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The design of brain-computer interface for the wheelchair for physically disabled people is presented. The design of the proposed
system is based on receiving, processing, and classification of the electroencephalographic (EEG) signals and then performing
the control of the wheelchair. The number of experimental measurements of brain activity has been done using human control
commands of the wheelchair. Based on the mental activity of the user and the control commands of the wheelchair, the design of
classification system based on fuzzy neural networks (FNN) is considered. The design of FNN based algorithm is used for brain-
actuated control. The training data is used to design the system and then test data is applied to measure the performance of the
control system. The control of the wheelchair is performed under real conditions using direction and speed control commands
of the wheelchair. The approach used in the paper allows reducing the probability of misclassification and improving the control
accuracy of the wheelchair.

1. Introduction

Human brain control of wheelchairs for physically disabled
people has attracted great attention due to their convenience
and relatively low cost, high mobility, and quick setup. The
measurement of human brain signals and converting them
into control signals require the development of an interface
between the brain and the computer. A brain-computer
interface (BCI) system provides communication between
computer and mind of pupils. This interface can be based on
brain activity during muscular movements or the changes of
the rhythms of brain signals [1]. These brain activities can be
detected using electroencephalographic (EEG) signals. BCI
transforms the EEG signals produced by brain activity into
control signals which can be later used for controlling the
wheelchair without using any physical controls. Since the
brain signals are very weak, we need to apply amplifiers and
some spatial and spectral filters to the EEG signals in order
to extract the features of these signals. The detected EEG

signals are based on the change of frequencies and change
of amplitudes. For example, during voluntary thoughts,
the frequencies of signals change, and during movement,
synchronisation/desynchronisation of brain activity which
involves 𝜇 rhythm amplitude change happens. This relevant
characteristic makes rhythm based BCI suitable to be used.

Recently, some research works have been done to develop
many applications of BCI for wheelchairs.Themain function
of BCI is to convert and transmit human intentions into
appropriate motion commands for the wheelchairs, robots,
devices, and so forth. BCI allows improving the quality of
life of disabled patients and letting them interact with their
environment. Reference [2] presents the application of BCI
and control of wheelchair in an experimental situation. The
research considers the driving of a simulated wheelchair in a
virtual environment before using BCI in a real situation. The
virtual reality (VR) decreases the number of dangerous sit-
uations by using training and testing applications. Reference
[3] describes a BCI systemwhich controls the wheelchair that
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moves in only one direction: move forward. In [4, 5], BCI is
designed for control of wheelchair using three possible com-
mands: turn left, turn right, and move forward. In [6], BCI
is designed using EEG signal captured by eight electrodes.
Wavelet transform was used for feature extraction and the
radial basis networks were used to classify the predefined
movements. In [7], controller based on the brain-emotional-
learning algorithm is used to control the omnidirectional
robot. Reference [8] presents the design of an asynchronous
BCI based control system for humanoid robot navigation
using an EEG. Reference [9] considers a noninvasive EEG-
based brain-computer interface system to achieve stable con-
trol of a low speed unmanned aerial vehicle for indoor target
searching. References [10–15] consider the design of brain-
controlled wheelchair. The construction of viable brain-
actuated wheelchair that combines BCI with a commercial
wheelchair, via a control layer, is considered. Combining
the BCI with shared control architecture [11] allows for
dynamically producing intuitive and smooth trajectories.The
processes of feature extraction and classification are very
important in BCI design and they have a great effect on the
performance of the BCI system. Set of research works has
been done for improvement of the feature extraction and
classification algorithms [12–19]. References [16, 17] consider
feature extraction algorithms for BCI. Reference [17] uses
adaptive common spatial patterns for feature extraction.

Different clustering algorithms based on support vector
machines, linear discriminant analysis, and neural networks
are applied for classification of brain signals. Reference [18]
uses features, optimised in the sense of statistically signifi-
cant and potentially discriminative coherences at a specific
frequency, and applies linear discriminant analysis (LDA) for
classification purpose. SVM [19] and LDA [20] are used for
classification purpose of brain signals.

Recently, several soft computing techniques are used for
recognition of brain activity [21–23]. Reference [21] uses fuzzy
logic and [22] uses neural networks with fuzzy particle swarm
optimisation for BCI design. In [23], continuous wavelet
transform is used to extract highly representative features and
then an Adaptive Neuron-Fuzzy Inference System (ANFIS)
is applied for classification. The systems based on fuzzy
logic can make classifications using vague, imprecise, noisy,
or missing input information. On given problem, human
perception process can be efficiently modelled using fuzzy
logic.

As shown, feature extraction and classification play an
important role in the design of brain-based control for
obtaining high classification accuracy. In the BCI design, high
classification rate is very important. Otherwise, the presence
of errors can cause initiation of a wrong command that can
lead to dangerous situations. Therefore, achieving low error
rates keeps the users safe. Different clustering algorithms
based on support vectormachines, linear discriminant analy-
sis, and neural networks are applied for classification of brain
signals [18]. Fuzzy classification represents knowledge more
naturally to the way of human thinking and is more robust
in tolerating imprecision, conflict, and missing information.
In this paper, the fuzzy neural network structure is proposed
for the design of BCI in order to achieve efficient brain-based
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Figure 1: The BCI based control of the wheelchair.

control of wheelchair. In the literature, different neural and
fuzzy networks are proposed for solving various problems
[23–29]. In [23–26], FNN structure is designed for control of
dynamic plants. In [27–29], neurofuzzy inference systems are
designed for classification and control purposes.The systems
designed in these papers are used for special purposes. In
the neurofuzzy structures, the rules are constructed using
all possible combinations of inputs and cluster centres. The
problems that are characterised by multiple inputs and
multiple outputs will have a huge number of fuzzy rules.
The constructions of such systems are not efficient and these
systems have a huge number of parameters. In this paper, the
number of rules is selected using the clustering results which
is equal to the number of cluster centres. In this paper, in
order to improve the performance of classification system,
a multi-input and multioutput fuzzy neural system (FNS)
based on TSK rules is proposed for classification of the ECG
signals.

The paper is organised as follows. Section 2 presents the
architecture of BCI system based on FNN. Signal processing
and feature extraction stages have been described. Section 3
presents classification algorithm based on FNN. Section 4
presents parameter updates rule used for FNN. The fuzzy
𝑐 means classification and gradient descent algorithms are
applied for updating parameters of FNN. Section 5 gives
experimental results obtained for FNN based BCI system.
Section 6 presents conclusions of the paper.

2. BCI System Architecture

Figure 1 depicts BCI based control of the wheelchair. BCI
system consists of an Emotiv headset connected to a com-
puter. Emotive sensors supply information to the computer.
The computer runs the signal processing and classification
algorithms and is connected to a microcontroller that con-
trols the movement of the wheelchair. The wheelchair can
move in four directions. The speed of the wheelchair is taken
as constant and the wheelchair can be switched on and off in
the case of necessity. Taking into account the abovementioned
functionality, the BCI system uses the following commands:
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Figure 2: Emotiv’s sensor layout compared to standard 72 sensors’ layout.The distribution of EEG electrodes. Fourteen channels are marked
for data acquisition.

move forward, move backward, turn left, turn right, and turn
on and turn off the switch.

A BCI based control system is usually composed of five
main units: signal acquisition unit, signal preprocessing unit,
feature extraction unit, classification unit, and action unit
that controls motors of the wheelchair. The main units of
the decision system are represented in Figure 1. In signal
acquisition block, the EEG signals are captured using the
Emotiv headset. Emotiv EPOC is an EEG headset which
supplies 14-channel EEG data (Figure 2) and 2 gyros for 2-
dimensional controls. Its features are adequate for a useful
BCI (resolution and bandwidth). Our system uses upper
face gestures for actuation commands; since most Emotiv
sensors are located in the frontal cortex, they are the most
reliable signals to detect. The EEG input signals are sent
to the signal preprocessing unit for filtering and scaling
and sent to the feature extraction block. In this block, the
basic features are extracted and sent to the classification
system. The classification block processes the input signals
and outputs the control instructions. Later, these control
instructions are sent to the motors of the wheelchair.

The EEG signals measured by Emotiv headset are first
processed by signal preprocessing and feature extraction
blocks. Signal preprocessing block filters the noises and scales
the signals in a certain interval. These signals are very long
and need certain time for processing. Therefore, the feature
extraction technique is applied in order to decrease the signal
size and extract more important features for classification.
In the paper, we used fast Fourier transform (FFT) for
extraction of the features of the input EEG signals. Figure 3
presents the operations used in the feature extraction stage.
The input signal received from the headset is divided into
windows having 2 sec time interval with 50% overlap.The use
of overlapping windows allows us to increase the accuracy
of the classification. Each two-second window corresponds
to 256 samples of data. Each second headset returns 128
data samples. The obtained signals from the channels, stored
as windows, are then sent to normalisation block. Each
channel is normalised in order to centre each channel on
zero by calculating the mean value of each channel for the
window and then subtracting it from each of the data points
in the channel. After normalisation, Hamming window is
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Figure 3: Signal preprocessing and feature extraction.

applied to each channel in the window. EEG signals do not
generally repeat exactly, over any given time interval, but
the math of the Fourier transform assumes that the signal
is periodic over the time interval. This mismatch leads to
errors in the transform called spectral leakage. Hamming
window is used to mitigate this problem. Then, fast Fourier
transform (FFT) is applied to each channel in the window
to find out the frequency components of the signal. Each
frequency component is used as a feature, which results in
64 × 14 features. In order to increase the performance of
the classification, the features are ranked by evaluating the
worth of a frequency bymeasuring the information gain with
respect to the class. The expected information gain is the
change in information entropy (𝐻) fromaprior state to a state
that takes some information as given.

Information gain selects a subset of the original repre-
sentation attributes according to InformationTheory quality
metric.Thismethod computes the value of themetric for each
attribute and ranks the attributes. Then, it simply decides a
threshold in the metric and keeps the attributes with a value
over it.

After frequency representation, all channels in the win-
dow are combined into a single unit so as to apply classifica-
tion on all channels at once.The filtering operation is applied
in order to select important features of the brain signals.
These features are used for classification purpose.

Besides the above-described approach, we can use also
another approach for signal processing. In the second
approach, the acquired brain signal afterwindowing, normal-
isation, and combining operations is used for classification
purpose:

InfoGain (Class, Frequency)

= 𝐻 (Class) − 𝐻 (Class | Frequency) .
(1)

In the paper, we use frequency representation of signals
for classification. These signals are processed and classified.

The output of classification system is used to control the
wheelchair. Even though during training system reports 100%
success rate in real-world conditions, it does misclassify, a
state machine is used to further increase safety and reduce
misclassification. As an example, the system will not tran-
sition from forward motion to backward motion without
stopping in neutral.The output of the statemachine drives the
microcontroller which controls themotors on thewheelchair.
The number of classes is equal to the number of control
actions.

3. FNN Based Classification

The features extracted from the EEG signals are used for
classification and determining control action. In this paper,
we propose a novel approach which is based on FNN for the
classification of brain signals.The extracted features are input
signals of the FNN based classifier. The classifier based on
the extracted features classifies the signals into the following
six classes: move forward, move backward, turn left, turn
right, and turn on and turn off the switch. The design of
FNN includes the development of the fuzzy rules that have
IF-THEN form. This is implemented by dint of optimal
definition of the premise and consequent parts of fuzzy IF-
THEN rules for the classification system through training of
fuzzy neural networks. In the paper, the Takagi-Sugeno-Kang
(TSK) types of IF-THEN rules that have a fuzzy antecedent
and crisp consequent parts are used. The TSK-type fuzzy
system approximates nonlinear system with linear systems
and has the following form:

If 𝑥
1
is 𝐴
1𝑗

and 𝑥
2
is 𝐴
2𝑗

and . . . and 𝑥
𝑚
is 𝐴
𝑚𝑗

Then 𝑦
𝑗
is
𝑚

∑

𝑖=1

𝑎
𝑖𝑗
𝑥
𝑖
+ 𝑏
𝑗
.

(2)

Here, 𝑥
𝑖
and 𝑦

𝑗
are input and output signals of the system,

respectively, 𝑖 = 1, . . . , 𝑚 is the number of input signals, and
𝑗 = 1, . . . , 𝑟 is the number of rules. 𝐴

𝑖𝑗
are input fuzzy sets; 𝑏

𝑗

and 𝑎
𝑖𝑗
are coefficients.

The structure of fuzzy neural networks used for the
classification of EEG signal is based on TSK-type fuzzy rules
and is given in Figure 4. The FNN consists of six layers. The
first layer is used to distribute the 𝑥

𝑖
(𝑖 = 1, . . . , 𝑚) input

signals. The second layer includes membership functions.
Here, each node represents one linguistic term. Here, for
each input signal entering the system, themembership degree
where input value belongs to a fuzzy set is calculated. In the
paper, the Gaussian membership function is used to describe
linguistic terms.

𝜇1
𝑗
(𝑥
𝑖
) = 𝑒
−(𝑥𝑖−𝑐𝑖𝑗)

2
/𝜎
2

𝑖𝑗 , 𝑖 = 1, . . . , 𝑚, 𝑗 = 1, . . . , 𝑟, (3)

where 𝑐
𝑖𝑗
and 𝜎

𝑖𝑗
are centre and width of the Gaussian

membership functions, respectively. 𝜇1
𝑗
(𝑥
𝑖
) is membership

function of the 𝑖th input variable for the jth term. m is a
number of input signals; r is a number of fuzzy rules (hidden
neurons in the third layer).

The third layer is a rule layer. Here, the number of nodes is
equal to the number of rules. Here, 𝑅

1
, 𝑅
2
, . . . , 𝑅

𝑟
represents
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Figure 4: FNN based identifier.

the rules. The output signals of this layer are calculated using
t-norm min (AND) operation:

𝜇
𝑗
(𝑥) = ∏

𝑖

𝜇1
𝑗
(𝑥
𝑖
) , 𝑖 = 1, . . . , 𝑚, 𝑗 = 1, . . . , 𝑟, (4)

where∏ is the min operation.
These 𝜇

𝑗
(𝑥) signals are input signals for the fifth layer.The

fourth layer is a consequent layer. It includes 𝑛 linear systems.
Here, the values of rules output are determined as

𝑦
𝑗
=

𝑚

∑

𝑖=1

𝑥
𝑖
𝑤
𝑖𝑗
+ 𝑏
𝑗
. (5)

In the next fifth layer, the output signals of the third layer
are multiplied by the output signals of the fourth layer. The
output of 𝑗th node is calculated as

𝑦1
𝑗
= 𝜇
𝑗
(𝑥) ⋅ 𝑦

𝑗
. (6)

In the sixth layer, the output signals of FNN are deter-
mined as

𝑢
𝑘
=

∑
𝑟

𝑗=1
𝑤
𝑗𝑘
𝑦1
𝑗

∑
𝑟

𝑗=1
𝜇
𝑗
(𝑥)

. (7)

Here, 𝑢
𝑘
are the output signals of FNN (𝑘 = 1, . . . , 𝑛). After

calculating the output signal, the training of the network
starts.

The design of FNN (Figure 4) includes determination
of the unknown parameters that are the parameters of the
antecedents 𝑐

𝑖𝑗
and 𝜎

𝑖𝑗
(𝑖 = 1, . . . , 𝑚, 𝑗 = 1, . . . , 𝑟) and the

consequents 𝑤
𝑗𝑘
, 𝑎
𝑖𝑗
, 𝑏
𝑗
(𝑖 = 1, . . . , 𝑚, 𝑗 = 1, . . . , 𝑟, 𝑘 =

1, . . . , 𝑛) parts of the fuzzy IF-THEN rules (2). In the next
section, the training of the parameters of FNN is presented.

4. Parameter Updates

In the fuzzy IF-THEN rules (2), the antecedent part rep-
resents the input space by dividing the space into a set of
fuzzy regions and the consequent part describes the system

behaviour in those regions. In the design of FNN model,
the basic problem is the determination of the unknown
parameters of antecedent and consequent parts. Recently, a
set of different approaches has been applied for designing
fuzzy IF-THEN rules. These are clustering [30–35], gradient
algorithms [24–27, 34–36], the least-squares method (LSM)
[27, 33], and genetic algorithms [27, 34].

In this paper, the fuzzy clustering and gradient descent
algorithms are applied for determining the parameters of
FNN. The basic parameters of the antecedent part are the
centres and widths of the membership functions. Learning
of FNN starts with the update of parameters of antecedent
part of IF-THEN rules, that is, the parameters of the second
layer of FNN (Figure 4). For this purpose, FCM is applied
in order to partition input space and construct antecedent
part of fuzzy IF-THEN rules. In the result of partitioning the
cluster centres are determined. These centres correspond to
the centres of the membership functions used in the input
layer of FNN. Using the distances between the cluster centres,
the widths of the membership functions are determined.

After finding the parameters of the antecedent’s parts,
the design of the consequent part of the fuzzy rules starts.
For this purpose, the gradient descent algorithm is applied
for the parameter update of the consequent part, that is, the
parameters of the fourth layer of FNN. In learning of FNN,
10-fold cross validation is applied for separation of the data
into training and testing set.

The initial values of the parameters of consequent parts
are generated randomly. The training of the parameters has
been carried out using errors calculated on the output of
the network. For generality, we have given the learning
procedure of all parameters of FNN using gradient descent
algorithm with adaptive learning rate. The adaptive learning
rate used guarantees the convergence and speeds up the
learning process. In addition, the momentum is also used to
speed up the learning processes.

The error in the output of the network is calculated as

𝐸 =
1

2

𝑛

∑

𝑘=1

(𝑢
𝑑

𝑘
− 𝑢
𝑘
)
2

. (8)

Here, 𝑛 is the number of output signals of the network;
𝑢
𝑑

𝑘
and 𝑢

𝑘
are desired and current output values of the net-

work (𝑘 = 1, . . . , 𝑛), respectively. The parameters 𝑤
𝑗𝑘
, 𝑎
𝑖𝑗
, 𝑏
𝑗

(𝑖 = 1, . . . , 𝑚, 𝑗 = 1, . . . , 𝑟, 𝑘 = 1, . . . , 𝑛) in consequent part
of network and the parameters of membership functions 𝑐

𝑖𝑗

and 𝜎
𝑖𝑗
(𝑖 = 1, . . . , 𝑚, 𝑗 = 1, . . . , 𝑟) in the premise part of

FNN structure are adjusted as

𝑤
𝑗𝑘
(𝑡 + 1) = 𝑤

𝑗𝑘
(𝑡) − 𝛾

𝜕𝐸

𝜕𝑤
𝑗𝑘

+ 𝜆 (𝑤
𝑗𝑘
(𝑡) − 𝑤

𝑗𝑘
(𝑡 − 1)) ;

𝑎
𝑖𝑗
(𝑡 + 1) = 𝑎

𝑖𝑗
(𝑡) − 𝛾

𝜕𝐸

𝜕𝑎
𝑖𝑗

+ 𝜆 (𝑎
𝑖𝑗
(𝑡) − 𝑎

𝑖𝑗
(𝑡 − 1)) ;

𝑏
𝑗
(𝑡 + 1) = 𝑏

𝑗
(𝑡) − 𝛾

𝜕𝐸

𝜕𝑏
𝑗

+ 𝜆 (𝑏
𝑗
(𝑡) − 𝑏

𝑗
(𝑡 − 1)) ;

(9)



6 BioMed Research International

8000

8500

9000

9500

10000

50 100 150 200 250 300 350 4000
(a)

7500

8000

8500

9000

9500

50 100 150 200 250 300 350 4000
(b)

Figure 5: EEG signals for five channels: (a) neutral pose and (b) positive gesture pose.
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(10)

wherem is the number of input signals of the network (input
neurons) and 𝑟 is the number of fuzzy rules (hidden neurons).
𝛾 is the learning rate; 𝜆 is the momentum.

The derivatives in (9) are computed as
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,

here 𝑖 = 1, . . . , 𝑚, 𝑗 = 1, . . . , 𝑟, 𝑘 = 1, . . . , 𝑛.

(11)

In (10), the derivatives are determined as
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.

(12)

Here, 𝑖 = 1, . . . , 𝑚, 𝑗 = 1, . . . , 𝑟, 𝑘 = 1, . . . , 𝑛.
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(13)

Using (11)–(13), the derivatives in (9) and (10) are calcu-
lated and the correction of the parameters of FNN is carried
out.

5. Experiments and Results

TheBCI system is simulated and used in real life applications.
The EEG signals are measured with signal acquisition unit,
the Emotiv EPOC headset. In the experiments, we have
utilised 14 channels formeasuring EEG signals.Themeasured
EEG signals have different rhythms within the frequency
band. The experiments show that measuring brain signals
is difficult so we have tested our system using brain muscle
signals. As an example, the signals obtained from 5 sample
channels are shown in Figure 5. Figure 5(a) depicts a neutral
pose, patient relaxing and not doing anything. Figure 5(b)
depicts a positive gesture. As shown in the figures, the
EEG signals with positive gesture pose are changing more
frequently than a neutral pose. In the paper, the FFT is
applied to extract important features of the signal. After the
preprocessing stage, given in Section 2, the important features
of these signals are extracted and used for classification
purpose. The number of extracted features was determined
as 100. These signals are inputs for FNN system. Outputs of
FNNmodel are clusters.The following clusters are used in the
experiment: move forward, move backward, turn left, turn
right, and turn on and turn off the switch. For each cluster,
the system recorded 10 seconds of data.

In this paper, the classification of the EEG signals is
performed using FNN model. For this purpose, the FNN
structure with hundred input and six output neurons is
generated. In the papers [27, 29], the neurofuzzy systems have
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Table 1: Classification results.

Number of rules Correctly classified instances Incorrectly classified instances Training RMSE Evaluation RMSE Test RMSE
5 92% 3 0.465492 0.464918 0.476516
6 100% 0 0.223264 0.241625 0.257986
9 100% 0 0.152714 0.153688 0.153874
16 100% 0 0.047268 0.048324 0.048262

Table 2: Comparison of classification results.

Method
Correctly
classified
instances

Incorrectly classified instances Mean absolute error Root mean squared error

Linear logistic regression model 96% 4% 0.0214 0.1265
SVM (polynomial kernel) 100% 0 0.24 0.3162
SVM (RBF kernel) 74% 26% 0.2568 0.3404
SVM (PUK kernel) 96% 4% 0.2424 0.32
MLP (NN) (5 hidden neurons) 88% 12% 0.0724 0.1586
MLP (NN) (6 hidden neurons) 100% 0 0.048 0.0958
Näıve Bayesian 94% 6% 0.024 0.1549
Random Tree 74% 26% 0.104 0.3225
Random Forest 98% 2% 0.1215 0.179
FNN (6 hidden neurons) 100% 0 1.823 0.257986

been efficiently applied for different classification problems. If
we use these structures for 100 inputs and 2 cluster centres,
2100 rules should be generated. The rules are constructed
using all possible combinations of inputs and cluster centres.
This is a very large number. In this paper, the number of rules
is selected according to the clustering results, equal to cluster
centres.

Fuzzy 𝑐 means classification is used in order to design
the premise parts of (2) and to determine the parameters
of Gaussian membership functions used in the second layer
of FNN. In experiments, different cluster numbers, 5, 6, 9,
and 16, are used to design FNN structure. These experiments
have been done in order to increase the performance of
classification system. At first, FCM clustering is used for
the input space with 6 clusters for each input. Six fuzzy
rules are designed using a different combination of these
clusters for 100 inputs. After clustering input space gradient
descent algorithm is applied for learning of consequent parts
of the fuzzy rules, that is, parameters of the 4th layer of
FNN. In learning of FNN, 10-fold cross validation is used for
separation of the data into training and testing set.

The initial values of the parameters of FNN are randomly
generated in the interval [−1, 1] and, using the gradient
algorithm derived above, they are updated for the given
input-output training pairs. As a performance criterion,
RMSE is used. Figure 6 depicts the evolution of the RMSE
values over 1000 epochs.

For training of the FNN, 1000 epochs are used. As a
result of training, the values of the parameters of the FNN
systemwere determined.Once the FNNhas been successfully
trained, it is then used for the classification of the EEG signals.
During learning, the value of RMSEwas obtained as 0.223264
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Figure 6: Training of FNN.

for training data and 0.241625 for evaluation. After learning,
for the test data, the value of RMSE was obtained as 0.257986
with 100% accuracy of classification. Figure 6 depicts RMSE
values obtained during training.The design of FNNmodel is
performed using a different number of rules. Table 1 includes
results of simulations with 5, 6, 9, and 16 rules, respectively.
As shown, accuracy of FNN classification model is 100%.

For comparison purpose, we test the system using differ-
ent classification techniques. As a result of the classification,
the following results are obtained (Table 2). In the table, the
classification results of FNN model are compared against



8 BioMed Research International

linear logistic regression model [36], SVM with various
kernels, multilayer perceptron (MLP) with various hidden
layers, Näıve Bayes classifier [37], RandomTree, and Random
Forest [38]. As shown, the simulation results demonstrate the
efficiency of application of FNN model in the classification
of EEG signals. These clusters activate the corresponding
control signal which is then used to actuate the motors of the
wheelchair.

6. Conclusion

The paper presents the design of BCI based on FNN for a
wheelchair. The emotional and muscular states of the user
are evaluated for control purposes. The design of BCI has
been done to actuate a brain-controlled wheelchair using six
mental activities of the user: move backward, move forward,
turn left, turn right, turn on, start, and stop. For classification
of EEG signals, the FNNwith 10-fold cross validation data set
is used. The design of the FNN system is implemented using
fuzzy 𝑐 means classification and gradient descent algorithm.
The obtained 100% classification results prove that the used
techniques are a potential candidate for the classification
of the EEG signals in the design of brain-based control
system. In the future, we are going to improve the number of
commands for control of wheelchair and decrease detection
time of the EEG signal used formeasuring brain activities and
design efficient brain-controlled wheelchair.
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