1,468 research outputs found

    Robots that Say ‘No’. Affective Symbol Grounding and the Case of Intent Interpretations

    Get PDF
    © 2017 IEEE. This article has been accepted for publication in a forthcoming issue of IEEE Transactions on Cognitive and Developmental Systems. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Modern theories on early child language acquisition tend to focus on referential words, mostly nouns, labeling concrete objects, or physical properties. In this experimental proof-of-concept study, we show how nonreferential negation words, typically belonging to a child's first ten words, may be acquired. A child-like humanoid robot is deployed in speech-wise unconstrained interaction with naïve human participants. In agreement with psycholinguistic observations, we corroborate the hypothesis that affect plays a pivotal role in the socially distributed acquisition process where the adept conversation partner provides linguistic interpretations of the affective displays of the less adept speaker. Negation words are prosodically salient within intent interpretations that are triggered by the learner's display of affect. From there they can be picked up and used by the budding language learner which may involve the grounding of these words in the very affective states that triggered them in the first place. The pragmatic analysis of the robot's linguistic performance indicates that the correct timing of negative utterances is essential for the listener to infer the meaning of otherwise ambiguous negative utterances. In order to assess the robot's performance thoroughly comparative data from psycholinguistic studies of parent-child dyads is needed highlighting the need for further interdisciplinary work.Peer reviewe

    Enactivism and Robotic Language Acquisition: A Report from the Frontier

    Get PDF
    In this article, I assess an existing language acquisition architecture, which was deployed in linguistically unconstrained human–robot interaction, together with experimental design decisions with regard to their enactivist credentials. Despite initial scepticism with respect to enactivism’s applicability to the social domain, the introduction of the notion of participatory sense-making in the more recent enactive literature extends the framework’s reach to encompass this domain. With some exceptions, both our architecture and form of experimentation appear to be largely compatible with enactivist tenets. I analyse the architecture and design decisions along the five enactivist core themes of autonomy, embodiment, emergence, sense-making, and experience, and discuss the role of affect due to its central role within our acquisition experiments. In conclusion, I join some enactivists in demanding that interaction is taken seriously as an irreducible and independent subject of scientific investigation, and go further by hypothesising its potential value to machine learning.Peer reviewedFinal Published versio

    Robots Learning to Say `No': Prohibition and Rejective Mechanisms in Acquisition of Linguistic Negation

    Get PDF
    © 2019. Copyright held by the owener/author(s).'No' belongs to the first ten words used by children and embodies the first active form of linguistic negation. Despite its early occurrence the details of its acquisition process remain largely unknown. The circumstance that `no' cannot be construed as a label for perceptible objects or events puts it outside of the scope of most modern accounts of language acquisition. Moreover, most symbol grounding architectures will struggle to ground the word due to its non-referential character. In an experimental study involving the child-like humanoid robot iCub that was designed to illuminate the acquisition process of negation words, the robot is deployed in several rounds of speech-wise unconstrained interaction with naïve participants acting as its language teachers. The results corroborate the hypothesis that affect or volition plays a pivotal role in the socially distributed acquisition process. Negation words are prosodically salient within prohibitive utterances and negative intent interpretations such that they can be easily isolated from the teacher's speech signal. These words subsequently may be grounded in negative affective states. However, observations of the nature of prohibitive acts and the temporal relationships between its linguistic and extra-linguistic components raise serious questions over the suitability of Hebbian-type algorithms for language grounding.Peer reviewe

    Attribution of Autonomy and its Role in Robotic Language Acquisition

    Get PDF
    © The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.The false attribution of autonomy and related concepts to artificial agents that lack the attributed levels of the respective characteristic is problematic in many ways. In this article we contrast this view with a positive viewpoint that emphasizes the potential role of such false attributions in the context of robotic language acquisition. By adding emotional displays and congruent body behaviors to a child-like humanoid robot’s behavioral repertoire we were able to bring naĂŻve human tutors to engage in so called intent interpretations. In developmental psychology, intent interpretations can be hypothesized to play a central role in the acquisition of emotion, volition, and similar autonomy-related words. The aforementioned experiments originally targeted the acquisition of linguistic negation. However, participants produced other affect- and motivation-related words with high frequencies too and, as a consequence, these entered the robot’s active vocabulary. We will analyze participants’ non-negative emotional and volitional speech and contrast it with participants’ speech in a non-affective baseline scenario. Implications of these findings for robotic language acquisition in particular and artificial intelligence and robotics more generally will also be discussed.Peer reviewedFinal Published versio

    Robots that Say ’No’: Acquisition of Linguistic Behaviour in Interaction Games with Humans

    Get PDF
    Negation is a part of language that humans engage in pretty much from the onset of speech. Negation appears at first glance to be harder to grasp than object or action labels, yet this thesis explores how this family of ‘concepts’ could be acquired in a meaningful way by a humanoid robot based solely on the unconstrained dialogue with a human conversation partner. The earliest forms of negation appear to be linked to the affective or motivational state of the speaker. Therefore we developed a behavioural architecture which contains a motivational system. This motivational system feeds its state simultaneously to other subsystems for the purpose of symbol-grounding but also leads to the expression of the robot’s motivational state via a facial display of emotions and motivationally congruent body behaviours. In order to achieve the grounding of negative words we will examine two different mechanisms which provide an alternative to the established grounding via ostension with or without joint attention. Two large experiments were conducted to test these two mechanisms. One of these mechanisms is so called negative intent interpretation, the other one is a combination of physical and linguistic prohibition. Both mechanisms have been described in the literature on early child language development but have never been used in human-robot-interaction for the purpose of symbol grounding. As we will show, both mechanisms may operate simultaneously and we can exclude none of them as potential ontogenetic origin of negation

    From Biological to Synthetic Neurorobotics Approaches to Understanding the Structure Essential to Consciousness (Part 3)

    Get PDF
    This third paper locates the synthetic neurorobotics research reviewed in the second paper in terms of themes introduced in the first paper. It begins with biological non-reductionism as understood by Searle. It emphasizes the role of synthetic neurorobotics studies in accessing the dynamic structure essential to consciousness with a focus on system criticality and self, develops a distinction between simulated and formal consciousness based on this emphasis, reviews Tani and colleagues' work in light of this distinction, and ends by forecasting the increasing importance of synthetic neurorobotics studies for cognitive science and philosophy of mind going forward, finally in regards to most- and myth-consciousness

    Social Cognition for Human-Robot Symbiosis—Challenges and Building Blocks

    Get PDF
    The next generation of robot companions or robot working partners will need to satisfy social requirements somehow similar to the famous laws of robotics envisaged by Isaac Asimov time ago (Asimov, 1942). The necessary technology has almost reached the required level, including sensors and actuators, but the cognitive organization is still in its infancy and is only partially supported by the current understanding of brain cognitive processes. The brain of symbiotic robots will certainly not be a “positronic” replica of the human brain: probably, the greatest part of it will be a set of interacting computational processes running in the cloud. In this article, we review the challenges that must be met in the design of a set of interacting computational processes as building blocks of a cognitive architecture that may give symbiotic capabilities to collaborative robots of the next decades: (1) an animated body-schema; (2) an imitation machinery; (3) a motor intentions machinery; (4) a set of physical interaction mechanisms; and (5) a shared memory system for incremental symbiotic development. We would like to stress that our approach is totally un-hierarchical: the five building blocks of the shared cognitive architecture are fully bi-directionally connected. For example, imitation and intentional processes require the “services” of the animated body schema which, on the other hand, can run its simulations if appropriately prompted by imitation and/or intention, with or without physical interaction. Successful experiences can leave a trace in the shared memory system and chunks of memory fragment may compete to participate to novel cooperative actions. And so on and so forth. At the heart of the system is lifelong training and learning but, different from the conventional learning paradigms in neural networks, where learning is somehow passively imposed by an external agent, in symbiotic robots there is an element of free choice of what is worth learning, driven by the interaction between the robot and the human partner. The proposed set of building blocks is certainly a rough approximation of what is needed by symbiotic robots but we believe it is a useful starting point for building a computational framework

    Do You Feel Me?: Learning Language from Humans with Robot Emotional Displays

    Get PDF
    In working towards accomplishing a human-level acquisition and understanding of language, a robot must meet two requirements: the ability to learn words from interactions with its physical environment, and the ability to learn language from people in settings for language use, such as spoken dialogue. The second requirement poses a problem: If a robot is capable of asking a human teacher well-formed questions, it will lead the teacher to provide responses that are too advanced for a robot, which requires simple inputs and feedback to build word-level comprehension. In a live interactive study, we tested the hypothesis that emotional displays are a viable solution to this problem of how to communicate without relying on language the robot doesn\u27t--indeed, cannot--actually know. Emotional displays can relate the robot\u27s state of understanding to its human teacher, and are developmentally appropriate for the most common language acquisition setting: an adult interacting with a child. For our study, we programmed a robot to independently explore the world and elicit relevant word references and feedback from the participants who are confronted with two robot settings: a setting in which the robot displays emotions, and a second setting where the robot focuses on the task without displaying emotions, which also tests if emotional displays lead a participant to make incorrect assumptions regarding the robot\u27s understanding. Analyzing the results from the surveys and the Grounded Semantics classifiers, we discovered that the use of emotional displays increases the number of inputs provided to the robot, an effect that\u27s modulated by the ratio of positive to negative emotions that were displayed

    Towards the mind of a humanoid: Does a cognitive robot need a self? - Lessons from neuroscience

    Get PDF
    As we endow cognitive robots with ever more human-like capacities, these have begun to resemble constituent aspects of the 'self' in humans (e.g., putative psychological constructs such as a narrative self, social self, somatic self and experiential self). Robot's capacity for body-mapping and social learning in turn facilitate skill acquisition and development, extending cognitive architectures to include temporal horizon by using autobiographical memory (own experience) and inter-personal space by mapping the observations and predictions on the experience of others (biographic reconstruction). This 'self-projection' into the past and future as well as other's mind can facilitate scaffolded development, social interaction and planning in humanoid robots. This temporally extended horizon and social capacities newly and increasingly available to cognitive roboticists have analogues in the function of the Default Mode Network (DMN) known from human neuroscience, activity of which is associated with self-referencing, including discursive narrative processes about present moment experience, 'self-projection' into past memories or future intentions, as well as the minds of others. Hyperactivity and overconnectivity of the DMN, as well as its co-activation with the brain networks related to affective and bodily states have been observed in different psychopathologies. Mindfulness practice, which entails reduction in narrative self-referential processing, has been shown to result in an attenuation of the DMN activity and its decoupling from other brain networks, resulting in more efficient brain dynamics, and associated gains in cognitive function and well-being. This suggests that there is a vast space of possibilities for orchestrating self-related processes in humanoids together with other cognitive activity, some less desirable or efficient than others. Just as for humans, relying on emergence and self-organization in humanoid scaffolded cognitive development might not always lead to the 'healthiest' and most efficient modes of cognitive dynamics. Rather, transient activations of self-related processes and their interplay dependent on and appropriate to the functional context may be better suited for the structuring of adaptive robot cognition and behaviour.This work was supported in part by the European Commission under projects ITALK ("Integration and Transfer of Action and Language in Robots") and BIOMICS (contract numbers FP7-214668 and FP7-318202, respectively) to Prof Nehaniv, and by the King’s Together Fund award (“Towards Experiential Neuroscience Paradigm”) to Dr Antonova
    • 

    corecore