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Abstract

Brain connectivity studies have revealed that highly connected ‘hub’ regions are particularly vulnerable to Alzheimer
pathology: they show marked amyloid-b deposition at an early stage. Recently, excessive local neuronal activity has been
shown to increase amyloid deposition. In this study we use a computational model to test the hypothesis that hub regions
possess the highest level of activity and that hub vulnerability in Alzheimer’s disease is due to this feature. Cortical brain
regions were modeled as neural masses, each describing the average activity (spike density and spectral power) of a large
number of interconnected excitatory and inhibitory neurons. The large-scale network consisted of 78 neural masses,
connected according to a human DTI-based cortical topology. Spike density and spectral power were positively correlated
with structural and functional node degrees, confirming the high activity of hub regions, also offering a possible
explanation for high resting state Default Mode Network activity. ‘Activity dependent degeneration’ (ADD) was simulated by
lowering synaptic strength as a function of the spike density of the main excitatory neurons, and compared to random
degeneration. Resulting structural and functional network changes were assessed with graph theoretical analysis. Effects of
ADD included oscillatory slowing, loss of spectral power and long-range synchronization, hub vulnerability, and disrupted
functional network topology. Observed transient increases in spike density and functional connectivity match reports in
Mild Cognitive Impairment (MCI) patients, and may not be compensatory but pathological. In conclusion, the assumption of
excessive neuronal activity leading to degeneration provides a possible explanation for hub vulnerability in Alzheimer’s
disease, supported by the observed relation between connectivity and activity and the reproduction of several
neurophysiologic hallmarks. The insight that neuronal activity might play a causal role in Alzheimer’s disease can have
implications for early detection and interventional strategies.
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Introduction

Like many other complex networks, the human brain contains

parts that are better connected to the rest than others: ‘hub’

regions. Evidence is increasing that a collection of brain hub

regions forms a ‘structural core’ or ‘connectivity backbone’ that

facilitates cognitive processing [1,2,3]. Brain hub regions are

mainly located in heteromodal association cortices (which

integrate information coming from primary cortices), and show a

striking overlap with the Default Mode Network [4,5]. Further-

more, their function has been related to fundamental cognitive

features such as consciousness, memory, and IQ [6–10]. The

central role and large responsibility of hub network regions has an

obvious downside: hub damage can have a dramatic impact on

network integrity [11,12]. One of the most intriguing recent

insights in this regard has emerged from network-related studies in

the field of Alzheimer’s disease (AD): cortical hub areas turn out to

be exceptionally vulnerable to amyloid deposition, hypometabo-

lism and, eventually, atrophy [13–15]. This fascinating link

between connectivity and susceptibility to AD pathology deserves

further study: what could be causing the hub vulnerability?

The prevailing amyloid-cascade hypothesis of AD states that

interstitial amyloid-beta proteins exert a toxic effect on surround-

ing neurons and synapses, thereby disturbing their function and

eventually causing dementia [16]. However, this theory does not

provide an explanation for the selective vulnerability of highly

connected hub areas. Could an activity-driven mechanism, i.e.

hub areas suffering most damage due to their higher connectivity

and activity level have any legitimacy? Chronic, excessive

metabolic demand can lead to tissue damage in many organs,

and the human brain has extraordinary energy demands.

Furthermore, major AD risk factors such as age, ApoE genotype,

vascular damage and female gender have all been linked to an

increased burden on neuronal metabolism, activity and plasticity

[17–19]. Recently, direct evidence was presented that excessive

neuronal and/or synaptic activity leads to amyloid deposition

[20,21,22]. However, whether this relation between neuronal

activity and AD pathology exists in humans, and whether hub

regions are indeed the most active areas of the brain has not yet

been explored. We speculated that an ‘activity dependent

degeneration’ scenario, in which hub regions are preferentially

affected due to high neuronal activity levels, could be a plausible

disease mechanism.

To test this hypothesis, a model is required that incorporates

both large-scale connectivity as well as (micro-scale) neuronal

activity. The macroscopic level is needed to provide a realistic
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structural human brain topology, including hub regions. Topo-

logical maps are well within reach nowadays, since an increasing

amount of imaging data describing the human connectome is

becoming available [1,23,24]. Imposed on this structural frame-

work, a realistic representation of network dynamics is required.

For this purpose, so-called neural mass models (NMMs) can be

employed [25–27]. Here, each neural mass reflects activity in a

brain region by representing a large population of interconnected

excitatory and inhibitory neurons, characterized by an average

membrane potential and spiking density. Multiple neural masses

can be coupled according to any desired structural topology (e.g.

human anatomical data) to form a dynamic brain model, which

can then be employed to investigate the relationship between

connectivity and neuronal activity [28–30].

Structural (anatomical) connectivity and functional (dynamical)

connectivity are strongly related, but not always in a straightfor-

ward way [5,31–33]. It has been shown that macroscopic models

of mammalian brain networks combined with graph theoretical

analysis may explain the topology of functional networks at various

time scales [34–36]. To simulate disease, macroscopic models and

graph theory have been used to predict the structural and

functional consequences of various types of lesions on brain

networks [11,12,30]. Similarly, the gradually progressive neuronal

damage of neurodegenerative processes such as AD can be

modeled using this approach, and analyzed with graph theoretical

tools [14,37–39]. The novel aspect of the present study is that the

degenerative damage is based on neuronal activity itself.

In short, by simulating neuronal dynamics on a network that is

modeled on a realistic human cortical connectivity structure we

explore the relation between large-scale connectivity and neuronal

activity in normal and abnormal conditions. In the present study

we use this approach to a) establish that cortical hub regions,

because of their high connectivity, possess the highest intrinsic

neuronal activity levels, and b) demonstrate that ‘Activity

Dependent Degeneration’ (ADD), in which brain connectivity is

damaged based on local neuronal activity levels, may serve as a

computational model of AD that offers a potential explanation for

hub vulnerability.

Results

Experiment 1: Relation between connectivity and activity
To assess whether the most highly connected cortical regions

also showed the highest levels of neuronal activity, we plotted spike

density and total power for all regions against the structural degree

of nodes (figure 1A). The group of 13 regions with the highest

(‘very high’ category in the figure) structural degree were defined

as hubs; the remaining 65 regions were labeled as non-hubs. In

non-hubs, spike density actually showed a weak negative relation

with structural degree, but in hubs clearly higher levels were found

compared to non-hubs (p,0.01). Furthermore, the total power of

hubs was significantly higher than that of non-hubs (p,0.0001).

Figure 1B shows the same relations, but now plotted for all

regions, and for three different initial coupling strengths. When

S = 1.5, the correlations between structural degree and spike

density (r = 0.35) and structural degree and total power (r = 0.94)

indicate that especially the link between structural degree and total

power is strong. For higher coupling strengths between the NMMs

(S = 2.0), a strong positive correlation between structural degree

and spike density was observed as well (r = 0.86). Thus, although

coupling strength has an influence on these results, overall the

positive relation between structural connectivity and neuronal

activity is apparent.

Since activity level might also be influenced by a nodes

functional role rather than its structural connectivity status, we

performed comparisons between structural and functional degree

(sum of all weighted functional connections of a node) of all nodes

for the common frequency bands (delta 0–4 Hz, theta 4–8 Hz,

lower alpha 8–10 Hz, higher alpha 10–13 Hz, beta 13–30 Hz,

gamma 30–45 Hz). Results of this analysis and of direct

comparisons between functional degree and neuronal activity

are reported in Text S1 section 1. In most bands, clear positive

correlations were found, demonstrating that functional hub

regions generally have high neuronal activity levels as well.

Table 1 shows all 78 regions ranked by structural degree, with

their functional degree, total power and spike density levels.

Experiment 2: Activity Dependent Degeneration (ADD)
Effect of ADD on structural network integrity. Since,

according to our hypothesis, ADD lowers connectivity based on

activity level, it was expected to disrupt both structural and

functional networks. First we investigated the effect of ADD on the

structural network, and whether it had different effects on hubs

versus non-hub regions. In ADD, every time-unit represents a

small amount of damage to the system, so as to simulate gradual,

cumulative degeneration. However, the amount of real, absolute

time that is required for these successive steps is not known. Time

as presented in these figures should therefore not be interpreted as

days or years, but as arbitrary units of undetermined length.

Figure 2A shows the decrease of the structural connectivity for

three time points in all regions. The normalized node strength,

which is the ratio of the node strength after ADD over the original

node strength, is plotted for different time points. At baseline

(T = 0, not shown) normalized node strength is 1 by definition.

Over time node strength decreases, and, as hypothesized,

particularly in hub nodes, illustrated by the declining slope of

the lines. The difference in normalized node strength between

hubs and non-hubs is highly significant for all time points shown

(p,0.001). On the contrary, in the random degeneration (RD)

model, there was no difference between hubs and non-hubs in

normalized node strength over time (see figure 2B).

Effect of ADD on neuronal activity. Next, we studied the

effect of ADD on network dynamics. When visually inspecting the

Author Summary

An intriguing recent observation is that deposition of the
amyloid-b protein, one of the hallmarks of Alzheimer’s
disease, mainly occurs in brain regions that are highly
connected to other regions. To test the hypothesis that
these ‘hub’ regions are more vulnerable due to a higher
neuronal activity level, we examined the relation between
brain connectivity and activity in a computational model of
the human brain. Furthermore, we simulated progressive
damage to brain regions based on their level of activity,
and investigated its effect on the structure and dynamics
of the remaining brain network. We show that brain hub
regions are indeed the most active ones, and that by
damaging networks according to regional activity levels,
we can reproduce not only hub vulnerability but a range
of phenomena encountered in actual neurophysiological
data of Alzheimer patients as well: loss and slowing of
brain activity in Alzheimer, loss of synchronization
between areas, and similar changes in functional network
organization. The results of this study suggest that
excessive, connectivity dependent neuronal activity plays
a role in the development of Alzheimer, and that the
further investigation of factors regulating regional brain
activity might help detect, elucidate and counter the
disease mechanism.

Modeling Hub Vulnerability in Alzheimer

PLOS Computational Biology | www.ploscompbiol.org 2 August 2012 | Volume 8 | Issue 8 | e1002582



model-generated data it was apparent that there were notable

changes in oscillation amplitude over time. The power spectrum of

hub regions initially showed much higher alpha power than in

non-hub areas, and a surprising slightly lower alpha peak

frequency (see Text S1 section 4). As expected, total power

decreased over time (see figure 3A). Hubs started at a higher mean

power level (p,0.0001), but declined more rapidly than non-hubs,

reaching bottom levels at approximately the same moment. Loss of

total power in the ADD model was stronger than in RD, especially

in hubs; for all time points (except T = 0) hub power under ADD

was significantly lower than under the RD regime (p,0.01). The

initial positive relation between structural degree and total power

disappeared accordingly (see figure 3B).

We subsequently performed a similar analysis for spike density

changes over time due to ADD and RD (see figure 4A and 4B). At

T = 0, the spike density in hubs was higher than in non-hubs

(p = 0.01). In the early stage, we found an unexpected rise of spike

density in both ADD and RD, which was stronger in hubs

(maximum spike density increase was larger, p,0.0001). However,

the maximum spike density in hubs under ADD was reached

significantly earlier than in non-hubs (average T = 52 versus

T = 60, p,0.0001), while peaks were reached at similar times

under RD.

Effect of ADD on functional network topology. Since we

expected ADD to affect functional network topology as well, we

examined changes over time in the synchronization likelihood, as

well as basic graph measures like average clustering coefficient,

characteristic path length, and modularity. Since data generated

by the NMM is most reliable in the alpha band, and AD-related

functional network changes have most consistently been found in

the lower alpha band, we report just the results of this

representative band in figure 5. Like spike density, functional

connectivity strength first increased before a rapid breakdown

occurred, which reached bottom level at around the same time

point as total power (described above). The average clustering

coefficient decreased, while the characteristic path length fluctu-

ated around the same level through the ADD process (although

hubs and non-hubs showed different behavior during the first

phase, see figure 5). The ratio between these two measures became

smaller, indicating that the balance between global and local

connectivity and thus the small-world network topology was

disturbed and had become more random. Global modular

organization, as expressed by Newman’s index, decreased before

reaching a stable, lower level.

Discussion

In this study we used a computational model with 78 dynamic

neural masses coupled according to realistic human cortical

topology to investigate the relation between connectivity and

neuronal activity. We find that cortical hub regions have the

highest level of intrinsic activity, and that the minimal assumption

of higher local neuronal activity leading to more severe

neurodegeneration can predict a range of AD hallmarks observed

in patient data such as oscillatory slowing, a subsequent increase

and breakdown of functional connectivity, and a loss of functional

network integrity. These results suggest an ‘activity dependent

degeneration’ (ADD) hypothesis of AD, and below we will discuss

our findings and possible consequences in greater detail.

Hub status and activity level
Our first aim was to find out whether the level of activity in a

region is related to its degree of structural connectivity. An

expected positive correlation was indeed found in repeated

experiments across all degrees of connectivity (see figures 1, 3,

and 4): structural hub regions possess the highest average power

and spike densities. As can be judged from figure 1, an exception is

the relation between structural connectivity and spike density for

Figure 1. Relation between structural degree and neuronal activity. A: Six bins with ascending mean structural degrees are plotted against
their average spike density and total power values. Nodes in the ‘very high’ degree bin were defined as hubs. Coupling strength (S) between neural
masses was set to 1.5. Error bars indicate standard deviation within each bin. B: Similar plots as in the left panel, but for every region individually, and
for three different coupling strengths S (see Text S1, section 3).
doi:10.1371/journal.pcbi.1002582.g001

Modeling Hub Vulnerability in Alzheimer
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Table 1. Cortical regions; degree of connectivity and level of activity.

Cortical region Structural degree Functional degree* Spike density Total power

Precuneus R 20 0.034 60.004 435 420

Precuneus L 19 0.034 60.003 426 408

Middle Occipital Gyrus L 17 0.033 60.004 428 447

Superior Frontal Gyrus, medial R 13 0.035 60.004 395 228

Calcarine fissure and surrounding cortex L 13 0.035 60.004 408 296

Middle Temporal Gyrus L 13 0.034 60.004 404 275

Superior Occipital Gyrus R 13 0.032 60.005 410 342

Calcarine fissure and surrounding cortex R 13 0.032 60.005 412 352

Precentral Gyrus L 13 0.031 60.005 403 312

Lingual Gyrus R 12 0.032 60.004 403 203

Superior Frontal Gyrus, medial L 12 0.032 60.005 395 226

Middle Occipital Gyrus R 12 0.031 60.004 404 285

Precentral Gyrus R 12 0.03 60.004 398 278

Postcentral Gyrus L 11 0.033 60.004 396 227

Superior Frontal Gyrus, dorsal L 11 0.032 60.005 396 242

Postcentral Gyrus R 11 0.031 60.004 395 261

Superior Frontal Gyrus, dorsal R 11 0.03 60.005 396 234

Superior Temporal Gyrus R 10 0.034 60.004 397 127

Supplementary motor area R 10 0.034 60.005 398 188

Cuneus R 10 0.034 60.004 398 276

Superior Occipital Gyrus.L 10 0.027 60.004 398 264

Insula L 9 0.035 60.006 395 143

Inferior Temporal Gyrus L 9 0.033 60.004 395 184

Lingual Gyrus L 9 0.033 60.005 398 205

Supplementary motor area L 9 0.032 60.005 397 131

Supramarginal Gyrus R 9 0.032 60.005 393 175

Angular gyrus R 9 0.03 60.006 391 200

Middle Temporal Gyrus R 9 0.03 60.005 393 177

Fusiform Gyrus L 9 0.03 60.005 395 167

Superior Parietal Gyrus R 9 0.029 60.005 393 207

Middle Frontal Gyrus, R 9 0.029 60.004 400 61

Inferior Frontal Gyrus, orbital part L 9 0.028 60.006 398 130

Anterior Cingulate and paracingulate Gyri L 9 0.028 60.006 395 140

Cuneus L 9 0.028 60.004 397 86

Superior Frontal Gyrus, medial orbital R 8 0.033 60.004 393 109

Angular gyrus L 8 0.032 60.005 392 232

Superior Parietal Gyrus L 8 0.03 60.004 395 163

Inferior Frontal Gyrus, opercular part.R 8 0.029 60.006 400 64

Superior Frontal Gyrus, orbital part L 8 0.028 60.005 395 122

Superior Temporal Gyrus L 8 0.028 60.004 402 74

Middle Frontal Gyrus L 8 0.028 60.005 394 123

Temporal Pole: middle temporal gyrus R 8 0.026 60.005 396 113

Paracentral Lobule L 8 0.026 60.005 399 101

Anterior Cingulate and paracingulate gyri R 8 0.026 60.004 394 143

Fusiform Gyrus R 8 0.024 60.005 394 145

Superior Frontal Gyrus, medial orbital L 7 0.032 60.003 390 120

Median Cingulate and paracingulate gyri R 7 0.031 60.005 402 69

Inferior Occipital Gyrus L 7 0.03 60.005 397 127

Paracentral Lobule R 7 0.029 60.005 403 63

Modeling Hub Vulnerability in Alzheimer
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low values of NMM coupling (S). This result indicates that the

relation between connectivity and activity might be more complex

than we expected. Nevertheless, similar analysis performed using

functional connectivity results (see figure S1) led to clear positive

correlations in the large majority of cases. It should further be

noted that there is no unique definition of hub status, and in this

experiment (and the rest of the study) we adhered to the pragmatic

choice of taking a selection of nodes (n = 13) with the highest

structural degree. However, since connectivity and activity are

clearly positively related in regions with higher structural degrees,

we do not believe that a different hub definition would have led to

a different interpretation.

Still, although high neuronal activity in hub regions was a solid

finding that might have been expected intuitively, it should

ultimately be verified in experimental data. As can be judged from

table 1, many Default Mode Network (DMN)-related regions

possess a high degree of connectivity and activity. The well-

documented high resting-state activity level of the DMN is

therefore in line with our findings [5]; however, instead of being

attributed to ongoing cognitive processing or mental phenomena

like introspection, high resting-state activity in the DMN might

actually be (partially) explained by the underlying degree of

structural and functional connectivity

Activity Dependent Degeneration (ADD)
Based on the findings in our first experiment, we expected that

ADD would probably preferentially target hub regions, since they

possessed the highest level of activity. Analyses of both structural

and functional connectivity changes due to ADD seem to be in

agreement with this expectation (see figures 2–5). Furthermore,

total (or absolute) power decreases rapidly, largely accounted for

by weakening of hub regions, and the initial correlation between

degree and power is lost (figure 3). Thus, large-scale brain

connectivity loses its efficient ‘hub’ topology in ADD, like in AD.

Surprisingly, the steady loss of power is accompanied by an

initial rise of spike density on average (see figure 4), before a final

oscillatory slowing sets in. This effect is stronger in hubs; spike

density rises more quickly, reaches its peak rate sooner, and seems

Table 1. Cont.

Cortical region Structural degree Functional degree* Spike density Total power

Inferior Frontal Gyrus, opercular part L 7 0.028 60.006 405 31

Supramarginal Gyrus L 7 0.028 60.006 398 75

Gyrus Rectus L 7 0.027 60.004 394 63

Rolandic operculum L 7 0.027 60.005 398 110

Inferior Frontal Gyrus, triangular part L 7 0.027 60.004 396 101

Superior Frontal Gyrus, orbital part R 7 0.026 60.004 405 37

Inferior Parietal L 7 0.026 60.004 402 42

Inferior Temporal Gyrus R 7 0.015 60.003 394 109

Inferior Occipital Gyrus R 6 0.031 60.004 409 23

Olfactory cortex R 6 0.025 60.004 396 134

Parahippocampal Gyrus L 6 0.025 60.006 404 47

Temporal Pole: middle temporal gyrus L 6 0.025 60.004 402 45

Inferior Parietal R 6 0.025 60.005 394 112

Median Cingulate and paracingulate gyri L 6 0.024 60.004 405 43

Parahippocampal Gyrus R 6 0.023 60.005 399 60

Rolandic operculum R 6 0.023 60.003 410 35

Posterior cingulate Gyrus L 6 0.021 60.003 404 43

Inferior Frontal Gyrus triangular part R 6 0.02 60.005 404 45

Inferior Frontal Gyrus, orbital part R 5 0.024 60.006 404 31

Insula R 5 0.021 60.004 404 17

Temporal Pole: superior temporal gyrus L 5 0.018 60.003 405 29

Middle Frontal Gyrus, orbital part L 5 0.017 60.004 390 163

Posterior Cingulate Gyrus R 5 0.013 60.002 397 225

Middle Frontal Gyrus, orbital part R 4 0.022 60.004 406 19

Gyrus Rectus R 4 0.014 60.002 405 29

Olfactory cortex L 4 0.013 60.003 400 37

Temporal Pole: superior temporal gyrus R 3 0.017 60.003 403 17

Heschl Gyrus L 2 0.012 60.002 405 9

Heschl Gyrus R 1 0.012 60.002 403 6

List of human cortical regions included in the model, ranked in order of descending structural degree. Regions printed in bold were classified as hub regions.
*Functional degree is based on broadband (0.5–45 Hz) functional connectivity.
S (coupling strength) was set at 1.5; different values of S produced different absolute values but no changes in functional degree rank. T (time delay) was kept constant
at 0.002 s for all experiments (see Text S1, section 2). Averaged values and standard deviations over 20 runs of the NMM.
doi:10.1371/journal.pcbi.1002582.t001
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to slow down more rapidly. One explanation for the increase in

spike density observed in our results is neuronal disinhibition. In

fundamental neuroscience disinhibition is a well-known phenom-

enon and it is widely accepted that inhibitory interneurons have a

large influence on oscillatory behavior [40]. Besides damaging

excitatory connections, ADD impairs connectivity to and from

inhibitory neurons within the neural masses, and the resulting loss

of inhibition seems to be a dominant influence on spike density in

the first stage. This then leads to a vicious spiral of increasing

activity, more activity-dependent damage, etc. until the weakening

network can no longer support an increase in spike density (the

inter-mass excitatory coupling weakens substantially, which leads

to breakdown of the system, see also figure 6). The eventual spike

density decrease due to ADD resembles the oscillatory slowing

known from AD neurophysiologic literature [41,42].

Several authors have argued for a prominent role of neuronal

disinhibition in AD pathophysiology: for example, Gleichmann et

al. propose a process they call ‘homeostatic disinhibition’, which is

based on a different underlying mechanism but might explain the

higher prevalence of epilepsy that is seen in AD, reduced gamma

band activity, and, interestingly, the increase in neuronal activity

as measured by fMRI [43]. Schmitt argues that AD is

accompanied by a loss of inhibition that leads to alterations in

calcium homeostasis and excitotoxicity, respectively [44]. Olney et

al. hypothesize that a disinhibition syndrome caused by hypoactive

NMDA receptors triggers excitotoxic activity and widespread

neurodegeneration [45]. Palop & Mucke suggest that amyloid itself

causes dysfunction of inhibitory interneurons causing an increase

in neuronal activity [46,47], possibly also accounting for the higher

prevalence of epileptic activity in AD [48]. Kapogiannis &

Mattson review reports that in aging excitatory imbalance is due

to a decrease in GABA-ergic signaling, and that this mechanism is

exacerbated in AD [19].

An early but transient rise was also found in functional

connectivity results (see figure 5), and interestingly, this is in line

with experimental data of Mild Cognitive Impairment (MCI)

patients, where increased functional connectivity levels are often

interpreted as a compensatory mechanism [49–52]. However, this

increase of functional connectivity has not been directly related to

cognitive improvement, and according to our model, it might well

be a part of the degeneration process itself.

Finally, the ADD induced changes in functional network

topology, such as the weakening of small-world structure and

modularity (see figure 5), are in line with recent findings in resting-

state EEG and MEG studies in AD [14,39,53–55]. In recent years,

brain disconnectivity and disturbed network topology has been

observed in an increasing number of disorders (for example

schizophrenia, multiple sclerosis, brain tumor, autism, epilepsy)

[56–59]. It is conceivable that different disease mechanisms and

types of network damage (for example extensive non-hub network

damage) could lead to a similar situation of hub overload and

decay. Computational models like the one described here could be

employed to investigate various underlying pathologies and to

examine the differences between them. Several recent studies

support the notion that node properties such as degree and

centrality may play a crucial role in the pathophysiology of

degenerative brain disease [60–62].

Alzheimer’s disease: consequence of excessive hub
activity?

The results of this study suggest that hub regions are vulnerable

due to their intrinsically high activity level. The assumption of

activity dependent degeneration leads to hub vulnerability along

with many neurophysiologic features of AD (i.e. as found in

quantitative EEG and MEG literature). A recently conducted

large fMRI study demonstrated that highly connected cortical

regions like the precuneus are even stronger hubs in females than

in males: could this perhaps explain the higher levels of early

amyloid deposition ánd the higher prevalence of AD in women

[63,64]? The computational model used in this study offers a

possible mechanism by which excessive neuronal activity in hubs

might lead to the observed macro-scale disruption of brain

connectivity and dynamics in AD.

In addition to the presumed role of disinhibition mentioned in

the previous paragraph, a prominent role of excessive neuronal

activity in AD pathogenesis has been suggested before: several

studies have demonstrated a direct link between neuronal activity

and the development of amyloid plaques in transgenic mice

[20,21,22]. Regions that are most active during resting-state show

the most outspoken AD-related pathology [4,5,13]. Excessive

hippocampal activity is related to cortical thinning in non-

demented elderly persons, is present in MCI patients, and is

related to neurodegeneration in AD [49,65,66]. Finally, known

risk factors for AD such as genetic profile, age, vascular damage,

or common comorbidities like sleep disorders and epilepsy, all

predispose to excessive activity and a subsequent burden on

metabolism and plasticity [17,18,66–68]. On the other hand,

protective factors like high level of education and sustained

cognitive activity might relieve the burden on hub regions due to

frequent activation of task-related circuits, and accompanying

DMN deactivation. Summarizing, vulnerability of cortical hub

regions due to their high activity levels may be aggravated or

Figure 2. Effect of ADD on structural degree. A: All cortical regions
binned according to initial structural degree from low to high values,
and their average normalized node strengths at different stages of
activity dependent degeneration (ADD). T = time. Error bars indicate
standard error of the mean. B: All cortical regions binned according to
initial structural degree from low to high values, and their average
normalized node strengths at different stages of random degeneration
(RD). T = time. Error bars indicate standard error of the mean.
doi:10.1371/journal.pcbi.1002582.g002

Modeling Hub Vulnerability in Alzheimer
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Figure 3. Effect of ADD on total power. A: Average total power of hub and non-hub regions plotted over time, for both the ADD and RD procedure.
Error bars indicate standard error of the mean. B: Correlation between structural degree and total power for all regions at different time points during ADD.
doi:10.1371/journal.pcbi.1002582.g003

Figure 4. Effect of ADD on spike density. A: Average level of spike density during ADD is plotted for hubs and non-hubs. Error bars indicate
standard deviations. B: Average level of spike density during RD is plotted for hubs and non-hubs. Error bars indicate standard deviations.
doi:10.1371/journal.pcbi.1002582.g004

Modeling Hub Vulnerability in Alzheimer
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Figure 5. Effect of ADD on functional connectivity and network topology. Mean levels of synchronization likelihood, modularity, clustering
coefficient and path length during ADD are plotted for hubs and non-hubs. Error bars indicate standard deviations.
doi:10.1371/journal.pcbi.1002582.g005

Figure 6. The relation between connectivity and activity at different stages of ADD. The proposed relation between connectivity and
activity is summarized for three different stages of ADD. Structural hubs have a higher baseline intrinsic activity, making them most susceptible to
ADD. The second phase might represent the ‘Mild Cognitive Impairment’ (MCI) stage; structural connectivity declines steadily, but functional
connectivity, power and spike density initially increase, leading to a pathologic spiral of increasing activity and metabolic burden in progressively
weaker neurons. In the third ‘‘AD’’ phase, the damaged neurons and decreasing structural connectivity can no longer support the high demands, and
the network collapses.
doi:10.1371/journal.pcbi.1002582.g006
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alleviated by the presence of one or more predisposing or

protective factors, respectively (see figure 7).

This line of reasoning implies that changes in brain activity and

connectivity are already involved in the very early stages of AD

pathology. In this regard, it is interesting to note that an increasing

number of studies show that changes in activity and functional

connectivity can be detected before cognitive complaints arise or

pathological levels of amyloid are detected with PET and CSF

analysis [18,69–73].

Although activity dependent degeneration is quite different

from amyloid-induced damage, they need not be mutually

exclusive: chronic, excessive activity might lead to amyloid

deposition, which in turn causes aberrant activity and neuronal

damage: a pathological cycle with different stages (see also figure 6).

Relatively small increases of extracellular amyloid-beta can

increase neuronal activity, especially in neurons with low activity,

whereas higher levels cause synaptic depression [74,75]. Palop and

Mucke emphasize the role of inhibitory interneuron dysfunction,

leading to hypersynchronization [47]. In conclusion, although

these studies provide compelling evidence for a prominent role of

neuronal activity, our predictions that hub regions might form the

weakest links in AD pathogenesis should be tested in further

studies.

Modeling Alzheimer’s Disease
Several recent studies use similar computational modeling

approaches to examine AD related neurophysiological phenom-

ena: Bhattacharya et al. focus on thalamo-cortico-thalamic

circuitry and its relation with alpha band power in AD [38]. By

varying the synaptic strengths in the thalamic module of the model

they find that especially the connectivity of synaptic inhibitory

neurons in the thalamus has a large influence on alpha power and

frequency. Pons et al. use a neural mass model and human EEG

data to investigate the influence of structural pathways on

functional connectivity in the aging brain and pre-clinical stages

of AD [37]. Findings in line with our present results are the higher

functional connectivity values in MCI and the relation between

structural and functional connectivity. An increase in functional

connectivity and network randomness during a memory task was

found by Buldú et al. in a MEG study of MCI patients [76].

Interestingly, the authors also provide a network degeneration

model which might explain these observations. The combination

of neural mass modeling and graph theory was used in a recent

study from our group [36]. This study explores the manifestation

of modularity in developing networks and investigates the effect of

more acute lesions on network dynamics. The gradual recovery of

functional network characteristics that was observed after lesions

raises the question whether and to what extent similar mechanisms

play a role in neurodegenerative damage; this should be subject of

further study. To describe functional network modularity, the

same algorithm and heuristic was used as in the present study. The

computational models used in these studies provide a framework

to address different questions and hypotheses concerning brain

disease, e.g. different functional lesions. A novel aspect of the

approach in the present study is that a single hypothesis (ADD) is

proposed as main pathophysiological mechanism of AD. Com-

parison to a ‘random degeneration’ (RD) model provides further

support for the ADD hypothesis, but does not rule out the

possibility that other plausible degenerative models exist.

Methodological issues
Various methodological choices might have affected our results,

and should be taken into account when interpreting them. First,

although the DTI-derived connectivity matrix that served as the

basis of our model is in our opinion a solid overall large-scale

representation of human cortical connectivity, it was based on data

of healthy young adults [24]. Since AD mainly affects the aging

population, and since it has been shown that structural connec-

tivity is altered during aging [77], results might have been different

if structural connectivity data of older subjects had been

implemented. However, the major hub regions seem largely

independent of age, justifying our approach that mainly focuses on

hub versus non-hub differences. Furthermore, we now know that

AD affects many people below the age of 65, and that AD

pathology is presumably already present for decades before initial

symptoms appear. In a similar way we expect that individual

variability in structural connectivity will not have had a major

influence on our present approach, since major hub regions

appear to be consistent across studies [3,64]. Although the

computational model used here could be refined in many ways,

e.g. by implementing a larger number of regions, assigning

different weights to structural connections, using DSI-derived

Figure 7. The role of excessive neuronal activity in Alzheimer’s disease. Excessive neuronal activity might be a common pathway through
which many of the known risk factors enlarge the chance to develop Alzheimer pathology. Hub regions are most likely to display activity-dependent
pathology, since they have the highest intrinsic neuronal activity (which is further amplified in the initial phase of ADD).
doi:10.1371/journal.pcbi.1002582.g007
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data, correcting for spatial scale and/or DTI biases, or by using

more elaborate and detailed graph analysis, we believe that this

would not have affected our main outcome dramatically, since

comparing characteristics of hub and non-hub cortical regions

does not necessarily require a high level of detail. By keeping the

model and hypotheses as simple as possible, it might be easier to

discover or test underlying basic principles and mechanisms of

degeneration.

The main motivation to use an NMM network of this size was

the observation that topographical maps and atlases of the human

cerebral cortex of this order of magnitude are quite common in

macroscopic structural and functional connectivity studies (for an

overview, please refer to [39,56–58]. Also, since EEG and MEG

studies have comparable network sizes (21–300 sensors), this is a

fairly realistic spatial resolution for NMM-generated dynamics.

Two relevant references are recent computational modeling

studies by Deco et al. [27] and Pons et al. [37].

Varying the structural coupling strength S in our neural mass

model can lead to different results, and therefore we have reported

its influence on our outcomes. Similarly, the arbitrary ‘loss’-rate

parameter of the ADD function will affect the speed of the

degeneration process. However, since we were mainly concerned

with a topological ‘hub versus non-hub’ comparison, the absolute

rate of degeneration was of minor importance for this study.

Moreover, loss-rates were equally applied to all connections;

network distribution was not selectively influenced by these

parameters.

Future directions
Observations from this study that could be explored further

include ADD-induced changes in structural network topology, the

relation between spike density and anatomical region, and the

lower alpha peak frequency in hub regions (see Text S1 section 4).

Predictions from our model, especially the close link between local

neuronal activity and large-scale connectivity should be verified in

longitudinal clinical studies, preferably of normal aging as well as

patients with subjective memory complaints (SMC), Mild cognitive

impairment (MCI) and AD. To assess structural and functional

connectivity as well as large-scale neuronal activity, a combination

of DTI and MEG might be the most appropriate method. Source

space analysis of MEG data may help to develop topologically

accurate neural mass models. On a fundamental level, the relation

between neuronal connectivity, activity and pathology should be

further explored in animal models. Interestingly, the relation

between regional activity and large-scale functional connectivity

has recently also addressed with respect to schizophrenia [78,79].

In both studies it is argued that more knowledge of this relation is

essential for understanding mechanisms of altered functional

connectivity, and this is very much in line with the main message

of this study. Different disease conditions may have specific causes

or patterns in which this relationship is harmed, but at the same

time universal principles may apply that can help us gain more

insight in a range of neuropsychiatric disorders.

Conclusion
In this study we used a neural mass model with DTI-based

human topology to demonstrate that brain hub regions possess the

highest levels of neuronal activity. Moreover, ‘Activity dependent

degeneration’ (ADD), a damage model motivated by this

observation, generates many AD-related neurophysiologic features

such as oscillatory slowing, disruption of functional network

topology and hub vulnerability. Early-stage, transient rises of firing

rate and functional connectivity in ADD matches observations in

pre-clinical AD patients, suggesting that this chain of events is not

compensatory, but pathological. Overall, the results of this study

favor a central role of neuronal activity and connectivity in the

development of Alzheimer’s disease.

Materials and Methods

In this study we simulated neurophysiologic activity of 78

Neural Mass Models embedded in a realistic structural cortical

network topology to evaluate hypotheses about the relation

between (structural and functional) connectivity and neuronal

activity. The output of this model provides information about the

neuronal activity level in the form of average voltage and spike

density per region, and generates EEG-like data that can be

subjected to further spectral, functional connectivity and graph

theoretical analysis. Hypotheses about brain pathophysiology can

be tested by artificially damaging structural or dynamical

properties of the brain model. The outline of the analysis

procedure employed in this study is depicted in figure 8.

Network dynamics: Description of the Neural Mass Model
We used a model of interconnected neural masses, where each

neural mass represents a large population of connected excitatory

and inhibitory neurons generating an EEG or MEG like signal.

The model was recently employed in two other graph theoretical

studies [30,36]. The basic unit of the model is a neural mass model

(NMM) of the alpha rhythm [26,80,81]. This model considers the

average activity in relatively large groups of interacting excitatory

and inhibitory neurons. Spatial effects (i.e. distance) are ignored in

this model; brain topology is introduced later by coupling several

NMMs together. The average membrane potential and spike

density of the excitatory neurons of each of the NMMs separately

were the multichannel output related to neuronal activity that was

subject to further analysis. All neural mass model parameters and

functions are summarized and explained in Text S1, section 3 (see

also figure S4 and table S1).

Network wiring: Realistic human network
A diffusion tensor imaging (DTI) based study by Gong et al.

published in 2009 that focused on large-scale structural connec-

tivity of the human cortex resulted in a connectivity matrix of 78

cortical regions [24,82]. The connectivity matrix was implemented

in our model software, and used as topological framework for the

78 coupled NMMs. Coupling between two NMMs, if present, was

always reciprocal, and excitatory. Note that at the start of the

simulation, the coupling strength between all NMM pairs (S) was

identical, and the only difference between the cortical regions (or

NMMs) was their degree of connectivity to other neural masses

(cortical regions). Since the coupling strength S was an arbitrarily

chosen parameter, repeated analyses were performed with

different values of this variable (see for example figure 3).

Activity Dependent Degeneration (ADD)
For the present study the model was extended to be able to deal

with activity dependent evolution of connection strength between

multiple coupled NMMs. Activity dependent degeneration (ADD)

was realized by lowering the ‘synaptic’ coupling strength as a

function of the spike density of the main excitatory neurons. For

each neural mass the spike density of the main excitatory

population is stored in a memory buffer that contains the firing

rates of the last 20 steps in the model. Step size depends on the

sample frequency. At each new iteration, the highest spike density

value of the last 20 sample steps is determined and designated as

maxAct. From maxAct a loss is determined according to the

following relation:
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loss~exp{0:01max Act ð1Þ

Since maxAct is non-negative, loss will be a number between 0

and 1. Next, the coupling values C1 (connections between main

excitatory population and inhibitory population), C2 (connections

between inhibitory population and main excitatory population), Pt

(thalamic input to main excitatory population) and S (structural

coupling strength between neural masses) are all multiplied by loss

to obtain their new lower values. To assess the specificity of ADD,

results were compared with a random degeneration (RD) model in

which the maxAct variable was discarded, so damage was equally

applied to all regions, regardless of their level of activity. The

effects of ADD and RD were measured by changes in total power

(local average membrane potential) and spike density, and these

two measures were used as representations of neuronal activity in

further analyses. Note that the time scale of the data generated by

the model is equal to normal brain activity and EEG/MEG data,

but that the ADD and RD procedures have a more abstract time

scale. The exact duration of the degenerative procedures was not

considered relevant to our present focus on the relation between

connectivity and activity, but could be considered to reflect a

length that is representative of a neurodegenerative process,

spanning years to decades (see figures 3–5). The computational

model was programmed in Java and implemented in the in-house

developed program BrainWave (v0.9.04), written by C.J. Stam

(latest version available for download at http://home.kpn.nl/

stam7883/brainwave.html).

Spectral analysis
Since spectral analysis is a common neurophysiological proce-

dure that provides clinically relevant information in neurodegen-

erative dementia, we included this in our experiments. Fast

Fourier transformation of the EEG-like oscillatory output signal

was used to calculate for all separate regions the total power

(absolute broadband power, 0–70 Hz) as well as the absolute

power in the commonly used frequency bands delta (0.5–4 Hz),

theta (4–8 Hz), lower alpha (8–10 Hz), higher alpha (10–13 Hz),

beta (13–30 Hz) and gamma (30–45 Hz).

Functional connectivity analysis
To quantify large-scale synchronization as a measure of

interaction between different cortical areas, we used the Synchro-

nization likelihood (SL), which is sensitive to both linear and non-

linear coupling [83,84]. SL was calculated for all frequency bands,

and the matrix containing all pairwise SL values served as the basis

for all further graph theoretical analyses of functional network

characteristics.

Graph theoretical analysis
Graph theoretical properties of the structural DTI network that

were relevant for our hub study such as node degree, betweenness

centrality, and local path length were published in the original

article by Gong et al [24]. One new measure we introduced was

the ‘normalized node strength’, which is the ratio of the structural

degree of a node after activity dependent damage over its original

degree. This measure was used to track structural connectivity loss

and to compare the loss of degree in hubs and non-hubs. For

functional network analysis, connectivity matrices were subjected

to topographical analysis. The functional degree of a node is

defined as the sum of all its link weights [85]. Averaging the

functional degree over all nodes gives the overall functional degree

of a network. To match the functional network to the given

structural network (minimizing effects of graph size and density),

we constructed a binary, unweighted matrix that was obtained

after using a threshold that resulted in a network with an average

degree of 8, close to that of the structural network (which was 8.1).

All graph theoretical measures used in this study are summarized

Figure 8. Outline of the consecutive steps in the experimental procedure. Multi-step procedure from the simulation of realistic human
neurophysiological activity to analyzing and correlating connectivity and activity results.
doi:10.1371/journal.pcbi.1002582.g008
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in table 2, for more exact definitions please refer to [14,85]. For

functional modularity analysis, we used Newman’s modularity

metric combined with a simulated annealing process (previously

described in [55,86]).

Statistical analysis
For the baseline, pre-ADD analysis in experiment 1 and 2, the

data-generating procedure using the model was repeated twenty

times to obtain a representative amount of data. On each run the

subsequent spectral, functional connectivity and graph theoretical

analysis was performed, and then all results of these twenty runs

were averaged prior to further statistical analysis. Regional results

were visualized using 6 bins ascending in structural degree, each

containing 13 regions. All 13 regions in the bin with the highest

mean degree were classified as hubs. Standard deviations of bins

are displayed as error bars. For bivariate correlations Pearson’s test

was used.

Supporting Information

Figure S1 Correlation between functional degree and total

power in all frequency bands.

(TIF)

Figure S2 Relation between structural and functional connec-

tivity. Left panel: matrix of the structural connections between all

78 cortical regions, adapted from Gong et al. [24]. Red squares

indicate the presence of a connection. Since all connections are

bidirectional, the matrix is symmetrical over its diagonal axis.

Right panel: matrix of functional connections acquired using the

synchronization likelihood (SL) as coupling measure (broadband

frequency range: 0.5–45 Hz), and thresholding all pairwise SL

values to obtain a graph with the same average degree (K = 8) as

the structural connectivity matrix to the left.

(TIFF)

Figure S3 Relation between structural and functional degree in

all frequency bands. Error bars depict standard deviations within

each bin after 20 simulated runs.

(TIF)

Figure S4 Specifications of the neural mass model. A:

Schematic presentation of single neural mass model. The upper

rectangle represents a mass of excitatory neurons, the lower

rectangle a mass of inhibitory neurons. The state of each mass is

modeled by an average membrane potential [Ve(t) and Vi(t)] and

a pulse density [E(t) and I(t)]. Membrane potentials are converted

to pulse densities by sigmoid functions S1[x] and S2[x]. Pulse

densities are converted to membrane potentials by impulse

responses he(t) and hi(t). C1 and C2 are coupling strengths

between the two populations. P(t) and Ej(t) are pulse densities

coming from thalamic sources or other cortical areas respectively.

B: Coupling of two neural mass models. Two masses are coupled

via excitatory connections. These are characterized by a fixed

delay T and a strength g. C: Essential functions of the model. The

upper left panel shows the excitatory [he(t)] and inhibitory [hi(t)]

impulse responses of Eq. 1. The upper right shows the sigmoid

function relating average membrane potential to spike density

(Eq. 2).

(TIF)

Figure S5 Power spectrum of hubs. Power spectrum of a hub

region (precuneus) in black, and a non-hub region in blue. Note

the difference in power, but also the lower alpha peak of the hub

region.

(TIFF)

Figure S6 Alpha peak frequency in hubs. The alpha peak

frequency of all cortical regions plotted against their structural

degree. A negative correlation can be observed (r = 20.53). Hubs

(the 13 regions with highest structural degree) have a significantly

lower alpha peak (p,0.001) compared to non-hubs.

(TIFF)

Table S1 Overview of model parameters. The final model

consisted of 78 of the NMMs as described above, which were

coupled together based on the structural DTI network results from

Gong et al. [24]. Coupling between two NMMs, if present, was

always reciprocal, and excitatory. The output E(t) of the main

excitatory neurons of one NMM was used as the input for the

impulse response he(t) of the excitatory neurons of the second

NMM; the output E(t) of the second module was coupled to the

impulse response he(t) of the excitatory neurons of the first NMM.

Following Ursino et al. [87] we used a time delay (T6sample time,

with n an integer, 0,T,21) and a gain factor. In the present

study, n and gain were set to 1 for all connections. A schematic

illustration of the coupling between two NMMs is shown in

Figure 1B. For the present study the model was extended in order

to be able to deal with activity dependent degeneration of

connection strength between multiple coupled NMMs. Coupling

Table 2. Graph theoretical definitions.

Measure Description

Degree k Number of connections of a node. Average for all nodes in a network produces the average degree K.

Node strength (or weighted degree) kw Sum of all connection weights of a node.

Clustering coefficient Cp Number of directly connected neighbors of a node divided by the maximally possible number of
interconnected neighbors. The mean of this value for all nodes gives the average clustering
coefficient; a measure of local integration.

Path length Lp Shortest number of steps from one node to another. Average over all possible shortest paths is the
characteristic path length of a network; a measure of global integration.

Gamma c Normalized average clustering coefficient, obtained by dividing Cp by the average Cp of a set
randomized networks of the same size and density.

Lambda l Normalized characteristic path length, obtained by dividing Lp by the characteristic Lp of a set
randomized networks of the same size and density.

Modularity Q Expresses the strength of the modular character of a network.

Glossary of graph theoretical measures used in this study. For exact definitions, please refer to [14,85].
doi:10.1371/journal.pcbi.1002582.t002
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strength between neural masses was initially set at the same level

for all connections; different levels were tested (S = 1, S = 1.5,

S = 2; see figure 3).

(TIF)

Text S1 Supporting information. 1. Relation between functional

degree and total power. 2. Relation between structural and

functional degree. 3. Network dynamics: the neural mass model. 4.

Relation between structural degree and alpha power peak

frequency.

(DOC)
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