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Abstract This paper studies the secure motion control problem for micro-spacecraft sys-
tems. A novel semi-homomorphic encrypted control framework, consisting of a logarithmic
quantizer, two uniform quantizers, and an encrypted control law based on the Paillier cryp-
tosystem is developed. More specifically, a logarithmic quantizer is adopted as a digitizer to
convert the continuous relative motion information to digital signals. Two uniform quantizers
with different quantization sensitivities are designed to encode the control gain matrix and
digitized motion information to integer values. Then, we develop an encrypted state-feedback
control law based on the Paillier cryptosystem, which allows the controller to compute the
control input using only encrypted data. Using the Lyapunov stability theory and the homo-
morphic property of the Paillier cryptosystem, we prove that all signals in the closed-loop
system are uniformly ultimately bounded. Different from the traditional motion control
laws of spacecraft, the proposed encrypted control framework ensures the security of the
exchanged data over the communication network of the spacecraft, even when communica-
tion channels are eavesdropped by malicious adversaries. Finally, we verify the effectiveness
of the proposed encrypted control framework using numerical simulations.
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1 Introduction

Relative motion control of spacecraft is an enabling technology for many current and near-future space
missions, such as orbital rendezvous, on-orbit assembly, formation flying, and reconnaissance and surveil-
lance, which has received widespread attention in recent years [1–3]. These space missions usually involve
an active spacecraft (chaser) and a passive spacecraft (target), and require the chaser to perform orbital
maneuvers to track the specified position of the target or a virtual desired position. As the recent trend of
space missions moves from human intervention towards autonomous operation, it is necessary to improve
the autonomy, safety, and security of spacecraft control systems. In recent years, the autonomous relative
motion control of spacecraft has received considerable attention from both academia and aerospace indus-
trial sectors. Numerous control methods have been proposed in the literature, such as adaptive control
[2], sliding mode control [3, 4], model predictive control [5], and distributed control [6].

With the prosperity of fast-integrated technology, light-weight spacecraft exhibit enormous popularity,
such as CubSats [7] and plug-and-play satellite [8]. Compared with the traditional monolithic and complex
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spacecraft, these miniature spacecraft become more popular in large-scale space missions, since they
possess greater flexibility, higher reliability, and less cost [9–11]. It is noted, however, that the information
exchange inside these light-scale micro-satellites (e.g., data transmission from the sensor to the controller
or from the controller to the actuator) usually hinges on the wireless communication network. In this case,
two inescapable problems thereupon arise: signal quantization and data security. Since only digital signals
are allowed to exchange through the wireless communication network, the continuous system states or
control commands need to be encoded into digitized signals before transmission. Moreover, due to the
limited communication resources, it is also desirable to avoid continuous information exchange. With this
in mind, the spacecraft attitude control problem with input quantization was addressed in [12] using a
logarithmic quantizer, where a quantization rule is provided for the feedback controller to reduce the
information transmission over the communication channel. Later, Wu and Cao [12] extended the result
in [13] with consideration of external disturbances. In [14], a fixed-time attitude-tracking control scheme
with input quantization was designed, which adopts a hysteresis quantizer to regulate the information
transmitted from the controller to the actuator. Further, the fault-tolerant control problem for flexible
spacecraft attitude tracking was investigated in [15], where a logarithmic encoder-decoder scheme is
developed for the control command transmitted from the controller to the actuator. On the other hand,
the inter-satellite information exchange heavily relies on the wireless communication network, which
makes the spacecraft vulnerable to cyber-attacks and privacy invasions, especially via eavesdropping.
Thus, malicious adversaries or unauthorized users are able to easily extract the sensitive and valuable
information of the underlying system using eavesdropping attacks. In this case, the spacecraft may suffer
from more sophisticate cyber-attacks, such as replay attacks, message falsification attacks, and denial-of-
service attacks (Dos) [16, 17]. Under such attacks, the control command might be falsified or manipulated,
resulting in some adverse effects on the control objectives and closed-loop stability. In light of this,
ensuring the control security and data privacy for the relative motion control of spacecraft is particularly
important, especially when the controller is subject to cyber-physical attacks.

In general, there are two common approaches to ensure secure control in the field of networked control
systems: differential privacy [18] and homomorphic encryption [19]. The core idea of differential privacy
is to inject random noise into the original data, so as to weaken the impact of a single data for the whole
control system. By doing so, the attacker is unable to speculate whether the data belongs to the origi-
nal information and, therefore, the security, privacy, and confidentiality of the original information are
well protected and hidden. However, the differential privacy methods need to take some extra measures
to balance data privacy and control performance. Differently, the homomorphic encryption methods are
capable of directly performing computations on encrypted data without access to the real data; moreover,
the encrypted results after decryption is exactly the same as performing computations using unencrypted
data. Thus, such a method not only protects the security and privacy of the information but also allows
performing operations only based on encrypted data. By means of homomorphic encryption, a new con-
cept of the encrypted controller was presented in [19] to enhance the cyber-security of the networked
control system, and the RSA and ElGamal encryption schemes were employed simultaneously. Later,
the stability-guaranteed problem for encrypted control systems with dynamic ElGamal cryptosystem was
studied in [21], and the feasibility of the theoretical results was validated through regulation control with
a positioning table testbed. Further, Ref. [22] presented a systematic design procedure of the dynamic
quantizer for the encrypted state-feedback control systems with a dynamic ElGamal cryptosystem, where
the additive and multiplicative biases were considered for the quantizer. Besides, by virtue of the Paillier
homomorphic encryption, the secure and private control problem of networked control systems has been
addressed in [23–25]. However, most existing works on secure control via homomorphic encryption con-
siders discrete-time linear systems. How to pre-process the continuous system signals before encryption
deserves a detailed investigation.

Based on the above-mentioned discussion, homomorphic encryption provides a promising solution
for securing closed-loop control systems. However, to the best of the author’s knowledge, secure motion
control of micro-spacecraft systems using the homomorphic encryption method has not been studied in
the literature. This is one of the main motivations for our work. To this end, we investigate the effective
design of an encrypted control scheme to guarantee the security of the control loop of a micro-spacecraft
in the proximity maneuvers mission. In this paper, we assume that the target spacecraft move in a
circular reference orbit. The linearized relative position dynamics, i.e., the well-known Clohessy–Wiltshire
(CW) equations, are used to describe the relative motion between the chaser and target. A Paillier-type
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encrypted control framework is proposed to protect the security and privacy of intra-system signals
over the communication network whether from the sensor to controller or controller to actuator. A
logarithmic quantizer and a uniform quantizer are introduced, the former of which is used to quantize the
continuous system states (i.e., the relative position and velocity information), while the latter is utilized
to pre-process the control gain matrix and the digitized system states before encryption. Due to the
homomorphic properties, the encrypted controller is constructed only using the encrypted system signals
rather than the actual measurable information, which ensures a secure exchange of sensitive information
among different units of the spacecraft.

This paper is organized as follows. The preliminary knowledge about the dynamical model of spacecraft
relative motion, Paillier cryptosystem, and logarithmic and uniform quantizers is provided in Section 2
along with the control objective of this paper. The main results of the encrypted control frame are
presented in Section 3. Numerical simulations are carried out to demonstrate the effectiveness of the
proposed encrypted control scheme in Section 4. Finally, some concluding remarks are given in Section 5.

2 System model and problem formulation

In this section, some standard notations are first defined. Then, the relative motion dynamics of the chase
spacecraft in the Local-Vertical-Local-Horizontal (LVLH) frame is characterized as Clohessy–Wiltshire–
Hill (CWH) equation and further transformed into the form of the general linear system. Later, Paillier
encryption, logarithmic and uniform quantizers are successively introduced in order to ensure the security
and privacy of the system signals over the communication network. Finally, the encrypted control problem
for spacecraft proximity operations is formulated.

2.1 Notations

Throughout this paper, let R, Z, and Z∗ represent the sets of real numbers, integers, and non-negative
integers, respectively. Z∗n = {z ∈ Z : 0 ≤ z < n} defines the set of non-negative integers less than n. Rn
and Rn×m are the sets of n-dimension vectors and n×m-size matrices, separately. The operators gcd(a, b)
and lcm(a, b) stand for the greatest common divisor and the least common multiple of a ∈ Z∗\{0} and
b ∈ Z∗\{0}. Besides, given a vector v or a matrix M , the correlated Euclidean norm for v or the induced
2-norm for M is indicated by ‖x‖ or ‖M‖. Furthermore, given a symmetric matrix M = M>, its
maximum and minimum eigenvalues are denoted by λmax(M) and λmin(M), respectively. In addition,
“mod” means modulo operation.

2.2 Dynamical model of spacecraft relative motion

Without any loss of generality, two typical reference coordinate systems, i.e, Earth-Centered-Inertial
(ECI) and LVLH coordinate frames, are introduced first to describe the relative translation motion of the
chase spacecraft with respect to the target spacecraft, as depicted in Figure 1. The ECI coordinate frame
is denoted as O = {O − XY Z}, where its origin locates in the Earth center, X-axis points toward the
vernal equinox, Z-axis is parallel to the rotational direction of the Earth and points to the north pole,
and Y -axis lies in the equatorial plane and completes the orthogonal dextral frame. Let P = {o − xyz}
represent the LVLH coordinate frame, which is fixed at the target spacecraft. Moreover, the x-axis in the
LVLH frame is the direction of the radius vector of the target from the Earth center, the z-axis coincides
with the orbital normal direction, and the y-axis completes the orthogonal dextral frame. As shown in
Figure 1, denote ρ = [ρx, ρy, ρz]> ∈ R3 and rc ∈ R3 as the position vector of the chase spacecraft in
the LVLH frame and the position vector of the target spacecraft in the ECI frame, respectively. Here,
it is assumed that the relative distance between the chase spacecraft and the target spacecraft is far
smaller than the relative distance of the target spacecraft with respect to the Earth, that is, ‖ρ‖ � ‖rc‖.
Meanwhile, the target spacecraft is supposed to move in a circular orbit. Then, the linearized CWH
equation can be used to describe the relative motion of the chase spacecraft in the LVLH frame [4], which
is given by

ρ̈x − 2ωρ̇y − 3ω2ρx =
ux
mc

(1a)
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Figure 1. Relative coordinate frames

ρ̈y + 2ωρ̇x =
uy
mc

(1b)

ρ̈z + ω2ρz =
uz
mc

(1c)

where mc is the mass of the chase spacecraft, u = [ux, uy, uz]> ∈ R3 denotes the control force acting
on the chase spacecraft, ω =

√
µc/r3

c is the mean orbital angular velocity, µc stands for the geocentric
gravitational constant of the Earth, and rc = ‖rc‖.

Further, the dynamical equation (1) can be simplified in the following form of

ẋ = Ax+Bu (2)

where x = [ρx, ρy, ρz, ρ̇x, ρ̇y, ρ̇z]> ∈ R6,

A =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3ω2 0 0 0 2ω 0
0 0 0 −2ω 0 0
0 0 −ω2 0 0 0

 ∈ R6×6, B =



0 0 0
0 0 0
0 0 0
1
mc

0 0
0 1

mc
0

0 0 1
mc

 ∈ R6×3 (3)

The linear dynamical equation written by (2) will be exploited in the subsequent analysis. In particular,
given the circular orbit of the target spacecraft, it is easy to certify that (A,B) is controllable. Hence,
the linear continuous system (2) is stabilized by using the following state-feedback control law

u = −Kx (4)

where K ∈ R3×6 denotes the control gain matrix. For ensuring the stability of (2), K should be properly
selected so that the eigenvalues of (A −BK) are in the left half-plane of the complex plane. A simple
method for computing K is to pose the controller design as the linear quadratic regulator (LQR) problem
[1].

Lemma 1. [26] Consider the linear system (2) with the state-feedback controller (4). If the matrix pair
(A,B) is controllable, for given any positive-definite matrix Q = Q> > 0 ∈ R6×6, there always exists a
symmetric positive-define matrix P ∈ R6×6 such that

(A−BK)>P + P (A−BK) = −Q (5)
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2.3 Paillier cyrptosystem

The Paillier cryptosystem, a typical partially HE encryption scheme, is a probabilistic asymmetric algo-
rithm for public key cryptography [27]. The detailed realization of the Paillier encryption scheme is
summarized as follows [28]:

• Key generation
– Select two large and independent prime numbers p and q randomly and ensure gcd(pq, (p− 1)(q−

1))=1;
– Calculate the public key (N, g), where N = pq and g ∈ Z∗N2 is a random integer;
– Calculate the private key (λ, µ), where λ = lcm(p− 1, q − 1) and µ = λ−1 mod N ;

• Encryption
– Let m ∈ Z∗N be a plaintext message;
– Choose r randomly such that 0 < r < N and gcd(r,N) = 1;
– Compute the ciphertext message of m as c = E(m) = gm · rN mod N2;

• Deccryption
– Let c be the ciphertext message;
– For any x ∈ Z∗N2 , define a function L(x) = (x− 1)/N ;
– Compute the plaintext message of c as m = D(c) = L(cλ mod N2)µ mod N .

Benefiting from the additively homomorphic property and non-deterministic encryption, Paillier
cryptosystem possesses the following novel features [28]:
Property 1: The sum of the plaintext messages m1 and m2 can be calculated by decrypting the product
of their corresponding ciphertext messages Enc(m1) and Enc(m2), which is formulated mathematically
as

D(E(m1)E(m2)) mod N = m1 +m2 mod N (6)

Property 2: The product of the plaintext messages m1 and m2 can be determined by decrypting the
product of a ciphertext message Enc(m1) or Enc(m2) raising to the power of a plaintext message m2 or
m1, which is formulated mathematically as

D
(
E(m1)m2 mod N2

)
= m1m2 mod N (7a)

D
(
E(m2)m1 mod N2

)
= m1m2 mod N (7b)

Property 3: Consider a more general case, the product of a plaintext message m and a constant k will
be computed by decrypting the product of the ciphertext message Enc(m) rasing to the power of k, which
is formulated mathematically as

Dec
(
Enc(m)k mod N2

)
= km mod N (8)

2.4 Quantizer

In this subsection, the logarithmic quantizer ql(·) and uniform quantizer qu(·) are discussed. To be specific,
the logarithmic quantizer in this paper is utilized as a digitizer to scale the state information x in (2)
so that x can be transformed into a digital signal capable of transmitting over the communication
network. Meanwhile, since the Paillier cryptosystem is only able to encrypt the positive integers, the
digital signals in the system should be mapped to the appropriate positive integers. Considering the
quantization property of the uniform quantizer, it is not difficult to see that it can be decomposed into
an encoder part and a decoder part to pre-process the digital signals before encryption.

(1) Logarithmic quantizer

Referring to [29], the logarithmic set of quantization levels is defined by

S =
{
±wi : wi = ρiw0, i = ±1,±2, . . .

}
∪ {±w0} ∪ {0}, w0 > 0
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where ρ ∈ (0, 1) is a positive constant representing the quantization density of the logarithmic quantizer.
Then, the static and time-invariant logarithmic quantizer is described as

ql(x) =


wi, if 1

1+σwi < x ≤ 1
1−σwi

0, if x = 0
−ql(−x), if x < 0

(9)

where σ = (1−ρ)/(1+ρ). It is noted from (9) that every element of the quantization level is closely related
to the segment (1/(1+σ)wi, 1/(1−σ)wi]. In this case, the logarithmic quantizer is able to map the entire
segments to the quantizer level. Since the logarithmic quantizer satisfies the sector-bound condition, the
quantizer ql(x) is also written as

ql(x) = (1 + ∆l)x (10)

where ∆l ∈ [−σ, σ]. Based on (10), the quantization error associated with ql(x) is defined as ∆lx =
ql(x)− x, satisfying |∆lx| ≤ σ|x|. Similarly, given a vector x ∈ Rn, it has

ql(x) = (I + ∆l)x (11)

where ∆l = diag{∆l1, . . . ,∆ln} and I is an identity matrix with appropriate dimensions.

(2) Uniform quantizer

Given a positive integer qm, the uniform quantizer is defined by [30]

qu(x) =


qm, if x > (qm + 1/2)∆x

−qm, if x ≤ −(−qm + 1/2)∆x⌊
x

∆x
+ 1

2

⌋
, if − (−qm + 1/2)∆x < x ≤ (qm + 1/2)∆x

(12)

where ∆x > 0 denotes the sensitivity of the uniform quantizer and qm represents the saturation value
of the uniform quantizer. From (11), it is clearly analyzed that if x ∈ ((k − 1)/2∆x, (k + 1/2)∆x] where
k ∈ Z and −qm ≤ k ≤ qm, then qu(x) will takes on the value k. The quantization error associated with
qu(x) is defined as

x̃ = x−∆xqu(x) (13)

which satisfies |x̃| ≤ ∆x/2. Similarly, for any vector x ∈ Rn or any matrix M ∈ Rn×m, it follows that

‖x̃‖ ≤
√
n

2
∆x,

∥∥∥M̃∥∥∥ ≤ √nm
2

∆x (14)

Remark 1. Since qu(x) ∈ Z, (11) can be applied as an encoder, where the real number x is encoded
to an integer. Otherwise, ∆xqu(x) is regarded as the decoder, where the encoded qu(x) is restored to
approximate its original real number x.

2.5 Control objective

This paper focuses on the encrypted control problem for spacecraft proximity operations. Since the control
gain matrix K can be determined offline, it does not convey sensitive information. Differently, the real-
time relative position and velocity information are extremely sensitive due to some unexpected leakage
or eavesdropping involved in the communication network. Hence, the relative state information x should
be concealed from the controller side before encryption, which implies that the state-feedback control
law in (4) can not be calculated directly by using x. In light of this, the purpose of this manuscript is to
develop a Paillier-type encrypted control framework for (1), including a digitizer for continuous sampled
state x and an encoder and a decoder for quantized state and control gain, and a Paillier-type encrypted
state-feedback controller to achieve the following objectives:

(1) ensure the ultimately uniformly bounded stability of the whole closed-loop system;
(2) preserve the security of the state x from the controller.
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Figure 2. The block diagram of the proposed encrypted control system

3 Main results

In this section, an encrypted control algorithm by means of the Paillier encryption scheme is presented for
spacecraft proximity operations. The detailed design procedure is summarized as follows: First, by using
the uniform quantizer, the control gain is encoded to an integer and sent to the controller side for ease
of further encryption operation. Meanwhile, the continuously measurable system states are quantized
as digital signals by using the logarithmic quantizer because the communication network only allows
the digital signals to be transmitted instead of the continuous ones. Similarly, for further encryption,
the digitized system stats are encoded to the integer set with the aid of a uniform quantizer. Then,
to guarantee data security, the system states are encrypted based on the Paillier cryptosystem and are
sent to the controller side over the communication network. Next, by utilizing received encrypted system
states and control gain, the encrypted control law is calculated according to the homomorphic properties
in (6)–(8). Further, the resulting encrypted control law is sent to the system side without any information
leakage. After Paillier-type decryption and simple decoding, a decrypted state-feedback control command
is executed on the actuator of the spacecraft. The block diagram of the proposed encrypted control system
is shown in Figure 2, where the solid line and dash line indicates the information exchange through the
data buses or wireless communication network, respectively.

3.1 Encoding the control gain matrix

Since the Paillier encryption scheme only works the data in the form of integers, the control gain matrix
K in (4) should be first encoded into an integer before being sent over the communication network,
as depicted in Figure 2. As stated in Remark 1, the uniform quantizer can be regarded as an encoder
and a decoder. Therefore, the uniform quantizer is adopted here to encode the control gain matrix K
into qu(K). The corresponding quantizer error for K here is defined as K̃ = K − ∆Kqu(K), where
∆K > 0 refers to the sensitivity associated with the quantizer qu(K). For ease of convenience, define
K̄ = ∆Kqu(K).

Theorem 1. Consider the general linear system (4) with the control law u = −K̄x. Under Lemma 1, if
the sensitivity ∆K is selected such that the inequality

∆K ≤
ε1λmin(Q)
3
√

2‖PB‖
, ε1 ∈ (0, 1) (15)

holds trues, then the general linear system (2) is asymptotic stable, where P and Q are positive-define
matrices satisfying (5).

Proof. By implementing the quantized state-feedback control law u = −K̄x, the closed-loop linear
system (2) is rewritten as

ẋ = (A−BK)x+BK̃x (16)
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Chose V = x>Px as the Lyapunov function candidate, where P is a positive-definite matrix satisfying
(5). Then, combining (5) and (16) yields

V̇ = x>P ẋ− ẋ>Px

= x>
(

(A−BK)>P + P (A−BK)
)
x+ x>K̃>B>Px+ x>PBK̃x

≤ −λmin(Q)‖x‖2 + 2
∥∥∥PBK̃∥∥∥‖x‖2

(17)

To proceed, it can be seen from (14) that ‖K̃‖ ≤ ∆K3
√

2/2 always hold trues. Therefore, once ∆K

is chosen such that (15) satisfies, the following inequality always hold

−λmin(Q) + 2
∥∥∥PBK̃∥∥∥ ≤ −(1− ε1)λmin(Q) ≤ 0 (18)

which directly implies that
V̇ ≤ 0 (19)

In summary, as long as ∆K is selected by (15), it is straightforward to induce from (19) that the linear
system (2) is asymptotic stable despite the quantization. This completes the proof of Theorem 1. �

Additionally, on the basis of Theorem 1 and the standard Lyapunov stability theory, there exist
symmetric positive-define matrices P̄ and Q̄ such that(

A−BK̄
)>
P̄ + P̄

(
A−BK̄

)
= −Q̄ (20)

3.2 Encrypted control law design

Let xk, qu(xk), E(qu(xk)) represent the system state after digitization, encoding, and encryption,
respectively. Then, using semi-homomorphic encryption, we design the encrypted control law as follows

E(u+) = −
(

E(qu(xk))qu(K) mod N2
)

(21)

Theorem 2. Consider the general linear system described in (2) with the encrypted control law (21).
Select the quantization parameters properly such that

σ <
λmin(Q̄)

2
(22)

holds, where σ is a positive constant related to the logarithmic quantizer ql(x). Then, under the
proposed encrypted control scheme, summarized in Algorithm 1, the general linear system (2) is ulti-
mately uniformly stable. Moreover, the security of sensitive information transmitted over the spacecraft’s
communication network is completely protected.

Remark 2. From Figure 2, it is observed that xk is sampled by the logarithmic quantizer ql(x) in
(9). So, one can get that the digitization error ‖∆lx‖ ≤ σ‖x‖, where ∆l ∈ R6×6 is the sensitivities of
the logarithmic quantizer. Besides, qu(xk) is obtained by using the uniform quantizer qu(x) with the
sensitivity ∆x > 0. Accordingly, let x̄k = xk −∆xqu(xk) represent the quantizer error. After decryption
and decoding for the encrypted control law (21), the control command u acting on the actuator is given
by

u = ∆x∆KD
(
E(u+)

)
= −∆x∆Kqu(K)qu(xk) = −K̄x̄k (23)

Proof. It is noted from Remark 2 that the implementation of the encrypted control law (21) is equivalent
to executing u in (23). In light of this, driven by the encrypted control law (21), the closed-loop linear
system (2) is rewritten as

ẋ = (A−BK̄)x−BK̄x̄k (24)
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Algorithm 1. The proposed encrypted control scheme for spacecraft proximity operations.
Initialize: choose p, q, g, r, K, P ,Q, P̄ , Q̄
Ensure: u
1: # Encode control gain matrix
2: select ∆K so that (15) holds
3: compute qu(K) and sent to the controller over communication network
4: # Digitize
5: chose ∆l based on (22)
6: digitized the system state x and obtain xk

7: # Encode the digitized system state
8: select ∆x

9: obtain qu(xk)
10: # Encrypt
11: encrypt qu(xk) by using Paillier encryption as E(qu(xk))
12: transmit E(qu(xk)) to the controller over communication network
13: # Obtain encrypted control law
14: compute the encrypted controller E(u+) according to (21)
15: transmit E(u+) to the plant node over communication network
16: # Decrypt
17: compute u+ = D

(
E(u+)

)
= −qu(K)qu(xk) based on (8)

18: # Decode the decrypted controller
19: obtain and implement the practical control command u in (23)

Similarly to Theorem 1, chose V = x>P̄ x as the Lyapunov function candidate, where P̄ is a sym-
metrical positive-definite matrix satisfying (20). Then, taking the differentiate V over time along (23)
results in

V̇ = x>P̄ ẋ− ẋ>P̄ x

= x>
((
A−BK̄

)>
P̄ + P̄

(
A−BK̄

))
x− x>∆lK̄

>B>P̄ x− x>P̄BK̄∆lx

+ x̃>k K̄
>B>P̄ x+ xP̄BK̄x̃k

(25)

where xk = ql(x), ∆lx = xk −x, and x̃k = xk −∆lqu(xk) are used in (24). Besides, reminding (11) and
(14), it is easy to obtain that

‖xk‖ ≤ |1 + ∆l|‖x‖, ‖x̃k‖ ≤
√

6
2
‖∆x‖ (26)

Then, inserting (20) and (26) into (25), it follows that

V̇ = −x>Q̄x− x>∆lK̄
>B>P̄ x− x>P̄BK̄∆lx+ x̃>k K̄

>B>P̄ x+ x>P̄BK̄x̃k

≤ −λmin(Q̄)‖x‖2 + 2|∆l|
∥∥P̄BK̄∥∥‖x‖2 +

√
6|∆x|

∥∥P̄BK̄∥∥‖x‖ (27)

Further, recalling the parameter condition in (23), it has

V̇ ≤ −
(
λmin(Q̄)− 2σ

)
‖x‖2 +

√
6|∆x|

∥∥P̄BK̄∥∥‖x‖ (28)

To proceed, it is clearly seen from (28) that V̇ < 0 when x evolves outside of the following set

Sx ,

{
x : ‖x‖ ≤

√
6|∆x|

∥∥P̄BK̄∥∥
(λmin(Q̄)− 2σ)

}
(29)

It is concluded from (29) that once the system state moves in the out of Sx, it will be attracted back to
Sx immediately. Therefore, the closed-loop system is ultimately uniformly bounded stable. Moreover, the
convergence set Sx can be made enough small by choosing ∆x as small as possible and choosing σ as big
as possible. This completes the proof of Theorem 2. �
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Remark 3. Following Figure 2, the information sent from the sensor to the controller has been encoded
and encrypted before transmission over the communication network. Moreover, it is obviously seen
from (21) that the encrypted control law is computed by using the encrypted relevant relative state
E(qu(xk)) rather than the real-time measured value of sensor x. Therefore, there is also no sensitive
relative state information that is leaked when the encrypted controller is transmitted from the controller
to the actuator over the communication channel. Besides, exploiting the properties of the Pailliar cryp-
tosystem, the proposed encrypted framework can secure the communication network of the spacecraft
against false data injection attacks. For example, if the attacker injects a random real-valued noise, the
controller will easily detect the false data injection attack as the transmitted signals under the Paillier
scheme are integer-valued. When the attacker injects an integer-valued random noise into the communi-
cation channel, the attack cannot be detected by the controller. However, a slight change in the ciphertext
results in a significant change in the computed control input (after decryption) due to the highly nonlin-
ear operations of the Paillier cryptosystem. In this case, the actuator can detect the false data injection
attack by comparing the current control input with the past control input. Consequently, the security of
the spacecraft’s relative motion control system is successfully protected.

Remark 4. Note that the encrypted control framework is designed based on the linear CWH equation
and additive homomorphic encryption of Paillier. Although the linear CWH equation can clearly describe
the relative motion between two spacecraft, a more precise control scheme can be generated by resorting to
the more detailed nonlinear dynamical model. Besides, although the security and privacy of the sensitive
relative motion information and control input signal are preserved, the proposed encrypted control scheme
does not guarantee the security of the control gain matrix due to the inherent limitation of the Paillier
encryption scheme. Therefore, the secure motion control scheme of micro-spacecraft based on the nonlinear
dynamical model deserves to be investigated in future work, especially using the fully homomorphic
encryption method.

4 Simulations

In this section, numerical simulations are performed to verify the performance of the encrypted control
framework proposed in Figure 2. Assume that the target spacecraft moves on a circular orbit with
rc = 6.5867× 106 m. The geocentric gravitational constant of the Earth is µc = 3.986× 1014 m3/s2. The
mass of chase spacecraft is mc = 10 kg. In this setting, the matrices A and B in (3) are given by

A =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3× 0.00122 0 0 0 0.0024 0
0 0 0 −0.0024 0 0
0 0 −0.00122 0 0 0

, B =


0 0 0
0 0 0
0 0 0

0.1 0 0
0 0.1 0
0 0 0.1


respectively. Besides, the initial relative position and relative velocity of the chase spacecraft are set
as ρ = [100, 130,−110]> m and ρ̇ = [0.1, 0.1, 0.1]> m/s, separately. Moreover, it is assumed that the
maximum control force generated by the chase spacecraft is 0.2N. Further, the state-feedback control law
(4) is determined by solving the linear quadratic regulator (LQR) problem, where the cost function is
defined by

J =
∫ ∞

0

(
x>Qx+ u>Ru

)
dt

with Q = diag{100, 100, 100, 104, 104, 104} and R = 107 × I3. Then, the control gain matrix K can be
calculated as

K =

0.0032 −0.0003 0.0000 0.2546 0.0001 0.0000
0.0003 0.0031 0.0000 0.0001 0.2529 0.0000
0.0000 0.0000 0.0031 0.0000 0.0000 0.2529


The parameter relevant to the logarithmic quantizer ql(x) is σ = 0.05. The sensitivity and saturation
value of the uniform quantizer qu(x) are chosen as ∆x = 0.01 and qmx = 3000, while these two param-
eters for the uniform quantizer qu(K) are selected as ∆K = 0.001 and qmK = 2000, respectively. The
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Figure 3. Time response of relative position and velocity of the chaser spacecraft. (a) Evolution of relative position and
(b) Evolution of velocity

Figure 4. Quantization error of the chaser spacecraft under the logarithmic quantizer. (a) Error for relative position and

(b) Error for relative velocity

implementation of the Paillier cryptosystem is referred to [31]. More specifically, two large prime num-
bers p and q are selected as p = 3470023813 and q = 3315231457; the random integer g in the public
key is selected as g = 15314181315756238939627282471832570258; the private key (λ, µ) are selected as
λ = 958661007884285856 and µ = 1687557451384170425.

The simulation results are shown in Figures 3–6. More specifically, the evolution of the relative position
and relative velocity of the chase spacecraft is illustrated in Figure 3. Figure 4 depicts the quantization
error of the relative position and velocity for the chase spacecraft after digitization using the logarithmic
quantizer. Figure 5 displays the error of the relative position and velocity of the chase spacecraft after
encoding and decoding using a uniform quantizer. From Figures 3 to 5, it is concluded that although the
quantization errors exist, the chase spacecraft under the proposed encrypted control framework is still
able to achieve the desired tracking mission with acceptable accuracy. The time history of the control
force of the chase spacecraft is illustrated in Figure 6, which always is limited within 0.2N. In addition, the
trajectories of the encrypted relative position, relative velocity, and control input are shown in Figures 7–
9. Based on these figures, it is impossible for malicious to infer the actual relative motion information
(Figs. 3 and 4) and the actual control command (Fig. 5) only by eavesdropping the encrypted signals
(Figs. 7–9). Therefore, the proposed encrypted control framework not only achieves the desired relative
motion of micro-spacecraft with graceful control performance but also ensures the secure information
exchange among different components of the spacecraft.
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Figure 5. Quantization error of the chaser spacecraft under the uniform quantizer. (a) Error for relative position and (b)
Error for relative velocity

Figure 6. Time response of control force of the chaser spacecraft

Figure 7. The encrypted relative position

5 Conclusions

This study proposed a novel encrypted control framework for spacecraft relative motion control using a
logarithmic quantizer, two uniform quantizers, and a semi-homomorphic cryptosystem. The logarithmic
quantizer was used to quantize the continuous relative state information, while the uniform quantizer
was regarded as the encoder and decoder before encryption and after decryption, respectively. By select-
ing the proper quantization parameter, it is shown that the proposed encrypted control is capable of
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Figure 8. The encrypted relative velocity

Figure 9. The encrypted control input E(u+)

guaranteeing ultimately uniformly bounded stability of the spacecraft relation motion system. Moreover,
the security of the sensitive relative state information was ensured by the Paillier cryptosystem. Possible
future work will concentrate on the encrypted control problem of spacecraft relative motion with more
practical constraints, such as unknown parameter uncertainties, exogenous disturbances, and with a less
conservative fully homomorphic encryption scheme.
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