure the distance

between the sensor and the objects [129]. In this technology, the sensor sends

infrared beam, and measures the time required by beam to travel back to the IR

camera. The Kinect 2.0 provides a skeleton frame, which includes the skeletons for

up to 6 humans to the robot. 3D dimensions for 25 joints express each skeleton. The

sensor is able to detect the human within the distance between 0.8 to 4.5 meters.

Chapter 5

Human-Robot Interaction System for Indoor

Mobile Robots

Chapter 5 Human-Robot Interaction System for Indoor Mobile Robots

51

5.2 System Description

It could be concluded in the literature survey, that the HRI systems are either

designed to extract the emotions of human, receive the tasks from them via voice,

gesture, or neurons, or to interact with human and learn from them how to execute

certain tasks. Furthermore, it could be seen from the literatures that are related to

collision avoidance, that the traditional collision avoidance systems are working

autonomously, without getting any kind of feedback from the humans about their

motion direction, and without a possibility to interrupt the motion of the robot when

needed. Out of this a new robotic system which is based on HRI is implemented to

serve the task of collision avoidance for mobile robotics [112].

In the implemented system, the robot will be equipped with a Kinect sensor to

monitor the human, which exist in the navigation area, and get the gesture

information from them. The person in front of the robot then will use gestures to

inform the robot about the procedure, which it has to execute (stop, move forward,

move backwards, go right, go left, resume). The robot will execute the orders based

on the detected gesture and move to its final destination using global path planner

system after avoiding the human [130]. To implement the human-robot interaction,

seven gestures are used in this system. Table 5.1 depicts these gestures and the

robot’s response for each of them.

The Kinect sensor provides the robot with information about the human’s joints.

This information requires further processing to extract the corresponding orders

issued by the human. Thus, it is required to implement a tool which is able to

interpret the skeletal data into useful commands that the robot can understand. Since

the interaction is based on human’s arms, the data of five joints will be used to

detect the gestures:

 The (y) values of the right and left elbows, and the right and left wrists.

These values will provide sufficient information about the locations of the

left and right arms in the space.

 The (y, z) values for the neck joint. These two values are necessary to train

the model to classify the gestures of human with different heights.

Fig 5.1 shows the human joints extracted by the Kinect.

Chapter 5 Human-Robot Interaction System for Indoor Mobile Robots

52

To understand the gestures, a tool should be used which is able to map the joints’

coordinates to its classes. From literature survey, many methods are adopted to

extract the gestures of human from Kinect sensor.

Table 5.1 The gestures used in the HRI system and their corresponding function

Function Gesture

The robot will stop as long as the stop gesture is raised.

Stop

The robot will generate the collision avoidance path by

selecting the closest region located to the right side of the

master person.

Move right

The robot will generate the collision avoidance path by

selecting the closest region located to the left side of the

master person.

Move left

The robot will move toward the person as long as the “move

forward” gesture is raised.

Move forwards

The robot will move backwards as long as the master person

raises the “move backwards” gesture.

Move backwards

If several humans are in the path of the robot, the robot will

not know to which person it has to interact, since two or

more human might give different orders to the robot. To

overcome this problem, “Master Select” gesture is assigned.

When a person in a group raises the right arm 180°, the

robot will know that it has to interact with this person and

will ignore the gestures of other human in the work area.

Master select

The resume gesture is used when the master person orders

the robot to ignore the human existence and complete its

path. This is the case when the person thinks that the robot

moves in a different path which he follows, or when the

person will leave to another position far from the robot’s

path.

Resume

Chapter 5 Human-Robot Interaction System for Indoor Mobile Robots

53

It is also shown that the methods which are based on geometry analysis of the joints

won’t work correctly when the human plan is not parallel to the sensor plan, since

the angles and the relative positions of joints will be different when the robot and

human are not located face to face.

In real world, it is highly possible that the human is not adjacent to the robot, and the

robot should still be able to interact with the human and understand their gestures

correctly. Thus, it is expected that the methods which work on analyzing the data

and classifying it basing on a previous training for these models could provide a

better performance in identifying the corresponding order for a given gesture. In this

study, two models are adopted to classify the skeletal information provided by the

Kinect sensor. The first model is Support Vector Machine (SVM) [131] and the

second model is Back Propagation Neural Network (BPNN) [132] [133]. These two

models are trained and the performance is compared.

5.3 Support Vector Machine

5.3.1 Model Description

In SVM, the model works on searching for the line, which is able to separate the

data optimally, in the current application, the data represents the measurements

obtained from Kinect sensor. Supposing the data of the sensor are plotted in Fig 5.2,

it could be seen that there is an infinite number of separation lines. Searching for the

line, which is able to keep the largest margin between the two classes, does

Figure 5.1: The gestures used for the interaction with the robot

Chapter 5 Human-Robot Interaction System for Indoor Mobile Robots

54

optimization [117] [134]. To find the mathematical representation of this problem, it

is supposed that the separation line has the following equation:

𝑓(𝑥) = 𝑤𝑡𝑥 + 𝑏 5.1

Where 𝑤𝑡 represents the weight vector, 𝑏 the bias and 𝑥 input data.

Supposing that the line is able to separate the data into two classes:

𝑤𝑥𝑖 + 𝑏 ≥ +1 𝑖𝑓 𝑦𝑖 = +1

For all points which are located at the first class and:

𝑤𝑥𝑖 + 𝑏 ≤ −1 𝑖𝑓 𝑦𝑖 = −1

for the points which are located at the second class.

The margin ℳ, is defined as the distance between the positive class and the negative

class.

(𝑥+ − 𝑥−) =
2

|𝑤𝑡|
 5.2

The margin could be given as:

ℳ =
2

|𝑤𝑡|
 5.3

Figure 5.2: The Principle of Support Vector Machines

Chapter 5 Human-Robot Interaction System for Indoor Mobile Robots

55

Optimization is done by searching for the line, which is able to keep the maximum

margin between classes without any error in classifying the training data. This is

equivalent to maximizing the margin, or minimizing the 𝜑 since:

𝜑(𝑤) =
1

2
𝑤𝑡𝑤 5.4

Subject to

𝑦𝑖(𝑤𝑥𝑖 + 𝑏) ≥ 1 ∀𝑖 5.5

Support vectors are defined as the training vectors, which are located on the

auxiliary hyperplanes as it could be seen in Fig 5.2 and could be represented

mathematically as:

𝑓(𝑥) = 𝑤𝑡𝑥+ + 𝑏 = +1

𝑓(𝑥) = 𝑤𝑡𝑥− + 𝑏 = −1

Usually, finding an optimal hyperplane which is able to separate the whole data is

difficult, since some vectors could be correctly classified but not located within the

boundary hyperplanes, or it could even be misclassified. Thus a slack variable (ξ) is

defined which represents the distance between the misclassified vector and the

correct boundary hyperplane [117]. For the classification models which includes

misclassified vectors we define:

𝑦𝑖(𝑤𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖 ∶ 𝑖 = 1,2, … , 𝑛 5.6

𝜉𝑖 ≥ 0 ∀ 𝑖 = 1,2, … , 𝑛

Thus, for the vectors which are correctly classified and within the boundary

hyperplane 𝜉 = 0, and for the vectors which are correctly classified but they are not

located within the boundary hyperplane 0 ≤ 𝜉 ≤ 1, while 𝜉 ≥ 1 for the vectors

which are misclassified. Thus the optimization problem takes the form:

min ||𝑤||2 + 𝐶 ∑ 𝜉𝑖𝑖 ∶ 𝑖 = 1,2, … . , 𝑛 5.7

Where C is the penalty factor, which controls the trade-off between maximizing the

margin and minimizing the training error. Large C means that the model is focusing

on minimizing the error rather than maximizing the margin, while small C means the

model is focusing on maximizing the margin with less care about minimizing the

training error.

The penalty factor C is selected manually, so to test the performance of the model

for different penalty factors, training algorithms are needed, which are able to train

Chapter 5 Human-Robot Interaction System for Indoor Mobile Robots

56

and test the model. Many training algorithms existed for this purpose as exhaustive

cross validation, Repeated Random sub-sampling validation, and K-fold crosses

validation. In this research, K-fold cross-validation algorithm is used for training the

model and selecting the appropriate penalty factor [135], [136].

5.3.2 Model Training

To put the SVM into real applications, the model has to be trained given a set of

training inputs and the desired outputs which the model has to generate as a response

to the applied input. Thus, to train the model, a training set is required to tune the

parameters of the model. It could be seen from Fig 5.1 that the measurements of the

five joints in the body frames are extracted. For the right and left wrists, and the

right and left elbows, the (y) values are extracted. Furthermore, the (y, z) values of

the neck are also extracted.

To build the training set, the gestures of four people with different heights are taken;

each person is asked to implement the whole 7 gestures in 16 different positions in

distances with range [1.8, 4] m. Thus, for each person there is 16 × 7 = 112

training samples, and the total training set is equal to 448.

Since it is possible that the human is not totally facing the robot, the training

samples are taken with deviation angles [-40°, 40°] between the participants and the

Kinect level. By training the model with training samples that are taken with

different angles of people, it is expected that the HRI will be able to recognize the

gesture of human even if they are not located face-to-face with the front plane of the

Kinect sensor.

To train the SVM, k-fold cross validation algorithm is used. K-fold cross validation

is a training algorithm which is used for training and evaluating the trained classifier

given the available set of training data. In this algorithm, the data set 𝐷 is divided

into equal subsets 𝐾𝑖. Each subset 𝐾𝑖 includes
𝐷

𝐾
= 𝑚 samples of the training set:

𝐷 = ∑ 𝐾𝑖 ∶ 𝑖 = 1,2, … , 𝑘𝑛
𝑖=1 5.8

Since each 𝐾𝑖 represents a subset of the dataset 𝐷𝑛. Fig 5.3 shows the flow chart of

training the SVM model.

In the next step, the data subsets 𝐾1,2,….𝑖−1 are used for training the model 𝑀 with the

given set of parameters; while the remaining set 𝐾𝑖 is used to evaluate and validate

the model, and the number of misclassified samples for the set 𝐾𝑖 is computed.

Chapter 5 Human-Robot Interaction System for Indoor Mobile Robots

57

In this work, k= 8. Fig 5.4 shows the subsets distribution for training both the SVM

and BPNN models.

5.4 Back Propagation Neural Network

5.4.1 Model Description

Back-Propagation neural network is a multi-layer network that is composed of input

layer, hidden layers and output layer. Each layer is composed of several neurons;

K=0 Test=56 Train = 392

K=1 Test=56 Train = 392

K=2 Test=56 Train = 392

K=3 Test=56 Train = 392

K=4 Train = 392 Test=56

K=5 Train = 392 Test=56

K=6 Train = 392 Test=56

K=7 Train = 392 Test=56

Figure 5.4: The k-fold sets for the L-SVM model

C =exp()

K = 8

K = 0
Training = 392 Testing = 56

Train The module with 392
samples

Test the module with 56
samples

Save the misclassified samples

K++
>70

++
End

Yes

Yes No

No

Calculate Average
Error

Figure 5.3: The flow chart for building and training the L-SVM model

Chapter 5 Human-Robot Interaction System for Indoor Mobile Robots

58

each of these neurons in a certain layer is linked to each neuron in the following

layer via weighted links. Furthermore, each neuron in the hidden and output layers

has an activation function, which calculates the output of the neuron after receiving

the weighted inputs from the neurons in the previous layer. Fig 5.5 shows the

hierarchy of the BPNN.

In the training step, the weights are selected randomly with small values, 𝑤𝑖,𝑗 ∈

[−0.5, 0.5]. Then the training vector is applied to the network’s inputs, and

propagate these inputs via the layers to the output layer. The error of the network is

calculated as the deviation of the network output from the desired output. This error

is propagated inversely to update the weights of the layers.

Considering a three layer BPNN, 𝑤𝑖𝑗 represents the weight of the connection

between the neuron 𝑖 in the input layer, and the neuron 𝑗 in the hidden layer; 𝑤𝑗𝑘

represents the weight of the connection between the neuron 𝑗 in the hidden layer,

and the neuron 𝑘 in the output layer [132]. The input and the output of a neuron in

the hidden layer is given as:

𝑥𝑗 = ∑ 𝑥𝑖 . 𝑤𝑖𝑗 − 𝑏𝑗
𝑛
𝑖=1 5.9

𝑦𝑗 =
1

1+℮
−𝑥𝑗

 5.10

Where:

 𝑏𝑗: the bias for the neuron

Figure 5.5: The hierarchy of the BPNN

Chapter 5 Human-Robot Interaction System for Indoor Mobile Robots

59

𝑛: the number of inputs for the network

Actually, the right term of the output equation represents a sigmoid function which

is used widely in the BPNN for activating the neurons of the hidden and output

layers. For calculating the output of the network, the same steps are followed using

the equations 5.9 and 5.10.

After completing the feed forward step, the model error is calculated for each output

neuron. The output error represents the difference between the desired output and

the actual output:

𝑒𝑘 = 𝑑𝑘 − 𝑦𝑘 5.11

After calculating the error, the weights have to be corrected, to decrease this error.

Thus, the updated weights between the hidden and output layers is given as:

𝑤(𝑛𝑒𝑤)𝑗𝑘 = 𝑤(𝑜𝑙𝑑)𝑗𝑘 + ∆𝑤𝑗𝑘 5.12

Where ∆𝑤𝑗𝑘 is the weight correction, and it is calculated as

∆𝑤𝑗𝑘 = 𝜂 × 𝑦𝑗 × 𝛿𝑘 5.13

Where 𝛿𝑘 is the error gradient which represents the derivative of the multiplication

of activation function with the error of the output neuron [133]:

𝛿𝑘 =
𝜕𝑦𝑘

𝜕𝑥𝑘
× 𝑒𝑘 5.14

Considering using the sigmoid activation function:

𝛿𝑘 = 𝑦𝑘 × (1 − 𝑦𝑘) × 𝑒𝑘 5.15

The updated weights will be given as:

𝑤𝑗𝑘(𝑛𝑒𝑤) = 𝑤𝑗𝑘(𝑜𝑙𝑑) + 𝜂. 𝑦𝑗 . 𝛿𝑘 5.16

In similar way, the error gradient of the neurons in the hidden layer is given as:

𝛿𝑗 = 𝑦𝑗(1 − 𝑦𝑗) ∑ 𝑤𝑗𝑘
𝑛
𝑘=1 . 𝛿𝑘 5.17

Then, the weight corrections are given as:

∆𝑤𝑖𝑗 = 𝜂 × 𝑥𝑖 × 𝛿𝑗 5.18

And the new weights of the hidden neurons will be calculated as:

𝑤𝑖𝑗(𝑛𝑒𝑤) = 𝑤𝑖𝑗(𝑜𝑙𝑑) + ∆𝑤𝑖𝑗 5.19

Chapter 5 Human-Robot Interaction System for Indoor Mobile Robots

60

Where 𝜂 is the learning rate, and it is taken as a positive value less than 1.

5.4.2 Model Training

In BPNN, the goal of training the model is to find the best number of hidden

neurons, with the best weights values that provide the minimum output error. The

model will have six inputs; one for each joint’s value, and three outputs which

provide the gesture to the robot. To find the best number of hidden neurons, several

models have been trained and tested with number of hidden neurons 𝑛 = [3,21].

Similarly to SVM model, the BPNN is trained using the same training data set (448

samples). Furthermore, the k-fold cross validation with k = 8 will be used to train

the model and test it for different number of hidden neurons.

5.5 System Implementation

5.5.1 Kinect Position

Kinect V2 sensor has 70° horizontal and 60° vertical fields of view. Thus, the

positioning of the sensor has an important role in detecting the human in different

positions. The next chapter will show that the robot is required to interact with the

human and execute the procedures of collision avoidance when the distance between

the robot and a person is around 2m. Thus, the Kinect has to be fixed in a position

that allows the robot to detect the human within the distance 2-4m. Furthermore, it

should be taken into consideration that the robot has to detect the static obstacles on

the floor of the navigation area, which could be a future work for the implemented

system. Thus, it is decided to fix the Kinect sensor on a high 75cm above the floor.

Fig 5.6 depicts the position of the Kinect and the vertical distances that the robot can

detect within the given position. It could be seen that for the distance 2m, the robot

can detect the human with heights around 2m.

5.5.2 Human-Robot Interaction System Description

In the previous sections, it is mentioned that the robot interacts with the human

using seven gestures. Since it is possible to have several human in the path of the

robot, it is probable that each person gives a different order to the robot. Thus, the

robot won’t be able to understand what it has to do. To overcome this problem, a

special gesture “Master Select” is allocated to enable the robot to detect the master

Chapter 5 Human-Robot Interaction System for Indoor Mobile Robots

61

person. When the master person is detected, the robot will limit the interaction to

this person and ignore the gestures of other human in the area.

The Kinect sensor provides 30fps, this is a high rate for the interaction, since it is

not possible to the robot and the human to implement the interaction with this rate.

Moreover, if the interaction is done in a short period of time, it is possible that the

robot mistakenly interacts to the arms’ position while the master person is still

moving them. For example, the robot might move forward “two arms horizontally”

while the master person is still moving his arms to reach the move backward order

“two arms vertical”. To overcome this problem, the gestures of each person were

stored in a unique register. Each register records 6 gestures for each person. If the

whole values of the register are the same, then the robot will execute the saved

gesture in the register. This will guarantee a stable interaction with the arms’

movements. When a person moves away from the robot’s path, the assigned register

will be cleared automatically. Since the robot compares each 6 gestures, the human

has to fix his arms’ position for a given gesture for at least 200 ms. Fig 5.7 shows

the flow chart for the human-robot interaction system.

Once the robot detects human in the path, it will save and update the positions of

human and their distances from the robot, this data is important for the collision

avoidance system to be able to calculate the required path soon when an order is

assigned. The robot will then search for a master, by classifying the gestures of all

human in front of it, and compare the contents of each register to check whether a

Figure 5.6 Position of Kinect sensor and detection range

Chapter 5 Human-Robot Interaction System for Indoor Mobile Robots

62

master is existed. When a master is detected, the robot will keep updating the

distances of each person to keep the CA system has the positions of each person, but

it will limit the interaction with the master person. The system will then classify the

gestures of the master person, and forward them to the collision avoidance system

for executing the requests.

5.5.3 Sensor False Inferred Data

In Kinect sensor, when the body is located near the vision limits of the sensor, it will

provide an inferred estimation of the joints’ positions of the body. Actually, the

experiments show that this estimation is not accurate, and this leads to a false

detection for the gestures when the Kinect provides false inferred joints to the HRI

system. Fig. 5.8 shows an example of a false inferred skeleton of the body. The

inferred joints are those which are marked with yellow dots. It is clear, that the

gesture will be misclassified when the Kinect provides these false joints’

Human
Detected

H20 moves on the planned
path

Stop

Wait for order

Execute the CA order

Start Collision
Avoidance

No

Master
Detected

Order Received

Yes

Yes

Yes

No

No

Figure 5.7: The control of the robot using Human-Robot Interaction

Chapter 5 Human-Robot Interaction System for Indoor Mobile Robots

63

measurements to the classifier. To overcome this problem, the system will check the

status of each joints of interest (neck, elbows, wrists), and when there are more than

two inferred joints, the measurement won’t be forwarded to the classifier as long as

the joints are not correctly detected.

5.6 Experimental Results

The experiments were done on two levels; the first experiments show the training

results of the BPNN and SVM, including the time required from each model to

implement the training, and evaluating the performance of each model in classifying

the samples. In the second experiment, the HRI model is tested in real environment,

and five humans with different physical shapes tested the human-robot interaction

system with different positions and angles.

5.6.1 Training the SVM

In this work, a linear-kernel support vector machine model is used. To obtain the

best model of the SVM, the model is tested over a wide range of penalty values:

 𝐶 = 𝑒Ԑ 𝑤ℎ𝑒𝑟𝑒 Ԑ = −10, −9 … . . , 69, 70.

(a) master (b) right (c) right (d) resume (e) resume (f) left

Figure 5.8: The false skeletal joints due to angle view limits of Kinect

Chapter 5 Human-Robot Interaction System for Indoor Mobile Robots

64

Fig 5.3 showed the flow chart for training the model. Model training is done using

EMGU library, over a Laptop with the processor Intel i7-3537U (2.0 GHz with 4

CPUs) and 8 GB RAM. Appendix 3 shows the complete experiments over the

model, while table 5.2 summarizes the training results for the model.

In table 5.2, the total error represents the total misclassified samples for the

complete folds, while the average error represents the total error divided by the

number of folds (here 8). To estimate the performance of the SVM model for the

given penalty value, the success rate is evaluated as:

𝑆𝑢𝑐𝑐𝑒𝑠𝑠 𝑅𝑎𝑡𝑒 = 100 −
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑒𝑟𝑟𝑜𝑟

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
× 100 5.20

Furthermore, the train time represents the total time required to train the model for

the whole 8-folds for the given penalty value. The test time, represents the time

required from the trained SVM model to test a given sample. It could be seen that

the test time for any sample after training the model is less than 1ms.

From the table 5.2, it could be seen that setting the penalty to small values less than

0.13, will lead the model to show poor classification for the training sets. On the

other hand, the values of the penalty in range [0.367, 7.389] show the best

performance with eight to nine misclassified samples. Moreover, the table shows

that using higher penalty values won’t improve the performance of the SVM model,

since the model fails in classifying 16 test vectors. It could also be concluded that

after training the model, the total time required to predict a given sample is less than

1ms. From the appendix 3, it could be seen that the average training time for the

whole experiments is equal to 50.95ms.

Table 5.2: The training results for the L-SVM model

C Total

Error

Average

Error

Success

Rate

(%)

Train

Time

(ms)

Test

Time

(ms)

No.

Support

Vectors

[4.5 × 10−5,
 0.0067]

379 47.3 15.53 [103,112] <1 21

0.0183 355 44.3 20.9 102 <1 21

0.0497 156 19.5 65.17 88 <1 21

0.135 33 4.12 92.64 71 <1 21

0.367 8 1 98.2 68 <1 21

1, 2.718 9 1.125 97.99 49, 56 <1 21

7.389 8 1 98.2 45 <1 21

20.08, 9.2
× 1029

16 2 96.4 [41, 53] <1 21

Chapter 5 Human-Robot Interaction System for Indoor Mobile Robots

65

By comparing the experiments in the table 5.2, it could be seen that the best

performance of the SVM model is with penalty value c=7.389, with only eight

misclassified samples, which is equal to a success rate 98.2%.

5.6.2 Training the BPNN Model

Fig 5.4 showed the general structure of the BPNN model. The model has six inputs

which represent the y-values of right and left wrists and elbows, besides to the (y, z)

values for the neck. Since the model has to distinguish seven gestures, three outputs

were selected for the model, as it could be seen from the table 5.3.

To search for the best number of hidden neurons, the model is tested using the same

training set and the same k-fold algorithm which were used to train and optimize the

SVM model. The optimization is done by searching for the best number of hidden

neurons for the model, and the best weights values. Thus, the neurons are selected in

the range 3 to 21. Table 5.4 summarizes the training results.

From the table 5.4, it could be seen that the BPNN could provide very satisfied

results for any number of hidden neurons. The model is able to classify the testing

sets with a successful rate equal to 100% with a classifying time less than 1ms.

While the average training time is equal to 117.2 ms.

Table 5.3: The outputs of the BPNN for the given gesture

 Q1 Q2 Q3

Stop 0 0 0

Move Right 1 0 0

Move Left 0 1 0

Move Forward 1 1 0

Move Backward 0 0 1

Master Select 1 0 1

Resume 0 1 1

Chapter 5 Human-Robot Interaction System for Indoor Mobile Robots

66

5.6.3 Comparison between SVM and BPNN

In comparison between the tables 5.2 and 5.4, the following results could be

concluded:

 The BPNN could classify the whole test sets successfully despite of the

number of hidden neurons.

 The L_SVM model showed better performance for penalty values close to 1.

Still, whatever the penalty value, it couldn’t classify the whole patterns

successfully, with the best performance of the model is at c = 7.389, with 8

misclassified samples.

 The L_SVM showed faster training than the BPNN with average training

time 50.95ms for the L_SVM and 117.2 ms for the BPNN.

 Both models were able to classify an input vector with less than 1ms.

Thus, the BPNN with 8 hidden neurons is chosen for gesture recognition in the

proposed Human-Robot Interaction System.

Table 5.4: The result of training and testing the BPNN for several hidden neurons

No. of Hidden

Layers

No. Errors Train Time (ms) Test Time

3 0 101 <1

4 0 115 <1

5 0 112 <1

6 0 114 <1

7 0 115 <1

8 0 103 <1

9 0 107 <1

10 0 109 <1

11 0 112 <1

12 0 123 <1

13 0 112 <1

14 0 129 <1

15 0 131 <1

16 0 128 <1

17 0 124 <1

18 0 111 <1

19 0 136 <1

20 0 126 <1

21 0 120 <1

Chapter 5 Human-Robot Interaction System for Indoor Mobile Robots

67

5.6.4 Human-Robot Interaction System Test

After implementing the HRI system with the BPNN, it is required to test the system

over real work conditions. Fig 5.9 shows the test area for the robot and the positions

which the humans whom implemented the tests were located. Five humans with

different physical shapes (heights, widths, clothes...) were asked to implement the

tests. Each person is asked to implement a certain gesture in each position, with a

deviation angle (-40, -20, 0, 20, 40). The complete experiments could be found in

appendix 4, while the table 5.5 summarizes these experiments.

By analyzing the experiments in the table, the following results could be outlined:

- The BPNN classifier shows 100% correct classification for the whole gestures

provided to it.

- Out of 90 experiments, the human-robot interaction system misclassified two

gestures. These two gestures are misclassified because of a false positions of the

joints which are provided by the Kinect sensor to the classifier.

- Out of 90 experiments, it shows that 84 experiments needed a processing time in

the range [337, 396] ms, while there are six experiments required processing time

in range [735,773] ms. The reason that the six experiments required almost

double time that a user in the experiment didn’t fix his arms during the

experiment, and this lead from the HRI system to clear the register assigned to

the user and fill it again with new set of classified measurements.

Figure 5.9: Representation of the test environment (dimensions in meter)

Chapter 5 Human-Robot Interaction System for Indoor Mobile Robots

68

By comparing the current results with the other methods which were discussed in the

literature survey, it could be seen that the proposed human-robot interaction system is

easier and more applicable compared to other methods using touchable and wearable

sensors since it is not required to attach sensors to human to be able to interact with

the robot. Moreover, the system could be used in social work environments easily

since there is no need for further devices to be fixed on each person existed in the

same navigation area of the robot.

Moreover, by comparing the performance of the implemented HRI system, with the

other HRI systems which were based on gesture recognition (table 2.6), it could be

seen that the previous systems were implemented on the concept that the robot and

the human are located face-to-face, while in the realized system, the robot can still

recognize the gestures successfully even when a human is deviated with ∓40° from

the straight sight between the robot and the human. While the other methods which

were based on geometry will fail when the person is not located face to face with the

Kinect plan.

In table 2.6 it is shown that the success rate of several methods ranges between

83.33% to 98.4%. While the success rate of the implemented SVM is 98.2% and

100% for BPNN. Despite of that the Hidden Markov Model shows a bit higher

success rate (98.4%) than the SVM, the implemented SVM model can recognize

people even when they are not directly facing the robot. Thus, it could be concluded

that both classifiers SVM and BPNN show higher classification performance than

other methods which are used in literature.

Finally, it could be seen that the only limitation from the human-robot interaction

system comes mainly from the sensor itself. The experiments which were

implemented over the system showed that there were two misclassified gestures.

This is because the sensor provided wrong joints’ dimensions to the BPNN model.

Moreover, it is noticed that the Kinect sometimes doesn’t detect the body, and it

requires from the user to move a bit, or shake his body to allow the Kinect from

Table 5.5: The summary of experiments over the HRI system

Person Number of

experiments

Height False gesture State

transitions

1 18 165 1 0

2 18 170 1 3

3 18 177 0 1

4 18 179 0 1

5 18 188 0 1

Chapter 5 Human-Robot Interaction System for Indoor Mobile Robots

69

detecting him. The user can know that the Kinect didn’t detect him by monitoring

the robot’s screen which shows the skeletal frames of each detected person.

Chapter 6 Collision Avoidance System for Indoor Mobile Robots Basing on Human-Robot Interaction

70

6.1 Introduction

In future work environments, robots will work alongside to humans, and this raises

challenges related to the robustness of these robots in detecting human, interacting

with them and avoiding physical accidents to them. Thus, any robotic system must

be equipped with a robust collision avoidance system which enables the robot to

detect the obstacles and avoid them, especially the human.

In chapter 3, it could be seen that many collision avoidance systems have been

implemented for mobile robotics. The general concepts of these systems are

summed up by detecting the obstacles’ distribution in the work area, extracting the

regions between these obstacles that are wide enough for the robot to pass, and

selecting the region which is closest to the goal direction.

Despite of the good performance of many of these methods, it has some short comes

especially when robots navigate in social environments which include many human

moving and sharing the same working area of the robot as in laboratories,

restaurants, and hospitals.

When the robot moves in social environments, it is possible that a group of human

are located on the same path of the robot. Thus, the robot will try to avoid those

humans by adjusting its path several time to avoid collision with them as it could be

seen in fig 6.1. This will cause the robot to move in the middle of this group in

curved paths, which will cause the human to get confused, besides to increase the

time required by the robot to reach its goal.

Furthermore, it is possible to have a bottleneck problem when the human and the

robot are located in narrow locations such as corridors, so neither of them is able to

avoid the other.

Chapter 6

Collision Avoidance System for Indoor Mobile

Robots Basing on Human-Robot Interaction

Chapter 6 Collision Avoidance System for Indoor Mobile Robots Basing on Human-Robot Interaction

71

Additionally, the performance of the collision avoidance system is merely related to

the sensor’s detection range. Thus, in some situations, it is possible that the human

which is existed near to the robot to have more information about the obstacles’

locations in the path of the robot, and if this human is able to inform the robot about

the best path it has to follow, this will improve the performance of the collision

avoidance and avoid the situations as in Fig 6.1.

Out of this, a new collision avoidance system is proposed which takes into

consideration the human as an intelligent-moving obstacle [113]. The proposed

system will allow the human to interact with the robot and provide it with the

suitable direction of the collision-free path when the human finds it is necessary.

In this system, when the robot meets humans, it will ask them to interact with it via

voice requests. If the user is interested in mastering the motion of the robot, he can

manage it via interaction using the human-robot interaction system described in the

previous chapter.

Thus, the user can order the robot to move backward/forward in case of narrow

corridors, or he can select the direction of the path that the robot has to move, so the

user moves to the other direction. On the other hand, if no human interacted with the

robot for a certain period of time, the robot will calculate its local path

autonomously taking into consideration selecting the path that is closest to its

original path. The method is called cooperative collision avoidance (CCA) since

both the robot and the human share the responsibility of avoiding each other [112]

[113].

Figure 6.1: Robot motion between a group of humans

Chapter 6 Collision Avoidance System for Indoor Mobile Robots Basing on Human-Robot Interaction

72

6.2 System Description

The proposed system gives mutual responsibilities for the robot and humans to

avoid each other and search for the safe paths via interaction. The robot will interact

with the human by sending voice messages to them, and receiving the responses

from the human via the human-robot interaction system which is described in the

chapter 5.

When the robot detects human(s) in its path for distances d >2m, it will warn them

by sending a voice message “Robot is coming”, to notify the humans that they are in

the path of the robot. In this case, the humans will be aware of the existence of the

robot, and they can either move away from the path of the robot, or be ready for

interaction.

If the human moved away from the path of the robot, it will continue its path to the

goal location. Else, if the human stayed in the path, and the distance between the

robot and the closest person is less than 2m, then the robot will stop and send voice

message “Interact”. In this case, the robot gives the option to the human to either

cooperate in avoiding each other via interaction, or to implement the collision

avoidance autonomously. The robot gives a certain period of time to the human to

interact “3 seconds”. Thus, if a person raised his right arm vertically “Master Select

gesture” within the 3 seconds, the robot will keep stopped waiting for the next order

from the master user. If the period is passed, the robot will then implement the

collision avoidance path autonomously. After executing the collision-avoidance

procedures, and if there is no more human in the path of the robot, it will complete

its path to the goal location using the multi-floor navigation system [130]. Fig. 6.2

shows the flow chart for the proposed system.

6.3 Collision Avoidance System

In either the cooperative or autonomous collision avoidance methods, the robot has

to find the free spaces that it can move between the humans without collision. Thus,

a robust collision avoidance system is developed which takes into consideration the

width of the humans and their distributions in the navigation area.

Chapter 6 Collision Avoidance System for Indoor Mobile Robots Basing on Human-Robot Interaction

73

In this system, the robot detects the positions of the human in its path, and specifies

the distance of each person from it using the Kinect sensor. Furthermore, the width

of each person is calculated by measuring the distance between the right and left

shoulders of the human. Thus, the width of each obstacle “person” is given as:

People in the path

Robot moves to the

goal location

Voice Message

 Robot is Coming

Distance <2m

Yes No

No

Robot Stop

Voice Message

 Interact

Yes

Master Select

Voice Message

 Autonomous

Collision Avoidance

Voice Message

 Master Select
Time >3000 ms

Search for Regions

Resume

Move to the region

which is closest to the

next way-point

Move Forward/

Backward

Move

Right/Left

Voice Message

 Moving Forward/

Backward

Voice Message

 Moving Right/Left

Voice Message

 Resume

Yes No

Yes No

Ignore the people and

keep moving to the

goal

Move toward/opposite

of the master user

Ignore the regions

that are to the right/

left of the master

Select the region that

is closest to the next

way-point

Master st ill

available

Give the control to

the Global Navigation

System

Halt the Collision

Avoidance System

Figure 6.2: The flow chart of the collision avoidance system

Chapter 6 Collision Avoidance System for Indoor Mobile Robots Basing on Human-Robot Interaction

74

𝑟𝑝
𝑖 = |𝑟𝑟𝑠

𝑖 − 𝑟𝑙𝑠
𝑖 | (6.1)

Where:

 𝑟𝑝
𝑖 the radius of the person 𝑖 in the group

𝑟𝑟𝑠
𝑖 , 𝑟𝑙𝑠

𝑖 the 𝑥 coordination of the left and right shoulders

The robot will search for the available regions which compose a potential space for

implementing the collision-avoidance path. The robot will distinguish between the

middle regions, which are the free spaces between the humans, and the terminal

regions which are the regions to the left and right of the terminal human in the

group.

For the middle regions, the robot will check the width of the regions between

human:

𝑅𝑎𝑣
𝑖 = (𝑋𝑝

𝑖+1 − 𝑋𝑝
𝑖) − (𝑟𝑝

𝑖+1 + 𝑟𝑝
𝑖) 𝑤ℎ𝑒𝑟𝑒: 𝑖 = 1, . . , 𝑛 − 1 (6.2)

Since 𝑛 represents the number of humans detected by the Kinect sensor.

Furthermore, the robot estimates the minimum region width required for the robot to

pass without collision:

𝑅min (𝑚𝑖𝑑)
𝑖 = 2 × 𝑟𝑟 + 𝑟𝑝

𝑖+1 + 𝑟𝑝
𝑖 + 𝑑 (6.3)

Where:

𝑟𝑟 robot’s radius.

𝑑 the safety distance around the robot.

Fig 6.3 shows the calculation of the middle regions.

In the next step, the robot checks the possibility of generating the avoidance path to

the right and left of the most right/left human in the group. This calculation is done

by considering the maximum detection angle of the sensor (70°), so the robot will

compare the width of the region between the terminal person and the last point that

the sensor can detect for the given depth, as it could be found in Fig 6.4, which

shows the calculation of the region for the right-terminal person. To calculate the

width of the right terminal region, the following equations are used:

Chapter 6 Collision Avoidance System for Indoor Mobile Robots Basing on Human-Robot Interaction

75

𝑋𝑡𝑒𝑟𝑚
𝑛 = 𝑍𝑝

𝑛. tan 35° (6.4)

𝑅𝑎𝑣
𝑛 = 𝑋𝑡𝑒𝑟𝑚

𝑛 − (𝑋𝑝
𝑛 + 𝑟𝑝

𝑛) (6.5)

Similarly, the following equations are used to calculate the left terminal region:

𝑋𝑡𝑒𝑟𝑚
0 = 𝑍𝑝

0. tan(−35°) (6.6)

Figure 6.3: Calculation of middle region

Figure 6.4: Calculation of the terminal region

Chapter 6 Collision Avoidance System for Indoor Mobile Robots Basing on Human-Robot Interaction

76

𝑅𝑎𝑣
0 = (𝑋𝑝

0 − 𝑟𝑝
0) − 𝑋𝑡𝑒𝑟𝑚

0 (6.7)

After receiving the available terminal regions, the robot checks whether these

regions are wide enough to navigate or not using the following equations:

𝑅𝑚𝑖𝑛
𝑛 = 𝑟𝑟 + 𝑟𝑝

𝑛 + 𝑑/2 (6.8)

𝑅𝑚𝑖𝑛
0 = 𝑟𝑟 + 𝑟𝑝

0 + 𝑑/2 (6.9)

The candidate regions are the regions that are wider than the minimum required

width which the robot needs to generate the collision-free path safely:

𝑉 = ∑ 𝑅𝑎𝑣
𝑖𝑛−1

𝑖=1 + 𝑅𝑎𝑣
0 + 𝑅𝑎𝑣

𝑛 𝑖𝑓 𝑅𝑎𝑣
𝑖 > 𝑅𝑚𝑖𝑛

𝑖 , 𝑅𝑎𝑣
0 > 𝑅𝑚𝑖𝑛

0 , 𝑅𝑎𝑣
𝑛 > 𝑅𝑚𝑖𝑛

𝑛 (6.10)

After detecting the whole candidate regions that the robot can go through, it will

select the region based on the collision-avoidance method (cooperative or

autonomous). In cooperative collision avoidance, the region selection will be based

on the motion direction that the master person guided the robot to move through,

while in autonomous collision avoidance, the region selection is based on the

direction of the next way-point obtained from the global navigation system.

As it is mentioned before, when the robot detects humans, it will warn them to move

away from its path. If the distance between the robot and the user is less than 2m,

the robot will stop for three seconds to guarantee the safety of the human. If a user

raised his/her right arm 180° within the given period, the robot will implement the

movement based on the orders issued by the master user via interaction. Thus, it will

move forward/backward or will execute the cooperative collision avoidance when

the user activates the move right/left gestures. If no human interacted with the robot,

it will consider that the human delegated it to select the collision-free path, so it will

implement the autonomous collision avoidance. In the following, the two collision

avoidance strategies are explained in details.

6.3.1. Cooperative Collision Avoidance based on Human-Robot

Interaction

In cooperative collision avoidance, both the master user and the robot will cooperate

in finding a secure collision-free path via interaction.

Chapter 6 Collision Avoidance System for Indoor Mobile Robots Basing on Human-Robot Interaction

77

When the distance between the robot and a person is less than 2m, the robot will ask

the human to interact using the voice request “interact”, and it will stop for three

seconds allowing the human to interact with it. Within the stopping time, the user

who wants to interact with the robot has to raise his right arm 180°, notifying the

robot that it has to interact with him. The robot will then execute one of the

following actions:

 Move forwards/backwards: The user can use the move forward/backward by

raising his both arms 90°, and 180° respectively. In this case, the robot won’t

search for the regions or generate collision avoidance path. Instead it will obey

the orders from the master user and move forwards / backwards as long as the

master is still raising these gestures. This action is very necessary to avoid the

bottleneck problem when the user and the robot meet each other in narrow areas,

so neither of them is able to avoid each other due to the lack of free space as it

could be seen in Fig 6.5. Moreover, this action is necessary when the user wants

to guide the robot to move in dense and cluttered area. Thus, the user can order

the robot to move either forward or backward to another free walking area, then

he can either pass the robot, or can order it again to move to its left or right. The

robot in these orders will move for 1.2m, and implement another reading for the

gesture. If the gesture is still raised, it will implement additional 1.2m.

 Move Right/Left: The user can contribute to select the collision avoidance

path to the right or left of him. Fig 6.6 shows the concept of this order. Each

Figure 6.5: The bottleneck problem when the robot and human are moving in narrow

places

Chapter 6 Collision Avoidance System for Indoor Mobile Robots Basing on Human-Robot Interaction

78

Figure 6.6: Cooperative Collision Avoidance via Interaction

person is represented by the ellipse 𝑃𝑖, which represents the distance between

the right and left shoulders of the person 𝑖.

Supposing that the master P2 asked the robot to move to its left side, the robot will

then search for the nearest region that it can go through to the left of the user. It

could be seen that the candidate region R2 between the person P3 and P4 is the

selected one. The robot will then calculate its path which will be discussed later.

After passing the region R2, the robot will give the control to the multi-floor

navigation system to allow the robot to keep going to the goal location.

If the master ordered the robot to move to a certain direction, and the robot couldn’t

find a free candidate region in the selected direction, it will keep stopped and it will

send a voice message “no free path” to inform the human that there is no free space.

In this case, the master person has to either give the robot another order, or to let the

human to move for a certain distance to keep a space for the robot to move, and then

the master has to provide again the motion direction to the robot.

The goal of this interaction is to allow the humans who are working alongside with

the robot to supervise it to reach its goal location. Taking into consideration that the

worker can have more information regarding the robot’s task, the obstacles in the

robot’s path and the motion directions of the other humans existing in the same

location. These circumstances could be faced in many places as laboratories,

museums, hospitals, and restaurants.

Chapter 6 Collision Avoidance System for Indoor Mobile Robots Basing on Human-Robot Interaction

79

6.3.2. Autonomous Collision Avoidance

If no human interacted with the robot within the given period of time, the robot will

consider that the users delegated it to search for the free paths. Fig 6.7 depicts the

flow chart of the proposed system.

Basing on the search equations in chapter 6.3, the robot will take into consideration

the whole candidate regions that consist a potential collision-free path for the robot.

Then, it will get the direction of the next waypoint on the original path of the robot

from the multi-floor system, and select the region that is closest to this way-point. In

case that the robot couldn’t find any free region, it will send the voice message “no

free path” to inform the humans that they have to keep a space for it to move. If the

human moved allowing enough free space for the robot, it will generate the collision

avoidance path and keep moving to the goal location after finishing the path.

Fig 6.8 shows four humans located near the robot. The dashed lines represent the

horizontal field of view for the Kinect 2.0 sensor which is equal to 70°. It can be

seen that two regions are detected for four humans. Since the robot has the freedom

in selecting the region, it will select R1 as candidate region since it is closest to the

original global path of the robot toward the goal location.

Autonomous Collision

Avoidance

Search for the whole

Available Regions

Get the next way-

point from MFN

Voice Message

 No Free Path

Region Available

Select the region that

is nearest to the way-

point

Generate the

Collision Avoidance

Path

Provide the motion

commands to MFS

YesNo

Figure 6.7: The flow chart of Autonomous Collision Avoidance

Chapter 6 Collision Avoidance System for Indoor Mobile Robots Basing on Human-Robot Interaction

80

Figure 6.8: Autonomous search for the collision-free path

6.4 Collision Avoidance Path Calculation

After selecting the candidate region using either the cooperative or autonomous

collision avoidance, the robot will start to calculate the collision-free path across the

selected region.

The calculation of the collision-free path is based on whether the path will be

between two humans, or it will avoid a single person. Fig 6.9 shows the calculation

of the collision-avoidance path between two humans. To get the path the robot has

to move, the following equations are used:

𝑥𝑐𝑎 =
𝑥𝑝

𝑖+1−𝑥𝑝
𝑖

2
 (6.11)

Figure 6.9: Collision-free path calculation between two humans

Chapter 6 Collision Avoidance System for Indoor Mobile Robots Basing on Human-Robot Interaction

81

𝑍𝑓 = 𝑀𝑎𝑥{𝑍𝑖 , 𝑍𝑖+1} (6.12)

𝜃𝑐𝑎 = tan−1 𝑥𝑐𝑎

𝑍𝑓
 (6.13)

𝑍𝑐𝑎 =
𝑋𝑐𝑎

sin 𝜃𝑐𝑎
 (6.14)

𝑑𝑐𝑎 = 𝑍𝑐𝑎 + 𝑟𝑟 + 𝑟𝑓 (6.15)

Where:

𝑥𝑐𝑎: The middle of the selected region.

𝑍𝑓: The distance of the farthermost person from the robot in the selected region.

𝜃𝑐𝑎: The robot’s orientation toward the region.

𝑍𝑐𝑎: The distance between the robot and the middle of the selected region

Fig 6.10 shows the path calculation for the terminal regions. For these regions, the

robot uses the following equations for the rightest person:

𝑥𝑐𝑎 = 𝑋𝑝
𝑛 + 𝑟𝑝

𝑛 + 𝑟𝑟 + 𝑑/2 (6.16)

𝜃𝑐𝑎 = tan−1 𝑥𝑐𝑎

𝑍𝑝
𝑛 (6.17)

𝑍𝑐𝑎 =
𝑋𝑐𝑎

sin 𝜃𝑐𝑎
 (6.18)

Figure 6.10: The generation of CA path for the terminal person

Chapter 6 Collision Avoidance System for Indoor Mobile Robots Basing on Human-Robot Interaction

82

𝑑𝑐𝑎 = 𝑍𝑐𝑎 + 𝑟𝑝
𝑛 + 𝑟𝑟 (6.19)

Similarely, to calculate the terminal region for the most left person in the group, the

following equations are used:

𝑥𝑐𝑎 = 𝑋𝑝
0 − 𝑟𝑝

0 − 𝑟𝑟 − 𝑑/2 (6.20)

𝜃𝑐𝑎 = tan−1 𝑥𝑐𝑎

𝑍𝑝
𝑛 (6.21)

𝑍𝑐𝑎 =
𝑋𝑐𝑎

sin 𝜃𝑐𝑎
 (6.22)

𝑑𝑐𝑎 = 𝑍𝑐𝑎 + 𝑟𝑝
0 + 𝑟𝑟 (6.23)

Moreover, the same terminal region equations are used when there is only a single

person in the path of the robot with taking into consideration that 𝑋𝑝
𝑛 = 𝑋𝑝

0.

6.5 Robot’s Linear and Angular Velocities Calculation

In collision avoidance, the robot has to adopt its linear and angular velocities based

on the risk ratio of the followed collision-free path. Thus, it has to decrease its linear

and angular velocities when the path is narrow in cluttered environment, and vice

versa.

In the implemented velocity controller, the robot will tune its linear and angular

velocities based on the width of the region that it passes. This direct proportion will

lead the robot to decrease its linear and angular velocities when the region is narrow,

and increase it when the region is wider. To do this, the following equations are used

to get the velocities of the robot:

𝑣 = 𝑣𝑚𝑎𝑥 .
log10 𝜃𝑟

log10 𝜃𝑚𝑎𝑥
 (6.24)

𝜔 = 𝜔𝑚𝑎𝑥 .
log10 𝜃𝑟

log10 𝜃𝑚𝑎𝑥
 (6.25)

Where 𝜃𝑚𝑎𝑥 the maximum vision angle of the Kinect sensor and equal 70°; 𝜃𝑟 the

angular width between two humans for middle regions, and between the terminal

human and the vision limit for the sensor (±35°) for terminal regions.

Chapter 6 Collision Avoidance System for Indoor Mobile Robots Basing on Human-Robot Interaction

83

Fig 6.11 shows the simulation result of the linear and angular velocities of the robot

for different angles, given a maximum linear and angular velocities as 𝑣𝑚𝑎𝑥 =

0.3 𝑚/𝑠 and 𝜔𝑚𝑎𝑥 = 0.5 𝑟𝑎𝑑/𝑠.

6.6 Software Implementation

6.6.1 Development Tools

The whole software implementation is realized using C# language which is an object

oriented programming language appeared in 2000. C# could be used to implement a

wide range of software applications which run on .Net framework [137]. C# is built

over the previous C, C++ languages which make it more robust and more

convenient for developing different applications including embedded systems and

human-machine interfaces.

Moreover, the Extensible Markup Language (XML) is used for data exchange

between the collision avoidance system and the multi-floor system. XML is a

supporting language which is used for encoding documents and exchange the data

between programs. This language uses a set of instructions and formats which are

easy to understand by both the human and machines.

6.6.2 System Realization

The key success of any engineering system is the integration and synchronization

between its components. In mobile robotics, several tasks have to run

Figure 6.11: The linear and angular velocities for different width of regions

Chapter 6 Collision Avoidance System for Indoor Mobile Robots Basing on Human-Robot Interaction

84

simultaneously as collision avoidance, path planning, arm grasping, and charging, to

realize an effective autonomous manipulation system.

The overall goal of the research is to build an autonomous transportation system

which is able to transport the labware between different laboratories. To realize this,

several partial systems have to run in parallel, and integrate with each other to

guarantee the success of transportation tasks. Fig. 6.12 shows the general

architecture for the implemented mobile transportation system.

- The robot remote center (RRC) is responsible on connecting with the process

management system, and sending transportation commands to each robot based

on the charging status of the robot and its nearness from the destination [110].

- The motion power control is a software which is located on the PC-Laptop and it

is responsible of getting the sensors’ information of the robot and controlling the

actuators.

- The multi-floor navigation system provides the robot with the robot’s location

within the global map and guides it to the grasping and charging locations [130].

Figure 6.12: The general architecture of the transportation system

Chapter 6 Collision Avoidance System for Indoor Mobile Robots Basing on Human-Robot Interaction

85

- The arm control system is responsible on controlling the robot’s arms to grasp

and place the labware [13].

- The collision avoidance system is a local path planner, which allows the robot to

adjust its path and avoid the unexpected obstacles which are located in its path to

the goal location [112].

The collision avoidance system will receive the data from the Kinect sensor, and use

the algorithms which are discussed before to allow the robot from re-planning its

path to avoid the obstacles. Since the proposed collision avoidance system is related

to the HRI system, a robust combination must be implemented to synchronize the

work of these systems. Moreover, the collision avoidance system must be able to

exchange the data with the multi-floor navigation system to get the next way-points

and send the motion orders to the robot. Fig 6.13 shows the block box of the

implemented collision avoidance system.

To show the practical implementation of the collision avoidance system, the

complete code for the “autonomous collision avoidance” is copied and could be

found in appendix 5. The other collision avoidance functions such as “move

right/left” have similar concepts of the autonomous collision avoidance.

Figure 6.13: The general architecture of the Cooperative Collision Avoidance System

Chapter 6 Collision Avoidance System for Indoor Mobile Robots Basing on Human-Robot Interaction

86

6.6.2.1 Collision Avoidance Controller

The collision avoidance controller is the core of the collision avoidance system. It

analysis the information received by the HRI system, monitors the connection state

of the client (MFS), and trigs the collision avoidance functions based on the received

information from the HRI. Fig 6.14 shows the flow chart of this controller.

When a new process cycle starts, the controller checks whether there are humans in

the path, and one of them at least has a distance less than 2 m. The controller will

activate the “Stop” function which will let the robot stops for three seconds, giving a

time distance for the human to interact. The “stop” function will be released and the

D < 2m*

People in path*

Yes No

Voice_Tag

Voice Message

 Robot is Coming

Voice_Tag = true

Stop_Processed

Call Stop Function:

- Message Interact

- Send XML_Stop to MFS.

- Save data to log-file

- Wait 3 sec interaction

 period with people

- Stop_Processed = true

- Release the function

Yes No

Forward Gesture*

Backward Gesture*

Right Gesture*

Left Gesture*

Yes No

Call Forward Function:

- Message Forward

- Send Forward motion

orientation.

- Wait till motion is finished

- Release the function.

Call Backward Funct ion:

- Message Backward

- Send Backward motion

orientation.

- Wait till motion is finished

- Release the function.

Call Move Right Funct ion:

- Message Right

- Get the people orientation

 from HRI

- Calculate the free regions.

- Select the region to the

 right of the master.

- Send mot ion orders to MFS.

- Wait till motion is finished

- Release the function.

Master Select*

Call ACA Function:

- Message Autonomous

- Get next way_point

orientation from MFS.

- Search for free regions.

- Select the region based on

nearness from way_point.

- Send mot ion orientation

to the MFS.

- Wait till motion is finished

- Release the function.

Call Move Left Function:

- Message Left

- Get the people orientation

 from HRI

- Calculate the free regions.

- Select the region to the

 left of the master.

- Send mot ion orders to MFS.

- Wait till motion is finished

- Release the function.

Call ICA Stop Function:

- Message Stop

- Send stop request to MFS

- Release the function.

No

No

No

No

No

Yes

Yes

Yes

Yes

Stop Gesture*

Yes

Keep moving to the

destination

Figure 6.14: The flow chart of collision avoidance controller, (*) means information

received from the HRI system

Chapter 6 Collision Avoidance System for Indoor Mobile Robots Basing on Human-Robot Interaction

87

control will be given back to the CA controller. If the HRI shows that no human

interacted with the robot, the controller will trig the autonomous collision avoidance

procedure, or it will trig one of the cooperative collision-avoidance functions if a

person interacted with the robot. Each function will implement the required

processes, and send the motion commands to the MFS via the socket.

6.6.2.2. Communication with the MFS

For exchanging the data between the collision avoidance system and the MFS, a

well-structured API is designed based on TCP/IP protocol [112] [130]. Furthermore,

the data is transferred using XML format. Each message is composed of a header,

and the message body, the header is composed of 4 bytes, and they save the message

length in bytes, while the message body is composed of the XML message coded

using UTF-8 format.

The collision avoidance system represents the server part of the socket, while the

MFS represents the client. The server will keep listening to the socket till a start

message “keepOnline” and “StartCA” are received from the client. After each

message, the server will reply the client confirming receiving the messages and

establishing the connection correctly. The collision avoidance will then start

monitoring the existence of humans in the path. When an obstacle is less than 2m,

the CCA system will send “ObstacleDetected”, and the MFS will stop the robot and

reply by providing the orientations of the next way-point as it could be seen in Fig

6.15. The CCA will then calculate the collision-free path, and it will provide the

motion orders to the MFS, by sending the angular and linear distances, and the

velocities that the robot has to move. When the path is free of obstacles, the collision

avoidance system will send “ObstacleFree” allowing the robot to keep moving to the

Figure 6.15: The XML messages between CA and MFS

Chapter 6 Collision Avoidance System for Indoor Mobile Robots Basing on Human-Robot Interaction

88

goal location.

6.6.2.3 Collision Avoidance User Interface

Fig 6.16 shows the user interface for the collision avoidance and human robot

interaction systems. The interface is implemented as simple as possible to allow the

user from handling the collision avoidance system easily. The upper part shows the

connection status with the MFS, the middle part shows the human-robot interaction

paremeters, and the lower part shows the collision avoidance parameters.

The user interface allows the user from adjusting the parameters of the collision

avoidance system, such as adjusting the distance the robot has to stop to implement

the collision avoidance, the maximum velocities for any collision-avoidance

functions. Furthermore, the user can activate/deactivate the velocity controller, and

activate/deactivate the cooperative collision avoidance.

Figure 6.16: The interface of the collision avoidance system

Chapter 6 Collision Avoidance System for Indoor Mobile Robots Basing on Human-Robot Interaction

89

6.7 Experimental Results

To check the performance of the collision avoidance system, several experiments

have been implemented, and the whole parameters of the system are recorded and

analysed. The tests have been implemented on the cooperative collision avoidance

functions “Move forward, move backward, move right, move left”, besides to the

tests over the autonomous collision avoidance. The whole experimental results are

collected in the appendix.

6.7.1 Tests over the Cooperative Collision Avoidance

As it is shown before, the cooperative collision avoidance is based on the interaction

between the robot and the master person. Furthermore, it is shown that there are four

motion orders which could be provided to the robot via interaction: Move

forward/backward, Move right/left. Each of these functions is tested and analysed

separately.

6.7.1.1 Move Forward

To test the move forward function, 30 experiments have been done on different

velocities of the robot as it could be seen in the table “A6.A” in the appendix 6. In

each experiment, the robot is asked to move 1.2m as a result of the interaction. Fig

6.17 shows an experiment for the “move forward” test. A person raises his right arm

180° to inform the robot that he will be the master, then the master orders the robot

 (a) (b) (c)

Figure 6.17: The experiment for “move forward” function (a) the user raises “master”

gesture, (b) orders the robot to move forward, (c) the robot executes the order

Chapter 6 Collision Avoidance System for Indoor Mobile Robots Basing on Human-Robot Interaction

90

to move forward to guide it to another location, since the robot and the people are

met in narrow corridor so neither of them is able to avoid each other. Table 6.1

summarizes these experiments.

The experiments show that the robot successfully interacted with the master, and

executed the “forward” order. Furthermore, it could be seen that the robot on higher

velocities (0.3 m/s) doesn’t follow the straight path, and it deviates around [2°, 4°]

from the straight path due to problems in the wheels of the robot.

6.7.1.2 Move Backward

Similarly to “move forward”, 30 experiments were implemented to test the “move

backward” function for the robot. Likewise the “move forward”, this function could

be used to solve the bottleneck problem, and guide the robot to another wide area so

the people and the robot can avoid each other. Fig 6.18 shows an experiment for this

function, a person raises his right arm 180° to allow the robot from interacting with

him, then the master moves his both arms 180° to order the robot to move backward.

Table 6.1: Summary of the experiments for “move forward” function

V(m/s) No. Experiments Time(sec) Note

0.1 10 12

0.2 10 6

0.3 10 4 Deviation [2°,4°]

 (a) (b) (c)

Figure 6.18: The experiment for “move backward” function (a) the user raises “master”

gesture, (b) orders the robot to move backward, (c) the robot executes the order

Chapter 6 Collision Avoidance System for Indoor Mobile Robots Basing on Human-Robot Interaction

91

Table “A6.B” in appendix 6 shows the experimental results for this function for

three velocities. While the table 6.2 summarizes these experiments.

It can be seen from the table 6.2 that at velocity (0.3 m/s), the robot shows a

deviation from the straight path, due to the low accuracy for the robot’s wheels.

6.7.1.3 Move Right

In “move right” function, the robot will interact with the master, and consider only

the regions that are located to the right of him. To test the function, 30 experiments

were implemented and divided into three groups. Each group includes 10

experiments with a certain maximum linear velocity 𝑣𝑚𝑎𝑥 and angular

velocity 𝜔𝑚𝑎𝑥. Furthermore, it could be seen that in each group, the robot moved in

the middle of two people for 5 experiments, and to the right of the last terminal

human for the other 5 experiments. Tables “A6.C, A6.D, A6.E” in the appendix 6

show the experimental results for these experiments, while table 6.3 summarizes the

experiments. Furthermore, Fig 6.19 shows the real test environment for the robot.

In each experiment, it could be seen that the robot searches for the whole regions

which are located to the right of the master, and they are wide enough to generate

the collision-avoidance path. The available regions could be found in the tables

under “region candidate”. After selecting the region, the robot will calculate its

Table 6.2: Summary of the experiments for “move backward” function

V(m/s) No. Experiments Time(sec) Note

0.1 10 12

0.2 10 6

0.3 10 4 Deviation [2°,4°]

Table 6.3: The experimental summary for the “Move Right” function

Table Number of

Experiments

V(m/s) W(rad/s) Note

A6.C (10) 5 right, 5 middle 0.2 0.4 1 missed skeleton

A6.D (10) 5 right, 5 middle 0.25 0.3 1 missed skeleton

A6.E (10) 5 right, 5 middle 0.3 0.5 3 deviations

1 missed skeleton

Chapter 6 Collision Avoidance System for Indoor Mobile Robots Basing on Human-Robot Interaction

92

width 𝜃𝑟 to compute the linear velocity (𝑉), and angular velocity (𝜔) of the robot.

Finally, the robot calculates the heading angle and the distance “d” of the collision

avoidance path that it has to move to pass the human.

“missed skeleton” in the experiments means that when the robot stops for

interaction, the Kinect took a time to detect the people, and this required from them

to shake their bodies a bit to allow the Kinect from detecting them. While the

deviation means that the robot didn’t move accurately to the planned path, because

of the limitation in the wheels and the motors of the robot.

In summary, the function was able accurately to select the whole available regions,

calculate the linear and angular velocities of the robot based on the angular width of

the selected region, and pass the people without causing collision with them.

 (a) (b) (c)

 (d) (e) (f)

Figure 6.19: The experiments for the “Move Right” function (a, d) the master person is

selected, (b, e) the master orders the robot to move to the right, (c) the robot selects the

terminal region to the right of the last person, (f) the robot selects the middle region

between the master and the other person

Chapter 6 Collision Avoidance System for Indoor Mobile Robots Basing on Human-Robot Interaction

93

6.7.1.4 Move Left

Similarly to the tests over the “move right” function, the same experimental

procedures also followed to test the “move left” function. The 30 experiments were

divided into three groups. In each group the robot is tested under different maximum

linear and angular collision-avoidance velocities. Fig 6.18 shows the robot’s

movement between two people, and to the left of the terminal human. Furthermore,

the calculated candidate regions, region width, and the velocities could be found in

the tables “A6.F, A6.G, A6.H” in appendix 6, and the total experiments were

summarized in the table 6.4.

It could be concluded that out of 30 experiments, there were three times the human

required to shake a bit to allow the Kinect from recognizing the skeletons.

Furthermore, it is shown that at the higher velocity (𝑣𝑚𝑎𝑥 = 0.3 𝑚/𝑠) the robot

deviates for around 3° to 4° from its planned path. Still, in the whole experiments

the collision avoidance system was able to calculate the whole parameters correctly,

and avoid the people which are located in the path.

(a) (b) (c)

(d) (e) (f)

Figure 6.20: The experiments for the “Move left” function (a, d) the master person is

selected, (b, e) the master orders the robot to move to the left, (c) the robot selects the

terminal region to the left of the last person, (f) the robot selects the middle region

between the master and the other person

Chapter 6 Collision Avoidance System for Indoor Mobile Robots Basing on Human-Robot Interaction

94

6.7.2 Autonomous Collision Avoidance (ACA)

In autonomous collision avoidance, the robot will implement the collision avoidance

path autonomously without interaction with the human. The robot will search for the

whole available regions, and then it will select the region that is closest to its

original path, by comparing the angle of the next waypoint and the heading angle of

each candidate region. Fig 6.21 shows two experiments for the autonomous collision

avoidance. The robot in (a, b, c) could detect two free regions, and it will select the

(a) (b) (c)

 (d) (e) (f)

Figure 6.21: The experiments for “autonomous collision avoidance”, (a) The robot

found two free regions, (d) the robot could find three free regions, (b, d) the robot

selects the region that is closest to the next way-point, (c, f) the robot calculates the

collision-free path and avoid the people

Table 6.4: The experimental summary for the “Move Left” function

Table Number of

Experiments

V(m/s) W(rad/s) Note

A6.F (10) 5 left, 5 middle 0.15 0.3 1 missed skeleton

A6.G (10) 5 left, 5 middle 0.2 0.4 1 missed skeleton

A6.H (10) 5 left, 5 middle 0.3 0.25 2 deviations

1 missed skeleton

Chapter 6 Collision Avoidance System for Indoor Mobile Robots Basing on Human-Robot Interaction

95

region to the right since it is nearest to its original path. In Fig 6.21 (d, e, f) the robot

detected three regions, and it selected the region that is to the left since it is nearest

to the next waypoint.

Tables “A6.I, A6.J, A6.K” in appendix 6 show the experimental results of the ACA.

While table 6.5 summarizes the total experiments.

In the tables, the “way-point” blank represents the angle that the robot has to move

to reach the next way-point on its original path to the goal location. It could be seen

then that when there is more than one candidate region, the robot will select the

region that is nearest to the angle of next way-point. The robot will then use the

width of the selected region 𝜃𝑟 to calculate the robot’s velocities. Finally, the robot

calculates the heading angle and the travelled distance to pass the people.

From table 6.5, it could be found that the people required to shake a bit to be

recognized from the Kinect in three experiments. Furthermore, the robot deviated

for around 4°in two experiments at the higher velocity of the robot.

The experiments show that the autonomous collision avoidance system works with a

success rate 100%, and it can correctly select the region that is closest to the next

waypoint, and provide the collision-free paths to the robot.

 6.7.3 Test of the Collision Avoidance for different Situations

To check the performance of the collision avoidance system, two additional

experiments have been implemented. In each experiment, the robot is moved in a

certain path where humans are existed. Furthermore, the collision avoidance

parameters are recorded to check the system.

Table 6.5: The experimental summary for the Autonomous Collision Avoidance

Table Number of

Experiments

V(m/s) W(rad/s) Note

A6.I 10 0.15 0.2 1 missed skeleton

A6.J 10 0.2 0.5 1 missed skeleton

A6.K 10 0.3 0.25 2 Deviations

1 missed skeleton

Chapter 6 Collision Avoidance System for Indoor Mobile Robots Basing on Human-Robot Interaction

96

In the first experiment, the robot will move from the charging station, to a laboratory

to pick a sample. In Fig 6.22, the blue line represents the original path of the robot

that it had to follow when no people are existed in the path, while the red line

represents the adjusted path of the robot after avoiding the people. The maximum

velocities are set to 𝑣𝑚𝑎𝑥 = 0.25 𝑚/𝑠 , 𝜔𝑚𝑎𝑥 = 0.4 𝑟𝑎𝑑/𝑠. The total time the

robot needed to cross the path without generating collision avoidance paths is 207s.

Fig 6.22 shows the experiment in the three locations.

In location 1, the robot met two humans, and no one interacted with it. Thus, the

robot implemented the collision avoidance autonomously. The robot selected the

right region since it is nearest to its original path.

In location 2, the robot met humans in the corridor, since there is no free space for

implementing the collision avoidance, the master raised his two arms horizontally to

order the robot to move forward, till it reached to the location 3.

In location 3, the master person asked the robot to move to the right since there is

enough space for both the robot and the human to avoid each other. The robot will

then execute the cooperative collision avoidance by searching for the region that is

located to the right of the master person. Fig 6.23 shows the motion of the robot in

the three locations. While Table 6.6 summarizes the three experiments. The total

time needed to implement the experiment is 264s.

Figure 6.22: The followed path in the first experiment

Chapter 6 Collision Avoidance System for Indoor Mobile Robots Basing on Human-Robot Interaction

97

Table 6.6: The experimental results for the first path

 Location 1 Location 2 Location 3

CA Function ACA Move Forward CA Move Right

Region 1 (deg) -31.4 -------- 9.9

Region 2 (deg) 19.5 -------- 34.5

Waypoint (deg) 8.4 -------- --------

θ (deg) 19.5 0 9.9

d(m) 3.28 1.2 3.14

𝜃𝑟(deg) 27.9 -------- 31.1

ᴠ (m/s) 0.195 0.25 0.202

ω (rad/s) 0.31 0 0.323

Time(ms) 17863 4800 16060

(a) (b) (c)

(d) (e) (f)

 (g) (h) (i)

Figure 6.23: The motion of the robot for three locations. (a, b, c) no people interacted

with the robot, so it implemented the collision avoidance autonomously. (d, e, f) the

robot met people in narrow path, so the master ordered the robot to move forward till

the end of the corridor. (g, h, i) the master asked the robot to move to the right

Chapter 6 Collision Avoidance System for Indoor Mobile Robots Basing on Human-Robot Interaction

98

In the second experiment, the robot is asked to move in the path which is shown in

Fig 6.24 as a blue dashed line. The required time to pass the path without collision

avoidance paths is 94 seconds. The maximum linear and angular velocities are set

to 𝑣𝑚𝑎𝑥 = 0.2 𝑚/𝑠 , 𝜔𝑚𝑎𝑥 = 0.3 𝑟𝑎𝑑/𝑠.

In n the first location, the human is interacted with the robot and he asked him to

move to the left. In location 2, the robot is moved in narrow path, so the human

interacted with the robot and asked it to move backward. In the third location, the

robot faced two people in the path, and it implemented autonomous collision

avoidance since none of the people interacted with it. Table 6.7 shows the

Figure 6.24: The followed path in the second experiment

Table 6.7: The experimental results for the second path

 Location 1 Location 2 Location 3

CA Function CCA

Move Left

Move Backward ACA

Region 1 (deg) -22.3 ------ -31.2

Region 2 (deg) 11.1 ------ 14.6

Waypoint (deg) ------ ------ -25.0

θ (deg) 11.1 ------ -31.2

d(m) 2.81 1.2 2.90

𝜃𝑟(deg) 36.0 ------ 17.9

ᴠ (m/s) 0.168 0.2 0.135

ω (rad/s) 0.252 0 0.202

Time(ms) 17438 6000 24092

Chapter 6 Collision Avoidance System for Indoor Mobile Robots Basing on Human-Robot Interaction

99

experimental results of the complete experiment, while Fig 6.25 shows the motion

of the robot in the real environment. The robot successfully implemented the three

motions, and it required 156s to reach the goal.

 (a) (b) (c)

 (d) (e) (f)

(g) (h) (i)

Figure 6.25: The motion of the robot in the three locations for the second experiment.

(a, b, c) the master asked the robot to move to left, and the robot select the middle

region, (d, e, f) the master ordered the robot to move backward since there is no wide

path, (g, h, i) no people interacted with the robot, so it implemented autonomous

collision avoidance

Chapter 6 Collision Avoidance System for Indoor Mobile Robots Basing on Human-Robot Interaction

100

6.8 Discussion

Out of the previous experiments, it could be concluded the following:

- The collision avoidance system together with the human-robot interaction show

robust performance; the collision avoidance was able to detect the whole

available regions, and select the regions based on the collision avoidance function

“autonomous or cooperative”.

- Furthermore, the collision avoidance system implemented the whole calculations

accurately (path distances and angles, robot’s velocities), and this provided a

smooth movement for the robot between the humans who are located in narrow

distances.

- In comparison with the other collision avoidance systems, the proposed system

has the advantage of allowing the people from controlling it in some situations

such as the existence of several people in the path, or when the user knows that

the robot is moving toward a cluttered path, so the master can ask the robot to

move to a certain direction where there is no obstacles. Furthermore, the system

allows the operator from interrupting the motion of the robot, stop it and control

it in emergency situations.

- The previous collision avoidance systems didn’t solve the bottleneck problem, in

which the robot and the people meet in narrow paths so neither of them is able to

avoid the other. The implemented system solved this problem, by allowing the

master human from guiding the robot to another location which is wide enough to

avoid each other, and complete their path safely after the interaction.

- On the other hand, it is noticed that due to the vibration of the robot, the Kinect

sensor loses some skeleton frames, and this required from the master to raise his

arm again to inform the robot to interact with him. Furthermore, it is shown in

some cases, when the robot stops, it causes the Kinect to lose the skeleton of

people due to the vibration, and it required from them to shake to let the Kinect

from detecting them again.

Chapter 7 Conclusion and Outlook

101

7.1 Conclusion

This dissertation aimed to improve the navigation and the operations of the mobile

robots which are navigating in indoor environments alongside to humans. This

includes implementing a robust localisation system to enable the robot from defining

its location correctly in the work environment; building a human-robot interaction

system so the robot can define the human, interact with him via analysing the arms’

movements; besides to implement a robust collision avoidance system based on the

realized human-robot interaction system to ensure that both the human and the robot

will be able to avoid the collisions.

- An improved localization system is implemented for the indoor mobile robots.

The StarGazer sensor is used for this task. This sensor has the advantages of

using passive landmarks, and the possibility of modifying and extending the map

easily to meet the adjustments in the work environment. Still, this sensor suffers

from the noises resulted from strong sunlight and fluorescent light. To overcome

these noisy measurements, an improved Kalman filter model is applied over the

measurements of the sensor. When a new measurement is obtained from the

sensor, the filter will use this measurement in the update equation. The filter will

then compare the results of the update equation and the estimate equation; if the

difference is outer than a certain domain, the filter will consider the result of the

estimate equation as the new position of the robot, else it will use the result of the

update equation as the new position. The experimental results show that the filter

is able to detect the false measurements, and provide estimation for the location

of the robot under the false measurements.

- A human-robot interaction system is implemented for the H20 robot to be able to

detect the human in the work environment and interact with them. Kinect V2

sensor is a 3D sensor which provides the robot with skeleton frames for up to six

humans to the robot. Each skeleton provides the 3D dimensions for 25 joints of

the user. Seven gestures are used in this work “master select, move right, move

Chapter 7

Conclusion and Outlook

Chapter 7 Conclusion and Outlook

102

left, move forward, move backward, resume, and stop”. To analyse and define the

gestures, the dimensions of five joints are taken (right and left wrists and elbows,

and the neck joint). To classify the gestures, two methods are used and compared:

Support Vector Machine and Back Propagation Neural Network. K-fold cross

validation training algorithm is used to train and test the models. The

experimental results showed a better performance for the BPNN model than the

L-SVM model, with the ability to classify 100% of the test data successfully.

Furthermore, the real experiments over the human-robot interaction system

shows that the system is able to recognize the whole gestures and classify them

with a success rate 100%. The implemented human-robot interaction system is

integrated with the collision avoidance system.

- A new collision avoidance system is developed for the H20 robot. This system

has two levels: cooperative collision avoidance based on human robot interaction,

and autonomous collision avoidance. Unlike the majority of traditional collision

avoidance systems, the proposed system gives mutual responsibilities for both the

human and the robot to avoid each other. In this system, the robot delegates the

human to control the collision avoidance procedures by supervising the motion of

the robot via interaction. The robot will wait for three seconds allowing the

human to interact with it. If a person interacted with the robot, then it will move

forward/backward when the user raises the corresponding gestures, or it will

execute the collision avoidance path to the right/left of the master person when he

points to the right/left using his arms. If no human interacted with the robot, it

will then select the free region that is closest to the original direction that the

robot was following before the humans appeared in the path. The key advantage

of this system is that it gives the human the opportunity to master the motion of

the robot when needed, so the robot moves based on the orders provided by the

master. The experiments show the ability of the robot from finding the collision-

free paths in both situation (autonomous and cooperative), besides to overcome

the bottleneck problem by using the orders (move forward, move backward).

Chapter 7 Conclusion and Outlook

103

7.2 Outlook

- The proposed filtration algorithm for the StarGazer sensor can cope the problem

of false measurements. In some situations, the measurements of the sensor are

disconnected when the sensor changes the landmarks during its movement to the

goal location. To overcome such problem, it is possible to implement a sensor

fusion between the StarGazer and another sensor such as the encoder, so the filter

can provide better estimation for the robot’s location.

- Furthermore, it is shown that the Kinect sensor loses some skeleton frames

because of the sensor’s vibration resulted from the motion of the robot. To solve

this problem, the recursive filters such as Kalman filter could be used to

compensate the lost frames, and provide estimation for the position of humans to

the robot. Another solution is to use the colour camera of the Kinect sensor to

detect the human, and implement gesture recognition system based on the data

provided by the camera.

- The current collision avoidance system is able to detect only the human. Thus, it is

required to implement further work to detect the static obstacles. Fortunately, the

3D vision feature of the Kinect allows from using the same sensor in detecting

both the static and human obstacles. After detecting the static obstacles, all what

is needed is to provide the positions and widths of these obstacles to the

implemented collision avoidance system, so it can take into consideration the

distribution of these obstacles when it searches for the free regions.

References

104

REFERENCES

[1] V. Graefe and R. Bischoff, “Past, present and future of intelligent robots,” in 2003

IEEE International Symposium on Computational Intelligence in Robotics and

Automation, 2003. Proceedings, 2003, vol. 2, pp. 801–810 vol.2.

[2] M. T. Mason, “Creation Myths: The Beginnings of Robotics Research,” IEEE Robot.

Autom. Mag., vol. 19, no. 2, pp. 72–77, Jun. 2012.

[3] “http://www.ifr.org/service-robots/statistics/,” International Federation of Robotics.

[4] D. S. Lütjohann, N. Jung, and S. Bräse, “Open source life science automation: Design

of experiments and data acquisition via ‘dial-a-device,’” Chemom. Intell. Lab. Syst.,

vol. 144, pp. 100–107, May 2015.

[5] S. Chowdhury, A. Thakur, P. Svec, C. Wang, W. Losert, and S. K. Gupta, “Automated

Manipulation of Biological Cells Using Gripper Formations Controlled By Optical

Tweezers,” IEEE Trans. Autom. Sci. Eng., vol. 11, no. 2, pp. 338–347, Apr. 2014.

[6] A. Croxatto, G. Prod’hom, F. Faverjon, Y. Rochais, and G. Greub, “Laboratory

automation in clinical bacteriology: what system to choose?,” Clin. Microbiol. Infect.,

vol. 22, no. 3, pp. 217–235, Mar. 2016.

[7] H. O. Unver, “System Architectures Enabling Reconfigurable Laboratory-Automation

Systems,” IEEE Trans. Syst. Man Cybern. Part C Appl. Rev., vol. 41, no. 6, pp. 909–

922, Nov. 2011.

[8] X. Chu, H. Fleischer, N. Stoll, M. Klos, and K. Thurow, “Application of dual-arm robot

in biomedical analysis: Sample preparation and transport,” in Instrumentation and

Measurement Technology Conference (I2MTC), 2015 IEEE International, 2015, pp.

500–504.

[9] A. Allwardt, S. Holzmüller-Laue, C. Wendler, and N. Stoll, “A high parallel reaction

system for efficient catalyst research,” Catal. Today, vol. 137, no. 1, pp. 11–16, Aug.

2008.

[10] Y. Li, S. Junginger, N. Stoll, and K. Thurow, “4D simulation and Control System for

Life Science Automation,” in 2012 IEEE International Conference on Robotics and

Biomimetics (ROBIO), 2012, pp. 802–807.

[11] X. Chu, H. Fleischer, T. Roddelkopf, N. Stoll, M. Klos, and K. Thurow, “A LC-MS

integration approach in life science automation: Hardware integration and software

integration,” in 2015 IEEE International Conference on Automation Science and

Engineering (CASE), 2015, pp. 979–984.

[12] A. A. Abdulla, H. Liu, N. Stoll, and K. Thurow, “Multi-floor navigation method for

mobile robot transportation based on StarGazer sensors in life science automation,” in

Instrumentation and Measurement Technology Conference (I2MTC), 2015 IEEE

International, 2015, pp. 428–433.

[13] M. M. Ali, H. Liu, R. Stoll, and K. Thurow, “Arm grasping for mobile robot

transportation using Kinect sensor and kinematic analysis,” in Instrumentation and

Measurement Technology Conference (I2MTC), 2015 IEEE International, 2015, pp.

516–521.

[14] H. Liu, N. Stoll, S. Junginger, and K. Thurow, “An application of charging

management for mobile robot transportation in laboratory environments,” in

Instrumentation and Measurement Technology Conference (I2MTC), 2013 IEEE

International, 2013, pp. 435–439.

[15] H. Liu, N. Stoll, S. Junginger, and K. Thurow, “A floyd-genetic algorithm based path

planning system for mobile robots in laboratory automation,” in 2012 IEEE

International Conference on Robotics and Biomimetics (ROBIO), 2012, pp. 1550–1555.

References

105

[16] I. Nishitani, T. Matsumura, M. Ozawa, A. Yorozu, and M. Takahashi, “Human-

centered –– space path planning for mobile robot in dynamic environments,” Robot.

Auton. Syst., vol. 66, pp. 18–26, Apr. 2015.

[17] J. Palacin, J. A. Salse, I. Valganon, and X. Clua, “Building a mobile robot for a floor-

cleaning operation in domestic environments,” IEEE Trans. Instrum. Meas., vol. 53, no.

5, pp. 1418–1424, Oct. 2004.

[18] Z. M. Bojan Babić, “Towards implementation and autonomous navigation of an

intelligent Automated Guided Vehicle in Material Handling Systems,” Iran. J. Sci.

Technol. Trans. B Eng., vol. 36, no. M1, pp. 25–40, 2012.

[19] F. Penizzotto, E. Slawinski, and V. Mut, “Laser Radar Based Autonomous Mobile

Robot Guidance System for Olive Groves Navigation,” Lat. Am. Trans. IEEE Rev.

IEEE Am. Lat., vol. 13, no. 5, pp. 1303–1312, May 2015.

[20] A. Cherubini, F. Spindler, and F. Chaumette, “Autonomous Visual Navigation and

Laser-Based Moving Obstacle Avoidance,” IEEE Trans. Intell. Transp. Syst., vol. 15,

no. 5, pp. 2101–2110, Oct. 2014.

[21] C.-C. Hsu, C.-Y. Lai, C. Kanamori, H. Aoyama, and C.-C. Wong, “Localization of

mobile robots based on omni-directional ultrasonic sensing,” in 2011 Proceedings of

SICE Annual Conference (SICE), 2011, pp. 1972–1975.

[22] S. J. Kim and B. K. Kim, “Dynamic Ultrasonic Hybrid Localization System for Indoor

Mobile Robots,” IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4562–4573, Oct. 2013.

[23] L. D’Alfonso, W. Lucia, P. Muraca, and P. Pugliese, “Filters for mobile robots: EKF,

UKF and sensor switching - experimental results,” in 2011 9th IEEE International

Conference on Control and Automation (ICCA), 2011, pp. 925–930.

[24] J. Park, H. Lee, Y. Hwang, S. Hwang, and J. Lee, “Beacon scheduling for efficient

localization of a mobile robot,” in 2011 IEEE International Symposium on Industrial

Electronics (ISIE), 2011, pp. 870–874.

[25] H. Yucel, T. Ozkir, R. Edizkan, and A. Yazici, “Development of indoor positioning

system with ultrasonic and infrared signals,” in 2012 International Symposium on

Innovations in Intelligent Systems and Applications (INISTA), 2012, pp. 1–4.

[26] A. Yazici, U. Yayan, and H. Yucel, “An ultrasonic based indoor positioning system,” in

2011 International Symposium on Innovations in Intelligent Systems and Applications

(INISTA), 2011, pp. 585–589.

[27] Y. Dobrev, S. Flores, and M. Vossiek, “Multi-modal sensor fusion for indoor mobile

robot pose estimation,” in 2016 IEEE/ION Position, Location and Navigation

Symposium (PLANS), 2016, pp. 553–556.

[28] R. Nath, “A TOSSIM based implementation and analysis of collection tree protocol in

wireless sensor networks,” in 2013 International Conference on Communications and

Signal Processing (ICCSP), 2013, pp. 484–488.

[29] C.-H. Lin and K.-T. Song, “Probability-Based Location Aware Design and On-Demand

Robotic Intrusion Detection System,” IEEE Trans. Syst. Man Cybern. Syst., vol. 44, no.

6, pp. 705–715, Jun. 2014.

[30] X. Li, R. Falcon, A. Nayak, and I. Stojmenovic, “Servicing wireless sensor networks by

mobile robots,” IEEE Commun. Mag., vol. 50, no. 7, pp. 147–154, Jul. 2012.

[31] T. Alhmiedat, F. Omar, and A. A. Taleb, “A hybrid tracking system for ZigBee WSNs,”

in 2014 6th International Conference on Computer Science and Information

Technology (CSIT), 2014, pp. 71–74.

[32] L. Yu, Q. Fei, and Q. Geng, “Combining Zigbee and inertial sensors for quadrotor UAV

indoor localization,” in 2013 10th IEEE International Conference on Control and

Automation (ICCA), 2013, pp. 1912–1916.

References

106

[33] B. Song, G. Tian, G. Li, F. Zhou, and D. Liu, “ZigBee based wireless sensor networks

for service robot intelligent space,” in 2011 International Conference on Information

Science and Technology (ICIST), 2011, pp. 834–838.

[34] M. L. Rodrigues, L. F. M. Vieira, and M. F. M. Campos, “Mobile Robot Localization in

Indoor Environments Using Multiple Wireless Technologies,” in Robotics Symposium

and Latin American Robotics Symposium (SBR-LARS), 2012 Brazilian, 2012, pp. 79–

84.

[35] M. Barczyk, S. Bonnabel, J.-E. Deschaud, and F. Goulette, “Invariant EKF Design for

Scan Matching-Aided Localization,” IEEE Trans. Control Syst. Technol., vol. 23, no. 6,

pp. 2440–2448, Nov. 2015.

[36] S. Kim and J. Kim, “Occupancy Mapping and Surface Reconstruction Using Local

Gaussian Processes With Kinect Sensors,” IEEE Trans. Cybern., vol. 43, no. 5, pp.

1335–1346, Oct. 2013.

[37] L. Maohai, S. Lining, H. Qingcheng, C. Zesu, and P. Songhao, “Robust

Omnidirectional Vision based Mobile Robot Hierarchical Localization and

Autonomous Navigation,” Inf. Technol. J., vol. 10, no. 1, pp. 29–39, Jan. 2011.

[38] L. Fernández, L. Payá, O. Reinoso, and L. M. Jimenez, “Appearance-based approach to

hybrid metric-topological simultaneous localisation and mapping,” IET Intell. Transp.

Syst., vol. 8, no. 8, pp. 688–699, 2014.

[39] S. R. Bista, P. R. Giordano, and F. Chaumette, “Appearance-Based Indoor Navigation

by IBVS Using Line Segments,” IEEE Robot. Autom. Lett., vol. 1, no. 1, pp. 423–430,

Jan. 2016.

[40] B. Bacca, X. Cufí, and J. Salví, “Vertical edge-based mapping using range-augmented

omnidirectional vision sensor,” IET Comput. Vis., vol. 7, no. 2, pp. 135–143, Apr. 2013.

[41] E.-J. Jung, J. H. Lee, B.-J. Yi, J. Park, S. Yuta, and S.-T. Noh, “Development of a

Laser-Range-Finder-Based Human Tracking and Control Algorithm for a Marathoner

Service Robot,” IEEEASME Trans. Mechatron., vol. Early Access Online, 2014.

[42] Y. Liu and Y. Sun, “Mobile robot instant indoor map building and localization using

2D laser scanning data,” in 2012 International Conference on System Science and

Engineering (ICSSE), 2012, pp. 339–344.

[43] F. Bonaccorso, G. Muscato, and S. Baglio, “Laser range data scan-matching algorithm

for mobile robot indoor self-localization,” in World Automation Congress (WAC), 2012,

2012, pp. 1–5.

[44] Y. Nohara, T. Hasegawa, and K. Murakami, “Floor sensing system using laser range

finder and mirror for localizing daily life commodities,” in 2010 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), 2010, pp. 1030–

1035.

[45] “http://eng.hagisonic.kr/cnt/prod/prod010102?uid=%2010&cateID=2.”

[46] K.-W. Her, D.-H. Kim, and J.-E. Ha, “Localization of mobile robot using laser range

finder and IR landmark,” in 2012 12th International Conference on Control,

Automation and Systems (ICCAS), 2012, pp. 459–461.

[47] S. Zhiwei, W. Yiyan, Z. Changjiu, and Z. Yi, “A new sensor fusion framework to deal

with false detections for low-cost service robot localization,” in 2013 IEEE

International Conference on Robotics and Biomimetics (ROBIO), 2013, pp. 197–202.

[48] D.-H. Heo, A.-R. Oh, and T.-H. Park, “A localization system of mobile robots using

artificial landmarks,” in 2011 IEEE Conference on Automation Science and

Engineering (CASE), 2011, pp. 139–144.

[49] M. L. Anjum et al., “Sensor data fusion using Unscented Kalman Filter for accurate

localization of mobile robots,” in 2010 International Conference on Control

Automation and Systems (ICCAS), 2010, pp. 947–952.

References

107

[50] E. Ivanjko and I. Petrovic, “Extended Kalman filter based mobile robot pose tracking

using occupancy grid maps,” in Electrotechnical Conference, 2004. MELECON 2004.

Proceedings of the 12th IEEE Mediterranean, 2004, vol. 1, pp. 311–314 Vol.1.

[51] S. Hong, T. Smith, F. Borrelli, and J. K. Hedrick, “Vehicle inertial parameter

identification using Extended and unscented Kalman Filters,” in 2013 16th

International IEEE Conference on Intelligent Transportation Systems - (ITSC), 2013,

pp. 1436–1441.

[52] J. J. LaViola, “A comparison of unscented and extended Kalman filtering for estimating

quaternion motion,” in American Control Conference, 2003. Proceedings of the 2003,

2003, vol. 3, pp. 2435–2440 vol.3.

[53] G. Cotugno, L. D’Alfonso, W. Lucia, P. Muraca, and P. Pugliese, “Extended and

Unscented Kalman Filters for mobile robot localization and environment

reconstruction,” in 2013 21st Mediterranean Conference on Control Automation

(MED), 2013, pp. 19–26.

[54] M. T. Nasri and W. Kinsner, “Extended and unscented Kalman filters for the

identification of uncertainties in a process,” in 2013 12th IEEE International

Conference on Cognitive Informatics Cognitive Computing (ICCI*CC), 2013, pp. 182–

188.

[55] Y. Xu, S. L. Lau, R. Kusber, and K. David, “An experimental investigation of indoor

localization by unsupervised Wi-Fi signal clustering,” in Future Network Mobile

Summit (FutureNetw), 2012, 2012, pp. 1–10.

[56] M. D. František Duchoň, “Some Applications of Laser Rangefinder in Mobile

Robotics,” vol. 14, no. 2, 2012.

[57] S. Ikemoto, H. B. Amor, T. Minato, B. Jung, and H. Ishiguro, “Physical Human-Robot

Interaction: Mutual Learning and Adaptation,” IEEE Robot. Autom. Mag., vol. 19, no.

4, pp. 24–35, Dec. 2012.

[58] C. A. Cifuentes, A. Frizera, R. Carelli, and T. Bastos, “Human–robot interaction based

on wearable IMU sensor and laser range finder,” Robot. Auton. Syst., vol. 62, no. 10,

pp. 1425–1439, Oct. 2014.

[59] S.-H. Tseng, Y. Chao, C. Lin, and L.-C. Fu, “Service robots: System design for tracking

people through data fusion and initiating interaction with the human group by inferring

social situations,” Robot. Auton. Syst., vol. 83, pp. 188–202, Sep. 2016.

[60] E. Hortal et al., “SVM-based Brain–Machine Interface for controlling a robot arm

through four mental tasks,” Neurocomputing, vol. 151, Part 1, pp. 116–121, Mar. 2015.

[61] C. C. Tsai, Y. Z. Chen, and C. W. Liao, “Interactive emotion recognition using Support

Vector Machine for human-robot interaction,” in IEEE International Conference on

Systems, Man and Cybernetics, 2009. SMC 2009, 2009, pp. 407–412.

[62] I.-J. Ding and J.-Y. Shi, “Kinect microphone array-based speech and speaker

recognition for the exhibition control of humanoid robots,” Comput. Electr. Eng.

[63] G. Canal, S. Escalera, and C. Angulo, “A Real-time Human-Robot Interaction system

based on gestures for assistive scenarios,” Comput. Vis. Image Underst.

[64] N. Yang et al., “A study of the human-robot synchronous control system based on

skeletal tracking technology,” in 2013 IEEE International Conference on Robotics and

Biomimetics (ROBIO), 2013, pp. 2191–2196.

[65] Y. Wang, G. Song, G. Qiao, Y. Zhang, J. Zhang, and W. Wang, “Wheeled robot control

based on gesture recognition using the Kinect sensor,” in 2013 IEEE International

Conference on Robotics and Biomimetics (ROBIO), 2013, pp. 378–383.

[66] S. Boubou and E. Suzuki, “Classifying actions based on histogram of oriented velocity

vectors,” J. Intell. Inf. Syst., vol. 44, no. 1, pp. 49–65, Jul. 2014.

References

108

[67] O. Patsadu, C. Nukoolkit, and B. Watanapa, “Human gesture recognition using Kinect

camera,” in 2012 International Joint Conference on Computer Science and Software

Engineering (JCSSE), 2012, pp. 28–32.

[68] D. Xu, Y.-L. Chen, C. Lin, X. Kong, and X. Wu, “Real-time dynamic gesture

recognition system based on depth perception for robot navigation,” in 2012 IEEE

International Conference on Robotics and Biomimetics (ROBIO), 2012, pp. 689–694.

[69] R. K. Megalingam, N. Saboo, N. Ajithkumar, S. Unny, and D. Menon, “Kinect based

gesture controlled Robotic arm: A research work at HuT Labs,” in Innovation and

Technology in Education (MITE), 2013 IEEE International Conference in MOOC,

2013, pp. 294–299.

[70] V. H. Andaluz et al., “Bilateral Virtual Control Human-Machine with Kinect Sensor,”

in Andean Region International Conference (ANDESCON), 2012 VI, 2012, pp. 101–

104.

[71] P. M. Yanik et al., “Use of kinect depth data and Growing Neural Gas for gesture based

robot control,” in 2012 6th International Conference on Pervasive Computing

Technologies for Healthcare (PervasiveHealth), 2012, pp. 283–290.

[72] F. Mohammad, K. R. Sudini, V. Puligilla, and P. R. Kapula, “Tele-Operation of Robot

Using Gestures,” in Modelling Symposium (AMS), 2013 7th Asia, 2013, pp. 67–71.

[73] W. Song, X. Guo, F. Jiang, S. Yang, G. Jiang, and Y. Shi, “Teleoperation Humanoid

Robot Control System Based on Kinect Sensor,” in 2012 4th International Conference

on Intelligent Human-Machine Systems and Cybernetics (IHMSC), 2012, vol. 2, pp.

264–267.

[74] G. Du and P. Zhang, “Markerless human–robot interface for dual robot manipulators

using Kinect sensor,” Robot. Comput.-Integr. Manuf., vol. 30, no. 2, pp. 150–159, Apr.

2014.

[75] G. Chen and T. T. Pham, Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control

Systems, 1 edition. Boca Raton, FL: CRC Press, 2000.

[76] Y.-C. Lee, Z.-L. Lee, H.-H. Chiang, and T.-T. Lee, “Fuzzy-rule-based behavior control

for collaborative human/robot navigation in unknown environments,” in 2011

International Conference on Advanced Mechatronic Systems (ICAMechS), 2011, pp.

546–551.

[77] G. Liu, M. Yao, L. Zhang, and C. Zhang, “Fuzzy Controller for Obstacle Avoidance in

Electric Wheelchair with Ultrasonic Sensors,” in 2011 International Symposium on

Computer Science and Society (ISCCS), 2011, pp. 71–74.

[78] S. Cui, X. Su, L. Zhao, Z. Bing, and G. Yang, “Study on ultrasonic obstacle avoidance

of mobile robot based on fuzzy controller,” in 2010 International Conference on

Computer Application and System Modeling (ICCASM), 2010, vol. 4, pp. V4–233–V4–

237.

[79] H. Saito, R. Amano, N. Moriyama, K. Kobayashi, and K. Watanabe, “Emergency

obstacle avoidance module for mobile robots using a laser range finder,” in 2013

Proceedings of SICE Annual Conference (SICE), 2013, pp. 348–353.

[80] V. Lumelsky and A. Stepanov, “Dynamic path planning for a mobile automaton with

limited information on the environment,” IEEE Trans. Autom. Control, vol. 31, no. 11,

pp. 1058–1063, Nov. 1986.

[81] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to collision

avoidance,” IEEE Robot. Autom. Mag., vol. 4, no. 1, pp. 23–33, Mar. 1997.

[82] P. Ogren and N. E. Leonard, “A convergent dynamic window approach to obstacle

avoidance,” IEEE Trans. Robot., vol. 21, no. 2, pp. 188–195, Apr. 2005.

References

109

[83] D. Claes, D. Hennes, K. Tuyls, and W. Meeussen, “Collision avoidance under bounded

localization uncertainty,” in 2012 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), 2012, pp. 1192–1198.

[84] D. Hennes, D. Claes, K. Tuyls, and W. Meeussen, Multi-robot collision avoidance with

localization uncertainty. .

[85] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,” in 1985

IEEE International Conference on Robotics and Automation. Proceedings, 1985, vol. 2,

pp. 500–505.

[86] J. Borenstein and Y. Koren, “The vector field histogram-fast obstacle avoidance for

mobile robots,” IEEE Trans. Robot. Autom., vol. 7, no. 3, pp. 278–288, Jun. 1991.

[87] J. Minguez and L. Montano, “Nearness diagram (ND) navigation: collision avoidance

in troublesome scenarios,” IEEE Trans. Robot. Autom., vol. 20, no. 1, pp. 45–59, Feb.

2004.

[88] V. Sezer and M. Gokasan, “A novel obstacle avoidance algorithm: ‘Follow the Gap

Method,’” Robot. Auton. Syst., vol. 60, no. 9, pp. 1123–1134, Sep. 2012.

[89] I. Ulrich and J. Borenstein, “VFH+: reliable obstacle avoidance for fast mobile robots,”

in 1998 IEEE International Conference on Robotics and Automation, 1998.

Proceedings, 1998, vol. 2, pp. 1572–1577 vol.2.

[90] I. Ulrich and J. Borenstein, “VFH*: local obstacle avoidance with look-ahead

verification,” in IEEE International Conference on Robotics and Automation, 2000.

Proceedings. ICRA ’00, 2000, vol. 3, pp. 2505–2511 vol.3.

[91] J. Minguez, J. Osuna, and L. Montano, “A ‘divide and conquer’ strategy based on

situations to achieve reactive collision avoidance in troublesome scenarios,” in 2004

IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA

’04, 2004, vol. 4, pp. 3855–3862 Vol.4.

[92] J. W. Durham and F. Bullo, “Smooth Nearness-Diagram Navigation,” in IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2008. IROS 2008, 2008,

pp. 690–695.

[93] M. Mujahad, D. Fischer, B. Mertsching, and H. Jaddu, “Closest Gap based (CG)

reactive obstacle avoidance Navigation for highly cluttered environments,” in 2010

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2010,

pp. 1805–1812.

[94] Y. Kim and S. Kwon, “A heuristic obstacle avoidance algorithm using vanishing point

and obstacle angle,” Intell. Serv. Robot., pp. 1–9, Apr. 2015.

[95] Y. Hagiwara, T. Inamura, and Y. Choi, “Effectiveness evaluation of view-based

navigation for obstacle avoidance,” in 2013 13th International Conference on Control,

Automation and Systems (ICCAS), 2013, pp. 1029–1033.

[96] J. Choi, D. Kim, H. Yoo, and K. Sohn, “Rear obstacle detection system based on depth

from kinect,” in 2012 15th International IEEE Conference on Intelligent

Transportation Systems (ITSC), 2012, pp. 98–101.

[97] N. Abdelkrim, K. Issam, K. Lyes, and C. Khaoula, “Fuzzy logic controllers for Mobile

robot navigation in unknown environment using Kinect sensor,” in 2014 International

Conference on Systems, Signals and Image Processing (IWSSIP), 2014, pp. 75–78.

[98] D. S. O. Correa, D. F. Sciotti, M. G. Prado, D. O. Sales, D. F. Wolf, and F. S. Osorio,

“Mobile Robots Navigation in Indoor Environments Using Kinect Sensor,” in 2012

Second Brazilian Conference on Critical Embedded Systems (CBSEC), 2012, pp. 36–

41.

[99] H. Yue, W. Chen, X. Wu, and J. Zhang, “Kinect based real time obstacle detection for

legged robots in complex environments,” in 2013 8th IEEE Conference on Industrial

Electronics and Applications (ICIEA), 2013, pp. 205–210.

References

110

[100] M. Tanaka, “Robust parameter estimation of road condition by Kinect sensor,” in

2012 Proceedings of SICE Annual Conference (SICE), 2012, pp. 197–202.

[101] A. Benzerrouk, L. Adouane, and P. Martinet, “Obstacle avoidance controller

generating attainable set-points for the navigation of Multi-Robot System,” in 2013

IEEE Intelligent Vehicles Symposium (IV), 2013, pp. 487–492.

[102] B. Dhiyanesh, “Dynamic resource allocation for machine to cloud communications

robotics cloud,” in 2012 International Conference on Emerging Trends in Electrical

Engineering and Energy Management (ICETEEEM), 2012, pp. 451–454.

[103] I. Stojmenovic, “Machine-to-Machine Communications With In-Network Data

Aggregation, Processing, and Actuation for Large-Scale Cyber-Physical Systems,”

IEEE Internet Things J., vol. 1, no. 2, pp. 122–128, Apr. 2014.

[104] S. Hoshino, “Multi-robot coordination methodology in congested systems with

bottlenecks,” in 2011 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), 2011, pp. 2810–2816.

[105] D. E. Soltero, S. L. Smith, and D. Rus, “Collision avoidance for persistent

monitoring in multi-robot systems with intersecting trajectories,” in 2011 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), 2011, pp. 3645–

3652.

[106] J. Ng and T. Bräunl, “Performance Comparison of Bug Navigation Algorithms,” J.

Intell. Robot. Syst., vol. 50, no. 1, pp. 73–84, Apr. 2007.

[107] Y. Koren and J. Borenstein, “Potential field methods and their inherent limitations

for mobile robot navigation,” in , 1991 IEEE International Conference on Robotics and

Automation, 1991. Proceedings, 1991, pp. 1398–1404 vol.2.

[108] A. Ramakumar, U. Subramanian, and P. G. S. Prasanna, “High-throughput sample

processing and sample management; the functional evolution of classical cytogenetic

assay towards automation.,” Mutat. Res. Toxicol. Environ. Mutagen., vol. 793, pp. 132–

141, Nov. 2015.

[109] E. S. Ruiz et al., “Virtual and Remote Industrial Laboratory: Integration in Learning

Management Systems,” IEEE Ind. Electron. Mag., vol. 8, no. 4, pp. 45–58, Dec. 2014.

[110] H. Liu, N. Stoll, S. Junginger, and K. Thurow, “A fast method for mobile robot

transportation in life science automation,” in Instrumentation and Measurement

Technology Conference (I2MTC), 2013 IEEE International, 2013, pp. 238–242.

[111] M. Ghandour, H. Liu, N. Stoll, and K. Thurow, “Improving the navigation of indoor

mobile robots using Kalman filter,” in Instrumentation and Measurement Technology

Conference (I2MTC), 2015 IEEE International, 2015, pp. 1434–1439.

[112] M. Ghandour, H. Liu, N. Stoll, and K. Thurow, “Interactive collision avoidance

system for indoor mobile robots based on human-robot interaction,” in 2016 9th

International Conference on Human System Interactions (HSI), 2016, pp. 209–215.

[113] M. Ghandour, H. Liu, N. Stoll, and K. Thurow, “A Hybrid Collision Avoidance

System for Indoor Mobile Robots based on Human-Robot Interaction,” presented at the

The 17th International Conference on Mechatronics – Mechatronika 2016, Prague-

Czech Republic, 2016.

[114] H. Liu, N. Stoll, S. Junginger, and K. Thurow, “A new approach to battery power

tracking and predicting for mobile robot transportation using wavelet decomposition

and ANFIS networks,” in 2014 IEEE International Conference on Robotics and

Biomimetics (ROBIO), 2014, pp. 253–258.

[115] “Dr Robot Inc.: WiFi 802.11 robot, Network-based Robot, robotic, robot kit,

humanoid robot, OEM solution.” [Online]. Available:

http://www.drrobot.com/products_H20.asp. [Accessed: 24-Nov-2016].

References

111

[116] Zhang, Y.D., Z. J. yang, H. M. Lu, X. X. Zhou, P. Phillips, Q. M. Liu, and S. H.

Wang. “Facial Emotion Recognition Based on Biorthogonal Wavelet Entropy, Fuzzy

Support Vector Machine, and Stratified Cross Validation.” IEEE Access PP, no. 99

(2016): 1–1. doi:10.1109/ACCESS.2016.2628407.

[117] H. Schaathun, “Support Vector Machines,” in Machine Learning in Image

Steganalysis, Wiley-IEEE Press, 2012, pp. 179–196.

[118] V. Cherkassky and F. Mulier, “Support Vector Machines,” in Learning from

Data:Concepts, Theory, and Methods, Wiley-IEEE Press, 2007, pp. 404–466.

[119] R. Lippmann, “An introduction to computing with neural nets,” IEEE ASSP Mag.,

vol. 4, no. 2, pp. 4–22, Apr. 1987.

[120] J.-S. Gutmann and D. Fox, “An experimental comparison of localization methods

continued,” in IEEE/RSJ International Conference on Intelligent Robots and Systems,

2002, 2002, vol. 1, pp. 454–459 vol.1.

[121] A. Novel, B. R. Trilaksono, and R. A. Sasongko, “Guided Rocket Navigation

design and implementation on Hardware in Loop Simulation,” in 2013 3rd

International Conference on Instrumentation, Communications, Information

Technology, and Biomedical Engineering (ICICI-BME), 2013, pp. 249–254.

[122] J. Hu, H. Zhang, H. Huang, J. Feng, and G. Wang, “An improved Kalman filter

algorithm base on quaternion correlation in object tracking,” in 2012 9th International

Conference on Fuzzy Systems and Knowledge Discovery (FSKD), 2012, pp. 1725–1729.

[123] R. Saravanakumar and D. Jena, “Nonlinear estimation and control of wind turbine,”

in 2013 IEEE International Conference on Electronics, Computing and Communication

Technologies (CONECCT), 2013, pp. 1–6.

[124] H. Liu, H. Tian, and Y. Li, “Comparison of two new ARIMA-ANN and ARIMA-

Kalman hybrid methods for wind speed prediction,” Appl. Energy, vol. 98, pp. 415–

424, Oct. 2012.

[125] Y. Li, Z. Huang, N. Zhou, B. Lee, R. Diao, and P. Du, “Application of ensemble

Kalman filter in power system state tracking and sensitivity analysis,” in Transmission

and Distribution Conference and Exposition (T D), 2012 IEEE PES, 2012, pp. 1–8.

[126] M. Mathe, S. P. Nandyala, and T. K. Kumar, “Speech enhancement using Kalman

Filter for white, random and color noise,” in 2012 International Conference on Devices,

Circuits and Systems (ICDCS), 2012, pp. 195–198.

[127] J. D. Irwin, Ed., The Industrial Electronics Handbook, 1 edition. Berlin;

Heidelberg: CRC Press, 1997.

[128] “Kinect for Windows SDK 2.0,” Microsoft Download Center. [Online]. Available:

https://www.microsoft.com/en-us/download/details.aspx?id=44561. [Accessed: 25-Feb-

2016].

[129] T. Butkiewicz, “Low-cost coastal mapping using Kinect v2 time-of-flight cameras,”

in Oceans - St. John’s, 2014, 2014, pp. 1–9.

[130] A. A. Abdulla, H. Liu, N. Stoll, and K. Thurow, “A New Robust Method for Mobile

Robot Multifloor Navigation in Distributed Life Science Laboratories,” J. Control Sci.

Eng., vol. 2016, 2016.

[131] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and

Techniques, Second Edition, 2 edition. Amsterdam ; Boston, MA: Morgan Kaufmann,

2005.

[132] B. Coppin, Artificial Intelligence Illuminated, Computer ed. edition. Boston: Jones

& Bartlett Learning, 2004.

[133] M. Negnevitsky, Artificial Intelligence A Guide to Intelligent Systems, Second.

Addison Wesley.

References

112

[134] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques, Third

Edition, 3 edition. Haryana, India; Burlington, MA: Morgan Kaufmann, 2011.

[135] Z. Nematzadeh, R. Ibrahim, and A. Selamat, “Comparative studies on breast cancer

classifications with k-fold cross validations using machine learning techniques,” in

Control Conference (ASCC), 2015 10th Asian, 2015, pp. 1–6.

[136] J. D. Rodriguez, A. Perez, and J. A. Lozano, “Sensitivity Analysis of k-Fold Cross

Validation in Prediction Error Estimation,” IEEE Trans. Pattern Anal. Mach. Intell.,

vol. 32, no. 3, pp. 569–575, Mar. 2010.

[137] “Introduction to the C# Language and the .NET Framework.” [Online]. Available:

https://msdn.microsoft.com/en-us/library/z1zx9t92.aspx. [Accessed: 06-Oct-2016].

Appendixes

113

Appendix 1: The StarGazer Sensor

Figure A1.B: HL2 Landmark with the hexadecimal values and the best distribution

[45]

Figure A1.A: The IR sensor from Hagisonic- South Korea [45]

Table A1.A: StarGazer Specifications [45]

Hardware Interface UART(TTL 3.3V) 115,200bps

Size 50×50×28mm

Communication Protocol User protocol based on ASCII code

Measurement Time 20 times/sec

Localization Range

(per a Landmark)

2.5-5 m in diameter

(for ceiling height 2-6m)

Repetitive Precision 2cm

Heading Angle Resolution 0.1 degree

Landmark Types

(classification for ID numbers)

HL1: 31 ea (for a normal space)

HL2: 4095 ea (for a larger space)

Appendixes

114

Appendix 2

The Kinect 2.0

Figure A2.A: The Kinect V2 sensor

Table A2.A: Kinect 2.0 Specifications

1920x1080 – 30 fps Color Camera

512x424 Depth Camea

4.5 m Max Depth Distance

50 cm Min Depth Distance

70° Horizontal Field of View

60° Vertical Field of View

26 Skeleton Joints Number

6 Number of Tracked Skeletons

USB3 Access Port

Appendixes

115

Appendix 3

Table A3.A: The complete experiments for the SVM model

Experiment

Number C

Misclassified

Samples for 8

folds

Train

Time for 8

folds SVM
model test

time(ms)
1 4.53999E-05 397 112 21 <1
2 0.00012341 397 104 21 <1
3 0.000335463 397 103 21 <1
4 0.000911882 397 108 21 <1
5 0.002478752 397 107 21 <1
6 0.006737947 397 105 21 <1
7 0.018315639 355 102 21 <1
8 0.049787068 156 88 21 <1
9 0.135335283 33 71 21 <1

10 0.367879441 8 68 21 <1
11 1 9 56 21 <1
12 2.718281828 9 49 21 <1
13 7.389056099 8 45 21 <1
14 20.08553692 16 45 21 <1
15 54.59815003 16 44 21 <1
16 148.4131591 16 49 21 <1
17 403.4287935 16 42 21 <1
18 1096.633158 16 42 21 <1
19 2980.957987 16 45 21 <1
20 8103.083928 16 42 21 <1
21 22026.46579 16 44 21 <1
22 59874.14172 16 45 21 <1
23 162754.7914 16 44 21 <1
24 442413.392 16 44 21 <1
25 1202604.284 16 41 21 <1
26 3269017.372 16 41 21 <1
27 8886110.521 16 43 21 <1
28 24154952.75 16 44 21 <1
29 65659969.14 16 42 21 <1
30 178482301 16 42 21 <1
31 485165195.4 16 44 21 <1
32 1318815734 16 43 21 <1
33 3584912846 16 44 21 <1
34 9744803446 16 44 21 <1
35 26489122130 16 42 21 <1
36 72004899337 16 43 21 <1
37 1.9573E+11 16 42 21 <1
38 5.32048E+11 16 41 21 <1
39 1.44626E+12 16 44 21 <1
40 3.93133E+12 16 44 21 <1
41 1.06865E+13 16 42 21 <1
42 2.90488E+13 16 44 21 <1

Appendixes

116

43 7.8963E+13 16 44 21 <1
44 2.14644E+14 16 42 21 <1
45 5.83462E+14 16 42 21 <1
46 1.58601E+15 16 42 21 <1
47 4.31123E+15 16 47 21 <1
48 1.17191E+16 16 43 21 <1
49 3.18559E+16 16 43 21 <1
50 8.65934E+16 16 47 21 <1
51 2.35385E+17 16 43 21 <1
52 6.39843E+17 16 47 21 <1
53 1.73927E+18 16 44 21 <1
54 4.72784E+18 16 46 21 <1
55 1.28516E+19 16 41 21 <1
56 3.49343E+19 16 41 21 <1
57 9.49612E+19 16 45 21 <1
58 2.58131E+20 16 46 21 <1
59 7.01674E+20 16 49 21 <1
60 1.90735E+21 16 47 21 <1
61 5.18471E+21 16 46 21 <1
62 1.40935E+22 16 44 21 <1
63 3.83101E+22 16 44 21 <1
64 1.04138E+23 16 46 21 <1
65 2.83075E+23 16 46 21 <1
66 7.69479E+23 16 46 21 <1
67 2.09166E+24 16 45 21 <1
68 5.68572E+24 16 48 21 <1
69 1.54554E+25 16 44 21 <1
70 4.20121E+25 16 53 21 <1
71 1.14201E+26 16 47 21 <1
72 3.1043E+26 16 43 21 <1
73 8.43836E+26 16 48 21 <1
74 2.29378E+27 16 43 21 <1
75 6.23515E+27 16 45 21 <1
76 1.69489E+28 16 41 21 <1
77 4.60719E+28 16 44 21 <1
78 1.25236E+29 16 44 21 <1
79 3.40428E+29 16 42 21 <1
80 9.25378E+29 16 44 21 <1

Appendixes

117

Appendix4

The experiments for the human-robot interaction system

Table A4.A: The experiments for the first person (height 165)

Note Time Angle Gesture Distance (X) Depth (Z)

 377 -40 Right -0.6 1.8

 365 -20 Master 0

Forward wrong “

Kinect failure”

392 0 Left 0.6

 359 20 Resume -1.15 2.4

 396 40 Forward -0.57

 372 -40 Stop 0

 361 -20 backward 0.57

 375 0 Forward 1.15

 346 20 Left -1.64 3.2

 773 40 backward -0.8

 369 -40 Master 0

 367 -20 Resume 0.8

 371 0 Stop 1.64

 377 20 Right -2.2 4.0

 383 40 Stop -1.1

 348 -40 Resume 0

 363 -20 Master 1.1

 381 0 Left 2.2

Appendixes

118

Table A4.B: The experiments for the second person (height 170)

Note Time Angle Gesture Distance (X) Depth (Z)

 380 -20 Resume -0.6 1.8

State transition 773 0 Forward 0

 382 20 Stop 0.6

State transition 766 40 backward -1.15 2.4

 359 -40 Forward -0.57

 368 -20 Left 0

 378 0 Right 0.57

 358 20 Master 1.15

 380 40 Resume -1.64 3.2

 367 -40 Stop -0.8

 355 -20 Right 0

 368 0 Left 0.8

 368 20 Resume 1.64

 368 40 Backward -2.2 4.0

Left wrong

“Kinect failure”

365 -40 Master -1.1

State transition 752 -20 Right 0

 376 0 Stop 1.1

 349 -20 Forward 2.2

Table A4.C: The experiments for the third person (height 177)

Note Time Angle Gesture Distance (X) Depth (Z)

 374 0 Master -0.6 1.8

 361 20 Stop 0

 383 40 Backward 0.6

 349 -40 Resume -1.15 2.4

 354 -20 Left -0.57

 360 0 Forward 0

 359 20 Left 0.57

 353 40 Backward 1.15

 354 -40 Master -1.64 3.2

 355 -20 Stop -0.8

 346 0 Right 0

 339 20 Left 0.8

 346 40 Resume 1.64

 375 -40 Master -2.2 4

 347 -20 Resume -1.1

 349 0 Right 0

State transition 735 -20 Backward 1.1

 348 -40 Forward 2.2

Appendixes

119

Table A4.D: The experiments for the fourth person (height 179)

Note Time Angle Gesture Distance (X) Depth (Z)

 379 20 Stop -0.6 1.8

 354 40 Right 0

 381 -40 Left 0.6

 337 -20 Backward -1.15 2.4

 358 0 Master -0.57

 362 20 Resume 0

 379 40 Forward 0.57

 350 -40 Right 1.15

State transition 744 -20 Stop -1.64 3.2

 386 0 Left -0.8

 397 20 Backward 0

 356 40 Right 0.8

 344 -40 Stop 1.64

 351 -20 Resume -2.2 4

 794 0 Backward -1.1

 347 -20 Left 0

 368 -40 Master 1.1

 381 20 Forward 2.2

Table A4.E: The experiments for the fifth person (height 188)

Note Time Angle Gesture Distance (X) Depth (Z)

 369 0 Master -0.6 1.8

 384 20 Stop 0

 347 40 Forward 0.6

 358 -40 Backward -1.15 2.4

 374 -20 Right -0.57

 366 0 Left 0

State Transition 752 20 Resume 0.57

 382 40 Master 1.15

 377 -40 Stop -1.64 3.2

 354 -20 Forward -0.8

 373 0 Backward 0

 376 20 Right 0.8

 362 40 Left 1.64

 372 -20 Resume -2.2 4

 357 -40 Master -1.1

 363 0 Stop 0

 359 20 Forward 1.1

 372 40 Backward 2.2

Appendixes

120

 Appendix5

The programming code for “Autonomous Collision Avoidance” Function

 public void AutonomousCollisionAvoidance()
 {
 Dynamic_CA_InProgress = true;
 Tag_AutonomousInProcess = true;
 CA_TimeCycle_Finshed = false;
 Timer_DCA_Time_Finished = false;
 Timer_DCA.Stop();
 Timer_CA.Stop();
 bool ThereisRegion = false;
 double goal_angle;
 CA_TimeCycle_Finshed = false;
 LogFileData += "\r\n" + "ACA";

 goal_angle = (Math.Atan((X_WP - X_Current) / (Y_WP - Y_Current))) * 180 / 3.14;

 if (ThereIsSomeone && Array_X_DCA[0] != 0)
 {

 ClientS = "H20-RBC-V2";
 CommandNameS = "CAParameters";

 int c = 0;
 for (int i = 0; i < 6; i++)
 {
 if (Array_X_DCA[i] != 0)
 c++;
 }

 double[] X_People_DCA_Arranged = new double[c];
 double[] Z_People_DCA_Arranged = new double[c];
 double[] Radius_People_DCA_Arranged = new double[c];
 for (int i = 0; i < c; i++)
 {
 X_People_DCA_Arranged[i] = Array_X_DCA[i];
 Z_People_DCA_Arranged[i] = Array_Z_DCA[i];
 Radius_People_DCA_Arranged[i] = Array_Human_Radius_DCA[i];
 }
 bool didSwap;
 do
 {
 didSwap = false;
 if (X_People_DCA_Arranged.Length > 1)
 {
 for (int i = 0; i < X_People_DCA_Arranged.Length - 1; i++)
 {
 if (X_People_DCA_Arranged[i] > X_People_DCA_Arranged[i + 1])
 {
 double temp = X_People_DCA_Arranged[i + 1];
 double temp1 = Z_People_DCA_Arranged[i + 1];
 double temp2 = Radius_People_DCA_Arranged[i + 1];
 X_People_DCA_Arranged[i + 1] = X_People_DCA_Arranged[i];
 Z_People_DCA_Arranged[i + 1] = Z_People_DCA_Arranged[i];
 Radius_People_DCA_Arranged[i + 1] = Radius_People_DCA_Arranged[i];
 X_People_DCA_Arranged[i] = temp;
 Z_People_DCA_Arranged[i] = temp1;
 Radius_People_DCA_Arranged[i] = temp2;
 didSwap = true;
 }
 }
 }
 } while (didSwap);

 for (int i = 0; i < X_People_DCA_Arranged.Length; i++)

Appendixes

121

 {
 X_People_DCA_Arranged[i] = X_People_DCA_Arranged[i] + X_Correction_factor;
 }
 double[] People_Angles_Arranged = new double[c];

 for (int i = 0; i < X_People_DCA_Arranged.Length; i++)
 {
 People_Angles_Arranged[i] = Math.Atan(X_People_DCA_Arranged[i] /
 Z_People_DCA_Arranged[i]);
 }
 double[] Gaps_X;
 double[] Gaps_Z;
 double[] Gaps_Radius;
 double[] Gaps_AngularWidth;
 double[] Gaps_TheFarX;
 double[] Gaps_TheAngleofMiddle;
 double[] Direction;
 int NumberOfGaps = 0;

 if (X_People_DCA_Arranged.Length > 1)
 {
 for (int i = 0; i < X_People_DCA_Arranged.Length - 1; i++)
 {
 if ((X_People_DCA_Arranged[i + 1] - X_People_DCA_Arranged[i]) > ((2 * Rr +
 Radius_People_DCA_Arranged[i + 1] + Radius_People_DCA_Arranged[i]) +
 Safety_Displacement))
 {
 NumberOfGaps++;
 }
 }
 }

 double Gaps_XLeft, Gaps_XRight, Gaps_XAllowedLeft, Gaps_XAloowedRight;
 Gaps_XLeft = X_People_DCA_Arranged[0] - Radius_People_DCA_Arranged[0] - Rr –
 Safety_Displacement / 2;
 Gaps_XRight = X_People_DCA_Arranged[X_People_DCA_Arranged.Length - 1] +
 Radius_People_DCA_Arranged[Radius_People_DCA_Arranged.Length – 1] +
 Rr + Safety_Displacement / 2;
 Gaps_XAllowedLeft = -0.7 * Z_People_DCA_Arranged[0];
 Gaps_XAloowedRight = 0.7 * Z_People_DCA_Arranged[Z_People_DCA_Arranged.Length - 1];
 if (Gaps_XAllowedLeft < Gaps_XLeft)
 {
 NumberOfGaps = NumberOfGaps + 1;
 }
 if (Gaps_XAloowedRight > Gaps_XRight)
 {
 NumberOfGaps = NumberOfGaps + 1;
 }

 Gaps_X = new double[NumberOfGaps];
 Gaps_Z = new double[NumberOfGaps];
 Gaps_Radius = new double[NumberOfGaps];
 Gaps_AngularWidth = new double[NumberOfGaps];
 Gaps_TheFarX = new double[NumberOfGaps];
 Gaps_TheAngleofMiddle = new double[NumberOfGaps];
 Direction = new double[NumberOfGaps];
 if (NumberOfGaps > 0)
 {
 int counter = 0;
 ThereisRegion = true;
 if (Gaps_XAllowedLeft < Gaps_XLeft)
 {
 Gaps_X[0] = X_People_DCA_Arranged[0] - Radius_People_DCA_Arranged[0]
 - Rr - Safety_Displacement / 2;
 Gaps_Z[0] = Z_People_DCA_Arranged[0];
 Gaps_Radius[0] = Radius_People_DCA_Arranged[0];
 Gaps_AngularWidth[0] = Math.Abs(-0.61 - People_Angles_Arranged[0]);
 Gaps_TheFarX[0] = X_People_DCA_Arranged[0];

Appendixes

122

 Gaps_TheAngleofMiddle[0] = Math.Atan(Gaps_X[0] / Gaps_Z[0]) + (-0.61
 - Math.Atan(Gaps_X[0] / Gaps_Z[0])) / 2;
 Direction[0] = Math.Atan(Gaps_X[0] / Gaps_Z[0]);
 counter++;
 }
 for (int i = 0; i < X_People_DCA_Arranged.Length - 1; i++)
 {
 if ((X_People_DCA_Arranged[i + 1] - X_People_DCA_Arranged[i]) > (2 *

Rr + Radius_People_DCA_Arranged[i] + Radius_People_DCA_Arranged[i +
1] + Safety_Displacement))

 {
 Gaps_X[counter] = (X_People_DCA_Arranged[i] +

 X_People_DCA_Arranged[i + 1]) / 2;
 Gaps_AngularWidth[counter] = People_Angles_Arranged[i + 1] –

People_Angles_Arranged[i];
 if (Z_People_DCA_Arranged[i] > Z_People_DCA_Arranged[i + 1])
 {
 Gaps_Z[counter] = Z_People_DCA_Arranged[i];
 Gaps_Radius[counter] = Radius_People_DCA_Arranged[i];
 Gaps_TheFarX[counter] = X_People_DCA_Arranged[i];

 }
 else
 {
 Gaps_Z[counter] = Z_People_DCA_Arranged[i + 1];
 Gaps_Radius[counter] = Radius_People_DCA_Arranged[i + 1];
 Gaps_TheFarX[counter] = X_People_DCA_Arranged[i + 1];
 }
 Gaps_TheAngleofMiddle[counter] = Math.Atan(Gaps_X[counter] /

 Gaps_Z[counter]);
 Direction[counter] = Math.Atan(Gaps_X[counter] /

Gaps_Z[counter]);
 counter++;
 }
 }
 if (Gaps_XAloowedRight > Gaps_XRight)
 {
 Gaps_X[NumberOfGaps - 1] =

 X_People_DCA_Arranged[X_People_DCA_Arranged.Length - 1] +
 Radius_People_DCA_Arranged[X_People_DCA_Arranged.Length - 1] + Rr +
 Safety_Displacement / 2;

 Gaps_Z[NumberOfGaps - 1] =
 Z_People_DCA_Arranged[Z_People_DCA_Arranged.Length - 1];

 Gaps_Radius[NumberOfGaps - 1] =
 Radius_People_DCA_Arranged[Radius_People_DCA_Arranged.Length - 1];
 Gaps_AngularWidth[NumberOfGaps - 1] = Math.Abs(0.61 –
 People_Angles_Arranged[People_Angles_Arranged.Length - 1]);
 Gaps_TheFarX[NumberOfGaps - 1] =
 X_People_DCA_Arranged[X_People_DCA_Arranged.Length - 1];
 Gaps_TheAngleofMiddle[NumberOfGaps - 1] =
 Math.Atan(Gaps_X[NumberOfGaps - 1] / Gaps_Z[NumberOfGaps - 1]) +
 (0.61 - Math.Atan(Gaps_X[NumberOfGaps - 1] / Gaps_Z[NumberOfGaps –
 1])) / 2;
 Direction[NumberOfGaps - 1] = Math.Atan(Gaps_X[NumberOfGaps - 1] /
 Gaps_Z[NumberOfGaps - 1]);
 }
 }
 else
 ThereisRegion = false;

 if (ThereisRegion)
 {
 double XToAvoid = 0;
 double ZToAvoid = 0;
 double RadiusToAvoid = 0;
 double RegionWidth_Angle = 0;

Appendixes

123

 double X_FarPerson = 0;
 for (int i = 0; i < Gaps_TheAngleofMiddle.Length; i++)
 {
 Gaps_TheAngleofMiddle[i] = Gaps_TheAngleofMiddle[i] * 180 / 3.14;
 }
 int pointer_to_selected_angle = 0;
 double temp_gap_anglevalue = 100;
 for (int i = 0; i < Gaps_TheAngleofMiddle.Length; i++)
 {
 if (Gaps_TheAngleofMiddle[i] > goal_angle)
 {
 double tem = Gaps_TheAngleofMiddle[i] - goal_angle;
 if (tem < temp_gap_anglevalue)
 {
 pointer_to_selected_angle = i;
 temp_gap_anglevalue = tem;
 }
 }
 else
 {
 double tem = goal_angle - Gaps_TheAngleofMiddle[i];
 if (tem < temp_gap_anglevalue)
 {
 pointer_to_selected_angle = i;
 temp_gap_anglevalue = tem;
 }
 }
 }

 XToAvoid = Gaps_X[pointer_to_selected_angle];
 ZToAvoid = Gaps_Z[pointer_to_selected_angle];
 RadiusToAvoid = Gaps_Radius[pointer_to_selected_angle];
 RegionWidth_Angle = Gaps_AngularWidth[pointer_to_selected_angle];
 X_FarPerson = Gaps_TheFarX[pointer_to_selected_angle];

 double Z_ToAvoidNEWNEW = Math.Sqrt(XToAvoid * XToAvoid + ZToAvoid * ZToAvoid);
 double theta = Math.Atan(XToAvoid / ZToAvoid) * 180 / 3.14;
 double d = Z_ToAvoidNEWNEW + 2 * Rr + RadiusToAvoid;
 double Linear_Velocity_Factor1 = 0;
 double Angular_Velocity_Factor1 = 0;
 double maximum_linear_velocity = (1000 / Linear_Velocity_Factor_DCA);
 double velocity = maximum_linear_velocity *(Math.Log10
 (RegionWidth_Angle * (180 / 3.14))) / Math.Log10(70));
 Linear_Velocity_Factor1 = Math.Round(1000 / velocity);
 double maximum_angular_velocity = (1000 / Angular_Velocity_Factor_DCA);
 double angular_velocity = maximum_angular_velocity*(Math.Log10(Math.Abs
 (RegionWidth_Angle * (180 / 3.14))) /Math.Log10(70));
 Angular_Velocity_Factor1 = Math.Round(1000 / angular_velocity);
 DepthS = Convert.ToString(0);
 string d11 = d.ToString("F2");
 DistanceS = Convert.ToString(0);
 AngleS = Convert.ToString(Math.Round(theta));
 ID_Counter++;
 IDS = Convert.ToString(ID_Counter);
 TimeSDistance = Convert.ToString(0);
 TimeSRotation = Convert.ToString(Math.Round(Math.Abs(theta *
 Angular_Velocity_Factor1)));

 XMLDataToSend se = new XMLDataToSend(this);
 byte[] ss = se.XMLPrepare();
 HRI_Server.SendOutData(ss);
 Thread.Sleep(Convert.ToInt32(Math.Abs(theta * Angular_Velocity_Factor1)));
 DistanceS = AngleS = DepthS = TimeSDistance = TimeSRotation = IDS = "";
 Array.Clear(ss, 0, ss.Length);
 DepthS = Convert.ToString(Math.Round(ZToAvoid));
 DistanceS = Convert.ToString(Convert.ToDouble(d11));
 AngleS = Convert.ToString(0);

Appendixes

124

 ID_Counter++;
 IDS = Convert.ToString(ID_Counter);
 TimeSDistance = Convert.ToString(Math.Round(Math.Abs(d *
 Linear_Velocity_Factor1)));
 TimeSRotation = Convert.ToString(0);
 se = new XMLDataToSend(this);
 ss = se.XMLPrepare();
 HRI_Server.SendOutData(ss);
 Thread.Sleep(Convert.ToInt32((Math.Abs(d * Linear_Velocity_Factor1))));
 DistanceS = AngleS = DepthS = TimeSDistance = TimeSRotation = IDS = "";
 Array.Clear(ss, 0, ss.Length);
 }
 else
 {
 ThereisRegion = false;
 synth.SpeakAsync("No Free path");
 SetText_Plus(TheRaisedFunction, "ACA -- No Free Path" + "\r\n");
 }
 Dynamic_CA_InProgress = false;
 CA_TimeCycle_Finshed = true;
 Tag_AutonomousInProcess = false;
 Timer_CA.Start();
 }
 else
 {
 Dynamic_CA_InProgress = false;
 CA_TimeCycle_Finshed = true;
 Tag_AutonomousInProcess = false;
 }
 }

Appendixes

125

Appendix6

The experiments for the collision avoidance system

Table A6.A: Experimental results for “move forward”

Experiment no Distance(m) Velocity(m/s) Time (ms) Note

1 1.2 0.1 12000

2 1.2 0.1 12000

3 1.2 0.1 12000

4 1.2 0.1 12000

5 1.2 0.1 12000

6 1.2 0.1 12000

7 1.2 0.1 12000

8 1.2 0.1 12000

9 1.2 0.1 12000

10 1.2 0.1 12000

11 1.2 0.2 6000

12 1.2 0.2 6000

13 1.2 0.2 6000

14 1.2 0.2 6000

15 1.2 0.2 6000

16 1.2 0.2 6000

17 1.2 0.2 6000

18 1.2 0.2 6000

19 1.2 0.2 6000

20 1.2 0.2 6000

21 1.2 0.3 4000 Deviation 4°

22 1.2 0.3 4000 Deviation 4°

23 1.2 0.3 4000 Deviation 3°

24 1.2 0.3 4000 Deviation 3°

25 1.2 0.3 4000 Deviation 2°

26 1.2 0.3 4000 Deviation 4°

27 1.2 0.3 4000 Deviation 3°

28 1.2 0.3 4000 Deviation 2°

29 1.2 0.3 4000 Deviation 4°

30 1.2 0.3 4000 Deviation 3°

Appendixes

126

Table A6.B: Experimental results for “Move Backward”

Experiment no Distance(m) Velocity(m/s) Time (ms) Note

1 1.2 0.1 12000

2 1.2 0.1 12000

3 1.2 0.1 12000

4 1.2 0.1 12000

5 1.2 0.1 12000

6 1.2 0.1 12000

7 1.2 0.1 12000

8 1.2 0.1 12000

9 1.2 0.1 12000

10 1.2 0.1 12000

11 1.2 0.2 6000

12 1.2 0.2 6000

13 1.2 0.2 6000

14 1.2 0.2 6000

15 1.2 0.2 6000

16 1.2 0.2 6000

17 1.2 0.2 6000

18 1.2 0.2 6000

19 1.2 0.2 6000

20 1.2 0.2 6000

21 1.2 0.3 4000 Deviation 3°

22 1.2 0.3 4000 Deviation 4°

23 1.2 0.3 4000 Deviation 2°

24 1.2 0.3 4000 Deviation 2°

25 1.2 0.3 4000 Deviation 3°

26 1.2 0.3 4000 Deviation 4°

27 1.2 0.3 4000 Deviation 4°

28 1.2 0.3 4000 Deviation 3°

29 1.2 0.3 4000 Deviation 4°

30 1.2 0.3 4000 Deviation 2°

Appendixes

127

Table A6.C: Experimental results for “move right” 𝑣𝑚𝑎𝑥 = 0.2 𝑚/𝑠 𝜔𝑚𝑎𝑥 = 0.4 𝑟𝑎𝑑/𝑠

No. Region

Candidate

Region

Candidate

Heading

Angle

d

(m)
𝜃𝑟

degree

V

m/s

ω
rad/s

Position Time

(ms)

Note

1 -3.7 25.4 -3.7 3.03 34.9 0.167 0.335 Middle 18316

2 9.5 ----- 9.5 2.96 33.0 0.164 0.329 Middle 18530

3 8.7 ----- 8.7 2.92 42.6 0.176 0.356 Middle 16980

4 2.7 30.2 2.7 2.94 33.4 0.165 0.329 Middle 17997

5 24.6 ----- 24.6 3.09 24.4 0.150 0.300 Middle 21954

6 22.7 ----- 22.7 3.13 26.1 0.153 0.306 Right 21676

7 33.4 ----- 33.4 3.31 13.6 0.122 0.245 Right 29326

8 20.0 ----- 20.0 2.92 30.6 0.161 0.323 Right 19243 Missed
skeleton

9 22.9 ----- 22.9 3.65 23.3 0.148 0.295 Right 25995

10 16.0 ----- 16.0 3.37 31.4 0.162 0.323 Right 21633

Table A6.D: Experimental results for “move right” 𝑣𝑚𝑎𝑥 = 0.25 𝑚/𝑠 𝜔𝑚𝑎𝑥 = 0.3𝑟𝑎𝑑/𝑠

No. Region

Candidate

Region

Candidate

Heading

Angle

d

(m)
𝜃𝑟

degree

V

m/s

ω
rad/s

Position Time

(ms)

Note

1 -6.4 25.0 -6.4 2.92 34.9 0.209 0.249 Middle 14443

2 1.16 31.1 1.16 2.95 38.7 0.215 0.256 Middle 13822

3 7.1 ----- 7.1 3.16 42.4 0.220 0.264 Middle 14796

4 13.9 ----- 13.9 3.03 40.4 0.217 0.260 Middle 14873

5 -0.98 24.7 -0.98 3.50 36.5 0.211 0.252 Middle 16596

6 12.7 ----- 12.7 3.17 36.2 0.211 0.252 Right 15890

7 15.4 ----- 15.4 3.50 30.8 0.201 0.242 Right 18497

8 26.9 ----- 26.9 3.44 19.9 0.176 0.210 Right 21789

9 11.1 ----- 11.1 3.20 35.8 0.210 0.252 Right 16007 Missed

skeleton

10 26.9 ----- 26.9 3.50 20.2 0.176 0.212 Right 22043

Appendixes

128

Table A6.E: Experimental results for “move right” 𝑣𝑚𝑎𝑥 = 0.3 𝑚/𝑠 𝜔𝑚𝑎𝑥 = 0.5𝑟𝑎𝑑/𝑠

No. Region
Candidate

Region
Candidate

Heading
Angle

d
(m)

𝜃𝑟

degree

V

m/s

ω
rad/s

Position Time
(ms)

Note

1 -5.4 24.8 -5.4 3.02 37.0 0.255 0.425 Middle 12071

2 9.0 ----- 9.0 3.34 37.1 0.255 0.425 Middle 13473

3 15.6 ----- 15.6 3.35 36.8 0.254 0.425 Middle 13830 Dev 3°

4 -0.4 30.8 -0.4 3.12 41.1 0.262 0.436 Middle 11903

5 20.5 ----- 20.5 3.54 26.3 0.231 0.387 Middle 16248 Dev 4°

6 11.9 ----- 11.9 3.18 36.6 0.254 0.425 Right 13000

7 20.7 ----- 20.7 3.22 27.8 0.234 0.387 Right 14682 Missed

skeleton

8 24.1 ----- 24.1 3.14 24.6 0.226 0.379 Right 14978 Dev 3°

9 25.2 ----- 25.2 3.35 22.9 0.221 0.371 Right 16358

10 14.5 ----- 14.5 3.83 31.5 0.243 0.405 Right 16337

Table A6.F: Experimental results for “move left” 𝑣𝑚𝑎𝑥 = 0.15 𝑚/𝑠 𝜔𝑚𝑎𝑥 = 0.3𝑟𝑎𝑑/𝑠

No. Region

Candidate

Region

Candidate

Heading

Angle

d

(m)
𝜃𝑟

degree

V

m/s

ω
rad/s

Positio

n

Time

(ms)

Note

1 -29.5 -5.9 -5.9 3.10 33.8 0.124 0.249 Middle 2542

0

2 -13.0 ----- -13.0 2.69 47.0 0.135 0.272 Middle 2064

2

3 -16.8 8.2 8.2 3.57 30.2 0.120 0.242 Middle 3025
6

4 -11.9 ----- -11.9 3.19 33.8 0.124 0.249 Middle 2652

3

5 -28.1 -0.2 -0.2 2.99 32.2 0.122 0.245 Middle 2445

5

6 -12.4 ----- -12.4 2.65 39.9 0.130 0.260 Right 2120

0

Missed

skeleton

7 -13.5 ----- -13.5 2.61 40.1 0.130 0.260 Right 2099

6

8 -25.9 ----- -25.9 3.49 20.5 0.106 0.212 Right 3488

6

9 -6.2 ----- -6.2 3.10 41.8 0.131 0.264 Right 2396
1

10 -13.9 ----- -13.9 2.97 36.4 0.126 0.252 Right 2441
4

Appendixes

129

Table A6.G: Experimental results for “move left” 𝑣𝑚𝑎𝑥 = 0.2 𝑚/𝑠 𝜔𝑚𝑎𝑥 = 0.4 𝑟𝑎𝑑/𝑠

No. Region
Candidate

Region
Candidate

Heading
Angle

d
(m)

𝜃𝑟

degree

V

m/s

ω
rad/s

Position Time
(ms)

Note

1 -19.4 4.3 4.3 3.33 33.5 0.165 0.329 Middle 20412 Missed

skeleton

2 -26.9 2.6 2.6 2.78 36.9 0.169 0.342 Middle 16525

3 -23.4 7.8 7.8 2.77 36.2 0.168 0.335 Middle 16863

4 -30.6 0.4 0.4 2.64 40.0 0.173 0.348 Middle 15241

5 -21.6 8.5 8.5 2.74 33.9 0.165 0.329 Middle 17013

6 -17.0 ----- -17.0 3.23 30.8 0.161 0.323 Right 20951

7 -7.5 ----- -7.5 2.88 41.8 0.175 0.348 Right 16789

8 -11.7 ----- -11.7 3.16 35.7 0.168 0.335 Right 19410

9 -24.6 ----- -24.6 3.38 21.1 0.143 0.285 Right 25067

10 -25.9 ----- -25.9 3.08 22.0 0.145 0.290 Right 22706

Table A6.H: Experimental results for “move left” 𝑣𝑚𝑎𝑥 = 0.3 𝑚/𝑠 𝜔𝑚𝑎𝑥 = 0.25 𝑟𝑎𝑑/𝑠

No. Region

Candidate

Region

Candidate

Heading

Angle

d

(m)
𝜃𝑟

degree

V

m/s

ω
rad/s

Position Time

(ms)

Note

1 -30.2 -1.9 -1.9 2.82 37.2 0.255 0.212 Middle 11221

2 -25.2 3.6 3.6 2.80 35.2 0.251 0.210 Middle 11472

3 -12.9 ----- -12.9 2.78 36.5 0.254 0.212 Middle 12030 Dev 4°

4 -34.3 -8.9 -8.9 2.95 36.4 0.253 0.212 Middle 12368 Missed
skeleton

5 -6.7 ----- -6.7 2.79 39.1 0.259 0.215 Middle 11351

6 -9.8 ----- -9.8 3.17 38.3 0.257 0.215 Right 13128

7 -6.6 ----- -6.6 2.98 41.2 0.262 0.218 Right 11890 Dev 3°

8 -10.8 ----- -10.8 2.98 38.3 0.257 0.215 Right 12485

9 -26.3 ----- -26.3 2.94 21.6 0.217 0.181 Right 16102

10 -12.1 ----- -12.12 2.90 36.8 0.254 0.212 Right 12395

Appendixes

130

Table A6.I: Experimental results for Autonomous CA 𝑣𝑚𝑎𝑥 = 0.15 𝑚/𝑠 𝜔𝑚𝑎𝑥 = 0.2 𝑟𝑎𝑑/𝑠

No Region

Cand

Region

Cand

Region

Cand

Wayp

oint

Head

Angle

d

(m)

𝜃𝑟 V ω Time Note

1 -29.9 5.2 ----- 12.7 5.2 2.66 37.4 0.127 0.171 21339

2 -18.7 12.45 ----- -86.9 -18.7 2.9 31.5 0.121 0.163 25976

3 -33.4 23.7 ----- -75.0 -33.4 2.84 16.5 0.099 0.13 33094

4 -18.03 5.12 ----- 80.03 5.12 2.85 41.6

9

0.131 0.176 22178

5 -31.0 22.1 ----- 0.88 22.1 3.12 26.7 0.11 0.15 29420

6 -21.7 11.13 ----- -59.6 -21.7 2.79 29.2 0.12 0.158 25888

7 -19.6 17.6 ----- 80.8 17.6 2.51 36.0 0.126 0.169 21647

8 -16.77 13.32 ----- 8.82 13.32 2.93 36.8 0.127 0.169 24448

9 -16.7 17.2 ----- 8.75 17.2 2.69 34.7 0.125 0.167 23343 Missed

skeleton

10 -33.2 -3.9 ----- -35.1 -33.2 2.92 15 0.09 0.127 35105

Table A6.J: Experimental results for Autonomous CA 𝑣𝑚𝑎𝑥 = 0.2 𝑚/𝑠 𝜔𝑚𝑎𝑥 = 0.5 𝑟𝑎𝑑/𝑠

No Region

Cand

Region

Cand

Region

Cand

Wayp

oint

Head

Angle

d

(m)

𝜃𝑟

deg

V

m/s

ω
rad/s

Time

(ms)

Note

1 -30.5 3.2 34.5 8.3 3.2 2.69 37.9 0.171 0.425 15866

2 -32.1 23.2 ----- 35.8 23.2 3.17 25.5 0.152 0.379 21895

3 -29.9 22.5 ----- 17.4 22.5 3.04 27.3 0.155 0.387 20551

4 -22.1 9.4 34.6 13.9 9.4 3.16 31.6 0.162 0.405 19881

5 -32.7 19.5 ----- -78.8 -32.7 3.12 15.9 0.130 0.323 25796 Missed

skeleton

6 -32.9 22.1 ----- -87.4 -32.9 2.86 16.8 0.132 0.329 23309

7 -18.0 16.3 ----- -84.1 -18.0 2.75 34.0 0.166 0.415 17359

8 -18.7 23.0 ----- -8.1 -18.7 2.34 37.3 0.170 0.425 14552

9 -25.3 9.2 33.6 84.4 33.6 3.54 12.3 0.118 0.295 32023

10 -28.5 ----- ----- -81.8 -28.5 2.49 25.7 0.152 0.379 17623

Appendixes

131

Table A6.K: Experimental results for Autonomous 𝑣𝑚𝑎𝑥 = 0.3 𝑚/𝑠 𝜔𝑚𝑎𝑥 = 0.25 𝑟𝑎𝑑/𝑠

No Region

Cand

Region

Cand

Region

Cand

Wayp

oint

Head

Angle

d

(m)
𝜃𝑟

deg

V

m/s

ω
rad/s

Time

(ms)

Note

1 -30.6 3.3 34.7 71.6 34.7 3.25 12.3 0.177 0.147 22454 Missed

skeleton

2 21.7 ----- ----- -86.6 21.7 2.61 31.3 0.243 0.202 12619

3 -12.4 19.5 ----- -89.2 -12.4 2.85 38.8 0.258 0.215 12064

4 -13.9 18.6 ----- 3.7 18.6 2.88 32.4 0.245 0.205 13339

5 -26.8 32.8 ----- -69.6 -26.8 2.81 23.4 0.222 0.185 15152 Dev 4°

6 -25.8 5.6 33.8 2.4 5.6 2.93 34.4 0.25 0.207 12203

7 -31.3 25.5 ----- -84.5 -31.3 3.09 16.6 0.198 0.166 18887 Dev 4°

8 -19.6 20.9 ----- 82.2 20.9 2.39 34.2 0.249 0.207 11360

9 -21.1 30.3 ----- -30.6 -21.1 2.87 29.3 0.238 0.198 13922

10 -12.6 18.3 ----- -27.4 -12.6 2.89 38.0 0.256 0.215 12290

Declaration

132

Declaration

This dissertation ‘Secure Indoor Navigation and Operation of Mobile Robotics’ is a

presentation of my original research work. Wherever contributions of others are

involved, every effort is made to indicate this clearly, with due reference to the

literature, and acknowledgement of collaborative research and discussions. The

work of this dissertation has been done by me under the guidance of Prof. Dr.-Ing.

habil. Kerstin Thurow and Prof. Dr. -Ing. Norbert Stoll, at the University of

Rostock, Germany. Also the dissertation has not been accepted for any degree and is

not concurrently submitted in candidature of any other degree.

Mazen Ghandour

Rostock, 01 December 2016

Curriculum Vitae

133

Curriculum Vitae

Personal Details

Name: Mazen Ghandour

Date of birth: 10 May 1986

Email address: mazen.ghandourr@gmail.com

Nationality: Syrian

Education

2014- 2017 Ph.D. student at the University of Rostock

 Research group “Mobile Robotics” under the supervisory of Prof.

 Dr.-Ing. habil. Kerstin Thurow and Prof. Dr. -Ing. Norbert Stoll.

 Research topic (Secure Indoor Navigation and Operation of

 Mobile Robotics)

2009-2012 M.Sc. Mechatronics Engineering (Tishreen University-Syria)

 Master thesis was implemented under the supervisory of Prof.

 Dr. -Ing. Mohsen Dawood, topic (Development of Control

 and Surveillance Systems at 16th of November Dam)

2005-2009 B.Sc. Mechatronics Engineering (Tishreen University-Syria)

Work Experience

Jan 2013 – Oct 2013 Electrical Engineer (Dalmar Shipping LLC), Dubai – UAE
 - Developing electrical solutions for cargo ships.

 - Supervising the installation of electrical facilities.

Nov 2010 – Dec 2012 Mechatronics Engineer (Agob & Khatchadourian Automation

 Company), Aleppo – Syria.
 - PLC & SCADA Systems (Siemens).

 - Industrial Control and Automation Systems.

Jul 2010 - Dec 2012 Mechatronics Engineer (Tishreen University), Latakia – Syria
 - Teacher’s assistant.

 - Supervisor for several Mechatronics graduation projects.

 - Supervisor for Mechatronics & Robotics Labs.

Jul 2009-Jun 2010 CNC Engineer (Arabian Steel Company ASCO), Latakia-Syria

 - Programming the CNC machines (Lathe, Grinding, Notching).

 - Planning production and supervise the machines.

Awards

mailto:mazen.ghandourr@gmail.com

Curriculum Vitae

134

- Deutscher Akademischer austauschdienst (DAAD) scholarship award for two years

2015-2017. Program (Research Grants – Doctoral Programmes in Germany).

List of Publications

- Ghandour, M., Liu, H., Stoll, N., Thurow, K. “Improving the navigation of indoor

mobile robots using Kalman filter,” in Instrumentation and Measurement

Technology Conference (I2MTC), 2015 IEEE International, 2015, pp. 1434–1439.

(SCOPUS)

- Ghandour, M., Liu, H., Stoll, N., Thurow, K. “Interactive collision avoidance

system for indoor mobile robots based on human-robot interaction,” in 2016 9th

International Conference on Human System Interactions (HSI), 2016, pp. 209–215.

(SCOPUS)

- Liu, H., Stoll, N., Junginger, S., Zhang,J., Ghandour, M., Thurow, K. “Human-

Mobile Robot Interaction in Laboratories Using Kinect Sensor and ELM Based

Face Feature Recognition.” In 2016 9th International Conference on Human

System Interaction (HSI), 2016, pp. 179-202. (SCOPUS)

- Ghandour, M., Liu, H., Stoll, N., Thurow, K. “A Hybrid Collision Avoidance

System for Indoor Mobile Robots based on Human-Robot Interaction,” in 2016 17th

International Conference on Mechatronics, Mechatronika 2016, (Accepted, in press,

SCOPUS)

	Secure Indoor Navigation and Operation of Mobile Robots
	Dissertation
	Rostock, Germany, 2016
	Acknowledgment
	Table of Contents
	List of Figures
	Table A3.A: The complete experiments for the SVM model……………….…….115
	Table A4.B: The experiments for the second person (height 170)……………….118
	Table A4.C: The experiments for the third person (height 177)……….……..….118
	Table A4.E: The experiments for the fifth person (height 188)…….……………119
	List of Abbreviations
	Introduction and Motivation
	2.1 Localization and Navigation of Indoor Mobile Robots
	Current State of Research and Technology
	2.2 Human-Robot Interaction
	2.3 Collision Avoidance for Indoor Mobile Robots
	3.1 Background and Work Description
	Goals of the Dissertation and Realization Concepts
	1
	2
	3
	3.2 Improving the localization of indoor mobile Robots
	3.3 Human-Robot Interaction
	3.4 Collision Avoidance for Indoor Mobile Robots

	4
	4.1 Introduction
	4.2 Improving the StarGazer Localization using Kalman Filter
	4.3 The Improved Kalman Filter
	4.4 Experimental Results
	5.1 Introduction

	Localization of Indoor Mobile Robots
	Chapter 5
	Human-Robot Interaction System for Indoor Mobile Robots
	5.2 System Description
	5.3.1 Model Description
	ℳ=,2-|,𝑤-𝑡.|. 5.3
	5.4 Back Propagation Neural Network
	5.4.1 Model Description
	5.4.2 Model Training
	5.5 System Implementation
	5.5.1 Kinect Position
	5.5.2 Human-Robot Interaction System Description
	5.5.3 Sensor False Inferred Data
	In Kinect sensor, when the body is located near the vision limits of the sensor, it will provide an inferred estimation of the joints’ positions of the body. Actually, the experiments show that this estimation is not accurate, and this leads to a fals...
	5.6 Experimental Results
	5.6.1 Training the SVM
	5.6.2 Training the BPNN Model
	5.6.3 Comparison between SVM and BPNN
	5.6.4 Human-Robot Interaction System Test
	5
	6.1 Introduction

	Collision Avoidance System for Indoor Mobile Robots Basing on Human-Robot Interaction
	6.2 System Description
	6.3 Collision Avoidance System

	6.3.1. Cooperative Collision Avoidance based on Human-Robot Interaction
	6.4 Collision Avoidance Path Calculation
	6.6 Software Implementation
	6.6.1 Development Tools
	6.6.2 System Realization
	6.6.2.1 Collision Avoidance Controller
	6.6.2.2. Communication with the MFS
	6.7 Experimental Results
	6.7.1 Tests over the Cooperative Collision Avoidance
	6.7.1.1 Move Forward
	6.7.1.2 Move Backward
	6.7.1.3 Move Right
	6.7.1.4 Move Left
	Similarly to the tests over the “move right” function, the same experimental procedures also followed to test the “move left” function. The 30 experiments were divided into three groups. In each group the robot is tested under different maximum linear...
	It could be concluded that out of 30 experiments, there were three times the human required to shake a bit to allow the Kinect from recognizing the skeletons. Furthermore, it is shown that at the higher velocity (,𝑣-𝑚𝑎𝑥.=0.3 𝑚/𝑠) the robot devia...
	6.7.2 Autonomous Collision Avoidance (ACA)
	6.7.3 Test of the Collision Avoidance for different Situations
	6.8 Discussion
	Conclusion and Outlook
	7.2 Outlook
	References
	Appendix 1: The StarGazer Sensor
	Appendix 2
	Appendix 3
	Table A3.A: The complete experiments for the SVM model
	Appendix4
	The experiments for the human-robot interaction system
	Table A4.A: The experiments for the first person (height 165)
	Table A4.B: The experiments for the second person (height 170)
	Table A4.C: The experiments for the third person (height 177)
	Table A4.D: The experiments for the fourth person (height 179)
	Table A4.E: The experiments for the fifth person (height 188)
	Appendix5
	The programming code for “Autonomous Collision Avoidance” Function
	Appendix6
	The experiments for the collision avoidance system
	Declaration

