1,889 research outputs found

    Repetitive control of electrical stimulation for tremor suppression

    Get PDF
    Tremor is a rapid uncontrollable back-and-forth movement of a body part often seen in patients with neurological conditions such as Multiple Sclerosis (MS) and Parkinson’s disease. This debilitating oscillation can be suppressed by applying functional electrical stimulation (FES) within a closedloop control system. However current implementations use classical control methods and have proved capable of only limited performance. This paper develops a novel application of repetitive control (RC) that exploits the capability of learning from experience to enable complete suppression of the tremor. The proposed control structure is applied to suppress tremor at the wrist via FES regulated co-contraction of wrist extensors/flexors. Experimental evaluation is performed using a validated wristrig and results are compared against classical feedback control designs to establish the efficacy of the approach

    System identification for FES-based tremor suppression

    Get PDF
    Tremor is an involuntary motion which is a common complication of Parkinson's disease and Multiple Sclerosis. A promising treatment is to artificially contract the muscle through application of induced electrical stimulation. However, existing controllers have either provided only modest levels of suppression or have been applied only in simulation. To enable more advanced, model-based control schemes, an accurate model of the relevant limb dynamics is required, together with identification procedures that are suitable for clinical application. This paper proposes such a solution, explicitly addressing limitations of existing methodologies. These include model structures that (i) neglect critical features, and (ii) restrict the range of admissible control schemes, together with identification procedures that (iii) employ stimulation inputs that are uncomfortable for patients, (iv) are overly complex and time-consuming for clinical use, and (v) cannot be automated. Experimental results confirm the efficacy of the proposed identification procedures, and show that high levels of accuracy can be achieved in a short identification time using test procedures that are suitable for future transference to the clinical domain

    A Robust Kalman Algorithm to Facilitate Human-Computer Interaction for People with Cerebral Palsy, Using a New Interface Based on Inertial Sensors

    Get PDF
    This work aims to create an advanced human-computer interface called ENLAZA for people with cerebral palsy (CP). Although there are computer-access solutions for disabled people in general, there are few evidences from motor disabled community (e.g., CP) using these alternative interfaces. The proposed interface is based on inertial sensors in order to characterize involuntary motion in terms of time, frequency and range of motion. This characterization is used to design a filtering technique that reduces the effect of involuntary motion on person-computer interaction. This paper presents a robust Kalman filter (RKF) design to facilitate fine motor control based on the previous characterization. The filter increases mouse pointer directivity and the target acquisition time is reduced by a factor of ten. The interface is validated with CP users who were unable to control the computer using other interfaces. The interface ENLAZA and the RKF enabled them to use the computer

    Information-Based Approaches of Noninvasive Transcranial Brain Stimulation

    Get PDF
    Progress in cognitive neuroscience relies on methodological developments to increase the specificity of knowledge obtained regarding brain function. For example, in functional neuroimaging the current trend is to study the type of information carried by brain regions rather than simply compare activation levels induced by task manipulations. In this context noninvasive transcranial brain stimulation (NTBS) in the study of cognitive functions may appear coarse and old fashioned in its conventional uses. However, in their multitude of parameters, and by coupling them with behavioral manipulations, NTBS protocols can reach the specificity of imaging techniques. Here we review the different paradigms that have aimed to accomplish this in both basic science and clinical settings and follow the general philosophy of information-based approach

    Modeling the neurophysiology of tremor to develop a peripheral neuroprosthesis for tremor suppression

    Get PDF
    Pathological tremor is an involuntary oscillation of the body parts around joints. Pharmaceu- ticals and surgical treatments are approved approaches for tremor management; however, their side effects limit their usability. The main objective of this study is, therefore, to design a closed-loop non-invasive electrical stimulation system that could suppress tremor without serious side effects. We started our system design by investigating motor unit (MU) behaviors during postural tremor via decomposition of high-density surface electromyography (EMG) recordings of antagonist pairs of wrist muscles of essential tremor (ET) patients. The common input strength that influences voluntary and tremor movements and the phase difference between activation of motor neurons in antagonist pairs of muscles were assessed to find the correlation of the motor unit activity during different tasks. We observed that, during postural tremor, the motor units in antagonist pairs of muscles were activated with a phase difference that varies over time. An online EMG decomposition method and a phase-locked-loop system were, therefore, implemented in our tremor suppression system to real-timely discriminate motor unit discharge timings, track the phase of the motor unit activity and use that real-time phase estimation to control the stimulation timing. We applied sub-threshold stimulation to the muscle pairs in an out-of-phase manner. The system was validated offline with the data recorded from 13 ET patients before it was tested with an ET patient to prove the concept. Since the spinal cord is the termination of the afferent neurons from the peripheral nervous system and connection to the central nervous system and motor neurons, we hypothesized that electrical stimulation at the spinal cord could also modulate tremor-related neural commands. Russian currents with a 5 kHz-carrier frequency modulated with a slow burst at tremor frequencies were used with sub-threshold intensity to stimulate at C5-C6 cervical spine of 9 ET patients. The reduction of the tremor power was observed via an analysis of the wrist angle recorded using an accelerometer. We present, in this thesis, two electrical stimulation approaches for tremor suppression via the peripheral nerves and spinal cord, providing options for patients to utilize based on their preference.Open Acces

    Tremor severity in Parkinson’s disease and cortical changes of areas controlling movement sequencing: a preliminary study.

    Get PDF
    . There remains much to learn about the changes in cortical anatomy that are associated with tremor severity in Parkinson’s disease (PD). For this reason, we used a combination of structural neuroimaging to measure cortical thickness and neurophysiological studies to analyze whether PD tremor was associated with cortex integrity. Magnetic resonance imaging and neurophysiological assessment were performed in 13 nondemented PD patients (9 women, 69.2%) with a clearly tremor-dominant phenotype. Cortical reconstruction and volumetric segmentation was performed with the Freesurfer image analysis software. Assessment of tremor was performed by means of high-density surface electromyography (hdEMG) and inertial measurement units (IMUs). Individual motor unit discharge patterns were identified from surface hdEMG and tremor metrics quantifying motor unit synchronization from IMUs were defined. Increased motor unit synchronization (i.e., more severe tremor) was associated with cortical changes (i.e., atrophy) in dorsal premotor cortices, left posterior parietal cortex, left lateral orbitofrontal cortex, cingulate cortex bilaterally, left posterior and transverse temporal cortex, and left occipital lobe, as well as reduced left middle temporal volume. Given that the majority of these areas are involved in controlling movement sequencing, our results support Albert’s classic hypothesis that PD tremor may be the result of an involuntary activation of a program of motor behavior used in the genesis of rapid voluntary alternating movements.pre-print670 K

    Rehabilitation Engineering

    Get PDF
    Population ageing has major consequences and implications in all areas of our daily life as well as other important aspects, such as economic growth, savings, investment and consumption, labour markets, pensions, property and care from one generation to another. Additionally, health and related care, family composition and life-style, housing and migration are also affected. Given the rapid increase in the aging of the population and the further increase that is expected in the coming years, an important problem that has to be faced is the corresponding increase in chronic illness, disabilities, and loss of functional independence endemic to the elderly (WHO 2008). For this reason, novel methods of rehabilitation and care management are urgently needed. This book covers many rehabilitation support systems and robots developed for upper limbs, lower limbs as well as visually impaired condition. Other than upper limbs, the lower limb research works are also discussed like motorized foot rest for electric powered wheelchair and standing assistance device

    Focusing Brain Therapeutic Interventions in Space and Time for Parkinson’s Disease

    Get PDF
    The last decade has seen major progress at all levels of neuroscience, from genes and molecules up to integrated systems-level models of brain function. In particular, there have been advances in the understanding of cell-type-specific contributions to function, together with a clearer account of how these contributions are coordinated from moment to moment to organise behavior. A major current endeavor is to leverage this knowledge to develop new therapeutic approaches. In Parkinson’s disease, there are a number of promising emerging treatments. Here, we will highlight three ambitious novel therapeutic approaches for this condition, each robustly driven by primary neuroscience. Pharmacogenetics genetically re-engineers neurons to produce neurotrophins that are neuroprotective to vulnerable dopaminergic cells or to directly replace dopamine through enzyme transduction. Deep brain stimulation (DBS) is undergoing a transformation, with adaptive DBS controlled by neural signals resulting in better motor outcomes and significant reductions in overall stimulation that could reduce side effects. Finally, optogenetics presents the opportunity to achieve cell-type-specific control with a high temporal specification on a large enough scale to effectively repair network-level dysfunction
    • 

    corecore