150 research outputs found

    Optimized Thruster Allocation Utilizing Dual Quaternions for the Asteroid Sample Return Mission (OSIRIS-REx)

    Get PDF
    As spacecraft require higher positional accuracy from the attitude control systems, new algorithm developments, along with sensor and actuator resolution and range improvements are necessary to achieve the desired science accuracies. For agile 6-Degrees of freedom (6-DOF) spacecraft with redundancy, the actuators are usually oversized or overpopulated to meet the desired slew requirements. Currently, most spacecraft utilize an over-actuated thruster system to produce 6-DOF control. This thesis presents a simulation of the OSIRIS-REx mission during the descent phase to the asteroid Bennu, with a focus on utilizing dual quaternion dynamics and a newly developed thruster allocation method. The dual quaternion based dynamics are chosen in order to demonstrate its feasibility in real-time applications. Contrary to typical plant dynamics, which decouple the spacecraft orbit and attitude dynamics, the dual quaternion description provides a compact and coupled dynamics system. Due to the coupled nature of dual quaternions, a newly developed thruster distribution matrix is implemented to take both the coupled command body forces and torques and transform them into the individual thruster frames. The developed method is based on a min-max optimization that results in a constant thruster distribution matrix. From the optimization, a minimum thrust solution is calculated for the coupled position and attitude commands. Therefore, its integration into the dual quaternion dynamics is intuitive and simplistic. The final result is a computationally fast thruster allocation solution for real-time applications

    MAD MQP 2001

    Get PDF
    This project develops an Attitude Determination and Control (ADC) subsystem for a six-unit CubeSat in an extreme low Earth orbit (eLEO) mission performing atmospheric neutral and ion mass spectrometry. The selection of sensors and actuators were evaluated and updated from a previous mission. The performance of algorithms used for detumble, initial attitude determination, and attitude maintenance was evaluated using MATLAB, Simulink, and Systems Tool Kit (STK) simulations. In order to conduct this evaluation, in-depth Simulink models of spacecraft attitude dynamics and control were developed which consider sensor noise and refresh rates for a GPS receiver, gyroscope, magnetometer, and two-axis sun sensors, as well as actuator limitations for reaction wheels and magnetorquers

    Pointing and control system enabling technology for future automated space missions

    Get PDF
    Future automated space missions present challenging opportunities in the pointing-and-control technology disciplines. The enabling pointing-and-control system technologies for missions from 1985 to the year 2000 were identified and assessed. A generic mission set including Earth orbiter, planetary, and other missions which predominantly drive the pointing-and-control requirements was selected for detailed evaluation. Technology candidates identified were prioritized as planning options for future NASA-OAST advanced development programs. The primary technology thrusts in each candidate program were cited, and advanced development programs in pointing-and-control were recommended for the FY 80 to FY 87 period, based on these technology thrusts

    Attitude control system for the high energy transient experiment small satellite

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 1991.Includes bibliographical references (p. 207-208).by Daniel H. Chang.M.S

    Task space consensus in networks of heterogeneous and uncertain robotic systems with variable time-delays

    Get PDF
    This work deals with the leader-follower and the leaderless consensus problems in networks of multiple robot manipulators. The robots are non-identical, kinematically different (heterogeneous), and their physical parameters are uncertain. The main contribution of this work is a novel controller that solves the two consensus problems, in the task space, with the following features: it estimates the kinematic and the dynamic physical parameters; it is robust to interconnecting variable-time delays; it employs the singularity-free unit-quaternions to represent the orientation; and, using energy-like functions, the controller synthesis follows a constructive procedure. Simulations using a network with four heterogeneous manipulators illustrate the performance of the proposed controller.Peer ReviewedPostprint (author's final draft

    AN ATTITUDE DETERMINATION SYSTEM WITH MEMS GYROSCOPE DRIFT COMPENSATION FOR SMALL SATELLITES

    Get PDF
    This thesis presents the design of an attitude determination system for small satellites that automatically corrects for attitude drift. Existing attitude determination systems suffer from attitude drift due to the integration of noisy rate gyro sensors used to measure the change in attitude. This attitude drift leads to a gradual loss in attitude knowledge, as error between the estimated attitude and the actual attitude increases. In this thesis a Kalman filter is used to complete sensor fusion which combines sensor observations with a projected attitude based on the dynamics of the satellite. The system proposed in this thesis also utilizes a novel sensor called the stellar gyro to correct for the drift. The stellar gyro compares star field images taken at different times to determine orientation, and works in the presence of the sun and during eclipse. This device provides a relative attitude fix that can be used to update the attitude estimate provided by the Kalman filter, effectively compensating for drift. Simulink models are developed of the hardware and algorithms to model the effectiveness of the system. The Simulink models show that the attitude determination system is highly accurate, with steady state errors of less than 1 degree

    Secure motion control of micro-spacecraft using semi-homomorphic encryption

    Get PDF
    This paper studies the secure motion control problem for micro-spacecraft systems. A novel semi-homomorphic encrypted control framework, consisting of a logarithmic quantizer, two uniform quantizers, and an encrypted control law based on the Paillier cryptosystem is developed. More specifically, a logarithmic quantizer is adopted as a digitizer to convert the continuous relative motion information to digital signals. Two uniform quantizers with different quantization sensitivities are designed to encode the control gain matrix and digitized motion information to integer values. Then, we develop an encrypted state-feedback control law based on the Paillier cryptosystem, which allows the controller to compute the control input using only encrypted data. Using the Lyapunov stability theory and the homomorphic property of the Paillier cryptosystem, we prove that all signals in the closed-loop system are uniformly ultimately bounded. Different from the traditional motion control laws of spacecraft, the proposed encrypted control framework ensures the security of the exchanged data over the communication network of the spacecraft, even when communication channels are eavesdropped by malicious adversaries. Finally, we verify the effectiveness of the proposed encrypted control framework using numerical simulations

    Nonlinear Systems

    Get PDF
    Open Mathematics is a challenging notion for theoretical modeling, technical analysis, and numerical simulation in physics and mathematics, as well as in many other fields, as highly correlated nonlinear phenomena, evolving over a large range of time scales and length scales, control the underlying systems and processes in their spatiotemporal evolution. Indeed, available data, be they physical, biological, or financial, and technologically complex systems and stochastic systems, such as mechanical or electronic devices, can be managed from the same conceptual approach, both analytically and through computer simulation, using effective nonlinear dynamics methods. The aim of this Special Issue is to highlight papers that show the dynamics, control, optimization and applications of nonlinear systems. This has recently become an increasingly popular subject, with impressive growth concerning applications in engineering, economics, biology, and medicine, and can be considered a veritable contribution to the literature. Original papers relating to the objective presented above are especially welcome subjects. Potential topics include, but are not limited to: Stability analysis of discrete and continuous dynamical systems; Nonlinear dynamics in biological complex systems; Stability and stabilization of stochastic systems; Mathematical models in statistics and probability; Synchronization of oscillators and chaotic systems; Optimization methods of complex systems; Reliability modeling and system optimization; Computation and control over networked systems
    • …
    corecore