74 research outputs found

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    Sistema de Simulación de la Iluminación Abdominal Basado en Mini Robots

    Get PDF
    Introduction: This document shows a system that simulates the illumination of the abdominal scene in laparoscopic operations using mini robots. The mini robots would be magnetically tied to the abdominal cavity and manipulated by an external robot arm. Two algorithms are tested in this system: one that moves the mini robot according to the movement of the endoscope, and another that moves from an analysis of the image captured by the scene.  Objective: To contribute to the illumination of the surgical scene by means of mini robots attached magnetically to the abdominal cavity. Methodology: A software tool was developed using Unity3D, which simulates the interior of the abdomen in laparoscopic operations, adding a new lighting: a mini light-type robot magnetically anchored to the abdominal wall. The mini robot has two different movements to illuminate the scene, one depends on the movement of the endoscope and the other on the image analysis performed. Results: Tests were performed with a representation of the real environment comparing it with the tests in the built tool, obtaining similar results and showing the potential of a mini robot to provide additional lighting to the surgeon if necessary. Conclusions: The designed algorithm allows a mini robot that is magnetically anchored in the abdominal wall to move to low-light areas following two options: a geometric relationship or movement as a result of image analysis.  Introducción: Este documento muestra un sistema que simula la iluminación de la escena abdominal en operaciones de laparoscopia utilizando mini robots. Los mini robots estarían atados magnéticamente a la cavidad abdominal y serían manipulados por un brazo robot externo. Dos algoritmos son probados en este sistema: uno que mueve al mini robot de acuerdo al movimiento del endoscopio, y otro que lo mueve a partir de un análisis de la imagen captada por la escena. Objetivo: Contribuir a la iluminación de la escena quirúrgica por medio de mini robots atados magnéticamente a la cavidad abdominal. Metodología: Se desarrolló una herramienta software por medio de Unity3D, la cual simula el interior del abdomen en operaciones de laparoscopia, agregándosele una nueva iluminación: un mini robot tipo luz anclado magnéticamente a la pared abdominal. El mini robot tiene dos movimientos diferentes para iluminar la escena, uno depende del movimiento del endoscopio y otro del análisis de imagen realizado.  Resultados: Se realizaron pruebas con una representación del entorno real comparándola con las pruebas en la herramienta construida, obteniéndose resultados similares y mostrando el potencial que tiene un mini robot para proporcionar una iluminación adicional al cirujano en caso de ser necesario.   Conclusiones: El algoritmo diseñado permite que un mini robot que estaría anclado magnéticamente a la pared abdominal, se mueva a zonas de baja iluminación siguiendo dos opciones: una relación geométrica o un movimiento como resultado de un análisis de imagen

    Automated visual inspection algorithm for the reflection detection and removing in image sequences

    Get PDF
    Specular reflections are undesirable phenomena that can impair overall perception and subsequent image analysis. In this paper, we propose a modern solution to this problem, based on the latest achievements in this field. The proposed method includes three main steps: image enhancement, detection of specular reflections, and reconstruction of damaged areas. To enhance and equalize the brightness characteristics of the image, we use the alpha-rooting method with an adaptive choice of the optimal parameter alpha. To detect specular reflections, we apply morphological filtering in the HSV color space. At the final stage, there is a reconstruction of damaged areas using adversarial neural networks. This combination makes it possible to quickly and effectively detect and remove specular reflections, which is confirmed by a series of experiments given by the experimental section of this work

    Laparoscopic Image Recovery and Stereo Matching

    Get PDF
    Laparoscopic imaging can play a significant role in the minimally invasive surgical procedure. However, laparoscopic images often suffer from insufficient and irregular light sources, specular highlight surfaces, and a lack of depth information. These problems can negatively influence the surgeons during surgery, and lead to erroneous visual tracking and potential surgical risks. Thus, developing effective image-processing algorithms for laparoscopic vision recovery and stereo matching is of significant importance. Most related algorithms are effective on nature images, but less effective on laparoscopic images. The first purpose of this thesis is to restore low-light laparoscopic vision, where an effective image enhancement method is proposed by identifying different illumination regions and designing the enhancement criteria for desired image quality. This method can enhance the low-light region by reducing noise amplification during the enhancement process. In addition, this thesis also proposes a simplified Retinex optimization method for non-uniform illumination enhancement. By integrating the prior information of the illumination and reflectance into the optimization process, this method can significantly enhance the dark region while preserving naturalness, texture details, and image structures. Moreover, due to the replacement of the total variation term with two l2l_2-norm terms, the proposed algorithm has a significant computational advantage. Second, a global optimization method for specular highlight removal from a single laparoscopic image is proposed. This method consists of a modified dichromatic reflection model and a novel diffuse chromaticity estimation technique. Due to utilizing the limited color variation of the laparoscopic image, the estimated diffuse chromaticity can approximate the true diffuse chromaticity, which allows us to effectively remove the specular highlight with texture detail preservation. Third, a robust edge-preserving stereo matching method is proposed, based on sparse feature matching, left and right illumination equalization, and refined disparity optimization processes. The sparse feature matching and illumination equalization techniques can provide a good disparity map initialization so that our refined disparity optimization can quickly obtain an accurate disparity map. This approach is particularly promising on surgical tool edges, smooth soft tissues, and surfaces with strong specular highlight

    Abdominal Lighting Simulation System Based On Mini Robots

    Get PDF
    Introduction: This document shows a system that simulates the illumination of the abdominal scene in laparoscopic operations using mini robots. The mini robots would be magnetically tied to the abdominal cavity and manipulated by an external robot arm. Two algorithms are tested in this system: one that moves the mini robot according to the movement of the endoscope, and another that moves from an analysis of the image captured by the scene.  Objective: To contribute to the illumination of the surgical scene by means of mini robots attached magnetically to the abdominal cavity. Methodology: A software tool was developed using Unity3D, which simulates the interior of the abdomen in laparoscopic operations, adding a new lighting: a mini light-type robot magnetically anchored to the abdominal wall. The mini robot has two different movements to illuminate the scene, one depends on the movement of the endoscope and the other on the image analysis performed. Results: Tests were performed with a representation of the real environment comparing it with the tests in the built tool, obtaining similar results and showing the potential of a mini robot to provide additional lighting to the surgeon if necessary. Conclusions: The designed algorithm allows a mini robot that is magnetically anchored in the abdominal wall to move to low-light areas following two options: a geometric relationship or movement as a result of image analysis

    Estimating and understanding motion : from diagnostic to robotic surgery

    Get PDF
    Estimating and understanding motion from an image sequence is a central topic in computer vision. The high interest in this topic is because we are living in a world where many events that occur in the environment are dynamic. This makes motion estimation and understanding a natural component and a key factor in a widespread of applications including object recognition , 3D shape reconstruction, autonomous navigation and medica! diagnosis. Particularly, we focus on the medical domain in which understanding the human body for clinical purposes requires retrieving the organs' complex motion patterns, which is in general a hard problem when using only image data. In this thesis, we cope with this problem by posing the question - How to achieve a realistic motion estimation to offer a better clinical understanding? We focus this thesis on answering this question by using a variational formulation as a basis to understand one of the most complex motions in the human's body, the heart motion, through three different applications: (i) cardiac motion estimation for diagnostic, (ii) force estimation and (iii) motion prediction, both for robotic surgery. Firstly, we focus on a central topic in cardiac imaging that is the estimation of the cardiac motion. The main aim is to offer objective and understandable measures to physicians for helping them in the diagnostic of cardiovascular diseases. We employ ultrafast ultrasound data and tools for imaging motion drawn from diverse areas such as low-rank analysis and variational deformation to perform a realistic cardiac motion estimation. The significance is that by taking low-rank data with carefully chosen penalization, synergies in this complex variational problem can be created. We demonstrate how our proposed solution deals with complex deformations through careful numerical experiments using realistic and simulated data. We then move from diagnostic to robotic surgeries where surgeons perform delicate procedures remotely through robotic manipulators without directly interacting with the patients. As a result, they lack force feedback, which is an important primary sense for increasing surgeon-patient transparency and avoiding injuries and high mental workload. To solve this problem, we follow the conservation principies of continuum mechanics in which it is clear that the change in shape of an elastic object is directly proportional to the force applied. Thus, we create a variational framework to acquire the deformation that the tissues undergo due to an applied force. Then, this information is used in a learning system to find the nonlinear relationship between the given data and the applied force. We carried out experiments with in-vivo and ex-vivo data and combined statistical, graphical and perceptual analyses to demonstrate the strength of our solution. Finally, we explore robotic cardiac surgery, which allows carrying out complex procedures including Off-Pump Coronary Artery Bypass Grafting (OPCABG). This procedure avoids the associated complications of using Cardiopulmonary Bypass (CPB) since the heart is not arrested while performing the surgery on a beating heart. Thus, surgeons have to deal with a dynamic target that compromisetheir dexterity and the surgery's precision. To compensate the heart motion, we propase a solution composed of three elements: an energy function to estimate the 3D heart motion, a specular highlight detection strategy and a prediction approach for increasing the robustness of the solution. We conduct evaluation of our solution using phantom and realistic datasets. We conclude the thesis by reporting our findings on these three applications and highlight the dependency between motion estimation and motion understanding at any dynamic event, particularly in clinical scenarios.L’estimació i comprensió del moviment dins d’una seqüència d’imatges és un tema central en la visió per ordinador, el que genera un gran interès perquè vivim en un entorn ple d’esdeveniments dinàmics. Per aquest motiu és considerat com un component natural i factor clau dins d’un ampli ventall d’aplicacions, el qual inclou el reconeixement d’objectes, la reconstrucció de formes tridimensionals, la navegació autònoma i el diagnòstic de malalties. En particular, ens situem en l’àmbit mèdic en el qual la comprensió del cos humà, amb finalitats clíniques, requereix l’obtenció de patrons complexos de moviment dels òrgans. Aquesta és, en general, una tasca difícil quan s’utilitzen només dades de tipus visual. En aquesta tesi afrontem el problema plantejant-nos la pregunta - Com es pot aconseguir una estimació realista del moviment amb l’objectiu d’oferir una millor comprensió clínica? La tesi se centra en la resposta mitjançant l’ús d’una formulació variacional com a base per entendre un dels moviments més complexos del cos humà, el del cor, a través de tres aplicacions: (i) estimació del moviment cardíac per al diagnòstic, (ii) estimació de forces i (iii) predicció del moviment, orientant-se les dues últimes en cirurgia robòtica. En primer lloc, ens centrem en un tema principal en la imatge cardíaca, que és l’estimació del moviment cardíac. L’objectiu principal és oferir als metges mesures objectives i comprensibles per ajudar-los en el diagnòstic de les malalties cardiovasculars. Fem servir dades d’ultrasons ultraràpids i eines per al moviment d’imatges procedents de diverses àrees, com ara l’anàlisi de baix rang i la deformació variacional, per fer una estimació realista del moviment cardíac. La importància rau en que, en prendre les dades de baix rang amb una penalització acurada, es poden crear sinergies en aquest problema variacional complex. Mitjançant acurats experiments numèrics, amb dades realístiques i simulades, hem demostrat com les nostres propostes solucionen deformacions complexes. Després passem del diagnòstic a la cirurgia robòtica, on els cirurgians realitzen procediments delicats remotament, a través de manipuladors robòtics, sense interactuar directament amb els pacients. Com a conseqüència, no tenen la percepció de la força com a resposta, que és un sentit primari important per augmentar la transparència entre el cirurgià i el pacient, per evitar lesions i per reduir la càrrega de treball mental. Resolem aquest problema seguint els principis de conservació de la mecànica del medi continu, en els quals està clar que el canvi en la forma d’un objecte elàstic és directament proporcional a la força aplicada. Per això hem creat un marc variacional que adquireix la deformació que pateixen els teixits per l’aplicació d’una força. Aquesta informació s’utilitza en un sistema d’aprenentatge, per trobar la relació no lineal entre les dades donades i la força aplicada. Hem dut a terme experiments amb dades in-vivo i ex-vivo i hem combinat l’anàlisi estadístic, gràfic i de percepció que demostren la robustesa de la nostra solució. Finalment, explorem la cirurgia cardíaca robòtica, la qual cosa permet realitzar procediments complexos, incloent la cirurgia coronària sense bomba (off-pump coronary artery bypass grafting o OPCAB). Aquest procediment evita les complicacions associades a l’ús de circulació extracorpòria (Cardiopulmonary Bypass o CPB), ja que el cor no s’atura mentre es realitza la cirurgia. Això comporta que els cirurgians han de tractar amb un objectiu dinàmic que compromet la seva destresa i la precisió de la cirurgia. Per compensar el moviment del cor, proposem una solució composta de tres elements: un funcional d’energia per estimar el moviment tridimensional del cor, una estratègia de detecció de les reflexions especulars i una aproximació basada en mètodes de predicció, per tal d’augmentar la robustesa de la solució. L’avaluació de la nostra solució s’ha dut a terme mitjançant conjunts de dades sintètiques i realistes. La tesi conclou informant dels nostres resultats en aquestes tres aplicacions i posant de relleu la dependència entre l’estimació i la comprensió del moviment en qualsevol esdeveniment dinàmic, especialment en escenaris clínics.Postprint (published version

    Appearance Modelling and Reconstruction for Navigation in Minimally Invasive Surgery

    Get PDF
    Minimally invasive surgery is playing an increasingly important role for patient care. Whilst its direct patient benefit in terms of reduced trauma, improved recovery and shortened hospitalisation has been well established, there is a sustained need for improved training of the existing procedures and the development of new smart instruments to tackle the issue of visualisation, ergonomic control, haptic and tactile feedback. For endoscopic intervention, the small field of view in the presence of a complex anatomy can easily introduce disorientation to the operator as the tortuous access pathway is not always easy to predict and control with standard endoscopes. Effective training through simulation devices, based on either virtual reality or mixed-reality simulators, can help to improve the spatial awareness, consistency and safety of these procedures. This thesis examines the use of endoscopic videos for both simulation and navigation purposes. More specifically, it addresses the challenging problem of how to build high-fidelity subject-specific simulation environments for improved training and skills assessment. Issues related to mesh parameterisation and texture blending are investigated. With the maturity of computer vision in terms of both 3D shape reconstruction and localisation and mapping, vision-based techniques have enjoyed significant interest in recent years for surgical navigation. The thesis also tackles the problem of how to use vision-based techniques for providing a detailed 3D map and dynamically expanded field of view to improve spatial awareness and avoid operator disorientation. The key advantage of this approach is that it does not require additional hardware, and thus introduces minimal interference to the existing surgical workflow. The derived 3D map can be effectively integrated with pre-operative data, allowing both global and local 3D navigation by taking into account tissue structural and appearance changes. Both simulation and laboratory-based experiments are conducted throughout this research to assess the practical value of the method proposed
    • …
    corecore