
Relational Knowledge Extraction from
Attribute-Value Learners
Manoel V. M. França1, Artur S. D. Garcez2, and
Gerson Zaverucha3

1,2 Department of Computing
School of Informatics, City University London
EC1V 0HB London, United Kingdom
manoel.franca.1,aag@city.ac.uk

3 Programa de Engenharia de Sistemas e Computação
COPPE, Universidade Federal do Rio de Janeiro
21941-972 Rio de Janeiro, Brazil
gerson@cos.ufrj.br

Abstract
Bottom Clause Propositionalization (BCP) is a recent propositionalization method which allows
fast relational learning. Propositional learners can use BCP to obtain accuracy results comparable
with Inductive Logic Programming (ILP) learners. However, differently from ILP learners, what
has been learned cannot normally be represented in first-order logic. In this paper, we propose
an approach and introduce a novel algorithm for extraction of first-order rules from propositional
rule learners, when dealing with data propositionalized with BCP. A theorem then shows that
the extracted first-order rules are consistent with their propositional version. The algorithm was
evaluated using the rule learner RIPPER, although it can be applied on any propositional rule
learner. Initial results show that the accuracies of both RIPPER and the extracted first-order
rules can be comparable to those obtained by Aleph (a traditional ILP system), but our approach
is considerably faster (obtaining speed-ups of over an order of magnitude), generating a compact
rule set with at least the same representation power as standard ILP learners.

1998 ACM Subject Classification I.2.3 Deduction and Theorem Proving

Keywords and phrases Relational Learning, Propositionalization, Knowledge Extraction

Digital Object Identifier 10.4230/OASIcs.ICCSW.2013.35

1 Introduction

Relational learning can be described as the task of learning a first-order logic theory from
examples [10, 3]. Inductive Logic Programming (ILP) [15, 17] performs relational learning
either directly by manipulating first-order rules or through a method called propositionaliza-
tion [13, 22], which brings the relational task down to the propositional level by representing
subsets of relations as features that can then be used as attributes. In comparison with full
ILP, propositionalization normally exchanges accuracy for efficiency [11], as it enables the
use of fast attribute-value learners such as rule learners [2], but could lose information in the
translation of first-order rules into features. Bottom Clause Propositionalization (BCP) [5] is
a recent propositionalization method which allows fast relational learning and also allows
propositional learners to obtain accuracy results on par with Inductive Logic Programming
(ILP) learners, although differently from ILP learners, what has been learned is not possible
to be represented in first-order.

© Manoel V. M. França, Artur S. D. Garcez, and Gerson Zaverucha;
licensed under Creative Commons License CC-BY

Imperial College Computing Student Workshop (ICCSW’13).
Editors: Andrew V. Jones, Nicholas Ng; pp. 35–42

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62918161?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/OASIcs.ICCSW.2013.35
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/


36 Relational Knowledge Extraction from Attribute-Value Learners

In this paper, we introduce a novel algorithm for consistent extraction of first-order rules
from propositional rule learners, when dealing with data propositionalized with BCP. Bottom
clauses are variablized first-order clauses that are used as boundaries in ILP hypothesis
search space, firstly introduced by Progol [14]. Given an ILP dataset, bottom clauses are
built from one positive example e, background knowledge BK (a set of clauses that describe
what is known) and language bias L (a set of clauses that define how clauses can be built).
A bottom clause is the most specific clause (with most literals) that can be considered a
candidate hypothesis. BCP uses bottom clauses for propositionalization because they carry
semantic meaning, and because bottom clause literals can be used directly as features in a
truth-table, simplifying the feature extraction process [16, 4]. BCP extends Progol’s bottom
clause generation algorithm to deal with negative examples and it keeps track of a hash
table which is responsible to map each constant found during bottom clause generation to
an unique variable, for each example. This hash table is one of the key differences between
BCP and other propositionalization methods such as RSD [22], SINUS [10] and RELAGGS
[12], and is used by our approach to transform propositional rules learned from data which
was propositionalized with BCP (which we will refer in this work simply as BCP-rules)
to consistent and accurate relational (first-order) rules. A theorem then shows that the
extracted first-order rules are consistent with their propositional version.

Our methodology is evaluated using BCP for propositionalization and the propositional
rule learner RIPPER on four Alzheimer datasets [9] and we have used three metrics to
present our results: standard classification accuracy (the percentage of correctly classified
examples, among all tested examples), runtime (total time taken to complete the experiment,
from training to testing), and rule size (we define rule size as the number of body and head
literals in the entire induced theory). Results show that although information loss is expected
when dealing with propositionalization methods [22, 10, 5], the accuracy of both RIPPER
and the first-order rules can be comparable with Aleph [20], a traditional ILP system, in
some cases, while being considerably faster and generating rules with lower size. The rules
generated by our algorithm also have more representational power, by being able to represent
disjunctions and negation as failure.

The remainder of this paper is as follows: in Section 2, we review BCP and the proposi-
tional rule learner RIPPER. In Section 3, we introduce our contribution: an algorithm for
extracting relational rules from BCP-rules. Our empirical results with regard to classification
accuracy, runtime and rule size in comparison with RIPPER and Aleph is shown in Section
4, and in Section 5, we conclude and discuss directions for future work.

2 Background

In this section, the key methods and algorithms used in our work are introduced: Bottom
Clause Propositionalization and RIPPER.

Bottom Clause Propositionalization [5] is a logic-based propositionalization method
which takes advantage of Progol’s bottom clause generation algorithm and the previous work
from [4], which shows that bottom clause literals can be used as propositional features. In
[5], BCP managed to achieve comparable results with Aleph in a number of ILP datasets,
even though propositionalization methods incur information loss. Additionally, BCP was
faster and also obtained better accuracy and runtime results when compared to RSD. One
problem with the obtained results, though, was that all tests were done in the propositional
level. We investigate in this paper how to bring those results back to first-order.

BCP has two steps: bottom clause generation and attribute-value mapping. In the first



M. V. M. França, A. S. D. Garcez, and G. Zaverucha 37

step, each example is given to Progol’s bottom clause generation algorithm [21] to create
a corresponding bottom clause representation. To do so, a slight modification is needed to
allow the same hash function to be shared among all examples, in order to keep consistency
between variable associations (i.e., to ensure that variable associations are done in the same
way, for different bottom clauses), and to allow negative examples to have bottom clauses as
well; the original algorithm deals with positive examples only. The generation algorithm has
a single parameter, depth, which is the variable depth of the bottom clause generation process.
A more detailed description of the modified version of Progol’s bottom clause generation
algorithm can be found in [5].

To illustrate BCP’s bottom clause generation, consider the well-known family relation-
ship [15] ILP example: BK = {mother(mom1, daughter1), wife(daughter1, husband1),
wife(daughter2, husband2)}, positive example motherInLaw(mom1, husband1), and negative
example motherInLaw(daughter1, husband2). If the modified bottom clause generation al-
gorithm is executed with depth = 1 on the positive and negative examples shown above, it gen-
erates the following training set: S⊥ = {motherInLaw(A,B) :- mother(A,C), wife(C,B);
∼ motherInLaw(A,B) :- wife(A,C)}.

After the creation of the S⊥ set, each bottom clause inside S⊥ is converted into a binary
vector vi, 0 ≤ i ≤ n, according to the presence or absence of each found literal inside S⊥,
where n is the number of distinct literals inside S⊥.

RIPPER [2] is a well-known propositional rule learner which can be considered the
propositional version of the FOIL first-order theory induction algorithm [8] in the sense
that it also performs a covering-based algorithm to choose literals to build its theory, using
information gain as search heuristic. RIPPER’s focus is to tackle noisy data and achieve
competitive results with regard to Quinlan’s propositional tree-learner C4.5 [18]. RIPPER
extends its predecessor IREP [6], by improving its information gain heuristic and its stopping
criteria (this improvement was named IREP*), and uses IREP* multiple times, to perform
different parts of the learning task. Those parts are: IREP* is used once to obtain an initial
rule set, covering part of the positive examples; The rules are optimized with regard to
redundancy/consistency; and IREP* is used again to cover the remaining positive examples.

RIPPER has been shown in [2] to generate rules with better performance than C4.5’s
decision trees and to be efficient (fast and accurate) on large and noisy datasets. RIPPER’s
ability to generate good rules when dealing with large and noisy datasets is the reason it
is chosen to process data which was propositionalized with BCP: bottom clauses can be
considerably large, possibly having infinite size [14], and a learner which can deal with large
number of noisy features is better suited to deal with BCP.

3 Extracting Relational Knowledge from BCP-Rules

In this section, our algorithm for generating first-order rules from BCP-rules is introduced.
It is important to notice that the described methodology below does not require a specific
attribute-value learner: any propositional learner which is able to generate logic rules to
describe what has been learned, e.g. decision tree learners, rule learners and graph learners,
are all able to be used for the proposed rule extraction.

As a first step of our approach, we explain hereafter how BCP-rules are generated. Firstly,
BCP is applied in the examples set, generating a bottom clause set S⊥, as shown in Section
2. Then, attribute-value learning takes place. In this work, we have chosen RIPPER due to
the advantages described in Section 2, but any learner that can generate rules can be used,
although further investigation is required.

ICCSW’13



38 Relational Knowledge Extraction from Attribute-Value Learners

By using RIPPER on data propositionalized with BCP, a set of rules is created. From an
ILP point of view, those rules do not necessarily obey variable chaining properties or any
kind of language bias restrictions: each feature (i.e. each distinct bottom clause atom) is seen
as propositional features by RIPPER and thus, further processing needs to be done in order
to treat it as first-order. As an example, consider the following propositionalized dataset:

S⊥ = {motherInLaw(A,B) : − mother(C,B), wife(C,D); (1)
motherInLaw(A,B) : − mother(A,C), wife(C,B);

∼ motherInLaw(A,B) : − wife(C,B), parents(C,B,D), dad(E,F )}.

From this dataset, one possible rule generated by RIPPER (containing features from
positive examples and negated features from negative examples), in Prolog format, could be:

R⊥ = {motherInLaw(A,B) : − mother(A,C), wife(C,D), not(dad(E,F ))}. (2)

The first point worth noticing regarding R⊥ is that it can represent the absence of a BCP
feature, e.g. not(dad(E,F )), which is equivalent to negation as failure [7] and shows that
the rules we generate have more representational power. The second point is that there is a
problem with the generated BCP-rule R⊥, if it is treated directly as first-order: the variables
of dad(E,F ) are not present in any other body or head atom (from now on, we will refer
to those variables as unconstrained variables). This is possible to happen due to the fact
that all atoms are seen as features generated by BCP, thus not taking into consideration the
language bias. If R⊥ is used as theory to infer unseen first-order data, as long as there is at
least one dad/2 ground atom1 inside the background knowledge, dad(E,F ) would always
be true and thus, not(dad(E,F )) would always be false and R⊥ would always be false as
well, thus limiting the generalization capabilities of R⊥. In order to solve this issue, after
generating BCP-rules using RIPPER and obtaining a set of BCP-rules R⊥, all unconstrained
variables need to be removed from R⊥ before treating it as a first-order theory.

The process of extracting first-order rules from BCP-rules can be divided into three steps:
unconstrained variables search, unconstrained variables replacing and first-order filtering. In
the first step, unconstrained variables search, a search is done in the BCP-rules to find literals
with unconstrained variables (i.e., finding all occurrences of literals such as not(dad(E,F ))
in R⊥ above). We detect unconstrained variables from the rightmost literal to the leftmost
one, by verifying if the variable being checked, belonging to a body literal li, appears on
any other body literal in {lj |j < i}. For each BCP-rule r ∈ R⊥, we store unconstrained
variables (and the literals where they were found) to be used in the next step of our algorithm,
unconstrained variables grounding.

As an example, let us use the R⊥ defined in (2) as input for unconstrained variables
search. Firstly, unconstrained variables are searched in the single clause of R⊥, from the
right to the left. In the rightmost literal, not(dad(E,F )), two unconstrained variables are
found: E and F . Because of that, both variables and the literal where they were found are
stored. After advancing to the next rightmost literal, one more unconstrained variable is
found: D. Thus, D is stored for the next part of our algorithm, together with the literal
wife(C,D) where it was found. Note that the other variable, C, is not included, since it
appears in mother(A,C) and thus, it is not unconstrained. Since no more unconstrained
variables can be found, the first step of our extraction algorithm comes to an end with the
following variables/literals stored: M ={E,F, not(dad(E,F )); D,wife(C,D)}.

1 Ground atoms are atoms which does not contain variables, only constants.



M. V. M. França, A. S. D. Garcez, and G. Zaverucha 39

After that, unconstrained variables replacing comes into place. All the stored variables
are replaced using the hash table generated during BCP, as mentioned on Section 2, in
order to eliminate all unconstrained variables which were found in the previous steps. To
illustrate that, let us continue our family relationship example. Three variables have been
flagged as unconstrained: E and F , from the literal not(dad(E,F )), and D, from the literal
wife(C,D). Assume the same propositionalized examples set S⊥ shown in (1), that generated
the BCP-rules set R⊥. Since the body of the first example of S⊥ contains one variable of M
(which is D), the second example does not contain any of the variables mapped in M , and
the third example contains all three variables inside M , which are D, E and F (totalizing
two occurrences of D and one occurrence of both E and F on S⊥), BCP’s hash must have
two entries for D, one entry for E and one entry for F . Let us assume that those entries are
{D/husband1}, {D/daughter1}, {E/mom1} and {F/daughter1}.

As explained earlier, as long as a BCP-propositionalized example contains a literal
lexically identical to a literal from another example, both will be considered to have the
feature represented by that literal. In the case of the feature wife(C,D), for instance, even
though different examples have different hash mappings for C and D, the presence or not of
wife(C,D) is what is considered for propositional learning. This suggests that the rule that
defines the truth-value of a feature is a disjunction over all observed mappings (unifications)
in the training set during BCP propositionalization. Theorem 2 below shows that for each
BCP feature, a disjunction over all possible unifications of a feature with grounding operators
over all examples is semantically equivalent to the feature itself.

I Definition 1. Let e ∈ E be an example of an dataset E, propositionalized with BCP.
Also, let f be a BCP feature, let U be the set of all unconstrained variables which can be
found inside f , having size k, and let hashe be the variable/constant mapping generated for
example e during BCP. The grounding unifier θf

e for a feature f with regard to an example
e is defined as θf

e = {v1/c1, v2/c2, · · · , vk/ck}, where vi ∈ U, 1 ≤ i ≤ k is an unconstrained
variable and ci is the constant which is mapped to vi, according to hashe. If k = 0, θf

e = ∅.

I Theorem 2. Let E be an example set, propositionalized with BCP and having size n,
and f be one of the generated features with BCP when applied to E. Also, let v(f) be a
valuation function, which associates a boolean truth-value for a feature f . Then, v(f) ≡
v(fθf

e1
) ∨ v(fθf

e2
) ∨ · · · ∨ v(fθf

en
), where {e1, e1 · · · e1} ⊂ E and fθf

ei
is the unification of

feature f with a grounding unifier θf
ei
, 1 ≤ i ≤ n.

Proof. Proof by contradiction. Suppose that there exists a feature f and examples ei ∈ E,
1 ≤ i ≤ n, where v(f) 6≡ v(fθf

e1
)∨ v(fθf

e2
)∨ · · · ∨ v(fθf

en
) holds. There are two case scenarios

that makes this equation true:

There exists a feature f with truth-value true, but all possible unifications of f with
ground unifiers θf

ei
, 1 ≤ i ≤ n, are false. If f appears in a rule, it must have been found

in at least one bottom clause generated with BCP from an example e ∈ E. Then, there
exists one set of unifications {v/c} in hashe, one for each v inside f , which makes f{v/c}
true. If this unifier is used as θf

e , then at least one member of the disjunction is true.
There exists a feature f which is false, but at least one possible unification θf

ei
of f ,

1 ≤ i ≤ n, with ground unifier θf
ei
, is true. Definition 1 ensures that f can be found inside

ei, otherwise θf
ei

would not exist. Thus, if θf
ei

is a valid unifier for ei, it also needs to be
a valid unifier for f .

J

ICCSW’13



40 Relational Knowledge Extraction from Attribute-Value Learners

We now can solve the problem of BCP-rules having unconstrained variables by replacing
them with disjunctions of grounding unifications (we call those unified BCP-rules constrained
BCP-rules). We illustrate the second step of our algorithm by continuing our family
relationship example. From the first step of our relational knowledge extraction algorithm, we
have obtained a list of variables that are unconstrained and need to be replaced: E and F , from
feature not(dad(E,F )), and D, from feature wife(C,D). From (1), one example contains
the feature not(dad(E,F )) and two contain feature wife(C,D). Thus, not(dad(E,F )) is
replaced by one grounded literal and wife(C,D) is replaced by a disjunction of two grounded
literals, by applying Theorem 2 and using the previously specified hash entries for those
examples: {D/husband1}, {D/daughter1}, {E/husband2} and {F/daughter1}. Those
replacements are {not(dad(E,F )) 7→ not(dad(husband1, daughter1))} and {wife(C,D) 7→
wife(C, daughter1) ∨ wife(C, husband2)} and thus, the resulting constrained BCP-rule set
RC

⊥ after replacing R⊥ from (2) with the created grounded atoms (in prolog format) is

RC
⊥ = {motherInLaw(A,B) : −mother(A,C), (wife(C, daughter1);wife(C, husband2)),

not(dad(husband1, daughter1))}.

Lastly, in first-order filtering, we apply a modified version of the theory filtering algorithm
T-reduce [20], a companion program to Aleph, in theory RC

⊥. The original T-reduce al-
gorithm is capable of removing rules that do not cover any first-order training example
and rules that contribute negatively to the theory accuracy. We modified T-reduce to
also to cut out redundant literals and literals that do not have variables on it. Literals
without variables need to be removed for the same reason the unconstrained variables of
not(dad(E,F )) need to be replaced: depending on the background knowledge, those literals
are always true or always false, thus contributing negatively to the rule’s ability to generalize.
As an example, if our version of T-reduce is applied on RC

⊥, assuming that RC
⊥ is non-

redundant (otherwise it would be removed by T-reduce), we obtain the final first-order theory
RF OL

⊥ = {motherInLaw(A,B) :- mother(A,C), (wife(C, daughter1);wife(C, husband2))},
since not(dad(husband1, daughter1)) does not have variables on it.

To illustrate the whole process of extracting first-order rules from BCP-rules, our complete
procedure is summarized in Algorithm 1. It receives as input a set of BCP-rules R⊥ and
outputs a set RF OL

⊥ of extracted first-order rules.

Algorithm 1 First-order Rules Extraction from BCP-rules
1: RF OL

⊥ = ∅
2: Let U be the set of unconstrained variables and their respective literals inside R⊥
3: for each rule r of R⊥ do
4: Apply Theorem 2 by using U on r to obtain a constrained clause cr

5: Apply (modified) T-reduce on cr to obtain a filtered clause rtreduce

6: Check if rtreduce contributes positively towards accuracy; if not, discard it
7: Add rtreduce to RF OL

⊥ , if it has not been discarded
8: end for
9: return RF OL

⊥

4 Initial Results

In this section, we present the experimental methodology and initial results for our relational
knowledge extraction algorithm. We show comparative results between the ILP system



M. V. M. França, A. S. D. Garcez, and G. Zaverucha 41

Aleph, RIPPER when trained with BCP-data (we will refer to it as BCP+RIPprop) and
the extracted first-order rules from BCP+RIPprop (we will refer to it as BCP+RIPF OL),
using the methodology presented on Section 3. We have used the Alzheimers benchmark [9],
which consists of four datasets: Amine, Acetyl, Memory and Toxic. The used experimental
configurations on Aleph, RIPPER and BCP can be found on http://soi.city.ac.uk/
~abdz937/iccsw13Parameters.txt.

We evaluate the results on three aspects: standard accuracy, runtime and theory size. We
define standard accuracy as the percentage of correctly classified examples over test data;
we define runtime as the total pre-processing, training and testing times for each system;
and we define theory size as the total number of literals (body literals and head literals) in
the learned theory. Our obtained results, averaged by 10-fold cross-validation for accuracy
and theory size, and accumulated over all 10 fold with regard to runtime, are presented
on Table 1. In the accuracy results, values in bold are the highest ones obtained between
BCP+RIPprop and BCP+RIPF OL and the difference between them and the ones marked
with asterisk (*) are statistically significant by two-tailed, paired t-test.

Table 1 Accuracy results (with standard deviation), runtimes and theory size measurements
for the Alzheimers benchmark (accuracies in the first line; runtimes, theory size in the second
line). The results accuracy difference between BCP+RIPprop and Aleph, on all four datasets, are
not statistically significant. Between BCP+RIPprop and BCP+RIPF OL, BCP+RIPF OL managed
to obtain statistically comparable accuracy results with BCP+RIPprop in the first two datasets
(Alz-ami and Alz-ace). Comparing directly BCP+RIPF OL with Aleph, BCP+RIPF OL also managed
to obtain statistically comparable results on two datasets, Alz-ami and Alz-ace. Additionally, it can
be seen that the our methodology is considerably faster than Aleph, obtaining an average speed-up
over all four datasets of more than one order of magnitude, while generating smaller rules as well.

Alz-ami Alz-ace Alz-mem Alz-tox

Aleph 78.71(±5.25) 69.46(±4.6) 68.57(±5.7) 80.5(±4.83)
(baseline) 1:31:05, 36.1 8:06:06, 47.3 3:47:55, 45.7 6:02:05, 37.9

BCP+RIPprop 73.35(±4.32) 67.8(±3.77) 65.27(±7.11) 78.44(±5.44)
0:19:49/30 0:23:21/20.1 0:25:11/14.4 0:17:41/35.2

BCP+RIPF OL 77.73(±4.57) 63.56(±5.06) 57.64 ∗ (±5.7) 66.45 ∗ (±6.93)
0:21:59/30.4 0:26:39/18.7 0:28:45/13.8 0:20:57/18

5 Conclusion and Future Work

This paper has tackled the problem of accurately and consistently represent what has been
learned with data previously propositionalized with BCP, but back to a relational format, by
introducing a novel algorithm for consistent extraction of first-order rules from propositional
rules described with BCP features. A theorem shows that the extracted first-order rules are
consistent with their propositional version. Our results show that the presented methodology
is promising and it can not only extract accurate rules from propositional learners which
used BCP as propositionalization method, but it can also improve its accuracy in the process.
Additionally, our approach is capable of generating first-order rules with disjunctions and
negation as failure, which standard ILP inducers cannot, and our results show that our
approach is considerably faster than Aleph (a speed-up of over an order of magnitude on
average) and also generates smaller rules.

ICCSW’13

http://soi.city.ac.uk/~abdz937/iccsw13Parameters.txt
http://soi.city.ac.uk/~abdz937/iccsw13Parameters.txt


42 Relational Knowledge Extraction from Attribute-Value Learners

As future work, experiments on datasets with numerical (continuous) data, such as
Carcinogenesis [19] and with very large data, such as CORA [1] are underway. Also, a new
version of RIPPER which satisfies mode declarations, for learning with BCP, is being studied.

References
1 M. Bilenko and R. J. Mooney. Adaptive duplicate detection using learnable string similarity

measures. In Proc. ACM SIGKDD, pages 39–48, New York, NY, USA, 2003.
2 W. W. Cohen. Fast effective rule induction. In Armand Prieditis and Stuart J. Russell,

ed., ICML, pg. 115–123. Morgan Kaufmann, 1995.
3 L. De Raedt. Logical and Relational Learning. Cognitive Technologies. Springer, 2008.
4 F. DiMaio and J. W. Shavlik. Learning an Approximation to Inductive Logic Programming

Clause Evaluation. In ILP, vol. 3194 of LNAI, pg. 80–97, 2004.
5 M. V. M. França, G. Zaverucha, and A. S. D. Garcez. Fast relational learning using bottom

clause propositionalization with artificial neural networks. Mach. Learn., pg. 1–24, 2013.
6 J. Fürnkranz and G. Widmer. Incremental reduced error pruning. In William W. Cohen

and Haym Hirsh, ed., ICML, pg. 70–77. Morgan Kaufmann, 1994.
7 M. L. Ginsberg, editor. Readings in nonmonotonic reasoning. Morgan Kaufmann, San

Francisco, CA, USA, 1987.
8 J. R. Quinlan and R. M. Cameron-Jones. FOIL: A Midterm Report. In Proc. ECML, pages

3–20. Springer, 1993.
9 R.D. King and A. Srinivasan. Relating chemical activity to structure: An examination of

ILP successes. New Generation Computing, 13(3-4):411–434, 1995.
10 S. Kramer, N. Lavrač, and P. Flach. Relational Data Mining. chapter Propositionalization

approaches to relational data mining, pg. 262–286. Springer, New York, NY, USA, 2000.
11 M. A. Krogel, S. Rawles, F. Železný, P. Flach, N. Lavrač, and S. Wrobel. Comparative

Evaluation Of Approaches To Propositionalization. In ILP, vol. 2835 of LNAI, pg. 194–217.
Springer, 2003.

12 M. A. Krogel and S. Wrobel. Facets of Aggregation Approaches to Propositionalization.
pg. 30–39. Department of Informatics, University of Szeged, September 2003.

13 N. Lavrač and S. Džeroski. Inductive logic programming: techniques and applications.
Ellis Horwood, 1994.

14 S. Muggleton. Inverse Entailment and Progol. New Generation Computing, 13(3-4):245–
286, 1995.

15 S. Muggleton and L. De Raedt. Inductive logic programming: Theory and methods. J.
Log. Program., 19/20:629–679, 1994.

16 S. Muggleton and A. Tamaddoni-Nezhad. QG/GA: a stochastic search for Progol. Mach.
Learn., 70:121–133, 2008.

17 S.H. Nienhuys-Cheng and R. de Wolf. Foundations of Inductive Logic Programming, vol.
1228 of LNAI. Springer, 1997.

18 J. R. Quinlan. C4.5: programs for machine learning. Morgan Kaufmann, San Francisco,
CA, USA, 1993.

19 A. Srinivasan, R. D. King, S. H. Muggleton, and M. J. E. Sternberg. Carcinogenesis
Predictions using ILP. Proc. International Workshop on Inductive Logic Programming,
1297(1297):273–287, 1997.

20 A. Srinivasan. The Aleph System, version 5. http://www.cs.ox.ac.uk/activities/
machlearn/Aleph/aleph.html, June 2007. Last accessed on July/2013.

21 A. Tamaddoni-Nezhad and S. Muggleton. The lattice structure and refinement operators
for the hypothesis space bounded by a bottom clause. Mach. Learn., 76(1):37–72, 2009.

22 F. Železný and N. Lavrač. Propositionalization-based Relational Subgroup Discovery With
RSD. Machine Learning, 62:33–63, 2006.


	Introduction
	Background
	Extracting Relational Knowledge from BCP-Rules
	Initial Results
	Conclusion and Future Work

