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“The task is...not so much to see what no one has yet seen;
but to think what nobody has yet thought, about that which
everybody sees."

Erwin Schrödinger
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Resum de la tesi

Estocasticitat i dinàmica complexa en xarxes cerebrals mesoscòpiques

L’objectiu d’aquesta tesi és aprofundir en la comprensió dels mecanismes responsables de la
generació de dinàmica complexa i estocàstica, així com de fenòmens emergents, en el cervell humà.
Des d’un punt de vista microscòpic, les neurones són les responsables de processar la informació,
sensorial o provinent d’altres fonts, i transmetre-la elèctricament a través d’extenses xarxes
cel·lulars que conformen el sistema nerviós. La informació es processa mitjançant l’anomenat
codi neuronal, que es basa en l’activació elèctrica de les neurones exclusivament quan el seu
potencial de membrana supera el llindar d’activació. D’aquesta manera, els potencials d’acció, o
descàrregues elèctriques, actuen com a unitat d’informació en un sistema binari de codificació.
Aquest sistema gaudeix d’una precisió temporal excepcional que permet codificar la informació en
seqüències de descàrregues i així emmagatzemar memòria, processar informació o donar resposta
a diversos estímuls.

Una qüestió cabdal en neurociència és la relació entre l’activitat neuronal i la fenomenologia
emergent característica del comportament humà i animal: Quins són els mecanismes de la
consciència? Com s’emmagatzema memòria en el cervell? Generalment s’intenta desgranar
cadascuna de les característiques per després associar-les a l’activitat neuronal a diferents escales
espai-temporals del cervell. D’aquesta manera es creu que la capacitat d’emmagatzemar memòria
és una característica de l’activitat microscòpica del cervell, mentre que a escales més grans
la coordinació de l’activitat d’àrees distants del cervell està relacionada amb la cognició i la
percepció. La visió que prenem aquí es concentra en estudiar la fenomenologia característica
de l’escala mesoscòpica, és a dir, aquella en la que la dinàmica característica ve donada per
l’activitat de milers o, fins i tot, milions de neurones. En aquesta escala l’activitat síncrona de
grans poblacions neuronals dóna lloc a un fenomen col·lectiu pel qual es produeixen oscil·lacions
del seu potencial mitjà. Aquestes oscil·lacions poden ser fàcilment enregistrades mitjançant
aparells d’electroencefalograma (EEG) o enregistradors de Potencials de Camp Local (LFP). A
més a més, les freqüències mitjanes d’aquestes oscil·lacions poden associar-se a estats mentals
prototípics: així, l’enregistrament de senyals EEG d’una freqüència mitjana de 10 Hz a la zona
occipital del crani s’ha associat a estats de concentració i meditació, mentre que l’enregistrament
de senyals EEG d’uns 40 Hz s’ha relacionat amb estats de consciència i atenció.

Per tal d’entendre millor com les escales microscòpica i mesoscòpica del cervell interactuen, en
el Capítol 5 mostrem com la comunicació entre dos columnes corticals (estructures mesoscòpiques)
pot ser conduïda de forma eficient per una xarxa neuronal microscòpica. De fet, emprem la
sincronització de les dues columnes corticals per comprovar que s’ha establert una comunicació
efectiva entre les tres estructures neuronals. Els nostres resultats indiquen que hi ha règims
dinàmics de la xarxa neuronal microscòpica que afavoreixen la correcta comunicació entre les
columnes corticals: així, si la freqüència típica de LFP a la xarxa neuronal està al voltant
dels 40 Hz la sincronització entre les columnes corticals és més robusta en comparació amb
la situació en què la xarxa neuronal oscil·la a una menor freqüència (∼ 10 Hz). Tanmateix,
les característiques topològiques de la xarxa microscòpica també influeixen en la comunicació,
essent una estructura de tipus món petit (small-world) la que millor afavoreix la sincronització
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de les columnes corticals. Per últim, en aquest treball mostrem com la mediació exercida per la
xarxa neuronal no pot ser substituïda per la mitjana de la seva activitat, és a dir, les propietats
dinàmiques de la xarxa neuronal microscòpica són imprescindibles per a la correcta transmissió
d’informació entre totes les estructures neuronals. Aquests resultats, doncs, donen una nova visió
sobre els diferents rols que poden tenir les descripcions del cervell a diferents escales.

Una de les característiques més rellevants dels sistemes nerviosos és la presència de cèl·lules
neuronals excitadores i inhibitòries. La seva tasca és oposada: les neurones excitadores afavoreixen
l’activació elèctrica de les seves neurones veïnes, mentre que les neurones inhibitòries dificulten
aquesta activació. A nivell microscòpic s’ha estudiat en detall com les xarxes neuronals estan
influenciades pel balanç entre el nombre de neurones excitadores i inhibidores, així com de la
força de les seves connexions. Així, l’activitat elèctrica oscil·latòria cerebral ve donada en gran
mesura per la interacció entre excitació i inhibició. A més a més certes malalties i dolències
mentals, tals com la depressió o l’esquizofrènia, estan associades a un balanç incorrecte entre
excitació i inhibició. Malgrat haver estat un focus d’estudi en xarxes neuronals microscòpiques,
pocs treballs han centrat l’atenció en saber quina és la dinàmica excitadora i inhibidora a escales
més grans del cervell. En el Capítol 6 estudiem com grups de columnes corticals mostren patrons
complexos d’excitació i inhibició segons quines siguin les seves característiques topològiques i la
força dels seus acoblaments. D’aquesta manera les columnes corticals se segreguen entre aquelles
dominades per l’excitació i aquelles dominades per la inhibició. A més a més, en aquest capítol
estudiem com aquests patrons influeixen en les capacitats de sincronització de xarxes de columnes
corticals, la qual està molt relacionada amb les complexes relacions que s’estableixen entre les
senyals elèctriques o magnètiques enregistrades en diferents llocs del cervell.

La coordinació de l’activitat de milers o milions de neurones permet l’emergència del fenomen
col·lectiu de les oscil·lacions neuronals. Tanmateix, s’ha comprovat que en molts altres sistemes
naturals, com les xarxes genètiques, ecològiques o xarxes socials, l’activitat síncrona d’entitats
dinàmiques dóna lloc a fenòmens emergents amb característiques completament diferenciades de
les dels seus constituents. Es per això que en els darrers anys s’ha estudiat profusament quines
són les bases per les quals emergeix la sincronització en sistemes tant variats. En el Capítol 7
estudiem un règim dinàmic, present en les columnes corticals estudiades en el Capítol 6, segons
el qual patrons complexos de sincronització apareixen espontàniament en xarxes d’oscil·ladors
caòtics. Mitjançant un tractament semi-analític, mostrem quines condicions s’han de donar en
un conjunt de sistemes dinàmics acoblats per tal de mostrar heterogeneïtat en la sincronització,
és a dir, coexistència de sincronitzacions dins d’una mateixa xarxa. D’aquesta manera relacionem
els nostres resultats amb el fenomen de sincronització complexa en el cervell, que és un focus
d’estudi avui en dia.

Finalment, en el Capítol 8 abordem una de les característiques més estudiades del cervell:
la capacitat de computar i processar informació. La novetat aquí rau en l’ús que fem de la
sincronització complexa a nivell mesoscòpic del cervell, per tal d’implementar elements bàsics
de computació Booleana. D’aquesta manera, mostrem un possible escenari segons el qual
la sincronització parcial de les oscil·lacions cerebrals estableix un codi neuronal en termes
de sincronització/no sincronització (que anomenem estats 1/0, respectivament) i, d’aquesta
manera, totes les funcions booleanes simples poden ésser implementades (AND, OR, XOR, etc).
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Mostrem, també, com emprant xarxes mesoscòpiques extenses les capacitats de computació
creixen proporcionalment. D’aquesta manera hipotetizem que funcions Booleanes complexes,
com una memòria del tipus flip-flop, pot ésser construïda en termes d’estats de sincronització
dinàmica d’oscil·lacions cerebrals.

En resum, aquesta Tesi té com a objectiu l’estudi de la dinàmica neuronal a diferents escales del
cervell: primerament mostra quines característiques té la comunicació entre l’escala microscòpica
i mesoscòpica del cervell, per després aprofundir en l’estudi de diferents característiques de la
dinàmica de poblacions neuronals a la mesoescala cerebral . Els resultats que aquí es mostren
donen una nova visió sobre el rol de l’excitació i la inhibició en xarxes corticals, caracteritzen la
sincronització complexa d’oscil·ladors neuronals i revelen nous mecanismes de computació i de
processament d’informació mitjançant la dinàmica oscil·latòria del cervell.
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Introduction





Chapter 1

The human brain

“Mientras nuestro cerebro sea un arcano, el universo reflejo
de su estructura también será un misterio."

Santiago Ramón y Cajal

The human brain is composed of a myriad of coupled neurons and glial cells that interact
dynamically. It possesses a rich topological structure and exhibits complex dynamics, operating
as a noisy, nonlinear, and highly dimensional system. Neuronal activity evolves at temporal scales
ranging from a few milliseconds to tens of seconds, and emerges from neuronal assemblies that
extend from micrometers to several centimeters. Due to a complex functional hierarchy between
cell groups, the brain is able to store information for long periods of time, process multiple
sensory inputs efficiently, and produce coherent output in the form of actions and thoughts.

Even though the brain has been studied for centuries, a full theoretical description of its
normal and pathological functioning is still not available. Due partly to the lack of a full
description of the anatomical connectivity, and partly to our incomplete knowledge of the
interplay between different neural processes, the brain is still the great unknown organ. Its
study is usually partitioned into different research sub-areas devoted to distinct brain structures
(such as the thalamus, amygdala, hippocampus, etc), cortical functional areas (motor, visual,
auditory cortex, etc.) or particular microscopic circuits, from the level of brain areas down to
single-neuron responses. Moreover, studies of the global activity of the brain usually focus for
convenience on specific cognitive or motor tasks, in order to compare them with a control state
such as spontaneous activity at rest.

Lately, modern neuroscience has attempted to gather the biological basis of brain function
with theoretical computing paradigms so as to unveil the mechanisms of its complex capabilities.
However, there is still a long path towards the full comprehension of the brain features responsible
for complex human traits. Thus, forthcoming research must bring together all known aspects
of neuroscience - physiology, neuroanatomy and neural computation - in order to formulate
an integrated theory of the brain and its behavior that eventually accounts for its prominent
emergent dynamics.

1
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Brief historical review: From the brain to the neuron and its dynamics

The study of the human brain has a long tradition in western culture, reaching back to the time
of Egyptian mummifications. Although Egyptians did not consider the brain, but rather the
heart, to be the locus of intelligence they became interested in the knowledge of its composition
due to their practice of removing brain tissue when mummifying. Ancient Greek theories shifted
the view towards a brain-based intelligence (Alcmaeon of Croton, 6th and 5th centuries BC,
Hippocrates, 4th century BC). During the Egyptian Hellenistic period there were tremendous
advances in the investigation of the anatomy and physiology of the brain and the rest of the
nervous system’s (Herophilus of Chalcedon, c.335/330-c.280/250 BC, Erasistratus of Ceos, c.304 -
250 BC), although, unfortunately, most of the work is now lost.

The most complete early view of brain function was formulated by Galen of Pergamon
(AD 129 - c.200/c.216, Roman empire), who assumed that the brain and the nervous system
worked like a gland (organ), and thus could be studied as such. He speculated about the
processing of sensory information and announced an accurate theory of muscle control that took
into account the already known anatomy of the nervous system. This view influenced the study
of the brain in western neuroscience for more than a thousand years.

Physiological investigations of the nervous system profusely developed in the modern era
(starting from the late 1700s) after the Italian physician and physicist Luigi Galvani (1737-1798)
discovered that living excitable muscle and nerve cells produce electricity, showing that the
electrical activity of one excited nerve cell affects the activity of adjacent cells in a predictable
way (see Fig.1.1).

A! B!

Figure 1.1: Galvani’s experiments on animal electrical properties. (A) Portrait of the
Italian physicist and physician Luigi Galvani (c.1770). (B) Cartoon depicting the famous Galvani
experiment with dead frog’s legs. In this case Galvani showed that a closed circuit between a
bimetallic arch and the frog’s legs produced muscular convulsions. Adapted from Galvani [2015].

The invention of the microscope, back in the eighteenth century, made possible to change
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the view of the brain tissue from being a continuous fluid a discrete structure of cells. However,
it was not until the very end of the nineteenth century when the first detailed descriptions of
the cells composing the neural system, the neurons, were announced by both Camilo Golgi
(1843-1926) and Santiago Ramón y Cajal (1852-1934) (see Fig.1.2A,B). Golgi developed a method
for staining neurons with silver salts that allowed to observe in detail their entire structure under
the microscope. Neurons clearly displayed cell bodies and two other major structures: branching
dendrites (from Greek dendron or "tree" ) and a long cable-like axon (from Greek "axis"). Besides,
Ramón y Cajal studied and described the morphology of individual cells, proposing that the
structure of nervous tissues was a network of discrete cells. In this sense, he anticipated that the
minimal structure for elementary signalling in the nervous system was the neuron and, thus, he
was one of the first claimers of the neuron doctrine (see Fig.1.2C).

A! B!

C!

Figure 1.2: Camillo Golgi and Santiago Ramón y Cajal, fathers of the ’neuron
doctrine’. (A) Portrait of Camillo Golgi. (B) Portrait of Santiago Ramón y Cajal. (C) Drawing
by Ramón y Cajal depicting the structure of several cells that he observed with the help of a
microscope. From Nobel [1967]; Neomed [2013]; Sotelo [2003].

The chemical basis of the communication between nerve cells was first described in the mid
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XIXth century by Paul Ehrlich, in Germany, Claude Bernard, in France, and John Langley, in
England, who demonstrated that drugs do not interact with neural cells arbitrarily but actually
do it with selected neurons. It was later discovered that such drugs bind to specific receptors
located in the surface membrane of neurons, affecting the overall dynamics of large ensembles of
these cells. Besides, the chemical agents responsible for neuronal activation or deactivation were
identified as the nowadays called neurotransmitters. A large collection of neurotransmitters have
been discovered since these seminal studies. For example, gamma-Aminobutyric acid (GABA)
was first synthesized in 1883, and in 1950 was found to play a role in the central nervous system,
specifically by reducing brain excitability. Its counterpart, the glutamic acid, or glutamate in
its ionized form, is the main responsible for neural activation. However, many other chemicals
are involved in neural communication (aspartate, dopamine, acetylcholine, etc), endowing neural
circuits with versatility in their dynamics.

One of the main goals of early neuroscience research, starting in the late 1800s, was to bring
together biological and psychological concepts in the study of behavior. In this sense, many
new ideas were proposed to gather biological evidence – with neuroanatomy, neurochemistry
and neurophysics on its basis – and complex behavioral traits in a unique theory of brain
and mind. One of the very first ideas, proposed by the german physician Franz Joseph Gall
(1758-1828) postulated that particular regions of the cerebral cortex, the outermost part of
the brain, controlled specific functions and so it was divided into several adjoined organs, each
corresponding to a concrete mental faculty. He also stated that these areas, each one associated
with a behavioral trait – generosity, religiosity, kindness, etc. – grew with use, creating a pattern
of bumps and ridges easily indicating the most developed brain regions and so mapping anatomy
and behavior. His method became known as phrenology (from Greek phren, mind, and logos,
knowledge, see Fig.1.3A).

Gall’s ideas were put in doubt when experimental evidence showed that lesions in specific
brain sites did not affect specific behaviors. The french physiologist Pierre Flourens (1794-1867)
showed that all brain regions, rather than specific ones, participated in every mental operation
and, thus, any part of the cerebral hemisphere was involved in cognitive tasks. However, Gall’s
hypotheses were the basis for posterior advances in relating cognition and brain.

The french neurologist Pierre Paul Broca (1824-1880) was very much influenced by Gall’s
theories in the sense that functions could be localized in the brain. In the mid 1800s he extended
Gall’s thoughts by establishing a new experimental approach: the examination of damages to the
brain produced by clinical lesions. To do so he studied cases of patients with aphasia, a language
disorder in which subjects are capable of understanding what they are being told, but are unable
to speak. Post-mortem analysis of such cases showed lesions in the posterior region of the frontal
lobe, now called Broca’s area, located in the left cerebral hemisphere.

Following up the work by Broca and others, the german neurologist and psychologist Karl
Wernicke (1848-1905) developed a theory in which the most basic mental functions were distributed
throughout the cerebral cortex. In particular, those related with simple perceptual and motor
activities were localized in single areas of the cortex. In turn, he stated that more complex
cognitive functions arise from interconnections between several functional sites. By gathering
the principles functional localization with a connectionist framework, Wernicke anticipated that
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A! B!

Figure 1.3: Functional parcellation of the human brain. (A) Cartoon depicting a
phrenologist parcellation of the brain surface. Each division is related with a complex human
feature. (B) Classification of brain areas under the Brodmann criterion. Each color indicates the
main functional properties of these areas. From Kandel [2013]; Kaiser [2015]; Brodmann [1909]

different aspects of a single behavioral trait are processed in different regions of the brain,
advancing the modern idea of distributed processing. Wernicke developed these ideas by focusing
to a very precise cognitive task: language. He argued that language involves separate motor
and sensory areas, located in different cortical regions. Thus, the complex task of speaking
involves the recruitment of Broca’s area, responsible for motor control of the tongue, vocal cords,
etc, and a sensory area, responsible for word perception and located in the temporal lobe (now
called Wernicke’s area). Further research indicated the recruitment of a group of brain areas,
collectively known as association cortex, which integrates auditory, visual and somatic stimuli
into complex perceptions.

At the beginning of the XXth century, the ideas of Karl Wernicke were taken as the basis
for the classification of different functional areas of the cortex, deriving from variations in the
structure of cells and their arrangement, using a method called cytoarchitecture. The german
neurologist and anatomist Korbinian Brodmann (1868-1918) parcelled the human cortex into 52
anatomically and functionally distinct areas, which are widely used nowadays – with constant
updating –. Several areas defined by Brodmann have been found to control very specific brain
functions (e.g. the primary visual cortex, responsible for processing visual signals, matches with
area 17; areas 41 and 42 encompass the primary auditory cortex; areas 1, 2 and 3 conform the
primary somatosensory cortex, which receives stimuli from bodily sensation, see Fig.1.3B).

A great step forward in the study of the cerebral cortex and its structure came in the
early XXth century with the introduction of noninvasive recording techniques. Hans Berger
(1873-1941) developed in 1924 a scalp electrical recording device which is still nowadays the most
widespread method used in clinical and psychological laboratories, the electroencephalogram (EEG,
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Figure 1.4: Non-invasive brain recording techniques. (A) Cartoon depicting an EEG
recording helmet (left) and eight typical EEG time traces (right). (B) Cartoon depicting a MEG
recording helmet (left) alongside with two typical MEG time traces (right). (C) Computer image
of a functional magnetic resonance image (fMRI) based on Blood Oxygenation Level Dependent
signal (BOLD, left) and a typical time trace (right). These signals display increases in oxygen
levels in blood flowing through brain tissues. From Britannica [2014]; EEG [2014]; Buzsáki et al.
[2012]

Fig.1.4A) [Adrian and Matthews, 1934]. This method entails an excellent temporal resolution,
in the range of the millisecond, but a rather poor spatial resolution, of about a centimeter.
Therefore, the activity reflected in EEG recordings results from the average behavior of large
populations of neurons. From a theoretical point of view, the spatiotemporal integration problem
of neuronal activity, arising from EEG-like activity, is similar to that of the statistical mechanics
in physics because the details of the neuronal interactions are replaced by the average behavior, or
mean field. In the late XXth century a myriad of novel noninvasive techniques appeared, e.g. the
magnetoencephalogram (MEG, 1.4B), functional Magnetic Resonance Imaging (fMRI, 1.4C) or
Positron Emission Tomography (PET). Such techniques allow for the study of (healthy) subjects
without the need of a surgical intervention, and thus allows for highly controlled experimental
conditions. These advanced neuroimaging tools allow for a better spatial precision than the EEG



CHAPTER 1. THE HUMAN BRAIN 7

and, thus, a better characterization of precise brain region responses can be undertaken.

Nowadays a growing interaction between imaging and recording techniques has is enabling to
propose new projects aim to understand to construct realistic whole brain simulations. One of
such projects is the Blue Brain Project, which intends to understand brain dynamics by simulating
the human cortex from a molecular level [Markram et al., 2015]. The BRAIN Initiative (Brain
Research through Advancing Innovative Neurotechnologies) is a counterpart project with the
goal of providing a deeper understanding of brain dynamics through mapping the activity of
neurons in mice or other animals, to later achieve a "functional connectome" that eventually may
be applied to the study of the human brain.

1.1 General structure of the central nervous system

The central nervous system possesses seven main parts: the spinal cord, the pons, the medulla
oblongata, the cerebellum, the midbrain, the diencephalon and the cerebral hemispheres. The
latter are commonly grouped into three broader regions: the hindbrain, the midbrain and the
forebrain (see Fig. 1.5A).

The spinal cord receives and processes sensory input coming from the skin, muscles and
other bodily structures, and controls movement of the limbs and the trunk. It can be divided into
cervical, thoracic, lumbar and sacral regions and extends into the brain stem, which comprises
the medulla, the pons and the midbrain. Moreover, they convey information from the spinal cord
to the brain and vice versa. The pons carries information about movement from the cerebral
hemispheres to the cerebellum. It relays signals from the forebrain to the cerebellum, and it
contains the pneumotaxic center, which regulates the change from inhalation to exhalation among
other functions. The medulla oblongata connects higher levels of the brain to the spinal cord
and includes centers responsible for vital autonomic functions, such as breathing, the control
of heart rate, digestion or blood pressure. The cerebellum is a crucial structure involved in
motor control and higher cognitive functions such as attention and language. It lies behind the
pons and is connected to the brain stem by fiber tracts called peduncles. Besides, it conveys
input from sensory systems of the spinal cord and other brain sites and later integrates this
information to coordinate motor activity. It is composed by several types of neurons arranged in
a regular manner, the most important being the Purkinje and granule cells.

The midbrain controls sensory and motor functions such as eye movement or visual and
auditory reflexes. The diencephalon contains two main structures: the thalamus, which
processes most of the information reaching the cerebral cortex from the rest of the central nervous
system, and the hypothalamus, which is responsible for most of the autonomic, endocrine and
visceral function. Finally, the cerebral hemispheres comprise four structures: the cerebral
cortex, which is the wrinkled outermost layer responsible for most of the higher cognitive functions
(Fig. 1.5B), the basal ganglia – involved in movement control –, the hippocampus – which is part
of the limbic system and deals with physiological responses, memory and most prominently in
the control of head direction and position in space – and the amygdaloid nuclei which also deal
with endocrine and emotional responses.
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A! B!

Figure 1.5: Structure of the brain and spinal cord. (A) Cartoon showing the structure
of the central nervous system, comprising the brain and the medulla. (B) Division of the human
brain into functional lobes, i.e. frontal, parietal, occipital and temporal. From Kandel [2013].

1.2 The cerebral cortex and cortical columns

The brain operations responsible for the human cognitive abilities take place primarily in the
cerebral cortex, which is the outermost wrinkled structure of about 2.4mm in thickness that
covers the two brain hemispheres. Each hemisphere is in turn subdivided into four anatomical
distinct lobes: frontal, parietal, temporal and occipital (see Fig. 1.5B). There is clear evidence
that these lobes have specialized functions, for instance , the occipital lobe is concerned with
visual stimuli, the parietal lobe processes somatic sensation, the frontal lobe is involved with
planning future actions and the control of movement and the temporal lobe is related with
hearing and with aspects of learning, memory and emotions through its connections with deeper
structures – amygdaloid nuclei and hippocampus –.

The structure of the cerebral cortex presents characteristic foldings. The current hypothesis
tells that such foldings result from an evolutionary strategy for embedding more cells in a limited
volume. Besides, the different folded parts of the cerebral cortex have distinct names: the crests
are called gyri, while the deepest parts are called sulci or fissures. Moreover, the cortex has
a particularity when processing information: each hemisphere is concerned with the stimuli
conveyed by the contra-lateral side of the body, for instance sensory information coming through
the spinal cord from the left hand is processed in the right hemisphere. However, although the
hemispheres are similar in appearance, they are not completely symmetrical in structure and,
thus, not equivalent in function. This fact has implications in the way humans process complex
inputs and produce complex responses.

The lobes in the cortex can be ulteriorly parcelled into several small regions displaying
cytoarchitecturally distinct patterns – related with the Brodmann areas mentioned above –,
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L1	  
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A! B!

Figure 1.6: Structure of the brain cortex and cortical columns. (A) Schematic recon-
struction of 3 neighboring cortical columns with highlighted layered organization. Each column
displays cells bodies in deep layers 5 and 6 (pyramidal cells), whereas cell axons and dendrites
arrange in a vertical manner reaching superficial layers 1, 2 and 3. Color coding represents cell
bodies (reddish) and axons (whitish). (B) Representation of a macaque brain with a highlighted
patch of the cortex showing the orientation preference -triggering a response in the corresponding
receptive field- to visually presented bars (see color coding). A cortical macro column, which
codes all orientation preferences, can be extracted from the visual cortex patch, as shown in the
bottom image. From Kandel [2013].

which are in turn related with functional specificities. These small patches of the cortex also
posses an anatomical substructure that extends into deeper layers: the cortical column (Fig.
1.6A). Cortical columns emerge as morphological structures composed by groups of neurons
divided into layers that extend parallel to the cortex surface. Besides, and most importantly,
they posses nearly identical receptive fields – i.e. a given type of stimulus triggers the firing of
the whole set of neurons comprising a column, Fig. 1.6B –. Such feature allows to tessellate the
cortex in terms of functional responses of groups of neurons within a cortical column.

The columnar structure of the cerebral cortex was initially described by Lorente de Nó (1902-
1990) [de No and Fulton, 1938] as a morphological unit, usually referred to as “minicolumn”,
formed by several tens of neurons [Buxhoeveden and Casanova, 2002; da Costa and Martin,
2010]. The particular structure of cortical minicolumns was discovered by Vernon Mountcastle
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(1918-2015) while recording from a cat somatosensory cortex [Mountcastle, 1957], who noted
that all cells at a given vertical electrode penetration responded either to superficial or deep
stimulation. It appeared that for a common receptive field location (e.g. the cat’s foreleg), cells
were segregated into domains representing different sensory modalities. By making multiple,
closely spaced penetrations, Mountcastle concluded that individual minicolumns are no more
than 500 mm wide. The existence of a strong interaction between several tens of minicolumns
into a larger functional unit was initially recognized in the motor system, extended to the
entire neocortex [Mountcastle, 1997] and referred to as “hypercolumn” in the visual cortex
[Hubel and Wiesel, 1977] and “macro column” in general [Rockland, 2010]. The mesoscopic
neuronal populations belonging to cortical macrocolumns composed of thousands of neurons
exhibit coherent dynamical responses to sensory [Petersen et al., 2003] and thalamic [Swadlow
et al., 2002] stimuli. Sensory stimulation has also been seen to lead to coherent oscillations
between neighboring macrocolumns [Eckhorn et al., 1988]. These observations indicate that
brain dynamics can be studied (at least partly) at a scale in which averaged dynamical responses
of large groups of neurons explain the observed dynamics, as we will show later.

1.3 Neurons and neuronal circuits

The brain contains a wide variety of neuronal (and glial) types of cells in terms of their morphology
and physiology (see Fig. 1.7A), as well as dynamics (see Fig. 1.7B). In this sense, some neurons
develop only a few dendrites, whereas other cells (e.g. Purkinje neurons) possess extensive
dendritic trees, which makes the human cortex appear as a dense network of neurons, and
enables the brain to function as the center for learning, reasoning and memory, among other
features [Gilbert, 1985].

Neurons are the cells responsible for encoding, transmitting and integrating signals originating
inside or outside the nervous system. Neuronal communication is mediated by changes in the
so-called membrane potential, which is the electrical potential of the neurons at rest. Nerve cells
connect to each other through synapses, which arbitrate the exchange of neurotransmitters. In
turn, the action of these chemicals causes transient changes in the membrane potential of the
downstream connected neuron, called postsynaptic potentials. Such potentials are generated
by the flux of ions between intracellular and extracellular space, through ion channels present
in the membrane, causing an integrative effect that translates into an impulse-like response
(spike) whenever a threshold is reached. Spikes, or action potentials, are the units of information
transmission at the interneuronal level. Information may be encoded either by the frequency of
impulses (i.e. rate coding) or the their timing (i.e. temporal coding).

Learning and memory are associated with changes in the connectivity between neurons,
paradigmatically defined as modulation of synaptic efficacy. However, network dynamics is
also crucially determined by complex interactions between intrinsic neuron properties, and
thus synaptic efficacy does not act as the sole agent for learning and memory. In particular,
the strength of synaptic conductivity changes in real time depending on the neuron’s activity,
making neural circuits "plastic" [Engel et al., 2001b]. Plasticity emerges in the form of long-term
potentiation and depression of synapses, involving increased or decreased conductivity, which
imply an overall increased or decreased activity over time. Such activity can be at the basis for



CHAPTER 1. THE HUMAN BRAIN 11

“computation with attractors.” The idea is to design dur-
ing the learning stage, in a memory network phase
space, a set of attractors, each of which corresponds to a
specific output. Neural computation with attractors in-
volves the transformation of a given input stimulus,
which defines an initial state inside the basin of attrac-
tion of one attractor, leading to a fixed desired output.

The idea that computation or information processing
in neural systems is a dynamical process is broadly
accepted today. Many dynamical models of both
bottom-up and top-down type that address the encoding
and decoding of neural information as the input-
dependent dynamics of a nonautonomous network have
been published in the last few years. However, there are
still huge gaps in our knowledge of the actual biological
processes underlying learning and memory, making ac-
curate modeling of these mechanisms a distant goal. For
reviews see Arbib et al. !1997" and Wilson !1999".

Classical nonlinear dynamics has provided some basis
for the analysis of neural ensembles even with large
numbers of neurons in networks organized as layers of
nearly identical neurons. One of the elements of this
formulation is the discovery of stable low-dimensional
manifolds in a very high-dimensional phase space. These
manifolds are mathematical images of cooperative
modes of activity, for example, propagating waves in
nonequilibrium media !Rinzel et al., 1998". Models of
this sort are also interesting for the analysis of spiral
waves in cortical activity as experimentally observed in
vivo and in vitro !Huang et al., 2004". Many interesting
questions have been approached by using the phase por-
trait and bifurcation analysis of models and by consider-
ing attractors and other asymptotic solutions. Neverthe-
less, new directions may be required to address the
important complexity of nervous system functions.

C. New paradigms for contradictory issues

The human brain contains approximately 1011 neurons
and a typical neuron connects with #104 other neurons.
Neurons show a wide diversity in terms of their mor-
phology and physiology !see Fig. 3". A wide variety of
intracellular and network mechanisms influence the ac-
tivity of living neural circuits. If we take into account
that even a single neuron often behaves chaotically, we
might argue that such a complex system most likely be-
haves as if it were a turbulent hydrodynamic flow. How-
ever, this is not what is observed. Brain dynamics are
more or less regular and stable despite the presence of
intrinsic and external noise. What principles does nature
use to organize such behavior, and what mathematical
approaches can be utilized for their description? These
are the very difficult questions we need to address.

Several important features differentiate the nervous
system from traditional dynamical systems:

• The architecture of the system, the individual neural
units, the details of the dynamics of specific neurons,
as well as the connections among neurons are not

usually known in detail, so we can describe them
only in a probabilistic manner.

• Despite the fact that many units within a complex
neural system work in parallel, many of them have
different time scales and react differently to the same
nonstationary events from outside. However, for the
whole system, time is unified and coherent. This
means that the neural system is organized hierarchi-
cally, not only in space !architecture" but also in time:
each behavioral event is the initial condition for the
next window of time. The most interesting phenom-
enon for a neural system is the presence not of at-

FIG. 3. Examples of !a" the anatomical diversity of neurons,
and !b" the single-neuron membrane voltage activity associ-
ated with them. !1" Lobster pyloric neuron; !2" neuron in rat
midbrain; !3" cat thalamocortical relay neuron; !4" guinea pig
inferior olivary neuron; !5" aplysia R15 neuron; !6" cat tha-
lamic reticular neuron; !7" sepia giant axon; !8" rat thalamic
reticular neuron; !9" mouse neocortical pyramidal neuron; !10"
rat pituitary gonadotropin-releasing cell. In many cases, the
behavior depends on the level of current injected into the cell
as shown in !b". Modified from Wang and Rinzel, 1995.
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Fig. 2. Known types of neurons correspond to different values of the parameters , , , in the model described by the (1), (2). RS, IB, and CH are cortical
excitatory neurons. FS and LTS are cortical inhibitory interneurons. Each inset shows a voltage response of the model neuron to a step of dc-current
(bottom). Time resolution is 0.1 ms. This figure is reproduced with permission from www.izhikevich.com. (Electronic version of the figure and reproduction
permissions are freely available at www.izhikevich.com.)

• The parameter describes after-spike reset of the recovery vari-
able caused by slow high-threshold and conductances.
A typical value is .

Various choices of the parameters result in various intrinsic firing pat-
terns, including those exhibited by the known types of neocortical [1],
[3], [4] and thalamic neurons as summarized in Fig. 2. A possible exten-
sion of the model (1), (2) is to treat , and as vectors, and use
instead of in the voltage (1). This accounts for slow conductances
with multiple time scales, but we find such an extension unnecessarily
for cortical neurons.

III. DIFFERENT TYPES OF DYNAMICS

Neocortical neurons in the mammalian brain can be classified into
several types according to the pattern of spiking and bursting seen in
intracellular recordings. All excitatory cortical cells are divided into the
following four classes [1], [3]:
• RS (regular spiking) neurons are the most typical neurons in the
cortex. When presented with a prolonged stimulus (injected step
of dc-current in Fig. 2RS, bottom) the neurons fire a few spikes
with short interspike period and then the period increases. This is
called the spike frequency adaptation. Increasing the strength of
the injected dc-current increases the interspike frequency, though
it never becomes too fast because of large spike-afterhyperpolar-
izations. In the model, this corresponds to (deep
voltage reset) and (large after-spike jump of ).

• IB (intrinsically bursting) neurons fire a stereotypical burst of
spikes followed by repetitive single spikes (Fig. 2IB). In the
model, this corresponds to (high voltage reset)
and (large after-spike jump of ). During the initial burst,
variable builds up and eventually switches the dynamics from
bursting to spiking.

• CH (chattering) neurons can fire stereotypical bursts of closely
spaced spikes. The inter-burst frequency can be as high as 40 Hz.
In the model, this corresponds to (very high voltage
reset) and (moderate after-spike jump of ).

All inhibitory cortical cells are divided into the following two classes
[4]:
• FS (fast spiking) neurons can fire periodic trains of action poten-
tials with extremely high frequency practically without any adap-
tation (slowing down), as one can see in Fig. 2FS. In the model,
this corresponds to (fast recovery).

• LTS (low-threshold spiking) neurons can also fire high-frequency
trains of action potentials (Fig. 2LTS), but with a noticeable spike
frequency adaptation. These neurons have low firing thresholds,
which is accounted for by in the model. To achieve a
better quantitative fit with real LTS neurons, other parameters of
the model need to be changed as well.

In addition, our model can easily reproduce behavior of thalamo-cor-
tical neurons, which provide the major input to the cortex
• TC (thalamo-cortical) neurons have two firing regimes: When
at rest ( is around 60 mV) and then depolarized, they exhibit
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Fig. 2. Known types of neurons correspond to different values of the parameters , , , in the model described by the (1), (2). RS, IB, and CH are cortical
excitatory neurons. FS and LTS are cortical inhibitory interneurons. Each inset shows a voltage response of the model neuron to a step of dc-current
(bottom). Time resolution is 0.1 ms. This figure is reproduced with permission from www.izhikevich.com. (Electronic version of the figure and reproduction
permissions are freely available at www.izhikevich.com.)

• The parameter describes after-spike reset of the recovery vari-
able caused by slow high-threshold and conductances.
A typical value is .

Various choices of the parameters result in various intrinsic firing pat-
terns, including those exhibited by the known types of neocortical [1],
[3], [4] and thalamic neurons as summarized in Fig. 2. A possible exten-
sion of the model (1), (2) is to treat , and as vectors, and use
instead of in the voltage (1). This accounts for slow conductances
with multiple time scales, but we find such an extension unnecessarily
for cortical neurons.

III. DIFFERENT TYPES OF DYNAMICS

Neocortical neurons in the mammalian brain can be classified into
several types according to the pattern of spiking and bursting seen in
intracellular recordings. All excitatory cortical cells are divided into the
following four classes [1], [3]:
• RS (regular spiking) neurons are the most typical neurons in the
cortex. When presented with a prolonged stimulus (injected step
of dc-current in Fig. 2RS, bottom) the neurons fire a few spikes
with short interspike period and then the period increases. This is
called the spike frequency adaptation. Increasing the strength of
the injected dc-current increases the interspike frequency, though
it never becomes too fast because of large spike-afterhyperpolar-
izations. In the model, this corresponds to (deep
voltage reset) and (large after-spike jump of ).

• IB (intrinsically bursting) neurons fire a stereotypical burst of
spikes followed by repetitive single spikes (Fig. 2IB). In the
model, this corresponds to (high voltage reset)
and (large after-spike jump of ). During the initial burst,
variable builds up and eventually switches the dynamics from
bursting to spiking.

• CH (chattering) neurons can fire stereotypical bursts of closely
spaced spikes. The inter-burst frequency can be as high as 40 Hz.
In the model, this corresponds to (very high voltage
reset) and (moderate after-spike jump of ).

All inhibitory cortical cells are divided into the following two classes
[4]:
• FS (fast spiking) neurons can fire periodic trains of action poten-
tials with extremely high frequency practically without any adap-
tation (slowing down), as one can see in Fig. 2FS. In the model,
this corresponds to (fast recovery).

• LTS (low-threshold spiking) neurons can also fire high-frequency
trains of action potentials (Fig. 2LTS), but with a noticeable spike
frequency adaptation. These neurons have low firing thresholds,
which is accounted for by in the model. To achieve a
better quantitative fit with real LTS neurons, other parameters of
the model need to be changed as well.

In addition, our model can easily reproduce behavior of thalamo-cor-
tical neurons, which provide the major input to the cortex
• TC (thalamo-cortical) neurons have two firing regimes: When
at rest ( is around 60 mV) and then depolarized, they exhibit
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Figure 1.7: Neuronal morphology and dynamics. (A) Drawings of different neuronal
types, showing the structural diversity of neural cells. (B) Neurons are excitable cells displaying
a wide repertoire of dynamical behaviors in terms of their membrane potential. Depending on
their intrinsic characteristics, neurons can fire regularly, or in bursts, or they can resonate while
in their sub-threshold state. From Rabinovich et al. [2006]; Izhikevich [2004].

the implementation of several learning rules which may depend on spike timing, e.g. Short-term
Synaptic Plasticity (STDP) [Baudry et al., 2000], or rate, e.g. Rate-based Hebbian Learning.
Finally, memory paradigms may also be implemented in large neuronal networks by means of
synaptic plasticity combined with learning rules, such in the case of working memory or even
long-term memory.

The anatomical mapping of the (human) brain is not yet well established. From the micro-
scopic scale, neurons form intricate networks that can be tracked both in vivo and in vitro by
calcium imaging [Göbel and Helmchen, 2007; Orlandi et al., 2014]. In turn, these networks form
populations that may be arranged under certain well defined anatomical structures, as in the
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case of cortical columns. Besides, distant brain sites may also be connected structurally, forming
the so-called white matter, as revealed by diffusion tensor imaging techniques [Horn et al., 2014]
(see Fig.1.8A).

which all NMMs received similar but individual (i.e., pair-wise
uncorrelated) inputs Pext,1(t), Pext,2(t), Pext,3(t), and so on.

The algorithm of Watts and Strogatz (1998) was used to design
the NMMs network: starting with a network on a ring, in which each
network node or NMM was coupled to its k nearest neighbors (k/2
on each side), connections (edges) were selected at random with
probability p and attached to randomly chosen other NMMs. We note
that by varying the rewiring probability p from 0 to 1 one can recover
the ‘full’ range of network types from regular via small-world to
purely random (see Fig. 1c). The NMM model was adopted from
Schuuring (1988) and Stam (1999a), extended to multiple NMMs
and integrated in the DIGEEGXP software package (version 2.0;
written by one of the authors, C.J.S.). This software is also used for
EEG/MEG analysis (see below). The averagemembrane potential Ve(t)
of the excitatory neurons served as signal per node. The sample
frequency was set to 500 Hz, the initial 5000 samples of each simu-
lation were discarded to avoid transients, and the consecutive 4096
samples (8.19 s) were used for further analysis. We chose these para-
meters in order to mimic characteristics of clinical EEG and MEG
studies (e.g., Stam et al., 2007a, 2008).

Phase coherence

We quantified synchronization between NMMs at different nodes
via their relative phase. Phase entrainment between two units
requires their phase difference to be bounded. That is, if ϕn and ϕm

denote the phases of two signals, and ϕnm the corresponding gene-
ralized phase difference or relative phase, the P:Q phase synchroni-
zation can be found as

j/PQ
nm j = jP/n − Q/m jbconst; ð3Þ

with P and Q integers. Using this general definition, phase coherence
can be determined for oscillatory but also for noisy and chaotic
signals; see Rosenblum and colleagues (1996) for an in-depth
discussion. Here, we confined ourselves to the iso-frequency case by
considering only P=Q=1, that is, ϕnm=ϕn − ϕm. We computed
the instantaneous phase of the signal under study x(t) via its
analytical signal z(t)=x(t)+ixH(t), where xH tð Þ = 1

π x tð Þ4t−1! "

denotes the Hilbert transform of x(t), i.e., the convolution of x(t)
with the hyperbolic function. The average membrane potential Ve(t)

Fig. 1. (a) Basic scheme of neural mass model (NMM) implemented at every node. (b) Coupling scheme between two NMMs. τ=time delay between the nodes, α=the coupling
strength between two nodes. (c) Three fundamental network topologies for the model of coupled NMMs; after Watts and Strogatz (1998).
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Complex network
An informal description of a 
network with certain 
topological features, such as 
high clustering, 
small-worldness, the presence 
of high-degree nodes or hubs, 
assortativity, modularity or 
hierarchy, that are not typical 
of random graphs or regular 
lattices. Most real-life networks 
are complex by this definition, 
and analysis of complex 
networks therefore forms an 
important methodological tool 
for systems biology.

Adjacency matrix
An adjacency matrix indicates 
the number of edges between 
each pair of nodes in a graph. 
For most brain networks, the 
adjacency matrix is specified 
as binary — that is, each 
element is either 1 (if there is 
an edge between nodes) or 0 
(if there is no edge). For 
undirected graphs the 
adjacency matrix is 
symmetrical.

Box 1 | Structural and functional brain networks

Structural and functional brain networks can be explored using graph theory through the following four steps (see the figure):
r�Define the network nodes. These could be defined as electroencephalography or multielectrode-array electrodes, or as 

anatomically defined regions of histological, MRI or diffusion tensor imaging data.

r�Estimate a continuous measure of association between nodes. This could be the spectral coherence or Granger causality 
measures between two magnetoencephalography sensors, or the connection probability between two regions of an 
individual diffusion tensor imaging data set, or the inter-regional correlations in cortical thickness or volume MRI 
measurements estimated in groups of subjects.

r�Generate an association matrix by compiling all pairwise associations between nodes and (usually) apply a threshold to 
each element of this matrix to produce a binary adjacency matrix or undirected graph.

r�Calculate the network parameters of interest in this graphical model of a brain network and compare them to the 
equivalent parameters of a population of random networks.

Each step entails choices that can influence the final results and must be carefully informed by the experimental question. 
At step 1, parcellation schemes can use prior anatomical criteria or be informed by the functional connectivity profiles of 
different regions. Several such parcellation schemes may be available and can affect network measures147. In most magneto-
encephalography and electroencephalography studies, network nodes are equivalent to individual electrodes or sensors, 
but networks could also be based on reconstructed anatomical sources. However, some reconstruction algorithms will 
determine the brain location of each source by minimizing the covariance between sensors, which has major effects on the 
configuration of functional networks. At step 2, a range of different coupling metrics can be estimated, including measures 
of both functional and effective connectivity. A crucial issue at step 3 is the choice of threshold used to generate an 
adjacency matrix from the association matrix: different thresholds will generate graphs of different sparsity or connection 
density, and so network properties are often explored over a range of plausible thresholds. Finally, at step 4 a large number of 
network parameters can be quantified (BOX 2). These must be compared with the (null) distribution of equivalent parameters 
estimated in random networks containing the same number of nodes and connections. Statistical testing of network 
parameters may best be conducted by permutation- or resampling-based methods of non-parametric inference given the 
lack of statistical theory concerning the distribution of most network metrics.

Most graph theoretical network studies to date have used symmetrical measures of statistical association or functional 
connectivity — such as correlations, coherence and mutual information — to construct undirected graphs. This approach 
could be generalized to consider asymmetrical measures of causal association or effective connectivity — such as Granger 
causal148,149 or dynamic causal66 model coefficients — to construct directed graphs. It is also possible to avoid the 
thresholding step (step 3) by analysing weighted graphs that contain more information than the simpler unweighted and 
undirected graphs that have been the focus of attention to date. Structural brain network image is reproduced from 
REF. 59. Functional brain network image is reproduced, with permission, from REF. 70  (2006) Society for Neuroscience.
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Figure 1.8: Graph theoretical analysis of brain networks. (A) Brain networks may be
studied in terms of their structure (left) or functionality (right). From the structural point of view
it is necessary to gather enough histological and anatomical data and combine it with imaging
so as to construct precise structural networks to later analyze using graph theoretical tools.
Functional networks are constructed after tracking correlations between different recordings (time
series) extracted from specific brain sites. The emerging networks are later analyzed using graph
theory. (B) Certain brain networks appear to possess small-world characteristics, which makes
them lie in between ordered and random networks. (C) Scale-free networks have a hierarchy of
highly connected nodes, with high degree (gray), and weakly connected nodes, with low degree
(white), characterized by a power-law relationship between the connection probability and the
number of links in the network (right side of the panel). From [Bullmore and Sporns, 2009;
Ponten et al., 2010].

From the dynamical point of view, the correlated activity of adjacent or distant neuronal
groups allows to construct functional connectivity maps, based on the analysis of electrical
signals [Bullmore and Sporns, 2009] emerging from their co-activation (see Fig. 1.8A). Moreover,
information flow analysis of neuronal ensembles reveals the effective connectivity between brain
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sites and its structure [Zhou et al., 2006], as it relies in causality indicators upon stimulus onset.
Structural or functional connectivities may show precise topological features. For instance,

at the microscopic scale it has been proven that neurons arranged in a small-world topology
support self-sustained activity [Roxin et al., 2004], whereas the scale of brain areas functional
networks appear to display the same topology [van den Heuvel et al., 2008]. Small-world
networks were characterized in the seminal work by Watts and Strogatz [Watts and Strogatz,
1998] as arrangements of a majority of short-range connections with a certain probability of
long projections onto far neighbors (see Fig.1.8B). Such feature shortens the path length, and
thus allows shortcuts in information flow. However, when long projections are favored against
short-range connections, small-world networks become random arrangements which still allow for
an accurate signal propagation and logic gating [Vogels and Abbott, 2005] as well as synchronous
firing [Mehring et al., 2003].

Experimental evidence from functional Magnetic Resonance Imaging (fMRI) or EEG/MEG
has also revealed a hierarchical organization of functional brain areas that can be described
in terms of scale-free networks [Eguíluz et al., 2005]. In scale-free networks the hierarchy
is established in terms of the number of neighbors of each node, the degree, which follows a
power-law distribution (see Fig. 1.8C). Thus, some nodes in such arrangements are much more
connected that others, becoming essential in information routing across the network. Barabási
and colleagues summarized the emergence of scale-free networks with a preferential attachment
rule [Barabási and Albert, 1999]: any new node added to the network will tend to connect to those
nodes with higher degree. Such networks appear to be resilient to random injuries, which may be
a crucial feature in brain networks for preserving functionality upon structural degradation [Pons
et al., 2010; Castellanos et al., 2011].

1.4 Excitation/Inhibition balance

Nerve impulses are processed by the neuronal networks of the central nervous system. In these
networks, each neuron may be connected to several neighbors acting in two opposite ways: either
exciting or inhibiting the cells downstream connected. This excitation and inhibition activity
is produced by chemical synapses, so an excitatory synapse is the one in which a presynaptic
action potential - produced in a presynaptic neuron -, increases the probability of occurrence
of a postsynaptic action potential - in the postsynaptic neuron -, by means of an increase in
the membrane potential or depolarization. On the other hand, in an inhibitory synapse such
probability decreases, by means of a reduction of the membrane potential or hyperpolarization.
The interplay between the excitatory and inhibitory inputs towards a neuron is at the basis of
action potential generation. In a chemical synapse, the vesicular release of neurotransmitters
from a presynaptic neuron onto the synaptic cleft and posterior uptake by the postsynaptic
neuron receptors is responsible for either the excitatory or the inhibitory postsynaptic potentials.
Potentials can also be generated by direct contact between cells through the so-called gap junctions.
The postsynaptic response of neuronal cells is highly dependent on the temporal precision of the
presynaptic potentials. Besides, the magnitude of the cellular response is quantified in terms of
the changes in the conductance, depending on time and the magnitude of the depolarizing input
(see Fig. 1.9A). The combined action of one excitatory and one inhibitory neuron is depicted
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Figure 1.9: Excitation and inhibition in the brain. (A) Different excitatory or inhibitory
currents provoke distinct impulse responses in the postsynaptic conductance. This can be
summarized with the average response for excitatory neurons (Ge, green line) and inhibitory
neurons (Gi, red line). These average impulse responses are taken as the integration core of
excitatory and inhibitory neurons as well as the kernel for population dynamics input integration
in mesoscopic systems [Freeman, 1975; Jansen et al., 1993]. (B) The balance between excitation
and inhibition can be sketched as follows: the combined action of one inhibitory GABAergic
neuron (black) and one excitatory Glutamaergic neuron (red) onto a target neuron (blue) allows its
correct spike response when the GABA neuron receives the excitatory influence of a serotoninergic
neuron (green). (C) The action of a drug (salicylate) inhibiting the inhibitory GABAergic neuron
entails the reduction of inhibition onto the target neuron and, consequently, an over excitatory
influence that translates into an abnormal high firing behavior (orange). From Okun and Lampl
[2009]; Wang et al. [2008]

in Fig. 1.9B and C, where changes in the balance between excitation and inhibition convey
dramatic changes in the firing frequency of a target neuron.

One of the first proponents of the important role of excitation and inhibition in nerve tissue
was sir Charles Scott Sherrington (1857-1952) who focused on the mechanisms by which excitatory
and inhibitory processes interact to control the output of a pool of motoneurons [Breathnach,
2004]. He observed that reflex contractions in certain muscles, after decerebration, could be cut
or enhanced by sensory stimulation, which he thought to be mediated by certain "inhibitory"
and "excitatory" action, respectively. Excitation and inhibition seemed to act oppositely when
applied to the same neuronal tissue, an observation that anticipated the discovery of synaptic
excitation and inhibition and its chemical basis, revealed by 1936 Nobel prize recipients Otto
Loewi (1873 - 1961) and Henry Dale (1875 - 1968). Besides, in 1922, T. Graham Brown (1882 -
1965 ) proved an asymmetry between the strength of excitation and inhibition in the flexion-reflex
and extension-reflex experiments already conducted by Sherrington, producing diverse dynamical
behavior when tuning the balance between excitation and inhibition. Indeed, the interaction
between excitation and inhibition in the cerebral cortex is the responsible for emergent patterns
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of activity [Douglas et al., 1989]. Much effort has been devoted to understand the role played by
the excitatory/inhibitory balance (understood as an equilibrium either among neurons within
a network, or along time in a given neuron) to control the neuronal dynamics and to achieve
regular and irregular synchronization at the cellular level [Douglas et al., 1989; van Vreeswijk
and Sompolinsky, 1996; Hill and Villa, 1997; van Vreeswijk and Sompolinsky, 1998; Singer, 1999;
Iglesias et al., 2005; Morrison et al., 2007; Roudi and Latham, 2007].

The presynaptic irregularities generate extremely complex and non-trivial effects on postsy-
naptic neurons through inhibitory synapses even in the presence of constant inputs [Segundo
et al., 1976; Kohn et al., 1981; Segundo, 2003]. Functionally, control in the excitation/inhibition
balance is known to underlie a wide range of phenomena including sensory adaptation [Higley and
Contreras, 2006; Heiss et al., 2008], slow-wave sleep [Haider et al., 2006], signal tuning [Wu et al.,
2006, 2008], motor control [Berg et al., 2007], sound localization [Magnusson et al., 2008], syn-
chronization of brain waves [Malagarriga et al., 2015b], and information processing [Malagarriga
et al., 2015a] among many other behaviors.

1.5 Neuronal oscillations and rhythms

Since the seminal discoveries by Hans Berger in the early XXth century, numerous studies have
reported the presence of oscillations in the brains of different mammalian species. These rhythms
span from very slow oscillations with periods of minutes to very fast oscillations with frequencies
of up to 600Hz. Following Berger’s naming of his discovered brain waves, subsequent frequency
bands were labeled by using Greek letters, with boundaries among them drawn rather arbitrarily.
Thus, the frequency bands are named delta (δ - 0.4 to 4 Hz), theta (θ - 4 to 8 Hz), alpha (α - 8
to 12 Hz), beta (β - 12 to 30 Hz) and gamma (γ - >30 Hz) (see examples in Fig. 1.10A).

The relationship between the different rhythms can be unveiled by plotting the frequency
bands in increasing order of frequency. In this way, a general principle emerges: discrete oscillation
bands form a geometric progression of a linear frequency scale and a linear progression on a natural
logarithmic scale (see Fig. 1.10B). Such classification allows to state that all frequencies ranging
from 0.02 Hz to 600 Hz are continuously present in the brain. Each oscillatory cycle defines
a temporal processing window, signalling the beginning and end of the encoded information.
The period of the oscillation determines the temporal windows of processing, which comes often
determined by the size of the neuronal pool involved. Thus, different frequencies favor different
types of connections and different levels of computation. Fast oscillations, for instance, favor
local integration whereas slow oscillations are related with the processing capability exhibited by
distant neuronal groups in distinct structures for obtaining a global consensus. Even though
the different oscillatory rhythms may have different synchronization properties [Kopell et al.,
2000], they have been explained as a result of the balance between excitatory and inhibitory
neurons [Börgers and Kopell, 2003; Börgers et al., 2005]. In turn, this synchronous firing may
subserve complex coordinated patterns of spiking activity which may be transmitted in large
neural networks with high temporal accuracy over long distances [Abeles, 1991; Rodriguez et al.,
1999; Abeles et al., 2004; Asai et al., 2008; Asai and Villa, 2012; Barardi et al., 2014b]. Such
collective dynamics throughout the different scales in the brain is likely to determine the functional
role of normal and aberrant synchronization mechanisms during adaptive and cognitive processes
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An oscillatory model of short-term memory
Among the models of memory processes that have been
proposed linking neural oscillations to memory processes
(e.g. [19–22]), one in particular describes a close relation-
ship between theta and gamma oscillations arising from
the neural basis of short-term, or working, memory.
Figure 1a illustrates some aspects of this model, which
was constructed by Lisman and Idiart [23]. In the model,
memories are stored in groups of pyramidal neurons firing
in synchrony. The synchronous firing tends to dissipate
with time, however, and needs to be refreshed periodically,

much as a computer monitor screen does. The individual
memories are refreshed at the gamma frequency and the
overall refresh cycle is repeated at the theta frequency. The
model requires that gamma oscillations modulated at the
theta frequency be present in the human brain. Such
oscillations have been recorded from human cortex
(see Box 1, Figure I, [18,23]).

If memories are refreshed at the gamma rate once per
theta cycle, then the number of items that can be held in
short-term memory is approximately the gamma
frequency divided by the theta frequency, or about 40/6,

Box 2. Spectral power and the EEG

The EEG (MEG) records a time series of electrical voltages (magnetic
field strengths) at several sites on the scalp. Sampled at a rate of up to
1000 Hz at up to 256 different scalp sites for up to twohours, the EEG, for
example, could generate a data matrix 7.2 million samples long by 256
sites high, for a total of 1.8432 billion pieces of data. There are many
analysis techniques to try to wrest some understanding from this mass
of data. One of themost useful is spectral power analysis, which allows
us to measure the extent to which the neurons generating the EEG are
oscillating synchronously at various frequencies.

Fourier’s Theorem states that any repeating series of oscillations can
be analysed into a set of the simplest possible oscillations, sine and
cosine waves, of various frequencies and amplitudes. In obtaining the
power spectrum of a time series of EEG samples, the voltage
fluctuations recorded by an EEG electrode from moment to moment
are analysed into various sine wave frequencies. The square of the so-
called Fourier coefficient (the amplitude of the sine or cosine wave at a

particular frequency) at each frequency is called the spectral power of
that frequency, and it represents the amount of energy in the
fluctuations at that frequency. The fluctuations in spectral power at an
EEG frequency with changes in experimental tasks or over time can
reveal relationships between the processing activity of groups of
neurons and cognitive processes, or between separate groups of
neurons at disparate sites in the brain.

Figure I shows some typical EEG power spectra for various electrode
sites (the black dots on the schematic head) over a short time period of a
few seconds; notice the different sites at which the various frequencies
can be recorded. Other techniques, such as digital filtering of the
original time series, can be used to obtain a record of the oscillations
from moment to moment at a particular frequency. The instantaneous
phaseandamplitudeof such records canbe separated and records from
various scalp sites can be juxtaposed over space and time to study the
short- and long-range interactions of groups of neurons.

Figure I. Some idealized power spectra showing peaks at canonical EEG frequencies. Although any of the frequencies can occur at any electrode site, alpha power
modulations are often recorded at posterior sites, theta at frontal sites, and gamma over sensory cortices.
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ing from fractions of a second to several seconds is necessary for successful pre-
diction of changes in the physical environment and for the coordination of muscles
and sensory detectors in anticipation of environmental events. In principle, multi-
ple tasks can be managed by a precise, single, fast clock and time division, as is
seen in digital computers. Perhaps a de novo design of the mammalian brain would
choose this solution. However, for sponges and other simple animals at early
stages of evolution, fast responding was not a requisite for survival. All that is
needed in these simple creatures is slow rhythmic movements for providing food
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Figure 5.1. Multiple oscillators form a hierarchical system in the cerebral cortex. Top:
Power spectrum of hippocampal EEG in the mouse recorded during sleep and waking peri-
ods. Note that the four peaks, corresponding to the traditional delta, theta, gamma, and fast
(“ripple”) bands, are multiples of natural log integer values. Bottom: Oscillatory classes in
the cerebral cortex show a linear progression of the frequency classes on the log scale. In
each class, the frequency ranges (“bandwidth”) overlap with those of the neighboring
classes so that frequency coverage is more than four orders of magnitude. The power spec-
trum was “whitened” by removing the log slope dominating the typical EEG spectrum (e.g.,
figure 5.2). Modified, with permission, from Penttonen and Buzsáki (2003).
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opposite to our suggestion above that the brain generates a large family of oscilla-
tions that allows for processing and predicting events at multiple time scales. Ran-
dom noise does not allow any prediction. However, the noise with the “one over
f ” power spectrum is a special noise (also called “pink” noise).

A critical aspect of brain oscillators is that the mean frequencies of the neigh-
boring oscillatory families are not integers of each other. Thus, adjacent bands
cannot simply lock-step because a prerequisite for stable temporal locking is
phase synchronization. Instead, the 2.17 ratio between adjacent oscillators can
give rise only to transient or metastable dynamics, a state of perpetual fluctuation
between unstable and transient phase synchrony, as long as the individual oscilla-
tors can maintain their independence and do not succumb to the duty cycle influ-
ence of a strong oscillator.19 In the parlance of nonlinear dynamics, the oscillators
are not locked together by a fixed point or attractor (phase), but they attract and
repel each other according to a chaotic program and never settle to a stable attrac-
tor. A main reason for this recklessness is the presence of multiple oscillators that
perpetually engage and disengage each other. Locally emerging stable oscillators
in the cerebral cortex are constantly being pushed and pulled by the global dy-
namics. Nevertheless, despite the chaotic dynamics of the transient coupling of
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Figure 5.2. Power spectrum of EEG from the right temporal lobe region in a sleeping hu-
man subject (subdural recording). Note the near-linear decrease of log power with increas-
ing log frequency from 0.5 to 100 hertz, the characteristic feature of “pink” or “complex”
noise. The arrow indicates the peak at alpha (∼11 hertz). Reprinted, with permission, from
Freeman et al. (2000).

19. For a didactic explanation of chaotic coupling of oscillator pairs and their ability to generate
metastable saddle dynamics, see Bressler and Kelso (2001).
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Figure 1.10: Complex oscillatory dynamics and rhythms of the brain. (A) Different
brain sites display distinct rhythmic patterns when recorded intra or extra cranially. These
rhythms can be classified depending or their frequency dominance (right power spectra). (B)
Log scale representation of the frequency progression in the cerebral cortex, displaying a linear
tendency. Each frequency "class" possesses a bandwidth that overlaps with the contiguous ones,
making the progression smooth over the different time scales. Such overlapping is known as
cross-frequency coupling. (C) EEG power spectrum from the right temporal lobe in an asleep
human subject. The linear relationship between the log power and the log frequency is a sign for
a complex noise, self-similarity and criticality. From Ward [2003]; Buszáki [2006]; Freeman [2005].

as well as brain diseases [Del Prete et al., 2004; Iglesias and Villa, 2010; Villa and Tetko, 2010;
Pons et al., 2010].

One major question about the brain is how the microscopic laws of cell discharges and synaptic
activity can lead to a complex system organized at multiple time scales. At the microscopic
scale, small groups of neurons display fast oscillations of low power. On the other hand, slow
oscillations involving large groups of neurons possess high power. In this sense, the power
spectrum represents the relative dominance of the various constituent rhythms. Figure 1.10C
shows a log-log plot of the logarithm of the power spectral density against the logarithm of
EEG frequency. The straight line characterizing the logarithmic relationship between power
and frequency is a hallmark for scale-free systems, which obey power laws. Thus, the frequency
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power amplitude increases as frequency decreases, showing that EEG signals reflect the internal
noise of the brain. However, this is not a random noise but rather a "colored" type of noise,
determined by the exponent of the 1/fα relationship of (log) power and (log) frequency (f).

The scale invariant feature of EEG is the mathematical telltale sign of self-organization. If
there were no relationships among the frequency bands, the power density would be constant
over a finite frequency range and, thus, the spectrum would be flat (1/f0). So power-frequency
correlation must be explained in terms of "colored" noise, in which temporal (de)correlations at
different time scales explain the observed stochastic dynamics. Overall, the 1/f1 behavior of EEG
and magnetoencephalogram (MEG) seems to come from a balance between the underlying high
entropy/information content dynamics (white noise) and the predictable low entropy/information
content dynamics ("brown" noise, 1/f2).

It has been proposed that due to the scale-free nature of global synchronization of brain
structures, its dynamics may lay in a state of "self-organized criticality" [Chialvo, 2004], which is
a complex state at the border between predictable periodic behavior and unpredictable chaos. In
this sense, the brain cortex displays state transitions which reflect fast and flexible responses to
inputs [Deco et al., 2008]. Such metastable states may be clearly an advantage for the cortex as
it can rapidly react to small or weak perturbations. However, the reaction to different inputs
depends on the actual state of the network as temporal correlations act over a finite temporal
window of 1/f1, and so the out coming dynamics may look extremely different even in the
presence of identical inputs. Besides, self-organized criticality theory also predicts the emergence
of large synchronized events, called avalanches [Petermann et al., 2009]. Even though neuronal
networks are capable to generate avalanches in the form of highly synchronous activity in epilepsy,
the normal dynamics of excitation and inhibition prevents such unexpected events.





Chapter 2

Modeling the brain

There is a long tradition of mathematical and computational approaches to neuroscience and
cognition [von Helmholtz and König, 1896] in western science. Early mathematical theories of
perception or current generation at the level of cell membrane were the basis of ulterior modern
models such as the one proposed by Louis Lapicque (1866-1952) [Brunel and van Rossum, 2007],
the integrate-and-fire neuron. He announced a model of polarization in nerve cells based on
ionic current flow, as neurons are embedded in electrolytic media. He used a modification of
Nernst’s calculation of the membrane potential [Junge, 1981] using the different permeabilities of
ions to account for a capacitor-like discharge. Lapicque’s model became very popular, and it is
still one of the most widely used models in computational neuroscience, setting a milestone in
neuroscience modelling only surpassed by the model proposed by Alan Lloyd Hodgkin (1914-1998)
and Andrew Fielding Huxley (1917-2012) [Hodgkin and Huxley, 1952].

Hodgkin and Huxley combined experiments on the giant squid axon with a robust mathemat-
ical description of the neuronal dynamics based on a system of non-linear differential equations
representing the membrane lipid bilayer as a capacitance. Later they performed simulations in an
early computer. Such gathering of theory and experiments, combined with extensive simulations,
is at the core of modern computational neuroscience, which has developed several mathematical
descriptions of neuronal dynamics [FitzHugh, 1955; Morris and Lecar, 1981; Wilson and Cowan,
1972].

The bridge between different descriptive theories can be built following two paths. Bottom-up
approaches take into account what is known at lower levels (e.g., dynamics of ion channels) to
describe phenomena occurring on higher levels (e.g., generation of action potentials). On the other
hand, top-down approaches go from known cognitive functions of the brain (e.g. memory) towards
a localization of the brain structures ruling it, and try to unveil how the lower level components
may work to achieve such functions. The two approaches make use of both mathematical theory
and computer simulations which, combined, provide a complete picture of the system behavior.

Bifurcation theory has also proven to be crucial in the study of the solutions of a set of
differential equations representing neuronal dynamics in terms of their parameters [Poincaré,
1885; Strogatz, 1994]. Bifurcations appear as an abrupt change in the qualitative behavior of a
system upon smooth changes in parameter values. They can be generally divided into two classes:
local and global bifurcations. The former occur when there is a change in the stability of an
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Figure 2.1: Transitions from silence to periodic behavior in terms of input strength
in neural systems. (A) Saddle-node bifurcations are characterized by the merging between
one stable point (black dot) with one unstable point (white dot) that eliminates the resting state
in favor of the limit cycle attractor (circular line). This behavior is depicted in the transition
from silence to periodic firing in a pyramidal neuron after increasing the input strength. (B)
A variation on the saddle-node bifurcation appears when the two fixed points are already in
the invariant circle, which becomes a limit cycle. This also gives rise to periodic firing. (C)
In the subcritical Andronov-Hopf bifurcation a small unstable limit cycle collapses to a stable
fixed point that becomes unstable and, thus, all trajectories close to the unstable fixed point
converge to the large amplitude periodic orbit of the stable limit cycle. (D). In the supercritical
Andronov-Hopf bifurcation a stable fixed point loses stability in favor of an initially small limit
cycle attractor that enlarges as long as the input current increases. From Izhikevich [2007].

equilibrium point – fixed point –, induced by a 0-crossing of the real part of one of the equilibrium
point’s eigenvalues. The latter occur when other types of equilibria - e.g. periodic orbits - collide,
transforming the global topology of trajectories in the phase space. Figure 2.1 shows examples
of bifurcations that describe basic excitable dynamics of neurons or periodic behavior of neural
populations. In the neural context, models of the brain should combine mathematical tractability
and biological plausibility [Spiegler et al., 2010]. The study of the behavior of a neural system in
terms of its parameters allows to find a balance between both constraints, as well as characterize
the neural dynamics for a broad range of parameter values. Thus, the transition from a quiescent
to a spiking or oscillatory behavior may be governed by bifurcations such as saddle-node or
subcritical and supercritical Andronov-Hopf bifurcations (see Fig. 2.1).
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2.1 Levels of description in neuronal dynamics

The various aforementioned approaches to neural dynamics deal with different scales of description,
from the macroscopic to the microscopic level (see Fig. 2.2A). Accordingly, different computational
models have been developed to account for the activity at each scale. Single neurons, for instance,
can be characterized by detailed biophysical models that consider ion-channel dynamics, as
initially proposed by Hodgkin and Huxley [Hodgkin and Huxley, 1952; Schwartz, 1990; Dayan
and Abbott, 2001], or by more abstract models of neural excitation such as the integrate-and-fire
model [Gerstner and Kistler, 2002; Brunel and van Rossum, 2007] or the FitzHugh-Nagumo
model [Lindner et al., 2004; Izhikevich, 2007] (see Fig. 2.2B).

The basic idea governing neural control of behavior lays in the fact that specialized neurons
transform environmental stimuli into a neural code. This encoded information travels along
specific pathways to the brain or the central nervous system where it is combined with other
information. However, it is nowadays almost impossible to apply a rigorous mathematical analysis
of such encoding and processing at all levels of brain description. It is then necessary to construct
models of the studied phenomena taking into account what is already known about the nervous
system and use this information to limit the model.

The set of equations representing each neuron’s membrane potential can be coupled in a
way that mimics synaptic junctions. Thus, given a connectivity matrix, one can ideally build
any neuronal network in silico from its individual constituents, and thereby move towards the
mesoscopic level of neuronal assemblies. This allows the brain to be traditionally investigated
in a reductionist way, using different simplified levels of description. This approach has been
very fruitful in unveiling several mechanisms that lay at the basis of the observed neural tissue
behavior, such as the emergence of oscillatory dynamics, rate-based coding or avalanche-like
activity in epilepsy [Kopell et al., 2000; Fourcaud-Trocmé et al., 2003; Goldbach et al., 2008;
De Sancristóbal et al., 2013].

Another set of models, named neural mass models [Zetterberg et al., 1978; Jansen and Rit,
1995; David and Friston, 2003; Grimbert and Faugeras, 2006; Spiegler et al., 2011a], avoid the
single-neuron perspective and consider instead the averaged behaviour of the neuronal population.
This mesoscopic description is more phenomenological than the single-neuron models, in the
sense that it represents directly the collective behavior of the network, without singling out
individual cells (see Fig. 2.2C). Moreover, single neurons operate at time scales faster than
neural mass models. The former exhibit action potentials that last about 1 ms (see Fig. 2.2B),
while the coordinated activity of a neuronal tissue, which emerges from the synchronization of
multiple spikes, operates on time scales up to tens of seconds. Within a neuronal population
all temporal scales work simultaneously, and the relative relevance of the different scales might
change depending on the biological process. For instance, spike-timing precision is key to synaptic
plasticity, and therefore to the formation of functional cell assemblies [Ahissar et al., 1992; Singer,
1995]. On the other hand, the frequency of collective oscillations is relevant for the synchronization
of distant areas, and thus for their effective interaction within specific information-processing
tasks at a population level [Fries, 2005; Sancristóbal et al., 2014].

While new theoretical studies have attempted to connect the microscopic (neuronal network)
and mesoscopic (neural mass) descriptions of brain tissue, by directly applying mean-field
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“Will it ever happen that mathematicians will know
enough about the physiology of the brain, and neuro-
physiologists enough of mathematical discovery, for effi-
cient cooperation to be possible?”

—Jacques Hadamard

I. WHAT ARE THE PRINCIPLES?

A. Introduction

Building dynamical models to study the neural basis
of behavior has a long tradition !Ashby, 1960; Block,
1962; Rosenblatt, 1962; Freeman, 1972, 2000". The un-
derlying idea governing neural control of behavior is the
three-step structure of nervous systems that have
evolved over billions of years, which can be stated in its
simplest form as follows: Specialized neurons transform
environmental stimuli into a neural code. This encoded
information travels along specific pathways to the brain
or central nervous system composed of billions of nerve
cells, where it is combined with other information. A
decision to act on the incoming information then re-
quires the generation of a different motor instruction set
to produce the properly timed muscle activity we recog-
nize as behavior. Success in these steps is the essence of
survival.

Given the present state of knowledge about the brain,
it is impossible to apply a rigorous mathematical analysis
to its functions such as one can apply to other physical
systems like electronic circuits, for example. We can,
however, construct mathematical models of the phenom-
ena in which we are interested, taking account of what is
known about the nervous system and using this informa-
tion to inform and constrain the model. Current knowl-
edge allows us to make many assumptions and put them
into a mathematical form. A large part of this review
will discuss nonlinear dynamical modeling as a particu-
larly appropriate and useful mathematical framework
that can be applied to these assumptions in order to

simulate the functioning of the different components of
the nervous system, to compare simulations with experi-
mental results, and to show how they can be used for
predictive purposes.

Generally there are two main modeling approaches
taken in neuroscience: bottom-up and top-down models.

• Bottom-up dynamical models start from a descrip-
tion of individual neurons and their synaptic connec-
tions, that is, from acknowledged facts about the de-
tails resulting from experimental data that are
essentially reductionistic !Fig. 1". Using these ana-
tomical and physiological data, the particular pattern
of connectivity in a circuit is reconstructed, taking
into account the strength and polarity !excitatory or
inhibitory" of the synaptic action. Using the wiring
diagram thus obtained along with the dynamical fea-
tures of the neurons and synapses, bottom-up models
have been able to predict functional properties of

FIG. 1. !Color online" Illustration of the functional parts and
electrical properties of neurons. !a" The neuron receives inputs
through synapses on its dendritic tree. These inputs may or
may not lead to the generation of a spike at the spike genera-
tion zone of the cell body that travels down the axon and trig-
gers chemical transmitter release in the synapses of the axonal
tree. If there is a spike, it leads to transmitter release and
activates the synapses of a postsynaptic neuron and the process
is repeated. !b" Simplified electrical circuit for a membrane
patch of a neuron. The nonlinear ionic conductances are volt-
age dependent and correspond to different ion channels. This
type of electrical circuit can be used to model isopotential
single neurons. Detailed models that describe the morphology
of the cells use several isopotential compartments imple-
mented by these circuits coupled by a longitudinal resistance;
these are called compartmental models. !c" A typical spike
event is of the order of 100 mV in amplitude and 1–2 ms in
duration, and is followed by a longer after-hyperpolarization
period during which the neuron is less likely to generate an-
other spike; this is called a refractory period.
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Figure 2.2: Scales in the structure of the human brain. (A) Brain dynamics can be
described at many levels, starting from proteins and ions, continuing through the cell and
neuronal circuit perspective to end up in an integrated whole-brain description. (B) Molecular,
cellular and circuit approaches may be described in terms of the neurons and its microscopic
scale features such as ionic channels or synaptic and electrical coupling (upper panel). Equivalent
circuits (lower left panel) may be used to account for a neuron’s activity, which translates into
an all-or-none behavior (spikes, lower right panel). (C) The reduction of degrees of freedom
leads to a mesoscopic point of view in which average values of large populations are described
as neural masses characterized by mean field variables. (D) A whole brain description may be
accomplished thanks to coupling several mesoscopic structures, or even starting from the most
microscopic structure, as pretended in modern computational approaches to cerebral modeling.
From Christiansen [2014]; Rabinovich et al. [2006]; Connectome [2015].

approaches to derive the latter from the former [Faugeras et al., 2008; Rodrigues et al., 2010],
these strategies are fraught with limitations and hard-to-justify assumptions. Overall, a good
indication that the level of the description was chosen wisely comes if the model can reproduce,
with the same parameters, the main bifurcations observed in the experiments.
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2.2 Microscopic approach

The biophysical and biochemical nature of neurons is really complex, requiring the use of
phenomenological models to understand their dynamics. Neurons receive patterned synaptic
inputs, perform computations and communicate among them by transforming these synaptic
inputs into a sequence of output spikes that have almost identical waveforms. These almost
identical spikes ensure that the information encoded relies on the inter-spike intervals rather
than on the action potential itself, increasing the reproducibility in inter-neural communication.

Spikes crucially depend on the properties of voltage-gated ionic channels in neuron cell
membranes. Detailed conductance based-models make use of several voltage-dependent channels
(commonly sodium, potassium and calcium ions), the (inner and outer) concentration of such
ions or a leakage current, usually of chloride ions. The probability of a channel to be opened
depends non-linearly on the membrane potential and the state of the channel, which results
in the generation of different spike patterns (high frequency bursts, for instance), encoding a
variety of stimulus features. All this myriad of dynamical complex traits, coming from such
detailed description of neurons, offers realistic biological features at the expense of computational
tractability. It is then necessary to separate neuron models into classes depending on the
general goal of the modeling. Reducing the degrees of freedom allows a better computational
implementation. These simplified models may lose biological plausibility but provide good
platforms to study neuronal dynamics with lower computational costs.

With this aim, theoretical neuroscientists have developed a wide set of models with very
different levels of simplification. Among many others, some of the most frequently used neuronal
models are (in chronological order):

Integrate-and-fire neuron model (1907)

The integrate-and-fire (IF) neuron is one of the simplest neuronal models [Brunel and van Rossum,
2007]. It was first introduced by Louis Lapicque. One of its multiple formulations go as follows
(leaky integrate-and-fire model):

dv(t)
dt

=

−
v(t)
τ + Iext + Isyn(t), 0 < v(t) < θ

v(t+) = 0, v(t−) = θ,
(2.1)

Isyn(t) = g
∑
spikes

f(t− tspike),

f(t) = A[exp(−t/τ1)− exp(−t/τ2)],
(2.2)

where v(t) is the membrane potential, θ is the threshold for spike generation, Iext is an external
stimulus current, Isyn is the sum of the synaptic currents and τ1 and τ2 are time constants that
characterize the synaptic currents and the overall dynamics. In this simple model a spike occurs
whenever the threshold θ is reached by v(t) (see sample of regular firing neuron in Fig.1.7B).

Hodgkin-Huxley model (1952)

The Hodgkin-Huxley model is one of the most detailed descriptions of neuronal dynamics and
action potential generation [Hodgkin and Huxley, 1952]. It was described by Alan. L. Hodgkin
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(1914-1998) and Andrew Huxley (1917-2012). In the Hodgkin-Huxley model the membrane acts
as a capacitance (CM ), whereas voltage-gated ion channels are represented by voltage-dependent
electrical conductances (gn, n = K,Na) and a constant leakage conductance (gL). The flow of
ions is represented by voltage sources (Vi) and ionic pumps are characterized by current sources
(Ip) (see the basic electrical circuit describing a neuron’s membrane in Fig. 2.2B and the ionic
generation of an action potential in Fig. A.2).

Different currents flowing through the membrane and the ionic channels are represented by:

I = CM
dVM
dt

+ gK(VM − VK) + gNa(VM − VNa) + gL(VM − VL), (2.3)

where VM is the membrane potential, VK and VNa are the potassium and sodium reversal
potentials and VL is the leak reversal potential. gK and gNa explicitly depend on voltage and
time as follows:

gK(t) = ḡKn
4(t)

gNa(t) = ḡNam
3(t)h(t),

(2.4)

with n, m and h being dimensionless parameters related with the activation and inactivation of
ionic channels. Thus:

dn

dt
= αn(VM )(1− n)− βn(VM )n,

dm

dt
= αm(VM )(1−m)− βn(VM )m,

dh

dt
= αh(VM )(1− h)− βh(VM )h,

(2.5)

where αi and βi are the opening and closing rate constants for each channel. Hodgkin and Huxley
fitted the value of the rate constants to their voltage clamp measurements [Hodgkin and Huxley,
1952], deriving the following relationships:

αn(VM ) = 0.01(VM − 10)
exp(VM−10

10 )− 1
,

αm(VM ) = 0.1(VM − 25)
exp(VM−25

10 )− 1
,

αh(VM ) = 0.07 exp(VM20 ),

βn(VM ) = 0.125 exp(VM80 ),

βm(VM ) = 4 exp(VM18 ),

βh(VM ) = 1
exp(VM−30

10 ) + 1
.

(2.6)

Overall, the Hodgkin-Huxley model is one of the most detailed models for the generation of
action potentials based on experimental fitting of parameters, but it entails a high computational
cost when dealing with large populations of neurons.
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FitzHugh-Nagumo model (1961)

The complexity of the Hodgkin-Huxley model, characterized by a set of differential equations
for 4 state variables (v(t),m(t), n(t) and h(t)), led to the development of simpler descriptions
of neuronal dynamics. The analysis of the HH model allows to discover general behaviors and
properties typical of nonlinear systems (limit cycles, bifurcations) that have been proven to be
mappable to lower-dimensional descriptions.

One early approach was proposed by Richard FitzHugh (1922-2007) and later implemented in
a circuit using tunnel diodes by Jin-Ichi Nagumo (1926-1999) and colleagues. FitzHugh first tried
to reduce the HH model to a 2D representation for which phase plane analysis applied. He based
his reduction in the fact that variables m, n and h presented different dynamical features, with
n and h describing slower dynamics than m. Another further insight was the similitude between
the V -nullcline and the shape of a cubic function, as well as the linear shape of the n-nullcline in
the HH model. All these observations led to the dimensionless polynomial formulation of the
model as:

dv

dt
= v − v3

3 − w + Iext,

τw = v + a− bw
(2.7)

where v represents the fast variable (potential), w represents the slow variable (sodium gating
variable), Iext is an external current and a and b are constants that control the spiking behavior.
This model can be seen as a generalization of the Van der Pol oscillator displaying excitable
dynamics.

2.3 Mesoscopic approach

Realistic neuronal networks comprise a large number of neurons (e.g. a cortical macrocolumn
has ∼ 108 neurons with ∼ 104 connections) whose description implies computationally expensive
simulations. Thus, large brain circuits are frequently described as networks of nodes associated
with neuronal assemblies, evolving in time at the mesoscopic scale, in such a way that their
dynamics can be considered as that of limit-cycle oscillators subjected to (weak) forcing and
coupling.

Mean-field models, formulated using concepts from statistical physics (e.g. law of large
numbers, averaged population dynamics), are suited to data reflecting the behavior of a population
of neurons – e.g. the electroencephalogram (EEG), the magnetoencephalogram (MEG) or the
fMRI –. Among several simplifications, neural mass models summarize the description of the
ensemble activity with a "single" number. In this sense, they describe neuronal dynamics in
terms of the average values of neuronal states (average values), replacing the full ensemble
activity with a "point mass" in phase space. Such approach may reveal inaccurate as variability
in depolarization, for instance, may have a key role on the subsequent dynamics. However, the
introduction of a sigmoid function relating the average postsynaptic depolarization to the average
presynaptic firing rate implicitly encodes variability in the postsynaptic depolarization, as it
nonlinearly relates the two expected values.
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One of the very first mesoscopic approaches to model population dynamics was proposed by
Hugh R. Wilson (1943-) and Jack D. Cowan (1933-) in 1972 [Wilson and Cowan, 1972] . They
attempted to describe a cluster of neurons by averaging it to a distribution of potentials so as to
remove the intrinsically noisy dynamics of individual neurons. Their results showed hysteresis
phenomena and limit cycles able to explain the dependency between the frequency of oscillations
and the stimulus intensity, found in a diversity of experimental conditions.

The first point-like mesoscopic model was published by Fernando Lopes da Silva (1935-)
and colleagues in 1974 [Lopes da Silva et al., 1974]. It described a linear two-ensemble model
of the thalamus (excitatory relay cells coupled to interneurons) that was capable of generating
10 Hz frequency oscillations, lying in the alpha rhythm band. It was extended to a firing rate
based description by Paul L. Nunez (1940-) [Nunez, 1974] the same year. A year after, in 1975,
Walter J. Freeman III (1927-) coined the term neural mass action (later known as neural mass
model or NMM) to account for an alternative to the already known ensemble density models,
called lumped parameter models [Freeman, 1975]. According to Freeman, similar neurons could
be lumped together and so NMMs could be described with only a set of parameters by means
of the already known mean-field approximations. Thus, the ensemble state is the synchronous
activity of similar neurons within a NMM. Later in 1978, L.H. Zetterberg, extending Lopes da
Silva’s work, described the cortical area as a basic element composed by three populations or
neural masses: pyramidal cells, excitatory and inhibitory interneurons [Zetterberg et al., 1978]
that mutually interact by means of either positive of negative feedback loops (see Fig. 2.2C).
Extrinsic inputs target pyramidal cells, although such restriction can be broadened to other
subpopulations, as proposed by David and colleagues [David and Friston, 2003; David et al.,
2005]. An extension of the Zetterberg model was proposed by Jansen and Rit in 1993 [Jansen
et al., 1993], neglecting self-projection of pyramidal cells, to study visual evoked potentials and
alpha rhythm in EEG (see detailed description in Appendix A.1.1). Posterior modifications have
allowed to describe the emergence of faster rhythms in the gamma band [David and Friston, 2003;
Ursino et al., 2010; Sotero, 2015], or describe functional connectivity during motor tasks [Zavaglia
and Astolfi, 2008], among other phenomena.

Generic formulation of a neural mass model

The derivation of the equations of a neural mass model, which takes into account the average
voltage time evolution, is based on the solution of an inhomogeneous differential equation defined
in the time domain:

Lµν(t) = S[µν(t)], (2.8)

with L being a linear differential operator, µν(t) the average membrane potential of the population
and S[µν(t)] the input function of the population (ν). The impulse response of the population ν
is the Green’s function to be convoluted with S[µν(t)]. The typical impulse response function
for the postsynaptic depolarization, derived from experimental evidence (see Ge and Gi in Fig.
1.8A), is taken to be:

H(t) = Aγte−γt, (2.9)
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with A being the height of the impulse response and γ the time rise of the voltage depending
on the stimulus. Such function acts as the kernel of the convolution with the input function
S[µν(t)], which in turn gives:

µν(t) =
∫ t

−∞
H(t′)S[µν(t′)]dt′. (2.10)

This convolution can be related with the differential form:(
1
γ2

∂2

∂t2
+ 2
γ

∂

∂t
+ 1

)
µν(t) = AγS[µν(t)]. (2.11)

The most popular formulation of neural mass models turns out to be a set of second order
differential equations for the average postsynaptic voltage combined with a nonlinear gain
represented by a sigmoid function. In general, these equations can be converted into first order
differential equations as follows:

µ̇ν = µa,

µ̇a = AγS(µν)− 2γµa − γ2µν ,

S(µν) = 2κ
1 + exp(−rµν) − κ,

(2.12)

where µa is a current density, r is the gain of the sigmoid function and κ controls the average firing
rate. This type of neural mass model, which we use in our work below (see Appendices A.1.1
and A.1.2), has been extensively used to model and simulate electrophysiological recordings, as
well as a basis of a model for the generation of even-related potentials [Jansen et al., 1993], event-
related synchronization and desynchronization [Suffczynski et al., 2001; Zavaglia et al., 2006],
visual or motor entrainment and chaos [Spiegler et al., 2011a], cross-frequency coupling [Jedynak
et al., 2015], excitatory/inhibitory segregation [Malagarriga et al., 2014, 2015b], and epileptic
seizures [Robinson et al., 2002].

2.4 Macroscopic approach

Recently, large-scale models of the brain have received special attention. Current large-scale
implementations of neural mass models suggest that the simulation of neural dynamics in networks
as large as the brain is feasible. However, there is no integrated neural theory that can serve
as a guide to unveil the predictably emergent novel phenomena. Some researchers attempt to
simulate of certain processes at a molecular level (e.g., the interaction of neurotransmitters with
a synapse), and other processes at other scales (e.g., neurons at the level of biophysical models,
neural networks at the level of large integrate-and-fire models and brain areas using mesoscopic
approaches). However, the bridge between scales ensures the self-consistency of the model (see
Fig. 2.2A).

So far, global brain activity has been modelled by dividing the brain into discrete volume
elements, or voxels, and coupling them according to statistical correlations and structural
information [Sotero et al., 2007; Pons et al., 2010; Deco et al., 2013] (see Fig. 1.8A, 2.2D). Both
the Human Brain Project and the Brain Activity Map project propose integrated views to bridge
the gap between the behavior of single neurons and the functions of the full brain [Alivisatos
et al., 2012], but this quest is still in its infancy.





Chapter 3

Chaos, noise, synchronization and brain
computation

The complexity of certain natural systems entails the emergence of highly irregular non-periodic
dynamics, which can be defined as chaos. Indeed, a chaotic dynamical system is characterized
by its sensitivity to its initial conditions or to small perturbations. Thus, two identical chaotic
systems may evolve differentially after certain transient time if their initial conditions are different
(see Fig. 3.1A right panel). The rate of divergence between two time evolutions is given by
the Lyapunov exponents (real part of the Floquet exponents), which provide an indicator of the
exponential separation of two trajectories in phase space (see Appendix B.1.1 for more details).
In a neural context, recently, the observation of chaos in the analysis of experimental data has
been reported in single neuron or ensemble recordings [Celletti and Villa, 1996; Andrzejak et al.,
2001] (see Fig.3.1B,C).

Chaotic signals have many of the traditional characteristics attributed to noise. However,
chaos can be thought to be a sort of "deterministic irregularity" and thus, it possesses a structure
in state space (see Fig. 3.1A left panel), whereas noise is an uncontrollable action in dynamical
systems with no such structure. Besides, the information processing capacity may be enhanced
by chaos (with the creation of information) but be damped by noise [Rabinovich et al., 2006].
However, noise, even seen as a high-dimensional chaotic motion, may posses small basins
of attraction where the system can be trapped. Thus, the boundaries of the basins can be
dynamically lowered thanks to small perturbations so as the system can explore all possible
attractor states and, thus, it would not miss any highly functional synchronized activity allowing
the implementation of several important brain features (e.g. memory, plasticity, etc. ).

The very first notion of synchronization between two dynamical variables comes from the
observation of Greek naturalists of different phenomena that "shared a common time" (the Greek
meaning of the word). The seminal works by Christian Huygens reported that two weakly
coupled pendulum clocks adjusted their rhythms to finally end up in a dynamical situation in
which both pendulums oscillated in agreement. Many other examples can be found in nature,
such as the synchrony of organ pipes, described by Lord Rayleigh, or the synchronization of
electronic generators, discovered by E.V. Appleton and B. Var der Pol in the 1920s. Consistently,
phase-reduction theory has revealed synchronization to be among the most relevant features that
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acterization of their responses to voltage, a phenomenon
like, for instance, the action potential only makes sense in
terms of an ‘integrated’ point of view, thus the need of
Hodgkin–Huxley model to understand its generation.
Indeed, complex systems can give rise to collective behav-
iours, which are not simply the sum of their individual
components and involve huge conglomerations of related
units constantly interacting with their environment: the
way in which this happens is still a mystery. Understand-
ing the emergence of ordered behaviour of spatio-temporal
patterns and adaptive functions appears to require addi-
tional, and more global, concepts and tools.

A somewhat related and commonly accepted viewpoint
is that the strength of science lies in its ability to trace
causal relations and so to predict future events. The goal of
scientific endeavor would be to attain long-term predict-
ability and this is perhaps “the founding myth of classical
science” [1]. This credo is rooted in Newtonian physics:
once the laws of gravity were known, it became possible
to anticipate accurately eclipses thousand years in
advance. Otherwise stated, the Laplacian dogma accord-
ing to which randomness is only a measure of our “igno-
rance of the different causes involved in the production of
events....” [2] dominates the implicit philosophy of today’s
neuroscience. Conflicting with this view is the evidence
that, for example, some basic mechanisms of the transmis-
sion of information between neurons appear to be largely
governed by chance (references in [3, 4]).

For a long time it was thought that the fate of a deter-
ministic system is predictable and these designations were
two names for the same thing. This equivalence arose from
a mathematical truth: deterministic systems are specified
by differential equations that make no reference to chance
and follow a unique trajectory. Poincaré was the first to
show the limits of this faith: with a few words he became
the forerunner of a complete epistemological revolution
“... it may happen that small differences in the initial
conditions produce very great ones in the final phenom-
ena. A small error in the former will produce an enormous
error in the latter. Prediction becomes impossible, and we
have the fortuitous phenomenon.” [5].

Systems behaving in this manner are now called ‘cha-
otic’. They are essentially nonlinear meaning that initial
errors in measurements do not remain constant, rather
they grow and decay nonlinearly (in this case exponen-
tially) with time. Since prediction becomes impossible,
these systems can at first glance appear to be stochastic but
this randomness is only apparent because the origin of
their irregularities is different: they are intrinsic, rather than
due to external influences. Thus, as stated by Vidal, chaos
theory “is the challenge to the meaning and to the scope of
the ideas of determinism and chance, as we are accus-
tomed to practice them today” and a revision of our
definitions is now imperative [6].

The relevance of these considerations to brain functions
and neurosciences may not at first be clear. To take an
example, a train of action potentials was simulated
(figure 1A), using a system of differential equations. First

described by Hindmarsh and Rose [7] this pattern would
be interpreted as random on the basis of classical statisti-
cal methods analysing interval distributions suggesting
exponential probability densities (figure 1B); however, a
different representation of the interspike intervals (figure
1C) reveals a well ordered underlying generating mecha-
nism. More generally, observation of exponential prob-
ability density functions is not sufficient to identify a
process as conforming to a Poisson distribution [8] and the
same remark applies to other forms of distributions.

The essentials of the discovery of chaos can be traced
back to the turn of the last century in the mathematical
work of three French mathematicians (see [9]). Hadamard
and Duhem were interested in the movement of a ball on

Figure 1. Noise versus ordered time series. (A) Computer generated
train of action potentials produced by the Hindmarsh and Rose model
(1984). At first sight this sequence looks random. (B) Probability
density function of time intervals between spikes with an almost
exponential decay suggesting independence between the successive
spikes. (C) Each interval In (axis) is plotted against the next one In+1

(ordinates), indicating a strict relationship between them. This pattern
reveals that the sequence in (A) is produced by a deterministic
process (Faure and Korn, unpublished).
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Fig. 22. Human epileptic seizure activity. The illustrated petit mal episode, lasting ∼5 s, was the longest and the least contaminated by noise
during a 24 hour recording session. Channels 1 and 3, which measured potential drops between the frontal and parietal regions of the scalps,
were used to construct the space phase trajectories and for further analysis (see text) suggesting chaotic-like components in the signals. Inset:
phase portrait constructed with channel 1. (Adapted from [190], with permission of the Proceedings of the National Academy of Sciences
(USA).)

are opened than when they are closed and α rhythm is
more pronounced [182–184], and (ii) defining a ‘rest-
ing’ state in the sole presence of a low dimensionality
[185,186]. On the other hand, results obtained with a
variety of tasks cutting across different sensory modal-
ities and various states of attention supported the idea
that nonlinear analysis is a valid approach for charac-
terizing aspects of brain dynamics that cannot be seen
with classical spectral methods (references in [168];
see also [187,188]).

5.4. Pathological processes and chaos

Although models of neural networks had already
indicated that bifurcation sequences were involved
in transitions from steady states to chaotic activities
[189], the first dimensional analysis of an epileptic
(petit mal) EEG was, again, provided by Babloyantz
[190] who postulated the existence of a chaotic attrac-
tor being the direct consequence of the “determinis-
tic nature of brain activity”. Phase portraits of attrac-
tors was constructed (Fig. 22), and measures of the di-
mensionality (which was low), of the Lyapunov ex-
ponent, evaluation of the autocorrelation function and
comparisons of the derived values with those of ‘nor-

mal’ EEGs seemed to be in agreement with the au-
thor’s conclusions. This work was followed by inves-
tigations of human epileptic EEGs [191,192] and rat
[193] with measures of Lyapunov exponents and of
the correlation dimensions, which suggested the emer-
gence of chaotic attractors during seizures.
Investigations of other diseases such as Creutzfeld–

Jakob, schizophrenia and finnitus were inconclusive
(see details in [168]) but they reinforced the belief in
‘dynamical diseases’ [7] and a potential usefulness of
a nonlinear approach for diagnostic purposes (see also
Section 6.3.2).

6. Recent approaches of cortical dynamics

Despite serious pitfalls and limitations that have
been dissected out in several reports [164,194–196],
studies of brain signals have greatly benefited from
the method of surrogate-data testing for nonlinear-
ity [155]. As detailed in Part I of this review [1] the
basic principle here is that nonlinearity can be estab-
lished by a comparison of a nonlinearity measure of
the data on the one side and of a collection of surrogate
data sets on the other side, the latter sharing the data’s
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Figure 3.1: Complex dynamics and chaos in dynamical systems. (A) The Lorenz
system displays strange attractor dynamics when represented in phase space (left panel). Such
shape is a sign for chaotic dynamics, which is translated into an ’erratic’ time evolution highly
sensitive to the initial conditions (see the divergence between the blue and red lines in the right
panel). (B) In a neural context, a sequence of spikes might seem completely stochastic and
driven by noise at first sight but plotting successive inter-spike intervals (In vs In+1, upper panel)
may indicate a strict relationship between them (lower panel). (C) EEG recordings can also
display traces of determinism when plotted in a time embedded phase space (v(t) vs v(t+ τ) vs
v(t+ 2τ)). From MacCabe [2013]; Faure and Korn [2001]; Korn and Faure [2003].

determine the dynamical states of coupled oscillator systems [Pikovsky et al., 2003; Brown et al.,
2004]. Furthermore, coupled oscillator theory has established the conditions that allow all the
oscillators, or a subgroup of them, to operate in one of several synchronization regimes, including
complete, lag, generalized, and phase synchronization (see an example in Fig.3.2A) [Boccaletti
et al., 2002; Li and Chen, 2004; Malagarriga et al., 2016] (see Appendix B.1.3 for more details).

Recently, there has been an increasing interest towards the study of the synchronization of
chaotic systems [Pikovsky et al., 2003] and the emergence of non-trivial collective dynamics in
such systems. The role of synchronization in coordinating and processing information at different
spatiotemporal scales in the brain has been stressed very often [Lachaux et al., 1999; Buszáki,
2006; Stam and de Bruin, 2004; Malagarriga et al., 2015b]. For instance, synchronization-based
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Figure 3.2: Synchronization of brain signals and construction of functional networks.
(A) Phase synchronization of two EEG time series (top panel). The tracking of the two signals
phases allows to see the linear relationship between them (lower panel). (B) Phase synchronization
may be a sign for perception in a task displaying prominent gamma power. In this case, gamma
activity is rather spatially homogeneous (see color coding) whereas phase synchrony (black lines)
is markedly distinct between the perception and no perception stages. (C) Phase synchrony,
among other types of synchronization, may be used for constructing functional networks, which
are spatial representations of the dynamical dependence between brain sites. From Ramon and
Holmes [2013]; Rodriguez et al. [1999]; Doesburg et al. [2013].

selectivity of visual responses has been studied in monkeys and cats [Castelo-Branco et al., 2000;
Womelsdorf and Fries, 2007] or even in humans [Rodriguez et al., 1999]. Besides, synchronization
participates in the odor perception [Stopfer et al., 1997; Laurent et al., 2001; Blumhagen et al.,
2011] and coherence of stimuli also affects the selective capability of oscillatory networks [Börgers
and Kopell, 2008; Börgers et al., 2008]. The processing and computation mechanisms based in all
this diversity of synchronized elements has also been studied in detail [Fries, 2009; Nikolić et al.,
2013; Womelsdorf et al., 2014; Maris et al., 2013; Engel et al., 2001a]. Thus, the interaction of
different synchronized ensembles of neurons [Womelsdorf et al., 2007;Wulff et al., 2009] plays a role
in tasks like learning item-context associations [Tort et al., 2009], selective attention [Womelsdorf
and Fries, 2007; Fries et al., 2001, 2008; Bosman et al., 2012] or even conscious perception (see
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Fig. 3.2B) [Melloni et al., 2007; Levy et al., 2013]. At the larger spatial scale in the brain,
synchronization participates in the control of task-switching [Phillips et al., 2013] and is studied
routinely in normal and abnormal EEG and MEG recordings [Stam, 2005] so as to extract
functional and effective connectivities (see Fig. 1.8A and 3.2C). Besides, recent work shows that
in networks of mesoscopic brain (chaotic) oscillators different forms of synchronization might
coexist [Malagarriga et al., 2015a,b].

work we are studying can also perform computations. To do this,
we identify candidate processing circuits within the existing ar-
chitecture of the network (by procedures discussed in Materials
and Methods), just as we identified candidate pathways previ-
ously. Also, as before, we then strengthen synapses within the
identified circuit to turn a candidate processing unit into a func-
tioning one. A common feature of all four circuits shown in Fig-
ure 8, already discussed for the excitatory pathway in Figure 7h, is
their relatively sluggish responses, amplified further by the longer
inhibitory synaptic time constant.

Figure 8a illustrates the structure for a candidate NOT gate, in
which a set of inhibitory interneurons controls an upstream layer,
so that driving the inhibitory layer silences the otherwise active
output layer. In Boolean terms, this represents an output of 1 for
input 0 and an output of 0 for input 1. Figure 8b shows an exten-
sion of the strategy used to trace out the NOT gate, to create a
switch that controls propagation along an excitatory pathway.
Driving the inhibitory cell population of the circuit impedes any
signal propagation along the excitatory pathway. Although the
example shown is an on/off switch, the same circuit can be used to
modulate a propagating signal in an analog manner by varying
the firing rate along the inhibitory pathway (data not shown).

To create an XOR gate (an exclusive OR gate that propagates
signals when either one of two pathways is active but not both),
two entwined switches synapsing onto the same output layer
are identified. When all synapses are strengthened sufficiently,

the output layer fires above 60 Hz for single inputs and well
below 40 Hz for simultaneous inputs along both paths. Trans-
lated into Boolean terms, this represents the output of an XOR
gate (Fig. 8c).

Figure 8d shows the result of strengthening synapses within a
candidate flip-flop circuit as a basic memory unit. A flip-flop
must maintain high firing rates in one of two recurrent loops,
even in the absence of an external signal, while suppressing activ-
ity in the other through a set of inhibitory interneurons. When
one of the two loops is driven by an external source, the loop
sustains its firing rate even after the input is shut off. The flip-flop
can reverse its state when the other loop is stimulated. Such ac-
tivity is seen in Figure 8d. Although the circuit can function as a
flip-flop, it is not perfect. Because of fluctuations in the back-
ground activity, the inhibitory activity from one loop is some-
times insufficient to silence the other. Such a failure is seen !800
ms into the simulation of Figure 8d, at which the flip-flop spon-
taneously changes its state, thus failing to maintain a memory.
Elevated and asynchronous sustained firing rates in such units are
possible only because of sufficient background activity, but this
activity can cause failures too.

Discussion
We studied signal propagation in two different types of network
models, COBA and CUBA. For the CUBA network, we used ir-
regular asynchronous activity as observed in previous work, and
for the COBA network, we chose parameters that also created
irregular asynchronous but, more importantly, self-sustained ac-
tivity. In such a network configuration, the size of postsynaptic
events is approximately one magnitude larger than in the CUBA
network, the average membrane potentials are lower, and the
resulting activity has a more burst-like character. In addition, we
tested some of our results in the low conductance regimen of the
COBA network, with similar outcomes. Both models provide an
internal, nonadjustable source of noise sufficiently large to pre-
vent synchronization but not large enough to destroy signals and,
thus, support rate-mode signal propagation. Furthermore, inter-
ference between the propagating signal and the background ac-
tivity did not prove problematic. Signal transmission in the
COBA model is more accurate, in the sense that a wider range of
firing rates can be transmitted across the layers of the signaling
pathway without parameter adjustment. This is because of the
presence of conductance-based synapses, rather than the fact that
the CUBA and COBA models operate in different parameter
regimens.

With sufficiently strengthened pathway synapses, a rate-
coded signal can travel through at least six synaptic stages with a
transmission delay of !20 ms. A 13-fold increase in synapse
strength was needed to optimally transmit signals through a net-
work. This corresponds to evoked EPSPs, within the active net-
work, of !8 mV, which is relatively large but not unheard of
(Song et al., 2005). In the 10,000 neuron, randomly connected
networks we studied, propagation involved only three pathway
synapses. One way to get more synapses involved in the signal
propagation and, thus, to lessen their strength, is to use a struc-
tured architecture, more like the real cortex, with columns and
targeted branching axons. This is a topic of ongoing research.

The optimal synapse enhancement depends on the nature of
the transmitted signal, especially in the CUBA model. The critical
factors seem to be the ratio of silent to active periods and the
distribution of firing rates within the active signal. A signal with
long silences or low firing rates requires a smaller optimal synapse
enhancement than one with large amounts of high-frequency

Figure 8. Processing units constructed by synaptically tuning existing network subcircuits.
a, NOT gate. b, Switch. c, XOR gate. d, Flip-flop. The left side of each subplot shows the layout of
each circuit, with inhibitory neurons drawn as hexagons. On the right, the average firing rates of
input and output layers are plotted along with the Boolean interpretation above the traces. In d,
external input to the different loops is indicated by color-coded bars along the x-axis.
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inhibitory synaptic time constant.
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signal propagation along the excitatory pathway. Although the
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modulate a propagating signal in an analog manner by varying
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signals when either one of two pathways is active but not both),
two entwined switches synapsing onto the same output layer
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below 40 Hz for simultaneous inputs along both paths. Trans-
lated into Boolean terms, this represents the output of an XOR
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even in the absence of an external signal, while suppressing activ-
ity in the other through a set of inhibitory interneurons. When
one of the two loops is driven by an external source, the loop
sustains its firing rate even after the input is shut off. The flip-flop
can reverse its state when the other loop is stimulated. Such ac-
tivity is seen in Figure 8d. Although the circuit can function as a
flip-flop, it is not perfect. Because of fluctuations in the back-
ground activity, the inhibitory activity from one loop is some-
times insufficient to silence the other. Such a failure is seen !800
ms into the simulation of Figure 8d, at which the flip-flop spon-
taneously changes its state, thus failing to maintain a memory.
Elevated and asynchronous sustained firing rates in such units are
possible only because of sufficient background activity, but this
activity can cause failures too.

Discussion
We studied signal propagation in two different types of network
models, COBA and CUBA. For the CUBA network, we used ir-
regular asynchronous activity as observed in previous work, and
for the COBA network, we chose parameters that also created
irregular asynchronous but, more importantly, self-sustained ac-
tivity. In such a network configuration, the size of postsynaptic
events is approximately one magnitude larger than in the CUBA
network, the average membrane potentials are lower, and the
resulting activity has a more burst-like character. In addition, we
tested some of our results in the low conductance regimen of the
COBA network, with similar outcomes. Both models provide an
internal, nonadjustable source of noise sufficiently large to pre-
vent synchronization but not large enough to destroy signals and,
thus, support rate-mode signal propagation. Furthermore, inter-
ference between the propagating signal and the background ac-
tivity did not prove problematic. Signal transmission in the
COBA model is more accurate, in the sense that a wider range of
firing rates can be transmitted across the layers of the signaling
pathway without parameter adjustment. This is because of the
presence of conductance-based synapses, rather than the fact that
the CUBA and COBA models operate in different parameter
regimens.

With sufficiently strengthened pathway synapses, a rate-
coded signal can travel through at least six synaptic stages with a
transmission delay of !20 ms. A 13-fold increase in synapse
strength was needed to optimally transmit signals through a net-
work. This corresponds to evoked EPSPs, within the active net-
work, of !8 mV, which is relatively large but not unheard of
(Song et al., 2005). In the 10,000 neuron, randomly connected
networks we studied, propagation involved only three pathway
synapses. One way to get more synapses involved in the signal
propagation and, thus, to lessen their strength, is to use a struc-
tured architecture, more like the real cortex, with columns and
targeted branching axons. This is a topic of ongoing research.

The optimal synapse enhancement depends on the nature of
the transmitted signal, especially in the CUBA model. The critical
factors seem to be the ratio of silent to active periods and the
distribution of firing rates within the active signal. A signal with
long silences or low firing rates requires a smaller optimal synapse
enhancement than one with large amounts of high-frequency

Figure 8. Processing units constructed by synaptically tuning existing network subcircuits.
a, NOT gate. b, Switch. c, XOR gate. d, Flip-flop. The left side of each subplot shows the layout of
each circuit, with inhibitory neurons drawn as hexagons. On the right, the average firing rates of
input and output layers are plotted along with the Boolean interpretation above the traces. In d,
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Figure 1 Patterning neuronal cultures. a, The glass coverslip is first coated by a cell-repellent surface. Specific patterns are etched through this surface and the coverslip
is recoated by fibronectin and laminin (see the Methods section). b, Nine separate neuronal devices patterned on a single 13 mm coverslip (4 thresholds on the left column, 4
AND gates on the centre column and on the right a composite diode consisting of 8 daisy-chained triangles). Dark-field illumination, bright areas are concentrations of
neurons. c, Local drug application using a specially designed double-pipette system. The double pipette applies its contents only to a confined volume (grey cloud around the
tip of the small pipette). The pipette is placed directly over the targeted neuronal area (inset). d, Bright-field images of the three devices. Left: threshold, centre: AND gate,
right: a diode.

(corresponding to 1^1=1). Time diVerences between the inputs as
large as 100 ms still elicited a response in the output. To summarize
the dependence of amplitudes, we present a three-dimensional
plot of the output amplitude as a function of both amplitudes
from inputs 1 and 2. The four states of an AND gate are all
accessible, allowing a functional AND gate with a measured error
rate of 6%.

The diode (Fig. 2c) uses an asymmetric variation on the
threshold component, which gives preference to input signals with
one specific direction of propagation. As shown in Fig. 2c, only
forward propagation is enabled, from region 2 to region 1. The
inset shows a typical forward propagation occurring at t =33 s. The
graph of input versus output amplitudes demonstrates that signals
propagate forward with nearly perfect reliability, whereas those
propagating backwards are blocked with high probability, giving a
total error rate of 8%. Errors can also occur if a spontaneous burst at
region 2 renders it refractory and thus non-responsive to a closely
succeeding burst propagating from region 1. For the spontaneous
firing rate of our cultures, this rarely happens, contributing about
1% error.

These logic devices can be very reliable, with virtually no
error in some devices and 7% error averaged over all devices.
The functionality of these devices is dictated by their connectivity
patterns. The devices rely on patterning transitions from a relatively
wide line (⇠170 µm thick) where cell bodies reside, to a thin section
(⇠50 µm thick). Because of the weak adhesion characterizing our
patterned samples, only axons traverse this thin line15 (for details
see Supplementary Information). On its own, the thin section
constitutes a threshold device. Low-amplitude activity cannot
propagate through the barrier and is eVectively blocked. A key
observation that we will make is that the number of axons on the
thin section provides an adjustable barrier for signal propagation.

INFRASTRUCTURE

We have shown previously that hippocampal neurons growing on
lines thinner than 200 µm can be treated as a one-dimensional
culture, because the synaptic input basin is of the order of the
width of the line15. This collapses the small dimension of the
line and enables it to be referred to as a one-dimensional system.
Although growing neurons on triangular patterns (see below)
does not maintain the constraints of one-dimensional systems, the
directional control over axons remains.

An image with cells transfected with green fluorescent protein
(GFP) in Fig. 3a shows some of the axons that traverse the threshold
(GFP transfection eYciency was 1%). The density of axons along
the thin sections is about four times lower than in the thick section.
Given that only 1% of the neurons are transfected, there are on
average Mthr =120 cells that send axons across the threshold barrier
(see Supplementary Information). A threshold component can
also be created pharmacologically by a dilute (300 nM) localized
application17 of TTX on a thick line (data not shown).

Figure 3b shows GFP-transfected cells in a directional
transmission line (or ‘diode’). On regular transmission lines,
axons will grow in both directions with no preference. The diode
breaks this symmetry by geometrically constraining the neurons,
making use of the axons’ rigidity and forcing them to propagate
preferentially in one direction.

In Fig. 3b, triangular white frames mark the borders of
three consecutive triangles that make two ‘daisy chained’ diodes.
Figure 3c focuses on the axons, which branch extensively and may
extend more than 3 mm away from the cell body. Axons keep their
direction and make few turns, advancing in long stretches that are
parallel to the pattern borders. The triangular structure creates a
‘funnel’ eVect, so that when axons approach the wall they do so
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Figure 3.3: Models for Boolean logic computation in the brain. (A) McCulloch and
Pitts model of a neuron. Several inputs impinge onto a cell, which sums all the contributions
(
∑
) and performs and applies a threshold so as to give an all-or-none output (e.g. a spike). (B)

Neuronal patterned cultures have been used to implement logic calculus through logic gates.
In this case the microscopic architecture mimics that of electronic devices (i.e. diodes). (C)
From the theoretical point of view, small networks of coupled neurons have also been shown
to display logic gating characteristics. These circuits may implement higher functions such as
a flip-flop memory or full adders in terms of the changes in their firing frequency over time.
From Feinerman et al. [2008]; Vogels and Abbott [2005].

This phenomenon enlarges the processing capacity of neural oscillators, and endows the
corresponding networks with stability, flexibility and robustness against perturbations [Zanette,
2004]. Even though much progress in the understanding of these synchronization mechanisms
has been gained during many years, it is not fully understood yet how these synchronization
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relations are established with the participation of different scales simultaneously, or how they
operate at the same time without interfering with each other [Barardi et al., 2014a].

The information processing capacity of the brain operating under multiple scales has been
described very often in terms of logic calculus. At the most microscopic level, the idea of
logic calculus based on neuronal activities was embedded in the seminal work of McCulloch
and Pitts (see Fig.3.3A) [McCulloch and Pitts, 1943]. Neuronal circuitry performing logic
operations was physically implemented in cell cultures of in vitro models of selected brain areas
(see Fig.3.3B) [Wolf and Geisel, 2008; Feinerman et al., 2008]. This approach is mainly based on
action potentials and on the connectivity within the network, rather than on a dynamical analysis
of the ongoing activity. At the cellular level neurons have revealed that, in addition to behaving
as a bistable system, they can be driven into a continuous oscillation by means of selected
voltage-dependent inward currents controlled by intracellular calcium concentrations [Contreras
and Steriade, 1995; Hughes et al., 2002; Crunelli et al., 2005]. Besides, from the microscopic point
of view, neurons may coordinate their firing in response to incoming stimuli, opening the way to
a neurocomputing paradigm characterized by different synchronized states where the neurons
oscillate with equal frequencies and specific phase relationships [Hoppensteadt and Izhikevich,
2000; Zanin et al., 2011]. By associating logical states to the dynamics of coupled oscillators, all
usual Boolean operations can be implemented and a full computational model can be obtained
(see Fig.3.3C) [Xu et al., 2004; Vogels and Abbott, 2005].

Beyond the cellular level of neuronal oscillators, it was recently demonstrated that circuits
of neurons embedded within a large-scale network of cortical cells were able to express logic
functions that are dependent on complex spatiotemporal patterns [Vardi et al., 2013; Menon and
Sinha, 2014].





Chapter 4

Review and aim of the thesis

This Thesis is devoted to study of complex phenomena at the mesoscopic scale using different
theoretical models. Mesoscopic dynamical systems are oftentimes derived from simplifications
on the dynamics of its constituent microscopic structures. In a neural context, then, simplified
descriptions of neuronal dynamics lead to average population behavior, usually oscillatory, char-
acteristic of the mesoscale. Mesoscopic models allow for a significant reduction in computational
costs summed to a good qualitative agreement with real population dynamics seen in, e.g.
electroencephalographic (EEG) or magnetoencephalographic (MEG) recordings.

Although we have centered our research in the mesoscale, we have also studied the dynamics
of descriptions of lower-scale brain structures, i.e. neurons, by means of microscopic conductance-
based models. In this sense in Chapter 5 we explore the bi-directional interaction between
microscopic and mesoscopic models to account for an effective interaction of scales in brain
dynamics. The goal of the chapter is to provide evidence on the basic mechanisms responsible
for the cross-talk between two levels of description in the brain, as well as bridging the gap
between microscopic and mesoscopic scales in a more phenomenological way, i.e. using a proxy
(synchronization of large brain structures) to asses that communication is established between
microscopic and mesoscopic structures. We prove that the best fitted model for each scale
consistently interacts with their counterparts in other scales, resulting in reduced computational
costs. Therefore, these findings might reveal crucial if applied to whole-brain simulations.

We have also addressed another important issue in brain dynamics: the balance between
excitation and inhibition (see Chapter 6). Our approach, however, is centered in the dynamical
and topological aspects that allow certain groups of identical mesoscopic structures to behave as
being dominated by excitation or inhibition when interacting in a weighted excitatory/inhibitory
networks of cortical columns. Moreover, complex synchronization patterns also emerge in the
form of coexisting synchronized dynamical evolutions, where different synchronizations - phase,
lag, generalized - are present in our networks. Our findings, which seem to have an experimental
counterpart [Markounikau et al., 2010] show that complex patterns of excitatory and inhibitory
dominated brain areas, as well as synchronized brain sites, emerge thanks to the combination of
complex topology, excitatory and inhibitory couplings and resonant dynamics due to (complex)
inputs.

Following the results presented in Chapter 6, where complex topologies led to complex
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synchronization patterns, we identified the coexistence of synchronizations as being a phenomenon
typically detectable in nonlinear systems embedded in complex arrangements. Such idea is
explored in Chapter 7 by means of a simple nonlinear dynamical system –the Rössler equations –.
Our results show that coexistence emerges in the route towards an all-synchronized network in
an adjustable range of a control parameter – the coupling strength – that crucially depends on
network topology and weighting. Networks with stable coexistence also possess another important
trait, consistence, by which different initializations of the dynamics entail the same coexistence
pattern, thus preserving the functional relationship between the nodes. In a neural context we
show that the consistence of coexistence may be related with the stability of functional networks
in the sense that functional networks with higher consistence are statistically more frequent and
so functionally relevant. We have also related structural and functional networks, showing that
highly consistent functional networks appear for well defined structural networks.

Finally, Chapter 8 makes use of the results in Chapter 7 and Chapter 6 to study the information
processing capacity of a system of mesoscopic (neural) structures. We have explored the possible
mechanisms by which synchronized oscillations may code for different oscillatory input patterns, as
well as implementing networks of basic logic gates which lay at the basis of complex computation.
To do so, we have extended the synchronization possibilities - by using the coexistence of
synchronizations - so as to prove that several logic gates can be implemented by means of a 0/1 -
not synchronized/synchronized states -. Our results show that extended mesoscopic structures -
Jansen and Chua oscillator networks - are capable of performing distributed processing, as well
as implementing, somehow, memory elements using complex logic functions to produce a flip-flop
memory.



Part II

Results





Chapter 5

Scale interaction in brain dynamics

“You are nothing but a pack of neurons.”

Francis Crick

The mammalian brain operates in multiple spatial scales simultaneously, ranging from
the microscopic scale of single neurons through the mesoscopic scale of cortical columns, to
the macroscopic scale of brain areas. These levels of description are associated with distinct
temporal scales, ranging from milliseconds in the case of neurons to tens of seconds in the case
of brain areas [Buzsáki et al., 2012]. In this Chapter we examine theoretically how these spatial
and temporal scales interact in the functioning brain, by considering the coupled dynamics
of microscopic and mesoscopic neural structures. The two neural mass oscillators are taken
to operate in a low-frequency regime with different peak frequencies (and distinct dynamical
behaviour). The microscopic neuronal population, in turn, is described by a network of several
thousand excitatory and inhibitory spiking neurons operating in a synchronous irregular regime,
in which the individual neurons fire very sparsely but collectively give rise to a well-defined
rhythm in the gamma range. We use the synchronization between the two neural mass models
as a tool to probe the interaction between the mesoscopic scales of those neural populations and
the microscopic scale of the mediating neuronal network. Our results show that this neuronal
network, which operates at a fast temporal scale, is indeed sufficient to synchronize the two
mesoscopic oscillators, which evolve dynamically at a slower scale. We also establish how this
synchronization depends on the topological properties of the microscopic neuronal network, on
its size and on its oscillation frequency.

5.1 Interaction between microscopic and mesoscopic neuronal
populations

The effective interaction between neuronal ensembles described at different scales can be studied
by coupling microscopic and mesoscopic models (Fig. 5.1). As mentioned in the Introduction,
models of single neurons reproduce the time course of the electric currents crossing the neuronal
membrane, and thus account for the individual action potentials and the postsynaptic response
of each cell composing the network. In order to preserve the precision of the spiking times, these
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models involve fast time scales. Networks built from spiking-neuron models can also provide
measures of the population activity by averaging across neurons. Thus, patterns of collective
activity can be observed in the synaptic current, evoked by the summation of multiple spikes on
the target neurons. On the other hand, mesoscopic models are best exemplified by neural mass
descriptions, which are derived phenomenologically from experimental studies, and characterize
the average population activity by means of a mean field approximation. In particular, Neural
Mass Models (NMs) describe the neuronal activity happening at slow time scales, such as the
sum of synaptic potentials arising from the synchronized firing of thousands of neurons [Jansen
and Rit, 1995].

EI II

P

EIII

P

NM 1 NM 2NN

EFR

Figure 5.1: Diagram representing the coupling between the two distinct models.
Two groups of neuronal populations, described by neural mass models (NMs), are coupled with
a neuronal network (NN). The NMs represent the average dynamics of three coupled neural
populations: pyramidal (P), excitatory interneurons (EI), and inhibitory interneurons (II). The
NN consists of a set of 4000 excitatory and inhibitory interconnected neurons. Only a subset
of neurons of the NN is coupled with the NMs. The coupling strength between the NMs and
the NN is given by the three parameters, γ1, γ2 and γ3. γ1 quantifies the coupling from the
pyramidal population of the NMs to the NN subpopulation. γ2 and γ3 represent the intensity of
the excitatory and inhibitory couplings, respectively, from the NN subpopulation to the NMs’
pyramidal population. 〈p〉 is the average excitatory input to the pyramidal population (pe(t) in
Eq. A.6).

In order to analyze the evolution of the mesoscopic and microscopic models - described
in detail in Appendices A.1.1 and A.2, respectively -, we consider two different dynamical
variables corresponding to each of the two scales. The neural mass model activity is given by
y(t) = ye(t)− yi(t), where ye(t) is the excitatory postsynaptic potential (EPSP) and yi(t) is the
inhibitory postsynaptic potential (IPSP) acting upon the pyramidal population (see Eqs. (A.6-
A.8) in Appendix A.1.1, where y1(t) corresponds to ye(t) and y2(t) corresponds to yi(t)). The
neuronal network activity is quantified in terms of the local field potential (LFP) as defined
in Eq. (A.25). Both types of models operate in an oscillatory regime. The neural mass model
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is an intrinsic oscillator whose frequency can be varied by changing the parameters B and b

(see Appendix A.1.1 and blue and green lines in Fig. 5.2A). On the other hand, the oscillations
of the neuronal network are an emergent property of the system, reflecting the variability of
the individual postsynaptic potentials (i.e. the microscopic events). Hence, its frequency is less
defined (see red line in Fig. 5.2A and power spectra in Fig. 5.2C).
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Figure 5.2: Collective dynamics of the uncoupled system. (A) Time traces of the net
postsynaptic potential y(t) = ye(t)− yi(t) of both neural masses working at different frequencies:
at 4.5 Hz within the theta band (blue), and at 11 Hz within the alpha band (green). The local
field potential, LFP, of the neural network (red) oscillates in the gamma range around 45 Hz.
The three neural ensembles are uncoupled. (B) Power spectra of the net postsynaptic potential
y(t) of the neural masses in isolation. Primary peaks are tagged with vertical dashed lines at
∼4.5 Hz and ∼11 Hz. (C) Power spectrum of the LFP of the neuronal network in isolation.

Our aim here is to find fingerprints of an effective interaction of scales. To do so we have
studied how the two neural mass models, one oscillating in the theta band and the other in the
alpha band, synchronize their dynamics when the coupling is mediated by the neuronal network
(Fig. 5.1). The interaction mechanism is bidirectional. This architecture was used by Vicente
et al. [2008] and Gollo et al. [2010] to demonstrate the emergence of zero-lag synchronization
mediated by dynamical relaying between neuronal network populations. In our case, the output
of each NM is converted into a firing rate (see Eq. (A.21)) impinging on a subpopulation of
2000 neurons within the neuronal network. In turn, the firing rate of these selected neurons
contributes to both the excitatory and inhibitory postsynaptic potential densities that act upon
the pyramidal populations of the NMs. We also examine the effect of varying several properties
of the subpopulation of neurons of the NN involved in the coupling (including its size), in order to
explore the effect of the structural properties of that network on the scale interaction efficiency.

5.2 Effects of the inter-scale coupling

The effect of the coupling intensity k on the dynamics of the interacting populations is shown in
Fig. 5.3. When the NMs are uncoupled to the NN, they oscillate in different dynamical regimes



42 5.2. EFFECTS OF THE INTER-SCALE COUPLING

that evolve at different frequencies, around 4.5 Hz and 11 Hz respectively. One NM oscillates
in a spike-like fashion, while the other one oscillates more harmonically (Fig. 5.2A, compare
the blue and green lines). The neuronal network, in turn, exhibits collective oscillations within
the gamma range, around 45 Hz. The dynamical evolution for the coupled case, at k = 1, is
shown in Fig. 5.3A. In this case, the dynamical regimes of the NMs are similar, and they become
frequency locked.

50 100
Frequency [Hz]

150150

L
F

P
 p

o
w

e
r 

  
  

d
e

n
s
it
y
 [

a
.u

.]

5

P
S

P
 P

S
D

 [
a

.u
.]

x106!

102!

2·102!

10 20 30

50 100
Frequency [Hz]

y NM1

y NM2

10

V
o
lt
a
g
e
 [
m

V
]

2000
 

2500 3000 3500 4000

10

5

0

B!A!

C!

0

5

10

 

 

0

1000

2000

 

 
y NM1

y NM2

0

5

10
x 10

 

 

LFP

 y NM1

y NM2

LFP

Figure 5.3: Collective dynamics of the coupled system. (A) (B) Power spectra of the net
postsynaptic potential y(t) of the neural masses when coupled (k = 1) through a subpopulation
of 2000 neurons within the neural network. The common primary peak is tagged with a vertical
dashed line at ∼ 4 Hz. (C) Power spectrum of the LFP when the subpopulation of the neuronal
network is coupled (k = 1) to the neural mass models. Spectral densities are averaged over 20
trials.

We have further characterized the effect of the interaction through the power spectra of the
time traces. As expected, the power spectra of the mass models in isolation (Fig. 5.2B) shows a
clear peak at their natural frequencies (4.5 Hz and 11 Hz), while the LFP shows a strong peak
around 45 Hz (Fig. 5.2C) that exceeds the non-zero contribution of the slower frequencies ∼4 Hz.
We have seen that increasing coupling leads to a frequency locking regime between the neural
masses, which is reflected in their spectral behaviour. For instance, at k = 1 the power spectra
of the two NMs overlap, with a dominant peak around 4 Hz (Fig. 5.3B). The local gamma peak
of the neuronal network is preserved (Fig. 5.3C), although the major change in amplitude occurs
at slower rhythms, around the frequency of the NMs. This increase in the NN power at the
delta band is due to the emergence of phase locking between this population and the outer
NMs, as shown in Fig. 5.4A. This phase locking results in a sizable cross-correlation between the
activities of the microscopic and mesoscopic populations for intermediate values of the size N of
the NN subpopulation coupling the two NMs, as depicted in Fig. 5.4B (the difference between
cross-correlations with NM1 and NM2 for small N is due to the different intrinsic dynamics of
the two mesoscopic populations).

We have scanned k in order to track the transition to the frequency locked regime as coupling
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increases. Fig. 5.4C shows the increase in the maximum cross covariance between the net
postsynaptic potentials of the two neural mass models, averaged over 20 trials, when increasing
k. When the NMs operate at different regimes they hardly synchronize but, for sufficiently high
k, they increase their synchronization with increasing k. The averaged frequency mismatch
decreases sharply at k ≈ 0.6 (see Fig. 5.4D). According to these results, frequency locking for the
two neural masses is achieved through a neuronal network that oscillates naturally at a much
faster scale.

The effect of N , the size of the network, is studied in more detail below. The slower time
scale of the NMs cannot follow the faster dynamics of the neural network and average out the
gamma rhythm, resulting in a frequency shift towards the slower rhythm, which is also enhanced
in the neuronal network.
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Figure 5.4: Correlation between NMs and NN activities for increasing NN size and
coupling strength. (A) Time traces of the Multi-Unit Activity (MUA) signal of the neuronal
network (blue, left axis) and the voltage of neural mass 1 (green, right axis). The MUA is
calculated using a sliding window of length 50 ms. (B) Correlation between the MUA and voltage
signals shown in panel E as a function of the number of neurons N from the central NN involved
in the communication between the two NMs. (C) Averaged maximum cross covariance between
the postsynaptic potential time traces of the neural masses for increasing inter-scale coupling
strength k. (D) Frequency mismatch between the postsynaptic potential time traces of the neural
masses for increasing coupling strength k.

Since the output of the neuronal network arises from the spiking activity of thousands of
neurons, the interaction across models is mainly driven by the average dynamics of the population.
Although the modelled LFP evolves in a faster time scale, neural mass models filter out rapid
fluctuations. Therefore, the NMs mainly respond to changes of the mean input coming from the
neuronal network modulated by k.

The input contribution into the NMs coming from the NN dynamics increases the average
excitatory and inhibitory input signal into the pyramidal population (denoted by pe and pi,
respectively, in Eqs. (A.23-A.24)). Since increasing the constant input to a NM can lead to
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changes in the dynamical regime (and thus the frequency) of the oscillator, one could argue
that the role of the neuronal network dynamics is unnecessary to mediate the synchronization
transition observed. However, simulations in which the terms given in Eqs. (A.23 - A.24) are
replaced by the temporal average of the coupling contributions indicate that the NMs are unable
to synchronize their phases in these conditions (see Fig. 5.5B). This result shows that the NN
dynamics is a key ingredient to achieve not only frequency locking but also phase locking between
the two NMs.

5.3 Probing scales interaction 122

rapid fluctuations. Therefore, the NMs mainly respond to changes of the mean input coming
from the neuronal network modulated by k.

The input contribution into the NMs coming from the NN dynamics increases the average
excitatory and inhibitory input signal into the pyramidal population (denoted by pe and pi,
respectively, in Equations (5.6)-(5.7) above). Since increasing the constant input to a NM can
lead to changes in the dynamical regime (and thus the frequency) of the oscillator (Grimbert
and Faugeras, 2006b), one could argue that the role of the neuronal network dynamics is un-
necessary to mediate the synchronization transition observed. However, simulations in which
the terms given in Equations (5.6)-(5.7) are replaced by the temporal average of the coupling
contributions indicate that the NMs are unable to synchronize their phases in these conditions
(Figures 5.4A,B). This result shows that the NN dynamics is a key ingredient to achieve not
only frequency locking but also phase locking between the two NMs.
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Fig. 5.4 Coupling of NMs through dynamically evolving NN vs constant input. Phase
consistence of different trials of PSPs of the NMs (the two colors correspond to the two NMs)
when the coupling is mediated by a variable MUA (coming from the NN) (A) and when MUA
is replaced by its temporal average (B). In the latter case NMs are unable to synchronize their
phases.

In order to take advantage of the microscopic description of the NN we also vary two main
features of its architecture: its clustering (see definition in Appendix A.5) (Figures 5.5A,B)
and the size of the area involved in the coupling, determined by the number of neurons pro-
jecting onto the NMs (Figure 5.6). Figure 5.5A,B outlines the dependence of the maximum
cross covariance and the frequency mismatch between the two NMs on the coupling strength

A B

Figure 5.5: Coupling of NMs through dynamically evolving NN vs constant input.
Phase consistence of different trials of PSPs of the NMs (the two colors correspond to the two
NMs) when (A) the coupling is mediated by a variable MUA (coming from the NN) and (B)
when MUA is replaced by its temporal average. In the latter case NMs are unable to synchronize
their phases.

5.3 Effect of the topology of the microscopic neuronal population

In order to further study the role played out by the microscopic neural network in the syn-
chronization dynamics we have also varied two main features of its architecture: its clustering
(Figs. 5.6A,B) and the size of the area involved in the coupling, determined by the number of
neurons projecting onto the NMs (Fig. 5.7). In graph theory, networks composed of nodes and
edges can be characterized by their clustering coefficient, which quantifies the connectedness
or local connectivity of the network (i.e. the probability that all nodes that are connected
to a given node, are also connected between them). According to the Watts and Strogatz
algorithm [Watts and Strogatz, 1998], a pure regular network can be turned into a small-world
network, in which few edges separate any two nodes, by rewiring the connections. A rewiring
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probability parameter, rp, determines the probability of replacing an existing edge by another
one chosen randomly. Therefore, a rewiring probability equal to 0 implies a regular network
whereas a rewiring probability equal to 1 implies a completely random network. By studying
these parameters we are changing the dynamics of the NN and, therefore, its capacity to mediate
the interaction between the two NMs.

Figures 5.6A,B outlines the dependence of the maximum cross covariance and the frequency
mismatch between the two neural masses on the coupling strength k for different rp values. Note
that the case rp = 1 corresponds to the results shown in Figs. 5.4C,D. Networks with higher
clustering (rp = 0.2) are less efficient in synchronizing the oscillatory output of the neural masses.
In this case, larger coupling strengths k are needed, with respect to a random network (rp = 1),
to reach the frequency locking regime. Thus, the topology of the neural network affects the
synchronization between the neural ensembles. Random networks have small path lengths at
the expense of low clustering, and thus the average transmission time of the action potentials
across the population is decreased. In this situation, synchronization arises for smaller coupling
strengths. The result for a regular network, rp = 0 (which is not a realistic situation in the brain
because the NN dynamics is lost), is also included in Figs. 5.6A,B.
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Figure 5.6: Influence of the topological and dynamical properties of the neuronal
network on the interaction between the NMs. Maximum cross covariance (A) and
frequency mismatch (B) between the NM average postsynaptic potentials for increasing rewiring
probabilities rp of the neuronal network. Maximum cross covariance (C) and frequency mismatch
(D) between the NM average postsynaptic potentials when the neuronal network works in the
alpha regime, compared with the gamma case (rp = 1).

Besides topology, the intrinsic dynamics of the neuronal network also has an impact on
the synchronization of neural masses. In our NN model we can slow down the frequency peak
of the LFP by increasing the decay time constant τd of the inhibitory synapses (Eq. (A.19)),
without altering the firing rate of the population. If the peak of the NN power spectrum is
shifted towards the alpha band, closer to where the neural masses oscillate, the maximum cross
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covariance is reduced and the frequency mismatch is increased for a given k value (Figs. 5.6C
and 5.6D, respectively). Thus, even though the NN is operating closer in frequency to the NMs,
and its individual neurons fire at the same rate as when the network operates in the gamma
band (resulting in a similar MUA activity), the NMs are more difficult to synchronize. In the
neural network, the action potentials are transiently synchronized and paced according to the
time course of inhibition, leading to a recurrent behaviour that causes the global oscillatory
dynamics. Faster rhythms, like gamma, correspond to a better precise timing of the firing, i.e.
the action potentials of multiple neurons are tightly bounded in time, which seems to be key for
the synchronization of the neural masses.

5.4 Effects of the size of the microscopic neuronal population

Finally, and as mentioned above, we have also studied how the synchronization of the NMs
is affected by the size N of the subpopulation of neurons that mediate the coupling between
them. In the results presented so far, this subpopulation was formed by N = 2000 neurons,
randomly chosen from the whole population of 4000 neurons of the NN. We scanned N between
1 and 4000 neurons, the latter case corresponding to all neurons in the NN contributing to the
firing rate impinging on the NMs and receiving their input. Figures 5.7A,B show the maximum
cross covariance and the frequency mismatch for increasing coupling k at varying subpopulation
sizes. The interaction between the NMs decreases as N decreases, and synchronization is only
significant for N > 1000. N directly affects the strength of the coupling between the NN and the
NMs, since this parameter determines the average MUA, i.e. the number of spikes elicited within
the subpopulation. Hence, given a coupling strength k that enables an efficient interaction of the
models, larger values of N lead to a lower frequency mismatch (Figs. 5.7C,D).

It is important to note that, although the size of the neural network is kept constant, increasing
N boosts the coupling term, spreading the input from the neural mass across a larger population
of neurons within the NN. Figure 5.7E shows the LFP power spectrum for increasing values
of N for k = 0.9. Similarly to the transition from Fig. 5.2 (network in isolation) to Fig. 5.3
(coupled network with k = 1 for N = 2000), the major changes produced by the coupling occur at
small frequencies, where the synchronization scale is centered, while the gamma rhythm interacts
directly with the slower dynamics of the NMs. Decreasing N dramatically affects the dynamics
of the coupling, which only takes into account the activity of this subpopulation. For sizes below
N ∼ 1000 the interaction is carried out by the low firing and highly noisy activity of small
numbers of neurons, which are unable to synchronize large ensembles.

5.5 Conclusions

Our results do not imply that two neural mass oscillators can only synchronize through the
mediation of a neuronal network. In fact if all three neuronal populations were described by NNs
(or by NMs, for that matter) synchronization would also arise (see for instance Refs. [Vicente et al.,
2008; Gollo et al., 2010] for the case of three coupled NNs leading to zero-lag synchronization).
Neither do we claim that two brain oscillators can only synchronize through the mediation
of a third one (see for instance David and Friston [2003] for an example of synchronization
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Figure 5.7: Effects of size of the microscopic neuronal population on the interaction
between NMs. Maximum cross covariance (A) and frequency mismatch (B) between the NM
average postsynaptic potentials as a function of coupling strength k, for various values of the size
N of the subpopulation of the neuronal network that mediates the coupling. (C,D) Maximum
cross covariance and frequency mismatch as a function of N for various values of the inter-scale
coupling strength k. (E) Spectral power density of the LFP of the whole NN, when the NMs are
connected with NN subpopulations of various sizes (k = 0.9). All results are averaged over 20
trials.

between two coupled NMs). What our study shows is that two mesoscopic brain oscillators can
synchronize even when they are coupled only through a mediating population that is described
by a microscopic model. In that sense, we use synchronization as a tool to probe the interaction
between different spatial scales of neuronal populations. Previous efforts have been devoted to
analyzing this interaction by performing a direct comparison of the behaviours of the microscopic
and mesoscopic models. Faugeras et al., for instance, derived the equations of evolution of
neural masses from the dynamics of a network of neurons described by a voltage-based model
[Faugeras et al., 2008], by performing an involved mean field analysis of the network, an approach
that would be very challenging to apply to spiking neuron models. In order to perform such
a multiscale mapping, Rodrigues et al. [2010] had to apply strong assumptions that included
high correlation between the neurons in the microscopic populations and low-amplitude input
currents. Here we have attempted to circumvent the complexity of those approaches by using
a more phenomenological strategy, whose goal is to test whether microscopic and mesoscopic
descriptions of neuronal populations communicate with one another by using synchronization as
a proxy of effective communication.

Even when the neuronal network operates in a fast dynamical collective regime in the gamma
range, a sufficiently large subpopulation of neurons within that network is able to mediate the
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communication and subsequent synchronization between two neural masses that are described
mesoscopically and operate at much lower frequencies. Frequency and phase locking arise even
when the two neural masses operate at very different frequencies (in the theta and alpha bands)
and with very different dynamical features (spike-like dynamics in one case and quasi-harmonic
dynamics in the other). Structural clustering within the neuronal network diminishes the ability
of the microscopic neuronal population to induce synchronization. The size of the subpopulation
of neurons that directly coupled the two neural masses must also be large enough to allow the
intrinsically irregular neurons to reach a sufficiently strong collective regime through which the
two neural masses can communicate.

Two main features indicate the nontrivial contribution of the microscopic neuronal network
in mediating the synchronization between the mesoscopic models. First, the two mesoscopic
populations lock not only in frequency, but also in phase, when they interact with a dynamically
evolving neuronal network. If the role of the network is played by an increased constant input to
the neural masses equal to the average activity of the neuronal network, phase locking disappears.
Second, if the neuronal network is made to operate in a slower collective regime (e.g. in the alpha
band) the synchronization between the neural masses is decreased (while being still significant),
even though the three oscillators are now closer in frequency.

The synchronization between the NMs is mediated by the locking between the NMs and the
NN, which leads to an increase in the theta-band activity of the NN, as reflected in Fig. 5.3C.
The fact that synchronization is maintained even when the NN is operating in the alpha band
(Figs. 5.6C,D) indicates that the intrinsic NN dynamics does not interfere noticeably in the
communication between the NM populations. Furthermore, the fact that synchronization
improves slightly when the NN is operating in gamma (as shown also in Figs. 5.6C,D) shows that
fast and slow scales interact only to a certain extent in order to drive the synchronization. We
interpret this to be due to an increase in the precise timing of the firing that is associated with a
faster neuronal rhythm. The results reported here point towards an alternative way to probe the
interaction of scales in the brain, by using synchronization between neuronal populations as a
way of testing the structural and functional conditions under which scale interaction occurs.



Chapter 6

Dynamics of excitation and inhibition at
the mesoscale

“The role of inhibition in the working of the central nervous
system has proved to be more and more extensive and
more and more fundamental as experiment has advanced
in examining it [...]. The whole quantitative grading of
the operations of the spinal cord and brain appears to rest
upon mutual interaction between the two central processes
’excitation’ and ’inhibition’, the one no less important than
the other.”

Sir Charles Scott Sherrington

Neurons in the brain are known to operate under a careful balance of excitation and inhibition,
which maintains neural microcircuits within the proper operational range [Dehghani et al., 2014].
Besides, excitatory and inhibitory couplings mediate in the interaction between microscopic and
mesoscopic structures in the brain, as shown in the previous Chapter. However, how the balance
between excitation and inhibition is played out at a pure mesoscopic level of neuronal populations
is less clear. In order to address this question, in this Chapter we use a network of coupled neural
mass models to study computationally the dynamics of networks of cortical columns operating
in a partially synchronized (ir)regular regime. For the sake of simplicity, we first work with small
motifs of 2 and 3 coupled elements, which already display complex excitatory and inhibitory
patterns. We then consider larger topologies, focusing on a heterogeneous topology network, with
a few of the nodes acting as connector hubs while the rest are relatively poorly connected. Our
results show that in this type of mesoscopic network, excitation and inhibition spontaneously
segregate, with some columns acting mainly in an excitatory manner while some others have
predominantly an inhibitory effect on their neighbors. We characterize the conditions under which
this segregation arises, and relate the character of the different columns with their topological role
within the network. In particular, we show that the connector hubs are preferentially inhibitory,
the more so the larger the column’s connectivity. Besides, we show that the synchronization of
the networks of cortical columns is extremely dependent on such excitation/inhibition patterns.
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6.1. EXCITATION/INHIBITION PATTERNS IN A SMALL SYSTEM OF COUPLED

CORTICAL COLUMNS

These results suggest a potential mesoscale organization of the excitation-inhibition balance in
brain networks [Kozyrev et al., 2014].
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Figure 6.1: Excitation/Inhibition patterns in two coupled cortical columns. (A)
Cartoon of two bidirectionally coupled cortical columns. (B) Time traces of the dynamical
evolutions of the two nodes for 10 different sets of initial conditions. Segregation, in terms of
〈ye(t)− yi(t)〉t, occurs. (C) Scatter plot of the occurrence of segregation in terms of the coupling
constants α12 and β12 (see Eqs (A.6)-(A.8)). Gray circles indicate α12, β12 values for which
segregation occurs. Darker circles indicate higher occurrence of segregation for the 10 different
sets of initial conditions. The blue circle indicates the case displayed in panel B.

6.1 Excitation/Inhibition patterns in a small system of coupled
cortical columns

The interaction between excitatory and inhibitory populations of neurons in Eqs. (A.6, A.8)
may give rise to oscillatory dynamics emerging at a mesoscopic time scale [Jansen and Rit,
1995]. Besides, the contacts between neural ensembles form loops that enhance the excitation or
inhibition activity of these populations in a feedforward or in a feedback manner. Here, we study
how different simple architectures allow a network of bidirectionally coupled cortical columns to
segregate, i.e., to display different excitatory or inhibitory-dominated dynamics for the nodes
which form the network. We focus on scenarios in which the interaction between the simple
topology and the intrinsic dynamics results in the segregation of the columns.

First we consider a simple case (see Fig. 6.1A) where two identical columns are coupled
bidirectionally. Each node representing a cortical column can be considered as inhibitory if the
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Figure 6.2: Excitation/Inhibition patterns in three coupled cortical columns (I). (A)
Three bidirectionally coupled cortical columns forming a chain. (B) Variation of the coupling
strength α23 while keeping all other coupling strengths fixed (α12 = 6.0, β12 = β23 = 13.0).
Points represent the values obtained for the different realizations and the continuous line the
average of these values. The system shows complex excitatory-inibitory patterns in the region
where α23 is approximately between 30.0 and 50.0. We can see that Column 1 remains excitatory
through the different realizations, Column 2 switches from inhibitory to excitatory dynamics and
Column 3 remains excitatory for all realizations. (C) Histogram of 〈ye(t)− yi(t)〉t for the three
columns for the situation indicated with an arrow in panel B (α23 = 36.0).

time averaged post-synaptic potential, resulting from the subtraction between the excitatory
post-synaptic potential (EPSP, ye(t)) and the inhibitory post-synaptic potential (IPSP, yi(t)),
is negative (〈ye(t)− yi(t)〉t < 0), or excitatory if the average post-synaptic potential is positive
(〈ye(t)− yi(t)〉t ≥ 0) (〈...〉t denotes temporal average, see Fig. 6.1B, see Appendix A.1.1). We
have found the ranges for the excitatory coupling weight (α12) and the inhibitory coupling weight
(β12) where the columns in Fig. 6.1A segregate into excitation and inhibition-dominated dynamics
(see Fig. 6.1C).

Note that the bidirectional coupling sets a symmetry in the inter-column contacts that,
nevertheless, allows an asymmetry in the settlement of ye(t)− yi(t) for the two columns. In the
different realizations of the dynamics the first (second) node may become excitatory (inhibitory)
and in other realizations it may become inhibitory (excitatory). The excitatory/inhibitory
character of the two nodes is dictated by the initial conditions of each column and the value of
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Figure 6.3: Excitation/Inhibition patterns in three coupled cortical columns (II).
(A) Three bidirectionally coupled cortical columns forming a chain. (B) Variation of the coupling
strength α12 while keeping all other coupling strength fixed (α23 = 12.0, β12 = 2.1, β23 = 21.5).
Points represent the values obtained for the different realizations and the continuous line the
average of these values. The arrow indicates a situation in which Column 2 and Column 3 switch
their characteristic excitatory/inhibitory behavior due to the influence of coupling strength α12.
The system is strongly multistable for α12 between 10.0 and 55.0. (C) Histogram of 〈ye(t)−yi(t)〉t
for the three columns for the situation indicated with an arrow in panel B (α12 = 15.0).

their coupling strength.

In Fig. 6.2 we have studied the dynamics of 3 columns coupled bidirectionally forming a
chain. The central column is connected to other two, and so it is influenced by the coupling
terms with them (see Fig. 6.2A). In this configuration we have set, on the one hand, α12 (the
excitatory coupling) and β12 (the inhibitory coupling, see Eqs. (A.6, A.8)) to force the node 1 and
the central node to segregate (as shown in Fig. 6.2) and, on the other hand, we have fixed the
same inhibitory coupling strength on the other link and we have scanned the excitatory coupling
α23 afterwards. The variation of α23 results in the identification of regions with monostable or
multistable excitatory/inhibitory dynamics (see Fig. 6.2B).

Column 1 remains excitatory through this range of α23 but, in general, decreases when
the parameter increases. 〈ye(t)− yi(t)〉t for Column 3 decreases in general but seems to start
increasing for the highest values of α23. Finally, the central column starts being inhibitory but
becomes excitatory for α23 ≈ 60. So in this configuration, the excitatory unbalance between the
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Figure 6.4: Excitation/Inhibition patterns in three coupled cortical columns (III).
(A) Three bidirectionally coupled cortical columns forming a closed circuit. (B) Variation of the
coupling strength α13 while keeping all other coupling strength fixed (α12 = α23 = 1.0, β12 =
8.0, β13 = β23 = 1.0). Points represent the values obtained for the 100 different realizations
and the continuous line the average of these values. The arrow indicates a situation in which
Column 2 and Column 3 switch their characteristic excitatory/inhibitory behavior due to the
influence of coupling strength α13. The system is strongly multistable for small values of α13 up
to α13 ≈ 50.0. (C) Histogram of 〈ye(t)− yi(t)〉t for the three columns for the situation indicated
with an arrow in panel B (α13 = 1.0).

two branches fixes the (absence of) segregation of the central column. In particular, when α23

is small, the central node is inhibitory-dominated but as α23 increases the excitation becomes
dominant in all nodes (〈ye(t)− yi(t)〉t approaches common values for all nodes). One interesting
result is the multistability observed for extended ranges of α23. In Fig. 6.2C we have analyzed the
case of multistable dynamics indicated by the arrow in Fig. 6.2B by computing the histograms of
〈ye(t)− yi(t)〉t for the different columns. As it can be seen some realizations in Column 2 are
excitatory-dominated and others are inhibitory-dominated, whereas Columns 1 and 2 remain
excitatory.
Still using the same topology, we have explored coupling values that allow multistable excita-
tory/inhibitory dynamics in two of the columns. Fig. 6.3B shows the behavior of 〈ye(t)− yi(t)〉t
for each column and for increasing coupling strength α12, keeping all other coupling strengths
fixed (see caption in Fig. 6.3). In this case the inhibitory coupling strengths are not equal (i.e.
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β12 6= β23), but, alongside with α12, they force the Columns 2 and 3 to segregate and switch
between excitation and inhibition (see dots indicating 〈ye(t)− yi(t)〉t values).
Like in Fig. 6.2, Column 1 remains excitatory but suffers from abrupt changes in 〈ye(t)− yi(t)〉t
from very low α12 values up to α12 ≈ 55.0. Columns 2 and 3 can switch between excitatory or
inhibitory dynamics between α12 ≈ 5.0 and α12 ≈ 25.0 (see blue circles and gray triangles in
Fig. 6.3B). The histograms in Fig. 6.3C show the probability of Columns 2 and 3 to be either
excitatory or inhibitory while Column 1 remains excitatory for the case indicated with an arrow
in Fig. 6.3B. Again, there exist extended regions of multistability in terms of α12.
Dynamical features displayed in Fig. 6.3 can also be found in Fig. 6.4 for closed circuit architec-
ture and setting the coupling values to allow for segregated dynamics. The unbalance between
inhibitory couplings in the circuit (see caption in Fig. 6.4) allows bistable dynamics to appear
in Columns 1 and 2 for low values of coupling strengths (see Fig. 6.4B). The three columns
suffer steep changes in 〈ye(t)− yi(t)〉t as α13 increases. Once more, there exist extended regions
of multi-stability in terms of α13. Finally, the multi-stable excitatory/inhibitory dynamics in
Columns 1 and 2 for the case indicated with an arrow in Fig. 6.4B can be seen in the histograms
of Fig. 6.4C, showing that this behavior is not exclusive of chain-like architectures.

6.2 Brain resonance and the balance between excitation and
inhibition

Neurons in the brain may coordinate their spiking activity in the presence of external rhythmic
stimuli. Such stimuli may be related with cognitive tasks, impaired brain performance or normal
brain states. For instance, it has been shown that a periodic visual stimulation may entail
an entrainment of the intrinsic alpha rhythm towards the stimulus frequency in the visual
cortex. This stimulus may produce complex chaotic dynamical evolutions [Spiegler et al., 2011a].
Besides, sine-graded stimuli in the auditory system is known to lead to synchronization patterns
related with inter aural time differences, crucial for spatial localization of sounds [Batra and
Fitzpatrick, 1997]. On top of this, it has also been shown that texture discrimination creates
patterns of excitatory and inhibitory activity in large populations of neurons from the visual
system [Caelli, 1980] and the barrel cortex [Feldmeyer et al., 2013] upon whisker input. Such
feature gives rise to competitive selection of active regions, also known as winner-takes-all, that
determines the non-linearity and functional complexity of cortical networks. We here explore
how complex dynamical evolutions emerge from the interaction between simple harmonic stimuli
and the intrinsic oscillations of cortical columns. Besides, we study the conditions for which such
complex time evolutions, in the form of oscillatory electric potentials, may synchronize given the
constraints imposed by the topology and the strength of the excitatory and inhibitory couplings
within the studied cortical columns networks.

6.2.1 Single column resonant dynamics

Chaotic dynamics appears in a cortical column when adding a periodic spike density, δ sin(2πft),
to the constant excitatory external input, pe (see Eq. (A.7)). The irregularity of this dynamics
can be quantified by computing the Maximal Lyapunov Exponent (MLE) [Spiegler et al., 2011b],
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which computes the rate of exponential separation of two nearby trajectories in the phase space
(see Appendix B.1.1), as shown in Figure 6.5A. That plot represents the MLE obtained for a
periodically forced single cortical column when varying its driving amplitude δ and frequency f .
A positive MLE corresponds to a chaotic dynamical evolution of the system. It is noticeable
that many combinations of driving frequency and amplitude lead to chaos, and that a small
domain characterized by negative MLE, with f ∼ 8.7 Hz and scaled driving amplitude δ/C
around 0.7 Hz, appears inside the chaotic domain. From now on we provide scaled values for
input amplitudes and coupling strengths in order to compare the order of magnitude of these
parameters with the global neural mass parameter C (see Table A.1). Calculating the MLE
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Figure 6.5: Chaotic behavior of an isolated, periodically driven cortical column.
(A) Maximal Lyapunov Exponent (MLE) for different driving amplitudes and frequencies (see
Appendix B.1.1). Parameter values are those given in Table A.1. (B) Regularity parameter
obtained in the same conditions as in panel A (see Appendix B.1.1). (C) Example of a chaotic
signal obtained for a driving frequency f = 8.5 Hz and scaled driving amplitude δ/C = 0.49 Hz.
With these parameters MLE= 5.24 and Reg = 0.37. (D) Power spectrum of the signal shown in
C. This complex spectrum shows a narrow peak at the driving frequency (see inset).

becomes costly in terms of computation when dealing with a large number of columns. Thus,
we will use a different measure of the regularity of the dynamics, given by the parameter Reg,
hereafter. This quantity is calculated using the second maximum of the autocorrelation function
for ye(t)−yi(t) signal, as defined in Eq. (B.4) of the Appendix B.1.1. Figure 6.5B shows the values
taken by this parameter as a function of δ and f . The regions characterized by large positive
(negative) values of the MLE in Figure 6.5A correspond to regions with low (high) value of Reg
in Figure 6.5B. An example of chaotic evolution for driving frequency f = 8.5 Hz and scaled
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driving amplitude δ/C = 0.49 Hz is illustrated by the signal dynamics and its corresponding
power spectrum density (PSD) in Figures 6.5C and D, respectively. These results show that
the response of a node to a simple periodic driving may be very complex in both the time and
frequency domains. The parameter Reg will be used hereafter to quantify the regularity of the
signals that characterize the network dynamics.
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Figure 6.6: Regularity of the coupled system. (A) Topology of the network of cortical
columns studied below. The network is constructed using the Barabási-Albert algorithm with
m0 = 1 initial nodes (see Appendix B.2.1 for details). (B) Regularity parameter averaged over
1 network of 50 coupled cortical columns (see panel (A)), for 20 different realizations of the
initial conditions and for varying excitatory and inhibitory coupling intensities. Darker regions
indicate less regular dynamics (chaotic), whereas lighter regions indicate more regular dynamics.
Annotations in the plot indicate parameter values that will be studied later in Figures 6.7, 6.8A,
6.8C, 6.10A and 6.10B.

6.2.2 Network activity

Our study is centered in a 50-node network with inhomogeneous connectivity, represented
in Figure 6.6A. The nodes’ degree distribution in such network follows a power-law (a full
characterization of the network and the coupling scheme is presented in the Appendix B.2.1).
The network study was conducted using a fixed set of driving parameters, pe, pi, δ and f , which
for isolated nodes produced irregular dynamical evolutions (see Table A.1 and Figure 6.5C). All
nodes of the network are identical and receive the same external input. The input contribution
resulting from the neighbors is weighted for each node in such a way that every node receives an
input spike density within the same total bounded range (see Eqs. (A.9 - A.10) for more details).

The inter-columnar coupling intensities are determined by parameters α and β for the
excitatory and inhibitory coupling, respectively (see Eqs. (A.6 - A.8)). We calculated the
regularity averaged across the fifty nodes of a single network and over twenty different random
realizations of the initial conditions. Figure 6.6B shows the map of the average regularity for
the coupled nodes as a function of the two coupling intensities. This figure shows that certain
regions of parameter space exhibit a low level of regularity. In particular, for a fixed value of the
excitatory coupling α, the dynamics becomes irregular for both sufficiently large and sufficiently
small values of the inhibitory coupling β. The distribution of these irregular regions, in terms of
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α and β, depends on the other parameters of the system. For some α-β combinations (shown
in more detail below) periodic, quasi-periodic and chaotic nodes coexist in a single network,
even though all nodes receive the same driving. For other α-β combinations, the whole network
exhibits either highly regular or highly irregular dynamics.
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Figure 6.7: Node-pair correlation and dynamical clustering. (A) Maximal cross-
correlation Cmax(τ) (y axis) and average regularity (color coded) between pairs of cortical
columns for scaled α/C = 0.56 and β/C = 0.26 (point 1 in Figure 6.6B). Connected (not
connected) pairs of nodes are shown as triangles (circles). The dynamical evolution of selected
node pairs is shown in panels B-E. In (E) the two nodes are synchronized at zero lag, and one of
the time traces has been shifted horizontally for clarity.

6.2.3 Correlation between pairs of cortical columns

The inter-columnar coupling intensities determine not only the regularity of the dynamics of
the individual nodes, but also their synchronization capacity. In particular, for fixed α-β values,
different degrees of synchronization appear between different pairs of nodes of the network.
Figure 6.7A plots the maximal cross-correlation values, Cmax(τ), for all pairs of nodes i, j,
ordered for increasing correlation, for scaled α/C = 0.56 and β/C = 0.26 (labeled as point 1 in
Figure 6.6B). Directly connected pairs, represented by triangles in Figure 6.7A, have values of
Cmax(τ) in the range 0.2–1, and lie mostly above Cmax(τ) = 0.4, indicating that the activity of
direct neighbors is highly correlated. For pairs of nodes that are not connected directly (shown
as circles in Figure 6.7A) the cross correlation is spread across the entire range 0–1. In order
to relate the amount of correlation between node pairs with the regularity of their dynamics,
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Figure 6.7A shows in color coding the regularity parameter described above (averaged over the
two nodes in the pair). For the set of parameters considered in Figure 6.7A, the network-averaged
regularity is Reg ≈ 0.6 (see point 1 in Figure 6.6B). In that case there are node pairs evolving in
a regular way (lighter symbols, see e.g. Figures 6.7B,C) or in a more irregular manner (darker
symbols, see e.g. Figures 6.7D,E), although there is no clear association between regularity and
correlation level.

As described above, in the neural mass model used here the activity of each node is defined
by the excitatory (EPSP) and inhibitory (IPSP) inputs to the pyramidal population (ye(t)
and yi(t), respectively). Hence, each node (representing a cortical column) can be considered
inhibitory-dominated if 〈ye(t)−yi(t)〉t < 0, and excitatory-dominated if 〈ye(t)−yi(t)〉 ≥ 0, where
〈· · · 〉t denotes temporal average. Figure 6.7B shows the dynamics of the total post-synaptic
potential signal y(t) = ye(t)− yi(t) for a pair of directly connected nodes characterized by high
regularity and low correlated activity. In this case, the activity of both nodes is dominantly
inhibitory. In contrast, the pair of nodes illustrated in Figure 6.7C (which are also directly
connected and have low correlation) have opposite activity, with one node being purely excitatory
(light green curve), while the other is mainly inhibitory (dark green curve). The separation
of the activities of the two nodes in two dominant exclusive types (one excitatory and one
inhibitory) is an emergent feature that we have termed segregation, which was discussed in the
previous section and will be analyzed in detail in the next one. Figure 6.7D shows an example of
highly correlated activity and low regularity of two directly connected cortical columns which
are excitatory. Finally, Figure 6.7E shows very highly correlated activity for a pair nodes that
are not directly connected. In this case the correlation is so strong that the two nodes exhibit
exactly the same dynamics, with zero-lag synchronization (one of the time traces as been slightly
shifted horizontally so that the two series can be discerned). This unconnected pair is coupled
indirectly through a third node, a feature that can give rise to generalized synchronization [Zhou
and Roy, 2007; Vicente et al., 2008].

6.2.4 Excitatory/inhibitory segregation

The results from Figure 6.7 show that coupled neural masses can exhibit a regime of partial
synchronization in which the net activity of the nodes is segregated between mostly excitatory
and mostly inhibitory activity (e.g. Figure 6.7C). We now consider the dependence of segregated
dynamics with the inter-columnar coupling strengths α and β, for scaled α/C = 0.790 and
β/C = 0.037 (point 2 in Figure 6.6B). We run a set of 50 simulations, each one with a different
network, constructed as described in the Appendix B, with the same topological parameters and
different random seeds. For this α and β values, the activity y = 〈ye(t)− yi(t)〉t of all nodes is
positive (Figure 6.8A). Note that now α� β, which corresponds to the inter-columnar coupling
being dominated by excitation. In the opposite case, when inter-columnar coupling is dominated
by inhibition, (e.g. scaled α/C = 0.075 and β/C = 0.190, point 3 in Figure 6.6B), the dynamics
of the nodes is more regular and segregated, as illustrated by Figure 6.8C. In this case, a large
fraction of the nodes maintain a dominantly excitatory activity, and approximately one fifth of
the nodes exhibit inhibitory dynamics (Figure 6.8D). Visual inspection of Figure 6.8C seems to
indicate that the connectivity hubs of the network are preferentially inhibitory. This observation
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Figure 6.8: Excitatory/inhibitory segregation of cortical columns. (A) Example of
a scale-free network with by all nodes exhibiting excitatory dynamics (empty circles). Here
α/C = 0.790 and β/C = 0.037 (see point 2 in Figure 6.6B). (B) Average distribution of the
activity 〈ye(t)− yi(t)〉t, obtained from the analysis of 50 different scale-free architectures using
different random seeds for the same α and β parameters as in panel A. The extreme values in
the tail of the distribution are not represented. (C) Example of a scale-free network with by
some nodes exhibiting excitatory dynamics (empty circles) and some nodes exhibiting inhibitory
dynamics (filled circles). Here α/C = 0.075 and β/C = 0.190 (see point 3 in Figure 6.6B). (D)
Average distribution of 〈ye(t)− yi(t)〉t corresponding to panel C.

will be quantitatively tested below.

In order to quantify the robustness of the segregation, we now compute the excitation/inhibition
segregation index (EIS), as defined in the Appendix B.1.5, in terms of the parameter space
defined by the coupling parameters α and β. This index compares the excitatory and inhibitory
sides of the histogram distribution of 〈ye(t)− yi(t)〉t (as shown in plots B and D of Figure 6.8).
A value EIS = 0 means that there is no separation between excitation and inhibition (all nodes
are either purely excitatory or purely inhibitory), whereas large values of EIS mean that the
number of nodes is evenly distributed in each side of the histogram, with a large difference of the
〈ye(t)− yi(t)〉t value between excitatory and inhibitory nodes. Figure 6.9 shows the distribution
of EIS for the region of α-β parameter space studied so far. We observe that the dynamics is
roughly separated in three domains. A domain characterized by no segregation, labeled as ‘N’ in
the plot, corresponds to a dominantly excitatory input. An intermediate domain, labeled ‘L’,
is characterized by a low level of segregation. Finally, if β is larger than α, a regime of high
segregation, labeled ‘S’, arises. Note that the transitions between the three domains are rather
sharp.
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Figure 6.9: Excitatory/Inhibitory Segregation index (EIS). The EIS index quantifies
the relative distribution of excitatory- and inhibitory-dominated dynamics. Three different
domains exist, labeled by ‘N’ (no segregation), ‘L’ (low segregation) and ‘S’(high segregation).

In order to determine the influence of the network characteristics on the dynamics of the nodes,
we examined the relationship between the number of connections of each node (degree), its average
activity 〈ye(t)− yi(t)〉t, and its regularity. Figure 6.10 shows the results for the α-β combinations
used in Figure 6.8. The first feature that is evident from those plots is that the average activity
of the nodes is strongly correlated with their degree, both when the inter-columnar coupling is
mainly excitatory (Figure 6.10A) and when it is mostly inhibitory (Figure 6.10B). This can be
understood from the fact that a hub receives input from a large number of nodes, and if this
input is mostly excitatory (as in Figure 6.10A) the resulting activity of the node will be strongly
excitatory, more so than nodes with a small number of inputs. Conversely, if the coupling is
mainly inhibitory (as in Figure 6.10B), the activity of the hubs will be dominantly inhibitory,
while the poorly connected nodes will receive a weaker inhibitory input. In this case, however,
and in contrast with the situation of Figure 6.10A, the weak inhibitory input received by the
low-degree nodes will be counterbalanced by an external excitatory input (pe as defined in the
Appendix A.1.1), which acts upon all nodes of the network. For appropriate parameter values
this external input dominates over the input coming from the neighboring nodes, resulting in an
average activity that is predominantly excitatory for these low-degree nodes, while the highly
connected nodes behave in an inhibitory manner. This leads to segregation between inhibitory
and excitatory nodes, as described above and shown in Figures 6.8 and 6.9, with the inhibitory
role taken over by the network hubs.

There is also an important difference in the distribution of regularity of the nodes, depending
on the segregation exhibited by the network. In the absence of segregation (Figure 6.10A), the
nodes of intermediate degree exhibit a broad range of regularity, from very irregular to very
regular modes. In contrast, in the presence of segregation (Figure 6.10B) the intermediate-degree
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Figure 6.10: Degree organization of the excitation-inhibition segregation. (A) Average
activity of all nodes of the networks as a function of their degree, corresponding to the cases
analyzed in Fig. 6.8B. (B) Average activity of all nodes of the networks as a function of their
degree, corresponding to the cases analyzed in Fig. 6.8D. Color coding denotes the regularity for
each node in the networks, and upper panel shows the average regularity in the nodes’ dynamics
as well as its standard deviation. Both in panels A and B, color coding denotes the regularity of
nodes in the networks, and upper panels show the average regularity in the nodes’ dynamics as
well as its standard deviation.

nodes display highly regular dynamics. This is due to the fact that in the latter case the dominant
activity is inhibitory, and inhibition reduces irregularity and favors synchronization. A common
feature of the networks, irrespective of the segregation level, is that low-degree nodes exhibit a
large diversity of regularities. This happens because the regularity of the dynamics of a node will
depend on the degree of the neighbors that are connected to it, and thus the low-degree nodes
might be highly influenced by other low-degree nodes (given that the coupling is scaled by the
inverse of the product of the degrees of the two connected nodes, see Appendix B) or weakly
influenced by high-degree columns.

The extent of segregation in networks with other topological features is explored in Figs. 6.11
and 6.12. In Fig. 6.11 we study segregation in scale-free networks of higher clustering than the
ones studied previously (see Figs. 6.6 to 6.10). The level of EIS is decreased substantially when
the clustering is increased up to 0.4 (see Fig. 6.11A, see Appendix B for a definition of clustering),
indicating a dependence of this effect on the heterogeneity of the network. However, for a clustering
value of 0.7 EIS levels increase (see color bar in Fig. 6.11B), showing a complex dependence of
segregation on the heterogeneity of scale-free networks. Moreover, segregated regimes display
higher regularity, which can be related to the emergence of inhibitory columns in the network.
In Fig. 6.12 we study other topologies ranging from ring to random arrangements. Figs. 6.12A,B
show two ring networks whose nodes have a different number of neighbors. Remarkably, in
this homogeneous networks segregation does no occur (see that the whole EIS landscape is 0).
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Figure 6.11: Segregation in scale-free networks. (A) EIS and examples of scale-free
networks constructed using the Barabási-Albert algorithm with initial nodes m0 = 10. The
networks have a clustering of 0.4, which leads to a decrease in the level of segregation. Besides,
low segregation allows low regularity whereas higher segregation induces higher regularity (see
color coding). (B) For higher clustering EIS level increases (see color bar) which shows that
there can be optimal levels of heterogeneity in scale-free networks depending on the clustering for
segregation to occur. The regularity also depends on segregation, with low segregation networks
displaying low regular signals and higher segregation networks displaying high regular signals.

Therefore, the transition between excitatory and inhibitory-dominated dynamics in the nodes
(cortical columns) is abrupt. Such feature reinforces the hypothesis of a strong dependence of
segregation on the heterogeneity of the network. Figs. 6.12C,D show two examples of small-world
networks whose nodes have different number of neighbors. In such cases, segregation is present
but decreases when the number of neighbors increases. Finally, Figs. 6.12E,F show two random
networks whose nodes have different number of neighbors. In these cases, the dynamics of
segregation is similar to that of small-world networks, i.e., the larger the number of neighbors
the lesser the EIS values.

As a final remark, segregation is also present in other mesoscopic neural decriptions, showing
the universality of the phenomenon. We studied the dynamics of two coupled Wilson-Cowan
oscillators [Wilson and Cowan, 1972; Campbell and Wang, 1994] (see Fig. 6.7A), which showed
different levels of segregation depending on the excitatory and the inhibitory coupling strengths
Kexc
ij , Kinh

ij (see details of the model in Appendix A.1.1). This is shown in Fig. 6.11B in terms of
x(t)− y(t), which resembles the observable typically used in the Jansen and Rit model. Besides,
segregation occurs when the excitatory and the inhibitory blocks of each oscillator receive a
different level of external stimulus, that is, p1 6= p2 as well as q1 6= q2 (being pi 6= qi).

In Fig. 6.11C we show segregation in terms of Kexc
ij , Kinh

ij . For the case of Wilson-Cowan
oscillators segregation might be excitatory or inhibitory-dominated, depending on which coupling
term (Kexc

ij or Kinh
ij ) is higher (as shown in Fig. 6.11C white regions).
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Figure 6.12: Segregation in ring, small-world and random networks. EIS levels and
examples of networks in (A) ring topology with two neighbors and (B) ring topology with ten
neighbors, in (C) small topology with two neighbors and (D) small-world topology with ten
neighbors, in (E) random topology with two neighbors and (F) random topology with has ten
neighbors.

We conclude that segregation may arise when some minimal ingredients are present: excitatory
and inhibitory blocks exist and such blocks may couple through excitatory and inhibitory
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Figure 6.13: Segregation of two coupled Wilson-Cowan oscillators. (A) Coupling
scheme between the two oscillators. (B) Time traces of the subtracted signal xi(t)− yi(t) for the
two segregated oscillators, in an excitatory-dominated coupling scheme (Kexc = 1, Kinh = 0.1).
(C) Resulting segregation map for different excitatory and inhibitory coupling strengths.

connections. Then, segregation appears for the adequate range of coupling strengths.

6.3 Conclusions

Our computational analysis of small cortical columns shows that excitation and inhibition are
distributed in a non-trivial manner at the mesoscopic level. This behavior requires the coupling
of cortical columns via both excitatory and inhibitory connections. Our observations indicate
that depending on the coupling architecture, each column may acquire a well-defined excitatory
or inhibitory character, or the coexistence of excitation and inhibition in a network.

We make several assumptions. First, we consider that the cortical columns are subject to
a periodic excitatory input that may have different origins. It may represent, for instance, the
input activity from a nearby cortical column [Huang et al., 2011], a sensory input reflecting
periodic stimulation [Spiegler et al., 2011b] or the afferent input from a sub-cortical structure
(such as the thalamus) [Gollo et al., 2010]. As a result of this periodic driving we may observe
chaotic dynamics in single columns, in accordance with previous studies [Spiegler et al., 2011b].
This irregular regime appears in broad regions of the parameter space defined by the frequency
and amplitude of the input signal (Figure 6.5A,B).

A second assumption is the heterogeneous nature of the connectivity between coupled neuronal
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populations. This implies that a small number of cortical columns are more strongly connected
than the majority of the nodes in the neural mass network. Such heterogeneous connectivity
profile is supported by experimental observations [Zamora-Lopez et al., 2009; Gong et al., 2009;
Modha and Singh, 2010; Guye et al., 2010; Bullmore and Sporns, 2009]. A third assumption
is that the coupling between the cortical columns can be both excitatory and inhibitory. This
assumption is reasonable if the network considered describes small brain areas communicating
via short-range connections.

We choose a larger network of cortical columns that operates in the alpha band. Our analysis
of the average regularity of the coupled nodes as a function of the inter-columnar excitatory
and inhibitory coupling intensities reveals that the network includes nodes in different states
(periodic, quasi-periodic, and chaotic). These results are also in agreement with the description of
chaotic dynamics at a cellular level following periodic inhibitory inputs [Segundo et al., 1991a,b].
The specific dynamics is controlled by the nature of the inter-columnar coupling, reflecting the
dependence of the oscillations on the excitatory and inhibitory interactions at the mesoscopic
scale. On this basis we can suggest that a sudden alteration of the inter-columnar coupling
intensities (e.g. in an epileptic state) is associated with the modification of the regularity of the
mesoscopic activity, and that with the capacity of information processing by the network.

One of the main features of the networks studied here is that even when the nodes are
identical and receive a common driving input, their activity can be segregated in excitatory
or inhibitory activity. This segregation results from the combined effect of the heterogeneous
network connectivity, the specific excitatory-inhibitory couplings, and the external excitatory
input to which all network nodes are subject. However, if no external input is fed into the
columns segregation also emerges, though in lower levels, as shown in small motifs of connected
cortical modules [Malagarriga et al., 2014]. The same phenomenon appears in Wilson-Cowan
oscillators [Wilson and Cowan, 1972] (see Fig. 6.7), so external stimuli makes the dynamics more
complex, introducing chaotic-like time evolutions, and also enhances segregation.

At the microscopic level, segregation of excitatory and inhibitory behavior is well known
[Higley and Contreras, 2006; Haider et al., 2006; Wu et al., 2006; Heiss et al., 2008; Berg et al.,
2007; Magnusson et al., 2008; Yizhar et al., 2011]. Our study shows that mesoscopic segregation
arises when inter-column couplings are predominantly inhibitory. As mentioned above, here
we have focused on network architectures with inhomogeneous degree, which is one of the
possible anatomical and functional based architectures in the brain [Bullmore and Sporns, 2009].
However, we thoroughly studied different network architectures ranging from regular rings to
all-to-all topologies (see Fig. 6.12). We have also analyzed other scale-free arrangements (see
Fig. 6.11). The emergence of excitatory-inhibitory segregation discussed here was typically
found for complex topologies in contrast with regular topologies which do not exhibit segregated
dynamics. Therefore, segregation is highly dependent on the topological features of the networks.

Driving inputs in a real brain are not as simple as the periodic input considered here.
The irregular behavior observed here can be expected to have higher information content (e.g.
in terms of Shannon/transfer entropy) than much simpler and regular signals. The normal
functioning state of the brain, however, requires a certain degree of synchrony [Varela et al.,
2001]. A dysfunction in that synchrony leads often to aberrant behaviors and neurological



66 6.3. CONCLUSIONS

diseases [Uhlhaas and Singer, 2006, 2010]. For healthy working brains, it is therefore important to
achieve a state in which coordinated irregular dynamics works to process information efficiently
but non-trivially [Skarda and Freeman, 1987; Freeman, 1995]. In that way, the right amount
of synchronization of the brain activity permits cooperative processing of information, thus
increasing the computational power of the system [Varela et al., 2001]. The results presented here
suggest that organization of excitation and inhibition at the mesoscopic level might contribute to
this cooperative information processing.



Chapter 7

Coexistence of synchronizations in
complex weighted networks

“Sometimes you are in sync with the times, sometimes you
are in advance, sometimes you are late."

Bernardo Bertolucci

In the previous Chapter we showed that the interaction between mesoscopic neural oscillators
can give rise to complex patterns of synchronization when embedded in complex networks.
We here want to deepen into the understanding of such phenomenon by thoroughly studying
the conditions that allow groups of nonlinear oscillators, which display complex dynamics, to
organize in clusters that exhibit different types of synchronization. We find that this diversity
of synchronization patterns is promoted by increasing the heterogeneity in the distribution of
coupling weights and/or asymmetries in small networks. We also analyze consistency, defined as
the persistence of coexistent synchronization patterns regardless of the initial conditions. Our
results show that complex weighted networks display richer consistency, suggesting why certain
functional network topologies, for instance in the brain, are reconstructed more frequently when
experimental data are analyzed.

7.1 Synchronization patterns in dynamical systems

Certain dynamical systems, which display oscillatory behavior in isolation, may display a wide
repertoire of dynamical evolutions due to the coupling with their neighbors when embedded
in networks of similar complex systems [Pikovsky et al., 2003; Uhlhaas and Singer, 2006]. For
instance, the interaction of rhythmic elements may entail an adjustment of their oscillatory
dynamics to finally end up in a state of (dynamical) agreement or synchronization [Strogatz, 2003,
2000; Glass, 2001]. When coupling is strong, the oscillators in a network usually synchronize in a
particular collective oscillatory behavior. However, this relationship may also be inhomogeneous,
i.e., certain oscillators may synchronize whereas others may not [Abrams and Strogatz, 2004]. The
specific patterns of synchronization, thus, may provide information about the underlying dynamics
and the relationships established between the dynamical elements forming a network. Hence, a
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better characterization of the system can be achieved, which shall be of crucial importance when
the details of the contacts between the oscillators is not available.

Let’s first consider two dynamical systems x, y whose temporal evolutions are generally
defined by ẋ = F(x(t)), ˙y(t) = G(y) in isolation. Here we will consider a bidirectional coupling
scheme, which introduces dissipation in the dynamics of the systems:

ẋ(t) = F(x) + Ĉ(y(t)− x(t)),

ẏ(t) = G(y) + Ĉ(x(t)− y(t)). (7.1)

x(t) and y(t) are the state vectors of the systems, F and G are their corresponding vector
fields and Ĉ is a nxn matrix that provides the coupling characteristics between the systems.
When coupling is strong enough the synchronization relationships that can be established
between these two prototypical dynamical systems, namely oscillators, can be categorized in four
patterns [Uchida et al., 2005; Xiao-Wen and Zhi-Gang, 2007]:

• Complete synchronization (CS) is observed when the coupled oscillators are identical or
almost identical [Boccaletti et al., 2002], and x(t) = y(t) for a sufficiently large coupling
strength Ĉ.

• Phase synchronization (PS) appears if the functional relationship between the dynamics
of two oscillators preserves a bounded phase difference [Rosenblum et al., 1996], with
their amplitudes being largely uncorrelated. This can be exemplified by the relationship
|nφ1 −mφ2| < const, with φ1,2 being the phases of the two coupled oscillators.

• Generalized synchronization (GS) is observed if a complex functional relationship is estab-
lished between the oscillators [Abarbanel et al., 1996], e.g. ẏ(t) = H[ẋ(t)], where H[ẋ(t)]
can take any form other than identity. It can be thought to be a generalization of CS for
non-identical oscillators.

• Lag synchronization (LS) appears when the coupling strength becomes larger, and if the
amplitude correlation is high while at the same time there is a time shift in the dynamics
of the oscillators [Rosenblum et al., 1997], e.g y(t) = x(t− τ), with τ being a lag time.

There are several analysis techniques that can be used to assess the emergence of each of
the mentioned synchronization motifs. Here we combine three of them: cross-correlation (CC)
and Phase-Locking Value (PLV) (see Appendix B.1.3) and the Nearest-Neighbor Method (NNM)
(see Appendix B.1.4). CC computes the lagged similarity between two signals, which provides a
notion of the amplitude resemblance over time. Therefore it allows to state whether CS or LS are
established between two timetraces. On the other hand, PLV makes use of the Hilbert transform
of a signal so as to retrieve a phase φ and compute the time evolution of the difference in the
phases of two oscillators, i.e. φ1(t)− φ2(t) [Lachaux et al., 1999]. Accordingly, combined with
low CC it can assess the emergence of PS between two oscillators. Finally the NNM takes points
in the phase space of one oscillator and determine its position in the phase space of the coupled
oscillator [Boccaletti et al., 2002]. It allows to visualize and exemplify each synchronization motif
(see examples in Fig. 7.1A, lower panels).
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With this set of analysis techniques, here we study the dynamics of networks of coupled
Rössler oscillators (see model equations in A.5.2) [Rössler, 1976] arranged in complex weighted
topologies – random (RN) [Erdős and Rényi, 1959], small-world (SW) [Watts and Strogatz, 1998]
and scale-free (SF) [Barabási and Albert, 1999]. We show that several types of synchronization
patterns may coexist depending on the topology and on the distribution of coupling strengths
within the network. The novel finding of our study is the existence of regions in the parameter
space where coexistence of synchronization patterns is stable. We relate the capacity of a network
to display the same coexistence pattern regardless of the initial conditions with its consistency.
We suggest that the retrieval of a network structure from its dynamics is very reliable when
based on the consistency of coexistence patterns.

7.2 Coexistence of synchronizations

Two or more oscillators, which are part of a network, may synchronize in different ways (i.e.,
phase, generalized, lag or complete synchronization) forming heterogeneous synchronization
patterns or giving rise to a coexistence of synchronizations. The coexistence of synchronizations in
a network can be achieved if nodes can synchronize in different ways in terms of a parameter (e.g.,
coupling intensity, degree, clustering, etc.). Such scenario appears naturally in the route towards
a fully synchronized network. Hence, the coexistence of synchronizations will be obtained often
when the systems are not fully synchronized. Here we analyze the dependence of the distribution
of different synchronization states with complex topologies by studying large Scale-Free (SF),
Small-World (SW), and Random (RN) networks, where the tuning of topological properties
allows to study the conditions for which coexistence occurs. We set the coupling weights to
depend on the number of neighbors of each node as:

αij = 1√
deg(vi)deg(vj)

, (7.2)

for i 6= j, where deg(vi), deg(vj) are the degrees (number of coupled neighbors) of two dissipatively
coupled nodes vi, vj , and we study regular and complex topologies of progressively larger networks.

Firstly, we set the dynamics of each node i to follow the Rössler equations (see Eqs. (A.32)).
An isolated node with Rössler dynamics can display periodic, quasi-periodic or chaotic dynamics
and each pair of nodes can display NS (no synchronization), PS, GS, LS or CS (see Fig. 7.1A,
upper panels). The dynamics can also be characterized by means of the NNM in the return
maps of the two oscillators: three groups of nearby points in one oscillator are tracked in the
desired adjacent oscillator: if a functional relationship exists, i.e. in the PS, GS, LS or CS states,
the tracked points are grouped according to the type of synchronization (see Fig. 7.1A, lower
panels) [Moskalenko et al., 2012].

Figure 7.1B,C and D show the distribution of synchronizations in three prototypical networks,
namely, SF, SW and RN, alongside with their weight distributions (α) and the distribution of
synchronizations within each network. All three networks are located in a region of the coupling
parameter space which allows a complex distribution of synchronizations. In this sense, they show
clusters of PS, LS and CS (SF), or PS, GS and LS (both SW and RN). However, such distribution
is very sensitive to the coupling characteristics and the underlying topology. Therefore, we want
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Figure 7.1: Heterogeneous synchronization patterns in complex weighted networks.
(A) Examples of synchronization patterns (no synchronization NS, phase synchronization PS,
generalized synchronization GS, lag synchronization LS and complete synchronization CS)
displayed by dissipatively coupled Rössler oscillators using the nearest neighbor plot for each
dynamical state [Moskalenko et al., 2012]. τ is the delay time for maximal cross-correlation in
LS and PS. Examples of (B) a scale-free (SF) network, (C) small-world (SW) network with low
rewiring probability, and (D) random (RN) network of coupled Rössler oscillators displaying
heterogeneous synchronization patterns. For each type of network the right panels show the
distribution of the coupling strengths αij between pairs of nodes (upper panel) and the distribution
of the synchronization patterns (polar histogram, lower panel). Each link is color-coded so as to
show which synchronization pattern is displayed by each pair of oscillators within the network
(NS, PS, GS, LS, see left bottom panel).

to better understand which are the conditions for the non trivial distribution of synchronizations
to appear by analyzing the interaction of the nodes dynamics and the topological properties of
the networks in which they are embedded. Hence, a question arises: What are the conditions
that are suitable for coexistent synchronization patterns in a network?

7.3 Consistency of synchronizations

The heterogeneous synchronization motifs that emerge in complex networks are an excellent
probe to detect functional connectivity between the oscillators in the network. Besides, the
stability analysis of these motifs allows to identify synchronized states that show up recurrently
even when initial conditions change and, thus, become an invariant feature of the dynamics of
the network. Therefore in this section we study which are the conditions for which the same
synchronization patterns persist in time for varying initial conditions.
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Figure 7.2: Dependence of the coexistence of synchronization patterns on the Lya-
punov Exponents. (A) Simple weighted network formed by two pairs of peripheral nodes
connected to a central node. The couplings between peripheral node pairs are α12 = 0.05 and
α34 = 0.03. (B) For each node dynamics the curves show the mean value (computed over 100
runs with random initial conditions) of the maximum Lyapunov exponent (λ1) as a function of
the strength of coupling αc of all nodes with the central node. The lowest thin curve corresponds
to the lowest values of λ1 for node ω1 computed independently for each value of αc. This curve
crosses the zero line at αc = 0.06, as indicated by an arrow and a vertical dotted line. The
uppermost thin curve corresponds to the largest values of λ1 for node ω2. This curve crosses the
zero line at αc = 0.23, as indicated by an arrow and a vertical dotted line. (C) Histogram of the
occurrences of the synchronized patterns for each peripheral node pair in the network (1-2 and
3-4). Notice that in the interval αc ∈ [0.06, 0.23] several synchronization patterns may coexist for
the same coupling αc, depending only on the randomly chosen initial conditions. Notice that
the heterogenous pattern PS/LS is the most frequently observed. Pattern PS/GS was rare and
pattern GS/LS was never observed.
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Our first example of coexistence of synchronization is studied in a very simple weighted
network formed by two pairs of nodes connected bidirectionally with a fifth node (see Fig. 7.2A).
Eqs. (A.32) describe the dynamics for these nodes. They only differ on the frequencies, ωi, which
are the following: ω1 = 0.930, ω2 = 0.967, ω3 = 0.990, ω4 = 0.950, ω5 = 0.970. After fixing two
different initial synchronized states for the two couples of peripheral nodes we may change the
nature of the synchronization coexistence within the network by increasing the bidirectional
coupling αc with the central node. Notice that we change the synchronization states without
changing α1,2 and α3,4. Moreover, the cascade of coexistence of synchronized states in terms of
αc may be tracked numerically by considering in detail the evolution of the Conditional Lyapunov
Exponents (LEs, λ1ωi) [Boccaletti et al., 2002; Moskalenko et al., 2012] when αc changes (see
Fig. 7.2B and Appendix B.1.1). LEs are a good indicator for the convergence or divergence of
two infinitesimally separated trajectories of a dynamical system in the phase space. Here we will
use LEs to estimate the rate of convergence or divergence of the trajectories of the synchronized
elements starting from the trajectory defined by 1 coupled element (ω1 in Figs. 7.2, 7.4).

Figure 7.2B shows that, in terms of αc, three different regions may be defined for the 5
(realization-averaged) largest LEs λ1ωi .

• In the first region (0 < αc < 0.06) all the largest LEs are positive. The pair 1-2 is in
PS (α1,2 = 0.05), whereas 3-4 is NS (α3,4 = 0.03). When increasing αc in this region,
peripheral nodes become PS with the central node until the first 0 crossing of λ1ωi (light
red line) defines the onset for GS for pair 1-2 and PS for 3-4 (vertical dashed line, first
arrow, αc = 0.07).

• The second region (0.07 < αc < 0.23, in between dashed lines) sets a cascade of coexistence
of synchronization regimes, i.e., successive 0 crossings of LEs determine the onset of GS
and LS between the nodes: αc = 0.14 defines the onset of LS between oscillators 1-2 while
3-4 remain PS. αc = 0.16 marks the subsequent GS onset between oscillators 3-4 while
maintaining oscillators 1-2 in LS.

• In the third region, after αc = 0.23, there is the onset of LS for the whole network.

Figure 7.2C shows the histogram of the occurrence of each pair of synchronized states between
nodes 1 and 2 or 3 and 4, computed using CC and PLV (see Appendix B): in the coexisting
region, there exists extended αc values for which pairs 1-2 and 3-4 are, simultaneously, in two
different synchronized regimes, e.g. 1-2 are in LS meanwhile nodes 3-4 are in PS. Therefore, two
synchronized states can coexist in the network.

The relationship between the LEs exponents of this small network system and the statistical
occurrence of synchronizations allows to show that the synchronization patterns obtained are
stable and robust against perturbations. In order to prove so we have perturbed different nodes
and tracked the evolution of the amplitude and phase differences. Figure 7.3A,B shows these
time evolutions. In the coexistence regime, when the PS/LS situation is dominant (αc = 0.13),
the stable synchronized dynamics forces the pair 1-2 (in LS) to return to its bounded amplitude
difference when perturbing node ω1, whereas phase differences suffer an abrupt change but do not
increase for both pairs 1-2 and 3-4. Such characteristic proofs crucial for the system’s stability.
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Figure 7.3: Robustness against perturbations. (A) We perform perturbations on node
ω1 (P1), node ω3 (P3) and node ω5 (P5) so as to track the amplitude difference of the two
pairs of peripheral nodes. In this regard the amplitude difference is kept bounded for the
two peripheral nodes, which are in LS (pair 1-2) and PS (pair 3-4), respectively (α1,2 = 0.05,
α3,4 = 0.03, αc = 0.13). Notice the divergence in amplitude and phase evolution depending
on the perturbation site, indicating that the system is globally connected and senses small
perturbations. (B) The phase difference suffers a sudden increase but is also kept constant in
time when perturbing the same nodes as in caption A.

Besides, perturbations in all sites of the network are sensed by all nodes, as it can be seen from
the distinctive post-perturbation time evolutions of both amplitude and phase differences. This
shows that pairs do not evolve as isolated entities.

The cascade of 0 crossings of the LEs in terms of αc can be expanded or squeezed by increasing
or decreasing the symmetries of the system. For a completely symmetrical system, i.e., equal
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governing equations for all the nodes in a symmetric network, there are abrupt transitions to
synchrony [Leyva et al., 2012], without coexistence. Symmetry can be broken in a controlled
way by means of a parameter governing the dynamics (e.g. oscillatory frequency), a parameter
responsible for the topological characteristics of the network (e.g., clustering) or both features.
In such scenarios different motifs of synchronized dynamics may show up, but they are restricted
to a tiny region of the parameter space and, thus, appear to be spurious.

Now we study how symmetry, in terms of the heterogeneity of the coupling values αij ,
determines the coexistence region in the previous small network and its associated consistency.
Figure 7.4A shows the motif studied previously, but with different coupling strengths between
peripheral nodes; α1,2 is now one order of magnitude smaller than α3,4 (see caption of Fig. 7.4).
Again, we have tracked the evolution of the LEs in this case for increasing α values.
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Figure 7.4: Consistency of the coexistence of synchronizations. (A) Same network of
Fig. 7.2A with coupling α3,4 = 0.20 for node pair (3,4). For each node dynamics the curves show
the mean value of the maximum Lyapunov exponent (λ1) as a function of coupling strength αc
(see Fig. 7.2B). The histogram shows the relative frequency of the synchronization patterns for
selected values of αc (αc = 0.04, αc = 0.18 indicated by the arrows). GS: general synchronization;
CS: complete synchronization; LS: lag synchronization; PS: phase synchronization; NS: no
synchronization (not shown in the histograms). (B) Homogeneous hub network with all couplings
weighted by αc. The maximum Lyapunov exponent curves for each node dynamics are similar
and the interval of αc for coexistence of synchronization patterns is small. The histogram shows
the distribution of the synchronization patterns for αc = 0.18. (C) All-to-all network in which
all couplings are weighted by αc. The interval for coexistence of synchronization patterns is
also small and occurs for smaller values of αc. The histogram shows the distribution of the
synchronization patterns for αc = 0.04.

Firstly, for αc = 0 nodes 1-2 are in PS meanwhile nodes 3-4 are in GS – i.e. a coexistence
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situation –. As it can be seen in Fig. 7.4A, for different initial conditions 0 crossings of LEs appear
along an extended αc value region. In this case, the coexistence region spans from αc = 0 to
αc = 0.20. The third panel in Fig. 7.4A shows a plot of the relative frequency of synchronizations
found for each pair of nodes in the small motif for all the realizations of the initial conditions
performed and for αc = 0.04 or αc = 0.18. Consistently, each pair of nodes lies in the same
synchronization state for any of the imposed initial conditions for the value αc = 0.04 , whereas
for αc = 0.18 some pairs display two or more synchronization patterns (NS proportion not shown).
Consequently, we define consistency as the capacity of a network to display the same coexistence
pattern regardless of the initial conditions, as with αc = 0.04.

Figure 7.4B shows a non symmetric network, in terms of degree, with homogeneous coupling
strengths αc. Such relay configuration is less prone to synchronize for small coupling strengths
and, therefore, larger αc values are required to set synchronized states (see inset αc = 0.18).
However, the coexistence region is also narrow and the LEs randomly cross the 0 value, which
implies that the consistency will be low. This is shown in Fig. 7.4B lower right panel, in which
the realizations of the initial conditions do not lead to the same synchronization dynamics.

Figure 7.4C shows an all-to-all small network in which all edges are weighted by the control
parameter αc. In this case the network topology is more symmetrical but the imposed distribution
of natural frequencies of the oscillators ωi allows for coexistence of synchronization – as it breaks
the symmetry of the network –. Besides, the αc range for which coexistence exists is narrower
with respect to the previous studied motifs. This reduction of the area of coexistence has
implications in the consistency of synchronizations: 0 crossings of LEs are randomly distributed
in a tiny range of αc and, so, coupled pairs in the network do not consistently lay in the same
synchronized state for different initial conditions (see Fig. 7.4B right panel).

Overall, by gathering the results of the coexistence and the consistency phenomena, we
show that network symmetries govern the synchronization dynamics emerging from a system
of coupled dynamical units [Nicosia et al., 2013]. In this regard, clusters of synchronizations
dynamically emerge thanks to symmetry breaking (with respect to the topology, the system
parameter values or both) and the statistics of the synchronization dynamics strongly depend on
the type of symmetry breaking.

We now define synchronization clusters considering characteristic functional relationships
between the coupled elements. Thus, by labeling each of the functional relationships (NS,
PS, GS, LS, CS) one can have a better characterization of the global behavior of the system.
Added to this, we have shown that there is a dependence of the statistics of coexistence on
the underlying network. Therefore, when extracting functional networks from the statistics of
synchronization,we will get the most consistent structural sub-network. The less consistent
sub-networks, even though they can be coupled, may show up as disconnected functionally.
We will use this feature to infer the characteristics of structural networks from reconstructed
functional networks.

7.4 Construction of consistent networks

A fundamental question in network science is the relationship between network dynamics
and network structure. In the past, studies of the synchronization patterns in networks of
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oscillators were mainly aimed at describing the conditions associated with the emergence of
specific synchronization patterns in all the nodes [Chavez et al., 2005]. In the particular case of
complex networks of coupled nonlinear oscillators, recent studies have provided evidence that it
is possible to identify an appropriate interaction regime that allows to collect measured data
to infer the underlying network structure based on time-series statistical similarity analysis
[Tirabassi et al., 2015] or connectivity stability analysis [Lin et al., 2015]. In real-life systems,
such as ecological networks [Blasius et al., 1999], brain oscillations [Robinson et al., 1998; Hill
and Villa, 1997; Cabessa and Villa, 2014] or climate interactions [Deza et al., 2015], various types
of complex synchronized dynamics have been observed.

Functional networks can be constructed by establishing relationships between their (coupled)
elements. One of the most prominent dynamical features which functionally relates two oscillators
is synchronization, which may take the aforementioned forms (PS, GS, LS, CS) among others
not studied in here. Thus, synchronization is a probe for assessing a (non) trivial relationship
between two dynamical systems. Here we want to show how the statistics of coexistence may
reveal a functional organization of synchronization within a network and, therefore, may help to
construct functional networks.
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Figure 7.5: Construction of functional networks. (A) A structural network of modules is
constructed by linking a module A, corresponding to a peripherally coupled network (Fig. 7.4A),
with a module C, corresponding to an all-to-all network (Fig. 7.4C), by means of node pair (4,5)
with coupling α4,5 = 0.03 and by linking the module C with a module B, corresponding to an
homogeneous hub network (Fig. 7.4B), by means of node pair (9,10) with coupling α9,10 = 0.04.
All other couplings are set equal to αc = 0.04. (B) Histogram of the relative frequency of the
synchronization patterns for all intramodule and for the two intermodule node pairs. Notice that
the consistency of synchronization patterns in modules B and C is different from the consistency
observed in isolated networks with the same topology corresponding to modules B and C (see
Fig. 7.4B,C). NS not shown in the histograms. (C) Functional networks can de determined on
the basis of various threshold levels of consistency (between 20% and 60%) for each type of
synchronization pattern.
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Firstly, we take the motifs studied in Fig. 7.4 and construct a network by connecting these
groups of nodes through their hubs (or most connected nodes). The resulting graph is shown
in Fig. 7.5A, where each of the motifs is labeled as A, B or C. The intra-motif weights are the
same as the selected in Fig. 7.4A, B, C, respectively, whereas the inter-hub links weights are
shown in caption in Fig. 7.5. Figure 7.5B shows the statistics of synchronization occurrence in
this network: cluster A shows a very robust consistency of its synchronizations whereas clusters
B and C are much less consistent, i.e., they display a wide repertoire of different synchronization
motifs depending on the initial conditions. However, as it can be noticed when comparing
Fig. 7.4A,B,C and Fig. 7.5B consistency panels, the dynamics of synchronization is altered when
the three motifs are embedded in a larger network. This fact is a signature for assessing that
the dynamics of coexistence in the large network is not just the simple juxtaposition of the
dynamics of its composite motifs. We now want to perform the task of constructing the functional
networks arising from the synchronization patterns in this network. For such purpose we obviate
the structural network and we make use of the statistical occurrence of each synchronization
among pairs of nodes of the system. Indeed, thanks to the discrimination between each type of
synchronization – as each one entails different types of functional relationships between nodes – we
can better characterize the most salient synchronization motifs between the nodes. If we establish
thresholds in the statistical occurrence for each pairwise synchronization, we can extract the links
which, statistically, appear the most and so are more consistent. Thus, functional networks may
be constructed by taking into account the consistency of each type of synchronization among
pairs of nodes. Figure 7.5C shows the reconstruction of the motif-based network depending on
different levels of consistency for each synchronization pattern. Each thresholded reconstruction
takes into account links which show the same synchronization a number of times equal or larger
than the consistency threshold. Accordingly, the reconstructed functional network coincides with
the most consistent motif. This result may seem trivial as the conditions imposed in the network
lead to the desired results. However, they apply to (larger) networks of coupled chaotic units.

We now take the SF prototypical network shown in Fig 7.1 and perform topological changes by
taking clustering as a control parameter. Figure 7.6A shows the fraction of connected synchronized
pairs in the SF networks whose consistency is above a certain threshold for increasing clustering.
Noticeably, only low clustering networks have edges whose synchronization is consistent above a
50% of the realizations. Therefore, only low clustering SF networks are heterogeneous enough
to hold consistent synchronized dynamics. Figure 7.6B shows an example of a very consistent
realization-averaged SF network with clustering C = 0.15 and a consistency map displaying the
statistics of synchronization for each pair of nodes in the network. According to the statistics,
the realization-averaged colors in the network mostly coincide with pure synchronization colors.
Fig. 7.6C shows a low consistency realization-averaged SF with clustering C = 0.40. The
consistency map, performed for every pair of nodes in this network, shows no pattern compared
to the case in panel B. Such patterns denote that the functional organization of these networks
is robust in the first case, whereas for the network with larger clustering randomized functional
relationships are established among pairs of (connected) nodes. We analyze how many of the
reconstructed edges are true or false positives, i.e., we quantify the matching between the
structural and the functional network. We perform the following calculation:
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Figure 7.6: Relationship between structural and functional networks for increasing
clustering. (A) Ratio of consistent pairs for increasing clustering and increasing consistency
thresholds (Thresh). The ratio of consistent edges displays a maximum for low clustering values,
showing the dependence of this feature on the symmetries of the networks. (B) Low clustering
networks (C = 0.15) show consistent synchronization motifs, as shown in the synchronization-
averaged network – which shows almost pure synchronization colors –, and in the realization
vs. pair synchronization map – which displays patterns of synchronization –. (C) For larger
clustering networks (C = 0.40), the synchronization-averaged networks show a single color and no
patterns can be discerned in the realization vs pair synchronization map. (D) The combination of
coexistence and its consistency allows to reconstruct functional networks that embed information
of the underlying structural network. The ratio of true and false positive edges for the same
networks as in panel A shows that low clustering structural networks can be reconstructed more
reliably than higher clustering structural networks. In this regard, heterogeneous networks are
more consistent in the synchronization dynamics and so may be easily found when extracting
functional networks.

ntrue+ = ncorrect
ntotstruct

(7.3)

nfalse+ = nincorrect
nall−to−all − ntotstruct

(7.4)

where ntotstruct is the number of edges in the structural network, nall−to−all is the number of edges
in an equivalent all-to-all network, ncorrect is the number of reconstructed edges that belong to
the structural network, nincorrect is the number of reconstructed edges that do not belong to the
structural network, ntrue+ is the ratio of reconstructed edges that belong to the structural network
and nfalse+ is the ratio of reconstructed edges that do not belong to the structural network.
In other words, ntrue+ computes how many of the structural edges have been reconstructed,
whereas nfalse+ computes how many of the non-structural edges have been reconstructed. Note
that the sum ntrue+ + nfalse+ is not equal to 1 necessarily. In this sense, a reconstruction with
high ntrue+ and high nfalse+ indicates that the reconstructed network is close to an all-to-all
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network, i.e., all structural edges can be retrieved but the number of non structural edges is also
high, implying a bad matching between structure and function. Figure 7.6B indicates that for
clusterings below C = 0.15 the matching between structural and functional network is high for a
consistency threshold of about 50%, whereas the reconstruction for higher clusterings provides
either a high ratio of false positives (close to all-to-all functional network) or non-consistent
networks. Interestingly, the system faces a transition point at a relatively low clustering value,
C ' 0.21, which prevents the reconstruction of functional networks at higher clusterings. Indeed,
as the heterogeneity in the structural network is progressively lost due to higher clustering, the
system loses consistency in the synchronization motifs and so no robust functional relationships
can be extracted.

The computation of true and false positives is not possible in many natural systems, e.g. the
brain or signaling networks, where no exact knowledge of the anatomical structure is available.
However, we raise the hypothesis that our results might unveil a potential relationship between
the two if the statistics of coexistence are robust, i.e., the consistency of coexistence is high.

7.5 Conclusions

The coexistence of synchronizations can be regarded as a phenomenon in which a variety of
complex functional relationships are established between the dynamical evolutions of some
coupled elements. Here we have shown that such scenario emerges in the route towards an
all-synchronized network, where trivial correlations are established among oscillators. Besides,
the heterogeneity in the number of node contacts and coupling strengths allows for a broad
distribution of synchronization motifs. Thus, weighted networks show much more coexistence
than unweighted networks.

What is more, some networks can robustly display the same coexistence patterns regardless
of the initial conditions imposed. Such feature allows to better characterize the stable functional
relationships established in the network. Moreover, this feature is at the basis of functional
network construction. We argue that our method allows a better construction in terms of the
statistics of synchronization motifs because we consider different coexistent synchronization
states to characterize the functional network. Besides, we have shown that the matching between
structural and functional networks is high when applying a coexistence-based reconstruction.

The consistency of three prototypical networks shown in Fig. 7.1 is diverse: while SF networks
with low clustering show high consistency, SW and RN networks do not display this feature
because in SW or RN networks the number of node contacts fluctuates less. Moreover, if
our conclusions are extrapolated to real networks, we would expect that the reconstruction of
functional networks results in heterogeneous (non-symmetrical) networks because they are more
consistent. More symmetric or homogeneous networks will appear as inconsistent if coupling is
small: only when coupling is large enough to force global synchronization symmetrical networks
will show up in the reconstructed functional networks.

On top of that, the consistency of the coexistence is a consequence of the heterogeneity of
the network: the dynamical clusters consistently lay in the same synchronization manifold for
any of the initial conditions imposed as the synchronized trajectories are always dominated
by their most connected neighbor. This allows to construct robust functional networks that
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have reminiscent characteristics of the structural network for increasing values of the thresholds
imposed. Consistent dynamics eventually depends on the heterogeneity characteristics of the
structural networks such that selected network topologies, for instance in brain dynamics, may
have been retrieved much more often than others, as reported elsewhere [Eguíluz et al., 2005;
Bullmore and Sporns, 2009].



Chapter 8

Synchronization-based computation
through networks of coupled oscillators

“No, I’m not interested in developing a powerful brain. All
I’m after is just a mediocre brain, something like the Presi-
dent of the American Telephone and Telegraph Company."

Alan Turing

The mesoscopic activity of the brain is strongly dynamical and noisy, while at the same time
exhibits remarkable computational capabilities. In previous chapters we have shown that networks
of neural mass models, which represent the mesoscopic activity of cortical columns, display
complex patterns of synchronization depending on the heterogeneity of the network. Besides,
we have studied the conditions which make such synchronization patterns stable and robust.
Therefore, in order to examine how complex dynamics may be involved in the computational
capabilities of the brain, here we show that the patterns of synchronized oscillations displayed
by networks of neural mass models may be used as substrates for generalized Boolean-like
computations. Our results reveal that a neural mass network may process different combinations
of dynamical inputs as different logical operations or combinations of them. This dynamical
feature of the network allows it to process complex inputs in a very sophisticated manner. For
instance, latency in the synchronization dynamics results in a hysteresis effect that may be
related with memory, or also the presence of perturbations at different sites of the network alters
the dynamics but keeps the synchronization state stable. In order to validate our hypotheses,
these results are reproduced experimentally with electronic circuits of coupled Chua oscillators,
showing the robustness of this kind of computation to the intrinsic noise and parameter mismatch
of the coupled oscillators. We also show that the information-processing capabilities of coupled
oscillations go beyond the simple juxtaposition of logic gates.

8.1 Small networks of neural mass oscillators

The oscillatory activity exhibited by different brain signals – e.g. LFP, EEG or MEG – results
from the collective synchronization of the firings of large populations of neurons [Iglesias et al.,

81



82 8.1. SMALL NETWORKS OF NEURAL MASS OSCILLATORS

2005]. Besides, the processing of different external inputs requires the recruitment of several
brain areas in order to provide adequate responses to adaptive or cognitive processes [Buzsáki and
Draguhn, 2004]. Therefore, at this large brain scale synchronization also plays an important role,
for instance, in coordinating and processing information at different spatiotemporal scales [Varela
et al., 2001], in the selectivity in visual response [Womelsdorf et al., 2006] or in the computation
capabilities of oscillatory networks [Engel et al., 2001a].

The idea of the implementation of logic calculus by the activity microscopic neural populations
was first proposed by McCulloch and Pitts [1943]. In their work, the neural code was treated as
a binary system, where firing is regarded as “1”, whereas no firing is treated as “0”. However,
neurons may coordinate their firing in response to inputs and, therefore, their synchronized states
may be also used as a substrate for a neurocomputing paradigm where their phase relationships
determine their logic state [Hoppensteadt and Izhikevich, 2000]. Hence, the association of logical
states to synchronized dynamics leads to the implementation of Boolean operations that may
cover all logic computations.

Here we bring the notion of logic calculus to the level of synchronized neuronal oscillations.
Specifically, we show that networks of coupled neural mass oscillators, which display complex
heterogeneous synchronization patterns (see Chapters 6 and 7), may process inputs in a Boolean-
like manner. However, far from suggesting that the processing capacity of the brain is the result
of a more or less complex Boolean circuitry, we postulate that it results from its very complex
collective dynamics in which synchronization may play a very relevant role [Buzsáki and Draguhn,
2004]. In this sense, more complex scenarios can be proposed: other types of non-Boolean logic,
fuzzy logic, or even multiple-state logic.

As shown in Chapter 6 the (oscillatory) input received by two neural mass oscillators [Jansen
et al., 1993] within a network may determine their state of synchronization [Malagarriga et al.,
2015b] (see Fig. 8.1 and Eqs. A.6, A.7 and A.8). Thus, labeling arbitrarily the input signals as “1”
- when they are present -and “0” - when they are not present - and the synchronization state of
the two oscillators as “1” (“0”) when the oscillators are (not) synchronized, we can interpret the
dynamical response of these two nodes to their inputs in terms of binary logic gates. By changing
the characteristics of the inputs and the excitatory/inhibitory coupling strengths between the
two oscillators, αij/βij , several types of binary logic gates may be created.

Before studying large networks of coupled neural mass models we first study a simpler
situation formed only by two bidirectionally coupled Jansen oscillators (See Figure 8.1 and
Table 8.1). In this configuration, each oscillator (A1 and A2 from now on) receives an external
oscillatory and stochastic input, i.e. Input A1 (δA1 , fA1 , ξA1) and Input A2 (δA2 , fA2 , ξA2), with
δAi , fAi and ξAi being the amplitude, frequency and noise amplitude of the inputs that add to the
other pulse density contributions (see Appendix A.1.1). The output signal of each oscillator is the
difference between the Excitatory Postsynaptic Potential (EPSP) and the Inhibitory Postsynaptic
Potential acting upon the pyramidal population (yi(t) = yie(t)− yii(t)) (see triangles in Figure 8.1
and the Appendix A.1.1). The synchronization state of the output of the two elements that form
the gate, yi and yj , determines the dynamical response of the pair to the input signal. Other
characteristics of the response may also inform about the nature of the inputs received by the
oscillators. For instance, it has been shown [Spiegler et al., 2011a; Huang et al., 2011] that the
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Figure 8.1: Implementation of binary logic gates formed by pairwise connected
cortical columns. (A) Cartoon depicting two connected cortical columns i and j. Both
columns are bidirectionally coupled through both excitatory-excitatory (black solid arrows) and
inhibitory-excitatory (blue solid lines) contacts. The intensity of such connections is weighted
by αij=αji and βij=βji coupling strengths, respectively. The pyramidal population within each
cortical column additionally receives a constant background pulse density p̄i, an oscillatory input
defined by an amplitude δi and a frequency f i and a stochastic input contribution (see Eq. (A.6)).
The characteristics of these inputs define states which feed this binary logic gate. The outcoming
signals, yi = yie − yii, of the two columns may (C(y1, y2) ≈ 1) or may not (C(y1, y2) ≈ 0) be
correlated. The correlation value of the timetraces of the two nodes defines the output state of
the gate for the given input stimulation (see Table 8.2). Intermediate values (C(y1, y2) ≈ 0.5)
are taken as “wrong” implementations of the gates. (B) Several binary logic gates can be
obtained from the system shown in panel A if the appropriate combination of parameters and
input protocols are selected (see Table 8.1). Correlated signals, in the form of PS, LS or CS,
result in a “1” state of synchronization, however, not correlated signals are interpreted as a “0”
state of synchronization. The time traces of the oscillators and the state resulting from their
synchronization are shown for all the binary combinations of input protocols (00, 01, 10 and 11)
for several logic gates (AND, NAND, NOR, OR, XNOR and XOR). The last column shows the
return to the initial state. Y axis denotes the amplitude of the PSP (yi = yie − yii).

driving of Jansen oscillators by a periodic input may result in chaotic, quasi-periodic or periodic
dynamical evolutions. So, taken as a whole, both the synchronization state of two oscillators and
their dynamical state (e.g. chaotic or oscillatory), inform about the characteristics of the input
received by the gate. As mentioned above, we have assigned arbitrarily the “0” and “1” values to
the absence of synchronization and its presence, respectively.

With all these ingredients we have constructed truth tables based on synchronized states
as shown in Figure 8.1B. The time traces show the online implementation of AND, NAND,
NOR, OR, XNOR and XOR gates that operate in different synchronization regimes. To obtain
them, different input protocols and coupling strength relations between the two nodes are needed
(see Table 8.1). However, a single pair of connected oscillators with fixed coupling strengths
αij/βij may organize its response in different ways when the input characteristics (frequency,
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Table 8.1: Coupling parameter values. Values of the coupling parameters and input
stimulation protocols for inputs labeled as “1” in the implementation of the binary logic gates
shown in Figure 8.1. Inputs labeled as “0” have δi = 0.

Logic gates
Parameters AND NAND NOR OR XNOR XOR
αA1A2 2.0 27.0 5.0 2.0 27.0 2.0
βA1A2 8.0 5.0 1.0 8.0 5.0 8.0
pA1 (Hz) 250 150 155 250 155 250
pA2 (Hz) 250 150 155 250 155 250
δA1 (Hz) 120 150 65 250 250 250
δA2 (Hz) 120 150 65 250 250 250
fA1 (Hz) 10.8 8.5 8.5 8.5 8.5 9.5
fA2 (Hz) 10.8 8.5 8.5 8.5 8.5 8.5
ξA1 (Hz) 0.0 0.0 1000 0.0 1000 0.0
ξA2 (Hz) 0.0 0.0 1000 0.0 1000 0.0

Table 8.2: Synchronization errors. Synchronization errors and phase synchronization indices
for each logic gate implemented in Figure 8.1.

Inputs AND NAND NOR OR XNOR XOR
A1 A2 γ ε (mV) Out γ ε (mV) Out γ ε (mV) Out γ ε (mV) Out γ ε (mV) Out γ ε (mV) Out
0 0 0.3 0.5 0 0.98 0.001 1 0.99 0.001 1 0.31 0.75 0 0.99 0.001 1 0.19 0.5 0
0 1 0.2 0.7 0 0.97 0.003 1 0.25 0.64 0 0.98 0.42 1 0.23 0.54 0 0.95 0.3 1
1 0 0.1 0.602 0 0.98 0.001 1 0.27 0.73 0 0.97 0.45 1 0.14 0.75 0 0.98 0.45 1
1 1 0.91 0.002 1 0.5 0.3 0 0.63 0.47 0 0.98 0.05 1 0.91 0.2 1 0.24 0.41 0

amplitude, etc.) change (e.g. see AND, OR, XOR gates in Table 8.1). So the same brain circuit
represented by a single pair of oscillators may behave as different logic gates depending of the
inputs they receive. This ability to classify the response of the system in different ways depending
of the inputs received results in a higher flexibility for the information processing capacity of the
network [Arenas et al., 2008]. The network is not a static circuit that computes passively the
response to the inputs but a whole collection of circuits (based in the logic gates described here)
that reconfigures itself depending of the input received. This type of complex networks of logic
gates which reconfigure themselves dynamically to adapt its response to specific inputs has been
found in other natural systems as the signaling networks in eukaryotic cells [Domedel-Puig et al.,
2011; Rué et al., 2012]. As said above, we do not claim, however, that the brain is a circuit of
Boolean gates but a highly complex dynamical system which processes information in a very
sophisticated manner at the mesoscale.

Another trait of these logic gate implementations is related with the complex dynamical
evolutions that the neural mass oscillators may show. For instance, for chaotic states, time
evolutions depend strongly on the initial conditions. This feature introduces a very strong link
between the dynamical evolution of one oscillator and its input. Resulting from this, we argue
that our implementation may possess reversible logic characteristics [Bennett, 1973], as it allows



CHAPTER 8. SYNCHRONIZATION-BASED COMPUTATION THROUGH... 85

to recognize from the outcoming signals which of the two elements in the logic gate is receiving
an input. The details of such paradigm are however out of the scope of this Thesis.

The extension of the previous results to a network of interacting cortical columns leads to
spatially distributed computation. In this case, each node in the network receives inputs that
determine their synchronization state with other network nodes, following one of the implemented
logic gates shown in Figure 8.1B. In that way, different regions of the network may act as gates
that process distributed inputs, enriching the processing capabilities of the network even further.
In this Chapter, we present a first step towards analyzing these capabilities by considering only
relatively simple network motifs. These motifs that behave as well established logic gates in
isolation, change their behavior when operating within larger networks, producing complex or
even unexpected dynamics, as shown in Figure 8.2. The whole network processes a whole set of
its inputs following complex multidimensional logic rules. Figure 8.2A shows a network of five

Figure 8.2: Implementation of two logic gates embedded in a network of coupled
cortical units. (A) Cartoon depicting the network of coupled units. Nodes A1 and A2
implement a NOR gate while nodes B1 and B2 an AND gate. (B) Time traces of nodes B1 and
B2 implementing an AND gate. Y axis shows the amplitude of the PSP (yi = yie − yii). The
implementation the AND gate in B1 and B2 is not altered by the state of synchronization of
neighboring pairs, i.e. A1 and A2. However, the dynamics of B1 and B2 are indeed altered, as
time traces are no longer the same for each of the four realizations. In fact, such changes in the
dynamics may produce long transients before falling into the corresponding synchronized regime
(see third pair of time traces between 30 and 35 seconds). The last column shows the return to
the initial state of synchronization. (C) In some cases, when tuning the input, the dynamics
of the oscillators no longer allows to implement the “desired” logic gates. For an A1 and A2
(constant) input configuration of 00, the implementation of an AND gate in nodes B1 and B2
“fails”. Another type of “failure”, observed in the second example of timetraces in panel C, is the
impossibility to return to the initial state of (de)synchronization, shown in the last column. This
results in a history-dependent logic gate.
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interacting cortical columns that implement two logic gates: NOR (with CS synchronization)
and AND (with PS synchronization). Each peripheral pair of columns evolves independently
of the other, even though their dynamics are influenced by the behavior of the whole network.
Figure 8.2B shows the truth table for the response of the AND gate (columns B1 and B2), while
columns A1 and A2, which implement the NOR gate, receive different inputs. In this case it is
worth mentioning that all four time traces for the AND implementation, which are symmetric
realizations in terms of initial conditions, display distinctive dynamics depending on the A1 and
A2 inputs. However, they do not lose the capacity of remaining synchronized/non-synchronized.
Nevertheless, some realizations display states of long transient dynamics (see the "0” return
state in all pairs of time traces) which are indeed not beneficial for fast brain computation.
This long transient dynamics can be related with the ability to discern between the different
input scenarios in terms of the different length of the transient dynamical evolutions. Such type
of coding may be related with brain functions as proposed in Rabinovich and Varona [2011].
Moreover, the network implementation of logic gates is stable in terms of synchronization and
arises from interdependent dynamics.

Despite being a robust dynamical feature, logic gate implementation strongly depends on the
type of input and the coupling strength ranges between columns. In this regard, Figure 8.2C
shows two situations in which there is a non-Boolean output configuration of an AND gate (here
δA1 = δA2 = 300 Hz, while all other input characteristics are the same as those in Table 8.3).
B1 and B2 both receive the standard oscillatory input protocol. In the first pair of time traces
shown, the output displayed by nodes B1 and B2 does not show correlated dynamics (when B1

and B2 receive “1” inputs) as expected for an AND implementation. In turn, the second pair
of time traces shows how, after displaying an AND output for the initial four pairs of input
states, the subsequent return to the first output configuration is no longer possible. Such history
dependent behavior entails the impossibility, for these conditions, of a forward implementation
of the previous logic gate (AND) but results in the implementation of a state- (or history-)
dependent one. These situations result only for specific input patterns. However, the response to
other inputs may reproduce standard logic gates.

Table 8.3: Parameter values for NOR and AND gates. Values of the parameters used
in the implementation of the NOR and AND logic gates appearing in Figure 8.2.

NOR and AND gates
Parameters NOR AND

αij 5.0 2.0
βij 1.0 8.0

αiC = αjC 0.01 2.0
βiC = βjC 0.0 1.7
pi = pj (Hz) 155 250
pC (Hz) 250

δi = δj (Hz) 65 191
fi = fj (Hz) 8.5 10.8

ξi = ξj = ξC (Hz) 0.0 0.0
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Figure 8.3: Electronic implementation of the Chua circuit. Two TL082 operational
amplifiers are the core of the non-linear part of the circuit which follows the function given in
Eq. (A.29). The input signal (0/1) is introduced through the capacitor C1, while the output of
the circuit is the voltage (vB) of both C2 and L1.

These results can also be obtained experimentally by means of electronic circuits (see Fig. 8.3).
We have used Chua oscillators [Madan, 1993] because they show several dynamic regimes, including
chaos (see Appendix A.5.1).

The experimental implementation of small networks was conducted by the researchers in the
lab of Prof. Javier Martin Buldú in the Rey Juan Carlos University. These experiments prove
that the results considered in the previous section are robust against the parameter mismatch of
electronic circuits and the intrinsic noise of real systems. Chaotic systems, such as Chua circuits,
may display different kinds of synchronization that can be tuned through the coupling strength
between the networked elements and the particular dynamics of input signals [Arenas et al.,
2008]. Even though the nature of the oscillators is different from those considered theoretically
with neural mass models, these systems also have the ability to process information in a similar
way. The experimental researchers designed and implemented experimentally several logic gates
in the way described in Fig. 8.1B. Nevertheless, in what follows, we are going to focus on the
description and integration of a XNOR and AND gates in a network, the former based on complete
synchronization and the latter on phase synchronization. Figure 8.4A shows schematically the
system integrating the outputs of a XNOR and AND gate. This circuit represents a network
similar to that studied in Figure 8.2. It consists of an integrated circuit formed by five Chua
oscillators, two of them implementing a XNOR gate (nodes A1 and A2), other two forming an
AND gate (nodes B1 and B2) and the fifth Chua circuit (node C) integrating the output of both
gates. The input of each dynamical unit can be either “1” (when a complex signal is injected
into the node) and “0” (in the absence of an input signal). In order to assess the emergence
of the synchronized time evolutions we have computed the synchronization errors of the two
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Figure 8.4: Experimental implementation of integrated logic gates. (A) Qualitative
description of the experimental setup: Nodes A1 and A2 form a XNOR gate (in a CS regime) while
nodes B1 and B2 implement an AND gate (in a PS regime). The output of the two sync-based
gates is integrated through node C. (B) Time series of the Chua oscillators implementing the
XNOR gate for low and high coupling with node C. The upper time trace, obtained for low
values of the coupling with node C (Rint = 100 kΩ), shows the different outputs of the truth
table of the XNOR gate (see Table 8.4). The bottom time trace, obtained for a higher coupling
with node C (Rint = 25 kΩ), does not show a XNOR gate implementation. (C) Time series of the
Chua oscillators implementing the AND gate for low and high coupling with node C. The upper
time trace, obtained for low values of the coupling (Rint = 100 kΩ) with node C, corresponds to
the different outputs of the truth table of the AND gate (see Table 8.4). In the bottom time
trace, coupling with node C is increased (Rint = 25 kΩ), and the AND gate also begins to fail.

pairs of nodes that implement the logic gates (see Eq. (B.7)). Such errors allow us the determine
a proper threshold to define each synchronized state, and thus each output state, in the truth
tables of the logic gates. Time traces and the corresponding truth table for the XNOR gate are
shown in Fig. 8.4B, while synchronization errors determining the gate’s output are summarized
in Table 8.4.

The AND gate is based on phase synchronization, and it is obtained by a fine tuning of the
input and coupling resistances. In this case, we must reach a high phase synchronization but
preventing complete synchronization, the latter leading to unavoidable (i.e., trivial) matching of
the phases of the oscillators. To guarantee that we have phase, and not complete, synchronization
we checked at the same time the synchronization error ε and the phase synchronization index γ
(see Eq. (B.5)). A combination of a high ε and a high γ is the signature of phase synchronization
between the two units forming the gate. Figure 8.4C shows the time series and the corresponding
truth table for the AND gate. Table 8.4 summarizes the values of ε and γ that lead to a successful
performance of both gates.
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Table 8.4: Synchronization errors for experimental XNOR and AND gates. Synchro-
nization errors and truth tables of the XNOR gate (with complete synchronization) and the
AND gate (with phase synchronization) embedded in a network of coupled Chua oscillators. The
thresholds to establish synchronized states are shown in Materials and Methods section.

Inputs XNOR AND
A1 A2 γ ε (V) Out γ ε (V) Out
0 0 0.991 0.085 1 0.734 0.357 0
0 1 0.750 0.641 0 0.760 0.294 0
1 0 0.885 0.449 0 0.692 0.285 0
1 1 0.994 0.039 1 0.920 0.288 1

Finally, it is worth mentioning that a tuning of the integrator resistances (see Table 8.4)
allows the proper functioning of the ensemble of gates. When the integrator resistances are
decreased (i.e. the coupling with the central node C is increased) to values close to Rint ≤ 25kΩ
the functioning of the gates is no longer possible due to their mutual interaction (see bottom
panels of Fig. 8.4B and 8.4C). Such feature was also present in the case of the Jansen oscillators,
in which increasing the coupling strength between the peripheral cortical columns and the central
node led to an unstable implementation of logic gates.

8.2 Neural mass implementation of a Flip Flop circuit

Other extended systems able to perform more complex logical operations may be implemented
by means of networks of coupled oscillators. We have constructed a Set Reset Flip Flop circuit,
which is a circuit formed by two stable states and can be used to store a bit of information. In
a flip-flop circuit the output depends on the present value of its input signals and on previous
input states, therefore implementing sequential logic [Vogels and Abbott, 2005]. This system
has two inputs (Set, S, and Reset, R) and two outputs C and C̄, which follow the truth table
shown alongside with the time traces in Fig. 8.5B. When neither S nor R receive an input the
output states are C = 0 and C̄ = 1. This output state is preserved for the following input
step, which is S = 0 and R = 1. Such feature keeps memory of the previous output state. The
following step is S = 1 and R = 0 which "flips" the output states, being C = 1 and C̄ = 0. An
undesired state is achieved when both S and R are 1, which leads to C = 0 and C̄ = 0 state.
Figure 8.5A shows the network used to implement such memory: two inputs (S and R) feed two
cortical columns A1 and B2 which in turn are connected bidirectionally with columns B1 and
A2. These two couples of columns project unidirectionally, via intermediate cortical columns I1

and I2, onto B1 and A2, respectively. The state of synchronization of nodes A1 and A2 will give
the output C, whereas the state of synchronization of nodes B1 and B2 gives C̄. Figure 8.5B
shows the online implementation of the flip-flop memory, with "flipped" output states and an
undesired C = C̄ = 0 state in which none of the pairs A1-A2 or B1-B2 are synchronized. Note
that transients affect the performance of the flip-flop implementation (see third pair of time
traces below Fig. 8.5B) but such obstacle may be dependent on initial conditions. Moreover, as
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Figure 8.5: Implementation of a flip-flop memory. (A) Cartoon depicting the network of
cortical columns that fulfill the flip-flop operational gate. S and R are cortical columns that
receive oscillatory inputs, respectively. These columns excite upstream connected columns (A1
and B2) which are bidirectionally coupled to columns A2 and B1, accordingly. The latter receive
inputs from two intermediate columns I2 and I1, respectively. In turn, these two columns receive
the output from B1 and B2 (output C̄) and A1 and A2 (output C), respectively. (B) Online
implementation of a flip-flop. The state of synchronization is preserved when inputs S = 0 and
R = 0 or S = 1 and R = 0, giving C = 0 and C̄ = 1, but "flips" when S = 0 and R = 1, giving
C = 1 and C̄ = 0 . A not desired situation is the one in which C = 0 and C̄ = 0, i.e., A1 and
A2 or B1 and B2 are not synchronized. This happens when S = 1 and R = 1, which fulfills a
flip-flop truth table. (C) Magnification of the time scale of the output signals for the sequence
of five S − R bit pairs of panel B. The full scale for each sub panel with a pair of signals is
corresponding to 5 s.

in previous implementations, each output state is characterized by distinctive time evolutions,
which, on top of memory storage, also give information about which terminal (S or R) receives
the input.

8.3 Conclusions

In order to address how information can be processed, from the perspective of synchrony, at
the mesoscopic scale we have analyzed theoretically networks of coupled neural mass oscillators
describing cortical columns. These networks use synchronization as the essential ingredient to
process the information arriving to/from each of their nodes. We have seen that by interpreting
the inputs arriving to the columns of the network as “0” or “1” and defining the output of a
binary operation in terms of the synchronized state of two columns also as “0” or “1”, several
binary logic gates can be constructed. This dependence of the synchronization level of two
columns on their stimulation has been observed experimentally, for instance, in the cat visual
cortex [Gray et al., 1989]. Interestingly, different binary logic gates constructed using the same
physiological circuitry result only from changes in the input signals received by the oscillators
(e.g. AND, OR and XOR gates in Fig. 8.1). This rich type of behavior shown by only two
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Table 8.5: Parameter values for flip-flop. Values of the parameters used in the implemen-
tation of the flip-flop operational gate shown in Fig. 8.5.

Flip-flop operational gate
Parameter Value Parameter Values
αSA1 80.0 βSA1 0.0
αA1A2 10.0 βA1A2 5.0
αRB2 10.0 βRB2 0.0
αB1B2 9.0 βB1B2 9.0
αI1A1 52.0 βI1A1 9.0
αI1A2 52.0 βI1A2 9.0
αI2B1 10.0 βI2B1 2.0
αI2B2 10.0 βI2B2 2.0
αA2I2 52.0 βA2I2 0.0
αB1I1 10.0 βB1I1 0.0

Parameter Value
pi = pj (Hz) 155
pS = pR (Hz) 57.8
pI1 = pI2 (Hz)
pA1 (Hz) 150
pA2 (Hz) 150
pB1 (Hz) 250
pB2 (Hz) 250
δS (Hz) 220
δR (Hz) 200

fS = fR (Hz) 8.5
ξS,R,Ai,Bi,Ii (Hz) 1000

coupled cortical columns may be very complex when many other columns are considered. In this
sense, the ability to analyze input signals with very different characteristics (average density of
spikes, amplitude and frequency of oscillations or noise level) is multiplied by the simple addition
of this type of binary logic gates in a network. Nevertheless, this simplistic view may become
even more sophisticated when putting the binary motifs together in a larger network. As shown
in Fig. 8.2, simply by connecting two different logic gates through a hub may result in a system
where the two gates operate in parallel independently of each other (Fig. 8.2A) or operate in a
different way (Fig. 8.2B). In this case, outputs may depend on the input of both gates at the
same time or on the history of the input states driving the nodes (see examples of both behaviors
in Fig. 8.2B). This type of dynamics, in larger networks, makes selectivity of the states richer
than just the repetition of simple binary logic gates in a network. In order to show the generality
of this feature in other networks (and also its robustness in terms of the dynamical oscillators
used to build the network) we have constructed several binary logic gates with electronic circuits
– Chua circuits – operating in a chaotic regime. We have shown experimentally that a network
built by coupling two of these gates through a hub (using the same simple motif as that studied
with neural mass models) is able to process information as expected (see Fig. 8.4). Finally, we
have shown theoretically that, by using a network of oscillators we can implement a Set Reset
Flip Flop circuit [Hahnloser et al., 2000], which is an example of another stimulus selector, in
this case, that is able to store information.

In this work, we have considered only the simplest interpretation of input and output states
(leading to Boolean logic). However, our results may be analyzed from a wider perspective,
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for instance, if we explicitly consider the degree of synchronization of the different elements
(resulting in fuzzy logic) or if we consider as possible output states as types of synchronization
(phase, generalized, lag, complete, ...) between the different elements which form the network
of oscillators. The fact that we consider only one of the different dynamical characteristics of
the system, in our case its degree of synchronization, is a coarse simplification. The dynamical
response of the network is not determined only by its degree of synchronization. For instance,
the frequencies involved in the dynamics, or the degree of excitation/inhibition segregation, may
also inform about the input stimulus characteristics. Further studies are required to analyze in
more detail these complex scenarios.
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Chapter 9

Conclusions

Neuronal networks and their dynamics are at the basis of the complex brain features such
as memory, perception, consciousness or emotions. Altogether, all these features conform the
so-called mind, the understanding of which is still eluding the scientific community [Fuster, 2003].
Different approaches to studying the brain deal with separate spatio-temporal scales, which
ultimately result in a parcelled vision of the organ and, therefore, of its capabilities [Zalesky
et al., 2010]. Within all these parcellations, the study of the brain based on the analysis of its
microscopic structures, namely neurons and glia, has been the main research since the seminal
studies from Ramón y Cajal and Golgi [Velayos-Jorge et al., 2003]. From the computational
point of view, the work by Lapicque and later Hodgkin and Huxley provided a basis for the
mathematical treatment of the dynamics emerging from the electrical activity of neurons [Hodgkin
and Huxley, 1952]. In fact, modern neuroscience still stands on the grounds established from
these mid-XXth century discoveries.

When analyzing brain activity at larger scales, population dynamics come into play: the
activity of large ensembles of neurons display rhythmic dynamics which arise from the synchronized
electrical activity of neural cells, as seen in electroencephalogram (EEG) or magnetoencephalogram
(MEG) recordings [Buzsáki and Draguhn, 2004]. Therefore, its mathematical treatment requires
tools coming from population dynamics, e.g. statistical methods or mean-field approaches [Deco
et al., 2008; Faugeras et al., 2008]. From this perspective, the brain is described as a dynamical
system in which characteristic complex phenomena arise: bifurcations leading to oscillations,
noise-induced transitions and synchronization [Horn et al., 1998].

In this Thesis we aimed to describe neural processes occurring at the mesoscopic scale,
i.e. a scale where large populations of neurons exhibit (average) complex dynamics. Besides,
since a collection of mesoscopic neuronal pools, e.g. cortical columns, is needed to characterize
the dynamics of brain areas, the description which lies in between the microscopic and the
macroscopic scale of brain dynamics better fits our descriptive needs. In the previous chapters
we have shown that complex dynamics in the brain can explain well-known features such as
the excitation-inhibition balance at the mesoscopic scale, or the heterogeneous synchronization
between brain areas. We have also shown that synchronization may organize information flow in
a network of mesoscopic dynamical units. Overall, the hypotheses posed in this Thesis may help
to understand the potential neural mechanisms that may rule synchronization, computation and
information processing at the mesoscopic scale of the brain.
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9.1 Scales in brain dynamics

The goal of Chapter 5 is to provide theoretical evidence for a cross-talk between different scales
in the brain. Nowadays, little is known about the impact of microscopic dynamics on other scales
in the brain, as well as the impact of larger scale dynamics on individual neurons: Is the precise
timing of neuronal discharges a feature that vanishes at the population level? Do mesoscopic
oscillations have an impact on small populations of neurons?

We examined inter-scale interactions by using two distinct theoretical models of neuronal
dynamics: on the one hand, we used a conductance-based neuronal description to account for the
activity of a pool of neurons at the microscopic scale. Such type of model describes the action
potential generation at the level of voltage-gated channel dynamics. On the other hand, we
used a mesoscopic description of neuronal dynamics, which does not take into account neuronal
spikes but rather the average population activity due to the synchronized time evolution of
thousands of neurons. Previous works have addressed, from a theoretical point of view, the
derivation of mesoscopic dynamics from the microscopic features of neurons [Deco et al., 2008;
Faugeras et al., 2008]. From such approaches one can track the impact of small perturbations in
neuronal discharges onto the overall brain dynamics [Izhikevich and Edelman, 2008], or derive
mean field equations that characterize the dynamics of large ensembles of neurons [Deco et al.,
2008]. However, such works do not shed light on whether the different dynamical scales of the
brain interact to produce emergent phenomena. Understanding the conditions under which
the interaction of scales is relevant allows to determine the impact of each scale feature on its
counterparts, and can result in a simplified scheme of interaction that can be useful for future
research.

In Chapter 5 we have explored the use of synchronization as a proxy for assessing a detectable
cross-talk between different description scales in the brain. Thanks to this, we investigated the
features of each scale that were crucial for the cross-talk to be successful. In our paradigm,
the communication between two neural mass models [Jansen and Rit, 1995] displaying distinct
dynamical evolutions and characteristic frequencies was mediated by a neuronal pool in which
neurons were described by conductance-based models. The three units displayed dynamics at
low, medium and high frequencies – 4Hz and 10Hz the neural masses, and 40Hz the neuronal
pool –, which in the absence of coupling do not display any frequency or phase relationships.

First we investigated which were the conditions that allow the frequency or phase locking of
two neural mass nodes by coupling them to the neuronal pool (see Fig. 5.1). The neuronal pool is
capable of mediating the communication between the two neural masses when a sufficiently large
subpopulation of its neurons is involved. However, the synchronization is extremely sensitive to
the topological features of the microscopic population. Indeed, increasing clustering impoverishes
the neuronal pool capacity of mediating synchronization. Besides, frequency and phase locking,
which can appear at the same time in the neural masses, are exclusively mediated by the neuronal
pool. Strikingly, if we substituted the neuronal input into the neural masses by a constant
parameter with the average value of the neuronal input, phase locking disappeared. Such feature
indicates that phase differences are encoded in the irregular dynamics of neurons. Finally, if
the neuronal pool works in a slower collective regime, e.g. the alpha band, the synchronization
between the neural masses is decreased.
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The main hypothesis of our work is that the two neural masses synchronize at the lower
frequency band, close to theta rhythm, thanks to an increase in the low frequency activity of the
neuronal network (see Fig. 5.3). Furthermore, the fast dynamics of the neuronal network do not
seem to interfere with the neural mass dynamics, as displayed in the power spectra of the three
nodes. This feature reveals that the neuronal network allows different frequency channels for
communication between neural structures. We also show that the increase in the precise timing
of the firings in a neuronal network working at the gamma range favors communication. Overall,
we first report that the interaction of scales in brain dynamics is a feature that can be tested by
means of synchronization, and we provide the conditions for this interaction to occur.

9.2 Dynamics of excitation and inhibition at the mesoscale

The study of the interaction between microscopic and mesoscopic dynamics shed light onto the
cross-talk between scales. However such interaction was extremely depending on another crucial
feature of brain dynamics: the balance between excitation and inhibition. In order to reproduce
the cross-talk between our neural structures, we had to carefully tune the value of the excitatory
and inhibitory couplings between the neurons inside the neuronal network and, at the same time,
between the neuronal network and the neural mass models. Indeed, these results revealed a
feature of great importance to establish a correct communication between the two neural masses.
In order to deeper understand it, we focused on the study of the effect of excitation and inhibition
in the synchronization characteristics of mesoscopic neural structures.

The importance of excitation and inhibition at the microscopic scale in the brain has been
often stressed [Deco et al., 2014]. However, its translation into large neuronal population dynamics
has not been addressed in detail. In Chapter 6 we wanted to study the impact of excitatory and
inhibitory couplings in the synchronization characteristics of coupled mesoscopic neural structures.
Our first approach was to model the activity two cortical columns [Jansen et al., 1993], which
are well known mesoscopic structures, and to see whether their bidirectional coupling allowed
for the emergence of excitation and inhibition patterns (see Fig. 6.1). By doing so, we model
the well-known effect of segregation, or dynamical separation, between excitation and inhibition,
which usually emerges in neuronal networks for different input discrimination paradigms [Rinkus,
2010], and we bring it to the cortical column level. The emergence of segregation in cortical
columns permits to state that, at a population level, large ensembles of neurons behave as
being excitatory-dominated, whereas others behave as being inhibitory-dominated. This fact
has a deep impact in the overall dynamics in the brain [Izhikevich and Edelman, 2008], being
crucial for a proper synchronization of distant brain areas which is at the basis of proper brain
performance [Knoblauch, 2003].

Our model gives evidence for a topology-dependent segregation, which is also intimately
bound to the coupling characteristics. By first studying small cortical column motifs, we found
that there are regions in the coupling parameter space where segregation emerges spontaneously
(Fig. 6.2), with columns within a network being excitatory and others being inhibitory. This
segregation results from the emerging bistability in the model dynamics, in which the average
output signal, defined as the subtraction between the average excitatory post-synaptic potential
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(EPSP) and the average inhibitory post-synaptic potential (IPSP), may lay in the positive or
negative range but, always, different from zero.

In Chapter 6 we also studied how the introduction of external inputs affected the dynamics
of cortical columns in terms of segregation and synchronization. The interaction between
oscillatory inputs and the intrinsic oscillatory dynamics of the columns gives rise to resonance
phenomena and complex dynamical evolutions [Spiegler et al., 2011b]. When embedded in large
networks, the cortical columns display patterns of excitation and inhibition, as well as patterns of
synchronization. The first have recently been traced in the visual cortex of cats [Onat et al., 2011]
whereas the latter are known to be characteristic of brain signals like EEG – which we model here –
[Müller and Anokhin, 2012]. We have seen that the heterogeneity in cortical columns contacts
allows a larger degree of segregation, with scale-free being networks the arrangements displaying
the largest separation between excitatory and inhibitory dynamics. Moreover, the synchronization
characteristics of the cortical columns also depend on the topology: the more heterogeneous the
network is, the stronger coupling is required to be for the networks to synchronize completely.
However, if inhibitory couplings dominate, hub nodes tend to be inhibitory and the irregularity
in the signals is reduced, favoring network synchronization (see Figs. 6.7, 6.8). Such a feature
can be thought to be a regulatory mechanism for synchronization.

Overall, we deepen on the understanding of the mesoscopic organization of excitation and
inhibition and its impact on the synchronization dynamics of cortical columns. We hypothesize
that the heterogeneity in the cortical columns networks allows for an optimal amount of synchro-
nization within cortical networks: on the one hand because of the inherent difficulty to globally
synchronize heterogeneous networks, and on the other hand thanks to the regulatory role played
by inhibitory columns in favoring the overall synchronization when inhibitory couplings dominate.
Therefore, a careful balance between excitation and inhibition is also crucial at the mesoscopic
scale for proper brain synchronization and, arguably, proper brain performance.

9.3 Coexistence of synchronizations in complex weighted networks

Following up the results obtained when studying the synchronization characteristics of networks
of cortical columns (see Fig. 6.7) we wanted to further reveal the conditions that allow several
clusters of oscillators to display non-trivial synchronization patterns within a single network,
which we termed coexistence of synchronizations. In Chapter 6, when studying cortical columns,
we found regions of parameter space that allowed the emergence of several types of synchroniza-
tion. Such feature resembles the synchronization patterns that can be found in EEG or MEG
recordings [Engel et al., 2001a] and, therefore, might be characteristic of brain dynamics. We
asked ourselves whether this phenomenon can be found in arrangements of coupled oscillators,
since no clear evidence has been found so far.

In Chapter 7 we made use of a simple dynamical system which displays complex dynamics, the
Rössler oscillator [Rössler, 1976], and we studied the synchronization characteristics of networks
of such oscillators. We found that complex synchronization clusters appearing in networks of
coupled cortical columns also emerged in this system. Therefore, we undertook a careful analysis
of the conditions for which the coexistence of synchronizations appears in these model networks
One could argue that the phenomenon of chimera states is analogous to what we described as
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coexistence of synchronizations. However, in the case of chimeras, the coupling scheme and the
nature of the oscillators is different: non-local couplings are established between the oscillators
which, in turn, must be identical for chimeras to appear [Abrams and Strogatz, 2004]. Besides,
the spontaneous synchronization break is tracked by means of phase locking, which restricts
the synchronization pattern to the phase locking between oscillator pairs. In the case of the
coexistence of synchronizations the couplings can be local – we used diffusive couplings but
other types of couplings can be also used – and the oscillators may not be identical. Within
these conditions, not only phase locking but many functional relationships between the time
evolutions of the oscillators can be established (see definitions in Chapter 7). In turn, we show
that for well-defined coupling conditions the coexistence of synchronizations is stable. We do
so by means of studying the evolution of the conditional Lyapunov exponents (LEs) in terms
of a coupling parameter. The subsequent LE zero crossings were mapped to the calculation
of the cross-correlation and the phase locking values between the dynamical evolutions of the
oscillators, so as to establish the correspondence between each LE value and the emerging
synchronization pattern. Finally, we showed that for coupling parameter values that allowed
the LEs to expand between positive and negative values, the coexistence of synchronization was
possible and delimited between the first and the last zero crossings of the maximal LEs of the
system.
The most important feature that can be extracted from the coexistence of synchronizations
and its stability is its consistency, that is, persistent coexistence patterns regardless of the
initial conditions. Thanks to its consistency, the coexistence of synchronizations can be used to
construct stable functional networks. The idea behind this is the fact that functional networks
are established by taking into account the preservation of the same functional relationship
between (oscillatory) signals. In the case of coexistence, we argue that the construction of
functional networks is much more reliable because it is based in the preservation of heterogeneous
synchronization patterns upon changes in the initial conditions. Such restrictive condition
provides robustness to the constructed networks and allows a better characterization of its
dynamics. Finally, we show that there is an intimate relationship between the underlying
structural networks and the emerging consistency of the functional networks constructed with
heterogeneous synchronization patterns. Remarkably that allows, in certain conditions, to
retrieve structural networks from the reconstructed functional networks much more reliably than
using single synchronization motifs, as done elsewhere [Bullmore and Sporns, 2009]. Finally,
we show that certain functional network topologies may be retrieved much more often than
others, specially complex arrangements such as scale-free or small-world, because the underlying
structural networks do not allow consistent functional networks to appear statistically [Eguíluz
et al., 2005].

9.4 Synchronization-based computation through networks of
coupled oscillators

It is usually accepted that the brain is capable of performing computation by integrating the
input signals it receives from either sensory or non-sensory organs. At the microscopic scale
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large neuronal networks are responsible for performing such computation, in the form of an
all-or-none spike response. Such binary-like behavior was easily mapped to a Boolean-like
computation paradigm, shifting the view of neuronal networks to large ensembles of coupled
small Boolean devices [McCulloch and Pitts, 1943]. Successfully, many brain features have been
explained by taking into account a binary approach to neuronal dynamics, with networks of
integrate-and-fire neurons being able to store memory or implementing logic gates [Vogels and
Abbott, 2005]. However, a question naturally arises: are the computational capabilities of the
brain only restricted to microscopic scale neuronal networks?

At larger scales the precise timing of neuronal discharges is masked by the oscillatory dynamics
emerging from the synchronization of the spikes of thousands of neurons. Therefore, it is plausible
to think that some of the brain computational capabilities may not be particular to single neurons,
and not even to small populations, but rather manifest in the activity of thousands or even
millions of neurons. The idea of brain computation by means of brain oscillations has often been
associated with phase coding and decoding [Jensen, 2004], phase precession [Tort et al., 2009]
or communication through coherence [Fries, 2005], which provides a framework in which both
precise spiking and global oscillatory dynamics interact to integrate information. Besides, some
works have also taken into consideration that synchronized spiking activity may also be a form
of computation [Zanin et al., 2011]. In Chapter 8 we gathered some of the theoretical evidence
pointing towards a synchronization-based computation paradigm so as to export it to the level
of brain oscillators.

The peculiarity of our approach is the use of the paradigms of synchronization coexistence,
already described in Chapter 7, which allows us to posit that heterogeneous synchronized
oscillations can implement Boolean functions and higher logical operations. In this sense, we
show that a pair of coupled cortical columns – represented by neural mass models – can implement
all known Boolean logic gates (see Fig. 8.1). Remarkably, we show that the states in the logic
gates can be defined in a wide sense, that is: “0” if no synchronization arises or “1” if the
oscillators are synchronized (see Fig. 7.1A). Therefore, logic gates are synchronization-dependent
and define characteristic functional relationships between the coupled oscillators. Such feature
allows to differentiate between the computation performed by an AND gate based in phase
synchronization for instance, from an AND gate based in complete synchronization. Moreover,
distributed computation can also be performed by networks of coupled neural masses via the
coexistence of synchronizations.

Our theoretical hypotheses were tested using networks of electronic nonlinear oscillators,
which were proven to be adequate to reproduce the expected results. Finally, as a proof of
concept, we implemented a flip-flop memory by means of a network of neural masses. The
synchronization characteristics of the output elements of the circuit undergo a hysteretic cycle
that can store one bit of information and, therefore, be a potential memory-storage mechanism.
Overall, our theoretical implementation allows to state that synchronized brain oscillations can be
used to perform computation, store memory and, maybe, perform higher information processing
features.
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Perspectives

The work presented in this Thesis covers topics spanning from classical neuroscience to the
study of dynamical systems, altogether with the help of computational techniques. Such a broad
spectrum of topics has helped me learning different theoretical paradigms, such as the stability
analysis of dynamical systems or the implementation of Boolean logic. Besides, I have adquired
expertise in different computational tools, mainly numerical integration and time series analysis
techniques. On top of that, however, this Thesis has opened many research lines to be covered in
the future.

Firstly, we have further pursued the development of a neural mass model that gathers some
of the features found in Chapter 5, in line with the work by Faugeras et al. [2008]. We want
to develop a neural mass model that embeds the capacity of a microscopic neural network to
display several frequency components, at both alpha and gamma ranges. With that we pretend
to emulate the effects found in microscopic neuronal networks when coupling mesoscopic and
microscopic structures: the mediation of the phase and frequency locking between neural masses
as well as the preservation of the intrinsic dynamics at the gamma range. Besides, it is known
that cross-frequency coupling may be at the basis of learning or memory [Tort et al., 2009], which
has not been modeled at the mesoscopic scale. With all these elements we pretend to model
complex brain features by means of a mesoscopic approach to brain dynamics.

Secondly, we obtained feedback from an experimental group aiming to obtain a theoretical
description of a phenomenon related to excitation-inhibition segregation (Chapter 6). In their work
they track the mesoscopic cortical activity by using voltage-sensitive dye imaging [Markounikau
et al., 2010]. Recently, they have found traces of enhanced excitability and inhibition in certain
regions of the cortex upon the application of Transcranial Magnetic Stimulation (TMS) into
cats [Kozyrev et al., 2014], which resemble the predicted excitation-inhibition patterns found
in [Malagarriga et al., 2014, 2015b]. Therefore, we want to further study the mechanisms
responsible for segregation at the level of cortical activity, caused by different types of stimulation
protocols such as TMS or even electrical stimulation, and compare it to the experimental
counterparts.

We also aim to further explore the implications of our work on the coexistence of synchro-
nizations (Chapter 7). We hypothesize that this phenomenon may be ubiquitous in systems of
coupled oscillators and, more importantly, may reveal topological features of coupled oscillatory
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systems whose underlying structural network is not available. We argue that the consistency
of the heterogeneous synchronization patterns allows to retrieve structure from function in a
much more reliable way than with other techniques. Therefore, we have now started to analyze
different data sets (EEG, climate time series) in terms of coexistence so as to proof the validity of
our results and, ultimately, so as to obtain information about the functional and, hypothetically,
structural networks that sustain these systems.

Finally, we plan to extend our work on computation using nonlinear oscillators (Chapter 8).
Starting with the implementation of the complex logic function of a flip-flop memory we want to
see whether such paradigm can be applied to well-known memory mechanisms present in the
brain. We are also exploring the possibility to apply the obtained results into a robotic model
that can make use of the synchronized oscillatory dynamics so as to integrate information and
store it as a memory.
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Appendix A

Models

A.1 Description of the neural mass models

A.1.1 Jansen and Rit Model

In Chapters 5, 6 and 8 the description of the mesoscopic neuronal ensemble forming a cortical
column is based on a model proposed by Jansen and co-authors [Jansen et al., 1993]. This model
characterizes cortical dynamics by using a mean field approximation [Grimbert and Faugeras,
2006]. Jansen’s model describes the average activity of three cortical populations; excitatory and
inhibitory interneurons and pyramidal cells., which form a feedback circuit (see Fig. A.2B). The
main pyramidal population excites both interneuronal populations in a feed-forward manner
and the excitatory (inhibitory) interneurons feed back in an excitatory (inhibitory) manner into
the pyramidal population. The dynamical evolution of these three populations is introduced
considering two different transformations. Each population transforms the total average density
of action potentials reaching their afferent synapses from different origins,

∑m pm(t), into an
average postsynaptic excitatory or inhibitory membrane potential yi(t). A linear convolution
implements this transformation in terms of the kernel

he(t) =

Aate
−at if t ≥ 0

0 if t < 0
(A.1)

for the excitatory couplings and

hi(t) =

Bbte
−bt if t ≥ 0

0 if t < 0
(A.2)

for the inhibitory couplings. A and B are related with the maximum height of the excitatory
and inhibitory postsynaptic potentials (EPSP and IPSP, respectively), whereas a and b represent
the inverse of the membrane time constants and the dendritic delays (see Table A.1).

The second dynamical transformation in the model is the conversion of the net average
membrane potential into an average density of spikes. This conversion is done at the somas of
the neurons that form the population, and is described mathematically by a sigmoid function

S(m(t)) = 2e0
1 + er(ν0−m(t)) . (A.3)
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Figure 10: The post-synaptic potentials produced by the model. The inhibitory potential (PPSI) is
broader and reaches a higher maximum than the excitatory potential (PPSE), in agreement with a
physiological fact: synapses established by inhibitory neurons are closer to the cell body of pyrami-
dal cells, making their contribution about ten times stronger than that of excitatory ones.

{
ẏ(t) = z(t)
ż(t) = Aax(t) − 2az(t) − a2y(t)

. (2)

A andB determine the maximal amplitudes of the post-synaptic potentials, their units are millivolts.
a and b are constants lumping together characteristic delays of the synaptic transmission, i.e. the
time constant of the membrane and the different delays in the dendritic tree [12, 20]. Their units are
s−1.

The second type of box in Jansen’s model is the Sigmoid that introduces a nonlinear component.
This box transforms the average membrane potential of a neural population into an average firing
rate. This sigmoid function has the form:

Sigm(v) =
2e0

1 + er(v0−v)
,

where e0 is half of the maximum firing rate of neurons families, v0 is the value of the potential for
which a 50% firing rate is achieved (the curve has a central symmetry about the point (v0, e0)) and
r is the slope of the sigmoid at v0; v0 can be viewed either as a firing threshold or as the excitability
of the populations (figure 11).

This sigmoid transformation approximates the functions proposed by the neurophysiologistWal-
ter Freeman [12] to model the conversion of the membrane potential of a family of neurons into a
firing rate. This sigmoid shape models classical properties of neurons: as long as the potential is

INRIA

A

h e
(t

),
 h

i(
t)

IPSP

EPSP

B

Cortical column modeling 13

5

4

3

2

1

0
20151050-5-10

r

2e0

e0

v0

Figure 11: Sigmoid transformation performed by the Sigm box that converts the membrane potential
of a population into an average firing rate (abscissa in mV).

below an excitability threshold neurons hardly produce action potentials, then, in a neighborhood
of this threshold, the firing rate increases almost linearly with the surface potential until it reaches
a saturation value due to the refractory period of neurons (a second action potential cannot be emit-
ted immediately after the first one). One can therefore consider that the sigmoid box represents the
average cell body action of a population by converting the membrane potential into a firing rate.

Apart from these two kinds of boxes (post-synaptic and sigmoid) the system features connectivity
constants C1, . . . , C4 that account for the number of synapses established between two neurons
populations.
Let us finally discuss the variables of the system. There are three main variables noted y0, y1 and
y2, the outputs of the post-synaptic boxes; we also introduce their derivatives noted y3, y4 and y5,
respectively. If we write two equations similar to (2) for each post-synaptic block we obtain a system
of 6 first order differential equations that describes Jansen’s model:

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẏ0(t) = y3(t)
ẏ3(t) = AaSigm[y1(t) − y2(t)] − 2ay3(t) − a2y0(t)
ẏ1(t) = y4(t)
ẏ4(t) = Aa{p(t) + C2Sigm[C1y0(t)]} − 2ay4(t) − a2y1(t)
ẏ2(t) = y5(t)
ẏ5(t) = BbC4Sigm[C3y0(t)] − 2by5(t) − b2y2(t)

. (3)

In the next section we study the system for constant p.

RR n° 5597

m(t)

S(
m(

t)
) 

(H
z)

Figure A.1: Average postsynaptic potentials and average firing rate of Jansen and
Rit model. (A) Shape of the transformation kernels A.1 (red) and A.2 (green). The inhibitory
postsynaptic potential function (green) reflects the strong contribution of inhibitory cells onto
pyramidal cells, compared to that of excitatory cells (red). (B) Sigmoid function S(m(t)) relating
postsynaptic potentials to average firing rate. Adapted from Jansen et al. [1993]; Grimbert and
Faugeras [2006].

The parameter values are depicted in Table A.1 and m(t) corresponds to the net Postsynaptic
Potential (PSP) input into the population being considered. The average density of action
potentials produced by the presynaptic population acting upon the postsynaptic population,
pm(t), turns out to be proportional to S(m(t)), where the proportionality constant weights the
contact between the populations, and gives the range of efficiency of the synaptic interaction.

The transformation described by Equations (A.1) and (A.2) can be introduced using two
differential operators:

L(yi(t); a) = d2yi(t)
dt2

+ 2adyi(t)
dt

+ a2yi(t) = Aa

[∑
m

pm(t)
]
, (A.4)

L(yi(t); b) = d2yi(t)
dt2

+ 2bdyi(t)
dt

+ b2yi(t) = Bb

[∑
m

pm(t)
]
, (A.5)

for the excitatory and inhibitory integration of the average density of action potentials, respectively.
Combining Eqs. (A.3-A.5), alongside with the topology described in Chapters 5, 6, 7, 8 and in
Fig. A.2B, we obtain the complete model for a particular NMM i, representing a cortical column,
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coupled to Nneigh neighbors in a network of N cortical columns:

d2yi0
dt2

+ 2ady
i
0

dt
+ a2yi0 = AaS[yi1 − yi2], (A.6)

d2yi1
dt2

+ 2ady
i
1

dt
+ a2yi1 = Aa{C2S[C1y

i
0]

+
Nneigh∑
j=1

αijS[yj1 − y
j
2] + δi(t)sin(2πf it+ φi) + pie(t) + χi(t)},(A.7)

d2yi2
dt2

+ 2bdy
i
2

dt
+ b2yi2 = Bb{C4S[C2y

i
0] + pii(t) +

Nneigh∑
j=1

βijS[C3y
j
0]}, (A.8)

where yi0 represents the PSP that feeds the interneurons populations, and yi1 (yi2) represents the
excitatory (ye in the text) (inhibitory, yi in the text) PSP that feeds the pyramidal population.
The intensity of the excitatory (inhibitory) coupling of columns with their neighboring columns
is given by αij (βij), where:

αij = α
√
ninj

, (A.9)

βij = β
√
ninj

, (A.10)

if not specified otherwise. Such weighting prevents the system integration to diverge, as couplings
are bounded by the number of neighbors of the receiver node (ni) and that of its neighbors
(nj). We intend to represent small cortical regions as no delays in the couplings are taken into
account. Moreover, each column may receive a time dependent input composed of a constant
input, p̄i, either excitatory or inhibitory, and a periodic external stimulus coming from other
brain structures or the sensory system. We represent this periodic input as a sinusoidal driving,
i.e. δi(t)sin(2πf it+ φi) (see Eq. (A.6)). Besides, each column may receive a random excitatory
contribution onto the pyramidal cells, χi(t), which can be associated with a stochastic process
occurring at a cellular level (see Eqs. (A.20, B.9)). The contribution of the column i to the EEG
activity measured in the scalp is proportional to yi1 − yi2. Thus we will analyze the activity of
each cortical column considering the evolution of yi = yi1− yi2 (represented by yie− yii throughout
the text).

In Jansen et al. [1993] the model produces alpha oscillations thanks to a supercritical
Hopf bifurcation and epileptic-like waveforms thanks to a saddle-node bifurcation in terms of
the external input pe(t) (see examples in Fig. 2.1). However, the model presented here has
an extensive repertoire of dynamical states, being able to produce periodic, quasi-periodic or
chaotic [Spiegler et al., 2011a; Malagarriga et al., 2015b; Skarda and Freeman, 1987] behavior.
It also exhibits excitatory/inhibitory segregation [Malagarriga et al., 2014, 2015b] depending
on the choice of αij and βij values in the network. These coupling parameters also fix a whole
set of synchronized regimes that may coexist in the network [Malagarriga et al., 2016]. The
intra-columnar connectivity constants values are defined in terms of Ci, with i = 1, . . . , 4. We
use the values given in Jansen et al. [Jansen and Rit, 1995].
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Figure 1: a) Neural mass model of a cortical unit: it features a population of pyramidal
cells interacting with two populations of inter-neurons, one excitatory (left branch) and
the other inhibitory (right branch). b) Block representation of a unit. The h boxes
simulate synapses between the neurons populations. Sigm boxes simulate cell bodies
of neurons by transforming the membrane potential of a population into an output
firing rate. The constants Ci model the strength of the synaptic connections between
populations.

Equations of the model
Figure 1b. is a translation of figure 1.a in the language of system theory. It represents
the mathematical operations performed inside such a cortical unit.
The excitatory input is represented by an arbitrary average firing rate p(t)which can be
random (accounting for a non specific background activity) or deterministic, account-
ing for some specific activity in other cortical units. The three families –pyramidal
neurons, excitatory and inhibitory inter-neurons– and synaptic interactions between
them are modeled by different systems.

The Post-synaptic systems Pi, i = 1, 2, 3 (labeled he(t) or hi(t) in the figure) con-
vert the average firing rate describing the input to a population into an average excita-
tory or inhibitory post-synaptic potential (EPSP or IPSP). From the signal processing
standpoint, they are linear stationary systems that are described either by a convolution
with an impulse response function or, equivalently, by a second-order linear differen-
tial equation. They have been proposed by van Rotterdam [van Rotterdam et al., 1982]
in order to reproduce well the characteristics of real EPSPs and IPSPs. The impulse
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of neurons by transforming the membrane potential of a population into an output
firing rate. The constants Ci model the strength of the synaptic connections between
populations.
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ing for some specific activity in other cortical units. The three families –pyramidal
neurons, excitatory and inhibitory inter-neurons– and synaptic interactions between
them are modeled by different systems.
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Figure A.2: Circuit describing a cortical column (Jansen and Rit model). (A) Cartoon
depicting the location of a cortical column in the human cortex. (B) Jansen and Rit lumped
parameter model circuit. Three interacting neural populations (excitatory/inhibitory interneurons
and pyramidal cells) form a feedback loop and, therefore, create oscillations in their EPSP and
IPSP. From Faugeras et al. [2008]

Table A.1: Jansen and Rit model parameters. All parameters have been adapted Jansen
and Rit [1995] except for the sinusoidal input in Eq. (A.6).

Parameter Value
Cortical PSP amplitude A = 3.25 mV, B = 22 mV
Inverse of the dendritic a = 100 Hz, b = 50 Hz

conduction time
C = 133.5

Intra-column coupling C1 = C , C2 = 0.8 C
C3 = 0.25 C, C4 = 0.25 C

Maximum average action e0 = 2.5 Hz
potential density

Steepness of the response r = 0.56 mV−1

function
PSP for a 50% firing rate ν0 = 6.0 mV

A.1.2 Wilson-Cowan Model

We have also used the Wilson-Cowan model [Wilson and Cowan, 1972] in Chapter 6 to show
segregation dynamics. It is one of the first mean field models, which describes the activity of two
pools of interacting neurons –excitatory and inhibitory– by averaging out individual responses.
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The Wilson-Cowan model equations read as follows:

ẋ = −x+ S(ax− by + p), (A.11)

ẏ = −y + S(cx− dy + q), (A.12)

S(v) = 1/(1 + exp(−v)), (A.13)

with x (y) being the average activity of the excitatory (inhibitory) populations. a and d are the
self excitation parameters for x and y units, and b and c are the couplings from the inhibitory
(excitatory) unit y (x) to the excitatory (inhibitory) unit x (y), respectively (see Fig A.3 for
more details). p and q represent external stimuli impinging upon each population. Each unit, x
and y, can be interpreted as the average activity of the excitatory and the inhibitory neuronal
populations, respectively. Moreover, S(v) gives the proportion of excitatory (inhibitory) neurons
receiving thresholded excitation per unit time. We chose as parameter values a = 16, b = 12,
c = 16, d = −2 and varied the external inputs p− q to find values that allowed segregation in
the coupled scenario.
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CFigure A.3: Circuit describing the Wilson-Cowan model. Connectivity of the excitatory
and inhibitory pools defining a Wilson-Cowan model. From Campbell and Wang [1994]

The coupling is performed as shown in Fig. A.3 . The equations for each oscillator read in
this case:

ẋi = −xi + S(axi − byi + pi) +Kexc
ij (xj − xi), (A.14)

ẏi = −yi + S(cxi − dyi + qi) +Kinh
ij (yj − yi), (A.15)

with i, j = 1, 2. We have explored which values of the coupling strengths Kij (with Kij = Kji,
either excitatory or inhibitory) allow the system to remain segregated for fixed values of external
stimuli p1 = −3.5, q2 = −6.5, p2 = −1.0 and q2 = −4.0.
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A.2 Description of the conductance-based neuronal model

In Chapter 5 we have worked with mesoscopic and microscopic models of neuronal activity. The
generation of electrical activity in neurons can be explained in terms of an electrical circuit
whose resistances and current sources can be related with transmembrane ionic channels and
ionic pumps (see Fig. A.4). In Hodgkin and Huxley [1952] a complete model for action potential
generation was presented. Here we used a simplified version of that model, a conductance-based
model.

4 Neural Encoding I: Firing Rates and Spike Statistics
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Figure 1.2: A) An action potential recorded intracellularly from a cultured rat
neocortical pyramidal cell. B) Diagram of a synapse. The axon terminal or bou-
ton is at the end of the axonal branch seen entering from the top of the figure.
It is filled with synaptic vesicles containing the neurotransmitter that is released
when an action potential arrives from the presynaptic neuron. Transmitter crosses
the synaptic cleft and binds to receptors on the dendritic spine, a roughly 1 µm
long process extending from the dendrite of the postsynaptic neuron. Excitatory
synapses onto cortical pyramidal cells form on dendritic spines as shown here.
Other synapses form directly on the dendrites, axon, or soma of the postsynaptic
neuron. (A recorded by L. Rutherford in the laboratory of G. Turrigiano. B adapted
from Kandel et al., 1991.)

Action potentials are of great importance because they are the only form
of membrane potential fluctuation that can propagate over large distances.
Subthreshold potential fluctuations are severely attenuated over distances
of 1 mm or less. Action potentials, on the other hand, are regenerated
actively along axon processes and can travel rapidly over large distances
without attenuation.

Axons terminate at synapses where the voltage transient of the action po-synapse
tential opens ion channels producing an influx of Ca2+ that leads to the
release of a neurotransmitter (figure 1.2B). The neurotransmitter binds to
receptors at the signal receiving or postsynaptic side of the synapse caus-
ing ion-conducting channels to open. Depending on the nature of the ion
flow, the synapses can have either an excitatory, depolarizing, or an in-
hibitory, typically hyperpolarizing, effect on the postsynaptic neuron.

Recording Neuronal Responses

Figure 1.3 illustrates intracellular and extracellular methods for recording
neuronal responses electrically (they can also be recorded optically). Mem-

Peter Dayan and L.F. Abbott Draft: December 17, 2000

A B

C

Figure A.4: Conductance-based model. (A) Recording of an action potential from a
pyramidal cell and scheme of a synapse with organelles. When an action potential reaches a
synapse, it releases neurotransmitters from the synaptic vesicles and a new action potential is
generated in the downstream connected neuron. (B) Cartoon depicting transmembrane ionic
fluxes involved in action potential generation. Four main stages can be drawn: membrane
resting state, depolarization, repolarization and return to resting potential. (C) Electrical circuit
summarizing the action potential generation. The membrane acts as a capacitor (Cm) and ionic
pumps as current sources (En and EL, respectively). Besides, ionic channels are resistances (gn
and gL, respectively) and the action potential generates a current Ip.

The dynamics of the transmembrane potential of the soma of each neuron is described by the
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following set of differential equations:

Cm
dV

dt
= −gKn4(V − Ek)− gNam3h(V − ENa)

−gL(V − EL) + Isyn + Iext,

(A.16)

where gK , gNa and gL are the maximum conductances for the potassium, sodium and the leak
currents, respectively, and Isyn is the synaptic current coming from the neighboring neurons. The
dynamics of the sodium and potassium channels is represented by the time-varying probabilities
of a channel being in the open state:

dx

dt
= Φ [αx(V )(1− x)− βx(V )x] , x = m,h, n (A.17)

where x stands for the activation (m) and inactivation (h) of the sodium channels and the
activation of the potassium channels (n). The rate functions αx and βx for each gating variable,
as well as all the NN parameters used in Chapter 5 are given in De Sancristóbal et al. [2013].

The synaptic current Isyn is described using a conductance-based formalism:

Isyn = gsyn(t)(V (t)− Esyn), (A.18)

where gsyn is the synaptic conductance and Esyn is the reversal potential of the synapse. For Esyn
greater than the resting potential Vrest the synapse is excitatory (mediated by AMPA receptors),
otherwise it is inhibitory (mediated by GABA receptors). We consider two temporal time
constants, τd and τr (decay and rise synaptic time) for the dynamics of the synaptic conductance
(alpha function, see Fig 1.9A)

gsyn(t) = ĝsyn
τd − τr

[
exp

(
− t− tj

τd

)
− exp

(
− t− tj

τr

)]
. (A.19)

We have chosen the maximal conductances ĝsyn such that the postsynaptic potential (PSP)
amplitudes are within physiological ranges: the EPSP in the range from 0.42 mV to 0.83 mV
and the IPSP in the range from 1.54 mV to 2.20 mV . In order to modify the activity time scale
of the neuronal network we have changed τd for the GABAergic synapses, varying accordingly
the inhibitory conductances ĝsyn in such a way that the maximum amplitude for gsyn(t) is
maintained.

All neurons receive an additional train of excitatory presynaptic potentials, coming from
brain areas other than those explicitly modelled by the NMs, which contributes to the external
current term Iext in Eq. (A.16). Those spikes follow an heterogeneous Poisson process with a
mean event rate, which varies following an Ornstein-Uhlenbeck process. The instantaneous rate
λ(t) of this external excitatory train of spikes is generated according to:

dλ

dt
= −λ(t) + σ(t)

√
2
τ
η(t), (A.20)

where σ(t) is the standard deviation of the noisy process and is set to 0.6 spikes/s. The correlation
time τ is set to 16 ms, leading to a 1/f power spectrum for the λ time series that is flat up to a
cut-off frequency f = 1/(2πτ) = 9.9Hz. The term η(t) is a Gaussian white noise with mean 0
and standard deviation Σ.
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This NN model is able to reproduce the well-known synchronous irregular regime [Brunel,
2000], in which recurrent activity leads collective oscillations at the population level while single
neurons fire irregularly. The emergent rhythmicity is achieved by a balance between the excitatory
and inhibitory synaptic currents and can be explained by periodic changes of the excitability
in the network, i.e. periodic modulation of the distance to threshold. Despite the fact that
excitatory neurons are dominant in the network, the stronger synaptic inhibitory conductances
and the higher firing rate of the inhibitory neurons allows the system to reach a balance between
excitation and inhibition. In order to obtain collective oscillations in the alpha (gamma) band,
we set the decay synaptic time to be τd = 15 ms (5 ms).

A.3 Inter-scale coupling terms

In Chapter 5 the effect of the mass models upon the neural network also contributes to the Iext
term of the NN (see Eq. (A.16)), together with the external excitatory Poissonian train of spikes.
Hence, each neuron of the NN receives a train of excitatory spikes whose mean firing rate, FR,
is given by:

FR(t) = EFR(t) + kγ1S(y1(t)− y2(t)), (A.21)

where S(y1(t)− y2(t)) translates the postsynaptic potential of the pyramidal population of the
NM that affects that particular neuron (or both NMs if that is the case) into a spiking rate. γ1

and k control the strength of this coupling. In Chapter 5 γ1 = 200, while k will be a varying
parameter. EFR(t) corresponds to aforementioned Poissonian train of spikes:

EFR(t) = 〈EFR〉+ λOU (t), (A.22)

with 〈EFR〉 being the mean external firing rate and λOU (t) an Ornstein-Uhlenbeck process (see
Eq. (A.20)) representing the fluctuations around the mean. We have set 〈EFR〉 = 8.5 KHz. The
neuronal network acts upon the neural mass models through pie(t) and pii(t) (see Eqs. (A.6, A.8)):

pie(t) = 〈p〉+ kγ2MUA(t) (A.23)

pii(t) = kγ3MUA(t), (A.24)

where MUA(t) is the Multi-Unit Activity coming from the neural network, i.e. the sum of spikes
over the subset of neurons coupled to the NMs, calculated within a sliding window of length
1 ms. 〈p〉 is a constant input coming from other areas of the brain distinct from those considered
explicitly in our model (〈p〉 = 160 Hz for both neural masses in Chapter 5). γ2, γ3 and k are
scaling factors that take into account the synaptic efficiency. Here, γ2 = 25 and γ3 = 3. Note
that we assume that NN neurons affect only the pyramidal population in the neural mass. This
is in accordance with previous models of two coupled neural masses [Jansen and Rit, 1995; David
and Friston, 2003], which consider that only pyramidal cells receive excitatory input from the
other column.

A.4 Local field potential

In Chapter 5, in order to quantify the activity of the neuronal network we have defined a collective
measure, the local field potential (LFP), as the average of the absolute values of AMPA and
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GABA synaptic currents acting upon a typical excitatory neuron [Mazzoni et al., 2008]:

LFP = Re 〈|IAMPA|+ |IGABA|〉 . (A.25)

IAMPA represents the external excitatory heterogeneous Poisson spike train and the recurrent
excitatory synaptic current due to the network, IGABA accounts for the recurrent inhibitory
synaptic current and Re represents the resistance of a typical electrode used for extracellular
measurements. The symbol 〈...〉 represents an average over all excitatory neurons.

A.5 Nonlinear oscillators

A.5.1 Description of the Chua oscillators

In Chapter 8 we tested experimentally whether coexisting synchronized states might be used for
implementing Boolean logic gates. The first dynamical system in which we implemented logic
gates was the Jansen and Rit model. The second dynamical system was the Chua oscillator. The
feasibility and robustness of our theoretical results was proven experimentally by considering a
network of Chua electronic oscillators [Madan, 1993] (see Fig. 8.3). These oscillators are described
by the following equations [Kennedy, 1992; Wagemakers et al., 2007]:

dvA
i

dt
= 1

C1

(
vB

i − vAi

R5
− f(vAi) + vA

i − s(t)
Rin

)
, (A.26)

dvB
i

dt
= 1

C2

(
vB

i − vAi

R5
+ iL + vB

i − vBj

Rc

)
, (A.27)

diL
i

dt
= −vB

i

L1
, (A.28)

where vAi and vBi are the voltages of the two capacitors (C1 and C2) and iLi is the intensity
through the coil of the circuit (L1). s(t) is an external oscillatory input signal that we may (“1”)
or may not (“0”) activate, controlling the dynamical state at which the Chua operates. The
strength of the input signal is proportional to the inverse of Rin. We tuned its value depending
the type of logic gate we were considering. f(vAi) is a piece-wise (nonlinear) function given by:

f(vAi) = G1vA
i + 1

2(G1 −G0)[ |vAi +Bp| − |vAi| −Bp ], (A.29)

with Bp = 1.7 V being the breaking point of the piece-wise function. The values of G1 and G2

are obtained from different resistances of the electronic circuit:

G1 = −R1
R1 +R3

+ 1
R2
, (A.30)

G0 = −R1
R1 +R3

− R2
R2R4

, (A.31)

and the rest of the parameters are Vcc = 15 V, VEE = −15 V, R1 = 222 Ω, R2 = 22 kΩ, R3 = 2.2
kΩ, R4 = 3.3 kΩ, C1 = 10 nF, C2 = 100 nF, L1 = 20 mH and R5 = 1.38 kΩ.

The coupling circuit between the different Chua circuits, represented as the last term in
Eq. (A.27), consists on a voltage follower placed at the output of vjB combined with a coupling
resistance Rc, whose value controls the amount of unidirectional coupling from vjB to viB. The
coupling from unit i to unit j is introduced in a similar way, thus leading to an effective
bidirectional coupling.



114 A.5. NONLINEAR OSCILLATORS

A.5.2 Description of the Rössler oscillators

In Chapter 7 we used Rössler oscillators [Rössler, 1976] to study the coexistence of synchronizations
in a dynamical system other than Jansen and Rit neural mass models. Rössler oscillators display
a wide repertoire of behaviors and are suitable for an analytic or semi-analytic study of their
stability. We chose this dynamical system because it is computationally affordable to compute
the evolution of the Lyapunov exponents associated with synchronized trajectories in the phase
space.

The equations describing Rössler oscillators are:

ẋi = −ωiyi − zi +
Nneigh∑
j=1,j 6=i

αij(xj − xi),

ẏi = ωixi + ayi,

żi = p+ zi(xi − c),

(A.32)

where ωi is the natural frequency of the node, which is normally distributed with average
< ω >= 1 and standard deviation σω = 0.02 for the networks studied in Chapter 7. Rössler
dynamics can be periodic, quasi-periodic or chaotic. We choose a = 0.15, p = 0.2 and c = 10 to set
the oscillators in a chaotic regime when the node is in isolation [Boccaletti et al., 2002; Moskalenko
et al., 2012]. and therefore display complex time evolutions. Besides, Rössler oscillators in this
regime are very sensitive to a change in initial conditions or perturbations, situations which we
wanted to explore. Finally, αij accounts for the coupling intensities between two adjacent nodes,
i and j. We set the coupling weights to depend on the number of neighbors of each node as:

αij = 1√
deg(vi)deg(vj)

, (A.33)

(if not specified otherwise) for i 6= j, where deg(vi), deg(vj) are the degrees (number of coupled
neighbors) of two dissipatively coupled nodes vi, vj . We study regular and complex topologies of
progressively larger networks.



Appendix B

Methods

B.1 Time series analysis

B.1.1 Lyapunov Exponents and Regularity

In Chapters 6 and 7 we characterize the regularity of the signals in terms of the autocorrelation
function and the Maximal Lyapunov Exponent (MLE). Lyapunov exponents are a qualitative
measure that characterize the stability and instability of the evolution of a dynamical system
with respect to varying initial conditions. They give fundamental information about underlying
properties of such systems associated with strange attractors. Briefly, if we assume that a
dynamical system is described as ẋ = f(x) with t > 0 and initial conditions x(0) = x0 ∈ Rn, we
can derive the variational equation of the system, if linearization is possible, which is:

Ẏ = J(x(t))Y, Y (0) = In, (B.1)

where In is a nxn identity matrix and J(x) = ∂f(x)/∂x is the Jacobian matrix of f . We then
consider the evolution of an infinitesimal parallelepiped in the phase space [p1(t), ..., pn(t)], with
axis pi(t) = Y (t)pi(0) for i = 1, ..., n, where [p1(0), ..., pn(0)] is an orthogonal basis of Rn. The
long-time sensitivity of the flow x(t) with respect to initial conditions x0 at the directions pi(t)
is determined by the expansion rate of the length of the ith axis with respect to the orthogonal
basis pi(0), and is given by:

λi = lim
t→∞

1
t
ln
||pi(t)||
||pi(0)|| i = 1, ..., n, (B.2)

which corresponds to the Lyapunov spectrum {λi}.
In Chapter 7 we calculated the conditional Lyapunov exponents of the coupled oscillators in

order to map their evolution in terms of the coupling strength to the emergence of heterogeneous
synchronization patterns. Let’s first suppose that we have two oscillators, x(t) and u(t) of
dimensions Nx and Nu, respectively. For an unidirectional coupling scheme, in which x(t) drives
u(t), we can consider the presence of a time-dependent functional relationship

u(t) = F[x(t)]. (B.3)

The dynamics of this coupled drive-response system is characterized by the Lyapunov exponent
spectra λx1 > λx2 > ... > λxNx

and λu1 > λu2 > ... > λuNu
, with the last being conditional Lyapunov
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exponents. In this sense, the rate of convergence or divergence of the trajectory of oscillator u
towards the trajectory defined by oscillator x is given by λu1 : if λu1 > 0 the trajectories diverge,
whereas if λu1 < 0 they converge.

Since throughout this Thesis we consider a mutual coupling scheme, Eq. (B.3) no longer
holds for all time t, but rather its implicit form F[x(t),u(t)] = 0. However, locally (i.e. for
t∗−δ < t < t∗+δ, with δ being infinitely small), the implicit-function theorem [Jittorntrum, 1978]
allows to write x(t∗) = F̂[u(t∗)] or u(t∗∗) = F̃[x(t∗∗)], for other moments in time t. Therefore,
without loss of generality, the spectrum of Lyapunov exponents can be computed in terms
of the trajectory defined by one of the mutually coupled oscillators, either u or x, as in the
unidirectional coupling case. In Chapter 7 we consider the evolution of the flow of the trajectories
of the coupled Rössler oscillators with respect to the trajectory defined by one of the oscillators
in the networks. This calculation allows to estimate whether such trajectory is attractive, i.e.
neighboring oscillators converge to it and therefore synchronize, or repulsive, i.e. neighboring
oscillators diverge from it and desynchronize (in amplitude).

The Lyapunov spectrums in Chapters 6 and 7 were calculated using a Gram-Schmidt re-
orthonormalization algorithm (or QR algorithm) by means of the Adams-Bashforth method [Chen
et al., 2006]. In Chapter 6 the integration of Jansen and Rit equations for MLE computation
was performed with a time step of 1 ms and a total simulation time of 500 s, which was sufficient
for the Lyapunov coefficients to converge. An initial time window of 100 s was omitted to avoid
transients. We calculated the Lyapunov spectrum for 50 different initial conditions.

The degree of regularity of the NMM activity in Chapter 6 was calculated by taking the
average of the second absolute maxima of the autocorrelation function (calculated with a Python
package Numpy function [van der Walt et al., 2011]) over all the nodes of the network:

Reg = 1
s

1
N

s∑
p=1

N∑
q=1

h2nd
p,q (τ), (B.4)

where s stands for the number of realizations for different initial conditions –50 in the case
studied in Fig. 6.6B, 20 in the case studied in Fig. 6.8B and 10 for the subsequent regularity
calculations–, N is the total number of cortical columns and h2nd

p,q (τ) denotes the height of the
second absolute peak of the autocorrelation function for each signal. This index provides us with
a quantification of the periodicity of the signal.

B.1.2 Spectral analysis

The power spectral density (PSD) measurements in Chapters 5 and 6 were computed using
Welch’s average periodogram method. These calculations were performed using standard Python
Numpy functions [van der Walt et al., 2011].

B.1.3 Synchronization

We calculated the synchronization degree of pairs of oscillators ubiquitously in this Thesis. Each
synchronized state is defined by a characteristic functional relationship between the dynamics
of the interacting elements [Boccaletti et al., 2002]. Phase synchronization (PS) entails a
constant phase difference in time between the coupled oscillators, whereas amplitudes remain
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uncorrelated [Rosenblum et al., 1996]. Generalized synchronization (GS) is characterized by
a complex functional relationship between the dynamics of the oscillators that can only be
unveiled by the auxiliary system approach [Abarbanel et al., 1996] or the nearest neighbor
method [Moskalenko et al., 2012]. In turn, lag synchronization (LS) implies a constant time shift
between the signals of the two oscillators, with amplitudes being completely correlated, whereas
in complete synchronization (CS) no time shift is present.

Accordingly, in Chapters 5, 6, 7 and 8 we computed in Jansen and Rit, Rössler and Chua
oscillators the cross-correlation and a phase synchronization index between their output signals,
ym(t), xm(t) and vm(t), respectively [Lachaux et al., 1999]. The maximal cross-correlation for
each pair of nodes, Cmax(τ), was computed using the maximum value of the cross-correlation
function provided by Python package Numpy [van der Walt et al., 2011]. Cross-correlations
allow us to distinguish between zero-lag (complete) synchronization (CS) and lag synchronization
(LS), whereas the phase synchronization index and phase-locking value (PLV) provide evidence
of phase synchronization (PS). The phase φm(t) of the output signal is obtained from the Hilbert
transform of ym(t) [Rosenblum et al., 1996]. The phase synchronization index γ (see Chapter 8)
of two oscillators 1 and 2 is calculated from ∆φ12(t)=φ1(t) − φ2(t) as [Mormann et al., 2000;
Quian Quiroga et al., 2002]:

γ ≡ |〈ei∆φ12(t)〉t| =
√
〈cos ∆φ12(t)〉2t + 〈sin ∆φ12(t)〉2t . (B.5)

and the phase locking value (PLV) in Chapter 7 [Lachaux et al., 1999] is calculated as:

PLVt = 1
N
|
N∑
n=1
〈ei∆φ12(t,n)〉t|, (B.6)

where N is the number of samples used. We used these two similar measurements because they
fitted our computational demands in each of the mentioned Chapters. For the Chua circuits in
Chapter 8, we evaluate the synchronization error as the average of the difference between the
outputs of two systems (e.g., units A1 and A2 in Figure 8.4A):

ε = 1
T

T∑
t=1
|v1
A(t)− v2

A(t)|, (B.7)

with T being the total number of time steps. We use a similar expression in terms of y1 and y2 for
the neural mass oscillators. We consider two oscillators to have complete synchronization (or lag
synchronization if there is a time shift of the signals) when the values of the synchronization error
are lower than a certain threshold εth (εth = 0.10V in the case of Chua oscillators, εth = 0.01mV
for Jansen oscillators). On the other hand, phase synchronization arises for high values of the
phase synchronization index (with a threshold of γth = 0.85 for both cases) and, at the same
time, high values of the synchronization error (ε > εth = 0.10 V, εth = 0.01 mV, for the Chua
and Jansen oscillators, respectively).

B.1.4 Nearest neighbor method

In Chapter 7 we used the Nearest Neighbor method to assess the presence of a functional
relationship between the oscillators in a network. If such a function exists between the interacting
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elements all close states in the phase subspace of a given system x(t) should have close images
in the phase subspace of the coupled system u(t) (see examples in Fig. 7.1). Accordingly, in a
bidirectional coupling scheme the inverse statement is true.

B.1.5 Excitatory-Inhibitory Segregation index

In Chapter 6 we computed the excitatory-inhibitory segregation (EIS) index as:

EIS = |CMeAeCMiAi|, (B.8)

where CMe (CMi) stands for the position of the center of mass of the excitatory–positive
(inhibitory–negative) part of the activity distribution (Fig. 6.8B,D), and Ae (Ai) is the corre-
sponding area of the excitatory (inhibitory) distributions, respectively.

B.1.6 Numerical techniques

The integration of the model equations was performed using two methods. On the one hand we
used Heun’s method to integrate the Jansen and Rit, Rössler and Wilson-Cowan model equations
[García-Ojalvo and Sancho, 1999]. On the other hand, Adams-Bashforth method was used for
Lyapunov exponent calculation [Chen et al., 2006]. Random number generation was implemented
using standard GSL routines to set different initial conditions when performing the statistical
analysis of data [Galassi and et al., January 1, 2009]. Each simulation of the model had a time
step of 1 ms and a total simulated time of t = 50 s. A period of 25 s was omitted to avoid
transients.

We implement numerically the noise term χi(t) in Eq. (A.8) using [Malagarriga et al., 2015a]:

χi(t) =
√

2ξi∆tη(t), (B.9)

where ξi is the noise amplitude and ∆t is the integration time step, whereas η(t) is a number
resulting from a white noise Gaussian distribution with zero mean and variance equal to 1 [García-
Ojalvo and Sancho, 1999].

B.2 Topology

B.2.1 Network construction

In Chapters 6 and 7 (see for example Figs. 6.6A 7.1B), scale-free networks were constructed using
the Barabási-Albert algorithm [Barabási and Albert, 1999], which makes use of m0 initial nodes
connected randomly to which other nodes are added gradually. These new nodes are connected
to m ≤ m0 existing nodes with a probability that increases with the number of links of the
already connected nodes. This procedure gives rise to networks with heavily connected nodes,
and therefore with a power-law distribution of degrees. In Figs. 6.8 and 6.10 we performed the
analysis for 50 scale-free networks with m0 = 1. In Fig. 6.6 we constructed 10 networks for each
α and β pair.

The networks in Chapters 5, 6 and 7 (see for example Figs. 6.12, 7.1) were constructed
using the Watts-Strogatz algorithm with rewiring probabilities (RPs) of 0, 0.5 and 1 [Watts and
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Strogatz, 1998]. Each RP defines a different network: ring (RP = 0), small-world (RP = 0.5) and
random (RP = 1.0). We constructed 10 networks for each RP in Chapter 6 and 100 networks
for RP = 0.5 and RP = 1.0 in Chapter 7. In all cases every network was simulated using 10 sets
of different initial conditions for the nodes and were constructed using the NetworkX Python
package [Hagberg et al., 2008].

B.2.2 Network analysis

In Chapter 7 we analyzed the topological characteristics of reconstructed networks of Rössler
oscillators. We made use of functions embedded in the NetworkX Python package [Hagberg et al.,
2008] to calculate the clustering coefficient, which measures how groups of nodes in a network
cluster together (see Fig. 7.6).
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