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The motivation of building machines which are able to understand the human, help 

them in their daily life and work in a same way as humans do is dated back to 

hundreds of years [1],[2]. This motivation is kept unachievable due to the lack of the 

advanced technology, which is needed to create such machines, till the middle of the 

20th century. George Devol designed the first programmable robotic arm and sold it 

to General Motors in 1960; while Elmer robot (1949) could be considered as the 

first mobile robot, which is able to avoid obstacles and move to charging station. 

Since that time, the robotics made great strides; thanks to the powerful processors, 

artificial intelligence, sensory systems and many other fields which offered 

promising applications for the mobile robotics in daily life. Nowadays, the world is 

on the door of the fourth industrial revolution which robotics is one of the 

fundamental pillars in it. That’s why, the major companies and research institutes 

are investing intensively in this field. According to the International Federation of 

Robotics (IFR), the total number of sold service robots in 2014 is 24,207 [3], and 

this proves that the robotics technology brings promising solution in the close future.  

Many robotic systems are put into investment, as robotic arms, quadrotors, drones, 

indoor mobile robots, surgery, and space robots. The fast progress in mechanical 

engineering, electric engineering, computer systems, and artificial intelligence will 

lead to have robots in many other fields such as self-driving cars, military, industry 

and life science laboratories.  

In life science laboratories, preparing and handling of chemical and biological 

samples need long times, and it requires 24 hours monitoring and processing for 

these samples. In recent years, progressively automation systems have been applied 

in chemical & biological laboratories [4-7]. These advances brought many facilities, 

and decreased the processing time and number of employees. 

Current research is ongoing on the development of fully automated chemical, 

biological or analytical laboratories with minor human supervision [8-11]. To ensure 

a complete automation, mobile robots are used as transport systems for the transfer 

of samples and lab ware between different automated and manual islands. Recent 

results include several steps toward having a complete autonomous transportation 
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system based on mobile robotics, such as multi floor navigation [12], arm 

manipulation [13], charging [14], and path planning [15].   

Mobile Robots are advanced engineering systems, which require a high integration 

of electronic engineering, mechanical engineering, computer systems, sensory 

systems and artificial intelligence. Robots must be equipped with several sub-

systems to work securely in the real applications, such as path planning, localization 

and mapping, human-robot interaction, manipulation, collision avoidance, and 

charging. The good implementation of these sub-systems, and the integration 

between each other is the key-success for any mobile robotic system.  

Unlike traditional automation and control systems, mobile robots will work in 

unpredicted environments; i.e. the work conditions are changing so there are no 

certain situations that the robot could be pre-programmed to adopt its control to 

meet these situations. Taking into consideration that the robots will navigate nearby 

human, this raises further challenges regarding the ability of the robots from 

detecting the human and avoiding physical injury to him.  

The main requirement for any engineering system is safety. In mobile robotics, 

safety means the ability of the robots from avoiding accidents which could occur 

when the robot loses its location within the map or when it collides with the 

obstacles which might appear in its path. 

The ability of the robots for a secure navigation in their work area is highly required 

taking into consideration that in future life science laboratories, robots must navigate 

in narrow paths, inside rooms with small free spaces. Thus, a robust localization 

system is necessary to ensure that these robots are able to identify their positions 

despite of the external noise over the sensors. If a robot fails to accurately identify 

its position within the map, it is too possible that it collides with walls or doors, or 

loses the positions of grabbing, charging, and elevators. Furthermore, the narrow 

corridors and the small free spaces increase the strains of having a robust 

localization system.  

The robots and the human will work in the same area. Thus, the robots must detect 

the human, interact with them and avoid the collision when both are located in the 

same place. Thus, a robust human-robot interaction is necessary to enable the robots 

from detecting the human and communicate with them. Furthermore, the robots 

must be able to generate local paths to avoid the collision with those human and 

keep moving to their destinations.  

The aim of this dissertation is the development of suitable concepts for indoor 

mobile robots to eliminate failures due to false localization in the work area, or due 
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to the collision with humans, which are located near to the robots. This work can be 

divided into three parts basing on the processed problem in mobile robots: 

-  Implementing a robust localization system for the indoor mobile robots, by 

surveying the relevant sensory systems which fit the requirements of laboratory 

environments, evaluate the performance of the selected sensors and find the 

suitable methods to improve the performance of the localization system. The 

StarGazer sensor is utilized for mapping and localization. The sensor is tested 

under different conditions, and a modified Kalman filter algorithm is used to 

eliminate the noisy measurements resulting from strong lights. The localization 

system is discussed in chapter 4.  

-  Implementing a human-robot interaction system based on gesture recognition to 

enable the robot to recognize the humans and interact with the orders given by 

them via certain movements or the arms. The robot uses 3D vision to recognize 

the human, and Back Propagation Neural Network model for processing the 

data of the sensor. The interaction is used mainly to coordinate the generation of 

the collision-free paths. Further details for the human-robot interaction system 

are available in chapter 5.  

-  Designing a robust collision avoidance system for avoiding the humans existing 

in the path of the robot. The system has to detect the human, calculate the 

location of each person from the robot, and generate a new local collision-free 

path to avoid accidents as it will be described in chapter 6.  

  

The following thesis is organized as follows: Chapter 2 presents the current state of 

art in the field of secure navigation and operations of indoor mobile robots. This 

includes a comprehensive survey over current applications of the indoor mobile 

robots, a review for the recent work of the localization and navigation systems, 

human-robot interaction in mobile robotics, and a review for the collision avoidance 

systems for indoor mobile robots. Chapter 3 discusses the goals of the dissertation 

and realization concepts. Chapter 4 shows a framework for improving the 

localization of indoor mobile robots. Chapter 5 details the implementation of the 

human-robot interaction system. In chapter 6, the new method of collision 

avoidance based on the interaction between the human and the robot is proposed. 

Finally, chapter 7 shows the conclusion of the implemented work.  
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Mobile robots are machines, which are able to move in the navigation area and 

modify their behaviour basing on the changes in the work conditions without the 

need of human interventions. These robots could implement their tasks either in 

small areas as homes and factories, or in vast areas as the space or deep sea robotics. 

Several research groups are working on inventing mobile robots which are 

appropriate for certain tasks, as hospitals [16], cleaning [17], material handling [18], 

agriculture [19], and outdoor autonomous robots [20]. Each of these robots needs 

sensory systems for localization and identifying the working environment.  

 

2.1 Localization and Navigation of Indoor Mobile Robots 

Different localization systems can be used in mobile robotics to serve the task of 

indoor localization and mapping. These systems use different kinds of sensors which 

work on providing the localization information to the robot, such as ultrasonic 

sensors, wireless sensors, vision sensors, and IR sensors. This section shows the 

common sensors and localization systems which are used for indoor mobile robots. 

Each of these methods have its advantages and limitations. 

Ultrasonic sensors have the advantages of linear performance, cheap cost, and it is 

not effected by light noise. Still, these sensors suffer from the angle limitation 

problem [21] since the transmitter issues ultrasonic waves with a limited angel, and 

this limits the width of the sensed area, besides to noise effects caused by sound 

waves. To compensate the limitations of this technology and overcome the noise 

effects, a sensory fusion is used with the other kind of sensors.  

Kim et al. [22] used a group of ultrasonic transmitters/receivers for robot 

localization. A group of ultrasonic transmitters (beacons) were fixed in known 

positions, and three ultrasonic receivers were fixed on the top of the robot. The 

receivers measure the floating time of the received signal from transmitters to 

estimate the robot’s location. Extended Kalman Filter algorithm (EKF) fuses the 

measurements obtained from the encoder (in prediction phase), and ultrasonic 

sensors (correction phase) to obtain optimal estimation of the robot position. Fig 2.1 
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shows the robot localization basing on distributed ultrasonic sensors. The 

performance of this system is merely based on the efficient distributions of the 

beacons in the navigation area. The localization system fails when the robot is 

located in not covered areas. Furthermore, the experiments show that the 

localization error could reach to 25.7 cm and 6°. 

Alfonso et al. presented a comparison of EKF and unscented Kalman filter (UKF) 

in estimating the localization of a mobile robot using a group of five ultrasonic 

sensors [23]. The prediction phase of the filter is done basing on the readings of 

encoders. The update step is done basing on the measurements of ultrasonic sensors. 

The study focused on improving the localization basing on switching the ultrasonic 

sensors for saving the battery energy. Table 2.1 shows the localization error for each 

sensor (S1 to S5), the localization error of switching these sensors, and the 

localization error of operating the whole sensors together (all). 

 

Figure 2.1: Localization based on multiple ultrasonic sensors [22] 

 

 

Table 2.1: Localization error based on Ultrasonic sensors [23] 

Filter S1 S2 S3 S4 S5 Switching all 

EKF 

ɳ=0 4.354 6.698 5.056 4.964 4.784 6.007 3.358 

ɳ=0.3 4.177 6.472 4.948 4.888 4.21 6.041 3.215 

ɳ=0.7 4.42 6.1 4.734 4.628 4.037 6.088 3.298 

UKF 

ɳ=0 4.301 5.849 5.272 4.892 4.389 5.098 3.432 

ɳ=0.3 4.129 5.544 4.838 4.647 3.830 5.446 3.358 

ɳ=0.7 4.244 5.585 4.546 4.517 3.669 5.184 3.179 

 

 



Chapter 2  Current State of Research and Technology 

6 
 

 ɳ represents the ratio of lost measurement (ɳ=0.3 means 30% of measurements 

were lost). Experiments show that both UKF and EKF have close performance, and 

the proposed method provides a localization error around 3.2 cm, when the whole 

sensors are operated together [24 - 26]. 

Dobrev et al. built a localization system for indoor mobile robots by using a 

combination of radar, ultrasonic, and encoder sensors [27]. The radar localization 

system is composed of a reference node, and a mobile node which is located on the 

robot. This sensor works well in detecting the location of the robot in halls and 

foyers, but the performance is degraded when the robot moves in corridors because 

the radar waves will reflect from the walls and this cause to lose the robot’s location. 

Thus, the ultrasonic sensors work on improving the performance of radar sensor by 

measuring the distance of the robot from the side walls of the corridor and corrects 

the localization latency of the radar sensor. The measurements of the radar and 

ultrasonic sensors are then fused with the encoder by using extended Kalman filter. 

In the first experiment, the robot is navigated in wide hall, and the experiment shows 

that the measurements of radar sensor is unreliable when the distance between the 

reference and mobile nodes is more than 15m. Furthermore, the localization 

accuracy is degraded when the robot moves in corridors by only using the radar 

sensor. On the other hand, when using the integrated system, the experiments show 

that 68.3% of the measurements have a localization error less than 5.1cm when the 

robot moves into corridors.  

Wireless sensor networks can be seen as an infrastructure, which is composed of 

distributed sensing elements, and communication elements, which collect data and 

measurements in a real environment [28]. Zigbee is a wireless technology which 

uses the standard IEEE 802.15.4. This technology allows building wireless networks 

by using a set of Zigbee nodes over the work area. This technology could be used in 

the indoor localization of mobile robots.  

Lin et al. developed a localization system based on a group of ZigBee nodes which 

compose a wireless network  distributed in the navigation area of the robot, and a 

mobile node which is located over the robot [29]. The positions of the reference 

nodes are stored on the onboard PC. The mobile node broadcasts measurement-

demand messages to all reference nodes; the reference nodes will then measure the 

received signal strength (RSSI) and send it back to the mobile node. The localization 

system is divided into two phases: calibration phase and localization phase. The 

calibration is implemented by finding the relationship between the received signal 

strength indicator RSSI and the distance of the mobile node from each reference 

node. A 2D probability map is realized which plots the RSSI readings for different 

distances for each reference point. In the localization phase, the location of the 
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mobile node is estimated by combining the 2D maps of different reference nodes. 

Fig 2.2 shows the resulting augmented map with the estimation of the robot’s 

location. The experimental results show that the localization average error is around 

1.7m [30]. 

Alhmiedat et al. presented a hybrid localization system basing on the measurements 

of received signal strength indicator (RSSI) and Inertia system [31]. A wireless 

sensor network based on the ZigBee standard is used to obtain the measurements of 

distributed RSSI. An onboard inertia system is composed of an acceleration sensor 

and compass, which specify the direction and the speed of the robot. A hybrid 

system is designed to integrate the RSSI and inertia systems. The results show that 

using a hybrid localization system basing on data from wireless sensors and inertia 

system is higher than using RSSI alone. Fig 2.3 shows the localization error using 

the hybrid system. It can be seen that the localization error is around 0.6 meters 

using the hybrid system [32] - [34].  

 

Figure 2.3: The localization error in hybrid system [31] 

 

 

 

Figure 2.2: The combined 2D maps from different reference nodes [29] 
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Vision sensors are popular in mobile robotics. Common vision sensors in mobile 

robotics are Colour – depth cameras (RGB-D) [35], [36] and omnidirectional 

cameras [37].   

Fernandez et al. implemented a simultaneous localization and mapping system 

(SLAM) for indoor mobile robot by processing the images provided by a visual 

odometry [38]. In this system, the robot moves in unknown environment, and it has 

to build a topological map for the area by capturing certain images which will 

represent the reference nodes in the map. To describe each image, a Fourier 

signature descriptor is employed. Each node represents a certain area, and contains 

certain images describing it. After building the map, the robot can find its position 

by comparing the descriptors of the current image with the descriptors of the images 

stored in the database. Monte-Carlo algorithm is used to combine the visual 

localisation based on the topological map with the robot’s odometry to create a 

visual odometry. The experimental results show that the robot requires 200 to 2000 

particles at each step of the robot to guarantee that it can always detect its position 

within the map, and the computational cost is equal to 0.223s and 0.243s 

respectively. [39], [40]. 

In localization based on laser range finder (LRF), the robot uses a laser sensor to 

draw a map for the environment and specify its position within the map. Moreover, 

the LRF could be used in human detection and obstacle avoidance [41].  

Liu et al. presented a new method for indoor map building and localization using 

2D laser scanner [42]. To build the map of the working area, the robot implements a 

primary scan for the room to find the center of the location; and it will then rotate 

360° in the center to implement a complete 2D scan for the room and build the map. 

To reduce the processing time, the robot uses grid-based algorithm to remove the 

redundant points, and then it will use least-square algorithm to extract the lines and 

the boundaries in the room. After building the map, the robot uses metric-based 

Iterative closest point (MbICP) algorithm to compare its current scan with the built 

map and derive its translational and rotational displacement. Furthermore, EKF is 

used to estimate the location of the robot. The EKF uses the measurements from the 

odometer as a control input, and the observation from the LRF to estimate the 

location. The experimental results for mapping and localizing using LRF and EKF 

show that localization based on EKF is better than using dead-reckoning alone. Fig 

2.4 shows the improved navigation results with the proposed system, compared to 

the navigation with odometer sensor; it can be seen that the accumulative error in the 

odometer will cause the robot to deviate from the path for around 30cm on Y axis, 

while the navigation with the implemented system doesn’t suffer from the 

accumulated error and it still has accurate localization [43], [44]. 
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In localization based on Infrared (IR) landmarks, the robot identifies its location 

based on a group of passive Landmarks (LM). These landmarks are composed of IR 

reflecting materials. An IR camera analyses the reflected IR light and specifies the 

location based on this analysis[45], [46]. 

Zhiwei et al. presented the use of the StarGazer sensor for the localization and 

mapping of indoor mobile robots [47]. This sensor is composed of IR emitters and 

an IR camera installed on a single board. The emitters release the IR beam to the 

passive landmarks, and the reflected beam is captured by the IR camera. The study 

shows that the sensor provides some false detection due to the noise which results 

from strong light, and this causes the robot to lose its location. To overcome this 

limitation, three filters are implemented and the performance is compared: extended 

Kalman filter (EKF), particle filter (PF), and a new method which is based on 

defining an error range for the sensor. The proposed method considers that the false 

detection of the landmarks couldn’t be represented as a white Gaussian noise. Thus, 

the PF and EKF won’t show satisfactory results. In the proposed filter, the 

measurement error is defined within a certain range rather than considering it as 

Gaussian; thus, if a new measurement is within the estimated measurement ± the 

error, the measurement is considered true, else it will be considered false. Moreover, 

the filter will implement a senor fusion for the local data of the relative position of 

the robot (encoder), and the global data obtained from the StarGazer. Fig 2.5 shows 

the results of applying extended Kalman filter (EKF), and the proposed filter over 

the measurements. It could be seen that the EKF failed to detect the false 

measurements with error > 3 m. On the other hand, the new filter was able to detect 

 

Figure 2.4: Comparison of the localization using odometer (red), and EKF (blue) [42] 
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the false measurements with error >3m, and provide an accurate estimation for the 

location of the robot. [48 - 54]. 

In summary, many localization and mapping methods and sensors are proposed in 

the field of indoor mobile robots; each has its advantages and limitations. In 

localization and mapping using ultrasonic technology, it shows fast processing time, 

besides to its cheap cost. On the other hand, this technology requires a high number 

of distributed transmitters due to its limited rang, and the landmarks are active, 

which means there is a need to power each transmitter/receiver. Furthermore, 

modifying the map will be more difficult comparing to the maps which use natural 

landmarks [22].  

Localization based on wireless sensor network and ZigBee still needs further 

developments to cope the problems of fast fading in which the signal strength is 

decreased significantly due to the existence of walls, and multi paths, especially in 

indoor environments which include walls [55]. Furthermore, this kind of localization 

has a low localization accuracy [29],[31], and this is not suitable for the tasks which 

require accurate localization as in locations of grasping elements, and entering 

narrow location as elevators.  

Vision sensors provide rich information to the robot which could be used in 

localization and mapping, obstacle avoidance, and human detection. Alternatively, 

these sensors have high computational cost, besides to its affect to the changing in 

the light conditions in the navigation area. 

Localization based on LRF is an accurate technology; it could be used for mapping, 

localization and obstacle avoidance. Still, this technology requires high 

             

(a)     (b) 

Figure 2.5: The filtration result of applying (a) extended Kalman filter, (b) the new 

filter. Blue dots represent the raw measurements of StarGazer sensor, and the red dots 

represents the filter output [47] 
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computational costs since it requires processing a high amount of measured points 

over the work area [42]. Furthermore, the laser sensor is not suitable to work in 

environments, which include transparent surfaces like glass and plastic since these 

materials could diffuse the beam rather than  reflecting it [44], [56].  

Localization based on IR sensors has the advantages of covering a wide area, uses 

passive landmarks without the need to power them and it is not affected by radio 

transmission. On the other hand, high fluorescent light or sunshine could cause false 

detection of the landmark, and this will lead the robot to lose its location.  

Table 2.2 summarizes the advantages and disadvantages of each method, and the 

applicability of using this sensor for mobile robotics in life science applications. 
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2.2 Human-Robot Interaction 

Human-Robot Interaction (HRI) is defined as the ability of a robot for recognizing 

the human and interacting with them by implementing suitable responses to this 

interaction. Several sensory systems and interaction methods are implemented for 

Table 2.2: Comparison between different localization sensors 

Sensor 

Type 

Advantages Disadvantages 

 

Encoder 

Easy to use 

Linearity 

The accumulated error limits 

the efficiency of this sensor for 

long distances 

 

 

Ultrasonic 

Easy to use, 

Linear, 

Low cost 

 

Need to power the transmitter 

and receiver, difficult to 

modify the map  

Effected by changes in 

humidity and temperature 

 

Wireless and 

RSSI 

Data transmission could be 

implemented together with 

sensing, no need for change 

the direction of sensor to 

measure the distance 

 

Not constant, the existence of 

walls effects the accuracy of 

this system 

 

 

Vision 

Low cost, 

Implement localization and 

obstacle detection in one 

sensor 

 

 

High computation, 

Affected by light conditions 

 

Laser 

High Accuracy 

Used for several tasks in one 

sensor 

 

Lower performance in 

detecting transparent materials 

such as glass walls. 

 

Stargazer 

Easy to use 

Map could be extended easily 

No need for powering the 

landmarks 

Automatic height calibration 

Affected by ambient light such 

as strong sunlight and 

fluorescent light. 

 



Chapter 2  Current State of Research and Technology 

13 
 

the interaction; interaction systems are based on the type of the robot, and the 

interaction method. 

Ikemoto et al. presented a physical human-robot interaction system for teaching the 

robot to stand up [57]. The human will help the robot in standing-up, and he will 

inform it whether the attempt was correct of wrong. The robot consequently will 

save the correct attempts in its database to train itself in a later step. Each training 

vector is 52-dimentions which represent the angular values of robot’s joints. To 

accelerate the training process, principal component analysis is used for dimensions’ 

reduction of the training set. The reduced data is passed to a Gaussian mixture 

model (GMM) for adapting the performance of the robot in the standing-up task. 

The experimental results show that reducing the training data allows the GMM 

model to be trained online with few training data, while the robot develops its 

behaviour after each training step. Fig 2.6 shows an experiment for the interaction 

system. 

Wearable sensors are another common method for implementing the interaction 

between the human and the robot. Cifuentes et al. developed a human-following 

system to track the human using LRF and a wearable inertial measurement unit 

(IMU) [58]. Instead of following the human, the robot will move in front of the 

human, enabling the human to monitor the motion of the robot without the need to 

look behind. LRF is located over the robot, and it is used to track the legs position 

and orientation of the human, while the IMU unit is fixed on the trunk of the person 

to provide the trunk motion and rotation to the robot. The robot will adjust its 

motion direction and velocity based on the obtained measurements to keep itself 

moving in front of the human. The experimental results show that the parameters 

estimation was accurate with estimation error less than 10% under curve-shaped 

path. 

Tseng et al. presented a robotic system for tracking one person or a group of human 

and interacting with him/them [59]. In this system, the robot will differentiate 

between seven situations; basing on whether there is one person, or several humans 

in front of it. Furthermore, the robot will analyze the distances between the human, 

and their orientations toward each other. For example, when the robot detects human 

 

Figure 2.6: Assisting the robot to stand via interaction [57] 
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facing each other and having a discussion, the robot will come close to them, and 

interact with them using voice commands to communicate available services as it 

could be seen in Fig 2.7. In contrary, when two humans are close to each other, and 

located in certain angles, the robot will know that these two human have private 

discussion, so it won’t interrupt them. The system uses LRF for detecting and 

tracking legs, high resolution color camera for face detection from far distances, and 

depth camera for torso tracking. To decrease the processing time of face detection, 

Haar feature based cascade classifier is used to detect the upper body, and then a 

particle filter is used for face tracking. Furthermore, Kalman filter is used to track 

the position of each person. The positions of humans, and their orientations are 

analyzed using F-formation to receive the social cues. A decision tree will be used 

by the robot to select the correct response. The experimental results show that the 

average time to identify the social situation for a groups is 4.78 seconds, and the 

accuracy ranges between 80-90%.  

Hortal et al. implemented a brain-machine interface for enabling a user to control a 

robotic arm using brain signals without the need to implement any physical activity 

by the user [60]. The task is to control the robot arm to move forward, backward, 

right, and left. The robot has to move to the right/left when the user thinks in 

moving his right/left arm respectively; it will move forward when the user counts 

down, and backward when the user thinks in alphabet in backward manner. The 

brain signals are obtained using a wearable cap which has 16 channels to harvest the 

signals from the scalp of the user. After amplifying and filtering the signals, it is 

forwarded to a support vector machine model to classify the activities. The SVM is 

trained offline first, and a k-fold algorithm is used to train the SVM and evaluate the 

model before employing it online. To test the system, two users were asked to move 

the robot between four points sequentially as it could be seen in Fig 2.8 and the 

success rate is then averaged as it could be seen from table 2.3 which shows the 

mean success rate for the two users are 74%, 72.78%.  

 

Figure 2.7: The human-robot tracking and interaction system. The robot-to-group 

situation, the robot specifies that the social situation is normal discussion, the robot will 

come closer and interrupt the discussion asking for a service to do by itself [59] 
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Tsai et al. presented a human-robot interaction system for face identification, and 

emotion recognition for four situations: sad, happy, anger, and smile [61]. The 

training samples, which represent the face images for different human are reduced 

using the Harr wavelet transform. The principal component analysis (PCA) is used 

to extract the features of faces from the images. While the Euclidean distance 

method is applied to measure the shortest distance between the training and testing 

samples so the processing time is reduced. A support vector machine mode (SVM) 

is then trained to classify the facial expressions of the user. The experimental results 

show that when the model is trained with a higher number of training samples, the 

training will take more time, but the model will be able after training to define the 

face and classify the emotions with a shorter time and higher accuracy. Table 2.4 

shows two experiments for two SVM models, the first model is trained with 120 

samples, while the second model is trained using 240 sample. The first experiment 

shows the face identification and emotion recognition success rates for the trained 

SVM with the processing time when the model is trained with 120 samples, and the 

second experiment shows the success rate and processing time for the SVM model 

when it is trained using 240 samples. It could be seen that the SVM model which is 

 

Figure 2.8: The experiment environment for controlling the robot arm to reach the four 

locations [60] 

Table 2.3: The experimental results for robot arm control based on brain signals [60] 

Mean AB CD LH RH User 

74.00 68.64 51.27 91.10 85.00 A 

72.78 61.44 61.86 89.41 78.39 B 
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trained with a higher number of training samples (240) has a higher accuracy and 

less processing time than the SVM model which is trained only with (120) samples.  

Voice recognition is another common method for the interaction between the human 

and the robot. Ding et al. developed a voice and user recognition system to interact 

with humanoid robots using 10 commands [62]. A support vector machine model is 

trained for speaker verification, a Gaussian mixture model is used for speaker 

identification, and a dynamic time warping algorithm (DTW) is used for speech 

recognition. When a user speaks, the SVM will decide whether the voice is from an 

invalid user, if the voice is from a valid one, the GMM in the next step will decide 

whether the user is authorized to control the robot or not. If the GMM shows that the 

user is authorized, the DTW will be used for the speech recognition. The system 

uses Kinect microphone array to obtain the voices. The experimental results show 

that the proposed system is able to recognize 85% of the voices successfully. 

3D vision sensors are widely used nowadays in human-system interaction for 

gaming and robotics applications. Canal et al. used the Kinect 2.0 sensor in the 

interaction task between the human and humanoid robots via recognizing the 

gestures provided by the arms and the face of the human [63]. The system identifies 

four gestures: pointing at, waving, nodding and negation. The pointing is used to 

guide the robot to detect certain objects, which are identified with waving gestures 

by analyzing the angular displacements of the arm for certain frames, while the 

negation and nodding gestures are recognized by using the dynamic time wrapping 

approach for analyzing the face movements. The experiments were implemented 

over the NAO robot, with a wheeled platform which is used to carry the robot and 

the sensor to the goal destination as it could be seen in Fig 2.9. The experimental 

results show that the facial gestures have low recognition rates (33.33% for negate, 

73.33% for nod) due to the misalignment of the face and the sensor plane, while the 

recognition rate for wave and point gestures are 83.33% and 96.67% respectively. 

The recognition requires processing times between 1.47 to 1.91 seconds. 

 

Table 2.4: The experimental results of training and testing the face recognition model 

[61] 

Number of 

training 

samples 

Face 

identification 

Processing 

time 

expression 

recognition 

Processing 

time 

120  90% 5.73 p/sec 84% 6.9 p/sec 

240 92% 5.5 p/sec 89% 6.5 p/sec 

 



Chapter 2  Current State of Research and Technology 

17 
 

Yang et al. presented the use of Kinect sensor in controlling NAO robot via gestures 

[64]. The first step is tracking the skeleton, and filtering the joint angle of the human 

controller. Kinematic analysis is used to transfer the human arm joints angles to 

control commands to the robot. Finally, a limit breadth method was applied to the 

system to protect the robot when the rotating angle of the controller exceeds the 

permissible rotating angle of the robot. The experimental results show that the robot 

is able to pass 92% of the experiments successfully.  

Wang et al. presented a human-robot interaction system for controlling the Khebra 

III robot by identifying the gestures of human arms which are provided by a Kinect 

sensor [65]. The system defines 11 gestures from the human. The gesture 

recognition algorithm uses 6 of 20 joints and monitors the angles between joints for 

defining the gesture. The law of cosine is used for identifying the locations of joints 

and identifies the required response. The experimental results show that the system 

is able to successfully identify 96% of the experimental tests.  

BouBou et al. implemented a new system for defining nine actions (sit, stand, wave, 

walk, pick up, stretch, use hammer, draw a circle, and forward punishing) [66]. The 

skeletal data of the tracked person is obtained from Kinect sensor, while a new 

method called Histogram of Oriented Velocity Vectors (HOVV) is implemented to 

describe the activities. Fig 2.10 shows the concept of the HOVV method. In HOVV, 

the velocity vector and orientation of each joint is extracted from tracking the 3D 

positions of the skeleton’s joints obtained from Kinect. The obtained vectors are 

grouped into a spatial histogram. The histogram will be used to describe the actions. 

The robot uses the built method to analyze the human activities. The experimental 

results show that the system is able to classify the gestures with an average accuracy 

of 88.75% and with computational latency equal to 0.055 seconds for one sample. 

[67 - 73]. 

 

Figure 2.9: The integration between the Human and NAO robot based on gestures [63] 
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Du et al. presented a human-robot interaction system for controlling two robotic 

arms [74]. The robotic arms imitate the movements of the right and left arms of the 

human operator remotely. The system uses Kinect sensor to get the movements of 

the operator’s arms, specifically the thumb finger, index finger, wrist, elbow, and 

upper arm. The reference point of the user arms’ coordinates is the shoulder joint, so 

even if the user body moved, the robotic arms won’t be effected by this movement, 

and will consider only the movements of the arms related to the shoulder. 

Furthermore, the system took into consideration the dithering of the user hands’ by 

adding a damping model which ignores the minor movements of the user arms. Fig 

2.11 shows the control of the robotic arms to catch an element without contact. The 

experimental results show that the mean absolute error (MAE) is (3.65, 2.67, 3.83 

mm) and (1.01°, 1.17°, 1.5°) for (X, Y, Z) respectively.  

In conclusion, many systems are proposed for the interaction between the human 

and the robots existing in the same work area. Designing these systems is mainly 

 

Figure 2.11: The motion imitation of the user’s arms by the robotics arms [74] 

 

Figure 2.10: Extracted velocity vectors of the action “sitting” [66] 
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based on the application domain, and the goal of using the robot. Table 2.5 

summarizes the common methods which are used in human-robot interaction.  

In conclusion, the interaction using the wearable sensors isn’t applicable in work 

environments which many human move in it as restaurants, and laboratories, since it 

requires a wearable device for each new person enters the work area. Moreover, the 

interaction with voice orders is easy and natural method which is used between 

human themselves. Still, this kind of interaction won’t be suitable in work 

environments which include noise of machines and human, since it will limit the 

ability of the robot from recognizing the voice, and this will force the human to 

interact with the robot with short distances, and that won’t serve the goal of this 

thesis to have a secure interaction. The interaction using color cameras won’t be 

suitable when it is required to follow the gestures of several human, besides to the 

high processing time to analyze the images and define the human. On the other 

hand, the Kinect sensor has several advantages which serve the interaction between 

the human and the robot; it offers several possibilities for interaction, as voice, 

gesture and face interaction, besides to provide the 3d dimensions of the body. 

Table 2.5: Summary of different systems for human-robot interaction 

 Advantages Disadvantages 

Wearable 

Sensor 

Obtain the measurements 

directly from the user. 

Not effected by noise resulted 

from light and sound  

Not applicable when the robot 

works in social area since it 

needed to let each person to wear 

the device 

Voice 

recognition 

Easy and natural interaction 

method. 

The robot could be trained for 

a wide range of commands 

Not suitable to detect humans on 

large distances.  

Can’t provide more information as 

the distance of human(s).  

Not suitable in social environment 

in which include voice noises 

Can’t distinguish the voice of 

different humans. 

RGB Provides rich information 

which could be used in other 

tasks as obstacle detection 

Cheap sensors 

 

Requires high processing 

Additional landmarks could be 

required to distinguish the human 

Kinect Provides different HRI as 

voice, gesture, and face. 

Low cost, with low 

computational cost 

Affected by the vibration which 

lead the sensor to lose the skeleton 

frames 
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Moreover, this sensor could be used for collision avoidance for mobile robotics. 

Thus, in this research, the Kinect sensor is adopted to serve the task of human-robot 

interaction.  

Table 2.6 summarizes the common methods for the gesture recognition using the 

Kinect sensor. From the literature survey, it is noticed that the most methods which 

are followed in gesture analysis are related to monitoring the angles between the 

body’s joints. These methods are suitable when the Kinect is fixed in static position, 

and facing the human face to face. In the real work environment, the robot will meet 

the human with different angle of views; the human could meet the robot face to 

face, or deviated with certain angles from the front plane of the Kinect sensor. Thus, 

the previous methods won’t help, because the angles will be different. Thus, it is 

expected that using machine learning and artificial intelligence will improve the 

gesture detection if the models are trained with suitable training samples. Thus, two 

models are selected in this research (Support Vector Machine, and Back Propagation 

Neural Networks), and the performance of each model is analysed and compared. 

Moreover, the models were trained using samples with different angle of views, to 

enable the HRI system from defining the gesture even when the human and the robot 

are not located face to face. 

 

2.3 Collision Avoidance for Indoor Mobile Robots 

Collision avoidance is a primary requirement for any robotic system. Many methods 

are used in mobile robotics for avoiding dynamic and static obstacles. Some 

methods generate obstacle-free path using control theory algorithms such as PID and 

Fuzzy Logic controllers. Others take into consideration the robot’s dynamics. In 

contrary, reactive collision avoidance methods avoid the obstacles using the 

information provided by the robot’s sensor only, without care about the robot’s 

Table 2.6: The comparison of different HRI methods based on Kinect and gesture 

recognition 

Method Success Rate 

Analysis the angular displacement of the arms [63] 83.33% (waving) 

96.67% (pointing at) 

Extracting the joints’ angles of the skeleton [64] 92% 

Law of cosine [65] 96% 

Histogram of Oriented Velocity Vectors [66] 88.75% 

Hidden Markov Model [68] 98.4% 
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dynamic. Here is a review for the common methods of collision avoidance, which 

could be found in mobile robotics: 

Fuzzy logic is a control algorithm which is developed by Lotfi Zadeh (1965) to 

control the systems based on the “degree of truth” rather than the “crisp values” in 

which the variable values are either “0” or “1”[75]. This controller has been used in 

many obstacle avoidance systems.   

Lee et al. used a fuzzy controller for navigation and obstacle avoidance in unknown 

environments using ultrasonic and compass sensors [76]. The system is divided into 

three layers: The orientation layer (OL) which controls the robot to reach the goal 

destination when no obstacles are existed in its path, the obstacle avoidance layer 

(OAL) which modifies the robot’s movement in the case of obstacles, and the 

human control layer which has the highest priority, and enables the human to control 

the robot. Each of OL and OAL represent a fuzzy controller, and the control output 

of the robot is the fusion of the outputs of the both layers. The human control layer 

represents a remote control panel which could be used by the human to control the 

robot, and it has the highest priority over the other two layers. The experiments 

show that when the path has no obstacles, the robot will be dominated by OL to 

reach the goal, when the robot faces an obstacle, the robot will start decreasing its 

speed and modifying its path due to the effect of the OAL layer, with the ability of 

the human to interrupt the movement and control the robot at any time [77], [78] 

[79].  

Bug algorithm is one of the early work in the field of obstacle avoidance for mobile 

robotics [80]. Two algorithms are proposed: Bug1, and Bug2. In Bug1, the robot 

moves toward its goal location till it hits an obstacle. The robot will then implement 

a complete travel around the obstacle, parallel to its boundaries till it reaches again 

to the point that it hit the obstacle. If the goal is reached, the algorithm will stop, else 

the robot will select the leaving point which has the shortest distance to the goal. In 

Bug2 algorithm; instead of implementing a complete navigation around the obstacle, 

the robot will move in parallel to the obstacle till it meets again the straight line 

linking the starting point and goal point. It will then stop moving around the 

obstacle, and direct itself to follow the starting-goal line. The experiments show that 

each algorithm has some advantages and limitations. The performance that each 

algorithm provides varies basing on the geometry of the path and the obstacle 

distributions. Bug2 algorithm shows a faster performance than Bug1 when the robot 

navigates in open and wide paths, since it doesn’t need to implement a complete 

turnaround the obstacle as in Bug1, rather it will leave the obstacle soon when it hits 

the leaving line. On the other hand, Bug1 algorithm shows faster performance when 

the robot has to move in Maze paths, since the Bug2 will circulate several times till 
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it reaches the goal as it could be seen in fig 2.12-c. Moreover, the Bug1 algorithm is 

more conservative than Bug2. 

In methods, which are related to the robot’s dynamics, the robot specifies the 

location of the obstacles, then it implements the obstacle avoidance path basing on 

the robot’s dynamics as velocity and acceleration. Dynamic Windows Approach 

(DWA) is a well-known algorithm in obstacle avoidance [81]. In this method, the 

robot identifies the location of all obstacles in its path; then it will calculate the 

whole admissible linear and angular velocities. The admissible velocities are the 

velocities that the robot can use with the ability to decelerate and stop before 

reaching to the closest obstacle. The robot will then consider only the velocities that 

the robot can reach given the acceleration limitations of the robot. Fig 2.13 shows 

how the robot specifies the admissible velocities for a given work area; the grey area 

                
(a) Bug1                          (b) Bug2                                                 (c) Maze path 

Figure 2.12: The motion of the robot for the Bug1, Bug2, and Maze path [80] 

 

Figure 2.13: The representation of velocity space in DWA [81] 
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represents the non-admissible velocities that the robot mustn’t use. Finally, the robot 

optimizes its velocities by taking into consideration the target direction, and the 

distance of each obstacle from the robot [82]. The experiments show that the robot is 

able correctly to avoid the obstacles and move in narrow corridors without 

oscillations. Furthermore, tuning the parameters of optimization equation plays a 

major rule in the motion of the robot. 

Claes et al. presented a new method for multi-robots collision avoidance [83]. Each 

robot should calculate its position and velocity, and then a communication network 

is used to exchange the data of position and velocity. The robots will calculate the 

admissible velocities that each of them can use without collision. The research 

focuses on solving the corridor problem, when two robots are moving in the same 

corridor. Since each robot is moving, the collision avoidance system should be 

reactive to update its motion, and to inform the other robots about its direction. Each 

robot exchanges the uncertainty to specify the movements, which each of them 

should implement to pass the corridor. The experiments were done over two 

Turtlebot robots in a narrow corridor (around 140cm); the diameter of each robot is 

33.5cm and proved the ability of these robots of passing each other without collision 

[84].  

Reactive collision avoidance methods are those, which are based merely on the 

sensory information rather than the robot’s dynamics. In these methods, the robot 

uses the sensor’s reading to update its orientation and avoid the obstacles. Examples 

of reactive methods are potential field [85], vector field histogram [86], nearness 

diagram [87], smooth nearness diagram, and follow the gap [88].  

Potential field local path planning which is developed by O. Khatib in 1985 is one 

of the early real implementation related to obstacle avoidance in robotics [85]. In 

this method, the goal location and the obstacles practice attractive and repulsive 

fields over the robot. The goal location tries to attract the robot to it, while each 

obstacle tries to push the robot away from it. The combination of all fields which 

effect the robot, will lead the robot to move away from the obstacles, and move 

toward the goal location. Unfortunately, this method is suffering from local minima 

problem in which the robot will get stuck when the robot got into U shaped 

locations, besides to the oscillating motion of the robot in narrow corridors. Fig 2.14 

shows the concept of the potential field.  
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In 1991, Borenstein et al. developed a new method for collision avoidance by 

representing the obstacles in a histogram [86]. This method is called Vector field 

histogram (VFH).  In VFH, the robot divides the sensed area into sectors; in each 

sector, the robot measures the distance of the obstacle inside this sector. In a next 

step, the sectors are plotted as a histogram which each bar of it describes the 

distance between the robot and the obstacle existed in the specified sector. The 2D 

histogram is mapped then to a one-dimensional polar histogram around the robot as 

it could be seen in Fig 2.15. A candidate valley is a group of sectors that are less 

than a certain threshold which represent a possible free area that the robot can 

navigate in it. The robot will finally select the valley that is closest to the goal 

location. The experiment is done by using a mobile robot with a diameter 0.8m, and 

several obstacles are distributed in the work area with a spacing around 1.4m. The 

 

Figure 2.15: The polar representation of the VFH and the direction selection [86] 

 

 

 

Figure 2.14: The general concept of potential field method 
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robot used ultrasonic sensors to detect the obstacles, and the velocity is set to 

0.58m/s. The robot could successfully create the polar histogram for obstacles’ 

distribution after each measurement update, and it reached to the goal without 

collisions. On the other hand, the method is still suffering from dead-end situations 

(as U shaped obstacle) which lead the robot to move around in circular paths without 

the ability to implement a path out of the trap. Another improvements were added to 

the method such as VFH+ [89] and VFH* [90].  

Nearness Diagram is a reactive collision avoidance method which is developed by 

Minguez in 2004 and follows the divide and conquer strategy in implementing the 

local path planning [87]. In this method, the work area is represented in sectors; each 

sector represents the nearness of the obstacle from the robot within this sector as it 

be seen in Fig 2.16. The robot defines the gaps which represents a border line 

between two adjacent sectors that the absolute difference between them is greater 

than the robot’s diameter. Two adjacent sectors represent a region. Basing on the 

region distributions, nearness of obstacles to the robot, and the wideness of the 

regions, the robot will select one of five situations which to calculate the angular and 

linear velocities which allow the robot to avoid collision with the obstacles. The 

experiments are done over a mobile robot with a diameter 0.48m, which is equipped 

with a laser rangefinder sensor, and a maximum velocity 0.3 m/s. The robot could 

avoid obstacles keeping a distance 10cm from it. The time required by each path is 

related to the density of obstacles and their nearness to each other, since the robot 

will adjust its velocity based on the situations that it will face during its navigation 

to the goal. Furthermore, the robot didn’t face the deadlock problems when it 

avoided U shaped obstacles, and it doesn’t have local minima problems. An 

improved version for the ND was implemented which added additional situation to 

the previous ND method, and called ND+ [91].  

 

Figure 2.16: The representation of obstacles, gaps, regions, and valley in nearness 

diagram [87] 
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Smooth nearness diagram (SND) is an improved version of the ND+ method, and 

developed by J. Durham in 2008 [92]. The main goal of the improvement is to 

simplify the ND method by using single law which is valid for the whole scenarios 

that the robot faces instead of using six scenarios. After detecting the regions, and 

selecting the valley, the method defines three angles: the safe rising gap 𝜃𝑠𝑟𝑔, which 

is the calculated angle from the selected gap; the 𝜃𝑚𝑖𝑑𝑑𝑙𝑒 which is the angle that 

directs the robot to the middle of the selected valley, which is important to access 

the narrow valleys, and the desiring heading angle 𝜃𝑑 which is equal to 𝜃𝑠𝑟𝑔 or 

𝜃𝑚𝑖𝑑𝑑𝑙𝑒 whichever the closest angle to the angle of the rising gap. Fig 2.17 shows 

the concept of the SND. The experimental results show that the SND completed a 

given narrow path successfully within 135 seconds, while the ND+ crashed with the 

last obstacle in the same path and it required 254 seconds to finish it. Furthermore, 

the experiments show a smoother path by SND than ND+, due to the transitions 

between situations implemented by ND+. In [93], it is shown that the SND suffers 

from the deadlock problem which occurs since the method calculates the total 

weighted deflection despite of the obstacles’ distribution. Thus, when the robot 

moves in narrow path and more obstacles in one side than the other side, the 

calculation of deflection will lead the robot to move far away from the side with 

higher risk, causing the robot to collide with the obstacle with lower risk. 

In 2010, Mujahad et al. presented a new collision avoidance system based on the 

ND and SND methods called “Closest gap”(CG) [93]. In this method, instead of 

evaluating the whole gaps, the robot will ignore the gaps that are included into other 

gaps. Furthermore, the method tries to overcome deadlock problem which is faced in 

SND, by distinguishing between the obstacles to the right and left sides of the robot, 

and calculate the deflection issued by the obstacles located at each side and then 

calculate the total net deflection resulted from the right and left deflections. The 

experimental results show that the proposed method has smoother trajectory than the 

ND and SND which caused by the motion oscillation of the robot when it tries to 

plan its path to the goal, besides to avoiding the deadlock problems. Furthermore, a 

 

Figure 2.17: The concept of implementing collision-free path using SND method [92] 
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simulation is done to compare the time required by SND and CG, and it shows that 

the SND could reach the goal in 140s, while the CG reach the goal with only 125s.  

Kim et al. presented a collision avoidance method based on extracting the borders 

of the path, and the location of obstacles in the path [94]. The robot uses CCD 

camera to extract the boundaries of the lane that it navigates through. These 

boundaries meet in a point called vanishing point as it could be seen in Fig 2.18. 

Extraction of the continuous lines is implemented using Hough transform; while 

boundaries recognition is implemented by RANSAC algorithm. The robot uses the 

vanishing point to guide itself through the path. When the robot meets an obstacle, it 

will calculate the steering angle taking into consideration the angle of the obstacle, 

and the angle of the vanishing point. When the robot avoids the obstacles, it will 

direct itself to meet the vanishing point and resume its path. The experimental 

results show that the method has a better performance than DWA and VFH in case 

of travelling time, and travelling distance. 

Hagiware et al. presented the use of Kinect sensor in navigation and obstacle 

avoidance for the indoor mobile robots [95]. The robot records the path that it will 

follow, and then it will detect its position and avoid obstacles by comparing the 

captured frame with the recorded frames in its memory using three steps. In the first 

step, the robot implements view matching by searching for the most similar recorded 

frame to the current frame using SURF algorithm. In the second step, the robot uses 

ego-motion algorithm to for estimating its relative linear and angular distances 

between the recorded frame and the captured one, and the rotational and positional 

vector of the robot is then extracted. When an obstacle is detected in the path, the 

robot will calculate its position and the position of the obstacle by comparing its 

current frame to the stored frames, and implement a diagonal collision-avoidance 

path around the obstacle. The experimental results show that the robot is able to 

estimate its location even when it strays from its recorded path, with the ability to 

avoid the obstacles that it faces in its path. [96 - 105].  

 

 

Figure 2.18: The vanishing point-based navigation [94] 
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To summarize the obstacle avoidance algorithms, table 2.7 shows the advantages 

and limitations of the most common methods in obstacle avoidance for mobile 

robotics; while table 2.8 shows the common sensors which are used to detect the 

obstacles located in the path of the robot.  

Table 2.7: Comparison between collision avoidance systems 

 Advantages Limitations 

Bug1 Doesn’t suffer from local 

minima problems 

Reliable method to reach the 

goal location  

 

Turning around each obstacle 

causes the method to be slow 

[106] 

Bug2 Doesn’t suffer from local 

minima problems 

Faster than Bug1 in most 

situations. 

 

The method shows low 

performance in maze paths. 

[106] 

PF The integration of the whole 

obstacles together with the goal 

location to generate the 

collision-free path  

Trap situation “local minima” 

[107] 

Oscillations in narrow 

corridors [107] 

VFH Insensitive to misreading of the 

sensors [86] 

Fast computation with fast 

motion [86] 

Difficult to tune threshold “a 

threshold which is good for 

cluttered path, not good for 

obstacle-free path” [87] 

Low performance with close 

obstacles [93] 

DWA Takes into consideration the 

robot’s physical limits 

(velocities, accelerations,...) 

[81] 

Experimental results show good 

performance for the method. 

Difficult to tune the parameters  

Problems in avoiding the U-

shaped obstacles [87] 

ND/ND+ Doesn’t require tuning (one 

parameter in one situation) [87] 

The method shows good 

performance in moving in 

cluttered and dense 

environments [87] 

Not suitable for noncircular 

robots [87] 

Changing between situations 

limits the smoothness of the 

path (sharp transitions) [92] 

SND Smoother paths compared to 

ND Single motion law instead 

of six in ND [92] 

 

When the robot faces more 

obstacles in one side than 

other, the method will guide 

the robot far from the side with 

more obstacles causing it to 

collide with obstacles in the 

other side [93] 
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CG Reduced path calculation, 

faster, with less oscillations 

compared to ND and SND [93] 

Remove the gaps that are 

contained in other gaps. 

Overcome the deadlock 

problem. 

Since it is relatively new 

method, no prove for a 

limitation. 

VP Higher travelling velocity 

compared to VFH and DWA 

[94] 

Combine line following with 

obstacle avoidance to generate 

flexible obstacle avoidance 

paths. 

Implemented over straight 

paths, without tests for the 

curved paths with cluttered 

obstacles. 

Works only with vision-based 

sensors 

 

Table 2.8: Comparison between different kinds of collision-avoidance sensors 

 Advantages Disadvantages 

 

Ultrasonic 

Linear Performance 

Easy to program 

Low current consumption 

Can’t detect human body 

Effected by voice noises 

 

 

 

PIR 

Human detection 

Low power consumption  

Doesn’t provide rich 

information about the body 

location and distance. 

Passive sensor. 

Effected by ambient light. 

 

Vision sensors 

(Eye cameras for 

the H20 robot) 

Low cost 

Contains many data about the 

environment 

Difficult to program 

Requires high computations 

 

Kinect 

Could be used as vision sensor 

Gesture Recognition 

3D vision (with depth) 

Could be used for human-robot 

interaction and obstacle 

detection. 

Effect of ambient lights 

High power consumption 

Depth camera can’t detect 

obstacles located < 50 cm 

from the robot 

Noises over the skeletal 

frames resulted from robot’s 

vibration 

LRF Accurate sensor with robust 

obstacle detection.  

Could be used for localization 

and mapping.  

Can’t detect transparent 

obstacles.  

 

 

In conclusion, many collision avoidance systems are proposed for mobile robots. 

Each of them shows advantages with some limitations under certain conditions. 



Chapter 2  Current State of Research and Technology 

30 
 

Moreover, different sensors are used in detecting the obstacles in the work area. It 

could be seen that most of the collision avoidance methods gave much more focuses 

on the static obstacles, with minor experiments over the dynamic obstacles, 

especially the human which are considered as “intelligent” dynamic obstacle which 

will also try to escape the robot by generating collision-free path. This is a short 

come in the majority of the obstacle avoidance methods. Thus, in this work new 

concepts will be proposed for the task of collision avoidance in the existence of 

human in the same work area. The concepts will consider that both the human and 

the robot have to incorporate in generating the collision-free paths, so they can avoid 

each other safely.  

Since the proposed collision avoidance system will be based on the interaction 

between the robot and the human, the Kinect 2.0 sensor will be used in this work for 

detecting the human and get the gestures from them. The Kinect 2.0 is a 3D sensor, 

which has two cameras (RGB and Infrared) enabling the robot from identifying the 

objects and human’s skeletons, which are existed in the area. Skeleton frame 

provides the skeletal information of up to six human whom are located in the vision 

area of the sensor. The detailed information regarding the proposed system together 

with the implementation and experiments are shown in chapter 6.  
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3.1 Background and Work Description 

The new technologies which appeared in the last few decades, changed the 

techniques and work methods in different work sectors, and boosted the production 

speed and quality. Laboratory is one of the work places which affected by these new 

technologies [6]. Engineering changed drastically the fundamentals of preparing and 

handling samples, with decreasing the processing time, and costs. This includes 

sample processing and sample management [108], sample handling [8], laboratory 

management [109], and robotics [110]. 

For any industrial product, the materials have to be processed and handled by 

different machines, and transferred between these machines as fast as possible to 

decrease the processing time and increase efficiency. Actually, conveyor belts and 

robotic arms are widely used nowadays in manipulating the products, in chemical 

laboratories as example. On the other hand, there is a dilemma of manipulating these 

samples between different laboratories. Thus, one of the important link in the 

integration chain is a global transportation system which is able to manipulate and 

transport the different samples between these laboratories at any time. Such system 

must be flexible so it can be easily modified to meet the adjustments in work area as 

adding/removing laboratories or adjusting the pick and place locations. Furthermore, 

the system has to be secure so it doesn’t cause accidents or failure during the 

manipulation tasks. 

Fortunately, the fast achievements in the field of indoor mobile robotics bring a 

promising solution for bridging the gap of mobile transportation of samples and lab 

ware between the laboratories without the need for human help.  

In mobile robotics, several tasks have to run in parallel to guarantee a smooth and 

safe operation for the robots during implementing the transportation tasks between 

the laboratories. A global map for the work area is required for any mobile robot, to 

enable the robot to define the goal location and the locations of other waypoints as 

charging or grasping locations [12]. Furthermore, the robot must be able to localize 

Chapter 3 
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itself robustly within the global map despite of the noises which may affect the 

sensor’s measurements [111]. The robots will work side by side to human; they 

must be able to recognize the human, interact with them, and obey the orders given 

to the robot via interaction [112] [113]. Moreover, the robot must be able to avoid 

the collision with the human located along its path using local path planning 

strategies [12]. Also, the robot has to define the objects that it has to transport, grasp 

them using its arms, and place them in the right locations [13]. Finally, the robot 

must be able to work 24 hours, which means that they have to be able to reach the 

charging stations and charge themselves autonomously [114]. Fig 3.1 shows the sub-

systems which are working in H20 robots, and which allow the robot to grasp 

objects, transport them safely between different floors, interact with humans, avoid 

collisions by modifying its path temporally, besides to communicate with the 

process management system to receive the transportation requests and send reports 

to the process management system regarding the robot situation.  

For achieving the research goal (secure navigation), it should be taken into 

consideration implementing a robust localization and mapping system which is able 

to accurately localize the robot under different work conditions. Furthermore, it 

should be taken into consideration that the work environment includes robots which 

are working side by side with humans. Thus, safety is a major challenge to make the 

manipulation system applicable. 

 

Figure 3.1: The integration of robotic tasks into the H20 robot 
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From the previous discussion, it will be clear that any implemented system won’t be 

applicable without being integrated with the other systems. Only this integration will 

guarantee a successful transportation system based on mobile robotics. For instance, 

the robot will move to the goal location based on the global map as long as no 

obstacles are existing in the work area. When a person appears, the collision 

avoidance and the human robot interaction systems must be activated and control the 

robot and implement a local path to avoid the collision with the human, and return 

the control to the global navigation system when no human are existing in the path.  

The aim of this research is to improve the safety of the mobile robots which are 

working in social environments, by finding robust sensors and developing 

algorithms to enable the robots to identify their location, recognizing the 

surrounding environment and interact with the changes in the environment by 

modifying the behaviour in response to these changes. This work focuses on three 

aspects, which are necessary for a safe navigation for indoor mobile robots, which 

are localization, human-robot interaction, and collision avoidance. Fig 3.2 shows the 

H20 humanoid robot, which is used in this dissertation for testing and 

improvements.  

Figure 3.2: The structure of H20 Mobile Robot [115] 

The H20 humanoid mobile robot has dual arms with 6 degree of freedom (DOF); a 

moving head with 6DOF and two RGB cameras. The maximum speed of the robot is 

0.75 cm/sec. Moreover, the robot is equipped with a GPS localisation sensor based 
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on IR technology, 5 sonar sensors for collision avoidance tasks, 10 IR range sensors, 

and two passive infrared sensors PIR. Furthermore, the robot is equipped with a 

powerful on-board computer, with Kinect 2.0 sensor, and additional batteries to 

power the Kinect sensors. 

3.2 Improving the localization of indoor mobile Robots 

For any mobile robotic system, robots require a map of the work environment, and 

they need to identify their location in real time within this map. Any error in the 

localization system could lead the robot to lose its location, and move in wrong 

directions, which might lead to accidents. It could be seen from the previous 

literature survey, that many localization methods are available for the mobile 

robotics, and each has its limitations and advantages. Furthermore, most of these 

methods require algorithms and further processing for the sensory data. A good 

selection for the localization system depends on the application and the work 

environment. 

In general, the localization sensors can be divided into relative sensors and absolute 

sensors. In relative sensors, the updated measurement will be based on previous 

ones. Thus, the error in any step will affect the following measurements, and this 

will lead to an accumulation of the errors, and the measurements will be totally false 

after a time. Examples of relative sensors are encoders, inertia sensors, and dead-

rocking sensors. In absolute sensors, the sensors don't have accumulated errors; they 

provide measurements basing on the current state, without the need for previous 

knowledge of the location. On the other hand, the error in this kind of sensors will 

be instantaneous, and could cause accidents when the robot fails in correctly detect 

its location. In this work, StarGazer sensor from Hagisonic company (South Korea) 

is selected for the localization and mapping [45]. This sensor is based on infrared 

technology, and it is belonging to absolute sensory family. The sensor is composed 

of an electronic chip which has an infrared camera and a group of infrared emitters, 

and passive landmarks which are distributed over the work area. The sensor works 

on analysing the received infrared beam from passive landmarks to obtain its 

location. Unfortunately, this sensor is affected by light noises resulting from sunlight 

and florescent lights. When the robot moves in noisy areas, the sensor will falsely 

define its location in the global map. Fig 3.3 shows an example of a scenario for 

false detection of a landmark for a certain period of time. The robot will start 

moving from location 1 to location 2, and then it will move to location 3. Supposing 

that the location 3 includes light noises, the robot will fail to detect the correct 

location of the robot, and it will suppose that it is in location 6 as example. 

Consequently, this will lead the robot to adjust its path to direct itself to the next 

waypoint following location 6, while it is still in location 3.  
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To overcome this problem, the measurements of the StarGazer sensor must be 

filtered to check the false measurements, and provide estimation for the location of 

the robot under these noisy areas, to allow the robot from keeping its movement to 

the goal location. In the literature survey, it is shown that the false detection doesn’t 

always follow white Gaussian noise, so implementing recursive filters such as 

Kalman filter won’t provide accurate estimation for the robot’s location. Thus, a 

modified Kalman filter is applied to the measurements of the StarGazer sensor. In 

this work, the adjusted filter will monitor the false measurements which are far from 

the expected location of the robot, and remove it before implementing the Kalman 

filter over the measurement. This filter uses the history measurements to predict the 

location of the robot. When a new measurement is far from the predicted one, the 

filter will know that this value is wrong, and the robot will use the predicted 

measurement to keep moving in its path till the robot moves away from the noisy 

location. 

 

3.3 Human-Robot Interaction 

Human-Robot Interaction (HRI) can be defined as the ability of a robot to recognize 

the human, interact with them, and implement suitable activities as a response for 

the interaction. The task of HRI varies; it could be used to teach the robot how to 

implement certain tasks as it could be found widely in cognitive robotics; others 

employ the HRI to help the human in their daily life as it could be seen in human-

 

Figure 3.3: False detection of landmark 



Chapter 3 Goals of the Dissertation and Realization Concepts 

36 
 

assistive devices/robots, and in robotic arms which work with human in assembly 

lines. Social robots also use the HRI to express the emotions either via voice 

sentences or via physical behaviors as moving the head, eeyebrows, and mouth; and 

the interaction which aims to control the motion of the robots and its behaviour.  

For any engineering system, safety has the highest priority which the system has to 

achieve. Furthermore, these systems must be equipped with facilities that enable the 

human from interrupting the system and control it when needed. Such as stopping 

the system, or controlling it in emergency situations.  

In mobile robotics, robots will navigate in social environments, and they have to 

guarantee the safety of the human who are working in the same area, by recognizing 

the humans, interacting with them when needed and avoiding physical accidents to 

them. Moreover, and as an engineering system, the robots must be controllable, and 

interruptible by human when needed.  

In the literature survey, there is no research took into consideration these concepts; 

researches focused either on implementing collision avoidance systems which allow 

the robot from navigating in narrow, cluttered areas with distributed obstacles, or on 

implementing human-robot interaction systems that don’t serve the task of secure 

operation.  

In chapter 2, it is shown that the collision avoidance serves as a local path planner; it 

allows the robot from adjusting its path temporary to avoid the collision with the 

obstacles that are located in the detection range of the sensor. The majority of 

collision avoidance systems handle the human as a dynamic obstacle, without taking 

into consideration the reality that the human “as an intelligent moving object” will 

also try to adjust its movement to avoid the robot. Fig 3.4 shows a scenario when the 

robot and human meet in a certain location. It could be seen that the robot will adjust 

its path trying to avoid the human on its right/left. Simultaneously, the human will 

also try to avoid the robot, so he will adjust its path to avoid the robot taking the 

left/right direction. This will make both the robot and the human confused about the 

motion direction that the other will follow.  

In some scenarios, the human might have better information regarding the obstacles 

that are located in the path, and if he can interact with the robot, he might give it a 

better direction for implementing the collision-free path. As example is when a 

group of human are located in the path of the robot; then with the previous collision 

avoidance systems, the robot will try to avoid the human autonomously, and this 

will confuse the human who are located near the robot. If the human is able to 

interact with the robot, and provides the direction of the collision avoidance to it, 
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then the robot and the human will know the behavior of the other and the direction 

that each of them will follow.  

 

In bottleneck problem which is described in [104], it is likely that the robot and the 

human meet in a narrow corridor or in small locations so it is not possible for any of 

them to keep moving. Most researches proposed systems for enabling the robot to 

recalculate its path and adjust it autonomously with the goal of avoiding obstacles. 

Consequently, when the robot meets human in a narrow area which is not wide 

enough for avoiding each other, the robot will either stop, or keep moving and 

collide with the human. Thus, the HRI will allow the human to interact with the 

robot, and adjust its motion temporarily. The user can ask the robot to move forward 

or backward for a certain distance, till the robot reaches a wide location which is 

enough for the human to avoid the robot and keep moving.  

In this work, the HRI will be employed to serve the task of secure operation of the 

indoor mobile robots to guarantee the safety of the human and the robot, by 

providing the facility for the human to interrupt the motion of the H20 humanoid 

robot, and modify its motion in certain situations as guiding it to a certain location, 

or to cooperate in avoiding collision when both of them located in narrow corridors 

or in cluttered environments. 

In this method, both the human and the robot will share the responsibility of 

avoiding each other via interaction. The robot will execute the motion orders issued 

by the human via interaction. When the robot meets human in its path, it will receive 

the orientation, which the robot must go to avoid the human. This will guarantee that 

both the human and the robot know to which direction they have to go to avoid 

 

Figure 3.4: The conflict in generating collision-free path between the robot and the 

human 
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collision. Furthermore, it is taken into consideration the distraction of human while 

he gives orders to the robot. This is done by limiting the interaction to a single 

person, and reading several gestures from the human for a certain period of time, 

and executing the order when the whole gestures which are taken within this period 

are identical.  

From the literature survey, the HRI could be classified into three categories:  

 The physical HRI: the robot obtains the interaction information from the 

human using contact sensors which are in contact to human as wearable 

sensors, and touch sensors. 

 The non-contact HRI: the robot gets the interaction information from the 

human without contact as gesture and voice recognition methods, using 

microphones, RGB, 3D and LRF sensors.  

 A combination of the two previous methods: as fusing the sensory 

information of LRF and wearable sensor. 

Since the interaction will serve the collision avoidance and human safety, it is 

required to use a sensor which is able to detect the human and interact with them 

remotely. Thus, the Kinect sensor is chosen for this work. This sensor provides 

skeleton frames to the robot with a 3D description for the joints’ positions, without 

describing the activities that a person is doing. Thus, the robot has to process the 

joints’ orientations of each person in the skeletal frames provided by Kinect sensor 

to extract and define the activities that the human is doing and implement the correct 

response for these activities. 

In literature survey, many methods were used to classify the gestures using the 

Kinect sensor; each of these methods has its limitations and advantages. In methods 

which depend on analyzing the relative positions of the joints, and the geometry 

analysis of the joints’ angles will provide fast recognition of the gesture. On the 

other hand, such methods are sensitive to the angular displacement of the human; 

when the human and the robot are not located face to face, the angles between the 

joints will be distorted, and the HRI system will fail in detecting the gesture. Thus, 

in this thesis, machine learning and artificial intelligence algorithms were adopted to 

train the models to detect the gestures of human even if they are not located face to 

face with the robot. Two algorithms will be used and compared to classify the 

gestures of the users. The first algorithm is Support Vector Machine (SVM), and the 

second algorithm is Back Propagation Neural Network (BPNN). These two models 

will be trained and employed to classify the joints’ coordinates of each person 

detected by the Kinect sensor. Then the performance will be compared to select the 

suitable one for classifying the gestures.  
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SVM is a machine learning method, which is based on statistical learning theory 

(Vapnik 1995) [116], [117], [118]. Briefly, the SVM principle is based on 

classifying the data into classes using separation planes. When the data is not 

linearly separable, the SVM maps it into a higher dimensional space using kernel 

functions as Gaussian, radial basis function, and Polynomial kernels, and then the 

model searches for the optimal hyperplanes which are able to separate the mapped 

data.  

Back Propagation Neural Network is a supervised learning algorithm which is used 

in several applications as in pattern classification, pattern recognition, and image 

processing. The network is composed of three layers: Input layer, hidden layer and 

output layer [119]. Each layer includes several neurons. Each neuron existed in a 

certain layer is interconnected with each neuron in the following layer with a 

weighted connection. Furthermore, each of the neurons in the hidden and output 

layer has an activation function which stimulates the neuron to provide the output. 

To train the network, a set of training data is used to tune the weights of each 

connection. The training samples are applied to the input neurons, and the output is 

compared with the expected output to calculate the error. This error is propagated 

backward to update the weights of each connection to decrease the model error.  

To use SVM and BPNN in real applications, the models have to be trained before 

using them in classifying the gestures of the users obtained by the Kinect. Cross 

validation techniques are statistical learning algorithms which split the available 

training data into two sets: training set, and testing set. The training set is used to 

train the model, while the testing set is used to validate and analyze the trained 

model, to check how its performance before putting it into real application. The K-

fold cross validation method will be used in this work to train the model. In this 

method, the training set is divided into equal subsets. At each training cycle, a subset 

is selected as testing set, while the remaining data will be used to train the model. 

Further details will be described in chapter 5.  

After extracting the gestures and classifying them by the HRI system, the robot has 

to implement suitable responses for each order issued by the user via interaction. In 

this thesis, the interaction aims to guarantee the safety of the human, and avoid the 

collision and bottleneck problems. The orders “move forward/backward” will allow 

the robot to move toward/against the position of the user; the orders “move 

right/left” will order the robot to search for the collision avoidance paths to the 

right/left of the user; “stop” will make the robot keep stopped; and “master select” 

which will be used to limit the interaction to one person in a group. Further details 

can be found in chapter 5.  
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3.4 Collision Avoidance for Indoor Mobile Robots 

Collision avoidance is a basic requirement for any robotic system, to guarantee the 

safety of the robot and the human from physical accidents which could occur when 

both of them meet in the same path.  

Different collision avoidance systems have been implemented for mobile robotics. 

Many of these systems proved their validity in avoiding static and dynamic 

obstacles, and navigating in cluttered environments. Nevertheless, most of them 

handle the human as dynamic obstacles, rather than as “intelligent obstacle”. This is 

a short come since the human will also try to find a collision-free path, and this 

could cause a confusion due to the lack of knowledge regarding the direction that the 

other will take.  

Out of this, a two-level collision avoidance system has to be implemented, which 

takes into consideration the human obstacle as an “intelligent obstacle”. The system 

gives a common responsibility for both the robot and the human in avoiding each 

other. The method has two levels:  

 Cooperative Collision Avoidance: When the robot meets a person in the path, it 

will ask the human via voice messages for interaction to supervise the collision 

avoidance process. The user in this case will be delegated by the robot to select 

what it has to do. The user will then be able to order the robot to either move 

forwards/backwards when they are located in narrow paths, or to move right/left 

so the robot generates collision-avoidance path to the right/left of the user. In this 

case, both the robot and the human know the motion of the other, and this avoids 

a conflict when each one moves independently from the other. 

 Autonomous Collision Avoidance: If no human interacted with the robot for a 

certain period of time, the robot will calculate the collision avoidance path 

autonomously, taking into consideration finding the closest collision-free path to 

the goal location.  

To realize these concepts, a robust collision avoidance system is implemented. In 

this system, the robot will search for the whole navigable regions that are wide 

enough to allow the robot from passing the human safely, taking into consideration 

the width of human and the robot. Furthermore, the system will provide two 

collision avoidance options: autonomous and cooperative. 

The robot will stop and ask the human to interact with it; allowing a time period 

3000 ms for the human to implement the interaction. If a user raises the right arm 

vertically (180°) for a period around 400ms, the robot will know that it has to 

interact with this user and execute his requests provided via the interaction, and the 
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robot will switch to cooperative collision avoidance. Thus the selection of the 

collision-free path will be based on the direction provided by the master.  

If no human interacted with the robot within the given period of time, the robot will 

switch to autonomous collision avoidance. Thus, it will select the region that it will 

generate the collision avoidance path across it basing on the next way-point that the 

robot has to move based on the global map. 

Finally, the collision avoidance system is equipped with a velocity controller which 

adjusts the robot’s linear and angular velocities based on the width of the region that 

it will pass. The controller will decrease the robot’s velocities when the selected 

region is narrow, and vice versa, and this will promote the performance of the 

collision avoidance system. 
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4.1 Introduction  

Localization is defined as the ability of the robot to estimate its position given a map 

of the environment [120]. For successful indoor robot navigation, the robot requires 

a map building for the workspace, and sensors for specifying its position within this 

workspace. If a robot loses its position within a work environment, then it is 

probable that fatal accidents occur, like colliding with walls or doors. In life science 

laboratories, accurate localization is critical, due to narrow corridors and small free 

spaces, which don’t enable robots to have wide localization tolerances. 

Furthermore, accurate localization is important to make sure that robots are able to 

reach pick-and-place stations, elevators, and charging places. The accurate 

localization will be based mainly on selecting suitable sensors, which meet the 

requirements of the work area, as specifying the possible disturbances, which may 

exist in the place. There is a wide option for sensors, each has its benefits and 

limitations, and a good selection for sensors must take into consideration the 

application requirements. 

For example, in life science laboratories, it should be taken into consideration that 

these laboratories are subject to electromagnetic noise, ambient light, the existence 

of narrow corridor and small free spaces, besides to the need to modify the 

navigation map due to a change in the work environment etc. Based on the previous 

survey, the StarGazer sensor (Hagisonic, South Korea) is selected for the tasks of 

localization and mapping [45].  Fig 4.1 shows the principle of the sensor. 

The sensor is equipped with an array of IR emitters, and an IR camera positioned in 

one circuit. Furthermore, a collection of the passive Landmarks is distributed along 

the navigation area in celisca. The passive landmarks are composed of 4x4 points, 

which have a high reflective ability for IR beam. Each landmark has its unique ID 

based on the points’ distribution over the landmark. Figure 4.2 shows the StarGazer 

sensor and the landmarks. The StarGazer emits the IR beam to the landmark, which 

in turn reflects the IR beam back to the StarGazer. The IR camera and the integrated 

circuit analyses the camera’s data to obtain the position and orientation of the robot.  

Chapter 4 

Localization of Indoor Mobile Robots 
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Figure 4.1: The principle of StarGazer Localization sensor [45] 

From Fig 4.2, it could be seen that the passive landmarks are composed of several 

small circles; each of these circles is composed of a reflective material which is able 

to reflect the IR beam effectively. The StarGazer will then identify the location, 

direction and the landmark ID by analyzing the reflected beam from the circles. The 

StarGazer is able to recognize up to 4095 different landmarks for the landmarks 

which are composed of 4x4 dots. Further information of the sensor could be found 

in appendix 1.  

Figure 4.2: StarGazer sensor and the passive Landmarks 

 

4.2 Improving the StarGazer Localization using Kalman Filter 

As it is mentioned in chapter 3, it is noticed that the StarGazer is effected from the 

light noises which are resulted from strong sunlight, and from the fluorescent lights 

when they are located near the landmarks of the StarGazer sensor. Fig 4.3 shows an 
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example of a noisy path that includes lights which are located near the landmarks, 

and path that is subject to sunlight. When the robot moves in such path, the false 

detection of the sensor could occur and this will lead the robot to lose its location as 

it is explained before in chapter 3, and Fig 3.3. 

To improve the performance of the StarGazer sensor and filter the false 

measurements, Kalman filter is employed for removing the false measurements and 

providing estimation for the robot’s location under wrong measurements. 

Kalman filter is a recursive data processing algorithm; which is able to incorporate 

all provided information. The filter is able to process all the available measurements, 

to estimate the current value of the variables of interest. Furthermore, the filter is 

able to predict the state of the system based on previous measurements. 

The filter has been used in several applications such as rocket navigation [121], 

object tracking [122], wind energy [123], [124], power systems [125], speech 

enhancement [126] etc. 

To implement the Kalman Filter, it is required to model the system dynamics, and to 

know the initial state of the system. The filter is composed of a set of mathematical 

equations [127]:  

�̂�𝑘+1
− = 𝐴𝑘�̂�𝑘 + 𝐵𝑘𝑢𝑘  +  𝑤𝑘    (4.1) 

 

Figure 4.3: The navigation under strong natural and fluorescent lights 
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𝑃𝑘+1
− = 𝐴𝑘𝑃𝑘𝐴𝑘

𝑇 + 𝐺𝑘𝑄𝑘𝐺𝑘
𝑇    (4.2) 

𝑍𝑘 = 𝐻𝑘𝑋𝑘 + 𝑣𝑘     (4.3) 

𝐾𝑘+1 = 𝑃𝑘+1
− 𝐶𝑘+1

𝑇 (𝐶𝑘+1𝑃𝑘+1
− 𝐶𝑘+1

𝑇 + 𝑅𝑘+1)−1  (4.4) 

�̂�𝑘+1 = �̂�𝑘+1
− + 𝐾𝑘+1(𝑍𝑘+1 − 𝐶𝑘+1�̂�𝑘+1

− )  (4.5) 

𝑃𝑘+1 = (1 − 𝐾𝑘+1𝐶𝑘+1)𝑃𝑘+1
−     (4.6) 

Where: 

𝑤𝑘 ∼ (0, 𝑄𝑘) 

𝑣𝑘 ∼ (0, 𝑅𝑘) 

represent the observation and measurement noises, which are assumed to be zero, 

mean Gaussian white noise. 

�̂�𝑘+1
−     State Prediction 𝐻𝑘   Transformation Matrix 

𝑃𝑘+1
−      Covariance Matrix Prediction 𝑢𝑘    Control Vector 

𝑍𝑘         Vector Measurement 𝐴𝑘   State Transition 

𝐾𝑘+1     Kalman Gain 𝑃𝑘+1 Covariance Matrix Update 

�̂�𝑘+1     State Estimation Update  

 

The estimation step of the Kalman Filter is generated basing on the system dynamic, 

while the correction step will be generated basing on the measurements of the 

StarGazer sensor and the estimated state. In [47], it is mentioned that the noise of the 

StarGazer sensor comes from two resources, the noise which is resulted from the 

vibration of the sensor when the robot moves, and the noise which is resulted from 

false detection of the landmarks. Furthermore, it is shown that the first type of noise 

could be considered as a white Gaussian noise, while the second type of noise can’t 

be represented as a white Gaussian noise so the recursive filters such as Kalman 

filter won’t be suitable in filtering the measurements of the StarGazer sensor.  

In the following, additional improvement to the Kalman filter is implemented, to 

cope the problem of the errors that don’t follow the white Gaussian noise. By 

considering that any engineering system can run with certain limits (velocities, 

positions …) that it can’t exceed with a given period of time, so it would be possible 

to detect and delete the wrong measurements that are far from the specified limits of 

the system for a given time period. 
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4.3 The Improved Kalman Filter 

In Kalman filter, when the filter covariance’s and the gain reach the steady state, it 

will be able to smooth the measurements by adding the magnified difference of the 

actual measurement and the estimated one to the estimated measurement, as it can 

be seen from equation (4.5). When a false measurement is forwarded to the filter, it 

will update its parameters basing on this magnified difference. Consequently, if the 

difference is too big, it will affect the performance of the filter, and this could lead to 

unsatisfied results from the filter. 

To implement the Kalman filter, the state estimate is calculated, and then the update 

equation is calculated based on equation (4.5). In most dynamic systems, it is 

possible to identify some certain domains for the monitored parameters when it is 

known that these parameters can’t exceed certain limits for a given time domain. For 

example, in H20 robots, since it is known that the maximum robot velocity is 0.75 

m/s, it is possible to judge that after 1 second, the robot won’t move more than 0.75 

meters in any direction (considering that the robot is moving in indoor environment 

with no sloping paths). 

The proposed method aims to improve the performance of the Kalman filter by 

monitoring the absolute difference between the updated state �̂�𝑘+1 and estimated 

state �̂�𝑘+1
−  or |�̂�𝑘+1 − �̂�𝑘+1

− |. When this difference is out of the known domain, then 

it is possible to neglect the updated state and use the predicted state as the new state 

of the system. Since the updated state used a false measurement. Fig 4.4 shows the 

flow chart for the proposed method. In this case, this adjustment over the filter will 

contribute in providing better results of the Kalman filter [111]. 

An example of the method is the H20 robot, the robot moves in a maximum speed 

75 cm/sec. Thus, considering that the sampling time of the filter is 200 ms, the 

difference between two consequence states shouldn’t exceed 15 cm. Consequently, 

it is possible to ignore the updated state when the difference between the predicted 

and updated states exceeds 15 cm. In other meaning, a measurement is considered 

false when the difference |�̂�𝑘+1 −   �̂�𝑘+1
− | > 15 𝑐𝑚. 

This algorithm can increase the performance of the Kalman filter, since it will 

monitor the updated state and reject it as long as it is out of the specified domain. 

This condition could be justified and tuned for other applications, which use Kalman 

filter for measurements filtration. 
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4.4 Experimental Results 

The experiments were implemented with the Stargazer sensor, using 20 landmarks 

of type HLD1-L, which cover a path of 25 m. The experiments were done in the 

path which is shown in fig 4.3 and tested in different light conditions (fluorescent 

and sun light). In each experiment, the complete distance the StarGazer moved is 

100m. The experiments have been implemented for five times in different daylight 

conditions. 

Selecting the appropriate tolerance for the filter has a high importance for its 

performance, and rejecting the false measurements. Thus, each measurement is 

considered false when the value |�̂�𝑘+1 − �̂�𝑘+1
− | > 15 cm. Table 4.1 shows the 

experimental results. The success rate represents the performance of the filter in 

detecting false measurements and providing estimated ones. It could be seen that the 

StarGazer provides higher false measurements in strong light conditions than when 

the light is weak. Furthermore, it could be seen that the proposed filter proved the 

ability from detecting the false measurements, and providing estimation for the 

robot’s position instead of the false values.  

 

Figure 4.4: The flow chart for the proposed filter 
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To show the performance of the filter, the measurements of the StarGazer before and 

after filtration are plotted as it could be seen in Fig 4.5. In the figure, the blue dots in 

(a, b, c) represent the raw measurements of the StarGazer sensor for X, Y and θ. It 

can be seen that some measurements are totally far from the expected motion curve 

of the StarGazer. 

Fig 4.5 (d, e, f) shows the results of applying the filter over these measurements. The 

yellow dots represent the raw measurements from the StarGazer sensor, while the 

blue dots represents the filtered measurements of the sensor. It can be seen clearly 

that there are some irregular points which are not located on the expected curve. The 

goal of the filter is to detect these wrong measurements and provide estimation for 

the StarGazer location.  

 It is clearly that the filter didn’t follow the false measurements, but it detected them, 

and provided approximations for the position basing on the estimated measurements 

generated by the estimation equation, after neglecting the filtered measurements 

resulted from the update equation under these false values. Furthermore, it could be 

seen that when the sensor provides correct measurement, the filter use this 

measurement to update its state.  

It is worthy to mention that the goal of the filter is not to improve the accuracy of the 

StarGazer sensor, but to detect the false measurements and provide an accurate 

estimation for the robot’s position even when the sensor provides false 

measurements. 

In [47], the implemented EKF failed in detecting the false measurements, even when 

these measurements have high localization error (>3m). This is because the false 

measurements don’t follow white Gaussian noise. In contrary, it could be seen that 

Table 4.1: The experimental results of the Kalman filter over the StarGazer sensor 

Experiment 

Number 

Travelled 

Distance (m) 

Total 

measurements 

False 

measurements 

Light 

condition 

Success 

Rate 

1 100 405 14 weak sun + 

lights off 

100% 

2 100 407 21 moderate sun 

+ lights on 

100% 

3 100 420 22 moderate sun 

+ lights on 

100% 

4 100 415 28 strong sun + 

lights on 

100% 

5 100 412 26 Strong sun + 

lights on 

100% 
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the implemented Kalman filter is able to detect the false measurements, and provide 

accurate estimation for the location of the robot under these false measurements.  

 

 

Figure 4.5: The StarGazer measurements before and after filtering: (a, b, c) The raw 

measurements of Stargazer sensor. The horizontal axis represents the number of raw 

measurements. The vertical axis represents the value of (X, Y, θ) for (a, b, c) 

consequently. (d, e, f) The result of applying the proposed filter over the StarGazer 

sensor 
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5.1 Introduction 

In the future work environments, robot and human will work side by side in the 

same place, and this raises big challenges related to the ability of each of them from 

identifying the other, and interacting and exchanging the information when needed. 

Thus, robots must be equipped with a robust human-robot interaction system to be 

able from a secure work with the human. 

Human-Robot Interaction is defined as the ability of a robot from distinguish a 

human, understand his orders or emotions, and implement a suitable response as a 

result of this interaction.  

In recent years, the fast improvements in the field of artificial intelligence, machine 

learning and computer engineering, led to several forms of the interaction with 

human. It could be seen from the chapter 2, that the interaction formulation is based 

on the goal of the interaction, the tasks that the robot is doing, and the used sensors 

for the interaction. 

In this work, the interaction will serve the task of human safety, by implementing a 

human-robot interaction system which enables the robot from recognizing the 

human and getting the motion information from him so both of them avoid the 

collision when they meet in narrow locations.  

Kinect V2.0 sensor (Microsoft, USA) is widely used in applications, which require 

human and gesture detection [128]. This sensor has a RGB camera and an infrared 

camera. The combination of these two cameras provides the robot with a 3D vision 

of the work environment. The sensor uses time-of-flight to measure the distance 

between the sensor and the objects [129]. In this technology, the sensor sends 

infrared beam, and measures the time required by beam to travel back to the IR 

camera. The Kinect 2.0 provides a skeleton frame, which includes the skeletons for 

up to 6 humans to the robot. 3D dimensions for 25 joints express each skeleton. The 

sensor is able to detect the human within the distance between 0.8 to 4.5 meters.  

Chapter 5 
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5.2 System Description 

It could be concluded in the literature survey, that the HRI systems are either 

designed to extract the emotions of human, receive the tasks from them via voice, 

gesture, or neurons, or to interact with human and learn from them how to execute 

certain tasks. Furthermore, it could be seen from the literatures that are related to 

collision avoidance, that the traditional collision avoidance systems are working 

autonomously, without getting any kind of feedback from the humans about their 

motion direction, and without a possibility to interrupt the motion of the robot when 

needed. Out of this a new robotic system which is based on HRI is implemented to 

serve the task of collision avoidance for mobile robotics [112].  

In the implemented system, the robot will be equipped with a Kinect sensor to 

monitor the human, which exist in the navigation area, and get the gesture 

information from them. The person in front of the robot then will use gestures to 

inform the robot about the procedure, which it has to execute (stop, move forward, 

move backwards, go right, go left, resume). The robot will execute the orders based 

on the detected gesture and move to its final destination using global path planner 

system after avoiding the human [130]. To implement the human-robot interaction, 

seven gestures are used in this system. Table 5.1 depicts these gestures and the 

robot’s response for each of them.  

The Kinect sensor provides the robot with information about the human’s joints. 

This information requires further processing to extract the corresponding orders 

issued by the human. Thus, it is required to implement a tool which is able to 

interpret the skeletal data into useful commands that the robot can understand. Since 

the interaction is based on human’s arms, the data of five joints will be used to 

detect the gestures: 

 The (y) values of the right and left elbows, and the right and left wrists. 

These values will provide sufficient information about the locations of the 

left and right arms in the space.  

 The (y, z) values for the neck joint. These two values are necessary to train 

the model to classify the gestures of human with different heights.  

Fig 5.1 shows the human joints extracted by the Kinect. 
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To understand the gestures, a tool should be used which is able to map the joints’ 

coordinates to its classes. From literature survey, many methods are adopted to 

extract the gestures of human from Kinect sensor. 

Table 5.1 The gestures used in the HRI system and their corresponding function 

Function Gesture 

The robot will stop as long as the stop gesture is raised. 

 

Stop 

The robot will generate the collision avoidance path by 

selecting the closest region located to the right side of the 

master person. 

 

Move right 

The robot will generate the collision avoidance path by 

selecting the closest region located to the left side of the 

master person. 

 

Move left 

The robot will move toward the person as long as the “move 

forward” gesture is raised.  

 

Move forwards 

The robot will move backwards as long as the master person 

raises the “move backwards” gesture. 

 

Move backwards 

If several humans are in the path of the robot, the robot will 

not know to which person it has to interact, since two or 

more human might give different orders to the robot. To 

overcome this problem, “Master Select” gesture is assigned. 

When a person in a group raises the right arm 180°, the 

robot will know that it has to interact with this person and 

will ignore the gestures of other human in the work area.  

 

Master select 

The resume gesture is used when the master person orders 

the robot to ignore the human existence and complete its 

path. This is the case when the person thinks that the robot 

moves in a different path which he follows, or when the 

person will leave to another position far from the robot’s 

path. 

 

Resume 
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It is also shown that the methods which are based on geometry analysis of the joints 

won’t work correctly when the human plan is not parallel to the sensor plan, since 

the angles and the relative positions of joints will be different when the robot and 

human are not located face to face.  

In real world, it is highly possible that the human is not adjacent to the robot, and the 

robot should still be able to interact with the human and understand their gestures 

correctly. Thus, it is expected that the methods which work on analyzing the data 

and classifying it basing on a previous training for these models could provide a 

better performance in identifying the corresponding order for a given gesture. In this 

study, two models are adopted to classify the skeletal information provided by the 

Kinect sensor. The first model is Support Vector Machine (SVM) [131]  and the 

second model is Back Propagation Neural Network (BPNN) [132] [133]. These two 

models are trained and the performance is compared.  

 

5.3 Support Vector Machine 

5.3.1 Model Description 

In SVM, the model works on searching for the line, which is able to separate the 

data optimally, in the current application, the data represents the measurements 

obtained from Kinect sensor. Supposing the data of the sensor are plotted in Fig 5.2, 

it could be seen that there is an infinite number of separation lines. Searching for the 

line, which is able to keep the largest margin between the two classes, does 

 

Figure 5.1: The gestures used for the interaction with the robot 
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optimization [117] [134]. To find the mathematical representation of this problem, it 

is supposed that the separation line has the following equation: 

𝑓(𝑥) =  𝑤𝑡𝑥 + 𝑏      5.1 

Where 𝑤𝑡 represents the weight vector, 𝑏 the bias and 𝑥 input data.  

Supposing that the line is able to separate the data into two classes: 

𝑤𝑥𝑖 + 𝑏 ≥ +1           𝑖𝑓           𝑦𝑖 = +1 

For all points which are located at the first class and: 

𝑤𝑥𝑖 + 𝑏 ≤ −1           𝑖𝑓           𝑦𝑖 = −1 

for the points which are located at the second class.   

The margin ℳ, is defined as the distance between the positive class and the negative 

class.  

(𝑥+ − 𝑥−) =
2

|𝑤𝑡|
      5.2 

The margin could be given as:  

ℳ =
2

|𝑤𝑡|
      5.3 

 

Figure 5.2: The Principle of Support Vector Machines 
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Optimization is done by searching for the line, which is able to keep the maximum 

margin between classes without any error in classifying the training data. This is 

equivalent to maximizing the margin, or minimizing the 𝜑 since: 

𝜑(𝑤) =
1

2
𝑤𝑡𝑤      5.4 

Subject to   

𝑦𝑖(𝑤𝑥𝑖 + 𝑏) ≥ 1   ∀𝑖      5.5 

Support vectors are defined as the training vectors, which are located on the 

auxiliary hyperplanes as it could be seen in Fig 5.2 and could be represented 

mathematically as: 

𝑓(𝑥) =  𝑤𝑡𝑥+ + 𝑏 = +1 

𝑓(𝑥) =  𝑤𝑡𝑥− + 𝑏 = −1 

Usually, finding an optimal hyperplane which is able to separate the whole data is 

difficult, since some vectors could be correctly classified but not located within the 

boundary hyperplanes, or it could even be misclassified. Thus a slack variable (ξ) is 

defined which represents the distance between the misclassified vector and the 

correct boundary hyperplane [117]. For the classification models which includes 

misclassified vectors we define: 

𝑦𝑖(𝑤𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖    ∶ 𝑖 = 1,2, … , 𝑛  5.6 

𝜉𝑖 ≥ 0 ∀ 𝑖 = 1,2, … , 𝑛 

Thus, for the vectors which are correctly classified and within the boundary 

hyperplane 𝜉 = 0, and for the vectors which are correctly classified but they are not 

located within the boundary hyperplane 0 ≤ 𝜉 ≤ 1, while 𝜉 ≥ 1 for the vectors 

which are misclassified. Thus the optimization problem takes the form: 

min ||𝑤||2 + 𝐶 ∑ 𝜉𝑖𝑖    ∶ 𝑖 = 1,2, … . , 𝑛  5.7 

Where C is the penalty factor, which controls the trade-off between maximizing the 

margin and minimizing the training error. Large C means that the model is focusing 

on minimizing the error rather than maximizing the margin, while small C means the 

model is focusing on maximizing the margin with less care about minimizing the 

training error. 

The penalty factor C is selected manually, so to test the performance of the model 

for different penalty factors, training algorithms are needed, which are able to train 
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and test the model. Many training algorithms existed for this purpose as exhaustive 

cross validation, Repeated Random sub-sampling validation, and K-fold crosses 

validation. In this research, K-fold cross-validation algorithm is used for training the 

model and selecting the appropriate penalty factor [135], [136]. 

 

5.3.2 Model Training  

To put the SVM into real applications, the model has to be trained given a set of 

training inputs and the desired outputs which the model has to generate as a response 

to the applied input. Thus, to train the model, a training set is required to tune the 

parameters of the model. It could be seen from Fig 5.1 that the measurements of the 

five joints in the body frames are extracted. For the right and left wrists, and the 

right and left elbows, the (y) values are extracted. Furthermore, the (y, z) values of 

the neck are also extracted.  

To build the training set, the gestures of four people with different heights are taken; 

each person is asked to implement the whole 7 gestures in 16 different positions in 

distances with range [1.8, 4] m. Thus, for each person there is  16 × 7 = 112 

training samples, and the total training set is equal to 448.  

Since it is possible that the human is not totally facing the robot, the training 

samples are taken with deviation angles [-40°, 40°] between the participants and the 

Kinect level. By training the model with training samples that are taken with 

different angles of people, it is expected that the HRI will be able to recognize the 

gesture of human even if they are not located face-to-face with the front plane of the 

Kinect sensor. 

To train the SVM, k-fold cross validation algorithm is used. K-fold cross validation 

is a training algorithm which is used for training and evaluating the trained classifier 

given the available set of training data. In this algorithm, the data set 𝐷 is divided 

into equal subsets 𝐾𝑖. Each subset  𝐾𝑖 includes 
𝐷

𝐾
= 𝑚 samples of the training set:  

𝐷 =  ∑ 𝐾𝑖 ∶ 𝑖 = 1,2, … , 𝑘𝑛
𝑖=1        5.8 

Since each 𝐾𝑖 represents a subset of the dataset 𝐷𝑛. Fig 5.3 shows the flow chart of 

training the SVM model. 

In the next step, the data subsets 𝐾1,2,….𝑖−1 are used for training the model 𝑀 with the 

given set of parameters; while the remaining set  𝐾𝑖 is used to evaluate and validate 

the model, and the number of misclassified samples for the set  𝐾𝑖 is computed.  
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In this work, k= 8. Fig 5.4 shows the subsets distribution for training both the SVM 

and BPNN models. 

 

5.4 Back Propagation Neural Network 

5.4.1 Model Description 

Back-Propagation neural network is a multi-layer network that is composed of input 

layer, hidden layers and output layer. Each layer is composed of several neurons; 

K=0 Test=56 Train = 392 

K=1  Test=56 Train = 392 

K=2  Test=56 Train = 392 

K=3  Test=56 Train = 392 

K=4 Train = 392 Test=56  

K=5 Train = 392 Test=56  

K=6 Train = 392 Test=56  

K=7 Train = 392 Test=56 

Figure 5.4: The k-fold sets for the L-SVM model 
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Figure 5.3: The flow chart for building and training the L-SVM model 
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each of these neurons in a certain layer is linked to each neuron in the following 

layer via weighted links. Furthermore, each neuron in the hidden and output layers 

has an activation function, which calculates the output of the neuron after receiving 

the weighted inputs from the neurons in the previous layer. Fig 5.5 shows the 

hierarchy of the BPNN. 

 

 

In the training step, the weights are selected randomly with small values, 𝑤𝑖,𝑗 ∈

[−0.5, 0.5]. Then the training vector is applied to the network’s inputs, and 

propagate these inputs via the layers to the output layer. The error of the network is 

calculated as the deviation of the network output from the desired output. This error 

is propagated inversely to update the weights of the layers. 

Considering a three layer BPNN, 𝑤𝑖𝑗 represents the weight of the connection 

between the neuron 𝑖 in the input layer, and the neuron 𝑗 in the hidden layer; 𝑤𝑗𝑘 

represents the weight of the connection between the neuron 𝑗 in the hidden layer, 

and the neuron 𝑘 in the output layer [132]. The input and the output of a neuron in 

the hidden layer is given as: 

𝑥𝑗 = ∑ 𝑥𝑖 . 𝑤𝑖𝑗 − 𝑏𝑗
𝑛
𝑖=1      5.9 

𝑦𝑗 =
1

1+℮
−𝑥𝑗

      5.10 

Where: 

 𝑏𝑗: the bias for the neuron 

 

Figure 5.5: The hierarchy of the BPNN 
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𝑛: the number of inputs for the network 

Actually, the right term of the output equation represents a sigmoid function which 

is used widely in the BPNN for activating the neurons of the hidden and output 

layers. For calculating the output of the network, the same steps are followed using 

the equations 5.9 and 5.10. 

After completing the feed forward step, the model error is calculated for each output 

neuron. The output error represents the difference between the desired output and 

the actual output: 

𝑒𝑘 =  𝑑𝑘 − 𝑦𝑘      5.11 

After calculating the error, the weights have to be corrected, to decrease this error. 

Thus, the updated weights between the hidden and output layers is given as: 

𝑤(𝑛𝑒𝑤)𝑗𝑘 =  𝑤(𝑜𝑙𝑑)𝑗𝑘 + ∆𝑤𝑗𝑘    5.12 

Where ∆𝑤𝑗𝑘 is the weight correction, and it is calculated as 

∆𝑤𝑗𝑘 = 𝜂 × 𝑦𝑗 × 𝛿𝑘      5.13 

Where 𝛿𝑘 is the error gradient which represents the derivative of the multiplication 

of activation function with the error of the output neuron [133]: 

𝛿𝑘 =
𝜕𝑦𝑘

𝜕𝑥𝑘
× 𝑒𝑘       5.14 

Considering using the sigmoid activation function: 

𝛿𝑘 = 𝑦𝑘 × (1 − 𝑦𝑘) × 𝑒𝑘    5.15 

The updated weights will be given as: 

𝑤𝑗𝑘(𝑛𝑒𝑤) = 𝑤𝑗𝑘(𝑜𝑙𝑑) + 𝜂. 𝑦𝑗 . 𝛿𝑘   5.16 

In similar way, the error gradient of the neurons in the hidden layer is given as: 

𝛿𝑗 = 𝑦𝑗(1 − 𝑦𝑗) ∑ 𝑤𝑗𝑘
𝑛
𝑘=1 . 𝛿𝑘    5.17 

Then, the weight corrections are given as: 

∆𝑤𝑖𝑗 = 𝜂 × 𝑥𝑖 × 𝛿𝑗      5.18 

And the new weights of the hidden neurons will be calculated as: 

𝑤𝑖𝑗(𝑛𝑒𝑤) = 𝑤𝑖𝑗(𝑜𝑙𝑑) + ∆𝑤𝑖𝑗    5.19 
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Where 𝜂 is the learning rate, and it is taken as a positive value less than 1. 

 

5.4.2 Model Training 

In BPNN, the goal of training the model is to find the best number of hidden 

neurons, with the best weights values that provide the minimum output error. The 

model will have six inputs; one for each joint’s value, and three outputs which 

provide the gesture to the robot. To find the best number of hidden neurons, several 

models have been trained and tested with number of hidden neurons 𝑛 = [3,21].  

Similarly to SVM model, the BPNN is trained using the same training data set (448 

samples). Furthermore, the k-fold cross validation with k = 8 will be used to train 

the model and test it for different number of hidden neurons.  

 

5.5 System Implementation 

5.5.1 Kinect Position 

Kinect V2 sensor has 70° horizontal and 60° vertical fields of view. Thus, the 

positioning of the sensor has an important role in detecting the human in different 

positions. The next chapter will show that the robot is required to interact with the 

human and execute the procedures of collision avoidance when the distance between 

the robot and a person is around 2m.  Thus, the Kinect has to be fixed in a position 

that allows the robot to detect the human within the distance 2-4m. Furthermore, it 

should be taken into consideration that the robot has to detect the static obstacles on 

the floor of the navigation area, which could be a future work for the implemented 

system. Thus, it is decided to fix the Kinect sensor on a high 75cm above the floor. 

Fig 5.6 depicts the position of the Kinect and the vertical distances that the robot can 

detect within the given position. It could be seen that for the distance 2m, the robot 

can detect the human with heights around 2m. 

 

5.5.2 Human-Robot Interaction System Description 

In the previous sections, it is mentioned that the robot interacts with the human 

using seven gestures. Since it is possible to have several human in the path of the 

robot, it is probable that each person gives a different order to the robot. Thus, the 

robot won’t be able to understand what it has to do. To overcome this problem, a 

special gesture “Master Select” is allocated to enable the robot to detect the master 
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person. When the master person is detected, the robot will limit the interaction to 

this person and ignore the gestures of other human in the area.  

The Kinect sensor provides 30fps, this is a high rate for the interaction, since it is 

not possible to the robot and the human to implement the interaction with this rate. 

Moreover, if the interaction is done in a short period of time, it is possible that the 

robot mistakenly interacts to the arms’ position while the master person is still 

moving them. For example, the robot might move forward “two arms horizontally” 

while the master person is still moving his arms to reach the move backward order 

“two arms vertical”. To overcome this problem, the gestures of each person were 

stored in a unique register. Each register records 6 gestures for each person. If the 

whole values of the register are the same, then the robot will execute the saved 

gesture in the register. This will guarantee a stable interaction with the arms’ 

movements. When a person moves away from the robot’s path, the assigned register 

will be cleared automatically. Since the robot compares each 6 gestures, the human 

has to fix his arms’ position for a given gesture for at least 200 ms. Fig 5.7 shows 

the flow chart for the human-robot interaction system. 

Once the robot detects human in the path, it will save and update the positions of 

human and their distances from the robot, this data is important for the collision 

avoidance system to be able to calculate the required path soon when an order is 

assigned. The robot will then search for a master, by classifying the gestures of all 

human in front of it, and compare the contents of each register to check whether a 

 

Figure 5.6 Position of Kinect sensor and detection range 
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master is existed. When a master is detected, the robot will keep updating the 

distances of each person to keep the CA system has the positions of each person, but 

it will limit the interaction with the master person. The system will then classify the 

gestures of the master person, and forward them to the collision avoidance system 

for executing the requests. 

 

5.5.3 Sensor False Inferred Data 

In Kinect sensor, when the body is located near the vision limits of the sensor, it will 

provide an inferred estimation of the joints’ positions of the body. Actually, the 

experiments show that this estimation is not accurate, and this leads to a false 

detection for the gestures when the Kinect provides false inferred joints to the HRI 

system. Fig. 5.8 shows an example of a false inferred skeleton of the body. The 

inferred joints are those which are marked with yellow dots. It is clear, that the 

gesture will be misclassified when the Kinect provides these false joints’ 

Human 
Detected

H20 moves on the planned 
path

Stop

Wait for order

Execute the CA order

Start Collision 
Avoidance

No

Master 
Detected

Order Received

Yes

Yes

Yes

No

No

 

Figure 5.7: The control of the robot using Human-Robot Interaction 
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measurements to the classifier. To overcome this problem, the system will check the 

status of each joints of interest (neck, elbows, wrists), and when there are more than 

two inferred joints, the measurement won’t be forwarded to the classifier as long as 

the joints are not correctly detected.  

 

5.6 Experimental Results 

The experiments were done on two levels; the first experiments show the training 

results of the BPNN and SVM, including the time required from each model to 

implement the training, and evaluating the performance of each model in classifying 

the samples. In the second experiment, the HRI model is tested in real environment, 

and five humans with different physical shapes tested the human-robot interaction 

system with different positions and angles.  

 

5.6.1 Training the SVM 

In this work, a linear-kernel support vector machine model is used. To obtain the 

best model of the SVM, the model is tested over a wide range of penalty values: 

 𝐶 =  𝑒Ԑ 𝑤ℎ𝑒𝑟𝑒 Ԑ =  −10, −9 … . . , 69, 70.  

 

(a) master       (b) right            (c) right             (d) resume          (e) resume            (f) left 

Figure 5.8: The false skeletal joints due to angle view limits of Kinect 
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Fig 5.3 showed the flow chart for training the model. Model training is done using 

EMGU library, over a Laptop with the processor Intel i7-3537U (2.0 GHz with 4 

CPUs) and 8 GB RAM. Appendix 3 shows the complete experiments over the 

model, while table 5.2 summarizes the training results for the model.  

In table 5.2, the total error represents the total misclassified samples for the 

complete folds, while the average error represents the total error divided by the 

number of folds (here 8). To estimate the performance of the SVM model for the 

given penalty value, the success rate is evaluated as: 

𝑆𝑢𝑐𝑐𝑒𝑠𝑠 𝑅𝑎𝑡𝑒 = 100 −
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑒𝑟𝑟𝑜𝑟

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 
× 100   5.20 

Furthermore, the train time represents the total time required to train the model for 

the whole 8-folds for the given penalty value. The test time, represents the time 

required from the trained SVM model to test a given sample. It could be seen that 

the test time for any sample after training the model is less than 1ms. 

From the table 5.2, it could be seen that setting the penalty to small values less than 

0.13, will lead the model to show poor classification for the training sets. On the 

other hand, the values of the penalty in range [0.367, 7.389] show the best 

performance with eight to nine misclassified samples. Moreover, the table shows 

that using higher penalty values won’t improve the performance of the SVM model, 

since the model fails in classifying 16 test vectors. It could also be concluded that 

after training the model, the total time required to predict a given sample is less than 

1ms. From the appendix 3, it could be seen that the average training time for the 

whole experiments is equal to 50.95ms. 

Table 5.2: The training results for the L-SVM model 

C Total 

Error 

Average 

Error  

Success 

Rate 

(%) 

Train 

Time 

(ms) 

Test 

Time 

(ms) 

No. 

Support 

Vectors 

[4.5 × 10−5, 
 0.0067] 

379 47.3 15.53 [103,112] <1 21 

0.0183 355 44.3 20.9 102 <1 21 

0.0497 156 19.5 65.17 88 <1 21 

0.135 33 4.12 92.64 71 <1 21 

0.367 8 1 98.2 68 <1 21 

1,  2.718 9 1.125 97.99 49, 56 <1 21 

7.389 8 1 98.2 45 <1 21 

20.08, 9.2
× 1029 

16 2 96.4 [41, 53] <1 21 
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By comparing the experiments in the table 5.2, it could be seen that the best 

performance of the SVM model is with penalty value c=7.389, with only eight 

misclassified samples, which is equal to a success rate 98.2%.  

5.6.2 Training the BPNN Model 

Fig 5.4 showed the general structure of the BPNN model. The model has six inputs 

which represent the y-values of right and left wrists and elbows, besides to the (y, z) 

values for the neck. Since the model has to distinguish seven gestures, three outputs 

were selected for the model, as it could be seen from the table 5.3. 

To search for the best number of hidden neurons, the model is tested using the same 

training set and the same k-fold algorithm which were used to train and optimize the 

SVM model. The optimization is done by searching for the best number of hidden 

neurons for the model, and the best weights values. Thus, the neurons are selected in 

the range 3 to 21. Table 5.4 summarizes the training results. 

From the table 5.4, it could be seen that the BPNN could provide very satisfied 

results for any number of hidden neurons. The model is able to classify the testing 

sets with a successful rate equal to 100% with a classifying time less than 1ms. 

While the average training time is equal to 117.2 ms. 

 

Table 5.3: The outputs of the BPNN for the given gesture 

 Q1 Q2 Q3 

Stop 0 0 0 

Move Right 1 0 0 

Move Left 0 1 0 

Move Forward 1 1 0 

Move Backward 0 0 1 

Master Select 1 0 1 

Resume 0 1 1 
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5.6.3 Comparison between SVM and BPNN 

In comparison between the tables 5.2 and 5.4, the following results could be 

concluded: 

 The BPNN could classify the whole test sets successfully despite of the 

number of hidden neurons.  

 The L_SVM model showed better performance for penalty values close to 1. 

Still, whatever the penalty value, it couldn’t classify the whole patterns 

successfully, with the best performance of the model is at c = 7.389, with 8 

misclassified samples.  

 The L_SVM showed faster training than the BPNN with average training 

time 50.95ms for the L_SVM and 117.2 ms for the BPNN. 

 Both models were able to classify an input vector with less than 1ms.  

Thus, the BPNN with 8 hidden neurons is chosen for gesture recognition in the 

proposed Human-Robot Interaction System.  

Table 5.4: The result of training and testing the BPNN for several hidden neurons 

No. of Hidden 

Layers 

No. Errors Train Time (ms) Test Time 

3 0 101 <1 

4 0 115 <1 

5 0 112 <1 

6 0 114 <1 

7 0 115 <1 

8 0 103 <1 

9 0 107 <1 

10 0 109 <1 

11 0 112 <1 

12 0 123 <1 

13 0 112 <1 

14 0 129 <1 

15 0 131 <1 

16 0 128 <1 

17 0 124 <1 

18 0 111 <1 

19 0 136 <1 

20 0 126 <1 

21 0 120 <1 
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5.6.4 Human-Robot Interaction System Test  

After implementing the HRI system with the BPNN, it is required to test the system 

over real work conditions. Fig 5.9 shows the test area for the robot and the positions 

which the humans whom implemented the tests were located. Five humans with 

different physical shapes (heights, widths, clothes...) were asked to implement the 

tests. Each person is asked to implement a certain gesture in each position, with a 

deviation angle (-40, -20, 0, 20, 40). The complete experiments could be found in 

appendix 4, while the table 5.5 summarizes these experiments.  

By analyzing the experiments in the table, the following results could be outlined: 

-  The BPNN classifier shows 100% correct classification for the whole gestures 

provided to it.  

-  Out of 90 experiments, the human-robot interaction system misclassified two 

gestures. These two gestures are misclassified because of a false positions of the 

joints which are provided by the Kinect sensor to the classifier.  

-  Out of 90 experiments, it shows that 84 experiments needed a processing time in 

the range [337, 396] ms, while there are six experiments required processing time 

in range [735,773] ms. The reason that the six experiments required almost 

double time that a user in the experiment didn’t fix his arms during the 

experiment, and this lead from the HRI system to clear the register assigned to 

the user and fill it again with new set of classified measurements.  

 

Figure 5.9: Representation of the test environment (dimensions in meter) 
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By comparing the current results with the other methods which were discussed in the 

literature survey, it could be seen that the proposed human-robot interaction system is 

easier and more applicable compared to other methods using touchable and wearable 

sensors since it is not required to attach sensors to human to be able to interact with 

the robot. Moreover, the system could be used in social work environments easily 

since there is no need for further devices to be fixed on each person existed in the 

same navigation area of the robot. 

Moreover, by comparing the performance of the implemented HRI system, with the 

other HRI systems which were based on gesture recognition (table 2.6), it could be 

seen that the previous systems were implemented on the concept that the robot and 

the human are located face-to-face, while in the realized system, the robot can still 

recognize the gestures successfully even when a human is deviated with ∓40° from 

the straight sight between the robot and the human. While the other methods which 

were based on geometry will fail when the person is not located face to face with the 

Kinect plan.  

In table 2.6 it is shown that the success rate of several methods ranges between 

83.33% to 98.4%. While the success rate of the implemented SVM is 98.2% and 

100% for BPNN. Despite of that the Hidden Markov Model shows a bit higher 

success rate (98.4%) than the SVM, the implemented SVM model can recognize 

people even when they are not directly facing the robot. Thus, it could be concluded 

that both classifiers SVM and BPNN show higher classification performance than 

other methods which are used in literature.  

Finally, it could be seen that the only limitation from the human-robot interaction 

system comes mainly from the sensor itself. The experiments which were 

implemented over the system showed that there were two misclassified gestures. 

This is because the sensor provided wrong joints’ dimensions to the BPNN model. 

Moreover, it is noticed that the Kinect sometimes doesn’t detect the body, and it 

requires from the user to move a bit, or shake his body to allow the Kinect from 

Table 5.5: The summary of experiments over the HRI system 

Person Number of 

experiments 

Height False gesture State 

transitions 

1 18 165 1 0 

2 18 170 1 3 

3 18 177 0 1 

4 18 179 0 1 

5 18 188 0 1 
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detecting him. The user can know that the Kinect didn’t detect him by monitoring 

the robot’s screen which shows the skeletal frames of each detected person. 
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6.1 Introduction 

In future work environments, robots will work alongside to humans, and this raises 

challenges related to the robustness of these robots in detecting human, interacting 

with them and avoiding physical accidents to them. Thus, any robotic system must 

be equipped with a robust collision avoidance system which enables the robot to 

detect the obstacles and avoid them, especially the human. 

In chapter 3, it could be seen that many collision avoidance systems have been 

implemented for mobile robotics. The general concepts of these systems are 

summed up by detecting the obstacles’ distribution in the work area, extracting the 

regions between these obstacles that are wide enough for the robot to pass, and 

selecting the region which is closest to the goal direction. 

Despite of the good performance of many of these methods, it has some short comes 

especially when robots navigate in social environments which include many human 

moving and sharing the same working area of the robot as in laboratories, 

restaurants, and hospitals.  

When the robot moves in social environments, it is possible that a group of human 

are located on the same path of the robot. Thus, the robot will try to avoid those 

humans by adjusting its path several time to avoid collision with them as it could be 

seen in fig 6.1. This will cause the robot to move in the middle of this group in 

curved paths, which will cause the human to get confused, besides to increase the 

time required by the robot to reach its goal. 

Furthermore, it is possible to have a bottleneck problem when the human and the 

robot are located in narrow locations such as corridors, so neither of them is able to 

avoid the other.  

Chapter 6 

Collision Avoidance System for Indoor Mobile 

Robots Basing on Human-Robot Interaction 
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Additionally, the performance of the collision avoidance system is merely related to 

the sensor’s detection range. Thus, in some situations, it is possible that the human 

which is existed near to the robot to have more information about the obstacles’ 

locations in the path of the robot, and if this human is able to inform the robot about 

the best path it has to follow, this will improve the performance of the collision 

avoidance and avoid the situations as in Fig 6.1. 

Out of this, a new collision avoidance system is proposed which takes into 

consideration the human as an intelligent-moving obstacle [113]. The proposed 

system will allow the human to interact with the robot and provide it with the 

suitable direction of the collision-free path when the human finds it is necessary. 

In this system, when the robot meets humans, it will ask them to interact with it via 

voice requests. If the user is interested in mastering the motion of the robot, he can 

manage it via interaction using the human-robot interaction system described in the 

previous chapter.  

Thus, the user can order the robot to move backward/forward in case of narrow 

corridors, or he can select the direction of the path that the robot has to move, so the 

user moves to the other direction. On the other hand, if no human interacted with the 

robot for a certain period of time, the robot will calculate its local path 

autonomously taking into consideration selecting the path that is closest to its 

original path. The method is called cooperative collision avoidance (CCA) since 

both the robot and the human share the responsibility of avoiding each other [112] 

[113].  

 

Figure 6.1: Robot motion between a group of humans 
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6.2 System Description 

The proposed system gives mutual responsibilities for the robot and humans to 

avoid each other and search for the safe paths via interaction. The robot will interact 

with the human by sending voice messages to them, and receiving the responses 

from the human via the human-robot interaction system which is described in the 

chapter 5. 

When the robot detects human(s) in its path for distances d >2m, it will warn them 

by sending a voice message “Robot is coming”, to notify the humans that they are in 

the path of the robot. In this case, the humans will be aware of the existence of the 

robot, and they can either move away from the path of the robot, or be ready for 

interaction.  

If the human moved away from the path of the robot, it will continue its path to the 

goal location. Else, if the human stayed in the path, and the distance between the 

robot and the closest person is less than 2m, then the robot will stop and send voice 

message “Interact”. In this case, the robot gives the option to the human to either 

cooperate in avoiding each other via interaction, or to implement the collision 

avoidance autonomously. The robot gives a certain period of time to the human to 

interact “3 seconds”. Thus, if a person raised his right arm vertically “Master Select 

gesture” within the 3 seconds, the robot will keep stopped waiting for the next order 

from the master user. If the period is passed, the robot will then implement the 

collision avoidance path autonomously. After executing the collision-avoidance 

procedures, and if there is no more human in the path of the robot, it will complete 

its path to the goal location using the multi-floor navigation system [130]. Fig. 6.2 

shows the flow chart for the proposed system. 

 

6.3 Collision Avoidance System 

In either the cooperative or autonomous collision avoidance methods, the robot has 

to find the free spaces that it can move between the humans without collision. Thus, 

a robust collision avoidance system is developed which takes into consideration the 

width of the humans and their distributions in the navigation area. 
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In this system, the robot detects the positions of the human in its path, and specifies 

the distance of each person from it using the Kinect sensor. Furthermore, the width 

of each person is calculated by measuring the distance between the right and left 

shoulders of the human. Thus, the width of each obstacle “person” is given as: 

People in  the path

Robot moves to the 

goal location

Voice Message
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Yes No

No
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Figure 6.2: The flow chart of the collision avoidance system 
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𝑟𝑝
𝑖 =  |𝑟𝑟𝑠

𝑖 − 𝑟𝑙𝑠
𝑖 |       (6.1) 

Where: 

 𝑟𝑝
𝑖  the radius of the person 𝑖 in the group 

𝑟𝑟𝑠
𝑖 , 𝑟𝑙𝑠

𝑖   the 𝑥 coordination of the left and right shoulders 

The robot will search for the available regions which compose a potential space for 

implementing the collision-avoidance path. The robot will distinguish between the 

middle regions, which are the free spaces between the humans, and the terminal 

regions which are the regions to the left and right of the terminal human in the 

group.  

For the middle regions, the robot will check the width of the regions between 

human: 

𝑅𝑎𝑣
𝑖 = (𝑋𝑝

𝑖+1 − 𝑋𝑝
𝑖 ) − (𝑟𝑝

𝑖+1 + 𝑟𝑝
𝑖) 𝑤ℎ𝑒𝑟𝑒: 𝑖 = 1, . . , 𝑛 − 1  (6.2) 

Since 𝑛 represents the number of humans detected by the Kinect sensor. 

Furthermore, the robot estimates the minimum region width required for the robot to 

pass without collision: 

𝑅min (𝑚𝑖𝑑)
𝑖 = 2 × 𝑟𝑟 + 𝑟𝑝

𝑖+1 + 𝑟𝑝
𝑖 + 𝑑      (6.3) 

Where: 

𝑟𝑟  robot’s radius. 

𝑑 the safety distance around the robot. 

Fig 6.3 shows the calculation of the middle regions.  

In the next step, the robot checks the possibility of generating the avoidance path to 

the right and left of the most right/left human in the group. This calculation is done 

by considering the maximum detection angle of the sensor (70°), so the robot will 

compare the width of the region between the terminal person and the last point that 

the sensor can detect for the given depth, as it could be found in Fig 6.4, which 

shows the calculation of the region for the right-terminal person. To calculate the 

width of the right terminal region, the following equations are used: 
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𝑋𝑡𝑒𝑟𝑚
𝑛 =  𝑍𝑝

𝑛. tan 35°               (6.4) 

𝑅𝑎𝑣
𝑛 =  𝑋𝑡𝑒𝑟𝑚

𝑛 − (𝑋𝑝
𝑛 + 𝑟𝑝

𝑛)    (6.5) 

Similarly, the following equations are used to calculate the left terminal region: 

𝑋𝑡𝑒𝑟𝑚
0 =  𝑍𝑝

0. tan(−35°)     (6.6) 

 

Figure 6.3: Calculation of middle region 

 

Figure 6.4: Calculation of the terminal region 
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𝑅𝑎𝑣
0 =  (𝑋𝑝

0 − 𝑟𝑝
0) −  𝑋𝑡𝑒𝑟𝑚

0         (6.7) 

After receiving the available terminal regions, the robot checks whether these 

regions are wide enough to navigate or not using the following equations: 

𝑅𝑚𝑖𝑛
𝑛 = 𝑟𝑟 + 𝑟𝑝

𝑛 + 𝑑/2         (6.8) 

𝑅𝑚𝑖𝑛
0 = 𝑟𝑟 + 𝑟𝑝

0 + 𝑑/2         (6.9) 

The candidate regions are the regions that are wider than the minimum required 

width which the robot needs to generate the collision-free path safely: 

𝑉 =   ∑ 𝑅𝑎𝑣
𝑖𝑛−1

𝑖=1  +   𝑅𝑎𝑣
0 + 𝑅𝑎𝑣

𝑛      𝑖𝑓  𝑅𝑎𝑣
𝑖 > 𝑅𝑚𝑖𝑛

𝑖 , 𝑅𝑎𝑣
0 > 𝑅𝑚𝑖𝑛

0  , 𝑅𝑎𝑣
𝑛 > 𝑅𝑚𝑖𝑛

𝑛     (6.10) 

After detecting the whole candidate regions that the robot can go through, it will 

select the region based on the collision-avoidance method (cooperative or 

autonomous). In cooperative collision avoidance, the region selection will be based 

on the motion direction that the master person guided the robot to move through, 

while in autonomous collision avoidance, the region selection is based on the 

direction of the next way-point obtained from the global navigation system. 

As it is mentioned before, when the robot detects humans, it will warn them to move 

away from its path. If the distance between the robot and the user is less than 2m, 

the robot will stop for three seconds to guarantee the safety of the human. If a user 

raised his/her right arm 180° within the given period, the robot will implement the 

movement based on the orders issued by the master user via interaction. Thus, it will 

move forward/backward or will execute the cooperative collision avoidance when 

the user activates the move right/left gestures. If no human interacted with the robot, 

it will consider that the human delegated it to select the collision-free path, so it will 

implement the autonomous collision avoidance. In the following, the two collision 

avoidance strategies are explained in details.  

 

6.3.1. Cooperative Collision Avoidance based on Human-Robot 

Interaction 

In cooperative collision avoidance, both the master user and the robot will cooperate 

in finding a secure collision-free path via interaction. 
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When the distance between the robot and a person is less than 2m, the robot will ask 

the human to interact using the voice request “interact”, and it will stop for three 

seconds allowing the human to interact with it. Within the stopping time, the user 

who wants to interact with the robot has to raise his right arm 180°, notifying the 

robot that it has to interact with him. The robot will then execute one of the 

following actions: 

 Move forwards/backwards: The user can use the move forward/backward by 

raising his both arms 90°, and 180° respectively. In this case, the robot won’t 

search for the regions or generate collision avoidance path. Instead it will obey 

the orders from the master user and move forwards / backwards as long as the 

master is still raising these gestures. This action is very necessary to avoid the 

bottleneck problem when the user and the robot meet each other in narrow areas, 

so neither of them is able to avoid each other due to the lack of free space as it 

could be seen in Fig 6.5. Moreover, this action is necessary when the user wants 

to guide the robot to move in dense and cluttered area. Thus, the user can order 

the robot to move either forward or backward to another free walking area, then 

he can either pass the robot, or can order it again to move to its left or right. The 

robot in these orders will move for 1.2m, and implement another reading for the 

gesture. If the gesture is still raised, it will implement additional 1.2m.  

 Move Right/Left: The user can contribute to select the collision avoidance 

path to the right or left of him. Fig 6.6 shows the concept of this order. Each 

 

Figure 6.5: The bottleneck problem when the robot and human are moving in narrow 

places 
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Figure 6.6: Cooperative Collision Avoidance via Interaction 

 

 

person is represented by the ellipse 𝑃𝑖, which represents the distance between 

the right and left shoulders of the person 𝑖. 

Supposing that the master P2 asked the robot to move to its left side, the robot will 

then search for the nearest region that it can go through to the left of the user. It 

could be seen that the candidate region R2 between the person P3 and P4 is the 

selected one. The robot will then calculate its path which will be discussed later. 

After passing the region R2, the robot will give the control to the multi-floor 

navigation system to allow the robot to keep going to the goal location. 

If the master ordered the robot to move to a certain direction, and the robot couldn’t 

find a free candidate region in the selected direction, it will keep stopped and it will 

send a voice message “no free path” to inform the human that there is no free space. 

In this case, the master person has to either give the robot another order, or to let the 

human to move for a certain distance to keep a space for the robot to move, and then 

the master has to provide again the motion direction to the robot. 

The goal of this interaction is to allow the humans who are working alongside with 

the robot to supervise it to reach its goal location. Taking into consideration that the 

worker can have more information regarding the robot’s task, the obstacles in the 

robot’s path and the motion directions of the other humans existing in the same 

location. These circumstances could be faced in many places as laboratories, 

museums, hospitals, and restaurants.  
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6.3.2. Autonomous Collision Avoidance 

If no human interacted with the robot within the given period of time, the robot will 

consider that the users delegated it to search for the free paths. Fig 6.7 depicts the 

flow chart of the proposed system. 

Basing on the search equations in chapter 6.3, the robot will take into consideration 

the whole candidate regions that consist a potential collision-free path for the robot. 

Then, it will get the direction of the next waypoint on the original path of the robot 

from the multi-floor system, and select the region that is closest to this way-point. In 

case that the robot couldn’t find any free region, it will send the voice message “no 

free path” to inform the humans that they have to keep a space for it to move. If the 

human moved allowing enough free space for the robot, it will generate the collision 

avoidance path and keep moving to the goal location after finishing the path.  

Fig 6.8 shows four humans located near the robot. The dashed lines represent the 

horizontal field of view for the Kinect 2.0 sensor which is equal to 70°. It can be 

seen that two regions are detected for four humans. Since the robot has the freedom 

in selecting the region, it will select R1 as candidate region since it is closest to the 

original global path of the robot toward the goal location.  

Autonomous Collision 

Avoidance

Search for the  whole 

Available Regions

Get the next way-

point from MFN

Voice Message

 No Free Path 

Region Available

Select the region that 

is nearest  to the way-

point

Generate the  

Collision Avoidance  

Path

Provide the motion 

commands to MFS

YesNo

 

Figure 6.7: The flow chart of Autonomous Collision Avoidance 
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Figure 6.8: Autonomous search for the collision-free path 

  

6.4 Collision Avoidance Path Calculation 

After selecting the candidate region using either the cooperative or autonomous 

collision avoidance, the robot will start to calculate the collision-free path across the 

selected region.  

The calculation of the collision-free path is based on whether the path will be 

between two humans, or it will avoid a single person. Fig 6.9 shows the calculation 

of the collision-avoidance path between two humans. To get the path the robot has 

to move, the following equations are used: 

𝑥𝑐𝑎 =  
𝑥𝑝

𝑖+1−𝑥𝑝
𝑖

2
        (6.11) 

 

Figure 6.9: Collision-free path calculation between two humans 
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𝑍𝑓 = 𝑀𝑎𝑥{𝑍𝑖 , 𝑍𝑖+1}       (6.12) 

𝜃𝑐𝑎 = tan−1 𝑥𝑐𝑎

𝑍𝑓
        (6.13) 

𝑍𝑐𝑎 =  
𝑋𝑐𝑎

sin 𝜃𝑐𝑎
        (6.14) 

𝑑𝑐𝑎 =  𝑍𝑐𝑎 + 𝑟𝑟 + 𝑟𝑓       (6.15) 

Where: 

𝑥𝑐𝑎: The middle of the selected region. 

𝑍𝑓: The distance of the farthermost person from the robot in the selected region. 

𝜃𝑐𝑎: The robot’s orientation toward the region. 

𝑍𝑐𝑎: The distance between the robot and the middle of the selected region 

Fig 6.10 shows the path calculation for the terminal regions. For these regions, the 

robot uses the following equations for the rightest person: 

𝑥𝑐𝑎 = 𝑋𝑝
𝑛 + 𝑟𝑝

𝑛 + 𝑟𝑟 + 𝑑/2            (6.16) 

𝜃𝑐𝑎 = tan−1 𝑥𝑐𝑎

𝑍𝑝
𝑛             (6.17) 

𝑍𝑐𝑎 =  
𝑋𝑐𝑎

sin 𝜃𝑐𝑎
             (6.18) 

 

Figure 6.10: The generation of CA path for the terminal person 
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𝑑𝑐𝑎 =  𝑍𝑐𝑎 + 𝑟𝑝
𝑛 +  𝑟𝑟       (6.19) 

Similarely, to calculate the terminal region for the most left person in the group, the 

following equations are used: 

𝑥𝑐𝑎 = 𝑋𝑝
0 − 𝑟𝑝

0 − 𝑟𝑟 − 𝑑/2     (6.20) 

𝜃𝑐𝑎 = tan−1 𝑥𝑐𝑎

𝑍𝑝
𝑛        (6.21) 

𝑍𝑐𝑎 =  
𝑋𝑐𝑎

sin 𝜃𝑐𝑎
        (6.22) 

𝑑𝑐𝑎 =  𝑍𝑐𝑎 + 𝑟𝑝
0 +  𝑟𝑟         (6.23) 

Moreover, the same terminal region equations are used when there is only a single 

person in the path of the robot with taking into consideration that 𝑋𝑝
𝑛 = 𝑋𝑝

0. 

 

6.5 Robot’s Linear and Angular Velocities Calculation 

In collision avoidance, the robot has to adopt its linear and angular velocities based 

on the risk ratio of the followed collision-free path. Thus, it has to decrease its linear 

and angular velocities when the path is narrow in cluttered environment, and vice 

versa. 

In the implemented velocity controller, the robot will tune its linear and angular 

velocities based on the width of the region that it passes. This direct proportion will 

lead the robot to decrease its linear and angular velocities when the region is narrow, 

and increase it when the region is wider. To do this, the following equations are used 

to get the velocities of the robot: 

𝑣 =  𝑣𝑚𝑎𝑥 .
log10 𝜃𝑟

log10 𝜃𝑚𝑎𝑥
       (6.24) 

𝜔 =  𝜔𝑚𝑎𝑥 .
log10 𝜃𝑟

log10 𝜃𝑚𝑎𝑥
      (6.25) 

Where 𝜃𝑚𝑎𝑥  the maximum vision angle of the Kinect sensor and equal 70°; 𝜃𝑟 the 

angular width between two humans for middle regions, and between the terminal 

human and the vision limit for the sensor (±35°) for terminal regions. 
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Fig 6.11 shows the simulation result of the linear and angular velocities of the robot 

for different angles, given a maximum linear and angular velocities as 𝑣𝑚𝑎𝑥 =

0.3 𝑚/𝑠 and 𝜔𝑚𝑎𝑥 = 0.5 𝑟𝑎𝑑/𝑠. 

 

6.6 Software Implementation 

6.6.1 Development Tools 

The whole software implementation is realized using C# language which is an object 

oriented programming language appeared in 2000. C# could be used to implement a 

wide range of software applications which run on .Net framework [137]. C# is built 

over the previous C, C++ languages which make it more robust and more 

convenient for developing different applications including embedded systems and 

human-machine interfaces.  

Moreover, the Extensible Markup Language (XML) is used for data exchange 

between the collision avoidance system and the multi-floor system. XML is a 

supporting language which is used for encoding documents and exchange the data 

between programs. This language uses a set of instructions and formats which are 

easy to understand by both the human and machines.  

 

6.6.2 System Realization 

The key success of any engineering system is the integration and synchronization 

between its components. In mobile robotics, several tasks have to run 

 

Figure 6.11: The linear and angular velocities for different width of regions 
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simultaneously as collision avoidance, path planning, arm grasping, and charging, to 

realize an effective autonomous manipulation system.  

The overall goal of the research is to build an autonomous transportation system 

which is able to transport the labware between different laboratories. To realize this, 

several partial systems have to run in parallel, and integrate with each other to 

guarantee the success of transportation tasks. Fig. 6.12 shows the general 

architecture for the implemented mobile transportation system. 

-  The robot remote center (RRC) is responsible on connecting with the process 

management system, and sending transportation commands to each robot based 

on the charging status of the robot and its nearness from the destination [110].  

-  The motion power control is a software which is located on the PC-Laptop and it 

is responsible of getting the sensors’ information of the robot and controlling the 

actuators.  

-  The multi-floor navigation system provides the robot with the robot’s location 

within the global map and guides it to the grasping and charging locations [130]. 

 

Figure 6.12: The general architecture of the transportation system 
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-  The arm control system is responsible on controlling the robot’s arms to grasp 

and place the labware [13]. 

-  The collision avoidance system is a local path planner, which allows the robot to 

adjust its path and avoid the unexpected obstacles which are located in its path to 

the goal location [112]. 

The collision avoidance system will receive the data from the Kinect sensor, and use 

the algorithms which are discussed before to allow the robot from re-planning its 

path to avoid the obstacles. Since the proposed collision avoidance system is related 

to the HRI system, a robust combination must be implemented to synchronize the 

work of these systems. Moreover, the collision avoidance system must be able to 

exchange the data with the multi-floor navigation system to get the next way-points 

and send the motion orders to the robot. Fig 6.13 shows the block box of the 

implemented collision avoidance system. 

To show the practical implementation of the collision avoidance system, the 

complete code for the “autonomous collision avoidance” is copied and could be 

found in appendix 5. The other collision avoidance functions such as “move 

right/left” have similar concepts of the autonomous collision avoidance. 

 

 

 

Figure 6.13: The general architecture of the Cooperative Collision Avoidance System 
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6.6.2.1 Collision Avoidance Controller 

The collision avoidance controller is the core of the collision avoidance system. It 

analysis the information received by the HRI system, monitors the connection state 

of the client (MFS), and trigs the collision avoidance functions based on the received 

information from the HRI. Fig 6.14 shows the flow chart of this controller.  

When a new process cycle starts, the controller checks whether there are humans in 

the path, and one of them at least has a distance less than 2 m. The controller will 

activate the “Stop” function which will let the robot stops for three seconds, giving a 

time distance for the human to interact. The “stop” function will be released and the 
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Figure 6.14: The flow chart of collision avoidance controller, (*) means information 

received from the HRI system 
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control will be given back to the CA controller. If the HRI shows that no human 

interacted with the robot, the controller will trig the autonomous collision avoidance 

procedure, or it will trig one of the cooperative collision-avoidance functions if a 

person interacted with the robot. Each function will implement the required 

processes, and send the motion commands to the MFS via the socket.  

 

6.6.2.2. Communication with the MFS 

For exchanging the data between the collision avoidance system and the MFS, a 

well-structured API is designed based on TCP/IP protocol [112] [130]. Furthermore, 

the data is transferred using XML format. Each message is composed of a header, 

and the message body, the header is composed of 4 bytes, and they save the message 

length in bytes, while the message body is composed of the XML message coded 

using UTF-8 format.  

The collision avoidance system represents the server part of the socket, while the 

MFS represents the client. The server will keep listening to the socket till a start 

message “keepOnline” and “StartCA” are received from the client. After each 

message, the server will reply the client confirming receiving the messages and 

establishing the connection correctly. The collision avoidance will then start 

monitoring the existence of humans in the path. When an obstacle is less than 2m, 

the CCA system will send “ObstacleDetected”, and the MFS will stop the robot and 

reply by providing the orientations of the next way-point as it could be seen in Fig 

6.15. The CCA will then calculate the collision-free path, and it will provide the 

motion orders to the MFS, by sending the angular and linear distances, and the 

velocities that the robot has to move. When the path is free of obstacles, the collision 

avoidance system will send “ObstacleFree” allowing the robot to keep moving to the 

 

Figure 6.15: The XML messages between CA and MFS 
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goal location. 

6.6.2.3 Collision Avoidance User Interface 

Fig 6.16 shows the user interface for the collision avoidance and human robot 

interaction systems. The interface is implemented as simple as possible to allow the 

user from handling the collision avoidance system easily. The upper part shows the 

connection status with the MFS, the middle part shows the human-robot interaction 

paremeters, and the lower part shows the collision avoidance parameters. 

The user interface allows the user from adjusting the parameters of the collision 

avoidance system, such as adjusting the distance the robot has to stop to implement 

the collision avoidance, the maximum velocities for any collision-avoidance 

functions. Furthermore, the user can activate/deactivate the velocity controller, and 

activate/deactivate the cooperative collision avoidance.  

 

Figure 6.16: The interface of the collision avoidance system 
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6.7 Experimental Results 

To check the performance of the collision avoidance system, several experiments 

have been implemented, and the whole parameters of the system are recorded and 

analysed. The tests have been implemented on the cooperative collision avoidance 

functions “Move forward, move backward, move right, move left”, besides to the 

tests over the autonomous collision avoidance. The whole experimental results are 

collected in the appendix.  

 

6.7.1 Tests over the Cooperative Collision Avoidance  

As it is shown before, the cooperative collision avoidance is based on the interaction 

between the robot and the master person. Furthermore, it is shown that there are four 

motion orders which could be provided to the robot via interaction: Move 

forward/backward, Move right/left. Each of these functions is tested and analysed 

separately.  

 

6.7.1.1 Move Forward 

To test the move forward function, 30 experiments have been done on different 

velocities of the robot as it could be seen in the table “A6.A” in the appendix 6. In 

each experiment, the robot is asked to move 1.2m as a result of the interaction. Fig 

6.17 shows an experiment for the “move forward” test. A person raises his right arm 

180° to inform the robot that he will be the master, then the master orders the robot 

 

               (a)                                          (b)                                             (c) 

Figure 6.17: The experiment for “move forward” function (a) the user raises “master” 

gesture, (b) orders the robot to move forward, (c) the robot executes the order 
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to move forward to guide it to another location, since the robot and the people are 

met in narrow corridor so neither of them is able to avoid each other. Table 6.1 

summarizes these experiments. 

The experiments show that the robot successfully interacted with the master, and 

executed the “forward” order. Furthermore, it could be seen that the robot on higher 

velocities (0.3 m/s) doesn’t follow the straight path, and it deviates around [2°, 4°] 

from the straight path due to problems in the wheels of the robot. 

 

6.7.1.2 Move Backward 

Similarly to “move forward”, 30 experiments were implemented to test the “move 

backward” function for the robot. Likewise the “move forward”, this function could 

be used to solve the bottleneck problem, and guide the robot to another wide area so 

the people and the robot can avoid each other. Fig 6.18 shows an experiment for this 

function, a person raises his right arm 180° to allow the robot from interacting with 

him, then the master moves his both arms 180° to order the robot to move backward. 

Table 6.1: Summary of the experiments for “move forward” function 

V(m/s) No. Experiments Time(sec) Note 

0.1 10 12  

0.2 10 6  

0.3 10 4 Deviation [2°,4°] 

 

 

              (a)                                             (b)                                              (c) 

Figure 6.18: The experiment for “move backward” function (a) the user raises “master” 

gesture, (b) orders the robot to move backward, (c) the robot executes the order 
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Table “A6.B” in appendix 6 shows the experimental results for this function for 

three velocities. While the table 6.2 summarizes these experiments.  

It can be seen from the table 6.2 that at velocity (0.3 m/s), the robot shows a 

deviation from the straight path, due to the low accuracy for the robot’s wheels.  

 

6.7.1.3 Move Right 

In “move right” function, the robot will interact with the master, and consider only 

the regions that are located to the right of him. To test the function, 30 experiments 

were implemented and divided into three groups. Each group includes 10 

experiments with a certain maximum linear velocity 𝑣𝑚𝑎𝑥 and angular 

velocity 𝜔𝑚𝑎𝑥. Furthermore, it could be seen that in each group, the robot moved in 

the middle of two people for 5 experiments, and to the right of the last terminal 

human for the other 5 experiments. Tables “A6.C, A6.D, A6.E” in the appendix 6 

show the experimental results for these experiments, while table 6.3 summarizes the 

experiments. Furthermore, Fig 6.19 shows the real test environment for the robot. 

In each experiment, it could be seen that the robot searches for the whole regions 

which are located to the right of the master, and they are wide enough to generate 

the collision-avoidance path. The available regions could be found in the tables 

under “region candidate”. After selecting the region, the robot will calculate its 

Table 6.2: Summary of the experiments for “move backward” function 

V(m/s) No. Experiments Time(sec) Note 

0.1 10 12  

0.2 10 6  

0.3 10 4 Deviation [2°,4°] 

 

Table 6.3: The experimental summary for the “Move Right” function 

Table Number of 

Experiments 

V(m/s) W(rad/s) Note 

A6.C (10) 5 right, 5 middle 0.2 0.4 1 missed skeleton 

A6.D (10) 5 right, 5 middle 0.25 0.3 1 missed skeleton 

A6.E (10) 5 right, 5 middle 0.3 0.5 3 deviations 

1 missed skeleton 
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width 𝜃𝑟 to compute the linear velocity (𝑉), and angular velocity (𝜔) of the robot. 

Finally, the robot calculates the heading angle and the distance “d” of the collision 

avoidance path that it has to move to pass the human.  

“missed skeleton” in the experiments means that when the robot stops for 

interaction, the Kinect took a time to detect the people, and this required from them 

to shake their bodies a bit to allow the Kinect from detecting them. While the 

deviation means that the robot didn’t move accurately to the planned path, because 

of the limitation in the wheels and the motors of the robot.  

In summary, the function was able accurately to select the whole available regions, 

calculate the linear and angular velocities of the robot based on the angular width of 

the selected region, and pass the people without causing collision with them. 

 

 

 

 

               (a)                                              (b)                                               (c)  

 

                   (d)                                           (e)                                             (f)  

Figure 6.19: The experiments for the “Move Right” function (a, d) the master person is 

selected, (b, e) the master orders the robot to move to the right, (c) the robot selects the 

terminal region to the right of the last person, (f) the robot selects the middle region 

between the master and the other person 
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6.7.1.4 Move Left 

Similarly to the tests over the “move right” function, the same experimental 

procedures also followed to test the “move left” function. The 30 experiments were 

divided into three groups. In each group the robot is tested under different maximum 

linear and angular collision-avoidance velocities. Fig 6.18 shows the robot’s 

movement between two people, and to the left of the terminal human. Furthermore, 

the calculated candidate regions, region width, and the velocities could be found in 

the tables “A6.F, A6.G, A6.H” in appendix 6, and the total experiments were 

summarized in the table 6.4.  

It could be concluded that out of 30 experiments, there were three times the human 

required to shake a bit to allow the Kinect from recognizing the skeletons. 

Furthermore, it is shown that at the higher velocity (𝑣𝑚𝑎𝑥 = 0.3 𝑚/𝑠) the robot 

deviates for around 3° to 4° from its planned path. Still, in the whole experiments 

the collision avoidance system was able to calculate the whole parameters correctly, 

and avoid the people which are located in the path. 

(a)                                        (b)                                        (c)  

(d)                                          (e)                                           (f)  

Figure 6.20: The experiments for the “Move left” function (a, d) the master person is 

selected, (b, e) the master orders the robot to move to the left, (c) the robot selects the 

terminal region to the left of the last person, (f) the robot selects the middle region 

between the master and the other person 
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6.7.2 Autonomous Collision Avoidance (ACA) 

In autonomous collision avoidance, the robot will implement the collision avoidance 

path autonomously without interaction with the human. The robot will search for the 

whole available regions, and then it will select the region that is closest to its 

original path, by comparing the angle of the next waypoint and the heading angle of 

each candidate region. Fig 6.21 shows two experiments for the autonomous collision 

avoidance. The robot in (a, b, c) could detect two free regions, and it will select the 

 
(a)                                              (b)                                             (c) 

 (d)                                                (e)                                            (f) 

Figure 6.21: The experiments for “autonomous collision avoidance”, (a) The robot 

found two free regions, (d) the robot could find three free regions, (b, d) the robot 

selects the region that is closest to the next way-point, (c, f) the robot calculates the 

collision-free path and avoid the people 

 

Table 6.4: The experimental summary for the “Move Left” function 

Table Number of 

Experiments 

V(m/s) W(rad/s) Note 

A6.F (10) 5 left, 5 middle 0.15 0.3 1 missed skeleton 

A6.G (10) 5 left, 5 middle 0.2 0.4 1 missed skeleton 

A6.H (10) 5 left, 5 middle 0.3 0.25 2 deviations 

1 missed skeleton 
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region to the right since it is nearest to its original path. In Fig 6.21 (d, e, f) the robot 

detected three regions, and it selected the region that is to the left since it is nearest 

to the next waypoint. 

Tables “A6.I, A6.J, A6.K” in appendix 6 show the experimental results of the ACA. 

While table 6.5 summarizes the total experiments.  

In the tables, the “way-point” blank represents the angle that the robot has to move 

to reach the next way-point on its original path to the goal location. It could be seen 

then that when there is more than one candidate region, the robot will select the 

region that is nearest to the angle of next way-point. The robot will then use the 

width of the selected region 𝜃𝑟 to calculate the robot’s velocities.  Finally, the robot 

calculates the heading angle and the travelled distance to pass the people.  

From table 6.5, it could be found that the people required to shake a bit to be 

recognized from the Kinect in three experiments. Furthermore, the robot deviated 

for around 4°in two experiments at the higher velocity of the robot. 

The experiments show that the autonomous collision avoidance system works with a 

success rate 100%, and it can correctly select the region that is closest to the next 

waypoint, and provide the collision-free paths to the robot.  

 

 6.7.3 Test of the Collision Avoidance for different Situations 

To check the performance of the collision avoidance system, two additional 

experiments have been implemented. In each experiment, the robot is moved in a 

certain path where humans are existed. Furthermore, the collision avoidance 

parameters are recorded to check the system.  

Table 6.5: The experimental summary for the Autonomous Collision Avoidance 

Table Number of 

Experiments 

V(m/s) W(rad/s) Note 

A6.I 10 0.15 0.2 1 missed skeleton 

A6.J 10 0.2 0.5 1 missed skeleton 

A6.K 10 0.3 0.25 2 Deviations 

1 missed skeleton 
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In the first experiment, the robot will move from the charging station, to a laboratory 

to pick a sample. In Fig 6.22, the blue line represents the original path of the robot 

that it had to follow when no people are existed in the path, while the red line 

represents the adjusted path of the robot after avoiding the people. The maximum 

velocities are set to 𝑣𝑚𝑎𝑥 = 0.25 𝑚/𝑠 ,   𝜔𝑚𝑎𝑥  =  0.4  𝑟𝑎𝑑/𝑠. The total time the 

robot needed to cross the path without generating collision avoidance paths is 207s. 

Fig 6.22 shows the experiment in the three locations. 

In location 1, the robot met two humans, and no one interacted with it. Thus, the 

robot implemented the collision avoidance autonomously. The robot selected the 

right region since it is nearest to its original path. 

In location 2, the robot met humans in the corridor, since there is no free space for 

implementing the collision avoidance, the master raised his two arms horizontally to 

order the robot to move forward, till it reached to the location 3.  

In location 3, the master person asked the robot to move to the right since there is 

enough space for both the robot and the human to avoid each other. The robot will 

then execute the cooperative collision avoidance by searching for the region that is 

located to the right of the master person. Fig 6.23 shows the motion of the robot in 

the three locations. While Table 6.6 summarizes the three experiments. The total 

time needed to implement the experiment is 264s.  

 

 

 

 

Figure 6.22: The followed path in the first experiment 
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Table 6.6: The experimental results for the first path 

 Location 1 Location 2 Location 3 

CA Function ACA Move Forward CA Move Right 

Region 1 (deg) -31.4 -------- 9.9 

Region 2 (deg) 19.5 -------- 34.5 

Waypoint (deg) 8.4 -------- -------- 

θ (deg) 19.5 0 9.9 

d(m) 3.28 1.2 3.14 

𝜃𝑟(deg) 27.9 -------- 31.1 

ᴠ (m/s) 0.195 0.25 0.202 

ω (rad/s) 0.31 0 0.323 

Time(ms) 17863 4800 16060 

 

   
(a)                                           (b)                                                  (c)  

(d)                                               (e)                                                  (f) 

                            (g)                                        (h)                                              (i) 

Figure 6.23: The motion of the robot for three locations. (a, b, c) no people interacted 

with the robot, so it implemented the collision avoidance autonomously. (d, e, f) the 

robot met people in narrow path, so the master ordered the robot to move forward till 

the end of the corridor. (g, h, i) the master asked the robot to move to the right 
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In the second experiment, the robot is asked to move in the path which is shown in 

Fig 6.24 as a blue dashed line. The required time to pass the path without collision 

avoidance paths is 94 seconds. The maximum linear and angular velocities are set 

to  𝑣𝑚𝑎𝑥 = 0.2 𝑚/𝑠 ,   𝜔𝑚𝑎𝑥  =  0.3  𝑟𝑎𝑑/𝑠.  

In n the first location, the human is interacted with the robot and he asked him to 

move to the left. In location 2, the robot is moved in narrow path, so the human 

interacted with the robot and asked it to move backward. In the third location, the 

robot faced two people in the path, and it implemented autonomous collision 

avoidance since none of the people interacted with it. Table 6.7 shows the 

 

Figure 6.24: The followed path in the second experiment 

Table 6.7: The experimental results for the second path 

 Location 1 Location 2 Location 3 

CA Function CCA 

Move Left 

Move Backward ACA 

Region 1 (deg) -22.3 ------ -31.2 

Region 2 (deg) 11.1 ------ 14.6 

Waypoint (deg) ------ ------ -25.0 

θ (deg) 11.1 ------ -31.2 

d(m) 2.81 1.2 2.90 

𝜃𝑟(deg) 36.0 ------ 17.9 

ᴠ (m/s) 0.168 0.2 0.135 

ω (rad/s) 0.252 0 0.202 

Time(ms) 17438 6000 24092 
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experimental results of the complete experiment, while Fig 6.25 shows the motion 

of the robot in the real environment. The robot successfully implemented the three 

motions, and it required 156s to reach the goal.  

 

  

 

 

                 (a)                                         (b)                                          (c)  

       

                   (d)                                           (e)                                           (f) 

 

(g) (h) (i)  

Figure 6.25: The motion of the robot in the three locations for the second experiment. 

(a, b, c) the master asked the robot to move to left, and the robot select the middle 

region, (d, e, f) the master ordered the robot to move backward since there is no wide 

path, (g, h, i) no people interacted with the robot, so it implemented autonomous 

collision avoidance 
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6.8 Discussion 

Out of the previous experiments, it could be concluded the following: 

-  The collision avoidance system together with the human-robot interaction show 

robust performance; the collision avoidance was able to detect the whole 

available regions, and select the regions based on the collision avoidance function 

“autonomous or cooperative”.  

-  Furthermore, the collision avoidance system implemented the whole calculations 

accurately (path distances and angles, robot’s velocities), and this provided a 

smooth movement for the robot between the humans who are located in narrow 

distances.  

-  In comparison with the other collision avoidance systems, the proposed system 

has the advantage of allowing the people from controlling it in some situations 

such as the existence of several people in the path, or when the user knows that 

the robot is moving toward a cluttered path, so the master can ask the robot to 

move to a certain direction where there is no obstacles. Furthermore, the system 

allows the operator from interrupting the motion of the robot, stop it and control 

it in emergency situations.  

-  The previous collision avoidance systems didn’t solve the bottleneck problem, in 

which the robot and the people meet in narrow paths so neither of them is able to 

avoid the other. The implemented system solved this problem, by allowing the 

master human from guiding the robot to another location which is wide enough to 

avoid each other, and complete their path safely after the interaction. 

- On the other hand, it is noticed that due to the vibration of the robot, the Kinect 

sensor loses some skeleton frames, and this required from the master to raise his 

arm again to inform the robot to interact with him. Furthermore, it is shown in 

some cases, when the robot stops, it causes the Kinect to lose the skeleton of 

people due to the vibration, and it required from them to shake to let the Kinect 

from detecting them again. 
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7.1 Conclusion 

This dissertation aimed to improve the navigation and the operations of the mobile 

robots which are navigating in indoor environments alongside to humans. This 

includes implementing a robust localisation system to enable the robot from defining 

its location correctly in the work environment; building a human-robot interaction 

system so the robot can define the human, interact with him via analysing the arms’ 

movements; besides to implement a robust collision avoidance system based on the 

realized human-robot interaction system to ensure that both the human and the robot 

will be able to avoid the collisions.  

-  An improved localization system is implemented for the indoor mobile robots. 

The StarGazer sensor is used for this task. This sensor has the advantages of 

using passive landmarks, and the possibility of modifying and extending the map 

easily to meet the adjustments in the work environment. Still, this sensor suffers 

from the noises resulted from strong sunlight and fluorescent light. To overcome 

these noisy measurements, an improved Kalman filter model is applied over the 

measurements of the sensor. When a new measurement is obtained from the 

sensor, the filter will use this measurement in the update equation. The filter will 

then compare the results of the update equation and the estimate equation; if the 

difference is outer than a certain domain, the filter will consider the result of the 

estimate equation as the new position of the robot, else it will use the result of the 

update equation as the new position. The experimental results show that the filter 

is able to detect the false measurements, and provide estimation for the location 

of the robot under the false measurements. 

-  A human-robot interaction system is implemented for the H20 robot to be able to 

detect the human in the work environment and interact with them. Kinect V2 

sensor is a 3D sensor which provides the robot with skeleton frames for up to six 

humans to the robot. Each skeleton provides the 3D dimensions for 25 joints of 

the user. Seven gestures are used in this work “master select, move right, move 

Chapter 7 

Conclusion and Outlook 
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left, move forward, move backward, resume, and stop”. To analyse and define the 

gestures, the dimensions of five joints are taken (right and left wrists and elbows, 

and the neck joint). To classify the gestures, two methods are used and compared: 

Support Vector Machine and Back Propagation Neural Network. K-fold cross 

validation training algorithm is used to train and test the models. The 

experimental results showed a better performance for the BPNN model than the 

L-SVM model, with the ability to classify 100% of the test data successfully. 

Furthermore, the real experiments over the human-robot interaction system 

shows that the system is able to recognize the whole gestures and classify them 

with a success rate 100%. The implemented human-robot interaction system is 

integrated with the collision avoidance system.  

-  A new collision avoidance system is developed for the H20 robot. This system 

has two levels: cooperative collision avoidance based on human robot interaction, 

and autonomous collision avoidance. Unlike the majority of traditional collision 

avoidance systems, the proposed system gives mutual responsibilities for both the 

human and the robot to avoid each other. In this system, the robot delegates the 

human to control the collision avoidance procedures by supervising the motion of 

the robot via interaction. The robot will wait for three seconds allowing the 

human to interact with it. If a person interacted with the robot, then it will move 

forward/backward when the user raises the corresponding gestures, or it will 

execute the collision avoidance path to the right/left of the master person when he 

points to the right/left using his arms. If no human interacted with the robot, it 

will then select the free region that is closest to the original direction that the 

robot was following before the humans appeared in the path. The key advantage 

of this system is that it gives the human the opportunity to master the motion of 

the robot when needed, so the robot moves based on the orders provided by the 

master. The experiments show the ability of the robot from finding the collision-

free paths in both situation (autonomous and cooperative), besides to overcome 

the bottleneck problem by using the orders (move forward, move backward). 
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7.2 Outlook 

- The proposed filtration algorithm for the StarGazer sensor can cope the problem 

of false measurements. In some situations, the measurements of the sensor are 

disconnected when the sensor changes the landmarks during its movement to the 

goal location. To overcome such problem, it is possible to implement a sensor 

fusion between the StarGazer and another sensor such as the encoder, so the filter 

can provide better estimation for the robot’s location. 

-  Furthermore, it is shown that the Kinect sensor loses some skeleton frames 

because of the sensor’s vibration resulted from the motion of the robot. To solve 

this problem, the recursive filters such as Kalman filter could be used to 

compensate the lost frames, and provide estimation for the position of humans to 

the robot. Another solution is to use the colour camera of the Kinect sensor to 

detect the human, and implement gesture recognition system based on the data 

provided by the camera.  

-  The current collision avoidance system is able to detect only the human. Thus, it is 

required to implement further work to detect the static obstacles. Fortunately, the 

3D vision feature of the Kinect allows from using the same sensor in detecting 

both the static and human obstacles. After detecting the static obstacles, all what 

is needed is to provide the positions and widths of these obstacles to the 

implemented collision avoidance system, so it can take into consideration the 

distribution of these obstacles when it searches for the free regions. 
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Appendix 1: The StarGazer Sensor 

 

 

 

             

Figure A1.B: HL2 Landmark with the hexadecimal values and the best distribution 

[45] 

 

Figure A1.A: The IR sensor from Hagisonic- South Korea [45]

  

Table A1.A: StarGazer Specifications [45] 

Hardware Interface UART(TTL 3.3V) 115,200bps 

Size 50×50×28mm 

Communication Protocol User protocol based on ASCII code 

Measurement Time 20 times/sec 

Localization Range 

(per a Landmark) 

2.5-5 m in diameter 

(for ceiling height 2-6m) 

Repetitive Precision 2cm 

Heading Angle Resolution 0.1 degree 

Landmark Types 

(classification for ID numbers) 

HL1: 31 ea (for a normal space) 

HL2: 4095 ea (for a larger space) 
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Appendix 2 

The Kinect 2.0 

 

 

 

Figure A2.A: The Kinect V2 sensor 

Table A2.A: Kinect 2.0 Specifications 

1920x1080 – 30 fps Color Camera 

512x424 Depth Camea 

4.5 m Max Depth Distance 

50 cm Min Depth Distance 

70° Horizontal Field of View 

60° Vertical Field of View 

26 Skeleton Joints Number 

6 Number of Tracked Skeletons 

USB3 Access Port 
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Appendix 3 

Table A3.A: The complete experiments for the SVM model 

Experiment 

Number C 

Misclassified 

Samples for 8 

folds 

Train 

Time for 8 

folds SVM 
model test 

time(ms) 
1 4.53999E-05 397 112 21 <1 
2 0.00012341 397 104 21 <1 
3 0.000335463 397 103 21 <1 
4 0.000911882 397 108 21 <1 
5 0.002478752 397 107 21 <1 
6 0.006737947 397 105 21 <1 
7 0.018315639 355 102 21 <1 
8 0.049787068 156 88 21 <1 
9 0.135335283 33 71 21 <1 

10 0.367879441 8 68 21 <1 
11 1 9 56 21 <1 
12 2.718281828 9 49 21 <1 
13 7.389056099 8 45 21 <1 
14 20.08553692 16 45 21 <1 
15 54.59815003 16 44 21 <1 
16 148.4131591 16 49 21 <1 
17 403.4287935 16 42 21 <1 
18 1096.633158 16 42 21 <1 
19 2980.957987 16 45 21 <1 
20 8103.083928 16 42 21 <1 
21 22026.46579 16 44 21 <1 
22 59874.14172 16 45 21 <1 
23 162754.7914 16 44 21 <1 
24 442413.392 16 44 21 <1 
25 1202604.284 16 41 21 <1 
26 3269017.372 16 41 21 <1 
27 8886110.521 16 43 21 <1 
28 24154952.75 16 44 21 <1 
29 65659969.14 16 42 21 <1 
30 178482301 16 42 21 <1 
31 485165195.4 16 44 21 <1 
32 1318815734 16 43 21 <1 
33 3584912846 16 44 21 <1 
34 9744803446 16 44 21 <1 
35 26489122130 16 42 21 <1 
36 72004899337 16 43 21 <1 
37 1.9573E+11 16 42 21 <1 
38 5.32048E+11 16 41 21 <1 
39 1.44626E+12 16 44 21 <1 
40 3.93133E+12 16 44 21 <1 
41 1.06865E+13 16 42 21 <1 
42 2.90488E+13 16 44 21 <1 
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43 7.8963E+13 16 44 21 <1 
44 2.14644E+14 16 42 21 <1 
45 5.83462E+14 16 42 21 <1 
46 1.58601E+15 16 42 21 <1 
47 4.31123E+15 16 47 21 <1 
48 1.17191E+16 16 43 21 <1 
49 3.18559E+16 16 43 21 <1 
50 8.65934E+16 16 47 21 <1 
51 2.35385E+17 16 43 21 <1 
52 6.39843E+17 16 47 21 <1 
53 1.73927E+18 16 44 21 <1 
54 4.72784E+18 16 46 21 <1 
55 1.28516E+19 16 41 21 <1 
56 3.49343E+19 16 41 21 <1 
57 9.49612E+19 16 45 21 <1 
58 2.58131E+20 16 46 21 <1 
59 7.01674E+20 16 49 21 <1 
60 1.90735E+21 16 47 21 <1 
61 5.18471E+21 16 46 21 <1 
62 1.40935E+22 16 44 21 <1 
63 3.83101E+22 16 44 21 <1 
64 1.04138E+23 16 46 21 <1 
65 2.83075E+23 16 46 21 <1 
66 7.69479E+23 16 46 21 <1 
67 2.09166E+24 16 45 21 <1 
68 5.68572E+24 16 48 21 <1 
69 1.54554E+25 16 44 21 <1 
70 4.20121E+25 16 53 21 <1 
71 1.14201E+26 16 47 21 <1 
72 3.1043E+26 16 43 21 <1 
73 8.43836E+26 16 48 21 <1 
74 2.29378E+27 16 43 21 <1 
75 6.23515E+27 16 45 21 <1 
76 1.69489E+28 16 41 21 <1 
77 4.60719E+28 16 44 21 <1 
78 1.25236E+29 16 44 21 <1 
79 3.40428E+29 16 42 21 <1 
80 9.25378E+29 16 44 21 <1 
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Appendix4 

The experiments for the human-robot interaction system 

Table A4.A: The experiments for the first person (height 165) 

Note Time Angle Gesture Distance (X) Depth (Z) 

 377 -40 Right -0.6 1.8 

 365 -20 Master 0 

Forward wrong “ 

Kinect failure” 

392 0 Left 0.6 

 359 20 Resume -1.15 2.4 

 396 40 Forward -0.57 

 372 -40 Stop 0 

 361 -20 backward 0.57 

 375 0 Forward 1.15 

 346 20 Left -1.64 3.2 

 773 40 backward -0.8 

 369 -40 Master 0 

 367 -20 Resume 0.8 

 371 0 Stop 1.64 

 377 20 Right -2.2 4.0 

 383 40 Stop -1.1 

 348 -40 Resume 0 

 363 -20 Master 1.1 

 381 0 Left 2.2 
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Table A4.B: The experiments for the second person (height 170) 

Note Time Angle Gesture Distance  (X) Depth (Z) 

 380 -20 Resume -0.6 1.8 

State transition 773 0 Forward 0 

 382 20 Stop 0.6 

State transition 766 40 backward -1.15 2.4 

 359 -40 Forward -0.57 

 368 -20 Left 0 

 378 0 Right 0.57 

 358 20 Master 1.15 

 380 40 Resume -1.64 3.2 

 367 -40 Stop -0.8 

 355 -20 Right 0 

 368 0 Left 0.8 

 368 20 Resume 1.64 

 368 40 Backward -2.2 4.0 

Left wrong 

“Kinect failure” 

365 -40 Master -1.1 

State transition 752 -20 Right 0 

 376 0 Stop 1.1 

 349 -20 Forward 2.2 
 

Table A4.C:  The experiments for the third person (height 177) 

Note Time Angle Gesture Distance (X) Depth (Z) 

 374 0 Master -0.6 1.8 

 361 20 Stop 0 

 383 40 Backward 0.6 

 349 -40 Resume -1.15 2.4 

 354 -20 Left -0.57 

 360 0 Forward 0 

 359 20 Left 0.57 

 353 40 Backward 1.15 

 354 -40 Master -1.64 3.2 

 355 -20 Stop -0.8 

 346 0 Right 0 

 339 20 Left 0.8 

 346 40 Resume 1.64 

 375 -40 Master -2.2 4 

 347 -20 Resume -1.1 

 349 0 Right 0 

State transition 735 -20 Backward 1.1 

 348 -40 Forward 2.2 
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Table A4.D: The experiments for the fourth person (height 179) 

Note Time Angle Gesture Distance (X) Depth (Z) 

 379 20 Stop -0.6 1.8 

 354 40 Right 0 

 381 -40 Left 0.6 

 337 -20 Backward -1.15 2.4 

 358 0 Master -0.57 

 362 20 Resume 0 

 379 40 Forward 0.57 

 350 -40 Right 1.15 

State transition 744 -20 Stop -1.64 3.2 

 386 0 Left -0.8 

 397 20 Backward 0 

 356 40 Right 0.8 

 344 -40 Stop 1.64 

 351 -20 Resume -2.2 4 

 794 0 Backward -1.1 

 347 -20 Left 0 

 368 -40 Master 1.1 

 381 20 Forward 2.2 
 

Table A4.E: The experiments for the fifth person (height 188) 

Note Time Angle Gesture Distance (X) Depth (Z) 

 369 0 Master -0.6 1.8 

 384 20 Stop 0 

 347 40 Forward 0.6 

 358 -40 Backward -1.15 2.4 

 374 -20 Right -0.57 

 366 0 Left 0 

State Transition 752 20 Resume 0.57 

 382 40 Master 1.15 

 377 -40 Stop -1.64 3.2 

 354 -20 Forward -0.8 

 373 0 Backward 0 

 376 20 Right 0.8 

 362 40 Left 1.64 

 372 -20 Resume -2.2 4 

 357 -40 Master -1.1 

 363 0 Stop 0 

 359 20 Forward 1.1 

 372 40 Backward 2.2 

 



Appendixes 

120 
 

      Appendix5 

The programming code for “Autonomous Collision Avoidance” Function 

        public void AutonomousCollisionAvoidance() 
        { 
            Dynamic_CA_InProgress = true; 
            Tag_AutonomousInProcess = true; 
            CA_TimeCycle_Finshed = false; 
            Timer_DCA_Time_Finished = false; 
            Timer_DCA.Stop(); 
            Timer_CA.Stop(); 
            bool ThereisRegion = false; 
            double goal_angle; 
            CA_TimeCycle_Finshed = false; 
            LogFileData += "\r\n" + "ACA";   
             
            goal_angle = (Math.Atan((X_WP - X_Current) / (Y_WP - Y_Current))) * 180 / 3.14; 
 
            if (ThereIsSomeone && Array_X_DCA[0] != 0) 
            { 
 
                ClientS = "H20-RBC-V2"; 
                CommandNameS = "CAParameters"; 
 
                int c = 0; 
                for (int i = 0; i < 6; i++) 
                { 
                    if (Array_X_DCA[i] != 0) 
                        c++; 
                } 
 
                double[] X_People_DCA_Arranged = new double[c]; 
                double[] Z_People_DCA_Arranged = new double[c]; 
                double[] Radius_People_DCA_Arranged = new double[c]; 
                for (int i = 0; i < c; i++) 
                { 
                    X_People_DCA_Arranged[i] = Array_X_DCA[i]; 
                    Z_People_DCA_Arranged[i] = Array_Z_DCA[i]; 
                    Radius_People_DCA_Arranged[i] = Array_Human_Radius_DCA[i]; 
                } 
                bool didSwap; 
                do  
                { 
                 didSwap = false; 
                  if (X_People_DCA_Arranged.Length > 1) 
                   { 
                     for (int i = 0; i < X_People_DCA_Arranged.Length - 1; i++) 
                      { 
                        if (X_People_DCA_Arranged[i] > X_People_DCA_Arranged[i + 1]) 
                        { 
                          double temp = X_People_DCA_Arranged[i + 1]; 
                          double temp1 = Z_People_DCA_Arranged[i + 1]; 
                          double temp2 = Radius_People_DCA_Arranged[i + 1]; 
                          X_People_DCA_Arranged[i + 1] = X_People_DCA_Arranged[i]; 
                          Z_People_DCA_Arranged[i + 1] = Z_People_DCA_Arranged[i]; 
                          Radius_People_DCA_Arranged[i + 1] = Radius_People_DCA_Arranged[i]; 
                          X_People_DCA_Arranged[i] = temp; 
                          Z_People_DCA_Arranged[i] = temp1; 
                          Radius_People_DCA_Arranged[i] = temp2; 
                          didSwap = true; 
                        } 
                      } 
                    } 
                 } while (didSwap); 
 
                for (int i = 0; i < X_People_DCA_Arranged.Length; i++) 
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                { 
                  X_People_DCA_Arranged[i] = X_People_DCA_Arranged[i] + X_Correction_factor; 
                } 
                double[] People_Angles_Arranged = new double[c]; 
 
                for (int i = 0; i < X_People_DCA_Arranged.Length; i++) 
                { 
                 People_Angles_Arranged[i] = Math.Atan(X_People_DCA_Arranged[i] /   
                 Z_People_DCA_Arranged[i]); 
                } 
                double[] Gaps_X; 
                double[] Gaps_Z; 
                double[] Gaps_Radius; 
                double[] Gaps_AngularWidth; 
                double[] Gaps_TheFarX; 
                double[] Gaps_TheAngleofMiddle; 
                double[] Direction; 
                int NumberOfGaps = 0; 
 
                if (X_People_DCA_Arranged.Length > 1) 
                { 
                 for (int i = 0; i < X_People_DCA_Arranged.Length - 1; i++) 
                 { 
                  if ((X_People_DCA_Arranged[i + 1] - X_People_DCA_Arranged[i]) > ((2 * Rr +  
                       Radius_People_DCA_Arranged[i + 1] + Radius_People_DCA_Arranged[i]) +  
                       Safety_Displacement)) 
                        { 
                            NumberOfGaps++; 
                        } 
                    } 
                } 
 
         double Gaps_XLeft, Gaps_XRight, Gaps_XAllowedLeft, Gaps_XAloowedRight; 
         Gaps_XLeft = X_People_DCA_Arranged[0] - Radius_People_DCA_Arranged[0] - Rr –  
                      Safety_Displacement / 2; 
         Gaps_XRight = X_People_DCA_Arranged[X_People_DCA_Arranged.Length - 1] +  
                       Radius_People_DCA_Arranged[Radius_People_DCA_Arranged.Length – 1] +  
                       Rr + Safety_Displacement / 2; 
         Gaps_XAllowedLeft = -0.7 * Z_People_DCA_Arranged[0]; 
         Gaps_XAloowedRight = 0.7 * Z_People_DCA_Arranged[Z_People_DCA_Arranged.Length - 1]; 
                if (Gaps_XAllowedLeft < Gaps_XLeft) 
                { 
                    NumberOfGaps = NumberOfGaps + 1; 
                } 
                if (Gaps_XAloowedRight > Gaps_XRight) 
                { 
                    NumberOfGaps = NumberOfGaps + 1; 
                } 
 
                Gaps_X = new double[NumberOfGaps]; 
                Gaps_Z = new double[NumberOfGaps]; 
                Gaps_Radius = new double[NumberOfGaps]; 
                Gaps_AngularWidth = new double[NumberOfGaps]; 
                Gaps_TheFarX = new double[NumberOfGaps]; 
                Gaps_TheAngleofMiddle = new double[NumberOfGaps]; 
                Direction = new double[NumberOfGaps]; 
                if (NumberOfGaps > 0) 
                { 
                    int counter = 0; 
                    ThereisRegion = true; 
                    if (Gaps_XAllowedLeft < Gaps_XLeft) 
                    { 
                       Gaps_X[0] = X_People_DCA_Arranged[0] - Radius_People_DCA_Arranged[0]  
                                   - Rr - Safety_Displacement / 2; 
                        Gaps_Z[0] = Z_People_DCA_Arranged[0]; 
                        Gaps_Radius[0] = Radius_People_DCA_Arranged[0]; 
                        Gaps_AngularWidth[0] = Math.Abs(-0.61 - People_Angles_Arranged[0]); 
                        Gaps_TheFarX[0] = X_People_DCA_Arranged[0]; 



Appendixes 

122 
 

                        Gaps_TheAngleofMiddle[0] = Math.Atan(Gaps_X[0] / Gaps_Z[0]) + (-0.61  
                                                   - Math.Atan(Gaps_X[0] / Gaps_Z[0])) / 2; 
                        Direction[0] = Math.Atan(Gaps_X[0] / Gaps_Z[0]); 
                        counter++; 
                    } 
                    for (int i = 0; i < X_People_DCA_Arranged.Length - 1; i++) 
                    { 
                        if ((X_People_DCA_Arranged[i + 1] - X_People_DCA_Arranged[i]) > (2 *  

Rr + Radius_People_DCA_Arranged[i] + Radius_People_DCA_Arranged[i + 
1] + Safety_Displacement)) 

                        { 
                            Gaps_X[counter] = (X_People_DCA_Arranged[i] +  

      X_People_DCA_Arranged[i + 1]) / 2; 
                            Gaps_AngularWidth[counter] = People_Angles_Arranged[i + 1] –  

People_Angles_Arranged[i]; 
                            if (Z_People_DCA_Arranged[i] > Z_People_DCA_Arranged[i + 1]) 
                            { 
                                Gaps_Z[counter] = Z_People_DCA_Arranged[i]; 
                                Gaps_Radius[counter] = Radius_People_DCA_Arranged[i]; 
                                Gaps_TheFarX[counter] = X_People_DCA_Arranged[i]; 
 
                            } 
                            else 
                            { 
                                Gaps_Z[counter] = Z_People_DCA_Arranged[i + 1]; 
                                Gaps_Radius[counter] = Radius_People_DCA_Arranged[i + 1]; 
                                Gaps_TheFarX[counter] = X_People_DCA_Arranged[i + 1]; 
                            } 
                            Gaps_TheAngleofMiddle[counter] = Math.Atan(Gaps_X[counter] /  

    Gaps_Z[counter]); 
                            Direction[counter] = Math.Atan(Gaps_X[counter] /  

Gaps_Z[counter]); 
                            counter++; 
                        } 
                    } 
                    if (Gaps_XAloowedRight > Gaps_XRight) 
                    { 
                      Gaps_X[NumberOfGaps - 1] =  

      X_People_DCA_Arranged[X_People_DCA_Arranged.Length - 1] +  
      Radius_People_DCA_Arranged[X_People_DCA_Arranged.Length - 1] + Rr +  
      Safety_Displacement / 2; 
 

                       Gaps_Z[NumberOfGaps - 1] =  
                       Z_People_DCA_Arranged[Z_People_DCA_Arranged.Length - 1]; 
                      
                       Gaps_Radius[NumberOfGaps - 1] =  
                       Radius_People_DCA_Arranged[Radius_People_DCA_Arranged.Length - 1]; 
                       Gaps_AngularWidth[NumberOfGaps - 1] = Math.Abs(0.61 –  
                       People_Angles_Arranged[People_Angles_Arranged.Length - 1]); 
                       Gaps_TheFarX[NumberOfGaps - 1] =  
                       X_People_DCA_Arranged[X_People_DCA_Arranged.Length - 1]; 
                       Gaps_TheAngleofMiddle[NumberOfGaps - 1] =  
                       Math.Atan(Gaps_X[NumberOfGaps - 1] / Gaps_Z[NumberOfGaps - 1]) +   
                       (0.61 - Math.Atan(Gaps_X[NumberOfGaps - 1] / Gaps_Z[NumberOfGaps –  
                       1])) / 2; 
                       Direction[NumberOfGaps - 1] = Math.Atan(Gaps_X[NumberOfGaps - 1] /  
                        Gaps_Z[NumberOfGaps - 1]); 
                    } 
                } 
                else 
                    ThereisRegion = false; 
 
                if (ThereisRegion) 
                { 
                    double XToAvoid = 0; 
                    double ZToAvoid = 0; 
                    double RadiusToAvoid = 0; 
                    double RegionWidth_Angle = 0; 
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                    double X_FarPerson = 0; 
                    for (int i = 0; i < Gaps_TheAngleofMiddle.Length; i++) 
                    { 
                        Gaps_TheAngleofMiddle[i] = Gaps_TheAngleofMiddle[i] * 180 / 3.14; 
                    } 
                    int pointer_to_selected_angle = 0; 
                    double temp_gap_anglevalue = 100; 
                    for (int i = 0; i < Gaps_TheAngleofMiddle.Length; i++) 
                    { 
                        if (Gaps_TheAngleofMiddle[i] > goal_angle) 
                        { 
                            double tem = Gaps_TheAngleofMiddle[i] - goal_angle; 
                            if (tem < temp_gap_anglevalue) 
                            { 
                                pointer_to_selected_angle = i; 
                                temp_gap_anglevalue = tem; 
                            } 
                        } 
                        else 
                        { 
                            double tem = goal_angle - Gaps_TheAngleofMiddle[i]; 
                            if (tem < temp_gap_anglevalue) 
                            { 
                                pointer_to_selected_angle = i; 
                                temp_gap_anglevalue = tem; 
                            } 
                        } 
                    } 
 
              XToAvoid = Gaps_X[pointer_to_selected_angle];     
              ZToAvoid = Gaps_Z[pointer_to_selected_angle]; 
              RadiusToAvoid = Gaps_Radius[pointer_to_selected_angle]; 
              RegionWidth_Angle = Gaps_AngularWidth[pointer_to_selected_angle]; 
              X_FarPerson = Gaps_TheFarX[pointer_to_selected_angle]; 
 
 
              double Z_ToAvoidNEWNEW = Math.Sqrt(XToAvoid * XToAvoid + ZToAvoid * ZToAvoid); 
              double theta = Math.Atan(XToAvoid / ZToAvoid) * 180 / 3.14; 
              double d = Z_ToAvoidNEWNEW + 2 * Rr + RadiusToAvoid; 
              double Linear_Velocity_Factor1 = 0; 
              double Angular_Velocity_Factor1 = 0; 
              double maximum_linear_velocity = (1000 / Linear_Velocity_Factor_DCA); 
              double velocity = maximum_linear_velocity *(Math.Log10 
                                     (RegionWidth_Angle * (180 / 3.14))) / Math.Log10(70)); 
              Linear_Velocity_Factor1 = Math.Round(1000 / velocity); 
              double maximum_angular_velocity = (1000 / Angular_Velocity_Factor_DCA); 
              double angular_velocity = maximum_angular_velocity*(Math.Log10(Math.Abs   
                                       (RegionWidth_Angle * (180 / 3.14))) /Math.Log10(70)); 
              Angular_Velocity_Factor1 = Math.Round(1000 / angular_velocity); 
              DepthS = Convert.ToString(0); 
              string d11 = d.ToString("F2"); 
              DistanceS = Convert.ToString(0); 
              AngleS = Convert.ToString(Math.Round(theta)); 
              ID_Counter++; 
              IDS = Convert.ToString(ID_Counter); 
              TimeSDistance = Convert.ToString(0); 
              TimeSRotation = Convert.ToString(Math.Round(Math.Abs(theta *  
                              Angular_Velocity_Factor1))); 
 
              XMLDataToSend se = new XMLDataToSend(this); 
              byte[] ss = se.XMLPrepare(); 
              HRI_Server.SendOutData(ss); 
              Thread.Sleep(Convert.ToInt32(Math.Abs(theta * Angular_Velocity_Factor1))); 
              DistanceS = AngleS = DepthS = TimeSDistance = TimeSRotation = IDS = ""; 
              Array.Clear(ss, 0, ss.Length); 
              DepthS = Convert.ToString(Math.Round(ZToAvoid)); 
              DistanceS = Convert.ToString(Convert.ToDouble(d11)); 
              AngleS = Convert.ToString(0); 
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              ID_Counter++; 
              IDS = Convert.ToString(ID_Counter); 
              TimeSDistance = Convert.ToString(Math.Round(Math.Abs(d *  
                              Linear_Velocity_Factor1))); 
              TimeSRotation = Convert.ToString(0); 
              se = new XMLDataToSend(this); 
              ss = se.XMLPrepare(); 
              HRI_Server.SendOutData(ss); 
              Thread.Sleep(Convert.ToInt32((Math.Abs(d * Linear_Velocity_Factor1)))); 
              DistanceS = AngleS = DepthS = TimeSDistance = TimeSRotation = IDS = ""; 
              Array.Clear(ss, 0, ss.Length); 
                } 
                else 
                { 
                    ThereisRegion = false; 
                    synth.SpeakAsync("No Free path"); 
                    SetText_Plus(TheRaisedFunction, "ACA -- No Free Path" + "\r\n"); 
                } 
                Dynamic_CA_InProgress = false; 
                CA_TimeCycle_Finshed = true; 
                Tag_AutonomousInProcess = false; 
                Timer_CA.Start(); 
            } 
            else 
            { 
                Dynamic_CA_InProgress = false; 
                CA_TimeCycle_Finshed = true; 
                Tag_AutonomousInProcess = false; 
            } 
        } 
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Appendix6 

The experiments for the collision avoidance system 

Table A6.A: Experimental results for “move forward” 

Experiment no Distance(m) Velocity(m/s) Time (ms) Note 

1 1.2 0.1 12000  

2 1.2 0.1 12000  

3 1.2 0.1 12000  

4 1.2 0.1 12000  

5 1.2 0.1 12000  

6 1.2 0.1 12000  

7 1.2 0.1 12000  

8 1.2 0.1 12000  

9 1.2 0.1 12000  

10 1.2 0.1 12000  

11 1.2 0.2 6000  

12 1.2 0.2 6000  

13 1.2 0.2 6000  

14 1.2 0.2 6000  

15 1.2 0.2 6000  

16 1.2 0.2 6000  

17 1.2 0.2 6000  

18 1.2 0.2 6000  

19 1.2 0.2 6000  

20 1.2 0.2 6000  

21 1.2 0.3 4000 Deviation 4° 

22 1.2 0.3 4000 Deviation 4° 

23 1.2 0.3 4000 Deviation 3° 

24 1.2 0.3 4000 Deviation 3° 

25 1.2 0.3 4000 Deviation 2° 

26 1.2 0.3 4000 Deviation 4° 

27 1.2 0.3 4000 Deviation 3° 

28 1.2 0.3 4000 Deviation 2° 

29 1.2 0.3 4000 Deviation 4° 

30 1.2 0.3 4000 Deviation 3° 
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Table A6.B: Experimental results for “Move Backward” 

Experiment no Distance(m) Velocity(m/s) Time (ms) Note 

1 1.2 0.1 12000  

2 1.2 0.1 12000  

3 1.2 0.1 12000  

4 1.2 0.1 12000  

5 1.2 0.1 12000  

6 1.2 0.1 12000  

7 1.2 0.1 12000  

8 1.2 0.1 12000  

9 1.2 0.1 12000  

10 1.2 0.1 12000  

11 1.2 0.2 6000  

12 1.2 0.2 6000  

13 1.2 0.2 6000  

14 1.2 0.2 6000  

15 1.2 0.2 6000  

16 1.2 0.2 6000  

17 1.2 0.2 6000  

18 1.2 0.2 6000  

19 1.2 0.2 6000  

20 1.2 0.2 6000  

21 1.2 0.3 4000 Deviation 3° 

22 1.2 0.3 4000 Deviation 4° 

23 1.2 0.3 4000 Deviation 2° 

24 1.2 0.3 4000 Deviation 2° 

25 1.2 0.3 4000 Deviation 3° 

26 1.2 0.3 4000 Deviation 4° 

27 1.2 0.3 4000 Deviation 4° 

28 1.2 0.3 4000 Deviation 3° 

29 1.2 0.3 4000 Deviation 4° 

30 1.2 0.3 4000 Deviation 2° 
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Table A6.C: Experimental results for “move right”       𝑣𝑚𝑎𝑥 = 0.2 𝑚/𝑠   𝜔𝑚𝑎𝑥 = 0.4 𝑟𝑎𝑑/𝑠 

No. Region 

Candidate 

Region 

Candidate 

Heading 

Angle 

d 

(m) 
𝜃𝑟 

degree 

V 

m/s 

ω 
rad/s 

Position Time 

(ms) 

Note 

1 -3.7 25.4 -3.7 3.03 34.9 0.167 0.335 Middle 18316  

2 9.5 ----- 9.5 2.96 33.0 0.164 0.329 Middle 18530  

3 8.7 ----- 8.7 2.92 42.6 0.176 0.356 Middle 16980  

4 2.7 30.2 2.7 2.94 33.4 0.165 0.329 Middle 17997  

5 24.6 ----- 24.6 3.09 24.4 0.150 0.300 Middle 21954  

6 22.7 ----- 22.7 3.13 26.1 0.153 0.306 Right 21676  

7 33.4 ----- 33.4 3.31 13.6 0.122 0.245 Right 29326  

8 20.0 ----- 20.0 2.92 30.6 0.161 0.323 Right 19243 Missed 
skeleton 

9 22.9 ----- 22.9 3.65 23.3 0.148 0.295 Right 25995  

10 16.0 ----- 16.0 3.37 31.4 0.162 0.323 Right 21633  

 

 

Table A6.D: Experimental results for “move right”       𝑣𝑚𝑎𝑥 = 0.25  𝑚/𝑠   𝜔𝑚𝑎𝑥 = 0.3𝑟𝑎𝑑/𝑠 

No. Region 

Candidate 

Region 

Candidate 

Heading 

Angle 

d 

(m) 
𝜃𝑟 

degree 

V 

m/s 

ω 
rad/s 

Position Time 

(ms) 

Note 

1 -6.4 25.0 -6.4 2.92 34.9 0.209 0.249 Middle 14443  

2 1.16 31.1 1.16 2.95 38.7 0.215 0.256 Middle 13822  

3 7.1 ----- 7.1 3.16 42.4 0.220 0.264 Middle 14796  

4 13.9 ----- 13.9 3.03 40.4 0.217 0.260 Middle 14873  

5 -0.98 24.7 -0.98 3.50 36.5 0.211 0.252 Middle 16596  

6 12.7 ----- 12.7 3.17 36.2 0.211 0.252 Right 15890  

7 15.4 ----- 15.4 3.50 30.8 0.201 0.242 Right 18497  

8 26.9 ----- 26.9 3.44 19.9 0.176 0.210 Right 21789  

9 11.1 ----- 11.1 3.20 35.8 0.210 0.252 Right 16007 Missed 

skeleton 

10 26.9 ----- 26.9 3.50 20.2 0.176 0.212 Right 22043  
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Table A6.E: Experimental results for “move right”     𝑣𝑚𝑎𝑥 = 0.3  𝑚/𝑠   𝜔𝑚𝑎𝑥 = 0.5𝑟𝑎𝑑/𝑠 

No. Region 
Candidate 

Region 
Candidate 

Heading 
Angle 

d 
(m) 

𝜃𝑟 

degree 

V 

m/s 

ω 
rad/s 

Position Time 
(ms) 

Note 

1 -5.4 24.8 -5.4 3.02 37.0 0.255 0.425 Middle 12071  

2 9.0 ----- 9.0 3.34 37.1 0.255 0.425 Middle 13473  

3 15.6 ----- 15.6 3.35 36.8 0.254 0.425 Middle 13830 Dev 3° 

4 -0.4 30.8 -0.4 3.12 41.1 0.262 0.436 Middle 11903  

5 20.5 ----- 20.5 3.54 26.3 0.231 0.387 Middle 16248 Dev 4° 

6 11.9 ----- 11.9 3.18 36.6 0.254 0.425 Right 13000  

7 20.7 ----- 20.7 3.22 27.8 0.234 0.387 Right 14682 Missed 

skeleton 

8 24.1 ----- 24.1 3.14 24.6 0.226 0.379 Right 14978 Dev 3° 

9 25.2 ----- 25.2 3.35 22.9 0.221 0.371 Right 16358  

10 14.5 ----- 14.5 3.83 31.5 0.243 0.405 Right 16337  

 

 

 

Table A6.F: Experimental results for “move left”       𝑣𝑚𝑎𝑥 = 0.15   𝑚/𝑠   𝜔𝑚𝑎𝑥 = 0.3𝑟𝑎𝑑/𝑠 

No. Region 

Candidate 

Region 

Candidate 

Heading 

Angle 

d  

(m) 
𝜃𝑟 

degree 

V 

m/s 

ω 
rad/s 

Positio

n 

Time 

(ms) 

Note 

1 -29.5 -5.9 -5.9 3.10 33.8 0.124 0.249 Middle 2542

0 

 

2 -13.0 ----- -13.0 2.69 47.0 0.135 0.272 Middle 2064

2 

 

3 -16.8 8.2 8.2 3.57 30.2 0.120 0.242 Middle 3025
6 

 

4 -11.9 ----- -11.9 3.19 33.8 0.124 0.249 Middle 2652

3 

 

5 -28.1 -0.2 -0.2 2.99 32.2 0.122 0.245 Middle 2445

5 

 

6 -12.4 ----- -12.4 2.65 39.9 0.130 0.260 Right 2120

0 

Missed 

skeleton 

7 -13.5 ----- -13.5 2.61 40.1 0.130 0.260 Right 2099

6 

 

8 -25.9 ----- -25.9 3.49 20.5 0.106 0.212 Right 3488

6 

 

9 -6.2 ----- -6.2 3.10 41.8 0.131 0.264 Right 2396
1 

 

10 -13.9 ----- -13.9 2.97 36.4 0.126 0.252 Right 2441
4 
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Table A6.G: Experimental results for “move left”       𝑣𝑚𝑎𝑥 = 0.2  𝑚/𝑠     𝜔𝑚𝑎𝑥 = 0.4 𝑟𝑎𝑑/𝑠 

No. Region 
Candidate 

Region 
Candidate 

Heading 
Angle 

d 
(m) 

𝜃𝑟 

degree 

V 

m/s 

ω 
rad/s 

Position Time 
(ms) 

Note 

1 -19.4 4.3 4.3 3.33 33.5 0.165 0.329 Middle 20412 Missed 

skeleton 

2 -26.9 2.6 2.6 2.78 36.9 0.169 0.342 Middle 16525  

3 -23.4 7.8 7.8 2.77 36.2 0.168 0.335 Middle 16863  

4 -30.6 0.4 0.4 2.64 40.0 0.173 0.348 Middle 15241  

5 -21.6 8.5 8.5 2.74 33.9 0.165 0.329 Middle 17013  

6 -17.0 ----- -17.0 3.23 30.8 0.161 0.323 Right 20951  

7 -7.5 ----- -7.5 2.88 41.8 0.175 0.348 Right 16789  

8 -11.7 ----- -11.7 3.16 35.7 0.168 0.335 Right 19410  

9 -24.6 ----- -24.6 3.38 21.1 0.143 0.285 Right 25067  

10 -25.9 ----- -25.9 3.08 22.0 0.145 0.290 Right 22706  

 

Table A6.H: Experimental results for “move left”      𝑣𝑚𝑎𝑥 = 0.3  𝑚/𝑠     𝜔𝑚𝑎𝑥 = 0.25 𝑟𝑎𝑑/𝑠 

No. Region 

Candidate 

Region 

Candidate 

Heading 

Angle 

d 

(m) 
𝜃𝑟 

degree 

V 

m/s 

ω 
rad/s 

Position Time 

(ms) 

Note 

1 -30.2 -1.9 -1.9 2.82 37.2 0.255 0.212 Middle 11221  

2 -25.2 3.6 3.6 2.80 35.2 0.251 0.210 Middle 11472  

3 -12.9 ----- -12.9 2.78 36.5 0.254 0.212 Middle 12030 Dev 4° 

4 -34.3 -8.9 -8.9 2.95 36.4 0.253 0.212 Middle 12368 Missed 
skeleton 

5 -6.7 ----- -6.7 2.79 39.1 0.259 0.215 Middle 11351  

6 -9.8 ----- -9.8 3.17 38.3 0.257 0.215 Right 13128  

7 -6.6 ----- -6.6 2.98 41.2 0.262 0.218 Right 11890 Dev 3° 

8 -10.8 ----- -10.8 2.98 38.3 0.257 0.215 Right 12485  

9 -26.3 ----- -26.3 2.94 21.6 0.217 0.181 Right 16102  

10 -12.1 ----- -12.12 2.90 36.8 0.254 0.212 Right 12395  
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Table A6.I: Experimental results for Autonomous CA   𝑣𝑚𝑎𝑥 = 0.15  𝑚/𝑠     𝜔𝑚𝑎𝑥 = 0.2 𝑟𝑎𝑑/𝑠 

No Region 

Cand 

Region 

Cand 

Region 

Cand 

Wayp

oint 

Head 

Angle 

d 

(m) 

𝜃𝑟 V ω Time Note 

1 -29.9 5.2 ----- 12.7 5.2 2.66 37.4 0.127 0.171 21339  

2 -18.7 12.45 ----- -86.9 -18.7 2.9 31.5 0.121 0.163 25976  

3 -33.4 23.7 ----- -75.0 -33.4 2.84 16.5 0.099 0.13 33094  

4 -18.03 5.12 ----- 80.03 5.12 2.85 41.6

9 

0.131 0.176 22178  

5 -31.0 22.1 ----- 0.88 22.1 3.12 26.7 0.11 0.15 29420  

6 -21.7 11.13 ----- -59.6 -21.7 2.79 29.2 0.12 0.158 25888  

7 -19.6 17.6 ----- 80.8 17.6 2.51 36.0 0.126 0.169 21647  

8 -16.77 13.32 ----- 8.82 13.32 2.93 36.8 0.127 0.169 24448  

9 -16.7 17.2 ----- 8.75 17.2 2.69 34.7 0.125 0.167 23343 Missed 

skeleton 

10 -33.2 -3.9 ----- -35.1 -33.2 2.92 15 0.09 0.127 35105  

 

 

 

Table A6.J: Experimental results for Autonomous CA      𝑣𝑚𝑎𝑥 = 0.2  𝑚/𝑠     𝜔𝑚𝑎𝑥 = 0.5 𝑟𝑎𝑑/𝑠 

No Region 

Cand 

Region 

Cand 

Region 

Cand 

Wayp

oint 

Head 

Angle 

d 

(m) 

𝜃𝑟 

deg 

V 

m/s 

ω 
rad/s 

Time 

(ms) 

Note 

1 -30.5 3.2 34.5 8.3 3.2 2.69 37.9 0.171 0.425 15866  

2 -32.1 23.2 ----- 35.8 23.2 3.17 25.5 0.152 0.379 21895  

3 -29.9 22.5 ----- 17.4 22.5 3.04 27.3 0.155 0.387 20551  

4 -22.1 9.4 34.6 13.9 9.4 3.16 31.6 0.162 0.405 19881  

5 -32.7 19.5 ----- -78.8 -32.7 3.12 15.9 0.130 0.323 25796 Missed 

skeleton 

6 -32.9 22.1 ----- -87.4 -32.9 2.86 16.8 0.132 0.329 23309  

7 -18.0 16.3 ----- -84.1 -18.0 2.75 34.0 0.166 0.415 17359  

8 -18.7 23.0 ----- -8.1 -18.7 2.34 37.3 0.170 0.425 14552  

9 -25.3 9.2 33.6 84.4 33.6 3.54 12.3 0.118 0.295 32023  

10 -28.5 ----- ----- -81.8 -28.5 2.49 25.7 0.152 0.379 17623  
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Table A6.K: Experimental results for Autonomous    𝑣𝑚𝑎𝑥 = 0.3  𝑚/𝑠     𝜔𝑚𝑎𝑥 = 0.25 𝑟𝑎𝑑/𝑠 

No Region 

Cand 

Region 

Cand 

Region 

Cand 

Wayp

oint 

Head 

Angle 

d 

(m) 
𝜃𝑟 

deg 

V 

m/s 

ω 
rad/s 

Time 

(ms) 

Note 

1 -30.6 3.3 34.7 71.6 34.7 3.25 12.3 0.177 0.147 22454 Missed 

skeleton 

2 21.7 ----- ----- -86.6 21.7 2.61 31.3 0.243 0.202 12619  

3 -12.4 19.5 ----- -89.2 -12.4 2.85 38.8 0.258 0.215 12064  

4 -13.9 18.6 ----- 3.7 18.6 2.88 32.4 0.245 0.205 13339  

5 -26.8 32.8 ----- -69.6 -26.8 2.81 23.4 0.222 0.185 15152 Dev 4° 

6 -25.8 5.6 33.8 2.4 5.6 2.93 34.4 0.25 0.207 12203  

7 -31.3 25.5 ----- -84.5 -31.3 3.09 16.6 0.198 0.166 18887 Dev 4° 

8 -19.6 20.9 ----- 82.2 20.9 2.39 34.2 0.249 0.207 11360  

9 -21.1 30.3 ----- -30.6 -21.1 2.87 29.3 0.238 0.198 13922  

10 -12.6 18.3 ----- -27.4 -12.6 2.89 38.0 0.256 0.215 12290  
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