22 research outputs found

    Vegetation optical depth at L-band and above ground biomass in the tropical range: Evaluating their relationships at continental and regional scales

    Get PDF
    Abstract The relationship between vegetation optical depth (VOD) retrieved by L-band SMOS radiometer and forest above ground biomass (AGB) was investigated in tropical areas of Africa and South America. VOD was retrieved from the latest version of level 2 SMOS algorithm, while reference AGB was obtained from a pantropical database, encompassing a large number of ground plot data derived from field surveys conducted on both continents. In Africa and South-America, VOD increased with AGB, reaching saturation at about 350 Mg ha−1. The strength of the relation was improved selecting VOD data in appropriate seasons, characterized by a higher dynamic range of values. The capability of VOD data to estimate AGB was further investigated using Random Forest decision trees, adding to VOD selected climate variables from the Climatic Research Unit (temperature, potential evapotranspiration, and precipitation) and water deficit data, and validating regression tests with ground data from the reference AGB database. The results for the five analyzed years indicate that the best estimates of AGB are obtained by the joined use of VOD and potential evapotranspiration input data, but all climate variables brought an improvement in AGB estimates. AGB estimates were relatively stable for the considered period, with limited variations possibly due to changes in biomass and to data quality of VOD and of climate variables. The VOD signal and estimated AGB were also analyzed according to ecological homogeneous units (ecoregions), evidencing data clusters, partially overlapped to each other, in the VOD - AGB plane

    Sensitivity of L-band vegetation optical depth to carbon stocks in tropical forests: a comparison to higher frequencies and optical indices

    Get PDF
    Supplementary data to this article can be found online at https://doi.org/10.1016/j.rse.2019.111303.Monitoring vegetation carbon in tropical regions is essential to the global carbon assessment and to evaluate the actions oriented to the reduction of forest degradation. Mainly, satellite optical vegetation indices and LiDAR data have been used to this purpose. These two techniques are limited by cloud cover and are sensitive only to the top of vegetation. In addition, the vegetation attenuation to the soil microwave emission, represented by the vegetation optical depth (VOD), has been applied for biomass estimation using frequencies ranging from 4 to 30¿GHz (C- to K-bands). Atmosphere is transparent to microwaves and their sensitivity to canopy layers depends on the frequency, with lower frequencies having greater penetration depths. In this regard, L-band VOD (1.4¿GHz) is expected to enhance the ability to estimate carbon stocks. This study compares the sensitivity of different VOD products (from L, C, and X-bands) and an optical vegetation index (EVI) to the above-ground carbon density (ACD). It quantifies the contribution of ACD and forest cover proportion to the VOD/EVI signals. The study is conducted in Peru, southern Colombia and Panama, where ACD maps have been derived from airborne LiDAR. Results confirm the enhanced sensitivity of L-band VOD to ACD when compared to higher frequency bands, and show that the sensitivity of all VOD bands decreases in the densest forests. ACD explains 34% and forest cover 30% of L-band VOD variance, and these proportions gradually decrease for EVI, C-, and X-band VOD, respectively. Results are consistent through different categories of altitude and carbon density. This pattern is found in most of the studied regions and in flooded forests. Results also show that C-, X-band VOD and EVI provide complementary information to L-band VOD, especially in flooded forests and in mountains, indicating that synergistic approaches could lead to improved retrievals in these regions. Although the assessment of vegetation carbon in the densest forests requires further research, results from this study support the use of new L-band VOD estimates for mapping the carbon of tropical forests.Peer ReviewedPostprint (author's final draft

    Remote Sensing of Plant Biodiversity

    Get PDF
    At last, here it is. For some time now, the world has needed a text providing both a new theoretical foundation and practical guidance on how to approach the challenge of biodiversity decline in the Anthropocene. This is a global challenge demanding global approaches to understand its scope and implications. Until recently, we have simply lacked the tools to do so. We are now entering an era in which we can realistically begin to understand and monitor the multidimensional phenomenon of biodiversity at a planetary scale. This era builds upon three centuries of scientific research on biodiversity at site to landscape levels, augmented over the past two decades by airborne research platforms carrying spectrometers, lidars, and radars for larger-scale observations. Emerging international networks of fine-grain in-situ biodiversity observations complemented by space-based sensors offering coarser-grain imagery—but global coverage—of ecosystem composition, function, and structure together provide the information necessary to monitor and track change in biodiversity globally. This book is a road map on how to observe and interpret terrestrial biodiversity across scales through plants—primary producers and the foundation of the trophic pyramid. It honors the fact that biodiversity exists across different dimensions, including both phylogenetic and functional. Then, it relates these aspects of biodiversity to another dimension, the spectral diversity captured by remote sensing instruments operating at scales from leaf to canopy to biome. The biodiversity community has needed a Rosetta Stone to translate between the language of satellite remote sensing and its resulting spectral diversity and the languages of those exploring the phylogenetic diversity and functional trait diversity of life on Earth. By assembling the vital translation, this volume has globalized our ability to track biodiversity state and change. Thus, a global problem meets a key component of the global solution. The editors have cleverly built the book in three parts. Part 1 addresses the theory behind the remote sensing of terrestrial plant biodiversity: why spectral diversity relates to plant functional traits and phylogenetic diversity. Starting with first principles, it connects plant biochemistry, physiology, and macroecology to remotely sensed spectra and explores the processes behind the patterns we observe. Examples from the field demonstrate the rising synthesis of multiple disciplines to create a new cross-spatial and spectral science of biodiversity. Part 2 discusses how to implement this evolving science. It focuses on the plethora of novel in-situ, airborne, and spaceborne Earth observation tools currently and soon to be available while also incorporating the ways of actually making biodiversity measurements with these tools. It includes instructions for organizing and conducting a field campaign. Throughout, there is a focus on the burgeoning field of imaging spectroscopy, which is revolutionizing our ability to characterize life remotely. Part 3 takes on an overarching issue for any effort to globalize biodiversity observations, the issue of scale. It addresses scale from two perspectives. The first is that of combining observations across varying spatial, temporal, and spectral resolutions for better understanding—that is, what scales and how. This is an area of ongoing research driven by a confluence of innovations in observation systems and rising computational capacity. The second is the organizational side of the scaling challenge. It explores existing frameworks for integrating multi-scale observations within global networks. The focus here is on what practical steps can be taken to organize multi-scale data and what is already happening in this regard. These frameworks include essential biodiversity variables and the Group on Earth Observations Biodiversity Observation Network (GEO BON). This book constitutes an end-to-end guide uniting the latest in research and techniques to cover the theory and practice of the remote sensing of plant biodiversity. In putting it together, the editors and their coauthors, all preeminent in their fields, have done a great service for those seeking to understand and conserve life on Earth—just when we need it most. For if the world is ever to construct a coordinated response to the planetwide crisis of biodiversity loss, it must first assemble adequate—and global—measures of what we are losing

    Remote Sensing of Plant Biodiversity

    Get PDF
    This Open Access volume aims to methodologically improve our understanding of biodiversity by linking disciplines that incorporate remote sensing, and uniting data and perspectives in the fields of biology, landscape ecology, and geography. The book provides a framework for how biodiversity can be detected and evaluated—focusing particularly on plants—using proximal and remotely sensed hyperspectral data and other tools such as LiDAR. The volume, whose chapters bring together a large cross-section of the biodiversity community engaged in these methods, attempts to establish a common language across disciplines for understanding and implementing remote sensing of biodiversity across scales. The first part of the book offers a potential basis for remote detection of biodiversity. An overview of the nature of biodiversity is described, along with ways for determining traits of plant biodiversity through spectral analyses across spatial scales and linking spectral data to the tree of life. The second part details what can be detected spectrally and remotely. Specific instrumentation and technologies are described, as well as the technical challenges of detection and data synthesis, collection and processing. The third part discusses spatial resolution and integration across scales and ends with a vision for developing a global biodiversity monitoring system. Topics include spectral and functional variation across habitats and biomes, biodiversity variables for global scale assessment, and the prospects and pitfalls in remote sensing of biodiversity at the global scale

    ALOS-2/PALSAR-2 Calibration, Validation, Science and Applications

    Get PDF
    Twelve edited original papers on the latest and state-of-art results of topics ranging from calibration, validation, and science to a wide range of applications using ALOS-2/PALSAR-2. We hope you will find them useful for your future research

    Climate-Smart Forestry in Mountain Regions

    Get PDF
    This open access book offers a cross-sectoral reference for both managers and scientists interested in climate-smart forestry, focusing on mountain regions. It provides a comprehensive analysis on forest issues, facilitating the implementation of climate objectives. This book includes structured summaries of each chapter. Funded by the EU’s Horizon 2020 programme, CLIMO has brought together scientists and experts in continental and regional focus assessments through a cross-sectoral approach, facilitating the implementation of climate objectives. CLIMO has provided scientific analysis on issues including criteria and indicators, growth dynamics, management prescriptions, long-term perspectives, monitoring technologies, economic impacts, and governance tools

    Proceedings Of The 18th Annual Meeting Of The Asia Oceania Geosciences Society (Aogs 2021)

    Get PDF
    The 18th Annual Meeting of the Asia Oceania Geosciences Society (AOGS 2021) was held from 1st to 6th August 2021. This proceedings volume includes selected extended abstracts from a challenging array of presentations at this conference. The AOGS Annual Meeting is a leading venue for professional interaction among researchers and practitioners, covering diverse disciplines of geosciences

    Climate-Smart Forestry in Mountain Regions

    Get PDF
    This open access book offers a cross-sectoral reference for both managers and scientists interested in climate-smart forestry, focusing on mountain regions. It provides a comprehensive analysis on forest issues, facilitating the implementation of climate objectives. This book includes structured summaries of each chapter. Funded by the EU’s Horizon 2020 programme, CLIMO has brought together scientists and experts in continental and regional focus assessments through a cross-sectoral approach, facilitating the implementation of climate objectives. CLIMO has provided scientific analysis on issues including criteria and indicators, growth dynamics, management prescriptions, long-term perspectives, monitoring technologies, economic impacts, and governance tools

    Greenland Ice sheet [in "State of the Climate in 2016"]

    Full text link
    peer reviewedThe mass of the Greenland Ice Sheet, which has the capacity to contribute ~7 m to sea level rise, reached a record low value. The onset of its surface melt was the second earliest, after 2012, in the 37-year satellite record
    corecore