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Abstract

Tremor is an involuntary motion which is a common complication of Parkinson’s disease and Multiple
Sclerosis. A promising treatment is to artificially contract the muscle through application of induced
electrical stimulation. However, existing controllers have either provided only modest levels of suppression
or have been applied only in simulation. To enable more advanced, model-based control schemes, an
accurate model of the relevant limb dynamics is required, together with identification procedures that
are suitable for clinical application. This paper proposes such a solution, explicitly addressing limitations
of existing methodologies. These include model structures that: (i) neglect critical features, and (ii)
restrict the range of admissible control schemes, together with identification procedures that: (iii) employ
stimulation inputs that are uncomfortable for patients, (iv) are overly complex and time-consuming for
clinical use, and (v) cannot be automated. Experimental results confirm the efficacy of the proposed
identification procedures, and show that high levels of accuracy can be achieved in a short identification
time using test procedures that are suitable for future transference to the clinical domain.

Keywords: Tremor, System identification, Hammerstein structure, Functional electrical stimulation,
Muscle model, Linearisation

1. Introduction

Tremor is a rhythmic, approximately periodic, oscillation that occurs in the limbs of patients with
neurological disorders such as Multiple Sclerosis (MS) and Parkinson’s disease. In 2008, 2.1 million people
were diagnosed with MS worldwide [32] of which 25% to 58% suffered some form of tremor [17, 29]. In
ballistic movements intention tremor is caused by delayed activation of the antagonist muscle to decelerate
the initial agonist movement, causing overshoot, followed by delay in the activation of the second agonist
to correct movement, thereby causing over-correction. It makes performing daily life activities very
challenging, and may contribute to feelings of social isolation and depression. Invasive treatments are
often considered too risky due to adverse effects after surgery and during long-term follow-up observations
[11, 26, 28, 33]. Pharmacological methods have also not proved successful in treating intention tremor
[5], hence there is increasing research interest in non-pharmacological treatment approaches.

Non-pharmacological treatment approaches such as tremor suppressing orthoses, limb cooling and
limb weights are reviewed in [21]. However they have limitations. For example, limb cooling can reduce
the amplitude and frequency of tremor but this effect is temporary, and is accompanied by a decrease
in the nerve conduction velocity and muscle spindle activity. Moreover, deep cooling causes changes
in muscle properties which mean that maximum voluntary forces will decrease [6]. Another technique
comprises adding weights to tremulous limbs, however this causes fatigue and slowness in performing
tasks. Examples of this type of tremor management system are tremor-suppressing orthoses [19, 25],
which suppress tremor affecting the upper limb with either passive or active control. The main drawback
of this system is that the presence of actuators and sensors on the affected limb is extremely inconvenient
when performing daily life activities, causing fatigue, obstructing range of movement, and promoting
feelings of self-consciousness due to their large size.

An alternative to active orthoses is Functional Electrical Stimulation (FES) which involves applying
electrical impulses to artificially contract muscle. FES is typically applied using surface electrodes placed
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over relevant muscles using low cost hardware which is neither bulky nor obstructive to movement [16]. In
[23, 24], FES was applied to suppress tremor at the wrist or elbow using filters implemented in a closed-
loop feedback arrangement. This control structure was applied to three groups, comprising patients
with (i) essential, (ii) Parkinsonian and (iii) cerebellar tremors associated with MS [24]. The results
showed respective tremor reduction of 73%, 62% and 38%, respectively. Proportional plus derivative
(PD) control was used in combination with fuzzy logic controller to suppress tremor in [34]. Simulation
results showed that pathological tremor reduced by 85% but were not supported by experiments. An
FES control strategy based on the modification of joint stiffness using a proportional plus integral (PI)
action was proposed in [1], but with results showing only mild suppression of tremor.

The aforementioned feedback approaches have well-known performance limitations, including a de-
crease in the robust stability margin as suppression increases over the required frequency range, together
with an increase in undesirable low frequency distortion. These characteristics explain the limited ability
of previous closed-loop FES controllers to suppress higher frequencies [1]. The difficulty in designing a
stable feedback system with sufficient suppression is highlighted in [23], together with the tendency of the
feedback system to produce large high-frequency stimulation transients which cause significant discomfort
to patients.

To solve inherent limitations of feedback control for tremor suppression, one approach is a full char-
acterization of both voluntary movement and tremor using electromyographic, electroencephalographic
and kinematic signals [9]. However this necessitates employing a large amount of equipment which is a
barrier to transference from the laboratory to the patient’s local clinic or home.

To address these limitations more advanced controllers are required which exploit the known form
of disturbance to embed feedforward predictive action. One example of this type is repetitive control
(RC) that embeds a model of the disturbance within the control structure, with initial feasibility results
presented in [31]. However such forms necessitate an accurate model of the underlying dynamics. The
next section therefore reviews models that have been employed in FES control of tremor suppression,
with focus on the wrist since this has received greatest research interest and is a critical component of
upper limb tremor.

2. Dynamical Modelling of Wrist Joint in Tremor Suppression

A variety of biomechanical models exist that connect applied FES to resulting movement, with appli-
cations in rehabilitation, neuroprostheses and assistive technology fields [1, 7, 20, 22, 35]. Within tremor
suppression, the model must also include a characterisation of both the tremulous motion and voluntary
action in order to define the associated control problem [2, 10, 23, 34, 35].

In [23], a notch filter and a high-pass filter are employed in closed-loop FES controllers for the wrist
and elbow joints. To identify the system model, FES was applied to the muscles of 6 unimpaired subjects
at frequencies ranging from 1 to 12 Hz to produce extension and flexion. The amplitude and phase of the
movement response were calculated for each subject. These were then averaged across subjects at each
frequency and a linear transfer function was fitted to the resulting frequency response data. It is stated
that the model is able to adequately predict gain margins, resonant frequencies and tremor attenuation.
Unfortunately, the averaging process means the model poorly fits the response of individual subjects,
especially at frequencies between 2 and 5 Hz. The fitting calculation also requires a large number of
trial-and-error iterations. In addition, there are no model validation results. Closed-loop tests using the
same model are reported in [24] and show some suppression of tremor when employed with MS patients.
However there is no procedure to identify individual models for each patient, and instead the same linear
model identified in [23] was employed, which accounts for the degraded performance.

Another strategy for tremor suppression at the wrist is based on co-contracting a pair of antagonist
muscles to control the joint impedance with a simple PI controller equipped with anti-windup [2]. The
wrist is approximated by a second order linear system including inertia, passive damping, passive stiffness,
and gravity. The Hill-type muscle model is used to model the muscle contraction dynamics. An Extended
Kalman Filter (EKF) is used to estimate the parameters of inertia, passive damping, passive stiffness
and the maximum moment due to the gravity of the joint. Then a pseudorandom stimulation sequence is
applied and the Gauss-Newton method is employed to identify the active parameters from the recorded
joint motion. The accuracy of these methods is highly dependent on the initial values provided for
each parameter set which are chosen arbitrarily. The procedure also involves FES signals that may be
uncomfortable and give rise to involuntary muscle activation.

In [34, 35], a musculoskeletal model of the wrist involving an agonist/antagonist pair is simulated with
a fuzzy logic control [34] or a neural oscillator [35] combined with a PD controller to suppress an external

2



tremor signal. The wrist is modelled as a second order system with muscles taking the form of a Hill type
model with the force-length (FL) property, the force-velocity (FV) property and the nonlinear muscle
activation dynamics under isometric conditions. The parameters appearing in the model are taken from
published literature and no procedure is presented to enable experimental identification.

The above studies highlight the absence of a model identification procedure that is suitable for clinical
application. In this scenario controllers are required to perform satisfactorily, despite limited identification
time available due to the onset of fatigue, changes in physiological conditions and subject availability
constraints. Ideally this procedure should be able to also be conducted by a clinician without the need
for an engineer being present. Existing methods either: i) assume simplistic forms that inaccurately
capture the dynamics (e.g. they negate a static dead zone and/or nonlinearity in torque generated), ii)
utilise complex structures that give rise to procedures that can neither be applied in the time available,
nor are aligned to subjects’ needs, or iii) have not been validated in terms of the accuracy with which
the model matches separate data sets. A suitable model must address these shortcomings by affecting
a compromise between accuracy and ease of identification. This is further complicated since it is also
desirable that the identification procedure yields a linear time-invariant (LTI) form to maximise the class
of controllers subsequently employed.

Another key component of the model is that it should include a description of the tremor and voluntary
motion dynamics. Tremor, especially intention tremor, has been found to occur at a frequency range
between 3-5 Hz [5] and it has been shown that the wrist motions during daily life activities are usually
generated at a frequency below 1 Hz [18]. The tremor frequency must be identified, and together with
the frequency of voluntary action, can then be included in the controller design.

In the next section an approach is developed that combines a nonlinear model structure with an
identification procedure that meets the demands of the clinical domain and is suitable for use with
neurologically impaired subjects. The key contributions are as follows:

• To embed accuracy, the model structure incorporates nonlinear recruitment characteristics, together
with a co-activation function created to minimize the effects of the dead-zone in the muscle torque.

• The structure can be linearised as a transparent manner to enable linear tremor suppression control
design.

• The identification procedure is suitable for both patients and clinicians. Firstly, it is not time-
consuming and can be carried out in less than 1 min. Secondly, it does not require user input and
hence can be automated. Thirdly, it uses signals that are comfortable (have no sudden changes,
such as present in random signals) and have been employed in previous clinical trials. Finally, it is
able to explicitly identify the tremulous action (unlike [24]).

• Experimental results confirm the accuracy of the model both in fitting and prediction.

3. Problem Set-up

The proposed model comprises horizontal plane-flexion and extension wrist dynamics in response
to FES applied to the Flexor Carpi Radialis (FCR) and Extensor Carpi Radialis (ECR) muscles, as
well as an oscillatory movement due to tremor. Single joint motion can be accurately modelled through
combination of rigid body dynamics (RBD) (characterising mass, inertia, damping and stiffness properties
of limb segments) and a Hill-type model representing the response of muscle to the applied stimulation.

In most applications, joint ranges and velocities are small so that the isometric behavior of muscle
dominates [15] and additionally, muscle stretching and shortening have minor effect on the generated force
because of the low amplitude and frequency of tremulous motion, and thus force-length and force-velocity
properties can be neglected. These assumptions motivate adopting a Hammerstein muscle structure, in
which the Linear Activation Dynamics (LAD) that model the muscle contraction dynamics [12] are
preceded by a static mapping function, the Isometric Recruitment Curve (IRC), which accounts for the
static gain relation between the applied FES and the steady-state output torque when the muscle is held
at a fixed length [4].

In addition to the muscle dynamics, the joint dynamics of a human limb are commonly modelled by
RBD in which the damping and elastic functions are linear [3, 13, 27]. This assumption has been used in
previous research and is supported by experimental results over a wide range of movement.
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Fig. 1: General wrist model excited by FES and tremor signal

3.1. Model Structure with the Application of Tremor
The above discussion motivates the overall model shown in Fig. 1, where ufcr(k) and hIRC,fcr(u)

respectively denote the FES signal and the IRC of the FCR muscle, and similar notation is used for the
ECR muscle. The terms d̃fcr(k) and d̃ecr(k) are general descriptions of tremor, each taking the form of a
periodic moment acting on the relevant joint. The resulting muscle torque is then fed to the LAD which
are represented by transfer functions HLAD,fcr(q) and HLAD,ecr(q) for the FCR and ECR, respectively.
The corresponding two output torques, wfcr(k) and wecr(k), are summed and applied to the RBD of
the joint, which are also represented by a linear transfer function, H(q). With this assumed model, the
identification problem can now be defined as follows:

Devise a suitable set of input data {ufcr(k), uecr(k)}k=1,...,N , together with an estimation procedure
that yields a parameter vector estimate, θ̂, such that the norm of the difference between the measured
and predicted outputs is minimised. Thus the minimization problem can be expressed as

θ̂ := arg min
θ

‖ε‖2 (1)

with

‖ε‖2 =

√√√√ N∑
k=1

(y(k)− ŷ(k|k − 1))
2 (2)

Here y(k) is the measured output and ŷ(k|k − 1) is the one-step-ahead predicted output associated with
the assumed model description

ŷ = H(q, θ)
{
HLAD,fcr(q, θ)

[
d̃fcr(θ) +hIRC(ufcr, θ)

]
+HLAD,ecr(q, θ)

[
d̃ecr(θ) +hIRC(uecr, θ)

]}
+ v (3)

where v is a zero mean disturbance signal, and θ is the parameter vector. Note that the one-step-ahead
predicted output ŷ(k|k − 1) satisfies

min
ŷ(k)

E(y(k)− ŷ(k)) ⇒ ŷ(k) = ŷ(k|k − 1). (4)

3.2. Model Assumptions and Co-activation
To simplify the model structure in Fig. 1 to enable computationally tractable solutions to the identi-

fication problem, the two-input one-output model is firstly transformed into a single-input single-output
(SISO) model by combining the two input signals ufcr(k) and uecr(k) into a single input signal u(k).
This is achieved with the mapping

ufcr =

{
u+ ucoact,fcr u ≥ 0

ucoact,fcr otherwise
(5)

uecr =

{
ucoact,ecr u ≥ 0

ucoact,ecr − u otherwise
(6)

where ucoact,fcr and ucoact,ecr are prescribed levels of co-activation for the FCR and ECR respectively.
Using u and the summed relationship w = wss,fcr +wss,ecr, the two recruitment curves can be combined
into a single static mapping between input u and steady-state torque w, given by
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u 7→ w, w = wss,fcr + wss,ecr

hIRC(u) =

{
hIRC,fcr(u+ ucoact,fcr)− hIRC,ecr(ucoact,ecr) u ≥ 0

−hIRC,ecr(−u+ ucoact,ecr) + hIRC,fcr(ucoact,fcr) u ≤ 0

(7)

The co-activation levels must be chosen such that hIRC,fcr(ucoact,fcr) = hIRC,ecr(ucoact,ecr) in order for
u = 0 to coincide with zero steady-state output torque. The co-activation has the effect of removing the
dead zone inherent in each IRC, with an example shown in Fig. 2 where a dashed and solid lines are used
to denote ucoact 6= 0 and ucoact = 0, respectively.
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Fig. 2: IRC functions where solid and dashed lines represent hIRC with and without co-activation, respectively.

Next, it is assumed that similar muscle groups have similar dynamics, so that HLAD,fcr(q) u
HLAD,ecr(q). Then both can be set equal to HLAD(q) which is further combined with H(q) to form
P (q). In addition, this assumption also enables the tremor signal d̃fcr(k) and d̃ecr(k), each of period Np,
to be added together to produce d̃(k) and so a combined signal can be introduced to represent the tremor
signal acting on the model. With these definitions, Fig. 1 is equivalent to Fig. 3a.

Let the transfer function P (q) := BP (q)/AP (q). Since BP (q) is stable and d̃(k) is a sinusoidal Np-
periodic signal, it is possible to define

d(k + iNp) := lim
i→∞

BP (q)d̃(k + iNP )

This Np-periodic signal can then be placed as shown in Fig. 3b, which is identical to Fig. 3a given that
the tremor signal is steady-state.

H (q)LAD H(q)Σ

+

P(q)
d(t)˜

h (IRC u )
u(k) y(k)

+

w(k)

(a)
⇒

Σ

d(k)

+

+

A (q)P

1

P(q)=
B (q)P

AP(q)

y(k)
h (IRC u )

u(k) w(k)

(b)

Fig. 3: Simplified wrist model: (a) Simplified model with co-activation, and (b) Simplified model with equivalent tremor
signal representation

3.3. System identification algorithm

In this subsection the components appearing in Fig. 3b are expressed explicitly as linear functions of
their parameters. The form of external disturbance v is then stated, allowing the identification problem
given by (1)-(4) to be solved.

3.3.1. Mathematical representation of system identification problem
The linear dynamics of the wrist model take the polynomial form

P (q) =
BP (q)

AP (q)
=
b0q
−mP + b1q

−(mP+1) + . . .+ bnP
q−(mP+nP )

1 + a1q−1 + . . .+ alP q
−lP

(8)
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+
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Σ
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+
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Fig. 4: ARX type model structure of the wrist model

in which parameters np, lp andmp denote the number of zeros, poles and the time delay order, respectively.
This provides the linear parameter vector

θlP =

[
θaP
θbP

]
= [a1 . . . alP b0 b1 . . . bnP

]
T

Since hIRC,fcr(u) and hIRC,ecr(u) can be represented as polynomial functions [14], the continuous com-
pound function hIRC(u) can be represented by the form

hIRC(u) = β0 + β1u+ . . .+ βm−1u
m−1 + βmu

m (9)

This gives rise to nonlinear parameter vector θn = [β0 β1 . . . βm]
T . Lastly, since d(k) comprises a single

frequency, it can be then written as

d(k) =

[
cos

2πk

Np
, sin

2πk

Np

]
︸ ︷︷ ︸

X

[
λ1
λ2

]
︸ ︷︷ ︸

θd

(10)

where λ1 and λ2 are integers. This yields parameter vector θd = [λ1 λ2]T .

The parameters corresponding to linear model components can be grouped into the linear parameter
vector θl =

[
θlp θd

]T , so that the composite parameter vector is given by θ = [θn θl]
T . It is now neces-

sary to provide a precise form of the external disturbance signal, v, appearing in (3). This is selected as
v(k) = AP (q)−1e(k), where e is zero mean white noise, leading to the overall autoregressive exogenous
(ARX) model structure shown in Fig. 4.

Substituting the foregoing expressions into (3) the model description can be written as

ŷ(k) =
BP (q)

AP (q)
hIRC(u(k), θ̂n) +

1

AP (q)
d(k) +

1

AP (q)
e(k). (11)

Using (11), the corresponding one-step-ahead minimising solution to (4) is then given by

ŷ(k|k − 1) = BP (q)hIRC(u(k), θ̂n) + [1−AP (q)]y(k) + d(k).

Hence the prediction error ε(k) appearing in (2) is

ε(k) = y(k)− ŷ(k) = AP (q)y(k)−BP (q)hIRC(u(k), θ̂n)− d(k). (12)

Next note that the biophysical properties of muscle mean that the function (9) is monotonically increasing.
Thus θn should be estimated such that hIRC(u) is constrained to be a strictly increasing continuous
function on [umin, umax] with hIRC(u) differentiable at each point u0 ∈ (umin, umax). This corresponds
to the condition

dhIRC
du

∣∣∣∣
u=u0

= β1 + . . .+ βm−1(m− 1)um−2 + βmmu
m−1 ≥ 0. (13)

Inserting (12) in (1), the identification problem (1) now becomes

θ̂ = arg min
θ

∥∥∥AP (q)y −BP (q)hIRC(u, θ̂n)− d(θ̂d)
∥∥∥
2

(14)

subject to the constraint of (13).
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3.3.2. Nonlinear parameter identification
The problem (14) cannot be solved using standard methods due to the nonlinearity, and hence, an

iterative scheme is now proposed. This involves firstly identifying nonlinear parameter θn using fixed θl,
and subsequently identifying linear parameter θl with fixed θn. The former optimisation is given by

θ̂n = arg min
θn

∥∥∥AP (q)y −BP (q)hIRC(u, θ̂n)− d(θ̂d)
∥∥∥
2

subject to Aθn ≥ 0 (15)

where the constraint realises monotonic condition (13). From (9), it follows that hIRC(u, θn) is linear in
θn, and hence

(B̂P (q)hIRC(u, θ̂n))(k) =β0

(
b̂0 + · · ·+ b̂nP

)
︸ ︷︷ ︸
hIRC0

(u(k),θ̂bP )

+β1

(
b̂0u(k −mP ) + · · ·+ b̂nP

u(k −mP − nP )
)

︸ ︷︷ ︸
hIRC1

(u(k),θ̂bP )

+ · · ·+ βm

(
b̂0u(k −mP )m + · · ·+ b̂nP

u(k −mP − nP )m
)

︸ ︷︷ ︸
hIRCm (u(k),θ̂bP )

(16)

Using this, (15) can be rewritten as the constrained linear least-squares problem

θ̂n = arg min
θn

∥∥∥Yn (y, θ̂aP )− Φn

(
u, θ̂bP

)
θ̂n −D(θ̂d)

∥∥∥
2

subject to Aθn ≥ 0 (17)

where

A =


0 1 · · · (m− 1)u(lP + 1)m−2 mu(lP + 1)m−1

0 1 · · · (m− 1)u(lP + 2)m−2 mu(lP + 2)m−1

...
...

...
...

0 1 · · · (m− 1)u(N)m−2 mu(N)m−1

 ,

Yn

(
y, θ̂aP

)
=


y(lP + 1) + â1y(lP ) + · · ·+ âlP y(1)

y(lP + 2) + â1y(lP + 1) + · · ·+ âlP y(2)
...

y(N) + â1y(N − 1) + · · ·+ âlP y(N − lP )

 ,

Φn

(
u, θ̂bP

)
=


hIRC0

(u(lP + 1), θ̂bP ) · · · hIRCm
(u(lP + 1), θ̂bP )

hIRC0
(u(lP + 2), θ̂bP ) · · · hIRCm

(u(lP + 2), θ̂bP )
...

...
hIRC0

(u(N), θ̂bP ) · · · hIRCm
(u(N), θ̂bP )


and

D(θ̂d) =


λ̂1 cos 2π(lP+1)

Np
+ λ̂2 sin 2π(lP+1)

Np

λ̂1 cos 2π(lP+2)
Np

+ λ̂2 sin 2π(lP+2)
Np

...
λ̂1 cos 2πN

Np
+ λ̂2 sin 2πN

Np

 =


cos 2π(lP+1)

Np
sin 2π(lP+1)

Np

cos 2π(lP+2)
Np

sin 2π(lP+2)
Np

...
...

cos 2πN
Np

sin 2πN
Np


︸ ︷︷ ︸

X

[
λ̂1
λ̂2

]
︸ ︷︷ ︸

θ̂d

This type of linear least squares problem can be readily solved, e.g. using MATLAB function, fmincon.

3.3.3. Linear parameter identification
Given an estimate θ̂n of nonlinear parameter vector θn, cost function (14) can be minimized with

respect to the linear parameter vector. This linear least squares minimization problem is given by

θ̂l = arg min
θl

∥∥∥AP (q)y −BP (q)hIRC(u, θ̂n)− d(θ̂d)
∥∥∥
2
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where

BP (q)hIRC(u, θ̂n) =b0

[
β̂mu(k−mP )m+β̂m−1u(k−mP )m−1+. . .+β̂1u(k−mP )+β̂0

]
︸ ︷︷ ︸

hIRC(u(k−mP ),θ̂n)

+ · · ·

+ bnP

[
β̂mu(k−mP−nP )m+β̂m−1u(k−mP−nP )m−1+. . .+β̂1u (k−mP−nP )+β̂0

]
︸ ︷︷ ︸

hIRC(u(k−mP−nP ),θ̂n)

or equivalently in matrix form

θ̂l = arg min
θl

∥∥∥Yl − Φl

(
u, y, θ̂n

)
θlP −Xθ̂d

∥∥∥
2

(18)

where
Yl = [y (lP + 1) y (lP + 2) . . . y (N)]

T
,

Φl

(
u, y, θ̂n

)
=


−y (lP ) · · · −y (1) hIRC(u(lP+1−mP ), θ̂n) · · · hIRC(u(lP+1−mP−nP ), θ̂n)

−y (lP+1) · · · −y (2) hIRC(u(lP+2−mP ), θ̂n) · · · hIRC(u(lP+2−mP−nP ), θ̂n)
...

...
...

...
−y (N−1) · · · −y (N−lP ) hIRC(u(N−mP ), θ̂n) · · · hIRC(u(N−mP−nP ), θ̂n)

 (19)

and

X =


cos 2π(lP+1)

Np
sin 2π(lP+1)

Np

cos 2π(lP+2)
Np

sin 2π(lP+2)
Np

...
...

cos 2πN
Np

sin 2πN
Np

 . (20)

Concatenating (19) and (20) horizontally yields

Φld

(
u, y, θ̂n, X

)
=
[

Φl

(
u, y, θ̂n

)
X
]

Hence (18) can be rewritten in the form

θ̂l = arg min
θl

∥∥∥Yl − Φld

(
u, y, θ̂n, X

)
θl

∥∥∥
2

(21)

The solution of (21) is

θ̂l =

(
Φld

(
u, y, θ̂n, X

)T
Φld

(
u, y, θ̂n, X

))−1
Φld

(
u, y, θ̂n, X

)T
Yl

3.3.4. Algorithmic summary
Minimization over the θn and θld parameters can be executed iteratively assuming the initial linear

component values θ̂0l and θ̂
0
d , an input/output data set {u(k), y(k)}k=1,2,...,N and a convergence tolerance

ε. This yields Algorithm 1:

Algorithm 1: Iterative algorithm for identifying the parameter vector θ

j = 0
repeat
j = j + 1
θ̂jn := the solution of (15) at each repetition

θ̂jl =

(
Φld

(
u, y, θ̂jn, X

)T
Φld

(
u, y, θ̂jn, X

))−1
Φld

(
u, y, θ̂jn, X

)T
Yl

until
∣∣∣VN (θ̂jl , θ̂jn)− VN (θ̂j−1l , θ̂j−1n

)∣∣∣ < ε

Output: θ̂ =

[
θ̂jn
θ̂jl

]
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4. Experimental Evaluation

4.1. Experimental Set-up

In order to evaluate the identification procedure developed in Section 3, tests have been conducted
using a validated instrumented wrist rig which has been used in clinical trials to assess impairment in
stroke. This is described in [30] and is shown in Fig. 5. To measure the angle position y at the wrist
joint, the wrist rig is fitted with a potentiometer which is calibrated before use. The rig supports the
forearm using an inflatable cuff in a molded splint to prevent any movement at the elbow and shoulder
joints. Using standard guidelines [8], two sets of PALS Plus surface electrodes are placed on the forearm
to stimulate FCR and ECR muscles.

Fig. 5: Experimental set-up (Permission obtained to reproduce [30]) showing a) how the participant’s arm is supported by
the wrist rig b) an overhead view of the wrist.

In this study, testing was conducted with four male unimpaired participants using their right arm.
For each participant, data collection comprised two experiments separated by a rest period of 20 minutes
in order to prevent muscle fatigue. Each experiment consisted of a prediction trial and a validation
trial, each lasting for approximately 3 minutes, which together are termed a "data set". Another rest
period was taken for at least 10 minutes between each trial in order to reduce effects of muscle fatigue.
Additionally, the electrode pads were not moved between experiments and no change was made in FES
amplitude settings.

The aim of the trial is not only to evaluate the accuracy of the model but also to establish whether pa-
rameters mP , nP and lP can be fixed in advance. This is necessary to enable efficient clinical application.
The input/output set associated with each trial can be written as follows:

ZNi = {ui(1), yi(1), ui(2), yi(2), . . . , ui(N), yi(N)} (22)

where i denotes the trial number, of which a total of 4 were performed for each participant. For each set
of data obtained from the experiment, Algorithm 1 was applied. In order to provide sufficient excitation,
the input u was chosen to comprise a set of sinewaves that spanned the frequency range from 0.2 to 4 Hz
as shown in Fig. 6. This input signal is well-tolerated by participants [14].
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Fig. 6: Input signal used for the estimation of relationship between wrist joint angle and torque
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4.2. Evaluation Method

In this study, the 1st and 3rd sets of input/output data are used to identify a model associated with
predicted output ŷ, and the other sets are used for validating the model on a new input/output set. The
fitness of cross-validation is expressed in terms of Best Fit value, defined as the percentage,

Best Fit = 100

(
1− ‖yi+1 − ŷsi‖∥∥yi+1 − yi+1

∥∥
)

% (23)

where ŷsi denotes the simulated output obtained from the model identified on trial i, and yi+1 is the
experimental output on validation trial i + 1. The mean value of y is denoted by ȳ. To calculate the
fitness of validation, the term yi+1 is exchanged with yi in (23).

Parameters mP , nP and lP are varied within a set of range. Then for each delay order mP , the fitness
values calculated from all data sets of each participant are averaged in order to examine the effects of
any changes in nP or lP on the model accuracy.

4.3. Evaluation Results

The variation in the average fitness values calculated from two experimental data sets is shown for
Participant P4 in Fig. 7 and Fig. 8 where nP and lP are each varied from 1 to 100 for several fitness
values of mP and the colorbar indicates the percent fitness values. Fig. 7 and Fig. 8 show averaged fitness
values calculated from validation and cross-validation tests, respectively. As can be seen from Fig. 8, mP

should be chosen equal to 1 because increasing mP causes a decrease in the Best Fit value.

(a) (b) (c)

(d)

Fig. 7: Variation in averaged Best Fit values of ARX models identified using 1st and 2nd data set of Participant P4 when
lP and nP are varied from 1 to 100 in (a) (b) and (c), where mP = 1, mP = 2 and mP = 3, respectively and from 1 to 12
in (d) where mP = 1. These values are obtained from validation tests.

From Fig. 7 and Fig. 8, it is evident that increasing the values of lP and nP results in increasing the Best
Fit values of validation and cross-validation. Similar results were observed with the other participants.
For example, the average fitness values of validation tests are found as 82.55% for Participant P1, 74.67%
for Participant P2, 72.09% for Participant P3 and 78.73% for Participant P4 when both nP and lP are
set to 250. The averaged fitness values of cross-validation tests for the same values of lP and nP are
calculated as 71.22% for Participant P1, 68.31% for Participant P2, 60.50% for Participant P3 and 70.39%
for Participant P4. These results evidently show that higher values give rise to higher accuracy. However
limitations in computational resources may necessitate a lower order plant model to be identified. Thus
the effect of selecting lower values of lP and nP is next examined.

The computations are repeated with nP and lP kept within a narrow range between 4 and 12. Table 1
to Table 4 show the Best Fit values in terms of average fitness calculated using the two experimental
data sets corresponding to each participant. Table 5 shows the overall average Best Fit values calculated
using the values from Table 1 to Table 4.
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Fig. 8: Variation in averaged Best Fit values of ARX models identified using 1st and 2nd data set of Participant P4 when
lP and nP are varied from 1 to 100 in (a) (b) and (c), where mP = 1, mP = 2 and mP = 3, respectively and from 1 to 12
in (d) where mP = 1. These values are obtained from cross-validation tests.

Table 1: Averaged Best Fit values (%) of nP and lP for Participant P1 when mP = 1

lP

nP
4 5 6 7 8 9 10 11 12

4
CV 57.75 57.48 57.64 57.67 58.00 59.00 60.21 61.21 61.87
V 61.44 61.48 61.95 62.06 62.30 63.18 64.38 65.42 66.11

5
CV 60.15 60.43 60.30 60.31 60.39 60.97 61.93 62.83 63.48
V 63.78 64.69 64.55 64.68 64.74 65.21 66.11 67.01 67.65

6
CV 63.57 63.47 63.41 63.81 63.86 64.04 64.52 65.12 65.66
V 67.14 67.64 67.93 68.19 68.23 68.37 68.80 69.36 69.84

7
CV 66.55 66.17 65.93 65.89 66.62 66.76 66.91 67.19 67.52
V 70.10 70.26 70.33 70.35 70.96 71.09 71.25 71.49 71.74

8
CV 68.53 68.01 67.68 67.62 67.69 68.41 68.54 68.64 68.79
V 72.11 72.05 71.97 71.96 71.98 72.66 72.85 72.96 73.05

9
CV 69.71 69.15 68.79 68.74 68.85 68.97 69.52 69.60 69.65
V 73.36 73.19 73.03 72.99 73.05 73.13 73.74 73.88 73.92

10
CV 70.43 69.87 69.51 69.47 69.62 69.77 69.87 70.21 70.24
V 74.15 73.95 73.74 73.70 73.78 73.91 74.01 74.43 74.50

11
CV 70.94 70.41 70.05 70.03 70.19 70.37 70.48 70.52 70.70
V 74.73 74.55 74.33 74.28 74.38 74.54 74.67 74.71 74.96

12
CV 71.33 70.84 70.48 70.45 70.62 70.81 70.93 70.97 70.98
V 75.14 75.02 74.82 74.77 74.87 75.04 75.19 75.24 75.24

V: Validation, CV: Cross-Validation
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Table 2: Averaged Best Fit values (%) of nP and lP for Participant P2 when mP = 1

lP

nP
4 5 6 7 8 9 10 11 12

4
CV 57.15 57.42 57.56 57.92 58.03 57.63 56.83 56.12 55.70
V 62.42 61.72 60.95 61.16 61.51 61.49 61.09 60.80 60.87

5
CV 57.99 57.90 57.98 58.41 58.59 58.31 57.73 57.24 56.91
V 62.78 61.98 61.30 61.74 62.24 62.38 62.20 62.06 62.11

6
CV 58.20 58.12 58.04 58.46 58.60 58.31 57.75 57.28 56.98
V 62.94 62.12 61.33 61.77 62.26 62.41 62.27 62.17 62.21

7
CV 58.51 58.56 58.58 58.75 58.82 58.43 57.81 57.31 56.97
V 63.27 62.59 61.93 62.05 62.47 62.50 62.28 62.14 62.15

8
CV 58.54 58.75 58.91 59.09 58.98 58.53 57.90 57.41 57.05
V 63.37 62.85 62.40 62.59 62.72 62.65 62.36 62.18 62.15

9
CV 58.29 58.60 58.86 59.04 58.88 58.42 57.83 57.38 57.05
V 63.25 62.83 62.51 62.74 62.85 62.67 62.36 62.17 62.12

10
CV 58.00 58.32 58.62 58.79 58.62 58.14 57.59 57.18 56.89
V 63.12 62.73 62.46 62.69 62.79 62.58 62.25 62.05 62.00

11
CV 57.88 58.13 58.42 58.59 58.41 57.90 57.32 56.93 56.67
V 63.11 62.69 62.40 62.64 62.72 62.48 62.11 61.89 61.85

12
CV 58.09 58.24 58.49 58.66 58.48 57.94 57.31 56.88 56.63
V 63.29 62.81 62.50 62.75 62.83 62.56 62.16 61.91 61.86

V: Validation, CV: Cross-Validation

Table 3: Averaged Best Fit values (%) of nP and lP for Participant P3 when mP = 1

lP

nP
4 5 6 7 8 9 10 11 12

4
CV 54.98 56.38 57.50 57.71 57.80 58.25 58.68 58.82 58.76
V 55.83 56.67 57.67 57.91 58.11 58.60 59.03 59.19 59.22

5
CV 55.45 57.21 57.87 58.13 58.17 58.51 58.90 59.02 58.95
V 56.53 57.90 58.26 58.55 58.68 59.03 59.38 59.52 59.52

6
CV 56.78 58.21 59.34 59.25 59.27 59.45 59.69 59.77 59.68
V 58.96 59.84 60.60 60.59 60.67 60.83 61.02 61.09 61.09

7
CV 58.04 59.19 60.05 60.13 60.24 60.36 60.48 60.50 60.40
V 61.67 62.11 62.49 62.54 62.81 62.91 62.96 62.95 62.93

8
CV 58.78 59.78 60.46 60.48 60.49 60.75 60.83 60.84 60.77
V 63.80 64.00 64.12 64.07 64.12 64.53 64.55 64.53 64.50

9
CV 58.99 59.96 60.55 60.54 60.55 60.68 60.74 60.74 60.71
V 65.11 65.24 65.24 65.14 65.20 65.33 65.58 65.57 65.58

10
CV 58.86 59.88 60.47 60.45 60.45 60.56 60.59 60.44 60.41
V 65.78 65.94 65.92 65.81 65.88 66.05 66.09 66.21 66.23

11
CV 58.65 59.70 60.32 60.30 60.30 60.40 60.40 60.30 60.06
V 66.05 66.30 66.31 66.20 66.28 66.47 66.54 66.54 66.63

12
CV 58.52 59.55 60.19 60.18 60.18 60.27 60.24 60.10 59.94
V 66.14 66.46 66.52 66.41 66.49 66.69 66.78 66.78 66.79

V: Validation, CV: Cross-Validation

12



Table 4: Averaged Best Fit values (%) of nP and lP for Participant P4 when mP = 1

lP

nP
4 5 6 7 8 9 10 11 12

4
CV 60.85 63.81 65.76 66.20 66.20 66.06 65.99 66.02 66.14
V 60.44 63.21 64.94 65.37 65.49 65.50 65.51 65.62 65.89

5
CV 60.74 63.91 65.70 66.16 66.18 66.07 65.99 66.03 66.13
V 60.48 63.64 64.96 65.45 65.63 65.68 65.70 65.79 66.04

6
CV 60.79 63.61 65.54 65.97 66.02 65.95 65.90 65.94 66.04
V 60.69 63.20 64.81 65.14 65.38 65.49 65.54 65.64 65.85

7
CV 61.68 64.18 65.69 66.14 66.09 66.02 65.98 66.03 66.13
V 62.15 64.24 65.21 65.60 65.64 65.75 65.83 65.93 66.10

8
CV 62.81 64.76 66.05 66.35 66.30 66.18 66.14 66.19 66.30
V 64.57 65.86 66.50 66.59 66.64 66.62 66.69 66.79 66.95

9
CV 63.43 65.25 66.29 66.56 66.48 66.33 66.28 66.33 66.45
V 66.54 67.62 67.85 67.83 67.74 67.68 67.70 67.79 67.93

10
CV 63.44 65.38 66.41 66.62 66.55 66.40 66.32 66.36 66.47
V 67.49 68.76 68.94 68.79 68.66 68.55 68.51 68.63 68.78

11
CV 63.17 65.20 66.33 66.57 66.51 66.37 66.29 66.29 66.36
V 67.92 69.40 69.70 69.57 69.40 69.27 69.24 69.28 69.52

12
CV 62.92 64.98 66.18 66.48 66.44 66.33 66.25 66.23 66.27
V 68.06 69.74 70.20 70.14 69.98 69.84 69.81 69.87 70.02

V: Validation, CV: Cross-Validation

Table 5: Averaged Best Fit values (%) of nP and lP for all participants when mP = 1

lP

nP
4 5 6 7 8 9 10 11 12

4
CV 57.68 58.77 59.62 59.87 60.01 60.24 60.43 60.54 60.62
V 60.03 60.77 61.38 61.63 61.85 62.19 62.50 62.76 63.03

5
CV 58.58 59.86 60.46 60.75 60.83 60.96 61.14 61.28 61.37
V 60.89 62.05 62.26 62.61 62.82 63.07 63.35 63.60 63.83

6
CV 59.83 60.85 61.58 61.87 61.94 61.94 61.97 62.03 62.09
V 62.43 63.20 63.67 63.92 64.13 64.27 64.41 64.57 64.75

7
CV 61.20 62.03 62.56 62.73 62.94 62.89 62.80 62.76 62.76
V 64.29 64.80 64.99 65.13 65.47 65.56 65.58 65.63 65.73

8
CV 62.16 62.83 63.28 63.39 63.37 63.47 63.35 63.27 63.23
V 65.96 66.19 66.25 66.30 66.36 66.62 66.61 66.61 66.66

9
CV 62.60 63.24 63.62 63.72 63.69 63.60 63.59 63.51 63.47
V 67.06 67.22 67.16 67.18 67.21 67.20 67.35 67.35 67.39

10
CV 62.68 63.36 63.75 63.83 63.81 63.72 63.59 63.55 63.50
V 67.63 67.84 67.76 67.75 67.78 67.77 67.72 67.83 67.88

11
CV 62.66 63.36 63.78 63.87 63.85 63.76 63.62 63.51 63.45
V 67.96 68.23 68.19 68.17 68.19 68.19 68.14 68.10 68.24

12
CV 62.71 63.40 63.84 63.95 63.93 63.84 63.68 63.55 63.46
V 68.16 68.51 68.51 68.52 68.54 68.54 68.48 68.45 68.48

V: Validation, CV: Cross-Validation
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Fig. 9: Bode plots of models identified using 2nd data set of Participant P2 with different values of nP when lP = 12 and
mP = 1.

Validation and cross-validation Best Fit values in all tables are higher than 50% confirming that a suf-
ficiently accurate lower order model was obtained for each participant. The highest fitness values, those
greater than 70%, were obtained with Participant P1. However, the changes in Best Fit values of each
participant are not significant when nP and lP are varied from 4 to 12. This is deduced from the mean
and standard deviation of the Best Fit values in Table 1 to Table 4 which are 66.61 (4.12), 57.95 (0.73),
59.51 (1.26) and 65.57 (1.39) for cross-validation tests and 70.79 (4.12), 62.29 (0.55), 63.14 (3.23) and
66.76 (2.26) for validation tests, respectively. There are slight differences between the values in these
tables. Examination of the average Best Fit values in Table 5 enables suitable parameters to be se-
lected that can subsequently be prescribed in future identification tests. Since these parameters provide
confirmed accuracy, the procedure can be employed in clinical trials without the need to undertake cross-
validation tests. When the Best Fit values in Table 5 are compared, the most suitable nP and lP values
are found to be 7 and 12, respectively. With this choice, there is only a 1.08%, 14.13%, 0.53% and 5.55%
degradation in accuracy of cross-validation for Participant P1, Participant P2, Participant P3 and Par-
ticipant P4 with respect to the highest values of accuracy calculated when lP = mP = 250. Hence it can
asserted that the use of lower values of nP and lP does not give rise to significant decrease in accuracy.

To confirm that the identified models are consistent representation of underlying dynamics, the fre-
quency responses of some randomly chosen models of two participants are plotted in Fig. 9 and Fig. 10.
In these figures, it can clearly be seen that all frequency responses within the frequency range of input
signal are similar. In Fig. 11, the comparison between the measured outputs used for validation and cross
validation tests and the simulated output obtained from the model identified with lP = 12, nP = 7 and
mP = 1 is shown for Participant P1.

Fig. 10: Bode plots of models identified using 1st data set of Participant P1 with different values of nP when lP = 12 and
mP = 1.
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Fig. 11: The comparisons of validation data, cross-validation data and time response of the model identified using 1st data
set of Participant P1 with the values of when lP = 12, nP = 7 and mP = 1.

5. Conclusion

A nonlinear model structure has been proposed to model wrist joint dynamics for the purpose of
tremor suppression. The model captures critical nonlinear recruitment characteristics to overcome the
accuracy limitations of previous approaches, while simultaneously embedding muscle co-activation to
reduce deadzone and produce a SISO form. The overall structure can be linearised in a transparent
manner in order to extend the range of admissible control schemes for subsequent tremor suppression.
The proposed identification procedure is of short duration, can be automated, and is appropriate for use
by both patients and clinicians, thereby addressing major shortcomings encountered in previous studies.

Experimental results have confirmed satisfactory modelling accuracy, with cross-validation tests giving
rise to a fitting accuracy of over 60% in all participants tested. Moreover, they confirm that a prescribed
parameter set can be fixed for all participants with only minor degradation in accuracy, further reducing
the identification time required.

Future work will involve developing model-based controllers for clinical applications. This is signifi-
cantly simplified since the proposed model structure may be linearised in a transparent manner enabling
a wide range of designs to be employed.
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