11 research outputs found

    On consciousness, resting state fMRI, and neurodynamics

    Get PDF

    Activity Dependent Degeneration Explains Hub Vulnerability in Alzheimer's Disease

    Get PDF
    <div><p>Brain connectivity studies have revealed that highly connected ‘hub’ regions are particularly vulnerable to Alzheimer pathology: they show marked amyloid-β deposition at an early stage. Recently, excessive local neuronal activity has been shown to increase amyloid deposition. In this study we use a computational model to test the hypothesis that hub regions possess the highest level of activity and that hub vulnerability in Alzheimer's disease is due to this feature. Cortical brain regions were modeled as neural masses, each describing the average activity (spike density and spectral power) of a large number of interconnected excitatory and inhibitory neurons. The large-scale network consisted of 78 neural masses, connected according to a human DTI-based cortical topology. Spike density and spectral power were positively correlated with structural and functional node degrees, confirming the high activity of hub regions, also offering a possible explanation for high resting state Default Mode Network activity. ‘Activity dependent degeneration’ (ADD) was simulated by lowering synaptic strength as a function of the spike density of the main excitatory neurons, and compared to random degeneration. Resulting structural and functional network changes were assessed with graph theoretical analysis. Effects of ADD included oscillatory slowing, loss of spectral power and long-range synchronization, hub vulnerability, and disrupted functional network topology. Observed transient increases in spike density and functional connectivity match reports in Mild Cognitive Impairment (MCI) patients, and may not be compensatory but pathological. In conclusion, the assumption of excessive neuronal activity leading to degeneration provides a possible explanation for hub vulnerability in Alzheimer's disease, supported by the observed relation between connectivity and activity and the reproduction of several neurophysiologic hallmarks. The insight that neuronal activity might play a causal role in Alzheimer's disease can have implications for early detection and interventional strategies.</p> </div

    Relating structural and functional anomalous connectivity in the aging brain via neural mass modeling

    No full text
    The structural changes that arise as the brain ages influence its functionality. In many cases, the anatomical degradation simply leads to normal aging. In others, the neurodegeneration is large enough to cause neurological disorders (e.g. Alzheimer's disease). Structure and function can be both currently measured using noninvasive techniques, such as magnetic resonance imaging (MRI) and electroencephalography (EEG) respectively. However, a full theoretical scheme linking structural and functional degradation is still lacking. Here we present a neural mass model that aims to bridge both levels of description and that reproduces experimentally observed multichannel EEG recordings of alpha rhythm in young subjects, healthy elderly subjects, and patients with mild cognitive impairment. We focus our attention in the dominant frequency of the signals at different electrodes and in the correlation between specific electrode pairs, measured via the phase-lag index. Our model allows us to study the influence of different structural connectivity pathways, independently of each other, on the normal and aberrantly aging brain. In particular, we study in detail the effect of the thalamic input on specific cortical regions, the long-range connectivity between cortical regions, and the short-range coupling within the same cortical area. Once the influence of each type of connectivity is determined, we characterize the regions of parameter space compatible with the EEG recordings of the populations under study. Our results show that the different types of connectivity must be fine-tuned to maintain the brain in a healthy functioning state independently of its age and brain condition.Peer Reviewe

    Data-driven neural mass modelling

    Get PDF
    The brain is a complex organ whose activity spans multiple scales, both spatial and temporal. The computational unit of the brain is thought to be the neurone. At the microscopic level, neurones communicate via action potentials. These may be observed experimentally by means of precise techniques that work with a small number of these cells and their interactions, and that can be modelled mathematically in a variety of ways. Other techniques consider the averaged activity of large groups of neurones in the mesoscale, or cortical columns; theoretical models of these signals also abound. The problem of relating the microscopic scale to the mesoscopic is not trivial. Analytical derivations of mesoscopic models are based on assumptions that are not always justified. Also, traditionally there has been a separation between the clinically oriented analysts that process neural signals for medical purposes and the theoretical modelling community. This Thesis aims to lay bridges both between the microscopic and mesoscopic scales of brain activity, and between the experimental and theoretical angles of its study. This is achieved via the unscented Kalman filter (UKF), which allows us to combine knowledge from different sources (microscopic/mesoscopic and experimental/theoretical). The outcome is a better understanding of the system than each of the sources of information could provide separately. The Thesis is organised as follows. Chapter 1 is a brief reflection on the current methodology in Science and its underlying motivations. This is followed by chapters 2 to 4, which introduce and contextualise the concepts discussed in the remainder of the work. Chapter 5 tackles the interrelationship of the microscopic and mesoscopic scales. Although efforts have been made to derive mesoscopic equations from models of microscopic networks, they are based on assumptions that may not always hold. We use the UKF to assimilate the output of microscopic networks into a mesoscopic model and study a variety of dynamical situations. Our results show that using the Kalman filter compensates for the loss of information that is common in analytical derivations. Chapters 6 and 7 address the combination of experimental data with neural mass models. More specifically, we extend Jansen and Rit's model of a cortical column with a model of the head, which allows us to use electroencephalography (EEG) data. With this, we estimate the state of the system and a relevant parameter of choice. In chapter 6 we use in silico data to test the UKF under a variety of dynamical conditions, comparing simulated intracranial data with simulated EEG. Extracranial estimation is always superior in speed and quality to intracortical estimation, even though intracortical electrodes are closer to the source of activity than extracranial electrodes. We suggest that this is due to the more complete picture of the cortex that is visible with the set of extracranial electrodes. Chapter 7 feeds experimental EEG data of an epileptic patient into Jansen and Rit's model; the goal is to estimate a parameter that governs the dynamical behaviour of the system, again with the UKF. The estimation of the state closely follows the experimental data, while the parameter shows sensitivity to the changes in brain regimes, especially seizures. These results show promise for using data assimilation to address some shortcomings of brain modelling techniques. On the one hand, the mutual influence of neural structures at the microscopic and the mesoscopic scales may become better characterised, by means of filtering approaches that bypass analytical limitations. On the other hand, fusing experimental EEG data with mathematical models of the brain may enable us to determine the underlying dynamics of observed physiological signals, and at the same time to improve our models with patient-specific information. The potential of these enhanced algorithms spans a wide range of brain-related applications.El cervell humà és un òrgan de gran complexitat l’activitat del qual es desenvolupa en múltiples escales, tant espacials com temporals. Es creu que la unitat computacional del cervell és la neurona, una cèl·lula altament especialitzada que té com a funció rebre, processar i transmetre informació. A nivell microscòpic, les neurones es comuniquen les unes amb les altres per potencials d’acció. Aquests es poden observar experimentalment “in vivo” per mitjà de tècniques de gran precisió que només poden tenir en compte un nombre relativament reduït de cèl·lules i interaccions, i que es poden modelar matemàticament de diverses maneres. Altres tècniques tracten amb grans grups de neurones a escala mesoscòpica, o columnes corticals, i detecten l’activitat mitjana de la població neuronal; en aquest cas també abunden els models teòrics que intenten reproduir aquests senyals. Malgrat que està ben establert que hi ha una intercomunicació entre les escales microscòpica i mesoscòpica, relacionar una escala amb una altra no és gens trivial. Les derivacions analítiques de models mesoscòpics a partir de xarxes microscòpiques es basen en suposicions que no sempre es poden justificar. A part, tradicionalment hi ha hagut una frontera de separació entre els analistes clínics que processen senyals neuronals amb fins mèdics (i que sovint usen tècniques molt invasives i/o costoses), i la comunitat teòrica que modelitza aquests senyals, per a qui el repte més gran és caracteritzar els paràmetres que governen els models perquè aquests s’acostin el més possible a la realitat. Aquesta Tesi té com a objectiu, per una banda, fer un pas més a caracteritzar la relació entre les escales microscòpica i mesoscòpica d’activitat cerebral, i, per l’altra, establir ponts entre els punts de vista experimental i teòric del seu estudi. Ho aconseguim amb un algoritme d’assimilació de dades, el filtre de Kalman desodorat (UKF, de les sigles en anglès), que ens permet combinar informació de diverses procedències (microscòpica/mesoscòpica o experimental/teòrica). El resultat és una comprensió més àmplia del sistema estudiat que la que haurien permès les fonts d’informació per separat. La Tesi està organitzada de la següent manera. El capítol 1 comença amb una breu reflexió sobre la metodologia científica actual i les seves motivacions subjacents (segons l’autora). El segueixen els capítols del 2 al 4, que introdueixen i posen en context els conceptes que s’exposen a la resta del treball. El capítol 5 aborda el problema de la relació entre l’escala microscòpica i la mesoscòpica. Tot i que existeixen diverses derivacions d’equacions mesoscòpiques partint de models de xarxes neuronals, sovint es basen en suposicions fràgils que no es compleixen en situacions més complicades. Aquí utilitzem l’UKF per assimilar la sortida de xarxes microscòpiques en un model mesoscòpic simple i estudiar diverses situacions dinàmiques. Els resultats mostren que la manera que el filtre de Kalman gestiona les incerteses del model compensa les pèrdues d’informació pròpies de les derivacions analítiques de models mesoscòpics. Els capítols 6 i 7 tracten la combinació de dades experimentals del cervell amb models de masses neurals que descriuen la dinàmica de grups de neurones. Concretament, estenem el model de Jansen i Rit d’una columna cortical amb un model del cap, el qual ens permet fer servir dades extracranials no invasives. Amb això estimem l’estat del sistema i un paràmetre d’interès de possible rellevància en l’estudi clínic d’afeccions com l’epilèpsia. En el capítol 6 fem servir dades “in silico” per provar l’UKF en diversos escenaris dinàmics: conjunts de paràmetres que causen comportaments diferents en les columnes corticals, diferents nivells de soroll de mesura i dues modalitats de transmissió d’informació; tot això comparant dades intracranials simulades amb simulacions d’electroencefalogrames (EEG). En totes les situacions estudiades, l’estimació extracranial és sempre superior, en velocitat i precisió, a l’estimació intracortical, encara que els elèctrodes intracorticals són molt més propers a la font de l’activitat que els elèctrodes de la superfície cranial. Suggerim que això pot ser causat per la visió més completa del còrtex que es pot obtenir amb el conjunt d’elèctrodes extracranials. Aquesta idea ve reforçada pels resultats observats amb elèctrodes extracranials individuals treballant de manera independent, que apunten a la sensibilitat espacial de les mesures. En el capítol 7 alimentem el model de Jansen i Rit amb dades experimentals de l’EEG d’un pacient epilèptic; l’objectiu és estimar un paràmetre significatiu que governa l’evolució dinàmica del sistema, de nou amb l’UKF. L’estimació de l’estat és precisa i el paràmetre es veu afectat pels canvis de règim, especialment (però no exclusivament) per les convulsions. Aquests resultats són prometedors a l’hora d’utilitzar l’assimilació de dades per superar les diverses carències de les tècniques de modelització cerebral. Per una banda, la influència mútua entre estructures a escala microscòpica i a escala mesoscòpica es pot caracteritzar millor, gràcies a tècniques de filtrat que permeten esquivar les habituals limitacions analítiques. Això dóna com a resultat una millor comprensió de l’estructura i funció cerebrals. Per una altra banda, fusionar dades experimentals d’EEG amb els models matemàtics del cervell existents ens pot permetre determinar les dinàmiques subjacents dels senyals fisiològics que tenim disponibles, a la vegada que millorem els nostres models amb informació individual de cada pacient. Aquests algoritmes augmentats tenen potencial per a un ampli espectre d’aplicacions en el camp de les neurociències, des d’interfícies cervell/ordinador fins a tota mena d’usos en medicina personalitzada com el diagnòstic precoç de malalties neurodegeneratives, la predicció de crisis convulsives o la monitorització de la rehabilitació postisquèmica o posttraumàtica, entre molts altres.Postprint (published version

    Articles indexats publicats per investigadors del Campus de Terrassa: 2013

    Get PDF
    Aquest informe recull els 228 treballs publicats per 177 investigadors/es del Campus de Terrassa en revistes indexades al Journal Citation Report durant el 2013Preprin

    Articles indexats publicats per investigadors del Campus de Terrassa: 2012

    Get PDF
    Aquest infrome recull els 221 treballs publicats per 216 investigadors/es del Campus de Terrassa en revistes indexades al Journal Citation Report durant el 2012Preprin

    Attentional refocusing between time and space in older adults:investigation of neural mechanisms and relation to driving

    Get PDF
    Older adults have a disproportionately high risk of causing collisions at intersections and causing collisions by failing to notice surrounding road signs or signals. Collisions caused by older drivers seem to result from attentional failures. There is limited research exploring the ability to refocus from orienting attention to events changing in time (i.e. temporal attention) to distributing attention spatially (i.e. spatial attention), a process that is particularly important while driving and, if impaired,could cause collisions. The aims of the project were firstly to assess whether the ability to refocus attention from time to space changes throughout the adult lifespan when assessed with a computer based task and in an ecologically valid scenario during simulated driving, secondly, to use magnetoencephalography (MEG) to identify changes to neural mechanism that might explain difficulties in attentional refocusing, and finally, use mobile electroencephalography to explore the neural mechanisms involved in attentional refocusing while driving. Results demonstrated age related declines in the ability to refocus attention from time to space both in a computer-based task and during simulated driving. MEG recorded in a computer-based attention refocusing task revealed that, compared to younger adults, older and middle-aged adults displayed task-related theta deficits in lower level visual processing areas, and instead, displayed compensatory increases in theta power and phase-related connectivity across frontal regions. Increased frontal lobe recruitment likely reflects enhanced top-down attention to cope with impaired lower level attention mechanisms,supporting compensatory recruitment models of ageing. During simulated driving, older participants displayed slower driving speeds and weaker beta desynchronization in preparation to read a road sign, instead displaying a stronger theta power increase in response to the road sign, further demonstrating neural and behavioural compensatory strategies that are only partially successful.Findings warrant the development of a training programme to improve attentional refocusing between time and space while driving

    Conectividad funcional cerebral en personas mayores con y sin deterioro cognitivo leve : correlatos de neuroimagen y marcadores en sangre

    Get PDF
    Programa de Doctorado en NeurocienciasLas personas mayores con deterioro cognitivo leve de tipo amnésico (DCLa) desarrollan la enfermedad de Alzheimer (EA) con mayor frecuencia y rapidez que las que no presentan este síndrome. Por otra parte, diversos estudios han mostrado que los oligómeros solubles de beta-amiloide (Aß) son más sinaptotóxicos que los propios agregados de Aß, por lo que podrían ser los primeros responsables de las disfunciones sinápticas que caracterizan a las fases más tempranas de la EA. Dado que las neuronas piramidales se muestran especialmente vulnerables ante este tipo de lesiones, incluso años antes de que se produzca el diagnóstico clínico de la EA, es razonable predecir que las oscilaciones electroencefalográficas (EEG) y, por ende, sus correlatos cerebrales y periféricos, derivados de la neuroimagen cerebral y de los marcadores en sangre respectivamente, mostrarán perfiles capaces de distinguir a las personas con DCLa de los mayores sanos. Con el objetivo de arrojar luz sobre estas cuestiones, se han analizado los patrones de conectividad funcional EEG del ritmo alfa (7,5-12,5 Hz) registrados en el estado de vigilia relajada con ojos cerrados, se han adquirido imágenes estructurales de resonancia magnética (RM) cerebral y funcionales mediante tomografía por emisión de positrones (PET) empleando el radiotrazador 2-[18F]fluoro-2-deoxy-D-glucosa (FDG), y también se han determinado los niveles en sangre de Aß y de lípidos en 26 personas mayores que no presentaban alteraciones neurológicas ni cognitivas (controles normales, CN) y en 29 personas mayores con DCLa. Además, se ha realizado un seguimiento del grupo con DCLa transcurridos dos años, con el fin de estudiar la evolución de la conectividad funcional EEG y del resto de biomarcadores en aquellos DCLa que convirtieron a EA (cDCLa) y en los que permanecieron estables (ncDCLa). Los resultados mostraron que los individuos con DCLa presentan un hipometabolismo del precúneo y una atrofia del tálamo, dos estructuras cerebrales imprescindibles en la generación neuroeléctrica del ritmo alfa. En consonancia con estos hallazgos, los sujetos con DCLa mostraron un deterioro de la conectividad funcional EEG que afectó fundamentalmente a regiones parieto-temporales, mientras que los DCLa portadores del genotipo ApoE E4 -factor de riesgo genético más importante en la EA- mostraron una disminución de la conectividad funcional EEG que alteró la coordinación inter-hemisférica entre regiones del lóbulo frontal, patrón de conectividad que también permitió diferenciar a nivel basal a los cDCLa de los ncDCLa. Si bien los marcadores cognitivos y las concentraciones de Aß en sangre se vieron afectados con el paso del tiempo en los cDCLa, la conectividad funcional EEG no sufrió cambios durante la progresión de la enfermedad. Por otra parte, los análisis de regresión revelaron que las alteraciones de la conectividad funcional EEG mostradas por los sujetos con DCLa se asocian con cambios de volumen de la sustancia gris (SG) en regiones del lóbulo parietal como el precúneo y el giro angular, y con cambios de volumen de la sustancia blanca (SB) en el esplenio del cuerpo calloso. Además, los individuos con DCLa mostraron una relación entre el incremento de la concentración de colesterol HDL y el aumento de los niveles de acoplamiento de fase del ritmo alfa, y una asociación entre el incremento de los niveles de triglicéridos y la disminución bilateral del volumen de SG del precúneo. Tomados en conjunto, estos resultados sugieren que los cambios en los circuitos anátomo-funcionales implicados en la generación del ritmo alfa difieren sustancialmente entre personas mayores con y sin DCLa, entre DCLa portadores y no portadores del genotipo ApoE E4, y entre sujetos con DCLa que desarrollan la EA y aquellos que permanecen estables transcurridos dos años; posiblemente como resultado de la vulnerabilidad mostrada por las neuronas piramidales corticales y las regiones cerebrales responsables de la generación del ritmo alfa ante los oligómeros solubles de Aß. Por último, y de acuerdo con la relación existente entre la regulación de la homeostasis del colesterol y la amiloidogénesis, nuestros resultados subrayan el efecto negativo de los triglicéridos sobre la integridad anatómica de estructuras cerebrales implicadas en la generación del ritmo alfa, así como el posible papel neuroprotector del colesterol HDL sobre la integridad de la circuitería funcional de la corteza cerebral en personas con DCLa, aspecto que podría ser potenciado a través de la dieta en personas mayores en alto riesgo de desarrollar EA.Universidad Pablo de Olavide. Departamento de Fisiología, Anatomía y Biología Celula

    Stochastic and complex dynamics in mesoscopic brain networks

    Get PDF
    The aim of this thesis is to deepen into the understanding of the mechanisms responsible for the generation of complex and stochastic dynamics, as well as emerging phenomena, in the human brain. We study typical features from the mesoscopic scale, i.e., the scale in which the dynamics is given by the activity of thousands or even millions of neurons. At this scale the synchronous activity of large neuronal populations gives rise to collective oscillations of the average voltage potential. These oscillations can easily be recorded using electroencephalography devices (EEG) or measuring the Local Field Potentials (LFPs). In Chapter 5 we show how the communication between two cortical columns (mesoscopic structures) can be mediated efficiently by a microscopic neural network. We use the synchronization of both cortical columns as a probe to ensure that an effective communication is established between the three neural structures. Our results indicate that there are certain dynamical regimes from the microscopic neural network that favor the correct communication between the cortical columns: therefore, if the LFP frequency of the neural network is of around 40Hz, the synchronization between the cortical columns is more robust compared to the situation in which the neural network oscillates at a lower frequency (10Hz). However, microscopic topological characteristics of the network also influence communication, being a small-world structure the one that best promotes the synchronization of the cortical columns. Finally, this Chapter shows how the mediation exerted by the neural network cannot be substituted by the average of its activity, that is, the dynamic properties of the microscopic neural network are essential for the proper transmission of information between all neural structures. The oscillatory brain electrical activity is largely dependent on the interplay between excitation and inhibition. In Chapter 6 we study how groups of cortical columns show complex patterns of cortical excitation and inhibition taking into account their topological features and the strength of their couplings. These cortical columns segregate between those dominated by excitation and those dominated by inhibition, affecting the synchronization properties of networks of cortical columns. In Chapter 7 we study a dynamic regime by which complex patterns of synchronization between chaotic oscillators appear spontaneously in a network. We show what conditions must a set of coupled dynamical systems fulfill in order to display heterogeneity in synchronization. Therefore, our results are related to the complex phenomenon of synchronization in the brain, which is a focus of study nowadays. Finally, in Chapter 8 we study the ability of the brain to compute and process information. The novelty here is our use of complex synchronization in the brain in order to implement basic elements of Boolean computation. In this way, we show that the partial synchronization of the oscillations in the brain establishes a code in terms of synchronization / non-synchronization (1/0, respectively), and thus all simple Boolean functions can be implemented (AND, OR, XOR, etc.). We also show that complex Boolean functions, such as a flip-flop memory, can be constructed in terms of states of dynamic synchronization of brain oscillations.L'objectiu d'aquesta Tesi és aprofundir en la comprensió dels mecanismes responsables de la generació de dinàmica complexa i estocàstica, així com de fenòmens emergents, en el cervell humà. Estudiem la fenomenologia característica de l'escala mesoscòpica, és a dir, aquella en la que la dinàmica característica ve donada per l'activitat de milers de neurones. En aquesta escala l'activitat síncrona de grans poblacions neuronals dóna lloc a un fenomen col·lectiu pel qual es produeixen oscil·lacions del seu potencial mitjà. Aquestes oscil·lacions poden ser fàcilment enregistrades mitjançant aparells d'electroencefalograma (EEG) o enregistradors de Potencials de Camp Local (LFP). En el Capítol 5 mostrem com la comunicació entre dos columnes corticals (estructures mesoscòpiques) pot ser conduïda de forma eficient per una xarxa neuronal microscòpica. De fet, emprem la sincronització de les dues columnes corticals per comprovar que s'ha establert una comunicació efectiva entre les tres estructures neuronals. Els resultats indiquen que hi ha règims dinàmics de la xarxa neuronal microscòpica que afavoreixen la correcta comunicació entre les columnes corticals: si la freqüència típica de LFP a la xarxa neuronal està al voltant dels 40Hz la sincronització entre les columnes corticals és més robusta que a una menor freqüència (10Hz). La topologia de la xarxa microscòpica també influeix en la comunicació, essent una estructura de tipus món petit (small-world) la que més afavoreix la sincronització. Finalment, la mediació de xarxa neuronal no pot ser substituïda per la mitjana de la seva activitat, és a dir, les propietats dinàmiques microscòpiques són imprescindibles per a la correcta transmissió d'informació entre totes les escales cerebrals. L'activitat elèctrica oscil·latòria cerebral ve donada en gran mesura per la interacció entre excitació i inhibició neuronal. En el Capítol 6 estudiem com grups de columnes corticals mostren patrons complexos d'excitació i inhibició segons quina sigui la seva topologia i d'acoblament. D'aquesta manera les columnes corticals se segreguen entre aquelles dominades per l'excitació i aquelles dominades per la inhibició, influint en les capacitats de sincronització de xarxes de columnes corticals. En el Capítol 7 estudiem un règim dinàmic segons el qual patrons complexos de sincronització apareixen espontàniament en xarxes d'oscil·ladors caòtics. Mostrem quines condicions s'han de donar en un conjunt de sistemes dinàmics acoblats per tal de mostrar heterogeneïtat en la sincronització, és a dir, coexistència de sincronitzacions. D'aquesta manera relacionem els nostres resultats amb el fenomen de sincronització complexa en el cervell. Finalment, en el Capítol 8 estudiem com el cervell computa i processa informació. La novetat aquí és l'ús que fem de la sincronització complexa de columnes corticals per tal d'implementar elements bàsics de computació Booleana. Mostrem com la sincronització parcial de les oscil·lacions cerebrals estableix un codi neuronal en termes de sincronització/no sincronització (1/0, respectivament) amb el qual totes les funcions Booleanes simples poden ésser implementades (AND, OR, XOR, etc). Mostrem, també, com emprant xarxes mesoscòpiques extenses les capacitats de computació creixen proporcionalment. Així funcions Booleanes complexes, com una memòria del tipus flip-flop, pot ésser construïda en termes d'estats de sincronització dinàmica d'oscil·lacions cerebrals.Postprint (published version

    Coupling and stochasticity in mesoscopic brain dynamics

    Get PDF
    The brain is known to operate under the constant influence of noise arising from a variety of sources. It also organises its activity into rhythms spanning multiple frequency bands. These rhythms originate from neuronal oscillations which can be detected via measurements such as electroen-cephalography (EEG) and functional magnetic resonance (fMRI). Experimental evidence suggests that interactions between rhythms from distinct frequency bands play a key role in brain processing, but the dynamical mechanisms underlying this cross-frequency interactions are still under investigation. Some rhythms are pathological and harmful to brain function. Such is the case of epileptiform rhythms characterising epileptic seizures. Much has been learnt about the dynamics of the brain from computational modelling. Particularly relevant is mesoscopic scale modelling, which is concerned with spatial scales exceeding those of individual neurons and corresponding to processes and structures underlying the generation of signals registered in the EEG and fMRI recordings. Such modelling usually involves assumptions regarding the characteristics of the background noise, which represents afferents from remote, non-modelled brain areas. To this end, Gaussian white noise, characterised by a flat power spectrum, is often used. In contrast, macroscopic fluctuations in the brain typically follow a `1/f b ¿ spectrum, which is a characteristic feature of temporally correlated, coloured noise. In Chapters 3-5 of this Thesis we address by means of a stochastically driven mesoscopic neuronal model, the three following questions. First, in Chapter 3 we ask about the significance of deviations from the assumption of white noise in the context of brain dynamics, and in particular we study the role that temporally correlated noise plays in eliciting aberrant rhythms in the model of an epileptic brain. We find that the generation of epileptiform dynamics in the model depends non-monotonically on the noise correlation time. We show that this is due to the maximisation of the spectral content of epileptogenic rhythms in the noise. These rhythms fall into frequency bands that indeed were experimentally shown to increase in power prior to epileptic seizures. We explain these effects in terms of the interplay between specific driving frequencies and bifurcation structure of the model. Second, in Chapter 4 we show how coupling between cortical modules leads to complex activity patterns and to the emergence of a phenomenon that we term collective excitability. Temporal patterns generated by this model bear resemblance to clinically observed characteristics of epileptic seizures. In that chapter we also introduce a fast method of tracking a loss of stability caused by excessive inter-modular coupling in a neuronal network. Third, in Chapter 5 we focus on cross-frequency interactions occurring in a network of cortical modules, in the presence of coloured noise. We suggest a mechanism that underlies the increase of power in a fast rhythm due to driving with a slow rhythm, and we find the noise parameters that best recapitulate experimental power spectra. Finally, in Chapter 6, we examine models of haemodynamic and metabolic brain processes, we test them on experimental data, and we consider the consequences of coupling them with mesoscopic neuronal models. Taken together, our results show the combined influence of noise and coupling in computational models of neuronal activity. Moreover, they demonstrate the relevance of dynamical properties of neuronal systems to specific physiological phenomena, in particular related to cross-frequency interactions and epilepsy. Insights from this Thesis could in the future empower studies of epilepsy as a dynamic disease, and could contribute to the development of treatment methods applicable to drug-resistant epileptic patients.El cervell opera sota la influència de sorolls amb diversos orígens. També organitza la seva activitat en una sèrie de ritmes que s'expandeixen en diverses bandes de freqüència. Aquests ritmes tenen el seu origen en les osci∙lacions neuronals i poden detectar-se via mesures com les electroencefalogràfiques (EEG) o la ressonància magnètica funcional (fMRI). Les evidències experimentals suggereixen que les interaccions entre ritmes operant en bandes de freqüència diferents juguen un paper central en el processat cerebral però els mecanismes dinàmics subjacents a les interaccions inter-freqüència encara estan investigant-se. Alguns ritmes són patològics i fan malbé el funcionament cerebral. És el cas dels ritmes epileptiformes que caracteritzen les convulsions epilèptiques. Fent servir el modelatge computacional s'ha après molt sobre la dinàmica del cervell. Especialment rellevant és el modelatge a l’escala mesoscòpica, que té a veure amb les escales espacials superiors a les de les neurones individuals i que correspon als processos que generen EEG i fMRI. Tal modelatge, en general, implica supòsits relatius a les característiques del soroll de fons que representa zones remotes del cervell no modelades. Amb aquesta finalitat s'utilitza sovint el soroll blanc gaussià, que es caracteritza per un espectre de potència pla. Les fluctuacions macroscòpiques en el cervell, però, normalment segueixen un espectre '1/fb', que és un tret característic de les correlacions temporals i el soroll de color. Als Capítols 3-5 d'aquesta tesi abordem mitjançant un model neuronal mesoscòpic forçat estocàsticament, les tres preguntes següents. En primer lloc, en el Capítol 3 ens preguntem sobre la importància de les desviacions de l'assumpció de soroll blanc en el context de la dinàmica del cervell i, en particular, estudiem el paper que juga el soroll amb correlació temporal en l'obtenció de ritmes aberrants d'un cervell epilèptic. Trobem que la generació de les dinàmiques epileptiformes depèn de forma monòtona del temps de correlació del soroll. Aquests ritmes es divideixen en bandes de freqüència que, segons, s'ha mostrat experimentalment, augmenten la seva potència espectral abans de les crisis epilèptiques. Expliquem aquests efectes en termes de la interacció entre les freqüències específiques del forçament i l'estructura de bifurcació del model. En segon lloc, en el Capítol 4 es mostra com l'acoblament entre mòduls corticals condueix a patrons d'activitat complexes i a l'aparició d'un fenomen que anomenem excitabilitat col∙lectiva. Els patrons temporals generats per aquest model s'assemblen a les observacions clíniques de les convulsions epilèptiques. En aquest capítol també introduïm un mètode d'anàlisi de la pèrdua d'estabilitat causada per l'acoblament inter-modular excessiu en les xarxes neuronals. En tercer lloc, en el Capítol 5 ens centrem en les interaccions inter-freqüència que es produeixen en una xarxa de mòduls corticals en presència de soroll de color. Suggerim un mecanisme subjacent a l'augment de la potència spectral de ritmes ràpids a causa del forçament amb un ritme lent, i veiem quins paràmetres del soroll descriuen millor els espectres de potència experimental. Finalment, en el Capítol 6, estudiem models dels processos hemodinàmics i metabòlics del cervell, els comparem amb dades experimentals i considerem les conseqüències del seu acoblament amb models neuronals mesoscopics. En conjunt, els nostres resultats mostren la influència combinada del soroll i l'acoblament en models computacionals de l'activitat neuronal. D'altra banda, també demostren la importància de les propietats dinàmiques dels sistemes neuronals en fenòmens fisiològics específics com les interaccions inter-frequència i l'epilèpsia. Els resultats d'aquesta Tesi contribueixen a potenciar l’estudi de l'epilèpsia com una malaltia dinàmica, i el desenvolupament de mètodes de tractament aplicables a pacients epilèptics resistents als fàrmacs.Postprint (published version
    corecore