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A B S T R A C T

The relationship between vegetation optical depth (VOD) retrieved by L-band SMOS radiometer and forest above
ground biomass (AGB) was investigated in tropical areas of Africa and South America. VOD was retrieved from
the latest version of level 2 SMOS algorithm, while reference AGB was obtained from a pantropical database,
encompassing a large number of ground plot data derived from field surveys conducted on both continents. In
Africa and South-America, VOD increased with AGB, reaching saturation at about 350 Mg ha−1. The strength of
the relation was improved selecting VOD data in appropriate seasons, characterized by a higher dynamic range
of values. The capability of VOD data to estimate AGB was further investigated using Random Forest decision
trees, adding to VOD selected climate variables from the Climatic Research Unit (temperature, potential eva-
potranspiration, and precipitation) and water deficit data, and validating regression tests with ground data from
the reference AGB database. The results for the five analyzed years indicate that the best estimates of AGB are
obtained by the joined use of VOD and potential evapotranspiration input data, but all climate variables brought
an improvement in AGB estimates. AGB estimates were relatively stable for the considered period, with limited
variations possibly due to changes in biomass and to data quality of VOD and of climate variables. The VOD
signal and estimated AGB were also analyzed according to ecological homogeneous units (ecoregions), evi-
dencing data clusters, partially overlapped to each other, in the VOD - AGB plane.

1. Introduction

Forests worldwide are in a dynamic status, with some regions ex-
periencing accelerated losses and other gains during the last century
(Hansen et al., 2013). The monitoring of forest resources and their
changes is of paramount importance in a climate change scenario, given
forests role as carbon sources or sinks, and considering the relevance of
forest ecosystem services (Mori et al., 2017; Ninan and Inoue, 2013).
Different forest attributes, such as biomass, biodiversity, leaf traits, and
productivity -among others- deserve accurate monitoring, since the
larger is the number of the monitored features (with information col-
lected at different spatial and temporal scales), the better is the com-
prehension of the dynamics of the entire system and its feedbacks to
climate-induced changes (Frolking et al., 2009).

Above ground biomass (AGB) is one of the most important para-
meters, representing the amount of epigean carbon stocked. In the last
decade, different studies exploited remote sensing and ground mea-
surements to generate reference data and baseline maps of AGB, or

carbon stocks, with continental, pantropical or biome level coverage
(e.g. Baccini et al., 2008; Hu et al., 2016; Saatchi et al., 2011; Santoro
et al., 2015). These biomass maps, even if referred to years previous to
2010, are valuable tools with considerable spatial resolution (1 square
km), usually employed in ecology, forestry, and climate change studies
to understand carbon density distribution and validate models (Baccini
et al., 2012; Carvalhais et al., 2014; Johnson et al., 2016; Shimel et al.,
2015). However, a large uncertainty among the available AGB esti-
mates remains (Mitchard et al., 2013). In the attempt to harmonize the
discrepancies, Avitabile et al. (2016) combined two pantropical data-
sets and used additional field data to produce a new AGB map, having
higher accuracy than the original datasets. In the present study this map
was selected as reference AGB data.

Despite the use of improved methods, reducing the uncertainty in
AGB upscaling remains a challenge; many advantages are expected by
the use of remote sensing data, as highlighted by recent initiatives and
on-going activities. For example, the GlobBiomass European Space
Agency project (www.globbiomass.org; last visited 4 May 2018) is
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producing a global high spatial resolution map for reference year 2010,
plus fine scale maps for five countries at 5-year temporal steps. The
European Space Agency ‘Biomass’ Earth Explorer, planned to be laun-
ched in 2021, will provide repeated biomass estimates, thus improving
our understanding of biomass distribution along time, with almost
pantropical coverage.

An important contribution to estimate forest height and AGB can be
added by the vegetation optical depth (VOD) data from Soil Moisture
and Ocean Salinity satellite (SMOS), the second Earth Explorer
Opportunity mission launched in November 2009 by the European
Space Agency (ESA) (Kerr et al., 2010; Kerr et al., 2012). SMOS is
equipped with an L-band 2-D interferometric radiometer
(1400–1427 MHz range); its dual polarization and multi-angular fea-
tures are used to derive soil moisture (SM) and VOD from brightness
temperature measurements. Several studies using L-band radiometers
demonstrated that the VOD of forest canopies increases with forest
height and/or AGB (Rahmoune et al., 2014; Cui et al., 2015; Vittucci
et al., 2016; Konings et al., 2016; Konings et al., 2017; Rodríguez-
Fernández et al., 2018). Moreover, Vittucci et al. (2016) reported the
linear relationship observed between VOD and forest height to be stable
with respect to both temporal and spatial signal variations, with sa-
turation observed only for heights above 30 m. Recently, a INRA-
CESBIO VOD product obtained from SMOS L3 data was used to estimate
AGB changes in African drylands, as effect of climate impacts (Brandt
et al., 2018). Radiometric signatures of previous radiometers, operating
at higher frequencies, were used by Liu et al. (2011), who examined
two decades of C-band VOD products obtained by the Advanced Mi-
crowave Scanning Radiometer (AMSR-E) jointly with Advanced Very
High Resolution Radiometer (AVHRR), and concluded that VOD is de-
pendent on woody biomass and can be a useful indicator of deforesta-
tion processes. With these AMSR-E C-band data global AGB estimates
were also produced, analyzing changes in two decades up to 2013 (Liu
et al., 2015). However, recent investigations (Vittucci et al., 2018;
Rodríguez-Fernández et al., 2018) found that the trends of C-band VOD
saturate at lower values of forest height and/or AGB, with respect to L-
band VOD.

AGB is known to vary at regional or biome scale according to abiotic
climate variables, which in turn shape the distribution of biotic factors
such as soil fertility, species composition and tree allometry (Baker
et al., 2004; Chave et al., 2005). Links between biodiversity and bio-
mass were also previously reported (Lasky et al., 2014; Poorter et al.,
2015; Strassburg et al., 2010). Several coarse biome classifications exist
(e.g. Udvardy, 1975); at finer spatial scale, the ecoregions identified by
Olson et al. (2001) incorporate concepts from previous biome classifi-
cations, plus information on habitats and species assemblages. These
ecological layers can be of help in understanding the response of remote
sensing data, such as VOD, or the distribution of estimated AGB in
different ecological units.

The present research intends to further clarify the potential of SMOS
VOD in providing relevant carbon-related data on Africa and South
America homogeneous forests. The aim is not to provide new reference
AGB data, but to better analyze SMOS VOD product in these forests,
considering that a number of recent studies (Brandt et al., 2018;
Rodríguez-Fernández et al., 2018; Vittucci et al., 2018) evidenced a
promising L-band VOD role for carbon monitoring. The signal sensi-
tivity to biomass is tested for African and South American tropical
forests using 2012 SMOS VOD data and a reference AGB database that
encompasses an AGB pantropical map and field plots data (Avitabile
et al., 2016). The ability to estimate AGB is evaluated with SMOS VOD
data from years included in the 2011–2015 period, also testing the
improvement brought to AGB estimates by the addition of climate
variables from Climatic Research Unit Time Series (CRU TS) (4.01 re-
lease; Harris et al., 2014) and the climate water availability (CWA) from
Chave et al. (2014). Averaged SMOS VOD signal and estimated AGB are
explored in ecological homogeneous units derived from the ecoregion
layers from Olson et al. (2001). To conclude, the possible role of SMOS

VOD data to provide relevant biomass and ecological information in
forests and/or to complement information provided by other sensors
and data networks is reviewed.

2. Materials and methods

2.1. Remote sensing, reference and auxiliary data

The present research was conducted using VOD retrieved from V650
version of level 2 (L2) SMOS data, having an average footprint width -at
half maximum of synthetized beam- equal to 43 km (Kerr et al., 2010;
Kerr et al., 2012). VOD is a fundamental parameter of the radiative
transfer equation adopted in the retrieval algorithm. In that equation it
is defined as τ, and the transmissivity of vegetation is given by exp(-τ /
cos θ), where θ is the off-nadir angle of observation. L2 data are pro-
vided by ESA in the Icosahedral Equal Area (ISEA) 4H9 equal area grid
in swath mode, with inter-node distance equal to 15 km; data are or-
ganized in orbits per days, and are quality flagged. Since this research is
focused on long term variations, VOD data were monthly averaged at
each node to produce time series from 2011 to 2015. Monthly data
were further averaged according to years to perform year-based ana-
lysis.

Given the size of the VOD pixel grid, that can easily encompass
mixed land cover types, a filtering step to retain only homogeneous
forested areas was carried out: the Simard et al. (2011) vegetation
height map (at 1 km of spatial resolution) was overlapped to VOD grid.
We only retained those SMOS grid units for which the average height
was higher than 5 m, and this value was exceeded for at least 80% of
the grid area. This choice is in accordance with the United Nations Food
and Agriculture Organization definition of forests (FAO, 2000): land
with tree crown cover (or equivalent stocking level) of more than 10
percent and area of more than 0.5 ha; the trees should be able to reach a
minimum height of 5 m at maturity in situ.

The extraction of VOD values at ascending and descending nodes
was conducted after the check of different SMOS L2 quality flags, taking
into account the probability of Radiofrequency Interference occurrence
(RFI-Prob). Nodes having RFI-Prob > 5% were filtered, and the SMOS
passes away from the swath center, having less than one hundred of
angular samples, were removed.

As reference information, the Avitabile et al. (2016) biomass map
was here selected. The map represents the combination of two pre-ex-
isting datasets of above ground biomass (Saatchi et al., 2011; Baccini
et al., 2012) and is released at 1 km of spatial resolution. It was realized
with a data fusion approach, that exploited the pre-existing datasets
and an independent field observations dataset, and it was applied in
areas (strata) with homogeneous error patterns of the input maps, es-
timated from the original data and additional covariates. This resulted
in estimates of tropical carbon stocks often lower (9–18%) than those
presented in the previous datasets. The validation procedure, carried
out with 2118 field estimates, showed that the new map has a RMSE of
15–21% that is lower than the input maps and nearly unbiased esti-
mates.

The Climatic Research Unit Time Series (CRU TS) 4.01 release
(Harris et al., 2014) has also been used in the present analysis. CRU TS
is a freely available 0.5° lat – lon gridded climate dataset, obtained from
monthly observations at meteorological stations including all the
world’s land areas. It covers the period 1901–2016, and is updated
every month. Data are merged with meteo station observations col-
lected from several national and international institutions. The CRU TS
gridded ground data are derived interpolating site level observations of
CRU TS primary variables (precipitation, mean temperature and diurnal
temperature range) by a resampling procedure based on the correlation
decay distance (CDD), expressed as the distance at which the averaged
interstation correlation is no longer significant at the 95% level. The
CDD measurement is applied in the interpolation step, to provide the
spatial variability of the variable at 0.5° x 0.5° resolution in latitude/
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longitude. The evapotranspiration (PET) variable is obtained using a
variant of Penman-Monteith method (Harris et al., 2014). This database
is widely used in applied climatology and as input to hydrological and
biogeochemical models, both at regional and global scales (http://
www.cru.uea.ac.uk/about-cru).

The present study uses grids of monthly precipitation, mean near
surface temperature (air temperature at 2 m above the soil) and po-
tential evapotranspiration (PET), yearly averaged.

In addition to CRU TS dataset, complementary information on water
stress condition was here used: the Climatic Water Availability (CWA)
[mm/yr] is the amount of water lost during the dry months (when
evapotranspiration exceeds rainfall), provided at 2.5 arc-minute spatial
resolution. The CWA is an important predictor of ecosystem response to
climatic change (Chave et al., 2014). It is referred to as ‘climatic water
deficit’, as it reflects drought conditions better than annual rainfall,
especially in areas where precipitation is concentrated in few months.
The CWA is computed over long time periods, referring to forty years of
data acquired before 2011, and is considered not to change within the
time range of this study. Generally, areas with high water stress have
larger negative values, and sites with values close to zero experience no
water stress.

All the mentioned reference raster layers, namely the tree height
(Simard et al., 2011), the AGB pantropical map (Avitabile et al., 2016),
the CRU TS 4.01 release (Harris et al., 2014) and the CWA (Chave et al.,
2014) were resampled to match the SMOS grid. Due to the varying
spatial resolution of the involved datasets, two different approaches
were followed. For data with finer spatial resolution than SMOS VOD
(tree height and AGB), values were averaged within the larger SMOS
VOD grid. For data with lower resolution with respect to SMOS VOD
(climate variables) a nearest neighbor algorithm was used for resam-
pling at SMOS grid scale.

The ecoregions compiled by Olson et al. (2001) were built on the
basis of classical biogeography, with inputs from taxonomy, conserva-
tion biology, and ecology knowledge. They reflect species and com-
munity distribution more accurately than units based on global and
regional models derived from gross biophysical features, such as rain-
fall and temperature, or vegetation structure, or from spectral sig-
natures of remote sensing data. We selected major ecoregions, including
a statistically significant number of SMOS data, to explore the trends of
VOD and estimated AGB in homogeneous ecological units. For analysis
purposes, contiguous ecoregions sharing similar vegetation types in
terms of physiognomy, and similar climate patterns in accordance to
CRU TS data were aggregated.

2.2. Data analysis and methods

Two preliminary tests were carried out to understand the strength of
VOD – AGB relationship along time.

First, the selected Avitabile et al. (2016) AGB map and 2012 average
VOD data were used to identify the threshold over which VOD signal
showed saturation to increasing forest biomass. The 2012 VOD dataset
was selected for this test because it has the shorter time gap with re-
spect to the AGB dataset, but better data quality with respect to pre-
vious 2011 year (Oliva et al., 2016). We found an exponential function
fitting the VOD vs. AGB relation, and considered the AGB for which
VOD reached 90% of its asymptotic value. As a further evaluation, a
linear regression function was fit with AGB and VOD as inputs, and the
coefficient of determination (R2) was computed for AGB pixels included
in progressively cumulated 25 Mg/ha AGB intervals. In this case, VOD
saturation level was selected as the plateau where R2 reached maximum
value, and after which a decrease in the strength of the relationship was
observed.

A second test was carried out to identify the season during which
the VOD – AGB relationship was stronger in each continent, using a 3-
month temporal moving window applied to VOD 2012 dataset. The
correlation between 3-month VOD data and AGB map was explored by

means of linear regression, selecting the 3-month period having higher
R2 in each continent. In summary, these two preliminary tests allowed
to select: i) areas with AGB below the signal saturation limit; ii) months
from 2012 year having stronger VOD-AGB relationship, per continent.
Then, these two data selection criteria were applied for the estimation
of AGB in each continent with SMOS VOD data from different years,
from 2011 to 2015, using a Random Forest (RF) statistical data-driven
method (Breiman, 2001).

The random Forest (RF) is a supervised “ensemble learning”
method, that generates many regression models and aggregates their
results. It was developed as an ensemble of decision tree “the forest”
improved by the introduction of the so called “bagging” or “bootstrap
aggregating”. This technique allows to generate several different training
subsets, by subsampling uniformly and with replacement the whole set
of available data. The outcomes of this procedure, applied to the en-
semble of trees, are the improvement of the stability and of the accu-
racy of the RF method. This ensures the reduction of the output var-
iance and of the overfitting problem with respect to other machine
learning approaches (Breiman, 2001). The “bagging” method is used to
build successive different trees (Breiman, 1996) so that the forest is
independently built using the different training subset. The definition
process of each training subset by the bootstrap approach leaves some
data available to validate the result of a tree. The data not included in
each training subset are called Out-Of-Bag (OOB) samples and are in
general used to validate the model and to define the associated OOB
error, also called Out-Of-Bag estimate. The latter is the mean prediction
error on each training sample, computed using only the trees that did
not include the same samples in their bootstrap dataset.

During the training phase, each tree is built by a growing process
implementing different cascaded nodes, representing the ramification
of a tree. The number of trees in the forest is defined before the training
by the n-trees parameter. At each node, a decision useful to reach the
desired solution is evaluated. The decision rules are defined, computing
the Gini Index (Breiman, 2001), on the basis of a subset of predictors
(i.e. all the inputs variables) randomly chosen at each node. The
number of the input variables that are included in the subset of pre-
dictors at each node is imposed by the m-try parameter. The n-trees and
the m-try are the only two parameters that must be chosen to train a RF
model, making its application smoother when compared to more
complex machine learning algorithms. After the training phase, the
ensemble of the different trees can be applied to predict new outputs
simply averaging among the different trees results.

RF was here used to model the relation between the prediction
variables (i.e. VOD and the climatological variables) and AGB. For each
continent, SMOS nodes were partitioned into training (30%) and vali-
dation (70%) sets. The OOB coefficient of determination (OOB R2)
computed on the validation set only was used to evaluate the model
results. The tests were repeated after adding CRU 4.0 (precipitation,
temperature, evapotranspiration) and CWA data to VOD as input in RF,
running separate models for Africa and South America. The n-tree and
m-try values that yielded the lowest RMSE were 1000 and 3 respec-
tively, in both Africa and South America models.

The RF models were initially built considering climatological vari-
ables CRU TS of 2012 year only, and the single CWA dataset (not
changing in the analyzed period). After this preliminary RF application,
the considered inputs were the selected months of SMOS VOD data, and
subsequently CRU TS data from 2012 year and the single CWA data
were added. The RF models were always trained using 2012 input data,
and then applied to datasets from the other years.

The ground records from field surveys used by Avitabile et al.
(2016) for independent validation of their AGB estimate were also used
here to further validate the RF AGB estimates of a selected year (2014).
Specifically, the South America and Africa ground data were separately
averaged according to SMOS grid, retaining only those nodes associated
to a minimum of 3 field records.

Finally, SMOS VOD 2014 values were explored in the selected
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homogeneous ecological units. The total estimated AGB (in Pg) for that
year was also computed for the selected ecoregions.

3. Results

After excluding VOD data from non-forests (vegetated areas below
the 5 m trees height threshold), the obtained study area resulted to have
an extension equal to 43.4% (Africa) and 70.9% (South America) of the
continental area considered by the Avitabile et al. (2016) reference AGB
map.

The exponential fitting of VOD vs AGB for both Africa and South
America continents was obtained using the function (with AGB unit in
Mg ha−1):

VOD = 0.25 + 0.92 [1-exp(-0.0064 AGB)] (1)

characterized by a determination coefficient (R2) equal to 0.71 and
a RMSE equal to 0.165 VOD units, respectively. The VOD vs. AGB
scatterplot and the associated exponential fitting function is presented
in Fig. 1; VOD reaches 90% of its asymptotic value at AGB = 360 Mg
ha−1. As a linear regression function indicates that the maximum
coefficient of determination is obtained at AGB equal to 350 Mg ha−1

(R2 = 0.72), this was considered as the saturation limit for the present
study. These tests were carried out using the 2012 VOD dataset, being
the second year for which SMOS data are fully available but with less
interference problems than in 2011. The test was repeated with other
years too, obtaining minimal differences in R2 (at second decimal place,
unreported tests), and confirming a stable signal response.

When the 3-month temporal moving window was applied to the
continental datasets separately, filtered to retain only areas with
AGB < 350 Mg ha−1, differences in the strength of the VOD-AGB re-
lationship along seasons emerged. For Africa, the 3-month period
having higher coefficient of determination (R2 = 0.65, 33813 samples)
was Mar.-May, while for South America it resulted to be Oct.-Dec.
(R2 = 0.69; 45291 samples). These periods in general correspond to
months in which –at continental level- VOD values are lower in dry
forests and woodlands ranges, with consequent increase of dynamic
range. Fig. 2 shows the seasonal variability in the VOD-AGB relation-
ships: it resulted minimal in both continents, as recorded R2 changes
were in the order of 0.05 in Africa and 0.07 in South America. The
analysis included a number of samples equal to about 55,000 for Africa
and 66,000 for South America, with seasonal variations lower than
0.1% in both cases.

Random Forest (RF) algorithm was initially used to evaluate how
much of the variability in AGB data (with 350 Mg ha−1 threshold) is
explained by the CRU TS and CWA variables, using single variables as
input in the models, without using SMOS VOD (Table 1). AGB models
were trained with one climate variable at a time from 2012 year, except
for CWA that does not vary in the analyzed period. Then these models

were run using CRU TS and CWA variables from different years, and
validated with Avitabile AGB dataset, partitioned in 30% for model
training and 70% for model validation. The corresponding OOB R2

values for each year are reported in separate rows of Table 1. Since
CWA refers to forty years of data acquired before 2011, only one OOB
R2 is reported for this variable.

These results show that climate variables partly contribute to shape
regional variations in AGB, with PET and precipitation providing better
results for both continents. These reported relationships are moderate,
and characterized by very high RMSE values. The correlation coeffi-
cients among CRU variables were also computed: for both continents,
values resulted < 0.4 between precipitation and PET, and up to 0.55 for
correlations with the temperature variable.

The results of further Random Forests models, performed to test
how well SMOS VOD explains the variability in AGB data (under the
350 Mg ha−1 threshold), with and without the addition of yearly
averaged CRU TS 4.01 and CWA data to VOD from selected months, are
illustrated in Table 2. Also in this case the RF models were trained with
2012 data (except for CWA single dataset) and 30% Avitabile et al.
(2016) training set, run using input datasets from the different years,
and validated using the 70% Avitabile et al. (2016) validation set.
Differences in OOB R2 among years resulted minimal, with lower values
found in 2011 and 2015. The addition of CRU TS data improved the
model accuracies more than CWA; the highest OOB R2 values are ob-
tained adding potential evapotranspiration (PET) to VOD in Africa
(OOB R2 = 0.79) and precipitation in South America (OOB R2 = 0.8);
the lowest RMSE is always obtained when using PET CRU variable
(third column in Table 2).

Fig. 3 shows a comparison of the retrieved 2014 AGB based on VOD
and PET data, and Avitabile et al. (2016) maps (up to 350 AGB Mg
ha−1) for the two continents. Areas of high, intermediate and low
biomass coarsely coincide. When looking at fine ranges of AGB values,

Fig. 1. VOD vs AGB scatterplot and exponential fitting. VOD data are from 2012 year, from Africa and South America forests.

Fig. 2. Seasonal variability in 2012 VOD-AGB (up to 350 Mg ha−1) relationship
for Africa and South America.
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it can be noted that in the retrieved AGB map few areas reach the
maximum AGB values with respect to the reference map, implying a
possible underestimation of the VOD plus PET model.

An additional validation of AGB estimated by means of VOD plus
PET 2014 data was performed using AGB independent data from field
measurements, as provided by Avitabile et al. (2016). The validation
result indicates good agreement (R2 = 0.63, Fig. 4) between estimated
and field AGB records, but suggests the possible AGB underestimation
observed in previous Fig. 3.

The total amount of forest biomass (Pg) was estimated in the two
continents from 2011 to 2015 using selected SMOS VOD 3-month
periods and yearly averaged PET data for each year; PET was selected
as its use leads to lower RMSE then the other climate variables, at
comparable R2 values (as reported in Table 2). A total of 55014 SMOS
VOD samples were used for Africa and 66451 for South America, re-
presenting 43.4% and 70.9% of the area considered in the AGB re-
ference map, respectively.

The differences in total AGB among years resulted limited.
Considering the uncertainty associated to the estimates, and the fact
that RF models for different years are trained and validated with the
same AGB reference data, and referred to a period before 2010, these
differences are too low to draw conclusions about temporal trends of
continental AGB. In fact, different factors can contribute to the ob-
served AGB yearly variations, including SMOS VOD and PET data
quality.

The Olson et al. (2001) ecoregions were selected and aggregated to
compose 8 units for Africa and 17 for South America. Mean 2014 VOD
values, VOD coefficients of variation (which is an indicator of the VOD
homogeneity within the ecoregion) and numbers of samples per ecor-
egion guided the aggregation of the units. The larger number of units
identified in South America with respect to Africa reflects the higher
number of ecoregions delineated by the Olson et al. (2001) approach, as
well as the environmental heterogeneity of this continent. VOD values
from other years (from 2011 to 2015) were similar to those reported for
2014, with no significant difference among years for any of the tested

unit (not reported tests). The following Fig. 5 illustrates the African
units that were considered for the analysis.

According to Table 4, Lowland and Swamp forests, which are the
rainforests included in the tropical wetter range, show the highest VOD
values. As expected, the forest-savanna unit surrounding the Congo
basin, characterized by lower rainfall and less dense and tall forests,
display a lower VOD value, which further decreases by similar amount
in the dry forests of the Miombo woodlands located south of the
equator, and in the dry and fragmented forests of Guinean Forest-Sa-
vanna mosaics of Western Africa. The lowest VOD values are found in
the two Savannas and Bushlands/Thickets units.

Based on VOD signal similarity, the units were further aggregated in
the four units considered in Fig. 6, which shows the scatterplot between
SMOS VOD 2014 values and AGB from the reference map.

The scatterplot in Fig. 6 displays clear data clusters, with limited
overlap between Miombo Woodland + Guinean Forest Savannah and
the Lowland and Swamp forests. These two latter units, having higher
AGB values, are well discriminated according to VOD values. Con-
versely, other ecoregions characterized by lower AGB show overlap in
VOD values, which in most cases are below 0.6 and characterized by
large variance, especially in the case of the Forest Savanna Mosaic unit.

According to the results in Fig. 7, the rainforest unit hosts the larger
part of continental AGB, more than two times the AGB of the other
summed units. The Forest Savanna Mosaic unit, surrounding the Congo
basin, also includes considerable forest AGB stocks, even if it only re-
presents about ¼ of that of the rainforest area. The biomass included in
Miombo woodlands plus Guinean forest-savannas is lower but not so
different in amount from that included in the forests of Forest Savanna
Mosaics; conversely, much lower AGB is stored in the forests of the
Savannas and Bushland units.

Fig. 8 illustrates the 17 South America ecoregions or aggregated
units. Mean VOD 2014 values, coefficient of variation, and samples
number for these units are shown in Table 5.

In South America, higher VOD values are found in northern, wes-
tern, southwestern and Guianan piedmont Moist forests. Still very high

Table 1
Random Forest OOB R2 values for AGB models using CRU TS and CWA variables as input. In parenthesis, the RMSE values in Mg ha −1 are also provided.

R2 Temperature R2 PET R2 Precipitation R2 CWA

Africa 0.47 (77.44)
Africa 2011 0.41 (80.47) 0.52 (72.17) 0.50 (72.93)
Africa 2012 0.41 (79.07) 0.52 (72.30) 0.53 (70.61)
Africa 2013 0.41 (79.32) 0.52 (70.67) 0.51 (71.84)
Africa 2014 0.41(78.61) 0.55 (69.84) 0.56 (68.91)
Africa 2015 0.40 (80.01) 0.55 (68.87) 0.46 (75.16)
S. America 0.46 (77.62)
S. America 2011 0.39 (68.31) 0.46 (64.99) 0.55 (58.87)
S. America 2012 0.39 (68.30) 0.49 (62.10) 0.58 (56.65)
S. America 2013 0.42 (67.22) 0.48 (63.76) 0.61 (55.25)
S. America 2014 0.39 (69.49) 0.47 (64.00) 0.55 (59.56)
S. America 2015 0.43 (66.75) 0.45 (65.24) 0.52 (60.69)

Table 2
Random Forest OOB R2 values (areas up to 350 AGB Mg ha−1), obtained using as input VOD averaged in March-May period for Africa, and August-October for South
America, plus CRU TS and CWA yearly averaged data. In parenthesis, RMSE values in Mg ha −1.

R2 VOD R2 VOD + Temperature R2 VOD + PET R2 VOD + Precip. R2 VOD + CWA

Africa 2011 0.69 (57.51) 0.78 (50.50) 0.77 (49.59) 0.75 (51.35) 0.70 (56.80)
Africa 2012 0.69 (57.46) 0.76 (50.71) 0.77 (49.54) 0.76 (51.76) 0.71 (57.33)
Africa 2013 0.69 (57.15) 0.77 (50.11) 0.76 (48.62) 0.76 (50.83) 0.72 (57.38)
Africa 2014 0.72 (55.01) 0.77 (49.21) 0.79 (48.41) 0.78 (49.16) 0.71 (56.96)
Africa 2015 0.68 (58.18) 0.75 (51.87) 0.77 (49.21) 0.74 (52.57) 0.70 (57.10)
S. America 2011 0.57 (57.50) 0.65 (61.62) 0.72 (56.92) 0.70 (59.64) 0.71 (56.94)
S. America 2012 0.71 (47.90) 0.77 (42.17) 0.79 (40.23) 0.80 (40.41) 0.72 (56.68)
S. America 2013 0.70 (47.79) 0.76 (42.54) 0.79 (39.33) 0.80 (40.22) 0.72 (55.16)
S. America 2014 0.69 (49.97) 0.77 (43.03) 0.79 (41.20) 0.78 (41.54) 0.71 (56.20)
S. America 2015 0.58 (49.37) 0.68 (60.86) 0.73 (55.32) 0.70 (58.98) 0.71 (56.74)
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VOD values occur in eastern, southeastern Moist and Swamp forests.
The mentioned units host the densest and wettest forests of this con-
tinent, surrounding the Amazonian basin. A lower VOD value occurs in
the Mato Grosso seasonal forests, having dry forest features. Then, in-
termediate VOD values are found in the Araucaria moist forests,
dominated by conifers, and Dry Chaco forests, located in semi-arid
plains. Slightly lower VOD values are found in: forests of the wet Chaco,
characterized by patches of dry forests alternated with palm savannahs
and wetlands; forest of the dry Cerrado unit; and those of the Alto
Paranà unit, in which mainly secondary dry and semi-deciduous forests

are present. A further decrease in VOD is observed for forests occurring
in the Atlantic dry region, and in Caatinga and Llanos units. The lowest
values are found in the forests of the Uruguayan savanna ecoregion.

Some of the South America Olson et al. (2001) ecoregions included
a limited number of VOD samples, thus of continuous forest above 5 m
height. A threshold of 670 samples (corresponding to the smallest of the
African units) was arbitrarily set, to exclude smaller units prior to the
further aggregation performed in accordance with similarity in mean
VOD 2014 value and the coefficients of variation. The aggregation
process resulted in 5 units, used to produce the scatterplot (Fig. 8)
between SMOS 2014 VOD and data from the reference AGB map
(Fig. 9).

In South America, the Northern moist + Southwestern
moist + Western moist + Guianan piedmont forests show higher values
of both AGB and VOD, composing a well-defined cluster. For other
Moist (East and Southeastern moist) and Swamp forests, as well as for
Mato Grosso, VOD values resulted highly variable: two different clus-
ters (low and high AGB) emerged, a fact that deserves further in-
vestigation. The lower AGB are observed in Chaco, with high VOD
values variance, and in the Cerrado unit, with saturation of the VOD
signal. Fig. 10 shows the total amount of AGB in the five different South
America units. The AGB stored in the rainforest area of the Amazonian
basin represents by far the majority of the biomass of this continent.

4. Discussions

The initial results here obtained indicate that VOD saturation to

Fig. 3. Upper left: Africa AGB map retrieved using March-May VOD and CRU PET 2014 data. Upper right: Avitabile et al. (2016) AGB map for Africa. Lower left:
South America AGB map retrieved using October-December VOD and CRU PET 2014 data. Lower right: Avitabile et al. (2016) AGB map for South America.

Fig. 4. Scatterplot between AGB values retrieved using VOD plus CRU PET
2014 data and field AGB values as provided by Avitabile et al. (2016) for Africa
and South America. Field values were averaged according to SMOS grid, and a
logarithmic curve was used as best fit.
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AGB occurs at about 350 Mg ha−1, a value close to what was found by
Rodríguez-Fernández et al. (2018) using VOD from the SMOS-IC pro-
duct. The 350 Mg ha−1 saturation limit is considerably high, and is the
upper bound used in most AGB reference datasets (Baccini et al., 2008;
Saatchi et al., 2011). Conversely, lower saturation limits are obtained
when using Synthetic Aperture Radar (SAR) backscattering data. The
highest values are achieved at P band, but do not exceed 200 Mg ha-1
(Imhoff, 1995; Santos et al., 2003; Wang et al., 2006).

Previous attempts to relate VOD data to AGB found varied levels of
signal saturation. Rahmoune et al. (2014) study, based on SMOS 2011
data with a reference biomass map from United States, found a positive

increasing trend of optical depth vs biomass, but for a limited low range
of AGB values. Vittucci et al. (2016) found moderate relationship be-
tween VOD data and Avitabile et al. (2016) biomass map (R2 = 0.60 for
Africa and 0.63 for South America). However, both previously men-
tioned papers were based on a preliminary version of the SMOS algo-
rithm (v 620), and used limited time slots (4 or 8 days). Brandt et al.
(2018) used the INRA (Institut National de la Recherche Agronomique)
- CESBIO (Centre d’Etudes Spatiales de la BIOsphère) (IC) L-VOD da-
taset, which is a modification of the SMOS L3 algorithm, to evaluate
carbon density changes in Africa from 2010-2016: they did not report
any saturation effect using Baccini et al. (2008) reference data. For
Africa biomass estimation, Rodríguez-Fernández et al. (2018) also used
the SMOS VOD IC dataset, and reported high linear correlation and
absence of saturation when using as reference Baccini et al. (2008) and
Saatchi et al. (2011) maps. The same authors obtained a non-linear
relationship and dispersion at high carbon density (> 300 Mg/ha)
when using as reference the Avitabile et al. (2016) and the Bouvet et al.
(2018) savannas and woodlands datasets.

Within the saturation level found in the present research, most of
the forested areas in the tropical range are included. This positive result
is in part due to the use of dense temporal series that are known to
increase the sensitivity of L-band data to AGB (Englhart et al., 2011;
Vittucci et al., 2016). However data from lower frequency bands might
still be needed to characterize areas with extremely high biomass va-
lues, such as some of the tropical wetter areas also included in the
Avitabile et al. (2016) dataset.

Africa and South America forests belong to areas characterized by

Fig. 5. African ecoregions or aggregated units from Olson et al. (2001).

Fig. 6. Scatterplot between averaged 2014 VOD values and AGB, for four aggregated units based on Olsen et al. (2001) ecoregions.

Fig. 7. Total AGB estimated in Africa for the 2014 year, in four aggregated units
from Olson et al. (2001) ecoregions.
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different climate seasonality regimes (Munzimi et al., 2015; Nicholson,
2000), with non-seasonal as well as single, dual-, and multiple wet
season patterns (Herrmann and Mohr, 2011; Moron et al., 1995;
Reboita et al., 2010). Total or seasonal rainfall amount is known to
exert a strong control on vegetation structure (Good and Caylor, 2011),
biomass density (Álvarez-Dávila et al., 2017; Stegen et al., 2011;
Wagner et al., 2012), with also ecosystem carbon fluxes responding to
changes in rain pulses (Williams et al., 2009). The rainfall regimes in-
fluence canopy water content, which in turn can have an effect on L-
band signal response and contributes to shape the overall VOD-AGB

relationship. Here, only minimal seasonal variations in the strength of
the correlation between VOD and AGB were observed at continental
level, but the possible occurrence of different trends at a finer spatial
scale of analysis deserves further investigation. Recently, a 4-year
analysis characterizing VOD trends in selected regions was conducted
by Vittucci et al. (2018). These authors found: a high VOD value along
all the year in rainforests of Peru; a lower VOD value in dry woodlands
of Argentinian Chaco during months of scarce precipitations; and a
delay between precipitation and VOD maximum value in dry forests of
Zambia and Angola. The months of best VOD-AGB correlation here
selected, for Africa March to May and for South America October to
December, in general correspond to months in which –at continental
level- VOD values are usually lower in dry forests and woodlands

Fig. 8. South American aggregated units from Olson et al. (2001) ecoregions.

Fig. 9. Average 2014 VOD vs. AGB Scatterplot, with identification of aggregated South American ecoregions.

Fig. 10. Total AGB estimated for the 2014 year in 5 South America ecoregions
or aggregated units.

Table 3
Total AGB estimated in Africa and South America forests selecting SMOS nodes
with forest height > 5 m, with coverage > 80% of the node. AGB was estimated
using VOD and CRU PET input data.

Year Africa forests total AGB (Pg) South America forests total AGB (Pg)

2011 62.65 149.44
2012 65.50 150.50
2013 63.93 149.85
2014 63.84 150.95
2015 62.34 148.40
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ranges. In these months, a higher dynamic range of VOD is observed,
with lower values in drier forests that causes an increase in the corre-
lation of VOD with AGB. This difference in seasonal VOD sensitivity to
biomass, observed at smaller scales, might be a chance to improve the
accuracy of regional AGB estimates, by means of the selection of spe-
cific time series and monthly data.

An improvement in the accuracy of the biomass estimates was ob-
tained adding to VOD any of the CRU TS variables. The use of PET was
preferred as it produced lower RMSE, with the VOD plus PET model
explaining almost 80% of the variation in African and South American
forest biomass. PET variable represents the local environmental eva-
potranspiration requirements imposed by climate conditions (radiation,
temperature, wind, relative humidity): this variable summarizes overall
climate information, thus the limits imposed by local climate to vege-
tation development. Instead, the use of CWA dataset brought limited
improvement in accuracy of AGB estimates: the extent of forests not
affected by high water stress is large in the tropics, and possibly this
layer can help more when estimating biomass in dry regions.

The aim of this research is not to provide new reference biomass
values, also considering the uncertainty propagated from the reference
map to the final estimates, but to help in clarifying pros and cons in
SMOS VOD data use for large scale and repeated biomass monitoring.
The area here sampled represents only a portion (43.4% for Africa and
70.9% for South America, respectively) of the study area of Avitabile
et al. (2016), since it refers solely to full forest structures, characterized
by a height above 5 m by definition and having large and continuous
spatial extent such as to cover a minimum of 80% of a SMOS node.
These features should be taken into account when comparing the re-
trieved AGB with the reference dataset. Here the total biomass (Table 3)

resulted equal to 76% and 93% of the total AGB reported by Avitabile
et al. (2016) for Africa and South America, respectively. The larger
discrepancy found in Africa might be due to a larger amount of biomass
stored in lower vegetation formation (below 5 m height) and in non-
continuous or fragmented forests in Africa with respect to South
America.

The analysis of 2014 VOD yearly values in selected ecoregions or
aggregated units from Olson et al. (2001) showed that in general VOD
decreases from wetter to drier regions. Some units showed unique va-
lues, but other had similar optical depth ranges. The coefficients of
variation indicate a more stable signal in wetter forest ranges in both
continents, such as moist, lowland and swamp forests, and higher signal
dynamic in drier ranges. In South America, the higher VOD values
observed in piedmont, western and northern Amazonia ranges (mean
optical depth from 1.03 to 1.07) seem to partially agree with the re-
gional AGB variations mapped by Saatchi et al. (2009), who reported
the western, northern, and Andean foothills as the most productive
forests in South America.

The VOD vs. AGB scatterplots for ecoregions or units derived by
Olson et al. (2001) display some clear data clusters for those units en-
compassing large amounts of biomass in both continents. Instead, for
some ecoregions, such as African Savannas, African Eastern bushland
and Thickets, and South American Chaco, there is an appreciable range
of VOD values, although the AGB estimated by Avitabile et al (2016) is
uniformly low. This result deserves further investigation, but there are
preliminary indication that for the clusters clearly evidenced SMOS can
be a useful tool to monitor biomass at regional level. Further im-
provement could be derived by selecting the SMOS VOD best time series
according to considered ecological units.

Table 4
VOD average value, coefficient of variation, and number of samples for 8 African ecoregions or aggregated units from Olsen et al. (2001).

Africa Aggregated Unit Original Ecoregions Average VOD
2014

Coefficient of
variation

VOD
samples
number

Lowland Forests Northwestern + Northeastern + Central + Southern Congolian Lowland Forests 0.99 0.15 6930
Swamp Forest Western + Eastern Congolian Swamp Forests 0.96 0.16 1011
Forest Savanna Mosaic Northern + Southern + Western Congolian Forest-Savanna Mosaics 0.59 0.32 6157
Guinean Forest Savanna Mosaics Guinean Forest Savanna Mosaics 0.49 0.37 1318
Angola-Zambesian Miombo

Woodlands
Angolan + Central Zambiesian Miombo Woodlands 0.48 0.27 6248

Eastern Miombo Woodlands Eastern Zambiesian Miombo Woodlands 0.47 0.30 1724
Sudanian Savannas East + West Sudanian Savannas 0.38 0.45 1913
Eastern Bushland and Thickets Northern + Somali + Southern Acacia-Commiphora Bushlands and Thickets 0.31 0.26 672

Table 5
VOD 2014 average value, coefficient of variation, and number of samples for South America ecoregions or aggregated units from Olsen et al. (2001).

South America Aggregated
Unit

Original ecoregions Average VOD
2014

Coefficient of
variation

VOD samples
number

Northen moist forests Uatuma-Trombetas + Guianan moist forests 1.07 0.14 4666
Southwestern moist forests Juruá-Purus + Purus-Madeira + Southwest Amazon moist forests 1.05 0.12 5585
Western moist forests Caqueta + Napo + Japurá-Solimoes-Negro + Solimões-Japurá moist forests 1.04 0.13 4371
Guianan piedmont Guianan piedmont and lowland moist forests 1.03 0.17 1100
Swamp forest Iquitos + Purus + Gurupa + Monte Alegre varzeás 0.96 0.15 1608
East moist forests Xingu-Tocantins-Araguaia + Tocantins/Pindare + Tapajós-Xingu moist forests 0.91 0.30 3513
Southeastern moist forests Madeira-Tapajós moist forests 0.88 0.30 3558
Mato grosso seasonal forests Mato grosso seasonal forests 0.76 0.41 1401
Araucaria moist forests Araucaria moist forest 0.66 0.38 380
Dry chaco Dry chaco 0.62 0.24 1820
Humid chaco Humid chaco 0.54 0.39 265
Alto Paranà moist forest Alto Paranà moist forest 0.51 0.53 417
Cerrado Cerrado 0.48 0.63 920
Atlantic dry forests Atlantic dry forests 0.37 0.51 161
Caatinga Caatinga 0.34 0.32 263
Llanos Llanos 0.32 0.44 427
Uruguayan savanna Uruguayan savanna 0.22 0.32 461
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5. Conclusions

Overall, the results here presented proved that L-band VOD can be
usefully employed to estimate tropical forest biomass distribution at
continental scale, advancing the previous efforts that established a
correlation between VOD signal dynamics and AGB. The availability of
VOD dense time series allowed the selection of data from specific
months, also according with rainfall patterns that are known to influ-
ence both biomass distribution and signal response. This approach is
promising, as it can improve the VOD-AGB relationship especially when
performing analysis for specific regions. The addition of climate in-
formation was useful in improving the accuracy of the AGB estimates in
Africa and South America. A relevant variability in the distribution of
carbon stocks of tropical forests is already recognized, and calls for
regional scale monitoring of biomass. The preliminary tests conducted
with ecoregions or aggregated units from Olson et al. (2001) suggest
that VOD can produce valuable information also at this scale. Overall,
additional efforts in calibration and validation of these initial findings
at finer ecoregional scale are necessary, but the results are promising
and indicate that SMOS can be a valuable tool to support the mon-
itoring of tropical homogeneous forests from global to regional scale.
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