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Abstract

In this paper, an adaptive control allocation scheme for a class of nonlinear vehicles is proposed considering the

parameter uncertainty of the effectors. A reference model is integrated in the framework to overcome the negative

effects brought by the parameter uncertainty. The optimum of the solution is discussed for a class of objectives. Stability

proof is given. Compared to most existing methods, the conditions to guarantee the stability of the system are relaxed,

which is addressed in the theoretical analysis and the experiment. At last, digital simulation and experiment based

on a spacecraft simulator are implemented. The results of simulation and experiment validate the effectiveness of the

proposed adaptive control allocator.
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INTRODUCTION

The control allocation problem arises out of over-actuated

mechanical systems, which are equipped with more actuators

than the degree-of-freedom to be controlled. For over-

actuated mechanical systems, the virtual control efforts,

i.e., forces and moments, are generated by the redundant

actuators. How to distribute the virtual control efforts among

redundant actuators leads to the control allocation problem.

This problem exists in wide range of applications such as

aircrafts[1], [2], spacecrafts[3], automotive vehicles[4] and

marine crafts[5].

Due to the redundancy of actuators, additional optimiza-

tion objectives may be achieved by coordinating the actu-

ators. For example, to minimize fuel consumption under

the precondition that the actual control efforts tend to the

reference control efforts as close as possible. The con-

trol allocation problem covers plants with linear effectors

and nonlinear effectors. The linear model of effectors can

be adopted when the nonlinearity of the effectors can be

neglected. A review of the control allocation problem and

feasible solutions is given in [6], basic concepts can be found

there and references therein. Both open-loop and close-loop

performance indexes of the existing control allocators are

analyzed and compared in [7], which provides standards to

assess the performance of different control allocators.

The control allocation for plants with nonlinear effectors

is investigated in [8] [9], which employs a nonlinear

programming method developed from sequential quadratic

programming method. Optimal control allocation is adopted

incorporating load information feedback to reduce structural

load for aircrafts in [10] and [11]. Model predictive control

is adopted to solve the control allocation problem when the

actuator dynamics is considered in [12], but no parameter

uncertainty is included in the model. Control allocation with

actuator failure is studied in [13][14][15]and [16].

According to surveys, the control allocation for plants

with static parameters has been well studied, but relatively

fewer applicable results have been achieved for plants with

parameter uncertainty. The uncertainty of the parameters

may drive the trajectory of the system off the optimum,

or lead to static bias even instability of the system. An

inner-loop controller can mitigate the negative effects when

the virtual control efforts, that is, forces and torques, are

measurable. But the measurement of virtual control efforts

needs auxiliary sensors and devices, thus increases the

complexity and cost of the system. Therefore the virtual

control efforts may not be available in control allocator

design in practice. As a result, advanced control allocation

algorithms are in need to guarantee the stability of the system

and improve the control performance.

There are mainly two methods to handle the parameter

uncertainty in control allocator design. The first method is

robust control theory [17][18][19][20]. But to apply this

method, an upper bound on the norm of the uncertainty,

which is sometimes hard to estimate in practice, is assumed.

The other important method is the adaptive control theory,

which is usually based on a parameter estimator[4][8][21].

This method is very popular in the control allocation design.

However, to guarantee the convergence of the estimated

parameter to the true value of the underlined parameter,

some conditions should be satisfied such as the well known

”persistently exciting” condition. In practice, these condition
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may not be satisfied. To cope with the constraints of

the existing methods, A model reference adaptive control

allocation scheme is proposed in this paper.

In this paper, a novel solution for control allocation

problem for plants with parameter uncertainty is proposed.

A reference model is integrated to guarantee the stability

of the system. Moreover the solution converges to the

optimal trajectory asymptotically for a particular class of

optimization objectives. The control allocator is tested by

digital simulation and experiment. The results of the digital

simulation and the experiment validate the effectiveness

of the control allocator. Experiments are of importance

in controller design, they not only highlight the value of

the controller in practical application, but also bring the

problems of the algorithm to light. Therefore controllers

validated by experiments are of high value in application.

The contributions of this paper are as follows. Firstly,

a model reference adaptive control allocator is proposed

to mitigate the negative impacts brought by parameter

uncertainty of the effectors without measurement or

observation of the virtual control effort or estimation of

the parameters. In comparison to most existing methods,

the conditions to guarantee the asymptotic stability is

much relaxed. Secondly, it guarantees that the solution

asymptotically converges to the optimal trajectory. At last,

experiment on a spacecraft simulator are implemented

to validate the effectiveness of the control allocator.

Meanwhile, the proposed method is compared to existing

methods in digital simulation and experiment, which shows

the advantages of the method.

PROBLEM FORMULATION

In this paper, a class of nonlinear vehicles of the following

form is considered

ẋ = f(x, t) +G(θ)u (1)

where x ∈ Rn is the state of the nonlinear plant, f :
Rn × [0,∞) → Rn is a Lipschitz nonlinear function, and

f(0, t) = 0, G(θ) ∈ Rn×m is a function of the unknown

parameter vector θ of the actuators, θ ∈ Θ = {v|v ∈ Rm}
with Θ the set of parameter vectors, u ∈ Rm is control input

of the actuator, the second term in right-hand side of (1)

represents the virtual control effort τ , that is,

τ = G(θ)u (2)

. As m > n, system (1) is over-actuated according to the

definition of over-actuation.

Since f(x) is a general nonlinear function, many vehicles

can be expressed in the form of (1), such as spacecrafts,

marine crafts, and etc.

In essence, the parameter vector θ is influenced by

the properties of the effectors, such as the drift of the

electrical characteristics of the driving circuits, the aging of

the mechanical components and the external disturbances.

Therefore, these factors can be reflected by θ, which has a

explicit physical meaning: the force generated in an infinitely

small time element ∆t. The total force generated over a time

interval [0, t1] can be expressed as
∫ t1

0
θdt.

In this paper, the matrix G(θ) without all-zero rows is

considered, which means every state is directly actuated by

control inputs. However the control allocator designed is

not limited to this class of vehicles. When the matrix G(θ)
includes all-zero rows, by performing state transformation

ξ = Tx, where T is a transformation matrix, the control

effectiveness matrix can be transformed as:

Gr(θ) =

[

O

Ga(θ)

]

(3)

whereGr(θ) is the resulted control effectiveness matrix after

the transformation, Ga is the control effectiveness matrix

corresponding to the actuated states, O = {oij |oij = 0} is

an all-zero matrix corresponding to the un-actuated states.

In this case, when assumption 3 is satisfied, replacing the

matrix G(θ) with Ga(θ), the proposed control allocator is

still applicable.

Due to the redundancy of the actuators, auxiliary

objectives may be achieved by adjusting the control input

u, which is often formulated as a optimal control allocation

problem.

For plants of the form (1), the problem is to find a solution

u such that the objective

min
u

J(t, u, s) (4)

subject to

{

τc −G(θ)u = s

u ∈ U

is optimized, where U is the feasible region of the control

input, s is a slack variable. Objective (4) is a generalized

objective that may includes the tracking precision of the

virtual control effort, the control energy and etc. τc is the

commanded virtual control effort generated by the higher-

level controller.

There are fundamental theoretical results on the optimiza-

tion problem (4) when the parameter vector θ is known (see

[7]). But how to achieve the optimum when parameter is

uncertain is still a challenging task.

The following assumptions are made for the sake of the

theoretical analysis.

Assumption 1. The parameters of effectors vary ”slowly”

in contrast with the control action of the adaptive control

allocator, that is, θ̇ ≈ 0.

Assumption 2. The optimal solution for (4) exists for

effectors with static parameters θd. The corresponding

control effectiveness matrix is G(θd).

Assumption 2 indicates that for the optimization problem

(4) with static parameter vector θd, there exists a feasible

solution u ∈ U such that J is minimized.

Assumption 3. There exists a high-level controller that

stabilizes the nonlinear vehicle (1) around the origin x = 0
when the parameters of the effectors are static and known.

The output of the high-level controller is achievable for both

the actual allocator and the reference control allocator, that

is, there exists u ∈ U such that G(θ)u = τc and G(θd)ud =
τc.
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Figure 1. Structure of adaptive control allocation

An important property of the control effectiveness matrix

is to be explored below.

Property 1 The control effectiveness matrix

can be decomposed to be G(θ) = GsΛ(θ), where

Λ(θ) = diag (θ1 θ2 ... θm) is a diagonal matrix.

The matrix Gs = {gij |gij = cos(φ)} with φ the angle

between the main axis of the actuator and the corresponding

coordinate is a constant matrix determined by the

geometrical layout of the actuators.

This property holds if only the actuators of the vehicle

are fixed. The example in [22] and the testbed in the

experimental section of this paper both satisfy this property.

In practice, the actuators are usually installed along the body-

fixed axes, in this case, Gs = {gij |gij = ±1}.

It can be inferred from property 1 that τ = GsΛ(θ)u =
GsΛ(u)θ.

Inference 1 The parameter vector in τ is separable, i.e.,

τ = G(θ)u = H(u)θ, where H(u) ∈ Rn×m.

Inference 1 is a straightforward deduction of property 1.

ADAPTIVE CONTROL ALLOCATOR DESIGN

The diagram of adaptive control allocator is illustrated in

figure (1).

In figure (1), the motion controller is the aforementioned

high-level controller that stabilizes the nonlinear system (1).

Its output τc is the virtual control effort that is distributed

to actuators. When the parameters of effectors are known

and time-invariant, the reference virtual control effort τc
can be achieved instantly and precisely if it is feasible. The

nonlinear vehicle (1) is stable accounting for assmption 3.

But when the parameters of the effectors drift, the practical

control effort τ deviates from the given command τc, which

will cause bias of x.

The basic idea of our scheme is to design an reference

model described by (5) and (6), which gives the reference

state vector xr to measure the bias of the parameters of the

effectors,

ẋr = f(xr) + τc (5)

with the reference model of the effector as

τc = G(θd)ur (6)

. Based on the information of the bias, the allocator is

adjusted by the adaptive update law such that the actual states

of the plant converge to the reference states.

Figure 2. Reference model of the plant

Figure 3. Model of actual plant

The reference allocator aims to solve the following

optimization problem:

min
ur

J(t, xr, ur, sr) (7)

subject to

{

τc −G(θd)ur = sr

ur ∈ U

The reference model of the plant is depicted in figure (2).

As a comparison,The actual model is depicted in figure (3). It

can be seen that the difference between (7) and (4) rely on θ
and u. The solution of problem (7) can be achieved utilizing

the methods provided by ([6]).

An adaptive update law is designed to regulate the states

of the plant x to the reference states xr. Therefore if the

reference system is stabilized by the motion controller, the

actual system will also be stabilized.

Writing θ as θ = θd + ε, where ε ∈ Rm represents the

fluctuation of θ. Due to inference 1, the virtual control effort

τ can be written as

τ = H(u)θ

= H(u)(θd + ε)
(8)

According to inference 1, the change of control input u can

be converted to an equivalent change of θ. So it is reasonable

to fix u = ur, meanwhile add a adjustable variable γ to θ,

then τ can be rewritten as

τ = H(ur)(θd + ε+ γ) (9)

Substituting (9) into (1) yields

ẋ = f(x) +H(ur)(θd + ε+ γ) (10)

.

In what follows, an adaptive updating law of the adjustable

parameter γ is designed such that the trajectory of nonlinear

system (10) converges to the trajectory of the reference

model (5), i.e., lim
t→∞

x(t) = xr(t).

The adaptive updating law of γ is designed as:
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{

H(ur)γ = H(ur)δ + f(xr)− f(x)−Kxx̃

δ̇ = −P−1HT (ur)x̃
(11)

where Kx, P are positive definite matrices with proper

dimensions, x̃ = x− xr is the state error.

The following theorem guarantees the trajectory of (1)

with adaptive control allocator (11) tends to the reference

trajectory.

Theorem 1. The error system ˙̃x = ẋ− ẋr is globally

asymptotically stable at the origin with the adaptive control

allocator (11) under assumption 1, 2 and inference 1, with

Kx and P positive definite matrices, and each entity of Kx

is assume to be upper bounded. In addition, the nonlinear

system (1) with adaptive control allocator (11) is stable at

the origin if assumption 3 holds.

Remark that the conditions to guarantee the stability of

the error system are relaxed compared with the parameter-

estimator based algorithms. ”Persistently exciting condition”

and/or the assumption that the norm of the uncertainty is

upper bounded are not necessary to stabilize the overall

control system. This is the main feature and advantage of

the proposed scheme over most other existing methods.

Proof. Substituting the control allocator (11) into (1) yields

the close-loop equation

ẋ = f(x) +H(ur)(θd + ε+ δ) + f(xr)− f(x)−Kxx̃
(12)

.

Given the reference model as

ẋr = f(xr) +G(θd)ur

= f(xr) +H(ur)θd
(13)

,

the error system ˙̃x = ẋ− ẋr can be conducted as

{

˙̃x = −Kxx̃+H(ur)ζ

ζ̇ = −P−1HT (ur)x̃
(14)

, where ζ = ε+ δ. Due to assumption 1, δ̇ is approximated

by δ̇ = ζ̇.

Consider a Lyapunov function V = 1

2
x̃T x̃+ 1

2
ζTPζ,

whose derivative along the solution of (14) is

V̇ = x̃T (−Kxx̃+H(ur)ζ) + ζTP ζ̇

= −x̃TKxx̃+ ζTHT (ur)x̃+ ζTP ζ̇

= −x̃TKxx̃+ ζT [HT (ur)x̃+ P ζ̇]

(15)

.

For ζ̇ = δ̇ and

δ̇ = −P−1HT (ur)x̃ (16)

, V̇ = −x̃TKxx̃ is negative semidefinite, therefore the

state vector of (14) is stable, i.e.,

[

x̃
ζ

]

is bounded.

Differentiating V̇ gives

V̈ =− (x̃TKx
˙̃x+ ˙̃xKxx̃)

=x̃T (KxKx +KT
xKx)x̃−

x̃TKxH(ur)ζ − ζTHT (ur)Kxx̃

(17)

. Since ur is bounded, kij is upper bounded, the boundedness

of V̈ can be achieved in conjunction with the stability of

x̃ and ζ. According to Barbalat lemma, limt→∞ x̃ = 0. The

proof is completed.

As there exists a high-level controller that stabilizes

the reference nonlinear system (assumption 3), the control

allocator (11) stabilizes the reference system xr. It has been

proved previously that the error system x− xr is stable,

thus the control allocator stabilizes the actual system x.

This can be achieved by choosing a Lyapunov function

as V1(x) = V (x̃) + aV0(xr), where V0 > 0, V̇0 < 0 is a

Lyapunov function for the close-loop reference system

comprised of (5) and a feedback control law τc = κ(x), a
is a positive number such that the coefficients of x̃ and xr in

V1(x) are identical. Such feedback control law exists because

of assumption 3. It is obvious that the origin of system (1) is

stable.

Remark that the stability of the nonlinear system (1) at

the origin depends on the stability of the reference nonlinear

system (2). For example, if the origin of system (2) is

unstable, then the nonlinear system (1) is unstable. However,

the nonlinear system (1) is globally stable if only the

reference model is locally stable or globally stable. This can

be seen from the construction of the Lyapunov function V1.

Theorem 2. The control input u given by the control

allocator (11) converges to the optimal solution of problem

(7) after transients.

Proof. Theorem 1 guarantees that the actual state x
converges to the reference state xr. Therefore the actual

control effort G(θ + γ)ur converges to G(θd)ur, i.e., G(θ +
γ)ur → G(θd)ur. Then the slack variable s→ sr. It is a

nature conduction that J(t, x, u, s) → J(t, xr, ur, sr). The

proof is completed.

Theorem 1 and 2 guarantee that the control input u
converges to the optimal solution of the objective (4)

meanwhile stabilizes the nonlinear system (1).

SIMULATION AND EXPERIMENT

In this section, the adaptive control allocator is applied to

a planar spacecraft simulator. A path following experiment

is designed to test the performance of the adaptive control

allocator. The control objective is to drive the spacecraft

simulator to a predefined straight line and thereafter moving

along the path.

The planar spacecraft simulator is an equipment that is

used in ground experiment to simulate the manipulation of

spacecrafts operating in outer space. The hardware of the

simulator is illustrated in figure (4).

The air-tank is filled with pressured air, which will be

provided to the thrusters and the planar air bearings. When

the pressured air passes through the planar air bearings, a thin

Prepared using sagej.cls
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Figure 4. Structure of the spacecraft simulator

Figure 5. Coordination systems

air film is formed between the air bearings and the marble

table such that the motion of the simulator on the table is

nearly frictionless. This is the prevailing method to simulate

the outer space environment in experiments currently. The

simulator is driven by four thrusters. When the pressured

air passes through the tiny hole of the thrusters, a opposite

action will act on the simulator and then the simulator can

move. The relays are used to control the thrusters. The inputs

of these relays are PWM signals outputted by the on-board

processor. The optical markers are used for the positioning

system to locate the simulator.

The coordinate systems used to describe the dynamics of

the spacecraft simulator are illustrated in figure (5), i.e., the

inertial frame, the path-fixed frame and the body-fixed frame.

As the predefined path is a straight line, which is stationary

with respect to the inertial frame, the body-fixed frame and

the path-fixed frame are sufficient to describe the dynamics

of the spacecraft simulator.

Based on rigid body dynamics, the model of spacecraft

simulator is derived as follows, detailed derivation can be

found in [23].





νbx
νby
ωr



 =





cosψr sinψr 0
−sinψr cosψr 0

0 0 1









ẋr

ẏr

ψ̇r



 (18)























ν̇bx =
1

m
(mνbyω

r + τ1)

ν̇by = −νbxω
r

ω̇r =
1

J
(τ2)

(19)

where (xr,yr) are the position of the spacecraft simulator

expressed in the path-fixed frame, ψr is the orientation of

the spacecraft simulator with respect to the path-fixed frame,

νbx and νby are the velocity coordinates of the spacecraft

simulator in the body-fixed frame, τ1, τ2 are virtual control

efforts, i.e., force and torque, respectively, m = 17.2kg and

J = 1.03kg ·m2 are the mass and the moment of inertia of

the spacecraft simulator, respectively.

The model of the effectors is as

[

τ1
τ2

]

= C(θ)u (20)

where C(θ) =

[

θ1 − θ2 θ3 − θ4
−Rθ1 Rθ2 Rθ3 −Rθ4

]

is the

control effectiveness matrix, u ∈ R4 is the control input

of actuators, that is, the duty ratio of the driving PWM

(Pulse Width Modulation) signal, u ≥ 0, R is the distance

from the point where the thruster acts on the body to the

vertical symmetric axis of the spacecraft simulator. The

physical meaning of θi, i = 1, 2, 3, 4 is the thrust generated

by thruster i when the duty ratio of the corresponding pwm

signal is ui = 1%.

The planar spacecraft simulator has 3 variables to control,

i.e., (xr, yr, ψr), while there are four control inputs. Like

many practical spacecrafts, the planar spacecraft simulator is

a typical over-actuated system.

The model of the simulator (18) and (19) can be expressed

in the following compact form:

χ̇ = F (χ) +Gr(θ)u (21)

where χ = [xr yr ψr νby νbx ωr]T , Gr(θ) =
[

O4×4

G(θ)

]

with G(θ) =

[

1/m 0
0 1/J

]

C(θ)

For C(θ) can be decomposed as

C(θ) =

[

1 − 1 1 − 1
−R R R −R

]









θ1 0 0 0
0 θ2 0 0
0 0 θ3 0
0 0 0 θ4









(22)

, property 1 and inference 1 hold true for G(θ).
The control objective is to manipulate the simulator to a

predefined straight line yr = 0 and move along it thereafter

at a given velocity v, which can be expressed as:

lim
t→∞

yr = 0 (23a)

lim
t→∞

ẋr = v (23b)

lim
t→∞

ψr = 0 (23c)

.

To satisfy assumption 3, a high-level motion controller that

stabilizes the overall system is designed.
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Figure 6. Geometrical illustration of the reference orientation

ψr

Borrowing the basic idea from [24], the virtual control

effort τ1 is designed as :

τ1 = −k1(ν
b
x − (νbx)ref ) +m(ν̇bx)ref −mνbyω

r (24)

, where k1 > 0 is a positive constant, (νbx)ref is the reference

velocity along the x-axis of the body-fixed frame, which is

given by (see figure 6 for the geometric explanation)

(νbx)ref =
√

(νrx)
2

ref + (νry)
2

ref (25)

being (νrx)ref = c a predefined constant velocity, and

(νry)ref ) = −k4y
r the given velocity along the y-axis of the

path-fixed frame.

The other virtual control effort τ2 is designed as follows to

stabilize the orientation loop

τ2 = −k2(ω
r − ωr

ref )− k3(ψ
r − ψr

ref ) + Jω̇r
ref (26)

, where the reference orientation ψr
ref (see figure 6) is given

as

ψr
ref = tan−1(

(νry)ref

(νrx)ref
) = tan−1(

−k4y
r

c
) (27)

.

Differentiating ψr
ref with respect to time in conjunction

with equation (18), we get the reference angular velocity

ωr
ref

ωr
ref =

−k4(ν
r
y)

2

ref

(νrx)
2

ref + (νry)
2

ref

(νbxsin(ψ
r) + νbycos(ψ

r)) (28)

.

The stability analysis can be accomplished by applying the

cascade system theory(see [24]). It is not the emphasis of this

paper and therefore not be given here.

The reference control effectiveness matrix is chosen as

G(θd) =

[

1.0 1.0 1.0 1.0
1.0 ∗R 1.0 ∗R 1.0 ∗R 1.0 ∗R

]

,

where R = 18.5cm. The performance index of (4) is chosen

of the form J(t, x, u, s) =
4
∑

i=1

ui, where s is set to be 0. The

linear programming algorithm(see [6] [22] [25]) is adopted

to compute the reference control input ur.

In what follows, digital simulation and experiment are

implemented to illustrate the performance of the proposed

control allocator. To exhibit the advantages of the proposed

method over other methods, two methods are taken as

comparison.

Method 1: the linear programming method(see [22] and

[25]) is adopted to compute the control input u under

nominal value of the parameters, that is, no parameter

variation is considered in this case. Therefore u = ur. This

method is mainly taken to show the negative effects of the

parameter uncertainty on the control performance.

Method 2: the adaptive control allocator based on

parameter estimator is designed to handle the parameter

uncertainty. The parameter estimator is designed as [26]:

˙̂x = f(x, t) +H(u)θ̂ −Kox̃ (29)

˙̂
θ = HT (u)x̃ (30)

, with x̂ the estimated state, θ̂ the estimated parameter, Kx

the gain matrix of the parameter estimator. The gain matrix

is designed as Ko =

[

0.9 0
0 0.7

]

, the initial value of θ̂

is set to be [0.3 0.3 0.3 0.3]T . For the convenience of

narration, the method proposed in this paper is denoted as

Method 3.

Note that the parameters of the effectors are affected by

many factors such as the air flow, the aging of the circuit,

and the air pressure variation inside the air tank, thus the

uncertainty of the effectors in practice is difficult to model.

In digital simulation, a static bias is added to the parameter

vector of the effectors as an uncertainty component, while for

the experiment the uncertainty is totally unknown. Therefore

differences exist between the results of digital simulation and

the experiment. Despite of the differences, the simulation and

the experiment validate qualitatively the effectiveness of the

proposed method.

Simulation

In this section, the adaptive control allocator is implemented

and tested in MATLAB/SIMULINK.

The given path is a straight line yrref = 0, the initial

position at time instant t = 0 is

[

xr(0)
yr(0)

]

=

[

0
−10

]

, the

commanded velocity along the given path is 0.02m/s, the

given orientation is ψr = 0. The parameters of the effectors

are set as

[

θ1 θ2 θ3 θ4
]

=
[

1.0 1.0 0.95 1.0
]

, where θi, i = 1, 2, 3, 4 is the parameter of thruster i(refer

to (20) and its interpretation for the physical meaning). The

parameter of θ3 is set to be smaller than other parameters

such that under same driving input signals, thruster 3
generates smaller thrust.

The parameters of the controller and the control allocator

are designed as k1 = 0.3, k2 = 0.3, k3 = 0.1, k4 = 0.45 and

Kx =

[

1.5 0
0 1.5

]

, P−1 =

[

0.1 0
0 0.1

]

, respectively.

In figures 7-13, the top subplots show the curves for

method 1, the middle subplots show the curves for the control
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Figure 9. Comparison of angular ψr
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Figure 10. Comparison of velocity along x-direction ẋr

allocator proposed in this paper(method 3), while the bottom

subplots show the curves for method 2. For all the figures,

the valid red lines are the reference signals while the dotted

black lines are the actual signals.

Figure 7 shows the trajectory comparison, the static error

for non-adaptive control allocator (Method 1) is −19m

� � � � � � � � � � � �  � � ��� � �� � � � � � � � � � � � � � � �  � ¡ ��� ¡ �� ¡ �¢ £¤¥¦ §̈©ª¦ «¬­ ® ¯° §̈±² ³´
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Figure 11. Comparison of the angular velocity ωr

Á Â Ã Ä Å Æ Ç È É Ê Â ÁË Ã Á ÁÁÃ Á ÁÅ Á ÁÇ Á Á Á Â Ã Ä Å Æ Ç È É Ê Â ÁË ÂÁÂÃÌ ÍÎÏÐÑÒÓ Á Â Ã Ä Å Æ Ç È É Ê Â ÁË ÂÁÂÃ Ô Õ Ö × Ø Â Á Ù Ú × Û Ü Ý Þ ß
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Figure 13. Comparison of control momentτ2
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Figure 14. The velocity error (νbx)r − νbx (the dotted line

represents the actual trajectory; the valid line represents the

reference signal)

and 0.025m for Method 2, while this error is reduced to

0.01m for the proposed adaptive control allocator in this

paper(method 3). Other states of the spacecraft simulator,
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Figure 15. The angular velocity error ωr

r − ωr

e.g., νbx, ψr, ẋr, ωr, are compared in figure 8-11. The

responses of these states are important for the overall path-

following control performance. In figure 8, it can be seen that

νbx converges to the commanded velocity asymptotically for

method 2 and method 3, while the static error for method 1

is approximately 8m/s. In figure 9, a trend that the tracking

error keeps increasing can be observed for method 1, which

clearly shows that the system is unstable. On the contrary, the

tracking error tends to 0 asymptomatically for method 2 and

method 3. And it can be seen that the response for method 2

is slower then method 3. From figure 10, one can see that the

actual velocity of the simulator oscillates non-periodically

around the given velocity at a magnitude of 2 for method

1, while the tracking error decreases to approximately 0.5
for method 2 and this tracking error is further decreased

to approximately 0.1 for method 3. The comparison of ωr

is given in figure 11, it is clear that the angular velocity

subsystem is unstable without adaptive control allocators.

Compared with method 2, the angular response for method

3 is faster. The virtual control effort τ1, τ2 are illustrated in

figures 12 and 13, respectively. It can be seen from figure 12

that the force vibrates at a high frequency, which indicates

much control energy is consumed for method 1. The control

energy is smaller for method 3 compared with method 2.

Furthermore the actual force tracks the commanded signal

accurately and rapidly with the adaptive control allocators

while it deviates from the commanded signal without the

adaptive control allocators. The improvement brought by

the adaptive control allocators is more obvious in figure 13,

the actual torque tracks the commanded torque efficiently

with the aid of the adaptive control allocators. The state

differences between the reference model and the actual

model are shown in figure 14 and 15, respectively. It is

clear that both (νbx)r − νbx and ωr
r − ωr converge to origin

asymptotically, which verifies the conclusion of theorem 1.

As a conclusion, the simulation results validate that

the adaptive control allocators can attenuate the negative

effects brought by the parameter uncertainty of effectors

significantly. Compared with the adaptive control allocator

based on parameter estimators, the control allocator

proposed in this paper shows advantages under the

experimental setup.

Experiment

In this section, the proposed adaptive allocator is applied to

the planar spacecraft simulator(see figure 4).

Figure 16. The experimental platform

To implement the proposed control allocator (11), the

virtual control effort H(ur)γ in (11) should be distributed

to actuators. A transformation algorithm is design to achieve

this.

Firstly, γ is expressed as the linear function of θd as

γ = Eθd (31)

, where E is a diagonal matrix. Since θd and γ are known,

the matrix E can be computed. Then the left-hand term of

(11) can be rewritten as(property 1):

H(ur)γ = G(γ)ur (32)

.

Substituting 31 to 32, we get

H(ur)γ = G(Eθd)ur

= GsΛ(Eθd)ur

= GsΛ(θd)Eur

= G(θd)Eur

(33)

, where property 1 is applied. The new control input Eur is

added to the control input ur as the new control input.

The experiment to test the adaptive control allocator is

implemented in the laboratory as depicted in figure 16.

The experimental platform comprises three parts. The

spacecraft simulator is the controlled plant. Infrared cameras

and the vicon server form the positioning system. The on-

board processor performs as the controller of the system.

The infrared cameras emit infrared waves, which will be

reflected by the optical markers configured on the simulator.

Then the reflected waves are captured by the cameras. Based

on the information sent from the cameras, the vicon server

will compute the coordinates of each optimal marker and

send the information to the on-board processor. Utilizing

the feedback information sent by vicon server, the on-board

processor computes the control input for the actuators, i.e.,

the relay modules that control the thrusters. A complete

motion control system is thus built.
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These components are interconnected by the WLAN of the

laboratory. The spacecraft simulator operates on a 5m-by-

6m polished marble table. A STM32 processor is developed

as the on-board controller, its software environment is based

on Netconlink, which converts Simulink block diagrams to

executable files for STM32. In the software environment,

only Simulink block diagrams are needed to implement

the control algorithm, which is much easier than C

programming. Details of the software environment can be

found in [27] and [28].

The given path is y = 5.2m, the commanded velocity

along the given path is 0.02m/s, and the commanded

orientation is set as ψ = 0 rad, i.e., be tangent to the

given line. The parameters of the control allocator are

given as, k1 = 0.3, k2 = 0.3, k3 = 0.1, k4 = 0.45 andKx =
[

1.5 0
0 1.5

]

, P−1 =

[

0.1 0
0 0.1

]

, respectively.

To simulate the parameter displacement, the actual input

for thruster 3 is set to be 75% of the commanded input.

To compare the tracking performances of the three

methods quantitatively, three performance indexes are

defined.The first performance index is the Absolute Mean

Error(AME) |emean|, where emean is calculated by

emean =
1

n2 − n1

n2
∑

k=n1

(zs(k)− zref (k)) (34)

. In equation 34, zs is the steady-state of z, n1 and n2 are

the starting time and terminal time of the steady-state of z,

respectively, zref is the reference signal. It can be seen from

equation 34 that |emean| represents the tracking precision.

The second performance index is the Absolute Maximal

Bias(AMB) |emax|, which is defined as:

emax = zs(kp)− zref (35)

. In equation 35, kp is the time instant when z reaches its peak

after transients. Therefore emax represents the maximal bias

of z around the given path.

The third performance index is the Root Mean Square

Error(RMSE)[29]

ermse =

√

√

√

√

1

n2 − n1

n2
∑

k=n1

(zs(k)− zref (k)) (36)

, which reflects the fluctuation of z around the reference

signal zref .

Figure 17 illustrates the trajectory comparison of the

spacecraft simulator.

The three indexes are compared in table 1. The steady-

state of the response is defined in this paper as when the curve

enters the tube [5.2− 0.17, 5.2 + 0.17] and stay inside the

tube thereafter. It can be seen that the static bias is reduced

drastically when the adaptive control allocators(method 2

and method 3) are applied. And compared to method 2,

the tracking performance indexes for method 3 except for

the RMSE are improved. The fluctuation around the given

line for method 2 and method 3 is mainly caused by the

fact that νby in equation (19) is not directly actuated by

any control effort. But this phenomenon doesn’t exist in the

digital simulation, because there is not external disturbances

in simulation while the external disturbances are inevitably

in practice. The disturbance can cause the simulator deviated

from the reference path.

Figure 18 shows the trajectories of the orientation ψr.

The three indexes are listed in table 2. Except for the index

AME, all indexes indicate that a better performance is

achieved for method 3 than method 2. In comparison with

method 1, method 2 exhibits worse performance, but the

mean value of the actual orientation is much closer to the

mean value of the reference orientation for method 2 than

for method 1.

The velocity νrx, i.e., the velocity along the given line,

is illustrated in figure 19. It can be seen from figure 19

that the tracking error is reduced drastically when the

adaptive control allocators are applied. The performance

index comparison is illustrated in table 3. All performance

indexes for method 3 is better than the other two methods. As

for the transients, the settling time for method 3 is longer than

method 2, but the overshoot is relative smaller than method

2.

In summary, the adaptive control allocator proposed

in this paper exhibits competitive control performance

according to the digital simulation and experiment over the

traditional control allocators. The reason for this advantage

is that the conditions to guarantee the stability of this

method is relatively relaxed in comparison with the existing

methods. Take the parameter-estimator-based allocator as

an example, the well-known persistently exciting condition

should be satisfied to guarantee the asymptotic stability of

the estimator. But this condition is not satisfied as the control

inputs of the plants tend to zero after transients (see figure 12

and 13). However this condition is not necessary to guarantee

the asymptotic stability for the proposed method here.

CONCLUSION

In this paper, an adaptive control allocator is designed for

nonlinear vehicles with parameter uncertainty. Theoretical

analysis is given to prove the stability of the overall

system with the proposed control allocator. Experiment is

implemented to validate the effectiveness of the algorithm.

In future works, the control allocation problem for plants

with nonlinear effectors with parameter uncertainty may be

considered based on the basic idea of this paper. Furthermore

the control allocator developed in this paper may be extended

to the case when the dynamics of the actuators is considered.

To do this, we need to integrate the underlined dynamics into

the reference model.
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