7,649 research outputs found

    Relational Knowledge Extraction from Attribute-Value Learners

    Get PDF
    Bottom Clause Propositionalization (BCP) is a recent propositionalization method which allows fast relational learning. Propositional learners can use BCP to obtain accuracy results comparable with Inductive Logic Programming (ILP) learners. However, differently from ILP learners, what has been learned cannot normally be represented in first-order logic. In this paper, we propose an approach and introduce a novel algorithm for extraction of first-order rules from propositional rule learners, when dealing with data propositionalized with BCP. A theorem then shows that the extracted first-order rules are consistent with their propositional version. The algorithm was evaluated using the rule learner RIPPER, although it can be applied on any propositional rule learner. Initial results show that the accuracies of both RIPPER and the extracted first-order rules can be comparable to those obtained by Aleph (a traditional ILP system), but our approach is considerably faster (obtaining speed-ups of over an order of magnitude), generating a compact rule set with at least the same representation power as standard ILP learners

    Relational Representations in Reinforcement Learning: Review and Open Problems

    Get PDF
    This paper is about representation in RL.We discuss some of the concepts in representation and generalization in reinforcement learning and argue for higher-order representations, instead of the commonly used propositional representations. The paper contains a small review of current reinforcement learning systems using higher-order representations, followed by a brief discussion. The paper ends with research directions and open problems.\u

    Data mining as a tool for environmental scientists

    Get PDF
    Over recent years a huge library of data mining algorithms has been developed to tackle a variety of problems in fields such as medical imaging and network traffic analysis. Many of these techniques are far more flexible than more classical modelling approaches and could be usefully applied to data-rich environmental problems. Certain techniques such as Artificial Neural Networks, Clustering, Case-Based Reasoning and more recently Bayesian Decision Networks have found application in environmental modelling while other methods, for example classification and association rule extraction, have not yet been taken up on any wide scale. We propose that these and other data mining techniques could be usefully applied to difficult problems in the field. This paper introduces several data mining concepts and briefly discusses their application to environmental modelling, where data may be sparse, incomplete, or heterogenous

    kLog: A Language for Logical and Relational Learning with Kernels

    Full text link
    We introduce kLog, a novel approach to statistical relational learning. Unlike standard approaches, kLog does not represent a probability distribution directly. It is rather a language to perform kernel-based learning on expressive logical and relational representations. kLog allows users to specify learning problems declaratively. It builds on simple but powerful concepts: learning from interpretations, entity/relationship data modeling, logic programming, and deductive databases. Access by the kernel to the rich representation is mediated by a technique we call graphicalization: the relational representation is first transformed into a graph --- in particular, a grounded entity/relationship diagram. Subsequently, a choice of graph kernel defines the feature space. kLog supports mixed numerical and symbolic data, as well as background knowledge in the form of Prolog or Datalog programs as in inductive logic programming systems. The kLog framework can be applied to tackle the same range of tasks that has made statistical relational learning so popular, including classification, regression, multitask learning, and collective classification. We also report about empirical comparisons, showing that kLog can be either more accurate, or much faster at the same level of accuracy, than Tilde and Alchemy. kLog is GPLv3 licensed and is available at http://klog.dinfo.unifi.it along with tutorials

    Fast relational learning using bottom clause propositionalization with artificial neural networks

    Get PDF
    Relational learning can be described as the task of learning first-order logic rules from examples. It has enabled a number of new machine learning applications, e.g. graph mining and link analysis. Inductive Logic Programming (ILP) performs relational learning either directly by manipulating first-order rules or through propositionalization, which translates the relational task into an attribute-value learning task by representing subsets of relations as features. In this paper, we introduce a fast method and system for relational learning based on a novel propositionalization called Bottom Clause Propositionalization (BCP). Bottom clauses are boundaries in the hypothesis search space used by ILP systems Progol and Aleph. Bottom clauses carry semantic meaning and can be mapped directly onto numerical vectors, simplifying the feature extraction process. We have integrated BCP with a well-known neural-symbolic system, C-IL2P, to perform learning from numerical vectors. C-IL2P uses background knowledge in the form of propositional logic programs to build a neural network. The integrated system, which we call CILP++, handles first-order logic knowledge and is available for download from Sourceforge. We have evaluated CILP++ on seven ILP datasets, comparing results with Aleph and a well-known propositionalization method, RSD. The results show that CILP++ can achieve accuracy comparable to Aleph, while being generally faster, BCP achieved statistically significant improvement in accuracy in comparison with RSD when running with a neural network, but BCP and RSD perform similarly when running with C4.5. We have also extended CILP++ to include a statistical feature selection method, mRMR, with preliminary results indicating that a reduction of more than 90 % of features can be achieved with a small loss of accuracy

    Automated Construction of Relational Attributes ACORA: A Progress Report

    Get PDF
    Data mining research has not only development a large number of algorithms, but also enhanced our knowledge and understanding of their applicability and performance. However, the application of data mining technology in business environments is still no very common, despite the fact that organizations have access to large amounts of data and make decisions that could profit from data mining on a daily basis. One of the reasons is the mismatch between data representation for data storage and data analysis. Data are most commonly stored in multi-table relational databases whereas data mining methods require that the data be represented as a simple feature vector. This work presents a general framework for feature construction from multiple relational tables for data mining applications. The second part describes our prototype implementation ACORA (Automated Construction of Relational Features).Information Systems Working Papers Serie

    Associated Patterns in Open-Ended Concept Maps within E-Learning

    Get PDF
    A concept map is a diagram that visualizes the structure of individual cognitive knowledge. An approach to creating a concept map structure that allows users to contribute concepts and linkages that express their understanding freely is known as an "open-ended concept map." It has been demonstrated that an open-ended concept map accurately depicts student knowledge structures and reveals student differences. However, manually analyzing an open-ended map is difficult, time-consuming, and includes many propositions, especially in a big classroom. Educational data mining could be used to further process and analyze a collection of concept maps. However, many works attempted to employ data mining in order to produce concept maps structure from text documents rather than examining the knowledge representation. This study aimed to identify hidden students' knowledge representation combination patterns using association rules analysis. The dataset used in this study consisted of 27 open-concept maps created by university students. This study found interesting patterns that reveal students' knowledge in understanding the material given by the teacher
    • ā€¦
    corecore