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ABSTRACT 

Recently, due to the popularity of deep learning, the applicability of deep 

Neural Networks (DNN) algorithms such as the convolutional neural networks (CNN) 

has been explored in decoding electroencephalogram (EEG) for Brain-Computer 

Interface (BCI) applications. This allows decoding of the EEG signals end-to-end, 

eliminating the tedious process of manually tuning each process in the decoding 

pipeline.  However, the current DNN architectures, consisting of multiple hidden 

layers and numerous parameters, are not developed for EEG decoding and 

classification tasks, making them underperform when decoding EEG signals. Apart 

from this, a DNN is typically treated as a black box and interpreting what the network 

learns in solving the classification task is difficult, hindering from performing 

neurophysiological validation of the network. This thesis proposes an improved and 

compact CNN architecture for motor imagery decoding based on the adaptation of 

SincNet, which was initially developed for speaker recognition task from the raw audio 

input. Such adaptation allows for a very compact end-to-end neural network with state-

of-the-art (SOTA) performances and enables network interpretability for 

neurophysiological validation in terms of cortical rhythms and spatial analysis. In 

order to validate the performance of proposed algorithms, two datasets were used; the 

first is the publicly available BCI Competition IV dataset 2a, which is often used as a 

benchmark in validating motor imagery (MI) classification algorithms, and a primary 

data that was initially collected to study the difference between motor imagery and 

mental rotation task associated motor imagery (MI+MR) BCI.  The latter was also 

used in this study to test the plausibility of the proposed algorithm in highlighting the 

differences in cortical rhythms. In both datasets, the proposed Sinc adapted CNN 

algorithms show competitive decoding performance in comparisons with SOTA CNN 

models, where up to 87% decoding accuracy was achieved in BCI Competition IV 

dataset 2a and up to 91% decoding accuracy when using the primary MI+MR data. 

Such decoding performance was achieved with the lowest number of trainable 

parameters (26.5% - 34.1% reduction in the number of parameters compared to its 

non-Sinc counterpart). In addition, it was shown that the proposed architecture 

performs a cleaner band-pass, highlighting the necessary frequency bands that focus 

on important cortical rhythms during task execution, thus allowing for the 

development of the proposed Spatial Filter Visualization algorithm. Such 

characteristic was crucial for the neurophysiological interpretation of the learned 

spatial features and was not previously established with the benchmarked SOTA 

methods.   
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ABSTRAK 

Baru-baru ini, disebabkan populariti pembelajaran mendalam, kebolehgunaan 

algoritma Rangkaian Neural Dalam (DNN) seperti rangkaian neural konvolusi (CNN) 

telah diterokai dalam penyahkodan electroencephalogram (EEG) untuk aplikasi 

Antaramuka Komputer-Otak (BCI). Ini membolehkan penyahkodan isyarat EEG dari 

hujung ke hujung, dan menghapuskan proses renyah dalam penalaan secara manual 

setiap proses dalam saluran paip penyahkodan. Walau bagaimanapun, senibina DNN 

semasa yang terdiri daripada berbilang lapisan tersembunyi dan jumlah parameter 

yang banyak, tidak dibangunkan untuk tugas penyahkodan dan pengelasan EEG, 

menjadikannya kurang berprestasi untuk tujuan penyahkodan isyarat EEG. Selain itu, 

DNN biasanya dianggap sebagai kotak hitam dan penafsiran terhadap apa yang 

dipelajari oleh rangkaian tersebut dalam menyelesaikan tugas pengelasan adalah 

sukar, sekaligus menghalang daripada melaksanakan pengesahan neurofisiologi 

rangkaian. Tesis ini mencadangkan seni bina CNN yang lebih baik dan padat untuk 

penyahkodan imej motor berdasarkan penyesuaian SincNet, yang pada mulanya 

dibangunkan untuk tugas pengecaman suara daripada input audio mentah. 

Penyesuaian sedemikian membolehkan rangkaian neural dari hujung ke hujung yang 

sangat padat dengan prestasi terkini (SOTA) dan membolehkan kebolehtafsiran 

rangkaian untuk pengesahan neurofisiologi dari segi irama kortikal dan analisis spatial. 

Untuk mengesahkan prestasi algoritma yang dicadangkan, dua set data telah 

digunakan; yang pertama ialah set data BCI Competition IV 2a yang tersedia secara 

umum, yang sering digunakan sebagai penanda aras dalam mengesahkan algoritma 

pengelasan imejan motor (MI), dan data utama yang pada mulanya dikumpulkan untuk 

mengkaji perbezaan antara imejan motor dan tugas putaran mental berkaitan motor 

imejan (MI+MR) BCI. Yang terakhir ini juga digunakan dalam kajian ini untuk 

menguji kebolehpercayaan algoritma yang dicadangkan dalam menyerlahkan 

perbezaan dalam irama kortikal. Dalam kedua-dua set data, algoritma CNN yang 

disesuaikan daripada Sinc yang dicadangkan menunjukkan prestasi penyahkodan 

kompetitif berbanding model SOTA CNN, di mana ketepatan penyahkodan sehingga 

87% dicapai dalam dataset BCI Competition IV 2a dan sehingga 91% ketepatan 

penyahkodan apabila menggunakan data utama MI+MR. Prestasi penyahkodan 

sedemikian dicapai dengan bilangan parameter boleh dilatih yang terendah (26.5% - 

34.1% pengurangan dalam bilangan parameter berbanding padanannya yang bukan 

Sinc). Di samping itu, telah ditunjukkan bahawa seni bina yang dicadangkan 

melakukan penapisan jalur yang lebih bersih, menonjolkan jalur frekuensi yang 

diperlukan yang menumpukan pada irama kortikal yang penting semasa pelaksanaan 

tugas, sekali gus membolehkan pembangunan algoritma Visualisasi Penapis Spatial 

yang dicadangkan. Ciri sedemikian adalah penting untuk tafsiran neurofisiologi ciri 

spatial yang dipelajari dan tidak pernah dibangunkan dengan kaedah SOTA yang 

ditanda aras. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

A brain-computer interface (BCI) can be defined as a system that translates 

brain activity patterns into messages or commands that represent the user’s intention 

or condition by using the direct brain to computer mode of communication [1]–[3]. 

Until recently, the dream of being able to control one’s environment by using thoughts 

alone is considered science fiction. Advancements in technology have allowed for a 

thorough understanding of the brain, enabling the developments of machines capable 

of decoding and interpreting the complex nature of the brain process. Among the 

earliest form of BCI system was demonstrated by professor Jacques Vidal in which 

the feasibility of controlling a cursor-like graphical object on a screen was shown by 

detecting certain features in the brain’s electrical signals or electroencephalography 

(EEG) [4] through the use of electrodes placed on subject’s scalp.  

 Since then, many studies have successfully demonstrated the feasibility of 

various BCI system applications with a wide range of system complexity. Apart from 

using the non-invasive EEG, researchers have explored the use of the latest medical 

technology ranging from the complex functional magnetic resonance imaging (fMRI) 

[5], [6] to the more invasive electrocorticography (ECoG) [7] and microarrays 

electrode [8] for this purposes.  One of the most apparent and noble reasons for the use 

of this technology is that it brings hope to “locked-in” individuals, who are cognitively 

intact but without useful muscle functions and those who are suffering from the most 

severe motor disabilities, including people with amyotrophic lateral sclerosis (ALS), 

spinal cord injury, stroke, and other neuromuscular diseases or injuries [9].  When the 

brain’s ability to move muscles or navigate one’s environment is lost, this technology 

allows us to directly read the brain waves pattern and translate users’ mental intention. 

For this reason, various medical applications using BCI have been explored including 
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restoring communications for locked-in patients [10], [11], restoration of motor 

control via neuroprosthesis and robotics limb [12], restoration of independent 

locomotion through the use of motorized wheelchair [13], [14], BCI based 

environmental control [15], [16], and neurorehabilitation [17], [18]. Figure 1.1 

illustrates the typical BCI process and its applications. Apart from its obvious medical 

uses, BCI has recently been commercialized as an off-the-shelf device to increase 

focus and assist in meditation. As an example, the single-channel EEG headset, 

Mindwave Mobile from Neurosky is marketed as an affordable BCI tool to improve 

attention and meditation [19], [20].   

 

Figure 1.1 BCI processing pipelines and its applications 

In most BCI systems, the derivation of meaningful information from the raw 

brain’s bioelectrical signals typically follows a similar pipeline. From the non-invasive 

EEG to the surgically required ECoG and micro-electrode arrays, extraction of these 

bioelectrical signals will usually be followed by filtering, feature extraction, and 

signals classification. In the filtering stage, noise from the signals will be removed 

through suitable digital signal processing (DSP) algorithms. The use of bandpass and 

notch filters in DSP, for example, helps the system to focus on the most relevant 

neurophysiological rhythms that contain useful information. This process is then 

followed by a feature extraction stage in which essential features from the signals are 

extracted via statistical analysis or automated using computer algorithms. These 
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features are finally classified in the final stage of the pipeline using more general 

machine learning algorithms.  

Although there exist multiple brain-to-computer communication methods, for 

practicality, the use of EEG signal is considered more popular due to its relatively low-

cost requirement and non-invasive nature. EEG method of acquiring brain electrical 

signal works by measuring the electrical potentials from electrodes placed on the 

human scalp. Since its discovery in 1929 by German psychiatrist Hans Berger, EEG’s 

use for BCI has gained considerable interest as it allows practical acquisition of brain 

signals to be applied in a real-life environment. Deriving meaningful signals from EEG 

follows the mentioned BCI processing pipeline, and generally, for BCI applications, 

such signals are processed to detect either the user’s Evoked Potentials (EP) or the 

Event-Related Synchronous/De-Synchronous signals (ERD/ERS) [1]. In the case of 

ERD/ERS, this includes Imagery signals such as the Motor Imagery (MI) signals 

(signals produced during imagined or overt movement of human limbs) or Mental 

Imagery signals (signals produced while performing mental tasks such as mental 

rotation, mental arithmetic, mental-spatial visualization etc.) [21]. Detecting such 

imagery signals open up many interesting BCI applications. 

While very promising for many applications, EEG-based BCI, especially BCI 

that relies on MI detection, is still scarcely available outside of laboratories [9]. The 

lack of availability is mainly due to their low reliability, as they often gave erroneous 

mental commands from the user, and most EEG-based apparatus are impractical to be 

used outside of the laboratory. One of the main challenges for researchers in the BCI 

community is improving a BCI system’s reliability and practicality [22]. Therefore, to 

achieve this, improvement towards the BCI system’s two main elements are needed to 

be considered: 1: improvement towards the computer side of the system, in terms of 

computational performance and classification algorithm. 2: Improvement towards the 

user side of the system by enhancing user’s ability in controlling a BCI system.  
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1.2 Problem Statement 

In addressing improvement towards the computer side of a BCI system, much 

research has focused on improving computational algorithm performance in terms of 

classification accuracy, reliability, and practicality. These include algorithms for 

filtering the raw EEG signal, extracting relevant features, and finally classifying those 

features into relevant classes [23].  Recently, due to the computer technology 

advancement and popularity of deep learning and artificial intelligence (AI), 

algorithms such as the Convolutional Neural Network (CNN) have been considered 

state-of-the-art (SOTA) in image classification, speech recognition, language 

processing, and other domains that requires the use of signal classification or machine 

learning.  

Such popularity has led many researchers to explore the applicability of CNN 

towards decoding EEG for BCI purposes [24]–[26]. One main advantage of using a 

deep CNN algorithm is that it enables end-to-end learning and decoding directly from 

the raw EEG signals to perform the classification task in the context of BCI. This 

allows bypassing the traditional filtering and feature extraction stage in the 

conventional BCI processing pipeline. Such features prove attractive to researchers as 

the traditional processes in a BCI pipeline are time-consuming and cumbersome for 

real life applications. Deep learning algorithms allow for a faster development time as 

manually tuning each stage in the processing pipeline is now replaced by artificial 

neural networks (ANN), in which parameter tuning is handled automatically via 

network optimization [27]. 

However, deep learning algorithms are generally computationally expensive 

and require a huge amount of data for the neural network (NN) training and execution 

(inference) [28]–[30].  Such issues make implementing deep CNN for EEG decoding 

difficult as the amount of data available in general EEG experiments is limited. Apart 

from this, using standard “deep” CNN (denotes that the CNN contains many hidden 

layers) architectures for EEG decoding where the number of data is limited causes the 

network to overfit; an issue where the network optimizes too well on the training data, 

but fails to generalize on a new set of data. Hence, in this case, a more compact and 
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shallower NN architecture is often desirable [24], [25], as it eliminates the network 

overfitting issue and generalizes well on new data, which is crucial for real 

implementation. Another advantage of having a compact CNN architecture is that it 

allows for a CNN with fewer parameters, reducing computational requirement in 

training and deploying the trained CNN. 

Another drawback of using end-to-end CNN is that although it can result in 

SOTA performance for decoding accuracy, it is hard to interpret for analysis purposes. 

Such interpretability issue makes CNN or any NN-based architecture in general 

difficult to identify the features that the network learned and extracted to solve the 

classification task [31]. In the context of BCI research, such a drawback resulted in 

difficulty in performing neurophysiological validation as to why the CNN is able to 

learn from the raw EEG data and what features are being extracted. For example, in 

an EEG-based BCI system, it is important to identify the spectral and spatial features 

to validate which cortical rhythm (frequency band) and which cortical areas contribute 

to deriving meaningful information from EEG data. Hence, developing an 

interpretable CNN architecture is crucial for performing such an analysis. 

The second element in a BCI system that needs to be addressed is improving 

the system's usability or the user’s ability to control or use the system itself. In this 

case, little research has been done toward achieving this goal. A BCI system is 

analogous to a car race competition in which the user is the car driver, while the 

computer side is the car itself. Race performance depends on the driver’s ability to 

control the car and engine performance and handling. One way to enhance user-side 

performance and adaptability to the BCI system is by introducing a suitable training 

protocol before actual user engagement. For example, this can be achieved by 

introducing a training protocol that addresses the user’s ability to perform kinaesthetic 

MI for an MI-based BCI system [32], [33]. This study hypothesizes a novel method 

that associates mental imagery tasks with motor imagery to improve the user’s 

kinaesthetic imagery. This improvement is because such association is theorized to 

allow for concrete discrimination of EEG signals, hence allowing the BCI system to 

discrimate better between EEG signals during certain motor task execution, resulting 
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in better classification performance. Such improvement is also essential in addressing 

the inter-and intra- variability of decoding accuracy between BCI’s users [34].   

1.3 Research Objectives 

 Based on the scenario aforementioned, it is imperative to develop a good 

computer algorithm and ensure that BCI users undergo a suitable training protocol for 

actual EEG-based BCI deployment. In achieving this aim, the objectives of this 

research project are as follows: 

i. To develop new CNN architecture for MI-based BCI decoding that is compact 

and interpretable for analysis. 

ii. To validate the plausibility of developed CNN architecture in terms of its 

decoding performance and neurophysiological validity. 

iii. To improve users’ usability of a BCI system by introducing novel mental to 

motor association tasks into MI-based BCI training protocol as well as for 

validation of developed CNN architecture. 

1.4 Research Scopes 

 The research scopes of this study are listed as follows: 

i. The research focuses on Motor Imagery (MI) as the BCI paradigm. 

ii. EEG signals recoding as a means to represent the brain's electrical activity. 

iii. Validation of proposed CNN architecture using both primary and secondary 

datasets. 
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iv. The secondary data consists of the publicly available dataset, BCI Competition 

IV dataset 2a (available at http://bnci-horizon-2020.eu/database/data-sets), 

often used as the de facto standard in gauging the performance of MI-based 

BCI classification algorithm. This dataset consists of EEG recordings taken 

from 9 participants using 19 channels electrodes. 

v. Primary data consist of EEG samples collected from 13 participants, mainly 

students from Universiti Teknologi Malaysia (UTM), who had informed 

consent prior to data collection. Before data collection, ethical approval was 

obtained from National Medical Research Register (NMRR) (research registry 

number: NMRR-19-1671-47228). 

vi. All EEG recordings are recorded using NVX-52 EEG amplifier from Medical 

Computer System (MKS) in which only 22 EEG channels were utilized 

following the international 10-20 standard. 

vii. Decoding of the EEG-based MI signals into left and right-hand movement 

intentions for primary data. 

viii. Use of the open-source python and its packages for algorithm construction and 

analysis: Tensorflow-Keras, Scikit-learn for algorithm development and 

Python MNE for EEG related analysis. 

  

http://bnci-horizon-2020.eu/database/data-sets
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1.5 Research Contributions 

By achieving the previously mentioned objectives, this research study provides 

several contributions towards the field of BCI, specifically towards the use of recent 

deep learning methodologies in decoding EEG based motor MI signals. Concretely, 

the contributions are listed as follows: 

(a) Compact CNN architecture for EEG based MI decoding 

A new compact and shallow CNN architecture for MI decoding has been 

developed using the industry’s standard deep learning framework (Google’s 

Tensorflow and Keras). The developed architecture performs comparably with 

the benchmarked SOTA CNN architecture, albeit with the least trainable 

network parameters. Such compactness made the architecture attractive to be 

deployed on resources constrained embedded computers. Furthermore, all 

codes are made open-source and are published on our Github. 

(https://github.com/TarmiziIzzuddin/Sinc_CNN_EEG_decode) 

(b) Interpretable CNN architecture for neurophysiological validation. 

Apart from being compact, the developed architecture is also engineered to be 

interpretable. Such features made it possible for users to “peer” in the network 

in order to perform neurophysiological validation and analysis. More 

concretely, using algorithms outlined in chapter 3, it is now possible to identify 

the necessary cortical rhythms and areas that the network focuses on to solve 

the decoding task. Similarly, this algorithm was also made available on our 

GitHub. 

(c) New BCI training protocol that enables user’s kinaesthetic MI 

As this research also addresses the user’s side of the BCI system, chapter 3 in 

this thesis has outlined the proposed BCI training protocol that enhances the 

user’s kinaesthetic ability in using a BCI system. Such protocol enhances 

certain cortical activation in the brain, making it more distinguishable for 

computer algorithms to discriminate between tasks. In addition, data collected 

using this protocol is the study’s primary data and was validated against the 

developed CNN architecture for neurophysiological validation.  
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1.6 Thesis Organizations 

This thesis is organized into six different chapters that reflect the sequence of 

the process involved in the development of the proposed CNN architecture for 

decoding MI signals. A brief outline of the thesis is as follows: 

Chapter 1 presents the research background of a BCI system, the research’s 

motivation and its problem statement. In addition, the research objectives are 

formulated, and the research’s scope is presented. Finally, the contribution of the 

research is listed. 

Chapter 2 describes the approaches in achieving an EEG-based BCI system in 

detail. The numerous BCI paradigms are thoroughly reviewed, and the current deep 

NN methodologies are discussed. Research gaps are identified based on the review, 

and the research directions are constructed. 

Chapter 3 explains the overall research methodology in achieving all of the 

research objectives. This includes a description of datasets used to validate the 

proposed CNN. In addition, details on the research protocol for collecting primary 

data, the proposed BCI protocol, and the research tools are also described in detail in 

this chapter. Finally, a thorough methodology for constructing the proposed compact 

and interpretable CNN architecture based on SincNet is shown here.  

Chapter 4 and 5 present the validation of the prosed CNN architecture in 

decoding EEG based MI signals. In chapter 4, the decoding performance of the 

proposed architecture is compared and benchmarked with SOTA architectures toward 

decoding the BCI competition IV dataset 2a (secondary data) while in chapter 5 

focuses on performing validation of the proposed network as an analysis tool for 

interpreting learned neurophysiological features of the primary dataset. 

Finally, chapter 6 presents the concluding remarks and recommendations of 

possible future works that can be taken in order to further test and improve the 

developed CNN architecture. 
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