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Summary

The brain is known to operate under the constant influence of noise arising
from a variety of sources. It also organises its activity into rhythms span-
ning multiple frequency bands. These rhythms originate from neuronal
oscillations which can be detected via measurements such as electroen-
cephalography (EEG) and functional magnetic resonance (fMRI). Experi-
mental evidence suggests that interactions between rhythms from distinct
frequency bands play a key role in brain processing, but the dynamical
mechanisms underlying this cross-frequency interactions are still under in-
vestigation. Some rhythms are pathological and harmful to brain function.
Such is the case of epileptiform rhythms characterising epileptic seizures.

Much has been learnt about the dynamics of the brain from computa-
tional modelling. Particularly relevant is mesoscopic scale modelling, which
is concerned with spatial scales exceeding those of individual neurons and
corresponding to processes and structures underlying the generation of
signals registered in the EEG and fMRI recordings. Such modelling usu-
ally involves assumptions regarding the characteristics of the background
noise, which represents afferents from remote, non-modelled brain areas.
To this end, Gaussian white noise, characterised by a flat power spectrum,
is often used. In contrast, macroscopic fluctuations in the brain typically
follow a “1/f% spectrum, which is a characteristic feature of temporally
correlated, coloured noise.

In Chapters 3-5 of this Thesis we address by means of a stochastically
driven mesoscopic neuronal model, the three following questions. First,
in Chapter 3 we ask about the significance of deviations from the assump-
tion of white noise in the context of brain dynamics, and in particular we
study the role that temporally correlated noise plays in eliciting aberrant
rhythms in the model of an epileptic brain. We find that the generation
of epileptiform dynamics in the model depends non-monotonically on the
noise correlation time. We show that this is due to the maximisation of the
spectral content of epileptogenic rhythms in the noise. These rhythms fall
into frequency bands that indeed were experimentally shown to increase
in power prior to epileptic seizures. We explain these effects in terms of the
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interplay between specific driving frequencies and bifurcation structure of
the model.

Second, in Chapter 4 we show how coupling between cortical modules
leads to complex activity patterns and to the emergence of a phenomenon
that we term collective excitability. Temporal patterns generated by this
model bear resemblance to clinically observed characteristics of epileptic
seizures. In that chapter we also introduce a fast method of tracking a loss
of stability caused by excessive inter-modular coupling in a neuronal net-
work. Third, in Chapter 5 we focus on cross-frequency interactions occur-
ring in a network of cortical modules, in the presence of coloured noise. We
suggest a mechanism that underlies the increase of power in a fast rhythm
due to driving with a slow rhythm, and we find the noise parameters that
best recapitulate experimental power spectra. Finally, in Chapter 6, we ex-
amine models of haemodynamic and metabolic brain processes, we test
them on experimental data, and we consider the consequences of coupling
them with mesoscopic neuronal models.

Taken together, our results show the combined influence of noise and
coupling in computational models of neuronal activity. Moreover, they
demonstrate the relevance of dynamical properties of neuronal systems to
specific physiological phenomena, in particular related to cross-frequency
interactions and epilepsy. Insights from this Thesis could in the future em-
power studies of epilepsy as a dynamic disease, and could contribute to the
development of treatment methods applicable to drug-resistant epileptic
patients.



Resum

El cervell opera sota la influiencia de sorolls amb diversos origens. També
organitza la seva activitat en una serie de ritmes que s’expandeixen en
diverses bandes de freqiiencia. Aquests ritmes tenen el seu origen en
les oscil-lacions neuronals i poden detectar-se via mesures com les elec-
troencefalografiques (EEG) o la ressonancia magnetica funcional (fMRI).
Les evidencies experimentals suggereixen que les interaccions entre ritmes
operant en bandes de freqiiencia diferents juguen un paper central en el
processat cerebral pero els mecanismes dinamics subjacents a les interac-
cions inter-freqiiéncia encara estan investigant-se. Alguns ritmes sén pa-
tologics, com és el cas dels ritmes epileptiformes que caracteritzen les con-
vulsions epiléptiques.

Fent servir el modelatge computacional s’ha apres molt sobre la
dinamica del cervell. Especialment rellevant és el modelatge a l'escala
mesoscopica, que té a veure amb les escales espacials superiors a les de
les neurones individuals i que correspon als processos que generen EEG
i fMRI. Tal modelatge, en general, implica suposits relatius a les carac-
teristiques del soroll de fons que representa zones remotes del cervell no
modelades. Amb aquesta finalitat s’utiliza sovint el soroll blanc gaussia,
que es caracteritza per un espectre de poténcia pla. Les fluctuacions
macroscopiques en el cervell, perd, normalment segueixen un espectre
"1/, que és un tret caracteristic de les correlacions temporals i el soroll
de color.

Als Capitols 3-5 d’aquesta Tesi abordem mitjan¢ant un model neuronal
mesoscopic forcat estocasticament, les tres preguntes segiients. En primer
lloc, en el Capitol 3 ens preguntem sobre la importancia de les desviacions
de I'assumpcié de soroll blanc en el context de la dinamica del cervell i,
en particular, estudiem el paper que juga el soroll amb correlacié tempo-
ral en 1’'obtenci6 de ritmes aberrants d"un cervell epileptic. Trobem que la
generaci6 de les dinamiques epileptiformes depén de forma no monotona
del temps de correlaci6 del soroll. Aquests ritmes es divideixen en bandes
de freqiiencia que, segons, s’ha mostrat experimentalment, augmenten la
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seva potencia espectral abans de les crisis epileptiques. Expliquem aque-
sts efectes en termes de la interacci6 entre les freqiieéncies especifiques del
forcament i l’estructura de bifurcacié del model.

En segon lloc, en el Capitol 4 es mostra com l’acoblament entre
moduls corticals condueix a patrons d’activitat complexes i a 'aparicié
d’un fenomen que anomenem excitabilitat col-lectiva. Els patrons temporals
generats per aquest model s’assemblen a les observacions cliniques de les
convulsions epiléptiques. En aquest capitol també introduim un meétode
d’analisi de la perdua d’estabilitat causada per I’acoblament inter-modular
excessiu en les xarxes neuronals. En tercer lloc, en el Capitol 5 ens cen-
trem en les interaccions inter-freqiiéncia que es produeixen en una xarxa de
moduls corticals en preséncia de soroll de color. Suggerim un mecanisme
subjacent a 'augment de la poténcia spectral de ritmes rapids a causa del
forcament amb un ritme lent, i veiem quins parametres del soroll descriuen
millor els espectres de poténcia experimental. Finalment, en el Capitol 6,
estudiem models dels processos hemodinamics i metabolics del cervell, els
comparem amb dades experimentals i considerem les conseqiiéncies del
seu acoblament amb models neuronals mesoscopics.

En conjunt, els nostres resultats mostren la influéncia combinada
del soroll i 'acoblament en models computacionals de l'activitat neu-
ronal. D’altra banda, també demostren la importancia de les propietats
dinamiques dels sistemes neuronals en fenomens fisiolodgics especfics com
les interaccions inter-frequencia i 1’epilépsia. Els resultats d’aquesta Tesi
contribueixen a potenciar I'estudi de 'epilepsia com una malaltia dinamica,
i el desenvolupament de metodes de tractament aplicables a pacients
epileptics resistents als farmacs.
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CHAPTER 1

INTRODUCTION

The brain is the most complex organ in the human body. It contains
about 86 billion neurons — cells that process, store, and transfer information
(Azevedo et al.,, 2009). The interaction between neurons involves passing
signals from axons in a neuron to dendrites in another neuron via synapses
(see Figure 1.1). It has been estimated that a neocortical! neuron estab-
lishes 7000 synaptic contacts on average (Pakkenberg et al., 2003; Tang
et al., 2001). The neuronal structure is supported by blood vessels and
non-neuronal glia cells, occurring in a number similar to the number of
neurons (Azevedo et al., 2009). These cells additionally increase the enor-
mous complexity of the neuronal network, e.g. glial astrocytes affect and
respond to neuronal activity as well as interact with each other (Khakh and
McCarthy, 2015). The human brain provides functionalities crucial to life,
such as sensation, perception, cognition, learning, memory, sleep-wake cy-
cle, language, motor control, and behaviour. It gives rise to self-awareness
and consciousness. Understanding how the brain works, and in particular
how its functionalities emerge from its anatomy and physiology, is one of
the greatest modern intellectual challenges and the Holy Grail of modern
neuroscience. One of the ways of undertaking this quest is by means of
mathematical models and computational simulations of brain processes.
These are the methods employed in this Thesis.

The way in which modern science deals with issues such as memory
and decision making led to the invention of computers. But the brain de-
fies a naive parallel to them. Unlike computers it utilises both analogue
and digital communication (Sarpeshkar, 1998) and it works in a redundant,
parallel and asynchronous manner with a varying processing speed. Al-
though this speed is much lower than of computers, the human brain out-
performs the latter on tasks such as intuition, creativity, abstract thinking,

and improvisation. And it does so consuming less power than computers

INeocortex — the part of the brain with most of the recent evolutionary changes.
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Figure 1.1: Neuronal communication. An action potential (pulse of membrane
depolarisation current) travels from left to right (red arrow) through a synapse
- connection point between the postsynaptic neuron axon and the postsynap-
tic dendrite or soma (in this case). The potential arising from incoming signals
is summed in the soma (axon hillock, in particular). If this potential exceeds a
threshold, the signal is propagated down the axon. Myelin sheath accelerates the
signal propagation speed (http://www.anatomylibrary.us).

(Herculano-Houzel, 2011; Sarpeshkar, 1998). Furthermore, the brain does
not follow the von Neumann architecture, but rather integrates memory
and processing in the same structures. Finally, it self-organises (Abbott and
Nelson, 2000), can become spontaneously active (Fox and Raichle, 2007)
and operates in a significantly noisy environment (Faisal et al., 2008).

The role of noise in shaping activity of the brain is one of the main
interests of this Thesis. In order to study this subject we represent the
brain as a stochastic nonlinear dynamical system and we examine it us-
ing mathematics and physics approaches. We abstract the brain activity
from its functionalities, thereby avoiding the abovementioned complica-
tions, solely focusing on the time evolution of its state. We interpret this in
terms of brain rhythms, which can take the form of healthy or unhealthy
patterns. We relate these patterns to experimental recordings of the brain’s
activity, in particular to electroencephalographic (EEG) recordings. This
approach allows us to propose explanations of empirically known phe-
nomena related to epilepsy and cross-frequency transfer, to make predic-

tions, and to evaluate usability of mathematical models. The model used
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1.1. Anatomical and physiological foundations of mathematical brain
modelling

in this Thesis is not concerned with the activity of individual neurons, but
rather with activity of neuronal patches that loosely correspond to spatial
scales typical to mechanisms underlying EEG or functional magnetic res-
onance (fMRI) recordings. Before discussing in detail the mathematical
formulation of this model, we introduce in this chapter structures of the
brain and the processes that are the subjects of modelling.

The reminder of the Introduction is organised as follows. In Sec-
tion 1.1 we briefly introduce brain anatomy, narrowing the description
down from the whole brain to neuronal structures. We describe fore-
brain (Section 1.1.1), cortex and cortical neurons (Section 1.1.2), and cor-
tical columns (Section 1.1.3). We focus on the latter structures because they
are the objects of the mathematical modelling performed in this Thesis.
Therefore, we discuss them in details, including historical background and
open questions. Then, from the anatomical and functional description of
cortical columns, we move on to principles underlying generation of elec-
trophysiological signals (Section 1.2) and their simulation in mathematical
models (Section 1.3). Next, in Section 1.4 we introduce a whole variety
of applications of models considering the brain a dynamical system. We
discuss studies on rhythmic and arrhythmic activity of the brain, chaos,
noise, brain networks and applications of dynamical systems in empow-
ering medical research. We particularly focus on epilepsy, which is in the
foci of this Thesis.

1.1 ANATOMICAL AND PHYSIOLOGICAL FOUNDATIONS OF
MATHEMATICAL BRAIN MODELLING

The brain is anatomically divided in four main structures: cerebral hemi-
spheres, diencephalon, brain stem, and cerebellum. The cerebral hemi-
spheres host the neuronal circuits responsible for sensory, motor, and
higher cognitive functions. Moreover, since it is the most outer part of the
brain, it is accessible by means of non-invasive probing techniques such as
EEG and fMRI. Measurements performed with these techniques can be re-
lated to results obtained from mathematical models, which in majority of
cases are concerned with modelling neuronal tissue. The diencephalon, in

turn, is involved in regulating cortical activity, therefore it is often taken
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1. INTRODUCTION

into account in modelling. For these reasons we introduce briefly the
anatomy of the cerebral hemispheres and diencephalon (together called
the forebrain), and above all, we thoroughly discuss the concept of cortical

column, which is fundamental for the modelling used in this Thesis.

1.1.1 Forebrain

The cerebral hemispheres (called together cerebrum) account for most of the
mass of the brain (83% according to Marieb and Hoehn, 2007). Each hemi-
sphere is composed of (1) an outer layer of cortex — grey matter that consists
of neuronal cells bodies, (2) white matter, situated deeper and embodying
tracts of neuronal connections, and (3) the most deeply placed basal nuclei
(ganglia). The surface of the hemispheres (the cortex) is folded, forming ele-
vations of tissue —gyri— and grooves —sulci— (the deepest of which are called
fissures). The most elaborated modelling approaches (Bojak et al., 2010) in-
clude this folding, which brings the simulated EEG/fMRI signals closer to
the real ones. In simplified approaches, the two-dimensional cortex may be
approximated by an infinite medium (e.g. periodic boundary conditions)
or a sphere (Robinson et al., 2006).

The hemispheres are conceptually divided by arbitrarily chosen sulci
into five lobes: four of them located directly underneath the skull (frontal,
parietal, occipital and temporal, Figure 1.2) and one located deeper in the
brain (insula). These lobes are further divided into functional areas, which
are specialised in certain types of processing (e.g. sensory or motor). Real-
isation of complex tasks requires integration of information from different
areas, which is realised by axonal tracts in the white matter. The white mat-
ter fibres are classified into three groups: commissure fibres that connect
homologous cortical areas located in different hemispheres (whose thick
tract is called corpus callosum), association fibres that connect areas within
the same hemisphere, and projection fibres that run radially and connect
the cortex to lower brain areas.

The diencephalon is such an area; it is situated inside the hemispheres,
from which it derives its Greek name, meaning ‘through brain’. It is made
of grey matter and is composed of three key structures known as thalamus,
hypothalamus and epithalamus. The main role of thalamus is to shape
cortical activity, acting as a gateway to the cortex that mediates, sorts, and

4
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Figure 1.2: Structure of the human brain. Panel A shows a drawn
schematic longitudinal view of the human brain (adapted from
https:/ /commons.wikimedia.org). Panel B shows a post-mortem performed
transversal section through the human skull (U.S. National Library of Medicine,
2001-2015).

standarises afferent signals. Moreover, thalamic neurons establish recipro-
cal connections with their cortical counterparts, effectively creating feed-
back loops which further sculpt cortical activity. The thalamus consists
of functionally specialised nuclei connected with specific areas of the cor-
tex (Marieb and Hoehn, 2007). The hypothalamus plays a central role in
maintaining homeostasis of the body. It regulates the body temperature,
hunger, thirst, the sleep-wake cycle (together with the epithalamus), and

the endocrine system, and it is a centre for emotional response.

1.1.2 Cerebral cortex

The cerebral cortex is the outer layer of the cerebrum, and consists of grey
matter (neuronal cells bodies). Only 20% of the brain neurons are located
in the cerebral cortex (Azevedo et al., 2009). These neurons are much more
highly connected than the remaining 80%, which is the reason why the cor-
tex (along with the white matter) occupies ~ 80% of the total brain mass or
volume (Hofman, 1988; Marieb and Hoehn, 2007; Rilling and Insel, 1999).
Without the white matter the cortex is 2-4 mm thick (Marieb and Hoehn,
2007) and has a laminar structure, consisting of six layers?, by convention

referred to as I-VI, with the numbering starting from the most superficial

2Gix layers are present in the neocortex, which accounts for 90%-95% of all cortical neu-
rons (Karlsen and Pakkenberg, 2011). There are also less evolutionary developed parts of
the cortex with less than six layers.
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layer. Before characterising neuronal content, connectivity and functional-
ity of these layers, we briefly introduce a rough taxonomy of cortical neu-

rons.

Cortical neurons

Neuronal cells are very diverse. They are characterised by different mor-
phologies, gene expression patterns, neurotransmitters, and firing patters.
The most broad classification of cortical neurons is between spiny and
aspiny non-pyramidal neurons (DeFelipe and Farifias, 1992). Dendritic
branches of the spiny cells have heterogeneously distributed spines that
facilitate synaptic contacts (see Figure 1.3A). Axons of the spiny cells con-
nect mostly to the spines of other cells of the same type. The spiny cells
can be further subdivided into pyramidal and stellate neurons (DeFelipe
and Farinas, 1992).

Pyramidal neurons owe their name to the triangular shape of their
soma and account for 60%-85% of all cortical neurons (Liley et al., 2012).
They are furnished with a long descending axon and two dendritic struc-
tures: apical and basal (see Figure 1.3A). The axons allow for the forma-
tion of connections extending out for centimetres through the white mat-
ter. They connect to dendrites and somata of interneurons and dendrites
of other pyramidal cells. Basal dendrites are horizontally, branching ar-
bours originating at the base of the soma. Apical dendrites start as single
branches originating at the top apex of the pyramidal soma and reaching
out, towards the cortical surface (pia), up to layer I, where they form a wide
tuft. The configuration of dendritic arbours tends to be different, depend-
ing on the cortical layer in which the neuron is located (Spruston, 2008).

Spiny stellate cells lack the long axon and the apical dendrite. They
are classified as interneurons that do not directly conduct signals to far
distances, but rather form local circuits via their star-shaped dendrites,
from which the ‘stellate’ name is derived. All spiny neurons act in an
excitatory manner on their downstream associates. The majority of non-
spiny (smooth) interneurons, constituting anywhere between 10%-25% of
cerebral neurons (Buxhoeveden and Casanova, 2002), operate in the op-
posite way, inhibiting their efferent contacts. It is estimated that there is

around ten non-spiny neuronal types in the cerebral cortex (Markram et al.,
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2004). The inhibitory interneurons may target axons, dendrites or somas
(Markram et al., 2004). Somatic connections exhibit the strongest inhibitory
effect, which is called perisomatic.

Cortical connectivity and laminar structure

Although cortical connectivity involves an enormous number of ele-
ments and connections, some repetitive schemes of circuitry can be dis-
tinguished. In this Thesis, we use a mathematical model of such a brain
circuit and we relate conclusions drawn from computational simulations to
(patho)physiology. In general, the brain circuits are species-dependent and
brain area-dependent. For instance, cortico-cortical and thalamo-cortical
connectivity patterns may strongly vary (e.g. barrel cortex of rodents, dis-
cussed later). Also phenotypes of neurons change between species; for ex-
ample more types of inhibitory neurons are found in the brains of primates
than in the brains of other mammals (DeFelipe et al., 2002). Therefore, al-
though we review below cortical connectivity patterns in a fairly general
way, one needs to bear in mind that neural circuits are not governed by
absolute rules.

Pyramidal neurons are mostly found in layers IIl and V, although they
are present in all layers with the exception of layer I, where their apical
dendrites extend and where in general only few (mostly inhibitory) neu-
rons are present. Spiny stellate neurons are present only in layer IV, where
(along with other neurons) they receive sensory thalamo-cortical afferents
(Jones, 1998; Liley et al., 2012). Their partial apical dendrites only reach
layer III (Markram et al., 2004). Connections from the cortex to subcor-
tical regions originate in layers V and VI. For example, voluntary motor
control connections that run through the cortico-spinal tract originate in
layer V (Meyer, 1987), whereas connections to the thalamus extend from
layer VI (Lam and Sherman, 2010). Reciprocal connections from the tha-
lamus to the cortex terminate in layer I (Rubio-Garrido et al., 2009) or IV
(Jones, 1998), depending on the type of the source thalamic cells thereby
forming thalamo-cortical feedback loops. Commisure and associational
cortico-cortical long-range efferents arise mostly in layers II, III (Buxho-
eveden and Casanova, 2002; Mountcastle, 1997) (some also in layers V, VI)
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and they in general might terminate in all layers, but mostly II, III, IV (Bux-
hoeveden and Casanova, 2002), with an ending preference depending on
their origin (Rockland and Pandya, 1979). In general, long-range connec-
tions are organised in discrete tracts penetrating the white matter, whereas
the short-range intrinsic cortical connectivity is uniform.

This connectivity across all layers interconnects neurons of the same
type. It also involves pyramidal collaterals that feed to local inhibitory
interneurons, which in turn feed back to the pyramidal neurons and in-
hibit them. A similar, but excitatory, feedback loop involves spiny stellate
neurons. The intrinsic connectivity is also strongly arranged in a vertical
manner: e.g. information descends through the layers via apical dendrites
of the pyramidal neurons and is passed up by the spiny stellate cells from
layer IV. This leads to a high degree of correlation in the activity of verti-
cally co-aligned neurons. Furthermore, horizontal ranges of various neu-
ronal structures set boundaries of the neuronal assemblies whose activity
tends to correlate. This gives rise to a notion of a ‘cortical column’ that we

discuss in the next section.

1.1.3 Cortical columns

Apart from the symmetry arising from the laminar arrangement of the cor-
tex, one can also - arguably, as we show later - distinguish cylindrical repet-
itive neuronal structures going through all the layers: so-called cortical
columns. These columns correspond to building blocks of the model used
in this Thesis. Therefore, we discuss them thoroughly, in order to set the

scene for the interpretation of the mathematical results.

Origins

The concept of these columns can be dated back to Lorente de No (1938)
who studied mice and proposed that the cortex is organised in unitary
‘vertical chains’. The term ‘cortical column” was first used by Mountcas-
tle (1957) who performed electrophysiological measurements on the cat
primary somatic sensory cortex and observed that stimulation of same pe-

ripheral receptive fields led to almost simultaneous arousals of vertically
arranged neurons belonging to different layers. Mountcastle concluded
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Figure 1.3: Neuronal morphology and electrical activity. Panel A (adapted from
https:/ / grey.colorado.edu/CompCogNeuro) shows tracing of a cortical pyrami-
dal neuron, with a region of dendritic spines shown in the inset. The cortical
layers in panel B are denoted with Roman numerals and a scheme of a pyramidal
neuron from layer V is shown in green. Panel B also shows spatial charge sep-
aration resulting from the synaptic activity; ‘+/-" denote electrical charge in the
extracellular medium. Dashed lines symbolise axons and continuous lines stand
for dendrites. Incoming excitatory (red) and inhibitory (blue) connections create
sinks and sources of charge which from distance can be approximated by a dipole
(cyan). The cortical folding and the perpendicular alignment (with respect to the
cortical layers) of pyramidal neurons create a folded sheet of such dipoles (panel
C, based on Nunez and Srinivasan, 2006). Electric field generated by this sheet
can be measured by an electrode placed on the scalp (grey), as it is done in EEG
recordings. In the example shown in panel C, the antiparallel dipoles close to the
sulcus counteract and diminish the signal. In general, this signal is strongest over
the gyri, due to the vertical alignment of the dipoles, and closest distance between
them and the EEG electrode (grey). The figure is schematic and does not hold
anatomical proportions (the thickness of cortex is in reality 2 mm-4 mm and the
thickness of the scalp and skull is ~ 1 cm, Marieb and Hoehn, 2007).
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that the vertical organisation of the cortex has also a functional charac-
ter and he estimated that the diameter of these functional columns is not
greater than 0.5 mm. Later Woolsey and Van der Loos (1970) observed a
barrel-like organisation of neurons in layer IV of the mouse somatosensory
cerebral cortex. This is due to the somatotopic construction of that layer,
which Woolsey and Van der Loos (1970) described as a field of ‘discrete
cytoarchitectonic units” organised around afferents coming from individ-
ual whiskers in a way resembling their spatial alignment. Woolsey and
Van der Loos (1970) refer to the observed barrels as morphological mani-
festations of the functional columns described previously by Mountcastle
(1957).

In 1981 the Nobel Prize in Physiology and Medicine was awarded to
David H. Hubel and Tornsten Wiesel for their discoveries concerning in-
formation processing in the visual system. The laureates had observed a
columnar organisation of the cat (Hubel and Wiesel, 1963) and macaque
(Hubel and Wiesel, 1977) visual cortices. They noted that columns of neu-
rons (of diameter ~ 0.4 mm) were exhibiting ocular dominance, i.e. they
were reacting to visual input from one eye or the other. Moreover, columns
of diameter ~ 20 ym-50 um were related functionally, that is, they would
respond most readily to visual stimulation with moving bars of similar an-
gular orientations. The orientation preference was changing in a smooth
manner along the cortex, and the groups of columns covering the full
180 ° range of stimulation angles were found to be organised in ‘hyper-
columns’, which in turn were engrafted upon topographic representation
of the visual field (Hubel and Wiesel, 1977). These observations showed
that columnar organisation of the cortex involves compound structures

and spans various spatial scales.

Spatial classification

The cerebral structures can be considered in at least three spatial scales: mi-
croscopic, mesoscopic and macroscopic. We define the microscopic scale in the
range of tens of micrometers, on the order of the size of the neuronal soma
(5 to 140 pm, Marieb and Hoehn, 2007). The macroscopic scale is of the or-
der of centimetres, and on the order of the size of the whole brain or brain
areas, as defined for example in the Brodmann’s (Zilles and Amunts, 2010)
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or Montreal (Mazziotta et al., 1995) brain maps. In between those two lim-
its there is a range of spatial scales often termed mesoscopic (English: “mid-
dle’, ‘medial’). The size of cortical columns falls into this range. There is no
single neuronal structure that categorically determines a cortical column,
but rather we can distinguish a number of anatomical formations that in
one way or another organise neurons in vertically oriented assemblies, and
therefore give rise to the notion of a cortical column. As a consequence, we
can speak of cortical columns of various sizes (and thus types).

The mathematical modelling employed in this Thesis relies on assump-
tions that are valid in the mesoscopic scale (see Section 1.3 and Chap-
ter 2), but it is not limited to a specific spatial dimension. To the contrary,
it has been used to describe the activity of neuronal structures ranging
from the smallest minicolumn (Babajani and Soltanian-Zadeh, 2006) up to a
brain area (Breakspear et al., 2006). Often this modelling method is associ-
ated generally with ‘cortical columns” without specifying their exact type.
This is justified because granularity and the mathematical description of
this method is not concerned with subtleties distinguishing various types
of cortical columns. In what follows, we review these types of cortical
columns briefly (and in a very simplified way).

The notion of a minicolumn® follows mostly from the range of the lat-
eral extent of inhibitory connections, which roughly coincides with the
size of vertically co-aligned assemblies of cells and with the size of the
axonal and dendritic bundles of pyramidal neurons. Without discussing
details of these structures, we associate a minicolumn with a spatial extent
of ~ 50 pm in diameter, with the corresponding numbers of neurons be-
ing in range 80 — 200 (for details see Buxhoeveden and Casanova, 2002).
The lateral extents of cortico-cortical and thalamo-cortical afferent fibres
are characterised by diameters ~ 0.3 mm and ~ 0.5 mm, respectively, and
they accentuate mesoscopic columns that contain ~ 10% neurons (Liley et
al., 2012). Moreover, the horizontal axonal ramifications of cortical pyrami-
dal neurons (axonal collaterals) bind together thousands of minicolumns

*Some sources use interchangeably ‘minicolumn’ and ‘microcolumn’ (Buxhoeveden
and Casanova, 2002; Mountcastle, 1997), while others reserve the latter for structures as
small as a single row of ~ 20 neurons (Liley et al., 2012).
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and form macrocolumns®*. These columns are ~ 1.5 mm wide in diameter

and they contain ~ 2 - 10° neurons (Liley et al., 2012).

Functionality

The columnar structure differentiates the cortex from subcortical areas,
which are organised into a set of specialised nuclei and ganglia (see Sec-
tion 1.1.1). The importance of the cortical architecture may be the reason
why evolution favoured to develop rather cortical folding (that increases
the number of columns) over thickness (that would increase the number
of neurons per column). Various different explanations for the emergence
of folding have been proposed (Bullmore and Sporns, 2012). Apart from
introducing computational organisation, the columnar structure of the cor-
tex brings about a number of advantages. It is favourable for connectivity,
which only needs to concern columns, not the contained individual neu-
rons, which due to the columnar structure share information. Furthermore,
the columnar solution increases adaptability because it empowers devel-
opment due to plasticity. Since it is columns rather than neurons that im-
plement elementary functionalities, the individual neurons lose their im-
portance and may undergo plastic rewiring without causing abrupt losses
of functionality. Finally, redundancy within the columns enhances reliabil-

ity and tolerance to noise.

Cortical columns - structural or functional

The aforementioned spatial classification of cortical columns, albeit sys-
tematic, leaves ambiguous which anatomical structure is really repre-
sented by the minicolumn. This column can be identified with vertical
rows of cell bodies or with formations of axons or dendrites. None of these
structures, however, is comparable with the size of an individual pyrami-
dal cell. This mismatch between the size of the majority of the cortical
neurons and the regularity of the orientation map was already realised by
Hubel and Wiesel (1974) and is being reiterated nowadays. For example,
Narayanan et al. (2015) found that in the vibrisal rat cortex the majority
of intracortical axons reach out far outside of the somatotopic cortical col-

umn. Another difficulty arises from the fact that the columnar structure is

“Note that these columns, according to our classification, fall in the mesoscopic scale.

12



1.1. Anatomical and physiological foundations of mathematical brain
modelling

not perfectly regular. Minicolumns are not uniform across the cortical lay-
ers, they do not take shapes of regular cylinders, but rather ‘swirling slabs’
(Costa and Martin, 2010) and they may fork (Rockland and Ichinohe, 2004).
For these reasons the notion of an anatomical cortical minicolumn is still
under debate (Costa and Martin, 2010).

Despite these perplexities related to anatomy, the concept of a func-
tional column is well established. The functional modularity of the cortex
seems to be a versatile solution: between species whose brains vary in size
by three orders of magnitude, the mesoscopic column only change in size
between 300 pm and 600 pm (Mountcastle, 1997). Furthermore, although
the different cortical areas process a variety of information types (visual,
auditory, somatic sensation, cognitive, etc.), the columns engaged in these
processings are remarkably alike. Still, they can develop some differences
and specialisations. For instance, functional columns sensitive to orienta-
tion preference found by Hubel and Wiesel in cats and monkeys were not
found in the visual cortex of rodents (Costa and Martin, 2010). Similarly,
coding methods in the somatosensory and visual cortices are different. For
instance, only in the latter case the same neurons participate in two orthog-
onal codings at a time (orientation preference and ocularity).

Cortical connectivity is still under intensive research (Shepherd and
Sten, 2010). For instance, thorough anatomical studies on mapping of the
cortical circuitry led to the founding of the Blue Brain Project (Markram,
2006) which attempted to simulate in silico the rat cortical column. Never-
theless, for computational simulations focused on phenomenological dy-
namical modelling, anatomical details may not be crucial. One could, for
example, model intra- and inter- layer connectivity between groups of neu-
rons without determining their exact spatial arrangement, but rather on
the basis of their average interconnectivity (Shepherd and Sten, 2010). Such
approach led to a notion of modelling functional canonical circuits (Douglas
and Martin, 1991) rather than anatomical cortical columns. This idea is not
entirely new, but rather dates back to the concept of neural mass or popula-
tion modelling that was introduced in order to simulate the generation of

electrophysiological signals (Freeman, 1975).
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1.2 EEG AND PHYSIOLOGY OF NEURONAL OSCILLATIONS

Having discussed the basic anatomy of the cortex, we proceed to the phys-
iology of the neuronal oscillations detectable in electrical recordings, such
as EEG. In this Thesis we use a computational model that simulates such
oscillations, therefore we introduce their origins and the measurement
methods prior to discussing the computational results.

‘EEG’ stands for ‘electroencephalography’ (English: ‘electrical-brain-
recording’) - a term introduced by Hans Berger, who was the first to de-
tect and record the electrical activity of the brain (Berger, 1933). In princi-
ple, the EEG recordings capture electric potentials generated by the charge
arising from the synaptic activity of pyramidal neurons in the cortex. The
EEG recordings are performed via electrodes placed non-invasively on the
scalp, therefore at some distance from the neurons (see Figure 1.3C). For
this reason, and due to attenuating effects of the tissue, the EEG is not cor-
related with firing patterns of spikes (Logothetis, 2003; Nunez and Srini-
vasan, 2006). Furthermore, for the same reason, a single electrode registers
a signal that is generated by a large number of neurons.

Neurotransmitters, released by the arrival of a presynaptic spike, bind
to receptors on the postsynaptic dendrite and change conductivity of its
membrane. In consequence, a local ‘sink” of current is created (see Fig-
ure 1.3C), which leads to imbalance of charges between the inside and the
outside of the neuron (Bojak and Breakspear, 2015). The charge inside the
dendrite is conducted towards the neuronal soma, leaking through the pas-
sive membrane on the way and creating ‘sources’ of charge. Dendrites of
interneurons are short and lack directional preference, therefore ‘sources’
and ‘sinks” (when measured from a distance) cancel each other. In con-
trast, the long apical dendrites of pyramidal neurons (see Figure 1.3A,B)
provide a systematic separation of these charges, which far from the neu-
ron can be approximated by a dipole (Buzsdki et al., 2012). This effect is
depicted in Figure 1.3B. Red arrows in cortical layer I stand for afferents
synaptically acting in an excitatory manner and thereby creating ‘sinks’
for positive charge (surging into the neuron) which are spatially separated

from ‘sources” appearing closer to the soma.
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The dipoles arising from excitatory synaptic activity are not totally
counterbalanced by dipoles caused by inhibitory synaptic activity, because
in the case of pyramidal neurons, the excitatory synapses tend to be lo-
cated on the apical dendrites (e.g. on the apical tuft, receiving excitatory
input from remote brain areas, as shown in Figure 1.3A,B), whereas the in-
hibitory synapses tend to be located on the basal dendrites (due to local cir-
cuitry with inhibitory interneurons, see Spruston, 2008) or even directly on
the soma (the perisomatic effect mentioned in Section 1.1.2), as shown in Fig-
ure 1.3B. Moreover, because apical dendrites of different pyramidal neu-
rons are parallel, dipoles can sum up and create a distribution of charges
on the cortical sheet. Because of the folding of the cortex (see Section 1.1.1),
the dipoles aligned horizontally to the skull surface (located close to the
sulci) may partially cancel out. The dipoles located at the gyri, in contrast,
are vertically oriented and are closer to the skull surface (and therefore to
the measuring electrodes); thus they are the ones that mainly contribute to
the EEG signal (Figure 1.3C). Furthermore, the signal is strongest when the
activity of the dipoles is temporally coherent.

In Section 1.1.3 we mentioned that neurons aligned vertically in the cor-
tex tend to exhibit correlated activity, which can be explained by the strong
local connectivity. Indeed, experimental studies showed that coherence in
the EEG generation occurs in the millimetre domain (Bojak and Breaks-
pear, 2015; Bullock et al., 1995). This means that the activity of closely
situated and strongly coupled neurons is to a certain extent synchronous,
where ‘synchrony’ is used with respect to slowly decaying synaptic activ-
ity, rather than rapid spiking. The observation that the amplitude of the
signal generated by N harmonic sources grows with N when they are co-
herent, and with /N when their phases are distribute randomly (Bojak
and Breakspear, 2015; Nunez and Srinivasan, 2006) leads to an important
conclusion: EEG recordings are mainly influenced by signals generated by
coherent groups of neurons, which greatly dominate over signals from in-
coherent, albeit larger groups. In the next section we introduce concepts
underlying the computational modelling of activity of neuronal groups,
often termed neural masses or populations.
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1.3 POPULATION MODELLING

Mathematical modelling of physical or physiological systems requires a
choice of the level of accuracy. A faithful computational simulation of a
biological neuronal system could consider the geometry of individual cel-
lular bodies and the dynamics of ions, neurotransmitters, ion channels, etc.
When the system has the complexity of the human brain (see the introduc-
tion of this chapter), however, such level of accuracy could be compared
to an attempt to model the trajectories of all molecules of gas in a vast
chamber. The impracticability of this approach follows from at least two
facts: its enormous computational complexity and the overabundance of
the resulting data. In practice, one is not interested in the motion of each
molecule, but rather in phenomenological measures of the whole system,
such as temperature and pressure. Similar dimension reductions are of-
ten performed in theoretical neuroscience (Pang et al., 2016). For example,
when relating computational modelling results of the activity of neuronal
tissue with EEG or fMRI recordings, one is not concerned with the spatial
and temporal scales typical to the activity of individual neurons, but rather
with the scale set by the resolution of these signals, and - depending on the
modelling method - with the scale typical to processes responsible for the
generation of these signals.

In this Thesis we are interested in the behaviour of populations of neu-
rons that are interconnected and therefore synchronised to an extent which
gives rise to occurrence of electric dipoles registered in the recordings, or
to observable changes in metabolic activity reflected in the blood-oxygen-
level dependent (BOLD) signals measured in fMRI (details of BOLD and
fMRI are discussed in Chapter 6). From an anatomical viewpoint, these
neuronal populations can be identified with the columns described in Sec-
tion 1.1.3, in particular with mesoscopic-scale columns, the dimensions of
which do not exceed the spatial resolution of the EEG and fMRI recordings
(> 1cm and > 0.5 mm, respectively, Bojak and Breakspear, 2015).

As explained in Section 1.1.3, cortical columns have internal structures,
e.g. they comprise different types of neurons. Groups of neurons sharing
physiological properties are mathematically modelled as neuronal popula-
tions or neural masses. These groups can be then interconnected to resemble
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the internal structure of a cortical column, with a degree of fidelity that
depends on the model. Populations are dimensionless, but the modelled
columns can be arranged in a way resembling the geometry of the cortex.
These point populations may model groups of neurons of various sizes,
as long as the intrapopulation coherence is sufficiently high and invariant.
This requirement follows from the aforementioned fact that groups of syn-
chronously firing pyramidal neurons produce a signal highly exceeding
the signal produced by groups of unsynchronised neurons, and thus the
former are the dominant source of activity in the overall EEG. As discussed
in Section 1.1.3, the internal activity of cortical columns have been shown
to exhibit a high degree of correlation which makes them good candidates
for population modelling. This approach is one of many that enables theo-

retical studies of brain dynamics.

1.4 THE BRAIN AS A DYNAMICAL COMPLEX SYSTEM

The human brain is one of the most complex systems under study in mod-
ern science. It exhibits the arguably most fascinating phenomenon known
to humankind, that is self-consciousness. The functionalities of the brain
are believed to emerge from the collective activity of large-scale brain net-
works (Park and Friston, 2013). This activity is shaped by structural con-
nectivity of the brain (described in the previous Sections) and by local neu-
ronal dynamics, which are in focus of this Thesis. These dynamics are
strongly nonlinear (Friston et al., 2000) in both microscopic (Hodgkin and
Huxley, 1990) and mesoscopic (Deco et al., 2008) scales, and are inherently
noisy (Faisal et al., 2008). Nonlinearity gives rise to occurrence of phenom-
ena such as multistability, oscillations and bifurcations, all of which are
dealt with in this Thesis.

Both experimental and theoretical studies of the brain dynamics in vivo
can be performed according to one of the following paradigms. (1) First,
the brain might be studied in its resting state, i.e. in the absence of external
stimulation. (2) When stimulation is applied, one can map characteristics
of the stimulation and the response, to infer brain’s internal mechanisms.
(3) Finally, studying neuronal diseases allows to relate aberrant dynamical
patterns of the brain to structural defects. This approach permits to map
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brain mechanisms to functions. In this Thesis we are interested in the ef-
fects of rhythmic and stochastic driving on a neuronal model of a cortical
column (and interconnected columns). This driving may be attributed to
external stimulation, but also to natural background activity of brain areas
encompassing the considered neuronal patch. This links our results to the
first two paradigms. The third paradigm is referred to in Chapters 3 and 4
where we computationally model effects related to epilepsy.

In the reminder of Section 1.4 we first introduce rhythmic dynamics of
the brain, then we proceed to arrhythmic, broadband chaotic and stochas-
tic activity. We discuss potential functions of these mechanisms. Next, we
introduce concepts of metastability and transitions in the brain, and we
discuss spectral properties of mesoscopic-scale neuronal activity. We close

this section with an introduction of brain networks and diseases.

1.4.1 Rhythms of the brain

The brain is known to operate in a wide range of frequencies, occupied by
rhythms spanning over four orders of magnitude (Buzsdki and Draguhn,
2004). These rthythms are generated by internal neuronal mechanisms, i.e.
are self-sustained in the absence of external driving. Remarkably, the same
temporal order of rhythms is present in brains of different mammalian
species, although the volume of these brains changes by more than four or-
ders of magnitude (Buzsdki et al., 2013). This suggests universality of fun-
damental mechanisms responsible for generation of neuronal oscillations.
Biological studies revealed that even an individual neuron can exhibit os-
cillations and resonate at specific frequencies (Hutcheon and Yarom, 2000).
Nevertheless, the macroscopic brain rhythms are not only a reflection of
frequency characteristics of individual neurons, but rather arise as collec-
tive phenomena from specific mechanisms, e.g. from circuitry such as feed-
back loops.

Neuronal oscillations are believed to correspond to different internal
brain processes and to reflect different brain states (Engel et al., 2001;
Klimesch, 1999). In numerous experiments it has been shown that differ-
ent mental tasks are associated with changes in power in different brain
rhythms (Babiloni et al., 2014; Cannon et al., 2014; Harmony, 2013; Har-
mony et al., 1999). This separation of bands in the frequency domain
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allows different processes to operate simultaneously and independently.
Nevertheless, this frequency-based separation of processes in the brain is
not strict. Due to the nonlinear character of the brain dynamics, these
processes can interact in a number of ways (Buzsaki, 2006) resulting in
phenomena such as rhythms adjustment - various types of synchronisa-
tion (Pikovsky et al., 2001), quenching, phase precession, and a number of
inter-frequency modulations, so-called ‘cross-frequency couplings’ (Jirsa
and Miiller, 2013). These include phase-to-power coupling, which occurs
when the power (amplitude) of one rhythm (the faster one) is modulated
by the phase of the second rhythm (the slower one). In Chapter 5 we sug-
gest a potential dynamical scenario underlying this phenomenon.

In general, brain rhythms can be linked to a variety of perceptual, cog-
nitive and sensorimotor functionalities (Baar et al., 2001). A classification
of rhythms along with their associated brain states and processes is as fol-
lows. The slowest neuronal oscillations with frequencies < 1 Hz are most
often associated with slow wave sleep activity (Steriade and McCarley, 2005)
and the UP-DOWN states (Compte et al., 2003). The delta rhythm spans,
depending on the author, from 0.5 Hz or 1 Hz to 4 Hz. It has been linked
to performance of mental tasks (Harmony, 2013) and to sleep. The theta
rhythm is generated in the cortex and hippocampus. It corresponds to
the 4 - 8 Hz frequency range, and it has been linked to navigation, plan-
ning and memory (Buzsdki and Moser, 2013; Osipova et al., 2006). The
rhythm falling within 8 - 12 Hz band is termed ‘alpha’. It is the dominant
oscillation in the human brain, strongest on the occipital lobe (site of the vi-
sual cortex) and increasing during relaxed wakefulness. These rhythms are
linked to visual processing (Babiloni et al., 2005; Dijk et al., 2008), attention
(Ray and Cole, 1985) and retrieval of long-term memory (Klimesch, 2012).
It is currently believed that at least two mechanisms may be responsible
for the generation of alpha oscillations: intrinsic properties of cortical neu-
rons and a thalamo-cortical interaction (Liley et al., 2010). Beta oscillations
span frequencies from 12 Hz to 30 Hz and are related to altered states,
mental and emotional activities (Ray and Cole, 1985), and motor control
(Pfurtscheller et al., 2005). Finally, the fastest, gamma oscillations corre-
spond to the range above 30 Hz. They have been linked to attention, and
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encoding and retrieval of declarative memory (Jensen et al., 2007). They
have also been hypothesised to be crucial for cortical computation (Fries,
2009).

The above classification should be considered a guideline rather than
rigid or complete because there is much we do not know about functional-
ities and generating mechanisms of neuronal oscillations. Moreover, many
different processes may be associated with the same rhythm. For example
sleep spindles generated in the reticular nucleus of the thalamus (Bonjean et
al., 2012) and sensorimotor mu rhythms (Pfurtscheller et al., 1997) overlap
with the alpha band.

This classification might suggest that due to the distinction of sources,
the overall power spectrum of the whole brain would be a collection of sep-
arated peaks. But although spectral peaks indeed do appear, their height
might be transient and dependent on the current brain state. According to
the ‘labile brain” theory (Friston et al., 2000), due to nonlinear interactions,
dynamics of the brain are on the transient move between stable complex in-
coherence and predictable synchrony. We focus on long transient dynami-
cal states exhibited by mesoscopic neuronal models in Chapter 4. The dy-
namically varying spectral peaks are embedded in a background exhibit-
ing 1/ f* power law scaling. This peculiar shape of the background power
spectrum can stem from a number of different mechanisms (discussed in
Section 1.4.5). In Chapter 5 we perform spectral analysis of simulated neu-
ronal signals revealing peaks embedded in a realistic background.

The rhythmic activity of the brain might only reflect undergoing pro-
cesses, but it also might play a crucial role on its own (Buzsaki, 2006).
For example, the mechanism of ‘communication through coherence” (CTC)
proposed by Fries (2005) assumes that efficient transmission of information
between neuronal assemblies requires coherence of their oscillations, as-
suring temporal adjustment between input and output of the information
flow. This adjustment could be provided by a slow rhythm, coordinating
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activity of the communicating populations, e.g. by synchronously modu-
lating their activeness, as in the “phase-to-amplitude’ cross-frequency cou-
pling scenario (discussed broadly in Chapter 5). A hierarchy of such nest-
ing rhythms could also serve as a communication protocol allowing to
transfer composite meanings and representations (Buzséki et al., 2013).

CTC is capable not only of establishing but also disestablishing com-
munication routes between remote neuronal populations. Therefore, it
can support one of the fundamental functionalities of the brain, so called
‘segregation-integration’. By diminishing communication capabilities CTC
may functionally separate distributed neuronal populations, thereby pro-
viding them with operational independence. This is important for local
computations in specialised brain areas (see Section 1.1), e.g. simultaneous
processing of visual and auditory stimuli, their interpretation, and motor
control. On the other hand, by establishing connections, CTC may allow
for mediation of a solution consistent across the areas, which is necessary
for solving complex tasks that involve various sensory inputs, cognition,
control of output, etc.

In reality, the synchronisation task is additionally hampered by the fact
that signals in the brain propagate with a finite velocity. The CTC concept
embraces the resulting delays (Barardi et al., 2014; Bastos et al., 2015). In
general, delays can seriously affect the mesoscopic dynamics, e.g. leading
to bifurcations (Coombes and Laing, 2009), or even stabilising the (meso-
scopic) dynamics (Atay and Hutt, 2006). A phenomenal property of the
mammalian brains is that communication over greater distances tends to
be realised with higher velocity than on short distances (Buzséki et al.,
2013). This effectively diminishes communication dissimilarities between
closely and remotely located brain areas, empowering integrative capabil-
ities of the brain (Vicente et al., 2008). This feature might be the reason for
the aforementioned preservation of rhythms across different mammalian
species, in spite of significant differences between their brain sizes. Apart
from rhythmicity, brain dynamics exhibit a certain degree of apparent ran-
domness that we discuss in the following section.
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1.4.2 Chaos and noise

In theoretical and experimental studies alike, the neuronal dynamics ap-
pear highly complex and to a certain degree random, reflecting perhaps
the fact that the behaviour of organisms is not fully foreseeable. Since
chaos theory showed that unpredictable activity can arise from purely de-
terministic systems, it became ambiguous whether the apparent disorder
and irregularity stem from noise or from chaoticity. In neuronal dynamics
both types of behaviour are relevant, which prompted Freeman (2000) to
propose the term ‘stochastic chaos’. It is important to keep in mind, how-
ever, that although stochastic and chaotic systems may appear alike be-
cause noise and chaos share similarities (Sapienza et al., 2000), the origins
and properties of these two phenomena are fundamentally different (Ra-
binovich and Abarbanel, 1998). Chaos has a well-determined structure in
phase space, which can be used for control (Scholl and Schuster, 2008), syn-
chronisation (Boccaletti et al., 2002) and information transmission (Hayes
et al., 1993), whereas noise lacks such structure. In vitro analysis of hipoc-
campal activity (Slutzky et al., 2001) suggests that neuronal systems, al-
though globally stochastic, contain local ‘pockets of determinism’, where
chaos control methods may be applied. Following that observation, ded-
icated methods of identification of determinism in neuronal systems have
been proposed (Slutzky et al., 2002). Nevertheless, also noise is known
to be utilised in a constructive way in the nervous system (McDonnell and
Ward, 2011). In what follows, we discuss the role of chaos and stochasticity

in neuronal processing.

Chaotic brain

A suggestion that the brain displays chaotic behaviour was arguably first
put forward by Kaczmarek and Babloyantz (1977) in the context of a theo-
retical model of focal epilepsy. Later Babloyantz et al. (1985) found chaotic
attractors in experimental EEG time series recorded in sleeping humans.
Shortly afterwards Skarda and Freeman (1987) introduced a neural mass
model of the olfactory bulb, and suggested that chaos plays a crucial role
in neuronal processing. According to their proposal chaos precedes emer-

gence of ordered states, which correspond to the recognition of known
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patterns (odours), and at the same time allows for learning of new pat-
terns. Rabinovich and Abarbanel (1998) constructed a model of a central
pattern generator of the lobster heart beat. They observed that an assem-
bly of Hindmarsh-Rose spiking neurons coupled in an inhibitory way was
able to generate regular bursts, although individual neurons were capa-
ble of displaying chaos. Such an increase of regularity with complexity is
uncommon in dynamical systems, e.g. it is contrary to what is observed
during turbulence. Rabinovich and Abarbanel suggested that chaotic be-
haviour allows a broad exploration of phase space and that it provides
adaptability, since unstable chaotic orbits can be easily escaped. Finally,
they showed that rhythms generated by their model were robust against
changes to parameters, thereby demonstrating chaos-generated reliability.

So far many theoretical works have shown the occurrence of chaos in
both micro- and mesoscopic neuronal models. Sompolinsky et al. (1988)
found chaos in a neuronal network of nonlinear elements interconnected in
a random, asymmetric manner. Schiff et al. (1994) and Slutzky et al. (2003)
observed in vitro chaotic behaviour in rat hippocampal brain slices and
they implemented methods of chaos control to suppress epileptic-like neu-
ronal activity. Recently stimulus-induced suppression of chaos was stud-
ied theoretically by Rajan et al. (2010). Vreeswijk and Sompolinsky (1996)
showed that excitatory-inhibitory balance in neuronal networks may result
in chaotic behaviour. Liley et al. (2002) found chaos in a spatially extended
mean field model of electrocortical activity. Also in mesoscopic-scale mod-
els chaos was observed by Coombes and Laing (2009), Roberts and Robin-
son (2012) and many others. In summary, these studies have shown that

the capability of displaying chaos is an innate feature of neuronal systems.

Noisy brain

The results presented in this Thesis focus particularly on the impact of
stochasticity on neuronal dynamics. Therefore, in what follows we briefly
introduce potential sources and roles of noise relevant to functioning of the
brain. The apparent randomness in the nervous system is present on many
levels: from the variability of external stimuli, through neuronal process-
ing, to motor response (Faisal et al., 2008). On the level of single neuron,

stochasticity manifests as thermal noise affecting molecular diffusion, the
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kinetics of neurotransmitters, and the dynamics of synapses and individ-
ual ion channels (McDonnell and Ward, 2011). Dynamical variability also
arises from the morphological diversity of neurons (Padmanabhan and Ur-
ban, 2010) and the stochasticity of their gene expression (Kern et al., 2005).
Furthermore, randomness might arise from the irregularity of neuronal
networks (Torcini and Angulo-Garcia, 2014), and from the fact that they re-
currently couple many nonlinear elements (McDonnell et al., 2016). Also,
the representation, processing, and transfer of information in the brain are
subject to noise (Faisal et al., 2008). Since the brain has evolved under
the influence of these inevitable stochastic factors, it has developed means
of reducing their destructive effects. For example, redundancy (see Sec-
tion 1.1.3) allows to increase signal-to-noise ratio by averaging over time
and over many neurons (Faisal et al., 2008). Using prior-knowledge (Eddy,
2004; Knill and Pouget, 2004) and making predictions (Kalman, 1960) al-
low to further mitigate the influence of noise.

Studies of stochastic dynamical systems have shown that noise may not
only blur the deterministic solution, but might also play a constructive role,
leading to qualitatively new phenomena: noise-induced oscillations, state
transitions, synchronisation, breaking and restoring of symmetry, and — in
case of spatially extended systems — pattern formation and wave propa-
gation (Lindner et al., 2004; San Miguel and Toral, 1997). Similarly, the
nervous system has learnt not only to minimise effects of noise, but also
to benefit from them. The brain adopts strategies such as stochastic op-
timal control (Todorov and Jordan, 2002) to maximise the desired result
of undertaken tasks. Spontaneous releases of neurotransmitters, previ-
ously thought of to be erratic, help to establish synaptic connections in
early brain development and thus control growth of the dendritic arbours
(Andreae and Burrone, 2015). Furthermore, noise-induced transitions be-
tween attractors allow to explore the brain’s dynamical repertoire (Ghosh
et al., 2008). Variability in neuronal activations naturally allows for popu-
lation coding (Ma et al., 2006) and facilitates Bayesian inference (Knill and
Pouget, 2004). Moreover, not only randomness in dynamics, but also di-
versity of the system itself may increase performance (Tessone et al., 2006).
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Another constructive action of noise in the nervous system is via
stochastic resonance (SR) (Gluckman et al., 1996, McDonnell and Abbott,
2009; Moss, 2004). In classical stochastic resonance a moderate noisy
enhancement of otherwise sub-threshold stimuli improves the detection
performance (signal-to-noise ratio) of a nonlinear system. Later studies
showed how coupling of many units to compound systems (‘arrays’) leads
to enhancement of SR (Lindner et al., 1995; Wiesenfeld, 1991), coining the
notion of an array-enhanced SR. This coupling may even abolish the sub-
threshold condition, giving rise to suprathreshold SR (Stocks, 2000). Finally,
aperiodic SR concerns broadband (aperiodic) signals. It has been observed
experimentally in rats (Collins et al., 1996b) and in various theoretical neu-
ronal models (Collins et al.,, 1996a). Often SR phenomena in neuronal
systems are revealed by driving these systems with signals that combine
(a)periodic components and (temporally correlated) noise (Chialvo et al.,
1997; Gai et al., 2010; Longtin, 1993). We adopt a similar approach in Chap-
ters 3 and 5 where we employ periodic driving and a temporally correlated
noise. We show how varying noise parameters other than intensity, leads
to maximisation of certain properties of the driven neuronal system.

Counterintuitively and similarly to chaos, noise was found in some
cases to increase synchrony and reliability in neuronal systems (Ermen-
trout et al., 2008). When intensity of noise is tuned, an excitable compound
system affected by this noise may exhibit an enhancement in the coherence
of neuronal oscillations. This phenomenon is called coherence resonance and
was observed in theoretical neuronal models (Pikovsky and Kurths, 1997)
and recently in cortical tissue of ferrets (Sancristobal et al., 2016) in vitro.
Robust control over coherence might play a fundamental role for commu-
nication between neuronal assemblies in the brain, performed in multiple

coexisting frequency bands, as discussed in Section 1.4.1.

1.4.3 Metastability

In the absence of external stimuli (i.e. in the resting state), the dynamics
of the brain do not converge to some kind of a well defined low-energy
‘ground state of idleness’, but instead explore a repertoire of states (Deco
et al.,, 2013). Such exploration can be the result of a series of stochastic
perturbations inducing transitions between states (Deco et al., 2009). We
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study this scenario throughout this Thesis. Other scenarios may involve
the aforementioned chaos, neuronal fatigue (Duch et al., 2013) or metasta-
bility (Shanahan, 2010), which refers to a state that is not, strictly speaking,
stable, but that may still persist for an extended period of time.
Metastability has been recently shown to support efficient CTC trans-
mission between remote brain areas (Deco and Kringelbach, 2016). It
may take the form of chimera states (Shanahan, 2010), i.e. states in which
both synchrony and asynchrony coexist (Abrams et al., 2008). This al-
lows to benefit from both at a time. A similar effect is achieved when
the system operates between the two phases (e.g. synchronous and asyn-
chronous). Indeed, regardless of whether the abovementioned exploration
of the repertoire of brain states is driven by noise and/or metastability, it
is most easily realised when the dynamical system representing the brain
operates close to a transition, often referred to as a “critical point’. In what

follows we elaborate on interpretation and meaning of “criticality’.

1.4.4 Criticality and the verge of transition

The brain can be studied in spatial scales ranging from the microscopic scale,
which concerns the activity of individual neurons, up to the macroscopic
scale, where collective effects are observed. In statistical physics, the gap
between phenomena at different spatial scales can be bridged in the critical
state, where two phases separated by a second-order phase transition meet. In
this state, an arbitrarily small perturbation can grow up to system’s bound-
aries. It is due to the diverging susceptibility of the system, a behaviour
characteristic of critical phenomena, which also involve self-similarities and
power law scaling of temporal and spatial correlations. These effects con-
cern not only classically understood thermodynamical systems; in their
seminal paper Bak et al. (1987) illustrate critical effects on a model system
of a pile of sand, where adding a single grain may cause a large avalanche,
if the slope is steep enough. This system is driven towards the critical
slope steepness by its own dynamics: a slope that is too steep tends to pro-
duce avalanches and thereby lowers its steepness, while a shallower one
accumulates dropped sand and becomes steeper. In such cases we talk
of self-organised criticality (Pruessner, 2012). Signatures of criticality have
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been found in a broad class of systems ranging from artificial (e.g. traf-
fic jams, financial markets) to environmental and biological systems (Bak,
1996; Markovi¢ and Gros, 2013; Valverde et al., 2015). It has been conjec-
tured that the brain is one of such systems (Chialvo et al., 2008; Hesse and
Gross, 2014; Plenz, 2013).

In the natural sciences, the term ‘critical’ is also used in the context
of abrupt, discontinuous transitions, sometimes also termed ‘catastrophic’
(Scheffer et al., 2001). These transitions are found in a variety of systems,
including ecological, social and biological (Scheffer, 2009). In the context
of the brain, traits of catastrophic transitions are betrayed by onsets (Mi-
lanowski and Suffczyriski, 2016) and offsets (Kramer et al., 2012) of epilep-
tic seizures. Due to the dramatic consequences of critical transitions, their
early detection is of high interest (Scheffer et al., 2009). One of the signa-
tures allowing for such a detection is critical slowing down, which is also ex-
pected to occur at the critical state associated with the second-order phase
transitions (due to diverging temporal correlations). In nonlinear dynam-
ical models — such as the one used in this Thesis — transitions correspond
to bifurcations. At a bifurcation where the force of the vector field changes
from attractive to repulsive, the time of return to the steady state and the
susceptibility to external perturbations are maximised. The model used
in this Thesis operates close to a bifurcation, in particular close to a catas-

trophic transition in our studies of epilepsy (Chapters 3 and 4).

Criticality in the brain

The concept that the brain self-organises towards criticality can be based
on the following reasoning. At criticality, high susceptibility would ren-
der the brain most responsive to external stimuli and would cause spatial
and temporal correlations to diverge, which in turn would bolster long-
range communication and memory (Chialvo et al., 2008). Furthermore,
operating close to a phase transition would allow the brain to ‘take the
best out of all realms’ separated by the transition and as a result could sat-
isfy both the ‘segregation” and the ‘integration” demands (Chialvo et al.,
2008). These realms separated by a transition may refer e.g. to order and
chaos, synchrony and asynchrony, activity and quiescence. In general, the

brain might be critical with respect to one such transition, but not critical
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with respect to the other. Critical dynamics would lead to optimal pro-
cessing, understood as maximised adaptability (Bak and Chialvo, 2001),
widest accessible dynamic range, and highest information transmission
and capacity (Shew and Plenz, 2013). This critical hypothesis, although
very appealing, has yet not been unambiguously proven.

In physical systems criticality can be found when a slow variation of a
control parameter is accompanied by a measurement of an order param-
eter. In practice, such approach is not feasible in the brain. This limita-
tion was partially overcome by computational modelling, which in several
studies has shown that experimental observations are best resembled by
models operating close to criticality (Haimovici et al., 2013; Meisel et al.,
2012; Millman et al., 2010; Tetzlaff et al., 2010), or in a slightly subcritical
regime (Priesemann et al., 2014), which can be understood as a safety self-
regulation and readiness for critical processing of stimuli. Bonachela et al.
(2010) suggested that since neuronal dynamics are non-conservative, they
do not, strictly speaking, operate on the critical point, but rather "hover
over’ it (drifting back and forth during firing and neuronal recharging).
Computational modelling studies have shown that experimental data is
best replicated when the system operates slightly below a bifurcation, thus
not necessarily criticality (Deco et al., 2013, 2015).

Experimental evidence considered supportive for the existence of the
critical dynamics in the brain include divergence of spatial correlations
found in fMRI recordings (Haimovici et al., 2013), power law scaling
in synchronisation metrics of fMRI and magnetoencephalography (MEG)
data (Kitzbichler et al.,, 2009), and power law scaling indicating self-
similarity in amplitude fluctuations of alpha band EEG and MEG record-
ings (Linkenkaer-Hansen et al., 2001). Power laws have been found in scal-
ing of neuronal avalanches observed in vitro in rat cortical neurons (Beggs
and Plenz, 2003), and in vivo in monkey (Petermann et al., 2009) and hu-
man (Shriki et al., 2013) cortices. Other experiments (Dehghani et al., 2012)
do not confirm power law scaling of neuronal avalanches, or show that
the apparent power laws may result solely from stochastic processes, not
self-organised criticality (Bonachela et al., 2010; Miller et al., 2009; Touboul
and Destexhe, 2010). Furthermore, Benayoun et al. (2010) showed that
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the power law scaling of avalanches may arise from properties of non-
critical neuronal networks, which amplify small stochastic perturbations
to large bursts. Finally, Botcharova et al. (2012) noted fallibility of the
previously used signature of criticality, namely power law distribution of
phase-locking. For these reasons, the matter of self-organised criticality in
the brain is a subject of an ongoing debate (Beggs and Timme, 2012).

1.4.5 1/f° power spectra

In this Thesis, we study the dynamics of a neuronal model embedded in
a realistic background characterised by a 1/ f*-like power spectral density
(PSD or “power spectrum’). We motivate this research by the fact that a
number of measurements related to neuronal activity exhibits a 1/ f” shape
of the PSD. These measurements include (He, 2014): voltage of the neu-
ronal subthreshold membrane potential (El Boustani et al., 2009), local field
potential (LFP) (Milstein et al., 2009), electrocorticography (ECoG) (Free-
man and Zhai, 2009; He et al., 2010; Miller et al., 2009), EEG and MEG (De-
hghani et al., 2010), and fMRI (He, 2011). The 1/f* PSD dependence has
been also found in time series of fluctuations of alpha activity amplitude
in EEG and MEG recordings (Linkenkaer-Hansen et al., 2001). In these
cases the exponent b often takes values between 2 and 3 (Freeman et al.,
2000; He et al., 2010; Miller et al., 2009; Milstein et al., 2009), but generally
may vary between 0 and 4 (Freeman and Zhai, 2009), and it depends on
the type of measurement, frequency range, brain region, task performed
during recording, and finally on brain state and condition of the subject.
The 1/f* PSD dependence is a sign of an arrhythmic activity (He, 2014)
that lacks a characteristic temporal scale and thus contrasts with brain os-
cillations (see Section 1.4.1) with narrowly defined frequencies. Both ar-
rhythmic activity and oscillations are believed to be present in the brain
(Miller et al., 2009), and therefore the resulting PSD often has a form of
peaks embedded in the 1/f° background.

The 1/f* dependence on the frequency f of the PSD of temporal fluc-
tuations indicates that these fluctuations are characterised by long-range
correlations (also following power laws). In this Thesis we focus solely
on temporal fluctuations, therefore in the remainder of the Introduction
we refer to them, if not stated otherwise. Signals yielding the 1/f” PSD
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are often referred to as 1/ f noise’, even though, as we show in this sec-
tion, their origins may be purely deterministic. An interesting feature of
these signals is a lack of any characteristic temporal scale, known as “scale-
freeness’, which most often reflects self-similarity (fractality) of the signal.
For this reason the 1/ f® PSD is usually presumed to be a signature of com-
plexity of the underlying system. Since its first observation by Johnson
(1925), 1/f® PSD has been detected in a wide class of systems concern-
ing electronics, physics, biology, psychology and economics (Handel and
Chung, 1993; Ward and Greenwood, 2007). The ubiquity and versatility of
the “1/f noise’, as well as its origins, are not fully understood and should
be considered one of the yet unresolved scientific puzzles.

It is worth noting that the PSD is a measure independent of the phase
of the frequency components of the signal. Therefore different signals,
possibly generated by different mechanisms, may yield the same PSD. In-
deed, various explanations for the 1/f° PSD of the neuronal recordings
have been put forward. For example, Freeman (2000) postulated that this
shape of the PSD of the EEG and MEG time series might arise due to ‘mul-
tiple chaotic attractors with repetitive state transitions’. Recently, it has
been suggested that the power law scaling of the PSDs of these record-
ings might follow from the low-pass filtering property of dendrites that
conduct synapse-generated currents (Lindén et al., 2010), and/or from the
fact that the signal generated by membrane currents prior to reaching the
electrode, undergoes broadband 1/ f filtering in the extracellular medium
(Bédard et al., 2006; Bédard and Destexhe, 2009). Other scenarios rely on
phenomena introduced earlier in this chapter, namely: criticality, chaos,
noise, hierarchy of brain rhythms, and coexistence of many scales in the
system. In what follows, we explore in more detail these hypotheses, fo-
cusing specially on the stochastic scenario employed in Chapters 3 and 5
of this Thesis.

Stochastic generation of 1/ f® power spectra and Ornstein-Uhlenbeck noise

Various stochastic processes have been shown to yield 1/f? PSD. For ex-
ample Davidsen and Schuster (2002) employed a first-passage time model,
resembling a simplified driven spiking neuron with a threshold follow-
ing the Brownian motion. Spike trains generated by this model yield a
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PSD following 1/ f b over several decades, with b close to 1. Furthermore,
multiplicative stochasticity in point processes (Kaulakys et al., 2005) and
nonlinear stochastic differential equations (SDEs) (Ruseckas and Kaulakys,
2010) were shown to be capable of generating a 1/f° PSD. In this Thesis
we utilise stochastic processes that can be generated in a simpler way, e.g.
from standard Gaussian noise (filtered by linear SDEs).

In general, one can classify stochastic time series according to their
‘colour’, which refers to their spectral composition or, equivalently, to their
temporal correlation. In analogy to light, a noise that mixes all frequen-
cies (‘wavelengths’ in the light analogy) equally and therefore yields a flat
power spectrum (1/f%, with b = 0) is called a ‘white noise’. In neuro-
science it is sometimes argued (Roberts and Robinson, 2012) that the brain
processes and their rhythmic analogues are so complex (Engel et al., 2001),
that none of them can be distinguished and in fact white noise is a decent
approximation of the brain background activity. Indeed, a number of stud-
ies (Garnier et al., 2015; Lopes da Silva et al., 1974; Pons et al., 2010; Touboul
etal., 2011; Victor et al., 2011) employed white noise for this purpose, as we
also do in Chapter 4. Such approach has the advantage of simplicity and
it is an appropriate technique for some applications, e.g. finding trans-
fer functions. Nevertheless, it is clear that the experimental PSD obtained
from neuronal macroscopic recordings are not flat (Buzsdki and Draguhn,
2004).

For example, experimental observations based on ECoG data exhibited
the 1/f? spectrum with b close to 2 (Freeman et al., 2000; He et al., 2010).
Therefore one could argue that the ‘red” noise, with its PSD ~ 1/ f? isa
better spectral representation of a spatially integrated synaptic brain activ-
ity as detected in this kind of measurements. As the red noise describes
displacement in the Brownian motion, its values may wander away from
baseline, which makes this noise physiologically implausible in this con-
text. In order to deal with this difficulty we follow Uhlenbeck and Ornstein
(1930) and introduce leaky integration, which reverts the mean of this noise
to zero. In such case, we talk of the Ornstein-Uhlenbeck (OU) noise. The
rate of the mean reversion is given by a parameter 7 that we can freely
change, thereby varying the spectral composition of the noise. For 7 — 0,
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the PSD of the noise tends to the flat PSD of the white noise, whereas for
large values of 7 (and f bounded away from zero) it tends to the PSD of
the red noise. These properties follow from Equation (2.16) introduced in
Chapter 2. Although in order to tune the b parameter freely one needs a
superposition of a number of such noise sources (see next section), using a
single source already allows to systematically vary the PSD, e.g. in order to
study the consequences of using the white noise approximation. We adopt
this approach in Chapters 3 and 5.

The Ornstein-Uhlenbeck noise can be considered a convenient approx-
imation of the 1/ f° noise. For example, networks of spiking neurons have
been shown to generate realistic 1/f’-like spectra when driven by OU
noise (Sancristébal et al., 2013). In Chapter 5 we show that the same ef-
fect occurs for networks of coupled neural masses. OU noise is often used
in theoretical neuroscience, for example it has been associated with the in-
tegration of background synaptic activity acting upon a neuron (Destexhe
and Rudolph, 2004). Recent studies of OU processes driving neural models
have investigated the effects of coloured noise on temporal distributions of
neuronal spiking (Braun et al., 2015; Silva and Vilela, 2015) and the genera-
tion of multimodal patterns of alpha activity (Freyer et al., 2011) Neverthe-
less, differences in neuronal dynamics driven by the OU and 1/f° noises
have been identified (Sobie et al., 2011).

Finally, let us point out that the 1/ f® PSD of neuronal recordings are un-
likely to be caused exclusively by purely stochastic processes. If this was
the case, then no structure in phase distribution of the Fourier components
of the signal would be discernible. Such structure and cross-frequency de-
pendencies involving phases has been observed He et al. (2010). These
observations suggest that rhythms embedding can underlie another poten-
tial mechanism of the 1/ f’ PSD generation. We introduce this mechanism
in the following section and discuss cross-frequency effects thoroughly in
Chapter 5.

Multiscale and rhythm embedding as origins of the 1/ f® power spectra

1/f° PSD can arise from a coexistence of many processes operating in dif-
ferent timescales in one system. For example, Hausdorff and Peng (1996)
showed that 1/ f® PSDs can arise with a spectrum intermediate between the
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limits of the white and red noises from a superposition of PSDs of a num-
ber of (stochastically driven) exponential relaxations with properly chosen
amplitude and time constants (that determine the value of b). In the con-
text of neuroscience this scenario has been examined by Miller et al. (2009),
who suggested that the 1/ f” PSD follows from the separation of time con-
stants of leak and synaptic currents. This multiscale explanation also finds
support in computational modelling. Hutt and Frank (2005) showed that
1/ PSD can arise in a spatially extended neuronal model operating close
to a bifurcation, due to a coexistence of many temporal modes, which in
turn follow from delays and many spatial scales imposed by the coupling
kernel.

The multiscale scenario can be considered not only in the context of
decay processes, but also in the context of oscillations. This is so because
slow rhythms of the brain yield more power than fast ones, since they arise
from larger neuronal structures and therefore reflect the synchronous os-
cillations of a large number of sources (Buzsdki and Draguhn, 2004). In
contrast, faster rhythms (e.g. gamma) arise due to more local circuitry
(Bartos et al., 2007) and therefore have less power. This observation can
be interpreted also in the context of the communication through coher-
ence functionality (see Sections 1.4.1 and 1.4.6), which requires that slower
(modulating) rhythms arise on wider brain areas, encompassing all neu-
ronal populations engaged in communication conducted in higher (mod-
ulated) frequency ranges. These populations, although modulated by a
common source, do not have to be synchronised, therefore they generate
less power than the slower, modulating rhythms.

Furthermore, modulation itself reduces the power of faster modulated
rhythms. Consideration of a simplified case when the slower (modulating)
harmonic rhythm envelops the amplitude of the faster (modulated) one,
shows that in stationary conditions, the total power of the faster rhythm
is two times smaller than the total power of the slower one. A cascade of
such rhythm embedding would entail a decay of the PSD with increasing
frequency. As pointed out by He (2014) this scenario is unlikely to be the
only reason for the 1/f shape of the PSDs generated by the brain. That
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is because the narrow-band peaks appear and disappear on the 1/ f° back-

ground which lasts regardless to rhythmic oscillations.

Criticality as source of 1/ f® power spectra

Appearance of the 1/ PSD might be a signature of (self-organised) crit-
icality. As mentioned in Section 1.4.4 critical states are characterised by
diverging correlations (both spatial and temporal), which may extend to
system’s boundaries. To develop intuition about the meaning of the power
spectrum at criticality, we note that due to the Wiener-Khinchin theorem, a
constant correlation function results in a 1/ f” power spectrum, with b = 1
(Pruessner, 2012). Heavy-tailed correlation functions decaying according
to power laws result in different values of b. Furthermore, high power in
low frequencies can be linked to critical slowing down (see Section 1.4.4).

The original theory linking 1/f” PSD with self-organised criticality
(Bak et al., 1987) relies on dissipation of energy from low-frequency per-
turbations towards higher frequencies, realised in the spatially extended
critical system. In fact, this theory, similarly to the ‘multiscale scenario’
discussed in the previous paragraph, involves a summation of spectra of
processes spanning a wide range of temporal and spatial scales. It is the
reason of appearance of this wide range of scales that should be attributed
to self-organised criticality which in this case reflects the fact that a small
perturbation may cause a large event.

Nevertheless, it is important to be aware of two things in this context.
Firstly, distributions of sizes and durations of events (such as neuronal
avalanches in the brain) are not the same as correlations of signals (such as
the EEG/MEG recordings), although both may follow power laws yield-
ing 1/ f* PSDs. Secondly, even though every self-organised critical system
is expected to exhibit the 1/ f b PSD, the observation of this PSD alone is not
sufficient to confirm self-organised criticality. One of the reasons for that,
as discussed in this section, is that the 1/ f* PSD may arise from a multitude
of phenomena other than self-organised criticality. Another reason is that
spatially extended self-critical systems are expected to show fluctuations
described by power laws in both time and space, whereas cases of systems
showing temporal 1/ f® PSD but lacking power laws in spatial fluctuations
are known (Davidsen and Schuster, 2000).
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1.4.6 Brain networks

Recent years brought a rapid advancement of network science (Barabdsi,
2002), which formulated universal laws applicable also to brain networks.
Moreover, progress in mesoscopic-scale non-invasive magnetic resonance
imaging (MRI) techniques, such as diffusion tensor imaging and diffusion
spectrum imaging (Daducci et al., 2014), allowed to infer large-scale struc-
tural brain networks, from the connectivity of white matter tracts. The
complete map of structural connectivity of the nervous system, in anal-
ogy to the genome, is termed the connectome (Hagmann, 2005; Sporns et al.,
2005). Measurements allowing to capture mesoscopic neuronal activity,
e.g. fMRI and EEG, provide data from which functional and effective brain
networks can be derived. This leads to the notion of functional connec-
tome, which can be linked to the structural one by means of mesoscopic-
scale modelling techniques, such as those employed in this Thesis. In what
follows, we discuss these three types of brain networks and the link be-

tween them, provided by computational models.

Structural networks

Most studies of structural brain networks are focused on the connectiv-
ity of the cerebral cortex. The reason for this is that the cortex, com-
pared to other brain structures, has exceptionally developed wiring (see
Section 1.1.2). According to the ‘integrated information theory” (Tononi
and Koch, 2015), complexity of this wiring gives rise to consciousness.
In general, the organisation of the cortical connectivity is considered to
balance realisation of functional demands with wiring cost (Bullmore and
Sporns, 2012). One of the primary demands is the aforementioned func-
tional ‘segregation-integration” (Tononi et al., 1994), which is crucial for
effective brain functioning. Realisation of specific tasks requires local spe-
cialisation of neuronal tissue, which indeed is typical of the cerebral cortex
(see Section 1.1). In order to quickly process these tasks, the tissue con-
stituting a certain specialised domain needs to be internally strongly con-
nected. On the other hand, realisation of complex tasks (e.g. driving a car),
which involve different domains, requires communication across these do-

mains and mediation of a congruent solution. This is achieved by a global
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integration of locally processed specific sub-tasks (seeing the road, reading
road signs, changing gears).

Fulfilment of the segregation-integration functionality combined with
optimisation of the wiring cost leads to a specific network topology, re-
sembling the small-world topology (Watts and Strogatz, 1998) that com-
bines high local clustering with short global average path length. The
small-worldness of neuronal structures has been observed in various spa-
tial scales (Sporns and Zwi, 2004). Other, more recent studies suggest
that the connectivity of the human cortex might follow rather a so-called
"large-world” topology (Hilgetag and Goulas, 2015), characterised by a
hierarchical-modular structure. This large-scale connectome architecture,
besides high clustering and low average path length (present in small-
world networks) shows robustness via connections redundancy, existence
of hubs (due to a certain degree of scale-freeness in topology, Heuvel
and Sporns, 2013; Stam, 2014) and preferential connectivity between these
hubs, so called 'rich clubs” (Heuvel and Sporns, 2011, 2013). Characteris-
tics of the large-scale structural brain networks, attributed to scale-freeness
and small-worldness, maximise entropy and multistability (Deco et al.,
2012; Golos et al., 2015). Also the hierarchical-modular structure is be-
lieved to maximise dynamical complexity (Zamora-Lépez et al., 2016), as
well as it additionally bolstering fulfilment of the functional ‘segregation-
integration” demand (Sporns, 2013), supports occurrence of metastability
(Shanahan, 2010), criticality (Kaiser, 2010; Wang and Zhou, 2012), Griffith
phases (Mufioz et al., 2010), and chimera states (Shanahan, 2010; Villegas
et al., 2014). Moreover, most of the above listed topological traits are also
found in functional networks (Eguiluz et al., 2005), which we discuss in the

next section.

Functional and effective networks

The distinction between structural and functional connections was men-
tioned already by Freeman (1975). Functional networks are derived
from temporal synchronisation of neural activity in different brain areas.
Stronger synchronisation between the two areas reflects a stronger link in
the network, which, to some extent, reflects the structural connectivity.

Nevertheless, the structural connectome is relatively invariant, whereas
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1.4. The brain as a dynamical complex system

the functional connectivity evolves in time through a variety of configu-
rations, which presumably reflect different brain states (Park and Friston,
2013). This evolution is possible due to dynamical mechanisms modulat-
ing strength of functional connections (Bastos et al., 2015; Grothe et al.,
2012). These mechanisms are not part of the structural connectivity, which,
therefore, should not be considered the most important brain network.
Since functional networks reflect coherence, their ongoing evolution due to
the exploration of the dynamical repertoire can be understood as probing
(and possibly maintaining) various possible CTC communication channels
that can be used when the system (e.g. due to an external stimulus) con-
verges to one of the attractors (Deco and Kringelbach, 2016).

Unlike structural networks, the functional networks are undirected by
definition. Recent efforts aim at tracking the directionality of functional
connections by analysing responses of the network to external stimula-
tion (David, 2014). Traditionally, networks carrying information about di-
rect influences between neuronal assemblies - causality of the system - are
termed effective networks (Friston, 1994). They can be determined e.g. by
means of Granger causality or Dynamic Causal Modelling (DCM) (Friston
et al., 2003), which, to this end, uses mesoscopic-scale neuronal modelling
and Bayesian inference.

Mesoscopic-scale modelling is used not only in DCM, but also in link-
ing structure with function (Pons et al., 2010). This approach has shown
that functional and structural large-scale networks match best when the
dynamics of the neuronal model operate close to a bifurcation (Hlinka and
Coombes, 2012). Slightly below the bifurcation the match between the sim-
ulated and the experimentally measured functional connectivities is also
maximised (Deco et al., 2013). Under such conditions one can also infer
structural connectivity from the functional one (Deco et al., 2014) or gain
insight in brain dynamics by comparing response of the model to external
perturbation with deep brain stimulation protocol data (Deco et al., 2015).
The work presented in this Thesis focuses mostly on dynamics evinced in
individual nodes of such modelled networks, as well as on interactions

between pairs of nodes. In particular, in Chapter 4 we explore different
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scenarios to satisfy the ‘closeness-to-phase transition” demand, showing

that they lead to dramatically different collective dynamics.

1.4.7 Dynamical traits of neuronal diseases

In the previous sections of Introduction we have introduced the dynami-
cal traits of a healthy functioning brain. Deviations from these traits may
be caused or may underlie, neurological disorders. In this section we
briefly outline some exemplary diseases and their corresponding dynami-
cal symptoms with reference to brain characteristics introduced in the pre-
ceding part of this Introduction. These dynamical aberrations detected in
the brain functioning might serve as biomarkers facilitating diagnostic pro-
cedures. Moreover, understanding their governing mechanisms allows to
simulate them in silico, allowing for drugs and treatments testing. Such
theoretical and computational approach can be integrated with the exper-
imental one (Coombes and Terry, 2012).

We have, for example, mentioned that in the properly functioning
brain, balance between synchrony and asynchrony is finely tuned. It oc-
curs that deviation from this state may be harmful for brain function-
ing; an excess of synchrony is linked to Parkinson’s disease and epilepsy,
while its deficit is related to disorders such as autism and schizophrenia
(Uhlhaas and Singer, 2006). Increased nonlinearity has been suggested to
characterise epilepsy (Breakspear et al., 2006). Also oscillatory patterns
of the brain may be distorted by neurological diseases, which may affect
existing rhythms and the associated brain functions. Such is the case for
schizophrenia (Uhlhaas and Singer, 2013), and Alzheimer’s and Parkin-
son’s diseases, where aberrations of rhythmicity are presumably underlied
by lesions of brain structure (Pons et al., 2010; Uhlhaas and Singer, 2006).
Moreover, some diseases are characterised by the occurrence of aberrant
rhythms, such as tremors in Parkinson’s (Jankovic, 2008) and multiple scle-
rosis (Koch et al., 2007), and seizures in epilepsy (Kramer et al., 2012).

Likewise, arrhythmic processes may be impaired: deviations from the
1/ f* power spectrum of various measures related to brain functioning and
human behaviour have been linked to malfunctions of motor control (Di-
niz et al., 2011). Also imbalance between excitation and inhibition has been

associated with clinical symptoms, e.g. in animal models with autism (Lee
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et al., 2016). This disease has also been linked to excessive neuronal accom-
modation, the lack of which may results in attention deficit hyperactivity
disorder (Duch et al., 2013). Another example of dynamical aberration con-
cerns multistability. Victor et al. (2011) observed that EEG recordings from
patients who suffered brain injuries exhibit less alternations of patterns.

The abovementioned structural lesions may cause alterations to topo-
logical traits of brain networks such as small-world and scale-free patterns,
hierarchical modularity, hubs and rich clubs in Alzheimers disease, mul-
tiple sclerosis, traumatic brain injury and epilepsy (Stam, 2014). Such al-
ternations have been also found in schizophrenia, in both structural (Tha-
narajah et al., 2016) and functional networks (experimentally derived and
computationally modelled, Cabral et al., 2013). Lesions of the brain struc-
ture might shift its dynamics away from the optimal point; theoretical and
computational dynamical studies may help to diagnose such state and fa-
cilitate recovery (Deco et al., 2014). Deviations of brain dynamics from
the critical point into the supercritical regime were assumed to under-
lie various malfunctions, e.g. a restricted repertoire of movements and
hyper-reactive reactions to sensory stimulation in autistic patients (Shew
and Plenz, 2013). Loss of self-organised criticality was found also during
epileptic seizures by Meisel et al. (2012). A shift from an optimal regime,
in which segregation-integration functionality is maximised, was observed
in Parkinson’s disease (Deco et al., 2015). In that case, modelling of deep
brain stimulation revealed that this intervention shifts the dynamics to-
wards the optimal regime.

In general, the design of therapeutic stimulation protocols can be sig-
nificantly supported by dynamical modelling. Knowledge of the brain dy-
namics allows to theoretically and computationally study their response
to external perturbations. Such study may, for example, reveal the optimal
relative phase between signal and stimulation that leads to a desired effect,
e.g. mitigation of illness symptoms. Mechanistic models of brain stimula-
tion protocols are applicable in migraine, Parkinson’s disease and epilepsy
(Wang et al., 2015). This stimulative treatment and computational mod-
elling is especially promising in the case of epilepsy (Soltesz and Staley,

39



1. INTRODUCTION

2011). This disease motivates part of the research presented in this Thesis,

therefore we introduce it in more detail in the following section.

1.5 EPILEPSY

Epilepsy is a chronic neurological disorder characterised by the recurrence
of seizures - unpredictable disruptions of healthy brain functioning. These
aberrant states are characterised by ‘abnormal, excessive or synchronous
neuronal activity in the brain” (Fisher et al., 2005) that can be bounded
to a certain brain region (focal seizure) or can extend to the whole brain
(generalised seizure). Transient impairments caused by seizures affect such
brain functions as emotions, memory, sensory and motor control, cogni-
tion, and behaviour (Fisher et al., 2005), thereby heavily impeding qual-
ity of life. Absence and tonic-clonic seizures result in loss of consciousness
which in the latter case is accompanied by alternating contractions and
relaxations of skeletal muscles. Epilepsy affects ~50 million people world-
wide, out of which about 30% is resistant to pharmacological treatment
(http:/ /www.who.int/mediacentre/factsheets /fs999 /en/).

The main method allowing to detect, track and monitor epileptic ac-
tivity in vivo is via EEG that measures potentials of synaptic origins (see
Section 1.2). Due to its low cost and non-invasiveness, extracranial EEG is
the method of first choice, but due to its poor spatial resolution, localising
epileptic foci is usually done with intracranial EEG, performed with elec-
trode arrays implanted into the brain. On the other hand, high temporal
resolution of EEG signals allows for discrimination and analysis of tempo-
ral epileptic patterns. In general, there is a variety of such characteristic
epileptic patterns (Kramer and Cash, 2012), nevertheless in this Thesis we
focus on a spiky one that captures some characteristics of ‘spike-and-wave’
(SW) discharges (Destexhe, 2007). Figure 1.4 shows a snippet of the EEG
time course comprising high amplitude ~3 Hz SWs. The abruptness of
their occurrence and cessation brings epilepsy close to the theory of criti-
cal transitions (see Section 1.4.4). It is, however, not the only observation
related to epilepsy that makes this disorder specially relevant for dynami-

cal and computational modelling.
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1.5. Epilepsy
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Figure 1.4: An exemplary multimodal EEG recording from an absence seizure
(Suffczyniski, 2000). Abbreviations on the left are standard symbols of EEG elec-
trodes.

This modelling may aid alternative treatment for therapy-resistant pa-
tients. For example, Vagus Nerve Stimulating implants (Yuan and Silber-
stein, 2016) stimulate the brain in a presumably desynchronising manner
that diminishes the risk of epilepsy recurrence. Tests are being also con-
ducted for transcranial and deep brain stimulation (Stamoulis and Chang,
2012). In either case, the exact form of the stimulating signal might be cru-
cial for the outcome (Fisher and Velasco, 2014). Optimising the applied
pulse, e.g. in real time in a closed-loop setup (Berenyi et al., 2012), can
be immensely supported by computational modelling (Milton et al., 2004;
Taylor et al., 2014). The closed-loop solution can also be empowered by
a model-inversion approach and the Kalman filter, which was shown to
be effective in providing insight in epileptic dynamics from experimental
observations (Freestone et al., 2014).

Computational approaches also led to a shift in our understanding of
epilepsy, which is currently being thought of as a network-level disease,
rather than merely a local pathology (Khambhati et al., 2014; Khambhati
et al., 2016; Richardson, 2012; Terry et al., 2012; Van Diessen et al., 2013).
Such approach can help to localise and eliminate large-scale brain network
nodes crucial for the generation and spreading of seizures. In that direc-
tion, modelling has been shown to be a potentially effective aid for surgical
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resections (Goodfellow et al., 2016; Hutchings et al., 2015). In Chapter 3
we focus on particular dynamical factors facilitating initiation and spread-
ing of epilepsy, whereas in Chapter 4 we study potential mechanisms of
seizure terminations.

Considering epilepsy a dynamical disorder (Milton and Jung, 2002;
Milton, 2010) has led to development of a number of computational models
reproducing various epileptic waveforms (Wendling et al., 2015). In partic-
ular, many characteristics of transitions between healthy and epileptic ac-
tivity was explained on the ground of bifurcation theory (Breakspear et al.,
2006; Kramer et al., 2012; Milanowski and Suffczynski, 2016; Touboul et al.,
2011). Recent efforts are also being directed towards patient-specific con-
nectome modelling (Jirsa et al., 2016). Finally, computational methods have
been engaged in development of seizure prediction methods (Mormann et
al., 2007) that since recently compete in an annual contest (Brinkmann et
al., 2016).

1.6 AIM AND ORGANISATION OF THE THESIS

In this Thesis we focus on modelling temporal dynamics of mesoscopic
brain processes, and on relating them to experimental data. In particular,
we are interested in processes underlying the generation of specific tempo-
ral patterns in signals registered in EEG and fMRI recordings. In the case
of EEG these patterns are epileptiform dynamics and inter-rhythmic inter-
actions, and in the case of fMRI they concern the behaviour of the signal in
the resting state (when brain stimulation is absent) and in the poststimulus
period (when stimulation is present). We link the generation of EEG pat-
terns to stochastic and harmonic driving of a mesoscopic-scale neuronal
model. In particular, we concentrate on the effects arising from the finite
temporal correlation of the driving stochastic process, which we model as
an Ornstein-Uhlenbeck noise. In contrast with the commonly used white
noise, this type of driving reproduces the 1/f° spectral properties of the
brain. We therefore predicate that this assumption also approximates bet-
ter the background activity of the brain acting upon a modelled patch of
tissue (e.g. a cortical column). This modelling is done by means of a meso-

scopic neural mass model.
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We therefore study a neuronal population as a dynamical system sub-
ject to temporally correlated noise and harmonic driving. We are inter-
ested in the effects that arise from the interplay between the characteristic
timescales of the driving (temporal correlation of the noise, frequency of
the harmonic signal) and the bifurcation structure of the model. We show
that these effects recapitulate phenomena known from experimental EEG
recordings, in particular initiation and termination of epileptic seizures,
visually evoked epilepsy and increase of EEG power in a fast frequency
band, occurring as a result of slow driving (cross-frequency transfer). Spe-
cial attention is paid to effects arising due to coupling between neuronal
populations: we introduce the concept of collective excitability and a math-
ematical method for finding the critical coupling strength at which a net-
work of coupled dynamical elements (here neuronal models) loses stabil-
ity. We also show how the coupling strength modulates behaviour of a
system operating close to a transition (in our case a ‘catastrophic” one).

This Thesis is organised in the following way. In Chapter 2 we intro-
duce the history and mathematical formulation of neural mass models, fo-
cusing on an extended version of one such model (used later in this The-
sis). Chapter 3 is devoted to the dynamics of a single module of the model.
Therefore, connectivity is not considered; emphasis is put instead on driv-
ing this model with harmonic signals and Ornstein-Uhlenbeck noise. In
Chapter 4 we extend the model to two coupled modules and study their in-
teractions. In that case we simplify the driving stochastic process by mod-
elling it with white noise, which allows us to extract collective phenomena
without additionally considering their dependence on the noise correlation
time. Having studied the dynamics of a single module and intermodular
interactions, we move on to networks (of progressively increasing size)
driven with harmonic signals and Ornstein-Uhlenbeck noise. This is done
in Chapter 5, where we also extend our methods to spectral analysis.

This organisation of the Thesis is motivated by ‘making things as sim-
ple as possible, but no simpler”. We extend the complexity of the system

5The authorship of this maxim is traditionally assigned to Albert Einstein.
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gradually, deepening chapter-by-chapter our comprehension of its dynam-
ics. This apparently parsimonious approach is sufficient to propose expla-
nations for a number of phenomena known to occur in the brain. One such
phenomenon, discussed in Chapter 6, is not related to EEG recordings, but
to fMRI. For this reason, in that chapter a model of the fMRI signal gen-
eration is introduced, studied and tested on experimentally collected data.
Coupling this model with a neuronal model, such as the one used in the
tirst chapters of this Thesis, should allow to relate computational simula-
tions not only to EEG, but also to fMRI experimental data. In summary, the
aim of this Thesis is to link particular experimental observations of brain
activity to dynamical properties of models concerned with brain processes

occurring in the mesoscopic scale.
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CHAPTER 2

MODELLING MESOSCOPIC BRAIN DYNAMICS

Computational neuronal models may be used for various purposes. A neu-
ral network, for example, may serve for solving classification problems.
Neural networks are loosely motivated by neuronal anatomy, but most of-
ten lack in biological fidelity. Other descriptions aim at researching some
level of biological realism rather than computational capacities, with the
goal of increasing our understanding how the brain works. Such is the
case of neural mass models used in our work. It allows to compare re-
sults of computational simulations with experimental measurements, such
as those obtained with EEG, MEG and fMRI. An agreement consistency
between simulation and experiment allows to validate the model, to gain
insight in biological processes and to make predictions. We do all of these
in this Thesis.

Biologically inspired neuronal modelling may concern structures of
various spatial scales, from the dendritic arbour to the whole cortex. The
population modelling introduced in Section 1.3 focuses on describing col-
lective activity of groups of neurons. These neurons share some specific
features, e.g. a “population of inhibitory neurons’ gathers only inhibitory
neurons and abstracts from their real phenotypes. The size of such pop-
ulation depends on the granularity of the model, but it is constrained by
a sufficient degree of internal coherence. As mentioned in Section 1.1.3,
experimental studies revealed groups of cortical neurons of highly corre-
lated activity, so called cortical columns. These columns are therefore nat-
ural objects of modelling. The models that describe their activity can be
done by interconnecting several neuronal populations contained within
the purported column. This choice of granularity provides a correspon-
dence to spatial scales typical of non-invasive neuroimaging techniques
such as EEG, MEG and fMRI. Nevertheless, populations are not limited to
the representation of cortical columns, e.g. increased synchrony caused by
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2. MODELLING MESOSCOPIC BRAIN DYNAMICS

an epileptic seizure may allow to approximate pyramidal neurons in a cor-
tical area (in case of a focal seizure) or even in the whole brain (in case of
the generalised seizure) with a single population (Breakspear et al., 2006).

There is a number of ways in which one can derive a mathematical de-
scription of the activity of a neuronal population. One can, for example,
apply formally the mean-field approach to an ensemble of spiking neurons
to obtain the Fokker-Planck equation describing their dynamics (Deco et
al., 2008). A specific dynamical representation of the average state of the
population (corresponding to the mean of the distribution) is the neural
mass model (NMM). If this average state is space-dependent, we talk of a
neural field. We do not elaborate on the latter approach, since in this The-
sis we focus solely on temporal effects. Spatially extended systems can
also be modelled by means of neural masses interconnected accordingly
to anatomical networks (see Section 1.4.6). In what follows, we outline
the evolution of the NMMs, focusing on the progress that led to the intro-
duction of the Jansen-Rit model, extensively used in this Thesis. We also
outline extensions to this model and recent progress in neural mass mod-

elling.

2.1 HISTORICAL OVERVIEW OF NEURAL MASS MODELS

2.1.1 Foundations of neural mass models

The introduction of the concept of neural masses is often attributed to Free-
man (1972a,b) and Lopes da Silva et al. (1974). Nevertheless, earlier works
of Beurle (1956) and Griffith (1963, 1965) who considered spatially ex-
tended ‘masses of cells having properties similar to the known properties
of neurons’ with exponentially decaying excitatory connections (Liley et
al., 2012). Although these works can be considered cornerstones of neural
fields (see above), they also paved the way to the formulation of models
not including spatial dimension. Such was the model introduced by Wil-
son and Cowan (1972), which describes the dynamics of the proportion of
neurons in the population firing per unit of time, thereby strengthening
the notion of the firing rate.
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Wilson-Cowan model

The Wilson-Cowan model comprises two inter- and self-connected neu-
ronal point populations with refractory periods. One population com-
prises excitatory neurons and the other inhibitory ones. Inhibitory action
was already considered by Freeman (1967), who linked it to damped and
self-sustained oscillatory behaviour. The Wilson-Cowan model assumes
that upon receiving an input a certain fraction of neurons in the popula-
tion fires. This fraction is dependent on the strength of the excitation and
on the distribution of firing thresholds in the population (described by a
rate response function). Alternatively, one could assume that the thresh-
old is the same for all neurons in the population, but the distribution of
synapses (mediating the incoming signal) is not uniform. In either inter-
pretation, for a unimodal bell-shaped distribution, the response function
takes the shape of a sigmoid, bounded, in the case of the Wilson-Cowan
model, to values between 0 and 1.

This model can be considered as a rate model, since it is only concerned
with firing rates, i.e. it does not contain variables referring directly to elec-
trophysiology. Nevertheless, the momentary level of excitation resulting
from an external input is obtained here from a convolution of this input
with an impulse response kernel function. This linear-time-invariant (LTI)
approach would be no different from the way in which post synaptic po-
tentials are computed in later developed models (voltage models), but Wil-
son and Cowan introduced an additional time coarse graining in order to
simplify this convolution. They were also the first to employ the phase plane
analysis to studies of mesoscopic neuronal dynamics, an approach that had
been used earlier by FitzHugh (1961) for spiking neurons. This allowed
Wilson and Cowan to identify limit cycles in their model. Significant parts
of their work, e.g. inhibitory coupling, interpopulation connectivity, linear
time-invariance, and the sigmoidal rate response function are present in
neural mass models, although Wilson and Cowan did not call their model

a ‘neural mass’.
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Approach of W.]. Freeman

The term ‘neural mass” was arguably used first in the same year by Free-
man (1972a,b) with a reference to ‘tens or hundreds of millions of neu-
rons’. Freeman advocated for studying these groups of neurons, which he
saw relevant to electrophysiological measurements. In his book (Freeman,
1975) he introduces a comprehensive approach to neural mass modelling.
The main strength of his approach is a combination of an abundance of ex-
perimental measurements with a tailored theory based on signal analysis.
To prevent giving up biological fidelity for mathematical tractability, Free-
man assumed that nonlinearities can be treated by a series of piece-wise
linearisations. That allowed him to rely on the LTI systems theory and
use its analytical techniques. Within this framework, Freeman modelled
complex cortical structures (exceeding the simple topology of the Wilson-
Cowan model) and fitted results to experiments dealing for instance with
impulse responses of populations.

Interestingly, in Freeman’s approach the connectivity within neural
masses is based not on anatomical connections, but on functional ones,
identified between neuronal ‘sets’. These sets are hierarchically organised.
For instance zero-level set describes a group of non-interacting neurons
having same input and the same sign of output, and a first-level set com-
prises two zero-level sets, coupled either in an excitatory or inhibitory
manner. The second-level set containing all four possible combinations
of interactions is topologically equivalent to the Wilson-Cowan model. In
general, in Freeman’s approach, the dynamics of neural masses are gov-
erned by two conversions. The first one is an asymmetric sigmoidal ‘wave-
to-pulse’ conversion, yielding the firing rate of a population resulting from
certain postsynaptic potentials, and an inverse “pulse-to-wave’ conversion.
As a result, the dynamics of the second-level set is described by four third-
order linear differential equations. The order of equations caused that,
unlike in earlier models, the maximal post synaptic potential (PSP) at the
soma occurs with a realistic delay with respect to the arrival of the pulse at
the synapse. As a result, Freeman was able to reproduce with great fidelity
electrophysiological signals generated from the mammalian olfactory bulb
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and prepyriform cortex. In the former case, the result led to conclusions

about the role of chaos in the brain (reviewed in Section 1.4.2).

Approach of EH.L. da Silva

A similar approach, also with realistic PSPs, was introduced by Lopes da
Silva et al. (1974), who constructed a model of the EEG alpha rhythm, aris-
ing in the thalamus due to inhibitory feedback between thalamo-cortical
relay neurons and inhibitory interneurons. Note that due to the univer-
sality of inhibitory feedback loops, the same network can also be used to
model cortical activity. The model was computationally integrated on a
lattice, and treated analytically in the reduced form of a simple circuit. In
the former case, individual neurons were considered; in the latter, a sig-
moidal rate function was adopted, following Wilson and Cowan (1972), to
account for mass generation of spikes.

Similarly to Wilson and Cowan, and to Freeman, da Silva et al. lin-
earised the simplified (lumped) version of the model, what allowed them
to obtain an analytical expression for the transfer function - response to
driving with white noise. This stochastic driving and a resulting stationary
response were novel in comparison to earlier purely deterministic models,
where decaying output activity would appear as a response to transient
stimulation. In the later development of this model the PSPs were sug-
gested to be described by alpha functions, instead of previously used sums
of exponentials (Rotterdam et al., 1982). The inclusion of a population of
excitatory interneurons was suggested by Lopes da Silva et al. (1976) and
studied by Zetterberg et al. (1978), who noted the universality of this cir-
cuit and suggested its relevance to local cortical populations with pyra-
midal neurons. Twenty years later this model was slightly modified and

popularised by Ben H. Jansen and colleagues.

2.1.2 Jansen-Rit model

The Jansen-Rit model was introduced to study visually evoked potentials
(Jansen and Rit, 1995; Jansen et al., 1993). It comprises elements introduced
in the aforementioned studies, i.e. a response function described with a
slightly modified sigmoid, realistic PSPs described by alpha functions and
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treated within the LTI framework, and a lumped circuit describing the in-
terconnection of three types of neuronal populations. We provide a de-
tailed description of the model and its mathematical formulation in Sec-
tion 2.3. It is basically a slightly modified version of the models of da Silva
and Zatterberg, additionally expressed in a differential form. The main
contribution of Jansen and Rit was the introduction of intra-population
connection strengths adequate to cortical anatomy known from other stud-
ies. Therefore, their description refers specifically to a cortical column,
not to the thalamus, as it was originally proposed by Lopes da Silva et
al. (1974).

Today’s popularity of this model stems probably from its simplicity,
combined with rich dynamics that include excitability, Hopf bifurcations,
and bistability between two limit cycles (as shown extensively in this The-
sis). One of these limit cycles, similarly to da Silva’s model case, resem-
bles healthy alpha oscillations, and the other one resembles unhealthy
epileptic-like activity. The rich dynamics of this model were revealed in
several studies. For example, Malagarriga et al. (2015b) used a network
of interconnected and periodically driven Jansen-Rit modules in order to
study how this network performs computational operations on various dy-
namical inputs. Chaos has been found in a system of two coupled Jansen-
Rit modules (Huang et al., 2011) and in a single, periodically driven mod-
ule (Spiegler et al., 2011), which may also display periodicity and quasi-
periodicity (Malagarriga et al., 2015a).

2.1.3 Recent development and extensions

As mentioned in Section 1.3, NMMs are commonly used to model phe-
nomena that affect the brain’s EEG, such as the abovementioned visual
stimuli and epilepsy. Other phenomena of this kind involve the effects of

drugs and sleep.

Neural mass models in studies of epilepsy and other diseases

Neural mass models have been used to study various aspects of epilepsy,
such as focal and generalised seizures, interictal activity, transition from
healthy rhythms to seizures and spreading of the latter, epileptic networks,
and various epileptiform temporal patterns (Wendling et al., 2015). In
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some cases, the studies were performed on universal models. Such is the
case of the thalamo-cortical model of Robinson et al. (2002), which is built
on the familiar NMM principles: a sigmoidal rate response function and
realistic PSPs modelled by exponentials. Bifurcation analysis revealed that
depending on the parameter values, this model is capable of displaying
several healthy and epileptic rhythms (Breakspear et al., 2006). This ob-
servation allowed to use this model to show that some symptoms related
to tonic-clonic and absence seizures follow from properties of the corre-
sponding bifurcations (Breakspear et al., 2006). Extending this model with
basal ganglia allowed Albada and Robinson (2009) to study Parkinsonian
states.

Another class of studies builds on the known NMMs in order to re-
produce epileptic phenomena. For example, the model of Wendling et al.
(2002) extends the Jansen-Rit model by one additional population of in-
hibitory interneurons characterised by slow dynamics. The same exten-
sion with different values of parameters was also introduced by Goodfel-
low et al. (2011). The model of Suffczynski et al. (2004) extends the model
of da Silva; it comprises two modules representing cortex and thalamus,
it concerns two timescales of inhibition, and it additionally considers cal-
cium currents. This model was able to show spontaneous occurrence of
epileptic spikes, as well as suggest a stimulation protocol leading to the
disruption of seizures. The simple inclusion of timescales, different than
originally proposed for the alpha rhythm generation, was also applied by
Molaee-Ardekani et al. (2010), who in a Jansen-Rit-like model considered
shorter timescales and reproduced fast oscillations of seizure onsets. Con-
sidering slow and fast scales in a cortical module of the Jansen-Rit, and
introducing a thalamic module allowed Bhattacharya et al. (2011) to study
alpha rhythms in Alzheimer’s disease.

Spectral properties, evoked potentials and interactions between modules

A NMM based on da Silva’s approach was used to study potential causes
of event-related synchronisation (ERS) and desynchronisation (ERD) in
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the alpha (Suffczynski et al., 2001), and beta and gamma bands (Grabska-
Barwiriska and Zygierewicz, 2006). David and Friston (2003) used two cou-
pled generalised Jansen-Rit modules (enriched with populations of vari-
ous kinetics) to study how changes in the model parameters (in particu-
lar delays and coupling strengths between the modules) affect its tempo-
ral and spectral properties. The authors found that these models upon
parameter values change are capable of generating rhythms in a broad
frequency range. In subsequent studies, David et al. (2004) focused on
the functional connectivity (see Section 1.4.6) generated by this model and
its event-related responses (David et al., 2005, 2006). Chakravarthy et al.
(2009) used this model to study feedback control strategies for the sup-
pression of seizures in the epileptic brain. Wang and Kndosche (2013) im-
plemented the Jansen-Rit description to model the laminar structure of the
cortex. They also enriched the model with plasticity in order to study ha-
bituation effects as measured in the MEG recordings during auditory stim-

ulation.

Networks of neural masses

Recently, studies of the interactions between a small number of coupled
neural masses were extended to whole networks. For example, a regular
lattice of interconnected Jansen-Rit modules additionally furnished with
slow inhibition was utilised by Goodfellow et al. (2011) to study spatial
spreading of epileptic activity. As mentioned in Section 1.5, recent stud-
ies consider epileptic neural masses arranged in realistic brain networks
(Goodfellow et al., 2016; Hutchings et al., 2015). Similarly, a number
of studies of large-scale brain networks (see Section 1.4.6) rely on neural
masses. Babajani and Soltanian-Zadeh (2006) suggested to consider a neu-
ral mass as a model not of the whole cortical area, but as a model of a mini-
column (see Section 1.1.3). Coupling many such columns led to a model of
a cortical voxel generating the fMRI signal. We devote Chapter 6 to a model
of this signal generation, and we discuss driving it with fast rhythms, such
as the alpha rhythm typical of the Jansen-Rit model.

A similar connectivity model was extended to large-scale brain net-
work to study EEG spectra (Sotero et al., 2007), functional connectivity and
synchronisation (Pons et al., 2010). They used interconnected Jansen-Rit
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modules enriched with self-excitation of pyramidal neurons. There is a di-
chotomy in this methodology: intra-area connections are modelled with
a spatially extended connectivity kernel (reflecting the heterogeneity of
anatomical short-range cortical lateral connections), whereas discrete inter-
area connections follow from brain imaging tractography data. Finally,
Nguyen Trong et al. (2012) used a network of Jansen-Rit modules to model
orientation selectivity of the visual cortex and to study the association be-
tween spontaneous and evoked activity. The last example establishes a
link between NMMs and cognitive processes (as opposed to the simple
generation of MEG/EEG/fMRI signals).

Models of sleep, drugs and anaesthesia

Sleep and anaesthetic drugs can influence directly excitability, and indi-
rectly the neuronal oscillatory patterns observed in the EEG. This renders
NMMs relevant to represent these brain states. For example, Weigenand
et al. (2014) used an NMM to explain K-complexes and slow oscillations
in the EEG patterns typical of NREM phase sleep. Transitions between
different phases of sleep were studied on a spatially extended model by
Steyn-Ross et al. (2005). Same authors focused on transitions induced by
the anaesthetic drug propofol (Steyn-Ross et al., 1999). The effects induced
by this drug were also investigated by Hindriks and Putten (2012), Hutt
(2013) and Hashemi et al. (2015). Finally, Rowe et al. (2005) used the Robin-

son model to study drug effects in attention deficit hyperactivity disorder.

2.2  PRINCIPLES, ADVANTAGES AND DISADVANTAGES OF NEURAL MASS
MODELLING

In this section we take a closer look at some assumptions underlying the
NMMs. First, we focus on the LTI assumption and we examine when the
shape of the PSPs resulting from an incoming spike can be approximated
by the shape of change of the synaptic conductance. At the microscopic
level the impulse response of the latter is often described by double expo-
nentials, as can be derived formally from probabilistic considerations on
the opening and closing of synaptic receptor channels (Dayan and Abbott,
2001). In a simplified approach, this conductance is described by the alpha
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function. In case of a single neuron, the subthreshold membrane voltage V'
(here describing the PSP) can be expressed in a simplified way by a leaky
integration with synaptic current (Dayan and Abbott, 2001):

= EL - V(t) - ngs(t)(V(t) - Es)a (21)

where 7, is the membrane time constant, Ej, is the rest potential, ry, is
the membrane resistance and gs(t) is the time-dependent synaptic conduc-
tance. Assuming infinitely fast membrane relaxation!' 7, — 0 we obtain:

1+ rmgs(t)

which shows that V'(t) does not change linearly with g4(t). After consid-

: (2.2)

ering only the first-order Taylor expansion around r,gs(t) = 0 we obtain:

V(t) = B, + rmgs(t)(Es — EY,). (2.3)

This equation shows that at rest V' (¢) equals Ey,, while the synaptic cur-
rent adds to V' (¢) the conductance-generated signal scaled by the difference
between the rest and the synaptic reverse potentials. We therefore arrived
to a solution fulfilling the LTT assumption with a kernel described by the
scaled synaptic conductance response. In case of an incoming spike train,
the resulting potential is obtained from a convolution of that kernel with
the input. At the population level, when considering not the exact mo-
mentary, but rather temporally averaged potential (within a small inter-
val comparable to the timescale of synaptic dynamics), convolution with
a spike train changes to a convolution with the firing rate function, which
describes number of spikes per this time interval?. Since all effects related
to neuronal inputs are considered linear we can scale them up from the
level of a single neuron to the level of a neuronal population. This allows
to relate characteristics of a population to microscopic synaptic properties.
At that level we talk of the average V (t) in population and the average firing
rate.

!This assumption is typical of NMMs. A model in which finite 7, is considered is the
model of Liley et al. (2002)
ZFor the formal derivation see e.g. Hutt (2015)
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We illustrate these considerations with an example in which the im-

pulse response of the synaptic conductance is given by the alpha function:

gu(t) = Ot — to) - (t — to) Be~-10/m, (2.4)

Ts

where O is the Heaviside step function, ¢, is spike arrival time, 75 is the
synaptic characteristic timescale, and g is the characteristic amplitude. Fig-
ure 2.1 shows the temporal evolution of V' (¢) upon spike arrival att = 0s,
given by solutions of Equations (2.1)-(2.3) in blue, green, and red, respec-
tively. In practise, temporal differences between the exact and the approx-
imated solutions can be partially compensated by adjusting the PSP time
constant(s). This is additionally justified, because in neural mass models
we are interested in potentials occurring at the soma, and thus some de-
lay should exist with respect to the synaptic activity. The assumptions we
made to arrive to Equation (2.3) can be understood in the following way:
membrane dynamics are much faster than synaptic conductance dynam-
ics, and synaptic activity acts as if the membrane potential remained close
to its resting state value FEj,; the further it deviates from that value, the
worse the approximation is. Indeed, Figure 2.1A shows that when these as-
sumptions do not hold, the time course of the PSP as approximated by the
synaptic conductance differs from the exact solution, whereas Figure 2.1B
shows that the separation of 7y and 7, timescales and only a small varia-
tion from the resting state £y, (compare scales on Y axes in panels A and B)
make all results consistent with each other.

It is worth noting that in our NMM, the amplitudes of the PSP impulse
responses are smaller than 10 mV, and as a result the average membrane
potentials of neuronal populations in the model do not deviate from the
quiescence state by more than ~ 20 mV. This means that in practise they
do not get close to E, where the approximation error is greatest. This ap-
proach is somehow familiar to that of the integrate-and-fire model, where
subthreshold membrane potentials are considered only within a ~ 20 mV
range, i.e. between the resting state (~ —70 mV) and the firing threshold
(~ —50 mV). Nevertheless, as shown above, here an additional linear as-
sumption is made, valid when the potential remains close to the steady
state.
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Figure 2.1: Time evolution of the post synaptic potential V' for a single neuron.
In both panels solutions to Equations (2.1)-(2.3) are shown in blue, green, and red,
respectively. A spike arrives at ¢, = 0 and the synaptic conductance changes ac-
cording to the alpha function (Equation (2.4)). Panel A corresponds to 7,=100 ms,
Ts=100 ms, rn,gs=1. Panel B corresponds to 7,=5 ms, 7,=100 ms, r,Gs=0.05. Ey, =
-70 mV and E,=0 mV.

In a nutshell, NMMs are useful in modelling activity of large groups of
neurons, operating in a fairly and invariantly synchronous manner. This
assumption is supported by the fact that sensory information incoming to
the nervous system affects groups of neurons rather than individual neu-
rons. Nevertheless, NMMs are not concerned with coherence of the neu-
rons within the group. As explained in Section 1.3, they implicitly assume
that coherence is high enough (to produce a detectable signal) and invari-
ant. Nonetheless, change to this coherence is one of the possible explana-
tions of the event-related changes to the EEG power spectra (Pfurtscheller
and Lopes da Silva, 1999). A single neuronal population described with
the NMM approach will inevitably fail to capture this behaviour. Only re-
cently a ‘next generation of neural mass models’ that deals explicitly with
intra-population synchrony was introduced by Coombes and Byrne (2016).

Large groups of neurons are responsible for generation of signals de-
tected in non-invasive neuroimaging techniques, such as EEG, MEG and
fMRI. For this reason results obtained with NMMs are often related to
these measurements. The averaging description of the NMMs permits to
describe macroscopic phenomena without detailing subtleties related to
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individual neurons, e.g. their morphology or phenotype, which at the mi-
croscopic level may produce specific firing patterns. In this description,
phenomena related to short timescales, e.g. correlations between spike
trains, are averaged out. Also processes occurring in long timescales, for
example synaptic plasticity, are not considered in NMMs. Furthermore,
effects related to membrane dynamics and fluctuations around the mean
activity of the population can not be studied within the NMM framework.
The convenient assumption about linearity of all effects related to neuronal
inputs comes for a price, e.g. negligence of active dendrites. On the other
hand, an unquestionable advantage of NMMs is their simple formulation,
which allows for mathematical tractability and numerical simulations of
full-brain models. In what follows, we introduce the formulation of the
NMM used in this Thesis.

2.3  EXTENDED JANSEN-RIT MODEL

The results presented in this Thesis are obtained from a model comprising
a number of coupled stochastically driven Jansen-Rit models of cortical
columns. Therefore, our model does not account for realistic head geom-
etry, nor for volume conduction and time delays. The latter is justified
by the fact that neighbouring cortical columns are separated by a distance
smaller than one millimetre. Since the speed of signal propagation in ax-
ons has a lower limit 0.1 m/s (Segev and Schneidman, 1999). The delay
between neighbouring columns is smaller than milliseconds, which is at
least one order of magnitude smaller than the characteristic timescales of
the system. We study this model systematically, gradually increasing its
complexity through this Thesis. In Chapter 3 we focus on dynamics gener-
ated by a single module (column), next, we study in Chapter 4 interactions
between two modules, and finally, in Chapter 5 we consider an all-to-all

connected network.

2.3.1 Model of a cortical column

The internal structure of a cortical column modelled with the Jansen-Rit
approach comprises the following three neuronal assemblies: a popula-
tion of pyramidal neurons, a population of excitatory interneurons and
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a population of inhibitory interneurons. The model lacks self-excitation
and self-inhibition of populations. Internal dynamics of the column are
described with two transformations: the first one converts average presy-
naptic spiking activity (firing rate) to average somatory potential, and the
second one transforms the resulting potential at the soma to a spiking rate.
We discuss both transformations in what follows.

Firing rate — potential

This transformation assumes linearity and time-invariance (LTI). It is given

by the following convolution:

ot) = [ b= tsalt)ar. 2.5)

— 00

where sin(t) is a time-dependent average firing rate of spike trains incom-
ing to a population, y(t) is a postsynaptic membrane potential (PSP), and
the h(t) kernel describes a PSP response at the soma resulting from an im-
pulse activation at the synapse. This kernel equals zero for t < 0 and oth-
erwise is given by the following expression for excitatory and inhibitory

connections:

he(t) = Aate™™, (2.6)
hi(t) = Bbte ", (2.7)

where A and B are the maximum excitatory and inhibitory postsynaptic
potentials, and @ and b are constants shaping the excitatory and inhibitory
PSPs time profiles, respectively. These constants follow from lumped con-
tributions of all dilatory effects that include synaptic kinetics, dendritic sig-
nal propagation, and leak currents. For example, Labyt et al. (2006) inter-
pret the value of a as a reciprocal of an average over AMPA and NMDA
decay times. According to values used by Jansen et al. (1993), B is almost
seven times greater than A, which can be partially explained by the peri-
somatic effect (see Section 1.1.2) exerted by inhibitory cells. Both kernels
are shown in Figure 2.2A. Using Equation (2.6) one can express the trans-
formation given by Equation (2.5) by the following differential form:

Cy(t) ,, dy(t)

2 = Aa - sy 2.
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2.3. Extended Jansen-Rit model

Similarly, by using Equation (2.7) one can find a corresponding represen-

tation for inhibitory processing.
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Figure 2.2: Two transformations fundamental to neural mass modelling. Panel
A shows kernels generating excitatory (blue) and inhibitory (green) postsynap-
tic potentials (PSPs). Panel B shows the rate response function, which converts
average somatic potentials to average firing rate.

Potential — firing rate

The second transformation, describes somatic conversion of the average
PSP into an average firing rate. When the membrane potential rises above
threshold in the neuronal soma, a spike is generated. NMMs do not imple-
ment the mechanisms of this generation, but rather describe it statistically
at the population level. This transformation (previously referred to as a

‘rate response function’) is given by the following sigmoid function:

260

Sout(y) = Sigm(y) = m, (2.9)

where sout(y) is average firing rate of spike trains, y is its average net PSP
(in general, time dependent), 2¢( is the maximum firing rate, v is the PSP
for which half maximum of the firing rate is reached, and r determines
steepness (and thus nonlinearity) of this transformation. This sigmoid is

depicted in Figure 2.2B.
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2.3.2 Intracolumnar and intercolumnar connectivity

The two transformations described in the preceding section allow to model
circuits of interconnected neuronal populations (cortical columns). A cir-
cuit corresponding to a Jansen-Rit cortical column is shown in Figure 2.3.
The figure shows coloured representations (see caption for colour mean-
ings) of neuronal populations and connections between them. Efferents
and afferents (shown outside of the grey cylinder) couple columns into a
network and drive them in a deterministic and stochastic manner. The
black rectangles in Figure 2.3 stand for the transformations: somatory pro-
cessing given by Equation (2.9) is denoted with ‘Sigm’, excitatory interac-
tions between populations are marked with h. and inhibitory ones with h;,
and multiplication by K refers to coupling strength between the columns
(established between pyramidal populations). The constants C1 2 3 4 reflect
proportions of synaptic connections between populations, so they can be
thought of as intra-population connection strengths. The dynamics of a
network of columns described with the black circuit from Figure 2.3 are

governed by the set of the following equations:

6 (t) + 2ag4(t) + a®yi(t) = Aa Sigmlyi () — y5(t)] (2.10)
it () + 2agi (t) + a®yi(t) = Aa{I(t) + Cy Sigm[Ciyo(t)]}  (2.11)
i () + 2bg5(t) + b*y5(t) = Bb{Cy Sigm|[Csyg(t)]} (2.12)

When multiplied by C; or Cs, ¢ gives an average excitatory PSP in col-
umn ¢ that the population of pyramidal neurons induces on populations
of excitatory and inhibitory interneurons, respectively. y! is the average
excitatory PSP in this column induced on the population of pyramidal
neurons and yj is the average inhibitory PSP on this population. Subse-
quently y¢ — v is a resultant average net PSP on this population, which,
as explained in Section 1.2, is assumed to be proportional to the measured
EEG. For simplicity we will drop the index i whenever the referenced vari-
ables apply to all columns. We set parameters of the neural mass model
to typically used values as given in Jansen and Rit (1995): ¢y = 2.5 s7 1,
vg = 6mV,r = 056 mV~!, A =325mV, B =22mV,a = 10057},
b=50s"1,C, =135 Cy =108, C3 = Cy = 33.75. In the following section

we elaborate on the external input to a column, Iex().
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Figure 2.3: A scheme of one node of a network of Jansen-Rit cortical columns.
The grey cylinder marks boundaries of one cortical column. A population of pyra-
midal neurons is marked with green, and populations of excitatory and inhibitory
interneurons with blue and red, respectively. Somata are depicted with the tri-
angle, hexagon and circle. Continuous lines stand for dendritic processing and
dashed ones for axonal processing. The black circuit depicts an analytic descrip-
tion of the model. A dot means multiplication and a star operator denotes con-
volution. Outside of the grey cylinder are shown afferents and efferents of the
cortical column. Cyan indicates a sum of external inputs from other columns in
the network and from non-modelled sub-cortical and cortico-cortical structures,
modelled in a lumped way with deterministic and stochastic components.
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2.3.3 External input to cortical columns

The term I, (t) in Equation 2.11 represents the external input to the i col-
umn, incoming to the population of pyramidal neurons and comprising
the contribution from other columns in the network and lumped cortico-
cortical and sub-cortical afferents. It is given by the following equation:

N

IL(0) = €00 +p+ ult) + s SoSiamly () i), @213)
j=1
J#

! since it refers to the firing rate. The coupling

and it is expressed in s~
contribution term is not taken into account in the studies performed on
one column (N = 1 in Chapter 3). The lumped afferents are modelled as
a sum of a constant component p and zero-mean signals: stochastic £(t)
and harmonic Asin(%ﬂt + ¢). The effect of Ix(t) on the dynamics of the
model is one of the foci of this Thesis. In Chapter 3 we study the role
that stochastic and rhythmic driving have on a single cortical column, in
Chapter 4 we focus on interplay between noise and coupling between two
connected columns, and in Chapter 5 we study a stochastically and peri-
odically driven network of columns.

Constant input: bifurcation diagram

Previous studies have sought to understand the dynamics of the Jansen-Rit
model by examining the effect of p as a bifurcation parameter for N = 1
(Grimbert and Faugeras, 2006; Jansen and Rit, 1995; Spiegler et al., 2011;
Touboul et al., 2011). In Figure 2.4A we recreate with XPPAUT (Ermen-
trout, 2002) the results of Grimbert and Faugeras (2006), illustrating the
invariant sets of the model of a single cortical column that exist for differ-
ent, time invariant values of Iox = p. To ease subsequent interpretations
of the dynamics invoked by different choices of temporally varying Iex(t),
we briefly review the different dynamic regimes that are possible in this
model. Since we only discuss a single module here (N = 1), in what fol-
lows we omit the column’s index in the superscript of state variables. Al-
though in Figure 2.4A we plot a range of I¢x that includes negative values
(region Iin Figure 2.4A), we focus on positive values of Iy, since only these
are biologically plausible. The regime marked II in Figure 2.4A spans for

62



2.3. Extended Jansen-Rit model

—12.15s7! < p < 89.83 s7L. It is a bistable regime that contains two stable
fixed points: a node (blue) and a focus (cyan). Atp = 89.83 s~! the focus
transitions to a limit cycle (green) in a supercritical Hopf bifurcation. This
limit cycle has its characteristic frequency close to 10 Hz, and has therefore
previously been used to model the alpha rhythm of the brain (henceforth
referred to as “alpha limit cycle’). Its time course is shown in Figure 2.4B.
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Figure 2.4:  Bifurcation diagram of the Jansen-Rit model defined in Equa-
tions (2.10)-(2.12) for N = 1 (panel A) and time courses of limit cycles (panels
B,C). Panel A shows a bifurcation diagram obtained for parameters of the model
set to biologically plausible values proposed in Jansen and Rit (1995). The X axis
shows external, constant input to the pyramidal population I.x = p. The Y axis
shows net postsynaptic potential on this population: y; —y.. Continuous (dashed)
lines represent stable (unstable) solutions. Cyan and blue denote a node and a fo-
cus, respectively, and green and red indicate alpha and epileptiform limit cycles,
respectively. Vertical, grey dotted lines divide the diagram to six regimes (de-
noted by roman numerals) of qualitatively distinct dynamical properties. Panels
B and C show time courses corresponding to alpha and epileptic-like oscillations,

respectively. They represent two stable solutions from the bistable regime IV, with
p=120s"1.

The area marked III is also bistable, however here the two stable so-
lutions are the node (blue) and the alpha limit cycle (green). At p =

113.58 s~ the stable node ceases to exist in a saddle-node on invariant
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circle (SNIC) bifurcation that creates a limit cycle reminiscent of epilepti-
form spikes, henceforth referred to as ‘epileptiform limit cycle’. The am-
plitude of this cycle is shown as a continuous red line in Figure 2.4A and
its time course is shown in Figure 2.4C. The frequency of this limit cycle
ranges from 0 Hz at its creation (p = 113.58 s71) to ~ 5 Hz at its termina-
tion point (p = 137.38 s1). Region IV in Figure 2.4A denotes a bistable
regime in which the epileptiform limit cycle coexists with the alpha limit
cycle. Regime V starts at p = 137.38 s7!, where the epileptiform limit cycle
vanishes in a fold of limit cycles. In regime V the alpha limit cycle is the
only stable solution. It ceases to exist in a supercritical Hopf bifurcation at
p = 315.70 s~1, where the last regime, marked with VI, starts. The focus
(cyan) remains the only stable solution there.

With no coupling, p determines the average working point of the sys-
tem in the landscape of dynamical regimes as shown in Figure 2.4A. In
agreement with a number of studies suggesting that the brain operates
close to a phase transition (see Sections 1.4.4 and 1.4.6) we set p close to one
of the above mentioned bifurcations (exact values to be specified in each
chapter). In particular, the value of p corresponding to the Hopf bifurcation
characterised by the alpha rhythm, mimics ‘healthy-like” activity, whereas
values of p corresponding to the catastrophic-epileptic SNIC bifurcation
correspond to aberrantly excitable settings modelling “unhealthy-like” tis-
sue and activity. We study both cases in Chapter 3, then we focus on
“unhealthy-like” settings in Chapter 4 and on ‘healthy-like’ settings in
Chapter 5.

Time-dependent input: coupling and stochasticity

In physiological conditions, other components of Iex perturb the system,
so the input varies from p and the system does not remain permanently in
one place on the bifurcation diagram presented in Figure 2.4A. Coupling
between the columns is realised by feeding the output of the population of
pyramidal neurons of the upstream column to the population of pyramidal
neurons of the downstream column. This coupling signal is multiplied by
the coupling strength K and normalised by the number of the afferent con-
nections to a column. For every column this number equals IV —1 in case of

N columns in the network, since we consider only all-to-all connectivity.
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This normalisation allowed us to study the dependence of the results on
the system size NV for a constant value of the coupling strength K (Chap-
ter 5). Without that normalisation, increasing the number of columns N
in all-to-all topology would ultimately lead to saturation due to excessive
external driving.

The stochastic components, £'(t), are given either by white noise (Chap-
ter 4) or by the Ornstein-Uhlenbeck (OU) process (Chapters 3 and 5) dis-
cussed in Section 1.4.5. In the former case £/(t) = v/2D¢! (t), where & (1) is
a random variable representing Gaussian white noise with zero mean and
correlation (£& (£)€L (') = 6(t — t') and (€, (£)&l,(¢')) = 0 for i # j. In the
latter case £i(t) = ¢!, (), where & (t), is derived from the solution of the
following linear stochastic differential equation:

dou & N V2D

dt T T

&u(t) (2.14)

In the steady state, the OU noise has a Gaussian distribution of values
characterised with the following standard deviation:
D
Oou =\ — (2.15)

T

The intensity of the noise can be defined as a product of its stationary vari-
ance (accounting for amplitudes of random fluctuations) and its correla-
tion time (accounting for persistence of the fluctuations) (Laing and Lord,
2010). In the notation adopted here, the intensity defined in this way is

given by D.
Finally, the power spectrum of the OU noise is given by the Lorentzian
function: oD
Sou(f) = 15 dn2r2f2 (2.16)

This equation shows that variations of the parameter 7 modify the spectral
composition of the noise, as mentioned in Section 1.4.5. These variations
are illustrated in Figure 2.5, which visualises Equation (2.16) for three dif-
ferent values of 7: 1s (red), 0.1 s (green), and 0.01 s (blue). In each case there
is a cutoff frequency f* = (2r7)~! for which scaling of the PSD changes
from the white noise 2D (for f < f*) to the red noise 2D/(2n7f)? (for
f > f*), thus ~ 1/f° with b = 0 in the former, and b = 2 in the latter
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case, as discussed in Section 1.4.5. In this Thesis we study how variations

of noise parameters, in particular 7, affect dynamics of the driven system.
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Figure 2.5: Lorentzian curves in log-log scale. The plots correspond to Equa-
tion (2.16) with D = 1s71, and 7=1 s (red), 0.1 s (green) and 0.01 s (blue). Units
on the Y axis follow from the units of D.

In summary, the model used in this Thesis describes the averaged activ-
ity of groups of neurons. The results obtained can be related to neuroimag-
ing measurements such as EEG. The model itself is a network of all-to-all
interconnected modules of Jansen-Rit neural masses. Each of these mod-
ules can exhibit in deterministic stationary conditions a repertoire of dy-
namics introduced in this chapter. In our model, however, the modules are
driven by independent realisations of either white or Ornstein-Uhlenbeck
noise, and by periodic and constant signals common to the whole network.
These driving components are characterised by specific parameters. The
results presented in the following chapters of this Thesis elucidate how
values of these parameters, and the coupling strength of the network shape
the dynamics exhibited by the model.
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CHAPTER 3

NOISE-INDUCED EPILEPTIFORM DYNAMICS

3.1 INTRODUCTION

In this chapter we focus on the dynamics of an individual Jansen-Rit mod-
ule driven by periodic signals and temporally correlated noise. We deter-
mine characteristics of the driving signals that elicit epileptic-like activity
in the model. In the brain, epileptic symptoms are characterised by ex-
cessive synchrony arising on areas extending beyond individual cortical
columns. The Jansen-Rit module studied here represents such an area.
At this scale, deficits can be observed both in the dynamics of brain re-
gions (lannotti et al., 2016; Valentin et al., 2005) and the connections be-
tween them (O’Muircheartaigh et al., 2012). In this context, recent focus
has been placed on the role that large-scale brain networks play in epilepsy
(Kramer and Cash, 2012; Richardson, 2012; Spencer, 2002; Van Diessen et
al., 2013). A fundamental, unanswered question in this context is how
seizures emerge and spread in such networks (Goodfellow et al., 2016;
Petkov et al., 2014; Terry et al., 2012). Mathematical models of brain dy-
namics can be helpful in studying the mechanisms underlying these phe-
nomena (Lytton, 2008; Suffczynski et al., 2006; Wendling et al., 2015).

The nodes of a brain network are exposed to the surrounding activity
generated by the interconnected nodes. In general, dynamics evinced by a
single node might depend on the intrinsic properties of this node and on
the incoming driving. In particular, driving by epileptiform rhythms might
lead to generation of these rhythms, and as a consequence, to spreading of
a seizure in the brain. Furthermore, emergent network dynamics might
play a role in the generation of highly synchronous epileptic-like states
(Goodfellow et al., 2011; Rothkegel and Lehnertz, 2011). Prior to study-
ing these phenomena on networks, it is sensible to understand how the
temporal properties of the driving signals interact with internal dynamical
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3. NOISE-INDUCED EPILEPTIFORM DYNAMICS

properties of an isolated node in the context of generation of epileptiform
activity.

Previous work has focused on the types of dynamics that could under-
pin transitions from healthy EEG to seizure EEG, such as changes in model
parameters (bifurcations, Breakspear et al., 2006; Touboul et al., 2011), co-
existence of healthy and abnormal states (bistability, Lopes da Silva et al.,
2003), excitability (Baier et al., 2012) and intermittent behaviour (Goodfel-
low and Glendinning, 2013). The bifurcation route into seizures relies on
a (relatively) slow timescale change in the brain that drives it into an alter-
nate (pathological) state, whereas the bistability and excitability paradigms
rely on a (fast) perturbation-induced transition from the healthy to patho-
logical state. However, any of these scenarios can be assumed to occur
amidst a backdrop of ongoing brain dynamics, which could additionally
influence transitions into seizures. As discussed in Chapter 1, these dy-
namics involve a broadband (stochastic) activity and oscillations with well
defined frequencies. In this chapter we use both these types of dynamics
as input signals driving the Jansen-Rit neural mass model. In the context
of epileptic-like dynamics, this model is characterised by both bistability
and excitability (see Section 2.3). We therefore study a variety of possible
scenarios leading to the occurrence of epileptiform dynamics in this model.
These scenarios arise from an interplay between the non-trivial bifurcation
structure of the model (see Figure 2.4A) and the temporal properties of
the driving signals that stand for the external stimulation or the lumped
background activity of the brain network.

Modelling studies of seizure onset typically lump the ‘background’ dy-
namics of the brain into stochastic fluctuations, which have most often
been assumed to have a flat power spectrum (see Section 1.4.5). How-
ever, the background EEG activity of the brain is characterised with a 1/ f°
shape (see Section 1.4.5), with prominent frequencies appearing concomi-
tantly with different brain states (Buzséki and Draguhn, 2004; Freeman et
al., 2000; Niedermeyer and Silva, 2005). Some of these frequencies might
play a role in the initiation of epileptiform activity. In particular, in humans
an increase of power in the delta band has been observed in MEG (Gupta
et al., 2011) and EEG (Sadleir et al., 2011) recordings preceding absence
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seizures. Pathological slow rhythms can also be observed in interictal or
preictal periods associated with focal epilepsies (Lee et al., 2000; Tao et al.,
2011; Valentin et al., 2014). In animal models of epilepsy, electrophysiolog-
ical recordings performed in the preictal phase have revealed an increase
of power in the delta (Sitnikova and Luijtelaar, 2009), and delta and theta
(Van Luijtelaar et al., 2011) bands. Furthermore, the most common type
of reflex epilepsy (photosensitive epilepsy) is believed to depend on fre-
quency of visual stimulation (Kasteleijn-Nolst Trenite, 2006).

The wealth of observations listed above, among many others, raise the
need to better understand the response of neuronal populations to affer-
ent rhythms and stochastic fluctuations with a variety of dynamics, in-
cluding those that can be approximated by noise yielding a realistic 1/f°
power spectrum, and those that contain dominant rhythms observed in
the epileptic brain. In Section 1.4.5 we discussed in detail the relation
between relaxational processes and the 1/f° PSD, and we introduced the
Ornstein-Uhlenbeck (OU) noise, which we formulated mathematically in
Section 2.3.3. In this chapter we study the effect of the OU noise and rhyth-
mic driving on the generation of epileptiform dynamics in the Jansen-Rit
model. We study this model in two paradigms: a ‘healthy” scenario, when
the average working point of the model is set at a certain distance from
the epileptic excitability threshold, and an ‘unhealthy” one, when this dis-
tance is reduced. In both cases we classify the dynamics of this model by
assessing variations of the signal around its time-averaged value, thus dis-

tinguishing between ‘healthy” and epileptiform dynamics.

3.2 METHODS

We performed a series of simulations of the model introduced in Section 2.3
for a single Jansen-Rit module (N = 1) exposed to the Ornstein-Uhlenbeck
(OU) noise with varying values of the correlation time 7 and the stationary
standard deviation o,,. Therefore, the additive stochastic component £ i(t)
in Equation (2.13) takes the form of ¢, (¢) given by Equation (2.14). Since
in this chapter we only deal with a single column, in what follows we drop
the 7 index.
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3.2.1 ‘Healthy-like’ and “unhealthy-like” paradigms

The Jansen-Rit model and its variations are often used to simulate epileptic
activity (see Section 2.1.3). In particular, in order to mimic the behaviour
of unhealthy, seizure-generating patches of neuronal tissue (e.g. epilep-
tic foci), variations to the model’s parameters are introduced. In general,
the occurrence of epileptic activity in this model is facilitated when exci-
tation is increased and/or inhibition is decreased. For example, Grimbert
and Faugeras (2006) observe more epileptic spikes in the model’s output
upon increasing the value of the ratio A/B. A similar effect is achieved by
Goodfellow et al. (2016) by reducing B in Wendling’s model. Here we in-
troduce hyper-excitability by increasing the p parameter, which effectively
shifts the average working point of the system towards the SNIC bifurca-
tion, where the regime of epileptic behaviour begins. Our ‘healthy-like’
settings correspond to p = 89 s7!, i.e. close (on average) to the Hopf bi-
furcation at p = 89.83 s~!. This choice is motivated by the premise that
the brain operates near a second-order phase transition or bifurcation (see
Section 1.4.4). The ‘“unhealthy-like’ settings correspond to p = 113 s7 1,
the point just below the ‘catastrophic” SNIC bifurcation at p = 113.58 s
(see Figure 2.4A). Note that the ‘healthy” and epileptiform activity can be
evinced by the model in both paradigms. We introduce the classification
of these activities in what follows.

3.2.2 C(lassification of model dynamics

We are interested in classifying the dynamics of one cortical column ac-
cording to the ‘healthy” or ‘epileptiform” behaviour described previously
(Grimbert and Faugeras, 2006; Jansen and Rit, 1995; Spiegler et al., 2010;
Touboul et al.,, 2011), which depends upon the parametrisation of the
model and on the nature of its input o« (see Equation (2.13)). By con-
sidering the bifurcation diagram shown in Figure 2.4A, we define epilepti-
form dynamics as those corresponding to the epileptiform limit cycle (see
Figure 2.4C), and healthy dynamics as any of the other regimes. The latter
comprises either noise-driven fluctuations around the stable node, or oscil-

lations with frequency close to 10 Hz (alpha oscillations, see Figure 2.4B)
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due to the presence of, or proximity to, the limit cycle generated by the
Hopf bifurcation.

Our classification of the output of the Jansen-Rit cortical column in
these three categories is depicted in Figure 3.1. The classification is estab-
lished via the following algorithm. First, a moving average of the model’s
output, y; — y2, is computed with a sliding window of length 0.4 s. This
window is long enough to sufficiently smooth out the signal (see Fig-
ure 3.1B) and thus allow for estimation of its variability (details below),
and short enough to mark transitions between dynamical regimes with
good temporal accuracy (see Figure 3.1A). Second, the root mean square
(RMS, _y,
this quantity is high, variations of the signal are rapid and/or have a high-

y) of the y; — y2 signal around this mean is obtained. When

amplitude, which are features of the epileptiform limit cycle. Therefore, we
set a threshold Thg = 2.25 mV (dashed line in Figure 3.1C) that establishes
the value of RMS,, _,,)
classified as being in the epileptiform regime. Otherwise, we compare the

above which a specific time point of the signal is

smoothed y; — 32 signal with the threshold value Thy = 5 mV (dashed line
in Figure 3.1B), which separates the focus from the node along the y; — ¥
axis (cf. Figure 2.4A). If the smoothed signal is greater than Thy, we clas-
sify that data point as belonging to an alpha oscillation, while if it is smaller
we classify it as part of a noisy fluctuation around the node. Note that this
methodology can be applied for both deterministic and stochastic driving
of the system (in the deterministic case we do not call the node dynamics
‘stochastic’). The thresholds Tha and Thg and the window length have
been set such that resulting classification complies with inspection by eye.
The attractor-based classification method described above is adequate in
our case, since our model attractors can be distinguished easily by ampli-
tude. For other types of models, or for the analysis of experimental data,
adding frequency information to aid the classification might be beneficial,
although purely temporal classifications have been found to be sufficient
in some cases (Kramer et al., 2012).

3.2.3 Spectral composition of the noise

In order to study how the frequency content of OU noise relates to tra-
ditionally defined EEG frequency bands (i.e. delta, theta, alpha, beta,
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Figure 3.1: Methodology for the classification of the dynamics of a single column.
Panel A shows y; — y2 obtained from 10 seconds of stochastic simulation for p =
89s71, 7 =107"%s, 0oy = 50 s~ . Background colours indicate the type of activity
assigned with the classification algorithm: red stands for epileptiform dynamics,
green for alpha oscillations, and blue for random fluctuations around the node.
Panel B shows a smoothed version of the y; — y» signal from panel A, obtained
with a running mean computed within a 0.4-second-long sliding window. The
dashed line denotes the Thy = 5 mV threshold, which is used to discriminate
between stochastic fluctuations around the node (smoothed y; — y2 < Thp) and
alpha oscillations (smoothed y; — y2 > Thya). Grey marks the root mean square of
y1 — y2 around its smoothed version (RMS(,, _,,)). This value is shown in panel
C in grey along with the Thg = 2.25 mV threshold, which is used to identify
epileptiform dynamics (when RMS,, _,,) > Thg).
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gamma), we quantify the fraction of the total spectral power of the noise
(with correlation time 7) contained within each of the bands. We do it by
integrating power spectrum of the noise (see Equation (2.16)) in the lim-
its (fmin, fmax) delimiting particular frequency bands. As a result, for each

band we obtain the following 7-dependent function:

Frnax -
E(7, fmin; fmax) = 2 / Sou(f)df—2arctan(2wf)f (3.1)

PtOt ﬂ— fmin

min

where the normalisation factor P yields the total power and equals
/ _OOOO Sou(f)df = %. The factor 2 in front of the integral follows from tak-
ing into account the power transmitted in both the positive and negative

frequency bands.

3.2.4 Computational simulation

We integrated the system using the stochastic Heun scheme (Toral and Co-
let, 2014) with a time step equal to 10~* s, and we stored every tenth point
of the simulation. For each value of the noise correlation time 7 and sta-
tionary standard deviation o,, we performed 10 simulations, each with
different realisation of the noise (which was frozen for different values of
T, 0ou) and we averaged the results. Each simulation was 111 seconds long.
The first 10 seconds were discarded and one second buffered the sliding
window. In the deterministic system, the model was simulated for 111 sec-
onds, with 100 seconds of discarded transient and one second buffering
the sliding window. This means that the effective time courses used in the
deterministic analysis were each 10 seconds long, which corresponds to

the longest period of the driving sinusoid that we utilised.

3.3 RESULTS

3.3.1 Stochastic driving

Simulations of the model under different values of the correlation time
7 of the driving OU noise reveal qualitatively different dynamics (Fig-
ure 3.2). For weakly correlated noise (low values of 7) stochastic fluc-
tuations around the node predominate (Figure 3.2A). For intermediate
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temporal correlations epileptiform rhythms are more often observed (Fig-
ure 3.2B), whilst at larger correlation times the model displays mainly sta-
tionary and alpha-oscillatory activities (Figure 3.2C). These results suggest
that epileptiform dynamics are more readily observed for noise with inter-
mediate correlation times. In order to systematically study this effect, sim-
ulations of the model were performed for different values of 7 and stan-
dard deviation of the noise, o,,. For each simulation, we measured the
fraction of the total time that the system spent in the epileptiform regime
(Figure 3.2D). This time is obtained by means of a classification algorithm
described above.

Figure 3.2D shows that for large enough values of the standard devia-
tion oy, epileptiform dynamics arise for an intermediate value of the noise
correlation time. As o, decreases, the interval of values of = for which
epileptiform dynamics predominates is shifted to larger values. The in-
tensity D of OU noise, (described in Equation (2.15)) is overlaid in white
dashed lines on Figure 3.2D. It can be seen that the onset of epileptiform
dynamics for intermediate values of 7 coincides with constant values of
D. This means that in order to generate epileptiform dynamics, the noise
generated by the OU process should have sufficient intensity, regardless of
its power and correlation time. However, this simple relationship does not
hold for 7 > 1071 s. The system more often displays alpha oscillations
for large correlation times (7 > 1079 s) than for small correlation times.

Figure 3.3 shows the fractions of time that the system spends in the
three attractors of interest, i.e. the node (panels A and B), spiky behaviour
(C and D) and alpha oscillations (E and F). This figure demonstrates both
healthy-like (top row) and unhealthy-like (bottom row) settings with initial
conditions set exactly to the node. This activity prevails for the whole sim-
ulation time in case of a healthy-like system driven with noise approach-
ing the white noise limit 7 — 0 (dark red region on the left of panel A)
and noise with a small amplitude (dark red region on the bottom of panel
A). The same noise, however, is able to excite the system in an unhealthy-
like case, so that the node attractor is escaped (panel B). In a healthy-like
case only more intense noise allows for this escape (panel A again) and for
initiation of epileptic spikes (panel C).
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Figure 3.2: Response of the Jansen-Rit model to driving with the Ornstein-
Uhlenbeck (OU) noise. The left panels of the figure show example outputs (time
courses of y; — y2) produced by the model under OU noise driving characterised
with correlation time 7 equal to 10~ s (panel A), 10~1° s (panel B) and 10 s (panel
C). Background colours mark periods of random fluctuations around the node
(blue), epileptiform dynamics (red) and alpha activity (green). In all these cases
the stationary standard deviation of the noise o, was equal to 50 s~! and p was
set to 89 s~!. Panel D shows the fraction of time that the system spent in epilep-
tiform dynamics as a function of the noise correlation time 7 (varied along the X
axis in logarithmic scale) and the noise stationary standard deviation oy, (varied
along the Y axis). Locations of the letters A,B and C mark settings in which time
traces shown in panels A,B and C were obtained. The white lines denote points
of equal values of noise intensity D: the dashed line marks D=1/1000 s~! and the
dotted one marks D =100 s~!. In all cases initial conditions corresponded exactly
to the node.
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Figure 3.3: Fraction of time spent by the system in each of its attractors with ini-
tial conditions set at the node. Noisy oscillations around the node (panels A and
B), epileptic-like spiking activity (panels C and D), and alpha oscillations (panels
E and F) are shown as a function of autocorrelation time of the driving Ornstein-
Uhlenbeck noise 7 (varied along X axes) and stationary standard deviation of the
noise o,y (varied along Y axes). The top row corresponds to a healthy-like situa-
tion (p=89 s~!) and the bottom row corresponds to unhealthy-like, more excitable
situation (p=113 s7'). In all cases initial conditions were set exactly to the node.

Panels C (replotted for clarity from Figure 3.2D) and D show the frac-
tion of the total time spent on epileptic spiking in a healthy-like and
unhealthy-like conditions, respectively. These panels indicate that in both
conditions the spiking fraction of time depends on the autocorrelation time
of the driving noise 7, and that for high amplitudes of the driving noise
this dependency has a maximum for 7 ~ 10712 s, which moves to the
right with decreasing amplitude of the driving. Panels C and D indicate
that for 7 in a range close to that maximum, epileptic-like spiking activ-
ity is triggered more easily, i.e. with lower driving amplitudes than for
other 7 values. Simulating unhealthy-like state by increasing p (panel D)
decreases the minimal value of the driving amplitude that elicits epileptic-
like behaviour (compare panels C and D). This effect can be understood on
the basis of the bifurcation diagram (Figure 2.4A): an increase of p trans-
lates to a smaller distance to the excitability threshold (dotted line between
regimes III and IV in Figure 2.4A), thus a lower amplitude of the noise
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is sufficient to trespass it. Similarly, the stripe on the bottom of panel D
(1 210715 s, 0ou < 10 s71) corresponds to noise amplitudes that are high
enough to enter regime IV in Figure 2.4 (and provoke spiking ), but not
high enough to reach regime V, where the spiking attractor ceases to exist.

Figures 3.3C and D show that the ranges of parameter values (noise am-
plitude and autocorrelation time 7) producing epilepsy in the unhealthy-
like case are larger than in the healthy-like case. However, Figure 3.3C
also reveals that for sufficiently large amplitudes, healthy-like case may
also evince and epileptic response. This result may impose a limit on
physiologically feasible driving amplitudes. We assume that for such val-
ues of the driving amplitude, only occasional, isolated spikes occur in the
healthy-like case (panel C), while the same driving in an unhealthy-like
case elicits abundant spikes and periods of continuous epileptic activity
(panel D). Occurrence of spikes in the healthy-like case can be interpreted
as microseizures that do not develop into epileptic activity. Such micro-
seizures were recorded in healthy subjects (Stead et al., 2010). In Chapter 5
we simulate a network of cortical columns and we discuss how the iso-
lated spikes can be blended in the background activity, so that they are
not discernible in the recorded EEG signal. The occurrence of spikes in
an unhealthy-like case can be interpreted either as spontaneous epileptic
seizures (when the driving stands for the background activity of the brain)
or as reflex epilepsy (when the driving stands for external stimuli).

Panels E and F show the fraction of the total time that the system spent
on alpha oscillations in the healthy-like and unhealthy-like cases, respec-
tively. These panels indicate that the alpha activity occurs mostly for large
values of the noise autocorrelation time 7. All results presented in Fig-
ure 3.3 have also been computed for initial conditions set to alpha activity.
These results are shown in Figure 3.4, and demonstrate that all the effects
discussed above remain for different initial conditions. In particular, low
amplitude and low correlation time correspond to noise that is not able to
relocate the system from the initial attractor (alpha oscillations).

In order to test the generalisability of these results, we performed
equivalent simulations for the healthy-like system under alternative

choices of temporal parameters a and b. The bifurcation diagrams and
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Figure 3.4: Fraction of time spent by the system in each of its attractors for initial
conditions set at the focus (top row) and alpha limit cycle (bottom row). Noisy os-
cillations around the node (panels A and B), epileptic-like spiking activity (panels
C and D), and alpha oscillations (panels E and F) are shown as a function of the
autocorrelation time of the driving Ornstein-Uhlenbeck noise 7 (varied along X
axes) and the stationary standard deviation of the noise o, (varied along Y axes).
The top row corresponds to healthy-like conditions (p=89 s™!) and the bottom
row corresponds to unhealthy-like, more excitable conditions (p=113 s™!). In the
former case, the initial conditions were set exactly to the focus, and in the latter
case, the initial conditions were set exactly to one of the points on the trajectory of
alpha oscillations.

corresponding fractions of time spent in the spiky attractor are shown in
Figure 3.5. Decreasing a from 100 s~* to 95 s~! (panels A, B) leads to the
epileptic-like limit cycle beginning at a value of Iex = p (panel A) lower
than in the standard settings (101.06 s~ and 113.58 s}, respectively). As
a consequence spiking occurs already for lower noise amplitudes (panel
B). Moreover, in this case we observe an abundant occurrence of spikes for
high 7 values (panel B). This is due to the reduction of the bistable regime,
i.e. to the fact that for the most part the epileptic limit cycle does not co-
exist with any other stable solution (again panel A). Similarly, the bistable
regime is reduced when b is decreased to 45 s! (panel C), what again leads
to the occurrence of spikes for high 7 values (panel D). Moreover, in this
case the spiking limit cycle exists for a range of Iox = p values wider (panel
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Figure 3.5: Bifurcation diagrams of the Jansen-Rit model (top row) and the cor-
responding fractions of time spent on epileptic spiking (bottom row) obtained for
varied values of parameters a and b: a = 95 s71,b = 50 s™! (panels A and B),
a=100s"1b = 455! (panels C and D), and @ = 110 s7},b = 50 s~! (panel E
and F). The X axes in the bifurcation diagrams show external, constant input to
the pyramidal population I.x = p. The Y axes in the bifurcation diagrams shows
the net postsynaptic potential on this population: y; — 3. Continuous (dashed)
lines represent stable (unstable) solutions. Cyan and blue lines denote a node and
a focus, respectively, and green and red lines indicate stable alpha and epilepti-
form limit cycles, respectively. Brown dashed line denotes unstable limit cycles.
In panels B,D and F the autocorrelation time of the driving Ornstein-Uhlenbeck
noise 7 varies along the X axis, and the stationary standard deviation of the noise
Oou Varies along the Y axis. The results shown in these panels were obtained for
p = 89 57! (healthy-like conditions).

C) than for the standard value b = 50 s~! used above. The last case corre-
sponds to increased a = 110 s! (panels E, F). Here, the regime of spiking
oscillations is reduced and as a consequence epileptic-like activity is gen-
erally diminished in the system (panel F). Unlike the previous two cases,
here this diminishing effect is also present for high 7 values, due to bista-
bility, which prevails between the spiky limit cycle and the focus, although
the alpha attractor does not exist at all (again panel E). This leads to re-
duction of spiking activity for high 7 values, similarly as in the default a, b
values case. Finally, increasing b from 50 s™! to 52.5 s™! leads to the dis-
appearance of the spiking attractor, therefore we did not study that case.
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3.3.2 Relationship to brain rhythms

To relate these findings to underlying frequency components of brain
rhythms we studied how OU processes with different correlation times
distribute their power in different frequencies. In order to do this we
used Equation (3.1) to quantify the fraction of power deposited by the
noise (characterised with correlation time, 7) in a given frequency window
(fmin, fmax). Evaluation of this function for fmin and fmax set according to
boundaries of traditionally defined EEG frequency bands (delta, theta, al-
pha, beta, gamma) is shown in Figure 3.6. For each frequency band, the
location of the maximum of the E function (Equation (3.1)) represents the
value of noise correlation time 7 that maximises spectral power of the noise
within that band. Values of 7 corresponding to these maxima are indicated
with filled circles on the X axis of Figure 3.6. They demonstrate that the
choice of noise correlation time 7 = 10715 s maximises spectral power
in the theta band (cyan). Furthermore, 7 = 1071%% s maximises spectral
power in the delta band (magenta). Experimental studies suggest that en-
hancement of rhythms falling to these two bands may precede occurrence
of epileptiform activity (Gupta et al., 2011; Sadleir et al., 2011; Sitnikova
and Luijtelaar, 2009; Van Luijtelaar et al., 2011). We therefore combine
delta and theta bands together and find that spectral power within this
delta+theta band is maximised for 7 = 10~ 14. As shown in the previous
section (Figure 3.2), this value of 7 coincides with correlation times of the
driving noise for which epileptic spiking is most prevalent. Therefore, we
speculate that rhythms around the theta band (4 — 8 Hz) or in the wider
delta + theta band (2 — 8 Hz) are particularly prone to eliciting epileptiform
dynamics in the model.

3.3.3 Periodic driving in the deterministic system

In order to test prediction made at the end of last section, we analysed the
response of the system to harmonic driving u(t) = Asin(%¢ + ¢). We sys-
tematically varied the amplitude A, period T and phase ¢ (with step 7/6)
of the harmonic driving, and quantified the dynamics of the model. We
also verified how increasing of the system'’s excitability (thus mimicking

the unhealthy-like conditions) affects the results. It has previously been
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Figure 3.6: Distribution of spectral power in frequency bands of standard brain
rhythms and dependence of location of maximum power on noise correlation time
7. Evaluation of the E(7, fmin, fmax) function (see Equation (3.1)) of an Ornstein-
Uhlenbeck noise characterised with correlation time 7 within a frequency range
(fmin, fmax) is plotted for fixed frequency ranges that correspond to distinct brain
rhythms: delta (2-4 Hz, magenta), theta (4-8 Hz, cyan), alpha (8-12 Hz, brown),
beta (12-30 Hz, grey), gamma (30-100 Hz, yellow) and combined delta+theta (2 —
8 Hz, black). Units on the Y axis express fraction of the spectral power of the noise
characterised with 7 contained within the fmin, fmax range. Correlation time of the
noise 7 varies along the X axis. The inset illustrates the meaning of E(7, fmin, fmax)-
It shows an example theoretical power spectrum of the Ornstein-Uhlenbeck noise
calculated for 7 = 1073 s (green), 7 = 1071* s (blue) and 7 = 10° s (red). In
each case the stationary variance o2, was set to an arbitrary value 1 s~2. Dashed
vertical lines mark the (fmin, fmin)= (2, 8) Hz range, for which the black plot shown
in the main panel was derived from Equation (3.1). Green, blue and red arrows
on the main plot indicate values of the E(7, fmin, fmax) function that correspond
to these spectra. The value indicated by the blue arrow is highest (in this case it
corresponds to the maximum), which follows from the fact that the area below the
blue curve, limited by fmin and fmax in the inset is greater that area set by either
red, or green curves. Filled circles on the X axis indicate values of 7 corresponding
to maxima of E(T, fmin, fmax): 7 = 1072545 for gamma, 7 = 10~2%s for beta, 7 =
1071 for alpha, T = 1071:5%s for theta, 7 = 1075 for delta, and 7 = 10~ !4s
for delta + theta.
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shown that the Jansen-Rit model displays a variety of dynamics, caused
by rhythmic driving, including periodicity, quasi-periodicity and chaos
(Malagarriga et al., 2015a; Spiegler et al., 2011). In this case, however,
we narrow our interest to whether the activity resembles epileptiform dy-
namics, alpha oscillations, or fluctuations around the node, and therefore
apply the same classification algorithm as in the stochastic system (see
Section 3.2). We focus on elucidating values of amplitude, frequency and
phase for which healthy or epileptiform dynamics are observed.

Healthy-like paradigm

Figure 3.7 shows the presence of each of these dynamics for the healthy-
like settings when the amplitude and period of the driving harmonic sig-
nal are varied. Panels A and B of this figure correspond to ¢ = 0 and
panel C corresponds to ¢ = 7/2. Alpha oscillations and the node solu-
tion are encoded with oblique stripes (top-right to bottom-left for the node
and top-left to bottom-right for alpha) and epileptiform dynamics are en-
coded with grey. Panel A corresponds to initial conditions set exactly to
the node, whereas panels B and C correspond to initial conditions exactly
at the focus. The diagrams are divided in regimes denoted with lowercase
letters. In case of panels A and B the regimes are additionally accentuated
with black lines. Figure 3.7A demonstrates that for fast periodic driving
(T < 10798 g), the initial node dynamics are preserved and epileptiform
rhythms are not elicited even when the driving amplitude is large.

On the other hand, for very slow driving (' > 10°? s) and sufficiently
high amplitude (A > 50 s~1), alpha oscillations dominate (regime ‘d’).
Similarly to the stochastic case, epileptiform dynamics prevail for inter-
mediate periods of the driving and sufficiently large amplitude (regime
‘a’). An exemplary time course corresponding to this case is shown in
Figure 3.8A; (and the corresponding driving signal in Figure 3.8A3). For
initial conditions set to alpha oscillations, Figure 3.7B demonstrates that
neither fast (T' < 10712 s) nor slow driving, characterised with an ampli-
tude not exceeding a limit value, causes transitions away from the initial
dynamics. Similarly to the node initial conditions, intermediate values of
T give rise to epileptiform dynamics (regime ‘g’). In all cases, exclusively
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Figure 3.7: Phase diagrams showing the different dynamical regimes resulting
from oscillatory driving with varying amplitude, period and phase obtained in
the healthy-like paradigm. The response of the Jansen-Rit model under harmonic
driving was classified as either a node (oblique stripes from top-right to bottom-
left), alpha activity (oblique stripes from top-left to bottom-right), or epileptiform
dynamics (grey). This classification was conducted for varying driving amplitude
A, displayed on Y axes, and driving period 7', displayed on X axes in logarithmic
(bottom) and linear (top) scales. Ranges and names of typical brain rhythms are
denoted on the linear scale. In general, different dynamical regimes might coexist,
therefore patterns overlap. Panel A corresponds to initial conditions set exactly to
the node, and panels B and C to initial conditions set exactly to alpha oscillations,
specifically to the mean value between the maximum and minimum, on the up-
swing of the limit cycle. In all cases p=89 s~! (healthy-like paradigm); ¢ = 0 for
panels A, Band ¢ = /2 for panel C. Black lines in panels A, B divide the diagram
into distinct regimes, annotated with letters. Homologous regimes in panel C are
denoted with the same letters as in panel B, with an additional 7/2 in subscript
(implying phase shift). See text for details.
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Figure 3.8: Time courses characteristic of various dynamics in the healthy-like
paradigm. Panels with ‘1" in subscript show responses of the model, and pan-
els with ‘2" in subscript show the corresponding driving signals. In the latter
case the red stripes correspond to regime IV (epileptic spiking) from the bifur-
cation diagram (Figure 2.4). Lowercase letters indicate dynamical regimes from
Figure 3.7, to which the presented time courses correspond. In case of panels B
and C the onset of the driving signal was delayed by 1 s in order to better visu-
alise the effect. Note that temporal scales on X axes differ. ¢ = 0 for all panels,
apart from panel C, where ¢ = 7/2. Panels A: T = 1075 s, A = 50 s~!. Pan-
elsB,C: T =107 s, A = 805! Panels D: T = 10°7 s, A = 40 s~!. Panels E:
T =108, A =090 s_l. Panels F: T = 1095, A = 90 s~ 1.

epileptiform dynamics occur when driving frequencies correspond to ei-
ther delta or theta rhythms, as expected from the analysis introduced in
the previous section. Moreover, Figure 3.7A indicates that for lowest am-
plitudes of the driving, slower frequencies are able to elicit spiking than
in the case of larger amplitudes. This observation can be linked to the
drift of the maximum detected in the stochastic driving case (see again
Figures 3.3C, 3.4C).

Driving with frequencies of ~ 10 Hz leads to a resonance effect, caus-

ing an escape from alpha oscillations to the node. This effect is present
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in regime ‘f” and the corresponding time course is shown in Figure 3.8B;.
This resonance results in long-term node dynamics. Panels A and B in Fig-
ure 3.7 were obtained for ¢ = 0. We note that alternative choices of ¢ did
not significantly alter the results of Figure 3.7A (only individual cells on
the left boundary of regime “a’” varied for some phases). However, we did
identify an effect of altering phase in that the resonance regime (‘f ;" in
Figure 3.7C) is slightly narrower when the driving sinusoid is shifted by
the phase ¢ = +7. An exemplary time course corresponding to ¢ = +5
is shown in Figure 3.8C;, where the driving harmonic signal was turned
on! at t = 1s. The phase shift chosen impedes the resonance. For other
phase shifts this effect of resonance attenuation is not that prominent, or
does not occur, but the lower boundaries of regimes ‘g’, ‘h” and ‘i’ can be
extended towards smaller values of A for some non-zero phase shifts (see
e.g. regimes ‘g, o, "y o” and ‘i o” in Figure 3.7C).

These effects, in particular the resonance attenuation, can be under-
stood from the structure of the bifurcation diagram of the model (Grimbert
and Faugeras, 2006) shown in Figure 2.4A. The fact that the focus branch,
within the range of our interest, is monotonically increasing, means that
introducing a slowly varying positive (negative) perturbation to Iex (when
the system is set to the focus) results in an increase (decrease) of the focus
coordinates along the y; — y2 axis. Consequently, a sudden positive (neg-
ative) jump of the driving signal followed by its slow decrease (increase),
makes the phase point move in direction opposite to the driving. Such is
the case of the discontinuous driving presented in Figure 3.7Cs, where a
close to antiphase coupling between the driving and the response of the
system (Figure 3.7C;) annihilates the resonance.

The structure of the bifurcation diagram also explains other observed
phenomena. For example, transient periods of intensive spiking (burst-
ing), interleaved with periods of quiescence are observed when a slowly

varying input periodically crosses the bifurcation and leads the system to

!This delayed turning on of the driving signal was applied only in these cases in order
to better illustrate the resonance effect. In all cases presented in Figure 3.7 the driving signal
was turned on at t = 0 s and a long transient was discarded, as explained in Section 3.2
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alternate between regimes III and IV. In this case, the system switches be-
tween the node (denoted by blue in regime III in Figure 2.4A) and epilepti-
form spikes (continuous red in regime IV). These dynamics are represented
in Figure 3.7 as combined spiking+node activity in regimes ‘b’, ‘h” and
‘hr/2". In this case, although the driving amplitudes can be high enough
to enter regime V, alpha oscillations are not observed, because the driv-
ing is too fast and the system does not have time to converge to these
oscillations. Furthermore, regime ‘e’ in Figure 3.7A marks driving that is
slow enough and characterised by amplitudes high enough to cross the ex-
citability threshold (enter regime IV in Figure 2.4A) - thus eliciting bursts
of spikes - but at the same time not large enough to enter regime V of al-
pha oscillations. Figure 3.8D; shows an exemplary bursting time course
corresponding to this regime.

Slow driving with sufficiently high amplitude moves the system
through all dynamic regimes and overshoots the epileptiform spiking
regime to regime V, where alpha oscillations are the only existing dynam-
ics. In this case, the system displays the effect of hysteresis. For the up-
swing of the driving sinusoid all three dynamical regimes are displayed:
from the node in regimes II and III (blue in Figure 2.4A), through epilepti-
form dynamics in regime IV (continuous red in Figure 2.4A), to alpha os-
cillations in regime V (green in Figure 2.4A). During the downswing phase
of the driving, however, the system remains in quasistatic conditions in the
alpha attractor, so in the bistable regimes IV and III it exhibits alpha oscil-
lations (green in Figure 2.4A) and in the bistable regime II it remains on
the focus (cyan in Figure 2.4A). This hysteresis loop is closed when driv-
ing with a sufficiently high amplitude moves the system to, or sufficiently
close, regime I, where the system relaxes to the node (blue in Figure 2.4A).
This effect occurs in regimes ‘c’, i” and ‘i, ;" combining all three types of
dynamics. Figure 3.8E; shows an exemplary time course corresponding to
regime ‘c’.

For smaller driving frequencies the system remains in alpha oscillations
and does not revert to the node (regime ‘d’). A similar effect is observed
for initial conditions set to the focus (Figures 3.7B,C). These effects explain
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why stochastic driving with power concentrated in low frequencies pro-
motes alpha oscillations of the system (as described in section 3.3.1). Fig-
ure 3.8F; shows how slow driving, characterised with a sufficiently high
amplitude, pushes the system deeper into the alpha limit cycle, thereby in-
creasing the amplitude of alpha oscillations. We note that these regimes are
also physiologically relevant, since slow (0.25 Hz) driving has been shown
to lead to an increased power in the alpha band (we elaborate on this case
in Chapter 5) and bursting following a slow quasi-harmonic pattern may
occur in the early ictal phase of seizures (Alarcon et al., 1995).

Unhealthy-like paradigm

Results obtained in unhealthy-like conditions are shown in Figure 3.9.
Dynamics encoding is same as in the healthy-like case (Figure 3.7). Fig-
ure 3.9A corresponds to initial conditions set exactly to the node. Since
health impairment is implemented here as an increase of p to 113 s}, lower
driving amplitudes (comparing to the healthy-like case where p = 89 s~1)
are needed to reach regimes IV and V in the bifurcation diagram (Fig-
ure 2.4A). Therefore, patterns corresponding to non-node dynamics are
shifted downwards (towards lower amplitudes) for unhealthy-like condi-
tions (Figure 3.9A) in comparison to healthy-like conditions (Figure 3.7A).

As a result, these two phase diagrams share similarities. We therefore
mark some regimes in Figure 3.9A with lowercase letters corresponding
to homologous regimes in Figure 3.7A. Here we add an additional star
symbol signifying hyper-excitability. Indeed, most of the effects discussed
for initial conditions set at the node in the healthy-like settings are also
present in the unhealthy-like case. Those effects are: pure spiking (regime
‘a*’), spiking interleaved with quiescence (regimes ‘b*" and ‘e*’), hysteresis

(regime ‘c*’

) and quasistatic dynamics (regime ‘d*’). Regimes of the phase
diagram corresponding to these effects have changed sizes in comparison
to healthy-like conditions. This can also be explained by the shift of the
average working point of the system, e.g. smaller driving amplitudes are
needed to reach regime V, where only alpha oscillations are permitted. As a
consequence, they occupy more space on the phase diagram (regime ‘d™’),
and conversely the regime where all three dynamics mix (regime ‘c*’) is

diminished. Since the boundaries between regimes are more ragged in
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Figure 3.9: Phase diagrams showing the different dynamical regimes result-
ing from oscillatory driving with varying amplitude, period and phase obtained
in the unhealthy-like paradigm. The response of the Jansen-Rit model under
harmonic driving was classified as either a node (oblique stripes from top-right
to bottom-left), alpha activity (oblique stripes from top-left to bottom-right), or
epileptiform dynamics (grey). This classification was conducted for varying driv-
ing amplitude 4, displayed on Y axes, and driving period 7, displayed on X axes
in logarithmic (bottom) and linear (top) scales. Ranges and names of typical brain
rhythms are denoted on the linear scale. In general, different dynamical regimes
might coexist, therefore patterns overlap. Panel A corresponds to initial condi-
tions set exactly to the node, and panels B and C to initial conditions set exactly to
alpha oscillations, specifically to the mean value between the maximum and min-
imum, on the upswing of the limit cycle. In all cases p=113 s~! (unhealthy-like
paradigm); ¢ = 0 for panels A, B and ¢ = 7/2 for panel C. Regimes homologous
to those from the healthy-like paradigm (Figure 3.7) are denoted with same letters
as in that case, with an additional star meaning hyper-excitability. In panel C we
use an additional ‘7 /2" in subscript, implying phase shift by ¢ = 7/2. See text for
details.
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this case, we do not accentuate them with lines. Finally, we note that in
this case, phase shifts of the driving signal introduced only variations of
individual cells, not the general structure of the phase diagram.

On the other hand, some phenomena are present only in the unhealthy-
like settings. For example, here epileptic spiking occurs already for faster
driving rhythms (regime ‘x*’) which were not able to excite the healthy-
like system, regardless of the value of the driving amplitude. We inter-
pret it as one of the effects of operating close to a ‘catastrophic transition’
(see Section 1.4.4). An exemplary time course corresponding to regime
x*” is shown in Figure 3.10A; (and the corresponding driving signal in
Figure 3.10A3). This time course shows two processes occurring in sepa-
rate timescales: fast response to the driving and slow spiking. Similarly,
alpha oscillations are already recognised in the unhealthy-like conditions
for driving faster than in the healthy-like conditions (regime ‘y*’). A time
course corresponding to this behaviour is demonstrated in Figure 3.10B;. It
shows that the natural oscillations of the system get entrained by the driv-
ing signal, and therefore the evinced frequency exceeds the alpha rhythm?
(~ 10 Hz). Also the epileptic-like oscillations can outpace their highest nat-
ural frequency due to the entrainment effect. This effect occurs in regime
‘a*’, for sufficiently high amplitude and the driving period T' = 10797 s,
which corresponds to frequency slightly above 5 Hz, whereas highest nat-
ural frequency of the epileptic-like limit cycle is ~ 4.65 Hz. This entrain-
ment is illustrated in Figures 3.10C .

Figures 3.9B,C correspond to initial conditions set exactly to alpha os-
cillations, specifically to the mean between the maximum and the mini-
mum, on the upswing of the limit cycle. Figure 3.9B shows that the previ-
ously introduced resonance effect occurring for driving frequencies around
~ 10 Hz is present also in the unhealthy-like conditions (regime {*). Nev-
ertheless, in this case, the escape from the alpha attractor may be followed
by all three dynamics types (time course in Figure 3.10D;) or even exclu-
sively by epileptic spiking (time course in Figure 3.10E;). From EEG/MEG
recordings it is known that alpha oscillations are particularly typical to the

’Note almost sixteen oscillations within one presented second of time course in Fig-
ure 3.10B. 16 ~ 10~ "2, which is the driving frequency (in Hz).
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Figure 3.10: Time courses characteristic to various dynamics in the unhealthy-
like paradigm. Panels with ‘1" in subscript show responses of the model, and
panels with ‘2’ in subscript show the corresponding driving signals. In the latter
case the red stripes correspond to regime IV (epileptic spiking) from the bifur-
cation diagram. Lower case letters indicate dynamical regimes from Figure 3.9,
to which the presented time courses correspond. Note that temporal scales on
X axes differ. Panels in the top row correspond to initial conditions set exactly
to the node. Panels in the bottom row correspond to initial conditions set to al-
pha oscillations, specifically to the mean value between the maximum and min-
imum, on the upswing of the limit cycle. Panels A: T = 10~1%s, A = 50 s~ .
Panels B: T = 10712 s, A = 50 s~!. Panels C: 7" = 10797 5,4 = 85 s~!. Pan-
elsD: T = 10995, A = 25s L. Panels E: T = 10799 s, A = 50 s~!. Panels F:
T=10"97g A=285s"L.
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visual cortex, we therefore speculate that this resonance effect could be
related to photosensitive epilepsy (Kasteleijn-Nolst Trenite, 2006) - induc-
tion of epileptic seizures by visual stimulation. We also note that when
the alpha rhythm is added to the joint delta+theta wide frequency band
considered in the spectral analysis introduced in Section 3.3.2, then the ex-
pected noise correlation time 7 for which spiking is maximised is 1071 s,
thus consistent with the stochastic results presented in Section 3.3.1.
Finally, a stripe of pure alpha oscillations is found in Figure 3.9B for
driving characterised with T = 107%7 s ~ 5 Hz, which is the first sub-
harmonic of the natural frequency of the system. As a result, due to the
1:2 phase coupling between the driving and the response (see time courses
in Figures 3.10F; 2), no escape from the alpha attractor occurs. In healthy-
like conditions this ‘subharmonic coupling” was also present for the same
driving frequency, but only for a limited range of amplitudes (see again
Figure 3.7B). Here it is observed for all amplitudes when ¢ € (m,27) and
is still present, albeit diminished, for other ¢ values. A phase diagram cor-
responding to ¢ = 7/2 and showing attenuation of this effect for larger
amplitudes is shown in Figure 3.9C. This figure also shows that the width
of the resonance peak varies depending on ¢ and excitability of the system
(compare regimes ‘f’, ‘f; 5" in Figures 3.7B,C and “t*’, “f;. /2’ in Figure 3.9B).

3.4 DISCUSSION

In this chapter we investigated the effect of rhythmic driving and coloured
noise on the generation of epileptiform dynamics in a single module of
the Jansen-Rit neural mass model. We found that epileptiform dynam-
ics are more readily elicited by noise with certain temporal correlations.
By exploring the composition of Ornstein-Uhlenbeck noise in different fre-
quency bands and driving of the model with sinusoidal rhythms, we dis-
covered that simulated epileptiform discharges are more easily generated
by rhythms in the delta and theta frequency bands. Moreover, we studied
a hyper-excitable variation of the model, thereby mimicking unhealthy-
like conditions wherein epileptic activity can be elicited more easily. In
such conditions a wider range of driving frequencies, in particular alpha

frequency, was found to generate epileptiform dynamics in the model. We
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suggest that the local microcircuit interactions embodied by the model can
give rise to emergent dynamics that leave it prone to generating epilepti-
form rhythms when bombarded by afferent spiking with particular rhyth-
mic properties.

Experimental and clinical findings lend support to this hypothesis. In-
terictal focal slow activity in the delta or delta-theta bands has been shown
to be present in a majority of invasive recordings from people with tempo-
ral lobe epilepsy, and it lateralises with regions of seizure onset (Valentin
et al., 2014), in particular in neocortical temporal lobe epilepsy (Tao et al.,
2011). Thus slow rhythms are associated with epileptic brain networks
(Tao et al., 2011). Our modelling results lead us to hypothesise that such
rhythms could also be the cause of onset of seizures in such networks. In-
deed, slow rhythms are also observed in invasive recordings at seizure
onset in focal epilepsies (Jiménez-Jiménez et al., 2015; Lee et al., 2000).
Slow rhythms have also been observed in association with generalised
epilepsies in both clinical and experimental data. Sitnikova and Luijtelaar
(2009) observed an increase of delta activity prior to onset of spike-wave-
discharges in the WAG/Rij rodent model and Van Luijtelaar et al. (2011) re-
ported an increase of delta and theta rhythms in the preictal phase of brain
activity in the same animal model. The frequency of the alpha rhythm has
also been shown to be lower in people with epilepsy compared to control
subjects (Larsson and Kostov, 2005).

Moreover, we found that in the hyper-excitable settings, driving with
frequency ~ 10 Hz also leads to an epileptic response of the system. De-
pending on the choice of initial conditions, this effect can be related either
to closeness to a ‘catastrophic transition” or to resonance with a natural
frequency of the system, which corresponds to the alpha rhythm. Since
this rhythm is particularly associated with the visual cortex, we specu-
late that the observed resonance might manifest especially easily for vi-
sual stimulation. Indeed, such case was observed on mass scale in 1997
in Japan, when a flickering scene in a popular cartoon ‘Pokemon’ led to
nearly 700 children being brought to hospitals with a suspicion of epileptic
seizures (Takahashi and Tsukahara, 1998). The flickering frequency was
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determined to be ~ 12 Hz, therefore within (a higher range of) the alpha
band.

Our results indicate that periodic driving with frequencies coinciding
with this band may lead to an escape from the alpha attractor?®. This escape
in the “‘unhealthy-like’, hyper-excitable system is followed by epileptic ac-
tivity. Such resonance effect could also inflict a transition from the focus to
the epileptic limit cycle in the aforementioned model of epilepsy of Breaks-
pear et al. (2006). In that case, however, the frequency of the driving should
correspond to the frequency of epileptic activity, whereas our results show
that the driving might coincide with a frequency of a healthy attractor,
which is escaped due to the resonance. Subsequently, epileptic activity of
an arbitrary frequency may follow. This is possible due to the coexistence
of limit cycles, absent in the approach of Breakspear et al. (2006) but highly
likely to be universal in the brain (see Section 1.4). Finally, we showed that
the resonance effect depends on the phase of the driving, which is con-
sistent with computational studies of stimulation aimed at seizure abate-
ment (Taylor et al., 2014). Nevertheless, we would not expect this phase-
dependent resonance quenching to be detectable in experiments with vi-
sual stimulation, because of lack of globally coherent alpha oscillations.

Our results suggest a potential mechanism of propagation of abnor-
mal dynamics in large-scale brain networks: a local network generating
abnormal rhythms could induce the propagation of this activity in con-
nected brain regions. The epileptic brain is increasingly being thought
of and studied in terms of networks (Berg et al., 2010; Goodfellow et al.,
2011; Naze et al., 2015; Petkov et al., 2014; Richardson, 2012; Sanz-Leon
et al.,, 2015). Understanding seizure generation in networks is a difficult
task since seizures represent emergent dynamical transitions due to both
the underlying connectivity structure of the network and the intrinsic dy-
namics of individual nodes (Goodfellow et al., 2016; Terry et al., 2012). To
simplify this situation, in our study we separated the intrinsic node and
network effects, considering the effects of temporally structured afferent

3The alpha rhythm is modelled as narrow-band ~ 10 Hz oscillations in the Jansen-Rit
model, but in the brain it is found within the 8 — 12 Hz range (see Section 1.4.1), thus the
resonance effect could occur for a wider frequency band than in our simulation.
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3. NOISE-INDUCED EPILEPTIFORM DYNAMICS

activity to a node. Our observations that certain rhythms preferably gen-
erate epileptiform dynamics arise from an interplay between the presence
of different invariant sets (Figure 2.4A) and the timescale of fluctuations
in I.x. For example, on the node branch, close to the epileptiform limit
cycle, slow variations in afferents can allow the epileptiform limit-cycle to
appear and, if the amplitude of these fluctuations lies within a certain in-
terval, the system can also converge to this attractor, therefore displaying
epileptiform rhythms. By uncovering these phenomena in the determinis-
tic system, we are able to better understand the ways in which stochastic
fluctuations with power in certain frequencies could cause transitions in
dynamics and ultimately lead to epileptiform activity.

In our study we used a set of parameters for the Jansen-Rit model that
give rise to dynamics relevant to the study of healthy brain function such
as the alpha rhythm as well as pathological dynamics (Jansen and Rit, 1995;
Jansen et al., 1993; Wendling et al., 2000). Previous studies have used bi-
furcation analysis to demonstrate how the arrangement of invariant sets
changes in parameter space (Spiegler et al., 2010; Touboul et al., 2011),
and have studied the response of neural mass models to driving by rhyth-
mic pulses (Spiegler et al., 2011) and white noise (Wendling et al., 2000).
Our work advances on these previous studies by quantifying the effect
that temporally correlated noise and rhythmic input have in terms of the
generation of epileptiform spiking, which led us to hypothesise a role for
low-frequency brain rhythms in the generation of seizures. We therefore
demonstrated the importance of non-white noise in the context of bifurca-
tions of neural mass models to uncover the mechanisms underlying brain
(dys-)function. The chosen parameter set enabled us to study the effect that
different afferent dynamics have on the generation of these dynamics, and
we further demonstrated that variations in the arrangement of attractors
did not affect the optimal timescale for induction of epileptiform dynam-
ics. Bistability and a limited size of the epileptic regime in the bifurcation
structure were shown to be crucial for attenuation of epileptic activity for

very slow driving.
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3.5 SUMMARY AND OUTLOOK

In this chapter we studied the response of a single Jansen-Rit module to
stochastic and harmonic driving. In the former case, we showed the im-
portance of temporal correlation of the driving noise. In the latter case, we
demonstrated a spectrum of phenomena such as hysteresis, entrainment,
(subharmonic) phase coupling, and resonance. Furthermore, we linked
the two cases and showed how the deterministic driving, along with the
bifurcation structure of the system, explains results obtained in the stochas-
tic setup. Finally, we related these phenomena to clinical observations of
epilepsy. Since the driving frequency which is most likely to elicit epilep-
tic activity partially coincides with the natural frequency of spiking, fu-
ture work could study spreading of epileptic activity on networks, where
(pathological) activity generated by one node could spread to intercon-
nected nodes. In Chapter 5 we show power spectra produced under the
driving employed here, and in the next chapter we extend the model to
two reciprocally coupled and stochastically driven modules, and we study
their interactions. In particular, we focus on phenomena arising from an
uncommon property of the Jansen-Rit model: coexistence of two limit cy-
cles.
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CHAPTER 4

COLLECTIVE EXCITABILITY AND NOISE

4.1 INTRODUCTION

Computational models in neuroscience rely on parameters derived from
anatomy and physiology. As discussed in the ‘Introduction” and ‘Mod-
elling mesoscopic brain dynamics” chapters, these models often discretize
spatially extended neuronal tissue and introduce a ‘coupling strength’ that
refers to the magnitude of interaction between nodes of a discretised mesh
or network. In practical terms, this quantity is most often a multiplier
of the output activity of an upstream node, before this output is fed to a
downstream node. It is not clear, however, how to derive this coupling
strength experimentally. For this reason, in computational models the cou-
pling strength is often used as a scan parameter (Deco et al., 2013). Such
variations of the coupling strength, with other parameters of an excita-
tory network kept constant, entail changes of the effective input received
by the nodes. In such conditions it becomes unclear to what extent the
changes of dynamical properties of the system emerge from inter-node in-
teractions and to what extent they simply follow from the intra-node dy-
namics driven by an increased effective net input.

For example, Huang et al. (2011) find, in a system of two interconnected
Jansen-Rit modules, that an increase of coupling strength at some point
leads to vanishing of equilibria. Nevertheless, as discussed in Section 2.3.3,
a similar effect occurs in case of a single Jansen-Rit module, i.e. in the ab-
sence of inter-module interaction, where an increase of a constant input
leads to a Hopf and a saddle-node on invariant circle (SNIC) bifurcations
(see Figure 2.4A), which result in the disappearance of the associated sta-
ble fixed points. We studied the behaviour of the Jansen-Rit model around
these bifurcations in the previous chapter, where we saw that increasing
the constant input p delivered to the model, as well as increasing the am-

plitude (in a certain range) of the driving signal, facilitates occurrence of
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4. COLLECTIVE EXCITABILITY AND NOISE

epileptic-like activity. It is a rather self-evident observation, confirmed also
in studies of more than two modules (Goodfellow et al., 2016). Also in
the context of epilepsy, Goodfellow et al. (2011) study the spreading of
transient epileptic-like excitations on a lattice of interconnected Jansen-Rit
modules (with additional slow inhibition). Those authors also examine the
role of coupling between nodes of the network, observing that mixing of
two oscillatory modes (see Section 2.3.3) gives rise to transient excitations.
The authors do not, however, quantify the durations of these excitations,
nor do they consider noise, which is ubiquitous in the nervous system (see
Section 1.4.2).

Here we focus on the temporal properties of such transient excitations
in a system of two coupled Jansen-Rit modules subject to white noise.
These transients arise due to an aforementioned non-trivial feature of the
Jansen-Rit model, namely the coexistence of two limit cycles (see Sec-
tion 2.3.3), one of which displays quasiharmonic oscillations of frequency
~ 10 Hz, resembling alpha activity (see time course in Figure 2.4B), and the
second of which displays spiky epileptic-like behaviour (see time course in
Figure 2.4C). The interplay between these two dynamics is physiologically
relevant: in the epileptic brain the spreading of seizures may be gradual,
therefore both types of oscillatory modes may coexist and interact. The
transient episodes do not occur due to slow changes of one of the system’s
parameters that would lead to hovering over the bifurcation (Baier et al.,
2012; Lopes da Silva et al., 2003), but rather due to complex interactions
between the two oscillatory modes. These interactions, in turn, are modu-
lated by the coupling strength between the modules.

In this chapter we study the dynamical properties of these excitation
episodes, by systematically varying the coupling strength between two re-
ciprocally connected Jansen-Rit modules. In order to initiate excitations we
subject the two modules to Gaussian white noise. In the previous chap-
ter we emphasised the importance of temporal correlation of the driving
noise, although we did it by means of the system that was previously thor-
oughly studied in the white noise setup (Aburn et al., 2012; Garnier et al.,
2015; Jansen and Rit, 1995; Touboul et al., 2011). Here we introduce a novel
setup, characterised by a compensated input, and we conduct the study
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with a simplified, temporally uncorrelated driving. This methodology al-
lows to ascertain those effects arising solely due to the introduced novelty.

In the presented approach, regardless of the value of the coupling
strength, the system in the steady state is situated always equally far from
the excitability threshold (the SNIC bifurcation). As we exclude a simple
crossing through the bifurcation due to the increased net input, we can
focus on effects arising from interconnectedness of two nodes of the large-
scale cortical network. This interconnectedness gives rises to an excitable
behaviour, and therefore we term it ‘collective excitability’. We show a
non-monotonous trend of the initiation rate of the excitation episodes as
a function of the coupling strength, and we observe coupling-mediated
synchronous terminations of these episodes, which bear resemblance to
clinically observed epileptic activity (Schindler et al., 2007).

4.2 METHODS

The system studied in this chapter is governed by Equations (2.10)-(2.12)
with N = 2, u(t) = 0 and stochastic processes ¢'(t) given by indepen-
dent realisations of Gaussian white noise with intensity D, i.e.: £i(t) =
V2DEL(t), where (€4, (H)EL,(#)) = 3(t — #') and (€,(£)E(¢)) = 0 for i # J.
The parameter p is set in such a way that in the absence of noise and cou-
pling, the system converges to the node (blue in regime III in Figure 2.4A).
Increase of the coupling strength K leads to an increase of the input to
each column, I’,, given with Equation (2.13), what may lead to crossing a
bifurcation point (entering regime IV in Figure 2.4A). In order to avoid it,
we decrease the constant component p from Equation (2.13) in a way that
keeps the system in the steady state equally far (Ap = 1 s71) from the ex-
citability threshold (the SNIC bifurcation), regardless of the value of K. For
a single Jansen-Rit module, the location of the excitability threshold could
be read from the bifurcation diagram (Figure 2.4A). Nevertheless, here we
deal with a system of two interconnected columns, and therefore, we need
to perform a bifurcation analysis for the system with N = 2. This analysis
is presented in the following section.
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421 Codimension-1 bifurcation analysis

In order to localise the excitability threshold in the system governed by
Equations (2.10)-(2.12) with N = 2, we performed a bifurcation analysis
(Ermentrout, 2002) of the deterministic part of this system. We focused our
attention on the location of the SNIC bifurcation, above which, in an un-
coupled system, spans a regime of bistability between the two limit cycles
(see Section 2.3.3). Figure 4.1 shows this SNIC bifurcation for three values
of the coupling strength K along with the associated stable (continuous
line) and unstable (dashed line) branches. In the numerical simulations
presented in this chapter, for each value of K we chose p in such a way
that the system in the absence of noise operates at a distance Ap = 1571
below the excitability threshold (the SNIC bifurcation). For example: for
K =0, the SNIC bifurcation occurs at penic = 113.58 s~1, therefore we choose

1 whereas

the constant part p of the input . to be equal to p = 112.58 s~
for K = 10, psnic = 107.3 s71, thus we set p to 106.3 s~*. Since the loca-
tion of this SNIC bifurcation marks the onset of epileptic activity, it is of
high importance in theoretical studies on epilepsy (see Section 1.4.7). Fig-
ures 4.1A-C demonstrate that for growing K, psnic decreases. In order to
find the exact course of this K — psic dependency, in the following section
we perform a codimension-2 bifurcation analysis. Moreover, we introduce
an alternative method (from now on referred to as the ‘derivative method’)
of tracking the location of a saddle-node bifurcation in a system of coupled

modules.

4.2.2 Codimension-2 bifurcation analysis and the derivative method

Here we introduce a simple method of tracking a loss of stability due to
a saddle-node (SN) bifurcation in a compound system. We also validate
this method with a continuation analysis performed with XPPAUT (Er-
mentrout, 2002). Such a loss of stability might be of special importance,
e.g. when due to the saddle node on invariant circle (SNIC) bifurcation
it marks a ‘catastrophic” (see Section 1.4.4) onset of an epileptic-like limit
cycle. This is the case for the Jansen-Rit model utilised in this Thesis (see
Section 2.3.3). The derivative method presented in what follows was de-

veloped and tested on that model.
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Figure 4.1:  Bifurcation structure of the model around the SNIC bifurcation

for the system of two coupled Jansen-Rit modules. The three panels A,B and C

demonstrate invariant sets for the coupling strength K equal 0, 10 and 20, respec-

tively. Continuous (dashed) lines mean stable (unstable) equilibria. The red dot

marks location of the SNIC bifurcation. Panel A, showing uncoupled case, corre-
sponds to a fragment of the bifurcation diagram presented in Figure 2.4A.

The solid line in Figure 4.1A shows a stable solution (a node) for two
uncoupled Jansen-Rit columns exposed to external constant driving p. This
system is described by the deterministic part of Equations (2.10)-(2.12) with
K = 0, and has properties of one single column. When coupling between
the two columns increases, however, the SNIC bifurcation moves to the left
(compare the locations of the red dot in panels A-C in Figure 4.1). If p is
kept constant within the stable branch (continuous line in Figure 4.1A), the
distance between the working point of the system and the SNIC decreases
as the coupling strength increases and the output of the system (read from
the Y axis of Figure 4.1) increases. This output, however, entails a further
increase of the input fed to the interconnected column, which again pro-
vokes an increase of its output, and a similar influence is exerted by the
second column upon the first. This transient process continues updating
I%,. Existence of the steady state (understood as the stable node below the
SNIC bifurcation) requires that I, is finite, thus updates to I¢, must de-
crease in time. In order to express this condition formally, let us define
a coupling function f.(Iex), which multiplied by K converts the input I%,
delivered to column ¢ into this column’s output. For the steady state of a
deterministic system with V = 2 and u(t) = 0, this coupling functions is
given by (compare with the last term of Equation (2.13)):

fellex) = Sigm[y7 (Tex) — y5(Lex)], (4.1)
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Figure 4.2: Panel A: coupling function characterising the interaction between
two columns. Panel B: location of the saddle-node bifurcation in the system of
two connected Jansen-Rit modules computed with XPPAUT (red line) and with
the ‘derivative method’. The approximated linear dependency is marked by the
dotted line.

where yj 5(lex) denotes the value of the y; o state variables in the steady
state corresponding to I.x and to the stable branch associated with the SN
bifurcation'. For analytical implicit expressions for Y1 2(Lex) see e.g. Gar-
nier et al. (2015) and Huang et al. (2011). The f.(/ex) function is shown in
Figure 4.2A. By means of this function, we can rewrite Equation (2.13) and
express lex in the steady state as a sum of external constant driving p and
the coupling term:

Lox = p+ K fe(Iey) (4.2)

'Due to the symmetry of the system, the introduced dependencies are valid for both
columns. We therefore dropped for simplicity the index ¢ from the subscripts of the I
and y state variables. Furthermore, since the described method does not require that the
tracked bifurcation is a global SNIC, but in general it can be a saddle-node as well, we from
now on will refer to this bifurcation with the ‘SN’ abbreviation.
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A necessary condition for stability of the steady state of two coupled mod-
ules can be then written as:

dfe(x)

K
dx

<1 (4.3)

z=Iex

If this condition is not fulfilled, a perturbation Alex > 0 of the external
driving entails an increase of the coupling term exceeding A, which for
monotonically increasing f. leads to divergence of I.x. Thus, for mono-
tonically increasing and differentiable f., and for K > 0 we expect the

disappearance of the stable solution (SN bifurcation) at ISN such that:

dfe(x) 1
= — 4.4
dx = IE,I(\I K ( )

from where Equation (4.2) allows to find the corresponding external driv-
ing p°N (X coordinate of the bifurcation points, marked with red dots in
Figure 4.1). Therefore, it is enough to know the coupling function f, and
its derivative in order to quickly find the location of the SN bifurcation for
an arbitrary K. Finding this location allows us to set the constant driving
of the system p to N — Ap.

Figure 4.2B shows the location of the SN bifurcation of two coupled
Jansen-Rit modules for increasing coupling, computed with the derivative
method (black dots), along with the result of the codimension-2 analysis
performed with XPPAUT (red line). In order to emphasise a slight devia-
tion from the linear dependency, we plot it in a form approximating Equa-
tion (4.2): p°N = —K fc(ps?rléle) + p3N gle (dotted line), where pfil;lgle ~ IN
is where the SN bifurcation occurs for a single Jansen-Rit module. In the
reminder of this chapter, for a given value of K, the constant input p to the
system is set Ap = 1 s~! below the value read from the Y coordinate of
the black dot from Figure 4.1 with its X coordinate value equal to K. For
K = 0 we use the values known from the single column case.

This ‘derivative method’ is not indispensable for the results presented
later in this chapter. In order to find settings of the p — K values, we could
engage only the XPPAUT codimension-2 analysis. Nevertheless, in this
Thesis we introduced the “derivative method” since it might be found use-
ful when applied to networks of modules featuring saddle-node bifurca-
tions. That is because by substituting K in Equations (4.2)-(4.4) by K(N—1)
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one can find the location of the SN-driven stability loss in a fully bidi-
rectionally coupled network of N Jansen-Rit modules (as the one studied
in Chapter 5), without performing continuation analysis which might be
demanding due to the high dimensionality of the corresponding system.
As mentioned before, localising the SN-driven stability loss might be of
high interest when it marks a ‘catastrophic transition’, like the transition to
epileptic spiking set by the SNIC bifurcation in the Jansen-Rit model. Note
that this method would not apply to instabilities arising from foci, because
in that case, when relaxing to the focus the system transiently exceeds the
steady state value and therefore we can not apply the simple reasoning of
the one-sided Iex convergence.

4.2.3 Classification of model dynamics

In order to study the temporal properties of transient excitation episodes,
we use the classification algorithm illustrated in Figure 4.3 and described
in what follows. Running averages within a sliding window of length
W = 0.5 s are computed for output signals yi — y4 of both columns
(i € {1,2}). Spans of time course in which at least one of these averages
was above the threshold 7' = 5 mV are considered excitation periods. For
the values of W and 7T chosen, the result of the classification agrees with
eye inspection and pure epileptic-like spikes are not considered excitation
episodes. This is what we want, because we are interested in activity that
can be transiently self-sustained and therefore can lead to longer excitation
periods. To emphasise this exclusion of short pure spikes, from now on we
use the term “prolonged excitation transients’ (or simply ‘prolonged activ-
ity’). Figure 4.3 shows 10 second of simulation, generated by the model
in the presence of white noise. The outputs of both columns are denoted
by thin blue and black lines, and the corresponding running averages by
the thick lines in the same colours. Whenever at least one of the running
means crosses the threshold 7" (dashed line), the signal is considered pro-
longed activity. Note that the synchronous spiking of both columns oc-
curring around ¢ = 49 s is not considered prolonged activity, whereas the
short episode appearing between t = 43 s and t = 44 s is considered as
such.
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Figure 4.3: Classification of activity. The output signals of two columns are
marked with thin black and blue lines. Running averages of these signals obtained
with a sliding window of length 0.5 s are shown by thick black and blue lines. The
threshold T is marked with a dashed line, and periods classified as prolonged
activity are represented by the grey background. Here coupling strength is K =
10, the intensity of white noise is D = 0.5 s™!, and p is adjusted to K according to
the methodology introduced in text.

4.24 Computational simulation

We integrated the system with the stochastic Heun scheme. For each set-
ting of D and K values we performed ten simulations 3601 s long (one
second was used to buffer the sliding window), furnished with different re-

alisations of stochastic processes, frozen for different parameters settings.

4.2.5 Averaging and computation of rates

In the ‘Results” section we compute the initiation and termination rates of
the prolonged excitation transients. The initiation rate is defined as the
total number of prolonged excitation transients divided by the total du-
ration of the steady state, whereas the termination rate is defined as the
total number of terminations of prolonged excitation transients divided by
their total duration. These quantities are not computed for each realisation
of the noise separately, but rather within each set of parameters once for all
realisations considered together. This procedure minimises effects related
to the finite time of the simulation and at the same time involves various

realisations of stochastic processes.
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Figure 4.4: Exemplary time courses obtained for three different values of the
coupling strength. 100 seconds of activity of the model is shown for K = 5 (A),

K = 10 (B) and K = 15 (C). Periods classified as prolonged activity are repre-

sented by a grey background. In all cases the noise intensity D was set to 0.5 s7},

and the system was operating Ap = 1 s™! below the excitability threshold set by
the SNIC bifurcation.

4.3 RESULTS

We studied the role of coupling in initiation and termination of prolonged
excitation transients appearing in the system of two coupled Jansen-Rit
modules operating close to (Ap = 1 s7!) the excitability threshold and
subject to white noise. Figure 4.4 demonstrates sample time courses ob-
tained for three different values of coupling K and in the presence of noise
characterised by intensity D = 0.5 s™!. Durations of prolonged excita-
tion transients (marked with the grey background) and steady state peri-
ods (white background) for different values of K show that the rates of
initiation and termination of prolonged excitation transients depend on
the coupling strength between the columns. In particular, for low cou-
pling strength values (panel A, K = 5) the system does not change the
state frequently, as for greater coupling strength values (panels B and C,
K =10, 15, respectively). In contrast, for intermediate values of K (panel
B, K = 10) the system switches to the excited state most readily. Next,
we studied these effects by systematically varying K and performing long
simulations providing high statistics, as described in the ‘Methods’ section.
This allowed us to estimate initiation and termination rates of prolonged
excitation transients.

Figure 4.5 shows how the initiation and termination rates of prolonged
excitation transients depend on the coupling strength K. The results are
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presented for three different intensities of the noise: D = 0.25, 0.5 and
157! (blue, red and green, respectively). This figure demonstrates that for
low values of K both the initiation and termination rates are relatively low,
indicating rare transitions between steady and excited states. K = 0 corre-
sponds to the case of two separated modules, and shows that in that case
transitions between the states are rare. We already studied a comparable
case in Chapter 3: an excitation event corresponds here to noise-induced
transition from the node to the alpha limit cycle (from blue to green in
regime III in Figure 2.4A) of at least one column, and a termination event
corresponds to the opposite transition between those states. As can be
read from Figure 4.5, this effect relies on sufficiently high intensity of the
noise (green). For low noise intensity (blue) and low coupling K, the ef-
fect it is virtually absent, while it emerges for increasing K. This reliance
on coupling between the modules is what we refer to as “collectiveness’ of
excitability.

The increase of K leads to a moderate increase of termination rates
and a rise of initiation rates, which reach a maximum for intermediate K
(K=8forD=0255"1,K=9forD=05s"'and K = 10for D = 1s7}).
For larger K values the initiation rates decay, whereas termination rates
increase more rapidly. For large coupling the termination rate is basically
independent on the noise intensity, showing that in that regime it is cou-
pling, not noise, that plays a major role in the termination of activity. In
other words, when K is high, in the excited state, the system is hardly
susceptible to noise. The concurrence of a noise-dependent initiation and
noise-independent termination is a typical behaviour of an excitable sys-
tem (Lindner et al., 2004). In this system large enough coupling induces
excitable behaviour at the level of two columns, which thus constitutes a
collective effect. In the presented case, however, for K < 15, termination
rate depends on noise intensity, which is illustrated by the separation of
dotted lines in Figure 4.5.

Figure 4.6 shows the activity of the system around the termination of
prolonged excitation transients. Figure 4.6A shows that for low coupling
(K = 5). The termination of activity is unsynchronised between the two
columns. In that regime the termination is partially inflicted by noise,
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Figure 4.5: Dependence of the initiation and termination rates on coupling
strength and noise intensity. Initiation ('init’, dots) and termination (‘term’,
crosses) rates for discrete values of the coupling strength K are shown for three
different intensities of the driving noise: D = 0.25 s7! (blue), D = 0.5 s7! (red),
D = 1s7! (green). Dashed and dotted lines are plotted to guide the eye. Note
that for the lowest noise intensity (D = 0.25 s~!) and two lowest coupling values
(K = 1, 2) the initiation rate was too low to gather sufficient number of episodes
allowing to measure termination rate. Therefore the two lowest points of termi-
nation rate for lowest noise intensity are considered outliers and are not plotted.

whereas for higher K it occurs rather due to synchronisation effects. Fig-
ure 4.6B shows how for high coupling (K = 15) the synchrony between
the two columns gradually develops, until a simultaneous drop of activ-
ity terminates the excitation period. Although this gradual development
of synchrony does not have to be present in every excitation transient, the
synchronous termination is prevalent for higher coupling.

The dependence on K of this synchronous termination is shown in Fig-
ures 4.6C-E, where the black line represents the average over both columns
and all excitation transients for the given coupling: K = 5 (panel C),
K = 10 (panel D), K = 15 (panel E). The grey lines shown in these pan-
els are 100 exemplary time courses of individual columns. They converge
most strongly to the averaged time course (black line) after the termination
(t = 1s) in the case of strongest coupling (Figure 4.6E). Also in that case
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Figure 4.6: Terminations patterns of prolonged excitation transients. Panels
A and B show exemplary time courses of two cortical columns (black and blue
lines) for K = 5 and K = 15, respectively. Periods of prolonged excitation tran-
sients are marked with the grey background. Panels C, D, E show averaged time
courses from both columns and from all prolonged excitation transients registered
for K = 5,10, 15, respectively. Grey lines in these panels are 100 exemplary time
courses. In all cases the moment found by the classification algorithm as the point
of excitation termination has been shifted to the middle of the plot (it corresponds
tot = 1s). The results were obtained for D = 0.5 s~!. The thick lines in panels C,
D, E were obtained from averaging 2.5 - 10% , 11 - 10® and 18 - 10 individual time
courses, respectively.
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4. COLLECTIVE EXCITABILITY AND NOISE

the kink typical to the refractory period of the Jansen-Rit model is most
strongly pronounced (dip in the black line after ¢ = 1 s). Greater coupling
promotes this synchronous termination, which explains the faster appear-
ance of synchronisation patterns for K = 15 (black line in Figure 4.6E) than
for K = 5 (black line in Figure 4.6C), as well as the growth of the termina-
tion rate with K presented in Figure 4.5.

The trend of the initiation rate presented in Figure 4.5 with coupling
also may be explained as follows. Low K values hamper recruitment be-
tween the columns: when one column spikes due to the stochastic pertur-
bation, it is less likely to excite the other one, as long as K remains low. For
larger K values, however, a spike in one column entails a significant per-
turbation applied to the other column, and allows it to also leave the steady
state. If the coupling between the columns is strong enough, then both
columns may display the same behaviour - they synchronously spike and
simultaneously (and quickly) fall to the refractory period followed by the
steady state (see again the isolated spike around ¢ = 49 s in Figure 4.3). In-
termediate K values, in contrast allow for the mixing of oscillatory modes;
although the recruited column leaves the steady state, the columns do not
fully synchronise and as a result at least one of them sustains activity by
moving to the attractor of alpha oscillations that lack refractory period.
These oscillations yield increased output that is fed to the other column,
which can again go active after leaving the refractory period, and a pro-
longed excitatory activity may develop. This effect explains why the ini-
tiation rate peaks for an intermediate coupling in Figure 4.5. The location
of the peak in Figure 4.5 varies for different noise intensities D, which can
be explained by the fact that larger noise requires higher coupling strength

for complete synchronisation.

4.4 DISCUSSION

In this chapter we studied the behaviour of a system of two reciprocally
coupled Jansen-Rit modules operating slightly below the SNIC bifurcation
and subject to white noise. We focused on characterising temporal prop-
erties of prolonged excitation transients as a function of coupling strength

and noise intensity. These excitation transients occur in the system in an
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abrupt way due to the proximity of the ‘catastrophic transition” underlying
the onset of relaxation oscillations. Coexistence of these oscillations with
another, quasiharmonic limit cycle, facilitates the emergence of these exci-
tation periods to long lasting activity. This activity, in turn, can abruptly
terminate due to complete synchronisation of both modules in the refrac-
tory period of the relaxation oscillatory mode. We quantified the rates
of transitions between the excited and steady states, and we showed that
the excitability of the system depends non-monotonically on the coupling
strength between the modules.

Excitability can be defined based on the amplitude of system’s response
to external stimulation. The magnitude of this amplitude depends on stim-
ulation in a strongly nonlinear way: stimuli exceeding a certain thresh-
old evoke a response characterised by an amplitude much greater than for
stimuli not exceeding the threshold. Our definition of excitability is based
not on amplitude, but rather on duration of system’s response. We ob-
served that for sufficiently strong coupling this duration (on average) does
not depend on the driving noise intensity. Such behaviour is typical of
excitability. In our system we identified another regime, characterised by
weaker coupling, in which the duration of the response does depend on
the driving noise. Note that according to our definition, the simultaneous
spiking of both columns is too short to be considered an excitation event.
Breaking of symmetry promotes excitations, and in our system it is pro-
vided by independent realisations of the noise acting upon the columns.

Similarly to Chapter 3, the findings presented here can be related to
epilepsy. This disease is primarily characterised by excessive synchrony
(see Section 1.5). Nevertheless, recently it has been observed that synchro-
nisation might be increasing during development of seizures (Khambhati
et al., 2014; Truccolo et al., 2011). It has been proposed that seizures imply
synchronisation, and synchronisation leads to termination of seizures (Ma-
jumdar et al., 2014). Termination of seizures has been shown to exhibit sig-
natures of a “catastrophic transition” (Kramer et al., 2012). The synchronous

termination, occurring due to simultaneous entering the refractory period,
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4. COLLECTIVE EXCITABILITY AND NOISE

has been hypothesised to be the scenario underlying a synchronous ter-
mination of seizures (Schindler et al., 2007). This behaviour and a ‘catas-
trophic transition” are featured by our model.

Due to the excessive synchrony during seizures, a single neural mass
may represent a large-scale cortical area or even the whole brain (Break-
spear et al., 2006). Here we characterised a regime of high coupling in
which the system is highly synchronous and therefore its activity could be
approximated by the time course of a single module. Intermediate cou-
pling gives rise to complex phenomena, absent when the columns interact
weakly. It has been suggested that the healthy brain is most likely to op-
erate in the intermediate coupling regime (Deco et al., 2013), where the
emergence of complexity might empower computational capabilities. Our
results do not necessarily have to describe epileptic dynamics: prolonged
excitations contain periods in which both columns dwell in the alpha at-

tractor.

4.5 SUMMARY AND OUTLOOK

In this chapter we focused on interactions between two coupled Jansen-
Rit modules operating in bistable regimes. This bistability involved co-
existence of two limit cycles, interactions of which gave rise to complex,
long excitations. We quantified temporal properties of these excitations
and showed that various settings of the system, with fixed distance to the
‘catastrophic transition’, lead to very different behaviours. In the previous
chapter we showed that temporal correlation of the driving noise facilitates
excitation in the Jansen-Rit neural mass model. The results presented here
relate to that finding, because each column could be considered a low-pass
filter that transforms the white noise presented here into temporally cor-
related output driving the interconnected column. A natural extension of
our approach could address the effects of introducing temporal correlation
of the noise in the presented methodology. In what follows we combine
the effects studied so far, i.e. we consider a system compound of a num-
ber of columns driven by temporally correlated noise and harmonic signal.
Moreover, we go beyond temporal analysis of the model’s response, focus-
ing on its spectral properties and relating them to experimental data.
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CHAPTER 5

CROSS-FREQUENCY TRANSFER WITH STOCHASTIC DRIVING

5.1 INTRODUCTION

In this chapter we study the spectral properties of a system of coupled
Jansen-Rit modules subject to driving with temporally correlated noise and
a periodic signal. In particular, we are interested in reproducing two spec-
tral phenomena characteristic to brain dynamics, namely the 1/f® shape
of the background EEG power spectrum (see Section 1.4.5) and cross-
frequency interactions. The latter phenomenon is widespread in brain dy-
namics; it may involve various rhythms and may concern various config-
urations of coupling between amplitudes and /or phases of those rhythms
(Jirsa and Miiller, 2013). Here we are interested in the “phase-to-amplitude’
coupling that occurs when the phase of the slower rhythm modulates the
amplitude of the faster thythm. We introduced this mechanism in Sec-
tion 1.4.1 and we mentioned one of its potential functions in the brain:
facilitation of ‘communication through coherence’. This phenomenon can
also be considered a transfer of power between different frequency bands:
the slow driving leads to periodic increases of power in the faster band.
Indeed, such phenomena have been observed experimentally, for exam-
ple transcranial stimulation of the brain at low frequencies (smaller than
1 Hz) has been seen to cause for instance an increase in oscillatory power
at larger frequencies (5 Hz-10 Hz) (Marshall et al., 2006; Massimini et al.,
2007).

Recently much emphasis has been placed on quantifying and charac-
terising the transfer of spectral power across frequencies (known in what
follows as cross-frequency coupling, Jirsa and Miiller, 2013), and on iden-
tifying its functional roles in the brain (Canolty and Knight, 2010; Jensen
and Colgin, 2007). In particular, power spectrum correlations have been
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observed for instance between theta and gamma rhythms in the rat hip-
pocampus during memory retrieval (Shirvalkar et al., 2010), between pos-
terior gamma and frontal alpha/beta oscillations in the human brain dur-
ing motor imagery tasks (Lange et al., 2008), and between the gamma and
delta bands in different regions of the human visual cortex during a visual
task (Bruns and Eckhorn, 2004). Phase coupling between delta and alpha
bands has also been reported in human brains performing an orientation
task (Isler et al., 2008). More common is the situation in which the oscil-
lation power in a given frequency band is modulated by a second rhythm
at lower frequency. Such cross-frequency coupling has been observed for
instance between alpha and gamma activities in humans during rest (Os-
ipova et al., 2008) and between theta and gamma oscillations in rats during
learning (Tort et al., 2009). Other behavioural correlates of cross-frequency
coupling have been found, associated for instance with reward coding (Co-
hen et al., 2009a) and decision making (Cohen et al., 2009b) in humans.
Also, recent work has shown that cross-frequency coupling is modulated
by behavioural tasks (Voytek et al., 2010). Cox et al. (2014) reported cross-
frequency coupling between the phase of sleep spindles and the amplitude
of higher frequency rhythms, in particular beta, recorded in EEG during
sleep. This effect, in turn, was modulated in the frontal cortex by the phase
of slow sleep oscillations.

Despite the large number of experimental studies pointing towards
cross-frequency correlations, several difficulties arise when it comes to
the interpretation of this phenomenon. As pointed out by Aru et al.
(2015), the methodologies applied in a number of recent studies on cross-
frequency coupling are not flawless and the results might have been over-
interpreted. Therefore, further and stricter studies on the functional role of
cross-frequency coupling are needed to confirm previous results. In partic-
ular, not all cross-frequency correlations are signatures of direct interaction
between rhythms. And when they are, such correlations may be explained
by different mechanisms, which may be grouped into two broad scenar-
ios. In one scenario, two neuronal oscillators operating at two different
rhythms might be coupled bidirectionally to each other. This coupling

could mediate an interaction that would result in each of the oscillators
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being affected in one way or another by the natural frequency of the other
oscillator (Jirsa and Miiller, 2013). When such bidirectional interaction oc-
curs locally, it has been proposed to be mediated by the firing activity of
the underlying neurons (Mazzoni et al., 2010). In such a way delta oscil-
lations, for instance, control the level of local cortical excitability, which
in turn modulates the excitatory-inhibitory balance that gives rise to the
gamma rhythm (Mazzoni et al., 2011).

In a second, somewhat simpler scenario, cross-frequency correlations
might arise due to unidirectional coupling, through which the spectral fea-
tures of the driving neuronal population would be directly transferred to
the driven population. When the same external stimulus is encoded by two
different rhythms, cross-frequency correlations can appear as a result of
that common unidirectional driving (Mazzoni et al., 2008). In some cases,
however, the stimulus does not necessarily affect directly the neurons un-
derlying one of the rhythms. This might be the case of recent experimental
work by Bayer et al. (2011), who examined the effect of rocking on sleep in
human subjects. In that study, healthy volunteers were asked to lie down
on a rocking bed that oscillated slowly, at a frequency of 0.25 Hz. This peri-
odic stimulation was seen to ease the transition from waking to sleep, and
to increase the power of cortical oscillations (measured via EEG) in the al-
pha range. In this chapter we ask whether a cross-frequency transfer such
as that reported by Bayer et al. (2011) can be the result of the low frequency
input driving a mesoscopic broadband oscillator operating in the alpha
range. To that end, we engage the Jansen-Rit model introduced in Chap-
ter 2 and we subject it to driving with Ornstein-Uhlenbeck noise, which
may be considered a simple approximation of a realistic 1/ f*” broadband

brain activity (see Section 1.4.5).

5.2 METHODS

We study the system of NV coupled Jansen-Rit modules described by Equa-
tions (2.10)-(2.12), with stochastic components ¢ = ¢! given by Equa-
tion (2.14). Values of the rest of model parameters are specified in Ta-
ble 5.1. We relate our computational findings to the EEG experimental
measurements. Therefore, like previously, we are interested in analysing
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Variable Symbol | Value Units
Number of columns N 4, unless stated otherwise -
Integration step h 0.001 s
Noise intensity D 350, unless stated otherwise st
Noise correlation time T 0.15, unless stated otherwise S
Constant input component P 75 for coupled system, 90 for | s °
uncoupled
Coupling strength between the K 15, unless stated otherwise -
columns
Driving sine signal frequency f 0.25, unless stated otherwise Hz
Driving sine signal amplitude Ag 45, unless stated otherwise st
Driving sine signal phase 0] 0 -
Reshaped signal amplitude A’ 10.76 st
Reshaped signal minimal fre- Smin 0.05 Hz
quency
Reshaped signal maximal fre- JSmax 4 Hz
quency
Reshaped signal frequency step fotep 0.05 Hz
Length of simulation - 1010 s
Length of rejected transient - 10 s

Table 5.1: Parameter values of the neural mass model. Parameters eq, vg, 1, A, B,
a, b, C1 2 3.4 were set to plausible values as stated in Section ‘Extended Jansen-Rit
model’.

y1(t) — y2(t), which is approximately proportional to the local EEG signal
(see Sections 1.2 and 2.3). As mentioned in Sections 1.4.4 and 1.4.6, a num-
ber of studies stipulate that the brain operates slightly below a second-
order phase transition or bifurcation. In the system utilised here, such
working point can be found near one of the Hopf bifurcations discussed
in Section 2.3.3. We already studied a single Jansen-Rit module driven by
constant input in the vicinity of a Hopf bifurcation (p = 89 s~1). These set-
tings corresponded to the ‘healthy-like” paradigm introduced in Chapter 3.
Here we follow that approach in the case of a system of coupled columns
(N > 1,K # 0), where we require that the total input to a column, /ey,
not just the constant component p, is on average close to the bifurcation.
This approach is similar to the one applied in Chapter 4, because of at least
two reasons. Firstly, we support the study of a compound system with
knowledge about the dynamics of its constitutive elements. Secondly, we
estimate the total input delivered to one element. Nevertheless, here we
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do it with respect to the averaged signal computed over the activity pe-
riod, not solely with respect to the steady state (as we did in Chapter 4).

We set parameters of the external excitatory input such that its value
averaged over time (and over columns in case of the network), (lex) =~
90 s71, is located close to the first Hopf bifurcation point (separating
regimes Il and Il in Figure 2.4A). The external input I, delivered to a cor-
tical column contains in general constant, stochastic, and periodic compo-
nents, as well as an input coming from all other columns. Only the constant
component p and the contribution from the afferent columns have non-
zero mean, and therefore determine (/ex). Stochastic and periodic compo-
nents have zero means, and even though they do not affect the average of
the total input (/ox), they do contribute to its variance.

5.2.1 Numerical methods

The model was integrated using the stochastic Heun integration method
(Toral and Colet, 2014) with a time step equal to 0.001 s. In each run we
simulated 1010 seconds of activity, discarding the first 10 seconds. We com-
puted the power spectra by applying the Welch algorithm from the Mat-
plotlib Python module, using a Hanning window. The length of each time
segment was chosen to be 20 seconds, with an overlap between segments

equal to 10 seconds.

5.3 RESULTS

5.3.1 Spectral and temporal properties of a single column

We first studied the behaviour of a single cortical column receiving an in-
put p = 90 s}, systematically varying the parameters of the Ornstein-
Uhlenbeck noise, namely its noise intensity D (varied in a range from
0.1s7! to 1000 s~1) and correlation time 7 (varied in a range from 0.001 s to
10 s). We obtained the power spectrum in each case and compared it with
the one reported in the experiments of Bayer et al. (2011) (see Figure 5.1A).
Our goal here was to choose the noise parameters for which the computa-
tional result reproduced the experimental characteristics, namely an 1/ f°
shape with an embedded peak in the alpha band. Figure 5.1B shows three
power spectra obtained from the model driven by noisy inputs with the
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same variance but different intensities and correlation times. We found
that the experimental characteristics were qualitatively best reproduced
for 7 = 0.15sand D = 350 s~! (see Figure 5.1A and 5.1B). Our result
is robust for a range of D and 7 values, provided that 7 < 0.2 s. Beyond
that region, the power spectrum at low frequencies (S 2 Hz) becomes no-
ticeably steeper than at higher frequencies (red trace in Figure 5.1B), which
is not the case for experimental data. Moreover, for these large 7 values
the alpha peak becomes too prominent, whereas in the opposite limit it
decreases as the correlation time 7 is reduced (blue trace in Figure 5.1B),
becoming significantly smaller (with respect to the 1/ f® background) than
in experimental data for 7 < 0.15 s.

This dependence of the signal spectrum on the noise characteristics can
be explained on the basis of the results presented in Chapter 3 in the fol-
lowing way: the system operates on average close to the Hopf bifurcation,
where the limit cycle regime begins. This regime is explored transiently
by the system due to the stochastic driving. The duration of the episodes
in which the system stays in the oscillatory regime is dictated by the cor-
relation time of the noise. Small 7 implies rapid changes of the input to
the system, which does not have time to relax to the limit cycle regime,
and alpha oscillations do not occur. In contrast, for relatively large 7, the
input changes in a more smooth manner and the system has time to re-
lax and exhibit alpha oscillations, which contribute to the alpha peak in
the power spectrum. The noise intensity D plays a role too, because for a
given 7 it affects how deep the system can go into the limit cycle regime.
The broadband shape of the power spectrum roughly follows the shape
of the spectrum of the noise, which depends on the control parameter 7.
This effect is noticeable specially for low frequencies, and originates in the
regime which in deterministic conditions corresponds to a node, where the
system follows the noisy driving, and thus yields power spectra similar to
that of the Ornstein-Uhlenbeck noise. In this way, the combined effect of
different dynamics gives rise to a realistic power spectrum. Albeit similar
to the “1/f% signature of criticality (see Section 1.4.5) the effect described
here does not rely on critical behaviour.
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Figure 5.1: Comparison of experimental and computational power spectra. Panel
A shows experimental data extracted from Figure 1D of Bayer et al. (2011). Panel
B shows power spectra obtained for three different noise sets of D and 7 values
while variance of the noise is the same for each case. The black line corresponds
to the time series shown in panel C, the red line to conditions when the correla-
tion time 7 is increased tenfold and the blue one when it is ten times decreased.
Panel C shows the time trace obtained from the Jansen-Rit model of a single corti-
cal column with an input consisting of two parts: a constant component equal to
90 s~! and a stochastic one determined by Ornstein-Uhlenbeck noise with inten-
sity D = 350 s~! and correlation time 7 = 0.15 s. Three distinct types of dynamics
are apparent: the dynamics begin with a noisy behaviour based on the fixed point,
then spiky dynamics show up and finally the time trace ends with alpha oscilla-
tions.

119



5. CROSS-FREQUENCY TRANSFER WITH STOCHASTIC DRIVING

The correlation time 7 dictated by synaptic effects is conjectured to be
of the order of 10 ms (Mazzoni et al., 2008; Sancristdbal et al., 2013) rather
than 100 ms. In our case, however, noise stands for background activity
arising from collective effects at the mesoscopic scale. Note also that in
the computational results shown in Figure 5.1B the alpha peak is shifted
toward lower frequencies with respect to experimental results shown in
panel A. The location of the peak could have been shifted by changing
parameters of the model, however we chose to perform the analysis with
the original set of parameters proposed by Jansen and Rit (1995), in order
to maintain coherence with the previous chapters of this Thesis and other
studies that adopted that set of parameters.

Although the power spectrum obtained with these noise parameters
(black in Figure 5.1B) reproduces qualitatively the experimental results
(Figure 5.1A), its corresponding temporal evolution exhibits a strong spiky
behaviour (Figure 5.1C), which is far from what is typically observed
in experimental EEG recordings of healthy subjects. Indeed, in Chap-
ter 3 we showed that noise with parameters used here (corresponding to
Oou =~ 50 st and 7 ~ 107%8% s) elicits a considerable amount of spikes
in a single Jansen-Rit column. We also showed, that an adequate change
of noise parameters would suppress the spiky dynamics. However, in
that case the spectral match between experimental and computational data
would be lost. We therefore conclude that the behaviour of a single col-
umn is not able to recapitulate realistically both the temporal and spectral
characteristics of the experimental observations at the same time. For this

reason we extended our model to several coupled columns.

5.3.2 Coupled cortical columns

The signals measured in experimental EEG recordings do not arise from
a single cortical column, but from an aggregate of columns. In order to
take this into account we extended our model to represent multiple cou-
pled columns. As a simplifying assumption, we consider that the signal
registered by an electrode is an average of the signals generated by indi-
vidual columns in the probed area. We refer to this signal as y1 — 2, with
no 7 indexes in subscripts. As explained in Section 2.3, the model consid-

ers only excitatory connections between populations of pyramidal neurons
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Figure 5.2: Effect of signal averaging. Panels A and B show a typical time trace
and power spectrum, respectively, analogous to panels B and C of Figure 5.1, but
obtained from the model of four columns coupled in an all-to-all bidirectional
manner. The coupling strength constant & was set to 15 and the constant compo-
nent of input, p, to 75 s~1. Panel A shows time traces of two individual columns
(dashed lines) and the average signal of all four columns (solid line). Averaging
attenuates individual spikes, but does not affect the power spectrum substantially
(as shown in panel B).

residing in different cortical columns. Therefore, there are two new pa-
rameters with respect to the single-column case: the number of columns
N and the coupling strength K. Our aim was to test our cross-frequency
transfer hypothesis in a simple model, therefore for a start we considered
only N = 4 cortical columns coupled in a simple all-to-all manner with
equally strong connections. Already for four coupled columns, individual
spikes in the temporal domain are substantially attenuated due to aver-
aging (Figure 5.2A), rendering time traces that qualitatively resemble EEG
signals. On the other hand, the power spectrum of the averaged signal still
resembles the experimental one (Figure 5.2B). This approach finds support
in experiments; so-called ‘microseizures’ —spiky, epileptic-like activity that
may be detected only in a very fine spatial scale (~ 1 mm electrode array
resolution, 40 pm electrode size)- have been observed experimentally by
Stead et al. (2010), not only in epileptic subjects, but also sporadically in
healthy ones.

The coupling contribution to each column was normalised by the num-
ber of afferent columns (/N — 1 for our all-to-all connectivity topology, as
expressed in Equation (2.13)). This normalisation allowed us to study the
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dependence of the results on the system size N for a constant value of the
coupling strength K. Without it, increasing the number of columns N in
all-to-all topology would ultimately lead to saturation due to excessive ex-
ternal driving. Increasing the number of columns to NV = 100 showed that
the spectrum remains qualitatively consistent with the experimental one
independently of the system size.

We next studied how robust the behaviour shown in Figure 5.2 above
is with respect to changes in the constant input and coupling strength. To
vary those parameters it is necessary to take into account the fact that the
input into a cortical column from other columns is implicitly dependent on
p, which has the same value for all columns and determines the dynamical
regime in which the columns operate. In order to keep the effective total in-
put (Ie) close to 90 s71, the coupling strength K needs to be compensated
by reducing the input constant component p below 90 s~1. Taking this into
consideration, we ran a series of simulations for N = 4 columns varying
both the constant input component p and the coupling strength K. For
each condition we averaged the inputs coming from the coupling terms
over time and over all columns. In this manner we obtained the mean con-
tribution of inter-column coupling to the input of a column. Adding this
value to the constant input p gives the average total input acting upon a
column, (Iex). We varied the coupling strength in the range 0 < K < 70,
and in each case we chose the constant input component within the range
50 s7! < p < 90 s7! in such a way that the average external input to each
column (Iey) was close to 90 s~1, in accordance with our assumption re-
garding proximity to the bifurcation point.

In these conditions we found dependence of the average of the cou-
pling input on coupling strength K close to linear. Note that this result
resembles the p — K dependency presented in Figure 4.2. Moreover, we
found that the coefficient of variation (defined as the ratio of the standard
deviation to the mean) of this input was close to unity, which indicates that
not only its average, but also its standard deviation grows linearly with K.
This can be explained by two effects. First, higher synchronisation causes
in-sync spiking that weakens the effect of averaging between the columns.
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Second, these periods of high activity alternate with periods of low activ-
ity when due to the lower value of p the columns operate effectively in the
tixed point regime. In the whole parameter range that fulfils the condition
(Iex) ~ 90 s71, the temporal behaviour and power spectrum resembled
the experimentally observed one. With that caveat, our results are robust
not only with respect to the parameters of the Ornstein-Uhlenbeck noise
and the system size, but also with respect to the constant input and cou-
pling strength. The simulations described below correspond to K = 15
andp =755 L.

5.3.3 Effect of an oscillatory input

In the experimental study performed by Bayer et al. (2011) on human sub-
jects, volunteers were placed on a bed that was swung at a frequency
0.25 Hz. In our model we represent the stimulus associated with this move-
ment as a harmonic driving. EEG data was recorded from the Fz electrode
during the N2 sleep phase of the subjects for two conditions: swinging
(bed in motion) and stationary (bed still). The experiment showed that
swinging facilitates the transition from the awake state to sleep, and that
it enhances the EEG power of both slow and alpha oscillations (see Fig-
ure 5.3A). According to the experimental setup the bed motion is har-
monic, thus we started with mimicking swinging by applying to each col-
umn in our model an oscillatory component u(t) = Asin(27ft + ¢), with
f =025Hzand ¢ = 0. We set the driving amplitude A = Ay = 45571,
and left all other parameters unchanged with respect to the stationary con-
ditions described in the previous section.

A typical power spectrum of the signal obtained from the model with
harmonic driving is presented in Figure 5.3B. The figure shows that the
power spectrum obtained in the swinging condition (driving with a simple
sine, blue) indeed enhances the stationary spectrum (black) in both the al-
pha band and for the frequency corresponding to the driving. Figure 5.4A
shows a typical time course obtained in the swinging condition (thick black
line). This figure shows that both the instantaneous amplitude of the al-
pha oscillations and the average value of the signal are modulated by the
driving signal. The mechanism underlying both these effects originates
in the bifurcation structure of the model (see Figure 2.4A), and was first
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Figure 5.3: Effect of low-frequency driving. Panel A shows experimental EEG
power spectra published by Bayer et al. (2011) (Figure 1D of that article), recorded
from the Fz electrode in N2 sleep phase for both stationary (black line) and swing-
ing (red line) conditions. Bayer et al. (2011) performed paired 2-tailed t-tests and
found statistically significant increase in power in the ranges denoted here with
horizontal arrows. In these ranges they found p-value to be p < 0.05, except for
the frequency range 1 Hz - 2 Hz, where p < 0.005. Panel B shows power spectra
obtained from the model in the periodically driven case (blue line) compared with
the absence of driving (black line) and with the case of driving with the reshaped
signal (red). This signal comprises sinusoid ingredients with varying frequencies,
amplitudes and random phases (see text for details). Grey marks one standard
deviation of distribution of power spectra obtained for different values of phases
in the reshaped signal. In all cases we used four all-to-all connected columns sub-
ject to Ornstein-Uhlenbeck noise with intensity D = 350 s~! and correlation time
7 = 0.15 s. In the case of sinusoidal driving, the input had amplitude A = 45 s~
and frequency f = 0.25 Hz. The columns were coupled with coupling strength
K =15.

reported by Tsodyks et al. (1997) for the case of gamma-theta coupling in
a Wilson-Cowan model. Recent works described this effect in a modified
Wilson-Cowan model (Onslow et al., 2014) and in a modified Jansen-Rit
model (Sotero, 2016). We now examine in detail this mechanism for our
case.

In stationary conditions, the system explores all of the dynamics de-
termined in Chapter 3: stochastically driven oscillations around the node,
(stochastically driven) alpha oscillations and spiky behaviour. Similarly to
the case presented in Chapter 3, this exploration arises as a consequence
of the conjunction of two factors. The first factor is the proximity and
coexistence of different dynamical regimes in the vicinity of the chosen
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Figure 5.4: Time courses in the driven system and synchronisation effects. Panels
A and B show time courses of all four columns (coloured lines) and the averaged
signal (thick black line). The amplitude of the driving was set to Ay = Ay = 455~}
(panel A) and to Ay = 549 = 225 s 1 (panel B). Panel C shows averaged val-
ues of the Pearson correlation coefficient computed as a function of instantaneous
phase of the driving sine for six values of the amplitude of the driving signal
A = {14,24,,...,6Ay}. The lines are plotted to guide the eye. All data in all
panels, apart from the black triangles in panel C, were obtained for the coupled
system with K = 15 and p = 75 s™!. In the uncoupled case (‘n.c.” - no coupling)

p = 90 s71. In all cases the system was driven with a sine signal with frequency
0.25 Hz. See text for details.
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input value () = 90 s~! (see bifurcation diagram in Figure 2.4A). The
second factor is stochastic driving, which enforces alternations between
these regimes. For the noise parameters chosen here, D = 350 s~ and
7 = 0.15 ~ 10798 g, the variance of the Ornstein-Uhlenbeck noise is
~ 48 s~!, which effectively means that the system may reach regimes II-V
shown in Figure 2.4A. As we demonstrated in Chapter 3, for these settings
of the noise, and corresponding settings of Iy, the long-term behaviour of
the system with N = 1 is independent of the choice of initial conditions
and all three dynamics are displayed (with most rare alpha oscillations).

In the presence of oscillatory driving this situation changes and a num-
ber of factors contribute to an overall increase of power in the alpha band
(again blue vs. black in Figure 5.3B). Firstly, the amplitude of alpha oscilla-
tions is smaller in the direct vicinity of the Hopf bifurcation (Zex 2 90 s
than for greater /.« values, determined by the driving signal amplitude.
The averaged time course of all columns showed in black in Figure 5.4A
indeed indicates that the alpha oscillations are superimposed to the oscil-
latory signal during the positive half of the driving cycle, i.e. when the
instantaneous phase ¢inst € (0, 7). During the negative half of the cycle the
system moves further away from the oscillatory regimes and it may dwell
in one of the random fixed point regimes (it is mostly the node). Conse-
quently, less spiky behaviour is observed, which results in a slight decrease
of power in 0 — 5 Hz frequency band that corresponds to spiking (Grim-
bert and Faugeras, 2006). This decrease is shown in Figure 5.3B and in all
panels of Figure 5.5. Figure 5.4B also shows that the system is much less
prone to noise in the limit cycle regime (positive half of the sine) that in the
node regime (negative half of the sine).

Another factor boosting power in the alpha band is the fact that in
regime V (see again Figure 2.4A), i.e. for Iex > 137.38 s, alpha oscillations
become the only allowed dynamics, so flipping between different regimes
ceases to occur. This results not only in an increased alpha activity of each
individual column, but also in an increase of synchronisation between the
columns. For sufficiently high driving amplitude, columns go through
transient in-phase synchronisation periods, where the averaged amplitude
of their alpha oscillations is greater than in the periods of unsynchronised
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alpha activity. These synchronisation periods may occur for only some, or
for all columns in the system, they may be terminated by noise and then
may reappear due to coupling between the columns. A few peaks, which
emerge due to synchronisation between the columns during the positive
half of the driving sine are shown in black in Figure 5.4A. For the chosen
value of the driving amplitude Ay = 45s~! these synchronisation episodes
are irregular and not prevalent. It is due to the fact that Ay sets the maxi-
mal value of the deterministic part of the input to ~ 135 s~!, which coin-
cides with the starting point of the purely alpha regime at 137.38 s~1. This
regime may still be explored due to noise, but under these conditions the
system operates at best on the edge of resonance (Battaglia and Hansel,
2011; Kang et al., 2010).

To the contrary, for higher driving amplitudes, synchronisation de-
velops fully, enhancing further power increase in the alpha band. This
effect is presented in Figure 5.4B, where the driving amplitude is set to
A = 54y = 225 s71, therefore to a value that allows to reach to 315 s 1,
thus to the end of the alpha limit cycle (end of regime V at 315.70 s~1
in Figure 2.4A). As a consequence during almost whole positive half of
the driving sine all columns oscillate with the alpha frequency in a syn-
chronous manner. Therefore, not only dynamics of each individual col-
umn, but also collective effects contribute to the increase of power in the
alpha band. Next, we perform a systematic study of those effects.

In order to quantify the correlation between columns we used the Pear-
son correlation coefficient, which quantifies the amount of linear depen-
dence between two signals. Time courses (1000 s long after discarded tran-
sients) corresponding to driving with amplitudes A= {IAO, 24, ..., 6/10}
were cut to slices of durations equal to a full period of the driving signal
(4 s), and each slice was then divided to 20 intervals, in which the Pear-
son coefficients were computed. The result for each driving amplitude is a
vector of 20 averages over all columns and all slices. We show this result
as a function of the instantaneous phase ¢inst in Figure 5.4C. In order to
maintain the clarity of the plot we do not show error bars. The standard

deviations of the distributions of Pearson coefficients values within each
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interval never exceed 0.35, and due to high statistics the standard error of
the mean is minimal in all cases.

The black triangles in Figure 5.4C correspond to the uncoupled system
(with K = 0,p = 90 s71), and show no correlation for the most part of the
positive half of the driving sine. The non-zero correlation corresponding
to the negative half of the driving signal can be explained by the fact that
for small and decreasing Iey, in the bistable regime II (see Figure 2.4A),
all columns tend to converge to, and follow, the node (blue). As a result,
their time courses are correlated. This effect is also present in the coupled
systems, and it can be seen in Figure 5.4B, where in spite of stochastic fluc-
tuations all signals have a decreasing tendency for ¢inst € (7,3/2 7). At the
end of this interval the common drive along the node branch slows down
to zero, and noisy fluctuations dominate the dynamics and diminish the
correlation, which recovers on the way back along the node branch during
the driving upswing. The dip in correlation observed at ¢inst = /5 cor-
responds to a regime in which the columns may already spike or oscillate,
but synchronisation is not yet established (see Figure 5.4B again). Synchro-
nisation emerges optimally around ¢ingt = 7/2, where driving through the
regime V of alpha oscillations slows down to zero, and complete synchro-
nisation is achieved most easily. This effect does not apply to the case of
amplitude A = 64y, which can be explained by the fact that this value of
the amplitude allows to overshoot the alpha limit cycle (regime V in Fig-
ure 2.4A) and enter the focus dynamics (regime VI), where noise affects the
system more strongly than in the limit cycle regime, and synchronisation
is partially lost. In what follows we explore how the changes of A affect

the power spectrum.

Impact of variations of A, N and f on the power spectrum

The effect of variations of the driving signal amplitude on the power spec-
trum is shown in Figure 5.5A, with red indicating an increase in power and
blue representing a decrease with respect to the stationary conditions. This
figure shows that the power increase in the alpha band is robust with re-
spect to the driving amplitude, provided its value is large enough. The
slight increase in the frequency that responds maximally, observed for
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Figure 5.5: Relative change of the power spectrum with respect to stationary
conditions as the function of the amplitude A (panel A), number of columns N
(panel B) and frequency f (panels C and D). Colour represents the relative change
of the power spectrum expressed in dB, as defined by 101og;(PSDgsiven/PSDstat),
where PSDygyiven is the power spectrum in the presence of driving and PSDs; is
the power spectrum in its absence. In panels A,C and D the number of columns
was N = 4, in panels B,C and D the driving amplitude A was fixed to 45 s~ !, and
in panels A and B the driving frequency was fixed to 0.25 Hz. Again, the analysis
was performed on a system of all-to-all connected Jansen-Rit models of cortical
columns in the presence of Ornstein-Uhlenbeck noise with intensity D = 350 s™*
and correlation time 7 = 0.15 s. The coupling strength between the modules is
K =15.

large amplitude values, might be understood from the fact that the fre-
quency of the limit cycle exhibited by the neural mass model increases
slightly for increasing input to the columns (Spiegler et al., 2010).

Next, we studied the impact of the system size on the observed effect.
The result shown in Figure 5.5B indicates that under the chosen condi-
tions (oscillatory driving with amplitude A = Ay = 45 s~! and frequency
f = 0.25 Hz) the results are robust with respect to the system size. The only

noticeable difference is the gain of power in low frequencies, which can be
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explained by the fact that with an increase of IV, the averaging procedure
diminished fluctuations around the mean, which roughly follows the driv-
ing signal regardless to N. This leads to an increase of relative power at
f.

Finally, we examined the response of the model with NV = 4 columns to
driving with a large span of signal frequencies, ranging from values much
smaller than its intrinsic alpha frequency (as we have been discussing so
far) all the way to much larger frequencies (up to 25 Hz). The results,
shown in Figure 5.5C, reveal that an increase in alpha occurs only for
low-enough driving frequencies (f < 2 Hz). As the driving frequency
increases, the initial response at alpha splits and leads to increase of power
at frequencies smaller and larger than alpha. Interestingly, at this point
the alpha band undergoes a decrease, rather than an increase, in power.
The low-frequency power (S 0.5 Hz) is also reduced for a wide range of
driving frequencies. The response is dominated by a straight diagonal line
corresponding to 1:1 response to the driving frequency, and by its first har-
monic. This strong 1:1 response means that in the case of harmonic driving
every injected frequency is transferred by the system. The same study per-
formed for A = 24, = 90 s~ (Figure 5.5D) showed that the changes to the
power spectrum are robust with respect to the driving amplitude, although
for stronger signals higher harmonics show up and relative changes in the
power spectrum are enhanced and widened. Also, the relative decrease of
power in the alpha band occurs for driving frequencies faster than in the

case presented in Figure 5.5C.

Driving with a reshaped signal

The experiment also showed a statistically significant increase of power for
low frequencies. The increase is also observed in the model, but is much
more centred (peaked) at the driving frequency (0.25 Hz) than in the ex-
periment, where it is much smoother, probably due to reshaping of the
low-frequency harmonic signal by sensory, thalamic and/or thalamocorti-
cal processing. In order to test whether driving with the processed signal
also leads to an increase of power in the alpha band, in the next step we
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injected into the system a reshaped signal of the form:

~ Timax _ n- fstep = Fmin
Ureshaped (t) = A’ Y 107 Tmax—Fuin sin[2m(n futept + Xn)] (5.1)
N=Nmin

where nmin = fmin/ fsteps Mmax = fmax/ fsteps fmin = 0.05 Hz is the minimal
frequency of the driving, fmax = 4 Hz is the maximal one, Jstep Was set to
0.05 Hz and X, is a random number in the range (0, 1). This formula de-
scribes a signal composed of a sum of sines with frequencies from fnin to
fmax taken every fsep, with exponentially decaying amplitudes and with
randomly distributed phases. The choice of fmax has been dictated by the
upper limit of the frequency interval in which Bayer et al. (2011) observed
a significant increase of power. The amplitude A’ = 10.76 s was set so that
this composed signal delivered the same power to the model as the pre-
viously used simple sine signal with amplitude A = 45 s. We performed
10 full simulations for different distributions of random phases and aver-
aged the power spectra obtained. The resulting averaged spectrum along
with one standard deviation of the power spectrum distribution is shown
in Figure 5.3B. This figure shows that driving with the reshaped signal re-
produces the experimental results better than driving with a simple sine:
the increase in the alpha band is present regardless of the randomisation
of phases, and instead of a decrease of power for low frequencies (as ob-
served in the simple sine driving case), an increase (similar to the experi-
mental result) is observed. This increase in low frequencies is possible due
to the aforementioned capability of the system of transferring power in a

broad range of driving frequencies.

5.4 DISCUSSION

We studied a minimal model that gives rise to broadband oscillations in
the alpha frequency band. The model consists of a small number of corti-
cal columns coupled in an all-to-all configuration. These columns received
background signal from the rest of the brain in the form of a temporally
correlated Ornstein-Uhlenbeck noise. We showed that the resulting power
spectrum of synaptic activity qualitatively resembles experimental record-
ings: it follows a characteristic 1/ f*-like profile with an embedded peak in
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the alpha band. Future work could examine driving with other stochas-
tic signals, which can recapitulate a 1/f* power spectrum more accurately
(see Section 1.4.5). Our results suggest that due to the system’s capabil-
ity of transferring power in a broad range of frequencies, such approach
would also lead to a realistic response. This capability follows from the
bifurcation structure of the model, in particular from the monotonically
increasing stable node branch, which provides that, as long as the system
remains in its basin of attraction, an increase of the external driving leads
to an increase of the model’s output.

Furthermore, for the set of parameters chosen, the bifurcation struc-
ture of the model features a limit cycle behaviour characterised by a well-
defined alpha frequency (David and Friston, 2003), which in the power
spectrum appear superimposed to the 1/f° profile. On the other hand,
generating this profile entails - in agreement with what we showed in
Chapter 3 - that the neural mass model operates also in a spiking regime,
which differs from the characteristic dynamics observed in the EEG of
healthy subjects. This type of macroscopic measurement, however, reflects
the behaviour of multiple coupled columns, and we showed that when this
situation is considered in our model the spiking behaviour disappears due
to averaging, rendering signals which recapitulate the experimentally ob-
served EEG while maintaining the broad power spectrum. This does not
have to always be the case: as we discussed in Chapter 4, excessively high
coupling in the system leads to synchronous spiking, which would not be
smeared out by the averaging procedure.

Furthermore, we have examined the effect of low-frequency driving
with a simple sine signal and a composed one, showing a cross-frequency
transfer through which these driving signals increase the power not only
of low-frequency rhythms, but also of the alpha activity. The result qual-
itatively reproduces the experimental observations of Bayer et al. (2011)
on the effect of rocking on alpha activity and sleep, and is robust with re-
spect to the choice of model parameters. We showed that the increase of
power in the alpha band results from both an enhancement of the alpha
activity of individual cortical columns and collective synchronisation ef-
fects. These effects, in turn, are dependent on dynamical regime, as well
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as on a balance between coupling and stochasticity, which here allowed
for development of synchronisation of alpha oscillations, but not epileptic
spiking. We also note a parallel of this scenario to mechanisms explaining
event-related synchronisation (David et al., 2005; Pfurtscheller and Lopes
da Silva, 1999). Our results suggest that certain types of cross-frequency
transfer in the brain can be simply the result of passive driving of a broad-
band neuronal oscillator, which brings this effect close to the vast body of
work dealing with the driving and synchronisation of chaotic oscillators
(Anishchenko et al., 2007; Boccaletti et al., 2002; Pikovsky et al., 2001).
Interestingly, a systematic analysis shows that the frequency transfer
only occurs towards the intrinsic frequency of the oscillator (alpha) when
the driving frequency is low; as it increases, the response shifts to both
lower and higher frequencies, and the power in the alpha band decreases
instead of increasing. We note that the range of driving frequencies, for
which this phenomenon occurs, approximately corresponds to rhythms
which cause the resonance effect reported in Chapter 3. This effect leads
to attenuation of alpha oscillations in the system. Furthermore, the re-
sults presented here allow us to predict that driving faster than the one
already tested experimentally should lead to a decrease of power in the
alpha band. Testing this prediction experimentally in the setup used by
Bayer et al. (2011) is not feasible due to high driving frequencies and po-
tential discomfort of subjects. Alternative tests, e.g. by means of visual
stimulation, could be potentially harmful, because in susceptible subjects
they could elicit epileptic attacks (as discussed in Chapter 3). Taken to-
gether, our results indicate that a relatively simple oscillation-generation
mechanism in neuronal populations has a strongly nontrivial response to
periodic driving, providing a rich scenario to interpret a variety of cross-

frequency phenomena in the brain.

5.5 SUMMARY AND OUTLOOK

In this chapter we extended the Jansen-Rit model to a number of glob-
ally coupled modules and we engaged spectral analysis in order to charac-
terise the model’s response to stochastic and periodic driving. We therefore
extended and complemented results presented in previous chapters. We
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demonstrated that a network of coupled neural masses subject to tempo-
rally correlated noise exhibits a well-defined rhythm (in the alpha range)
embedded in a broadband spectral background similar to what is observed
experimentally. We also showed that this broadband oscillator reacts to
periodic driving at a frequency much lower than its natural frequency, by
increasing its activity at the latter in agreement with experimental obser-
vations. We suggested a generic mechanism that might underlie cross-
frequency interactions. This mechanism relies on the bifurcation properties
of the model and it is enhanced by collective effects, namely by coupling-
mediated synchronisation between individual columns. Future studies
could focus on impact of delivering noise to populations of interneurons,
as well as consider different stochastic processes and multiplicative noise.

This chapter concludes the first part of this Thesis, i.e. our study of the
impact that coupling, stochasticity and periodic driving have on dynamics
of the Jansen-Rit model. So far we were relating our theoretical findings
to phenomena observed in the EEG recordings; in what follows we turn
to modelling another macroscopic method of brain imaging - functional

magnetic resonance.
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CHAPTER 6

BOLD SIGNAL MODELLING

6.1 INTRODUCTION

Large-scale brain dynamics are often studied by means of EEG recordings.
This methodology is particularly common due to its high temporal accu-
racy (practically limited only by the hardware sampling frequency) com-
bined with its low price, non-invasiveness and simplicity of application.
In this Thesis we have been interested so far in modelling various dynam-
ical phenomena observed in EEG recordings. These recordings, however,
are limited to probing outer brain structures (the cerebral cortex) and have
a relatively poor spatial resolution (> 1 cm, Bojak and Breakspear, 2015)
which limits our understanding of the full spatiotemporal organisation of
the brain. To address these limitations, the functional magnetic resonance
(fMRI) is often applied in neuroscience (Logothetis, 2003) due to its good
coverage of the whole brain via its spatial resolution (> 0.5 mm, Bojak and
Breakspear, 2015) is often applied in neuroscience . On the other hand, this
technique exhibits a relatively low temporal resolution (> 1 s, Bojak and
Breakspear, 2015), and therefore can be considered somehow complemen-
tary to the EEG.

Given the abovementioned limitations of the two techniques, a pow-
erful approach is therefore based on simultaneous EEG/fMRI measure-
ments. We deal with such combined data in this chapter. In order to model
brain activity as registered in the EEG recordings, in the previous chapters
we employed the Jansen-Rit neural mass model (see Chapter 2). However,
the neuronal activity generated by such model can not be related to the
fMRI signal in a straightforward manner. The reason for this is that the
method does not directly register activity of the neurons, but rather the
consequences of haemodynamic and metabolic processes affected by, and
modulating, this activity. Therefore, in order to relate the simulated neu-
ronal activity to the fMRI signal, one needs a model of these processes. In
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this chapter we discuss this type of modelling, focusing in particular on
their capability to reproduce poststimulus behaviour of the signal and on

their applicability to modelling the resting state.

6.1.1 Basics of BOLD signal generation and detection

Increased local neuronal activity entails increased metabolism in the brain,
which involves more oxygen usage. According to Buxton and Frank (1997)
a moderate rise of the net consumption of oxygen (cerebral metabolic rate
of oxygen - CMRO2) requires a larger than proportional increase of oxygen
delivery and thus increased blood flow, because rise of blood flow itself
entails a drop of oxygen extraction efficacy. As a result, counterintuitively,
venous blood becomes locally more oxygenated or, in other words, local
concentration of deoxygenated haemoglobin (deoxyhaemoglobin) in the
blood drops. Deoxygenated haemoglobin, unlike the oxygenated one, has
paramagnetic properties and therefore a change of its concentration alters
magnetic susceptibility of the blood. The MRI signal caused by the change
of deoxyhaemoglobin content is called Blood Oxygenation Level Depen-
dent (BOLD) signal. A decrease of deoxyhaemoglobin content implies an
increase of the BOLD signal, which is usually delayed by about 2 s with
respect to stimulus (Logothetis, 2003).

It was observed, however, that the typical BOLD response resulting
from a transient stimulus is not entirely positive, but rather starts and
ends with negative values. They are often referred to as ‘initial dip” and
"post-stimulus undershoot” (see Figure 6.1). There is currently no agree-
ment about the origin of these two features of the BOLD signal. The initial
dip is subtle and not always registered; the undershoot is more prominent
and therefore has been the subject of several experimental and theoretical
studies (Buxton, 2012). These studies are important for understanding the
mechanisms underlying the BOLD response, which in turn would allow to
infer neuronal activity from the fMRI recordings (Heeger and Ress, 2002).

6.1.2 Modelling the poststimulus undershoot: the Balloon Model

One of the first mathematical models of the poststimulus phenomenon as-
sumes that the undershoot originates in the delayed high oxygen extrac-
tion needed to restore oxygen in the tissue after the stimulus has ceased,
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Figure 6.1: A typical shape of a stimulus-induced BOLD (blue) response devia-
tion from baseline (red). This figure does not depict experimentally collected data;
it is a sketch illustrating a typical time course of the BOLD response to transient
stimulation.

and blood flow and volume have already returned to baseline (Davis et al.,
1998). Another scenario is based on the observation of Mandeville et al.
(1996, 1998), who noted that changes of blood flow are not tightly cou-
pled temporally to changes in the volume of the venous compartment in
the somatosensory cortex of rats. The blood flow was found to evolve
on a fast timescale, whereas the volume evolved on both: a fast and a
slow timescale. Experimental studies of Grubb et al. (1974) had previously
shown that the relative changes of these two quantities are related by a
power law. Mandeville et al. (1996, 1998) generalised this relation (from
now on referred to as ‘Grubb’s relation’) to transient states, in which, in
particular, the value of the exponent varies. This result prompted Bux-
ton et al. (1998) to formulate a model, which explains the BOLD signal

poststimulus undershoot by means of a delayed elevation of volume of
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the venous compartment, when the CMRO2 and the blood flow have al-
ready returned to baseline. This results in reduced clearance of deoxy-
haemoglobin and consequently in an undershoot of the BOLD signal. Bux-
ton et al. (1998) modelled this temporal decoupling by increasing nonlin-
earity in the Grubb’s relation and, due to the slow inflation/deflation of
the venous compartment, they called their model a “Balloon Model'.
Shortly afterwards, Mandeville et al. (1999) formulated their own
mathematical model describing the dynamics of capillary and venous com-
pliance responding to blood pressure. They built on the Windkessel the-
ory! and arrived to a formulation that was consistent with Grubb’s relation
in the steady state, but which was in general non-stationary. Similarly to
Buxton et al. (1998) they recognised the delayed blood volume elevation as
a potential explanation of the BOLD signal undershoot effect. Next, Fris-
ton et al. (2000) used the considerations of Mandeville et al. (1999) in order
to modify the Balloon Model of Buxton et al. (1998). Friston et al. (2000)
restored the stationary Grubb’s relation and, as a consequence, their ap-
proach does not take into account the transient decoupling between blood
flow and volume (which was the main motivation for the Balloon Model
and the possible origin of the poststimulus undershoot). In order to be
able to test their model on data from fMRI stimulation protocols, Friston
et al. (2000) additionally introduced a transformation converting this stim-
ulation to blood flow (‘neurovascular model” from now on). Friston et al.
(2000) were the first to use the combined term ‘Balloon-Windkessel’, and
this is how we refer in this chapter to their version of the model. When

referring to both models we will use the term ‘haemodynamic model’.

6.1.3 Poststimulus overshoot

Recently, Mullinger et al. (2013) reported that the undershoot is not always
present in the BOLD signal, but may be replaced by an overshoot. Fur-
thermore, Mullinger et al. (2013) observed that the poststimulus behaviour
of the BOLD signal is modulated by the EEG power of the mu rhythm?

"Windkessel (German: “air chamber’) - a theory, proposed in 1899 by Otto Frank, who
performed experiments with water passing through a leather bag and described its dy-
namics mathematically.

2The mu rhythm falls into the alpha band, but it has a different origin than the alpha
rhythm: it is associated with voluntary movement and is found only over the motor cortex.
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registered in the 8 — 13 Hz frequency band. In particular, higher power of
poststimulus event-related synchronisation (PERS) of the mu rhythm im-
plies a poststimulus undershoot of the BOLD signal, whereas lower power
of PERS of the mu rhythm implies an overshoot. This result shows that
the poststimulus shape of the BOLD signal is not only related to the dy-
namics of the venous compartment and to metabolism (as considered in
the approaches discussed above) but rather also involves some aspects of
neuronal activity. Mullinger et al. (2013) employed the model of Davis
et al. (1998) in order to estimate CMRO2 from experimentally measured
blood flow and BOLD. The results obtained contradict with the scenario
suggested for the Balloon Model, so Mullinger et al. (2013) conclude that
the interpretation of the undershoot provided by this model is not fully
correct. They do not, however, implement this model themselves, thus
they do not test directly how well it reproduces their experimental data.
Here we complement their work and implement the Balloon Model and
the Balloon-Windkessel Models, and we test these models on experimen-
tal data involving both the poststimulus undershoot and overshoot.

6.14 Modelling the resting state fMRI

The effects mentioned above appear as a result of stimulation, which alters
neuronal activity (and hence haemodynamics and metabolism). Neverthe-
less, a state lacking any stimulation - the ‘resting state” - has been shown
in numerous studies to be very informative about brain dynamics (Deco
et al., 2013). For this reason, recording and modelling of the fMRI signal
in this state is of high interest. Since spatial resolution of these recordings
(> 0.5 mm, Bojak and Breakspear, 2015) corresponds to the mesoscopic
scale neuronal structures (see Section 1.1.3), it is natural to employ neu-
ronal population models, such as the neural mass models introduced in
Chapter 2, to mimic the neuronal activity that can later be transformed
into the BOLD signal. In order to perform this transformation, in prac-
tise one needs first to convert neuronal activity to the resulting blood flow,
which is then transformed into the BOLD signal. The chain of operations
illustrating the whole process is shown in Figure 6.2. In that scheme, the
modelling of stimulation is marked as optional (in parentheses) because it
does not apply to the steady state. The output of the neuronal model is
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fed into a neurovascular model, which converts it to blood flow. This, in
turn, can be an input to the haemodynamic model, which gives the BOLD
signal.

Although a number of more sophisticated models have recently been
proposed (see Buxton, 2012) and although they account for some physio-
logical effects better than the Balloon-Windkessel Model, it is still precisely
this model that is until today widely used by the neuronal modelling com-
munity (in particular, in the resting state context). Given that the haemo-
dynamic model was designed to capture effects arising in the steady state,
due to a clearly distinguishable stimulation, it might not be straightfor-
ward to employ this model’s methodology to mimic this background itself.
In this chapter we examine some consequences of using the Balloon and
the Balloon-Windkessel Models in the resting state context, together with
neuronal models (such as the Jansen-Rit model introduced in Chapter 2).

6.2 MODELS AND METHODS

We now introduce in detail the model components constituting the trans-
formation pipeline shown in Figure 6.2. We do not discuss neuronal mod-
els, as they can be implemented in multiple ways, one of which (neural
mass modelling) was explored in Chapter 2. In order to introduce the
pipeline components more clearly, we start from the output (the BOLD
signal) and progress with the description backwards along the pipeline.

6.2.1 Balloon and Balloon-Windkessel models

In the reminder of this chapter we consider both the ‘Balloon Model” in-
troduced by Buxton et al. (1998), and the ‘Balloon-Windkessel Model” pro-
posed by Friston et al. (2000). If not stated explicitly otherwise, our dis-
cussion applies to both models. All parameter values and state variables
of the two models are listed in Table 6.1. They are both nonlinear input-
state-output models; they are not time-invariant, which means that they
account for the fact that a response to a stimulus depends on their current
state. The ‘balloon” represents a venous compartment and can be inter-
preted as a representation of one voxel of the fMRI image. We now discuss
this model in detail.
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Balloon-
Parameter Meaning Units | Balloon | Windkessel
VOT Volume of blood that is intravascular in the ml NS
steady state
Vo Fraction of blood that is intravascular in the - 0.01 0.02
steady state.
Qo Deoxyhaemoglobin content in the steady NS NS
state
Eo Oxygen extraction rate in the steady state - 04 0.34
k1 Constant derived from earlier studies. Its - ~ TFEy
value was estimated for magnetic field
Bp = 1.5 T and TE=40 ms.
ko Constant derived from earlier studies - ~ 2
ks Constant derived from earlier studies - ~ 2Fy — 0.2
Lo Flow rate of blood in the steady state ml/s NS
T0 Blood transition time through venous com- s 2 0.98
partment in the steady state = VOT /Lo
a Venous compartment ‘balloon’ stiffness pa- - <0.5 0.33
rameter
Balloon-
State variable Meaning Units | Balloon | Windkessel
V()T Volume of blood that is intravascular in gen- ml
eral
V(t) Fraction of blood that is intravascular in -
general
Q(t) Deoxyhaemoglobin content in general NS
E(t) E(t) = E(lin(t)) Oxygen extraction rate in -
general
Lin () Flow rate of the blood incoming to the vas- | ml/s
cular balloon
Lout(V) Flow rate of the blood outgoing from the | ml/s
vascular balloon
CMRO2 Relative cerebral metabolic rate of oxygen - lin(v(t)) - E(t)
lin(v) Relative flow rate of the blood incoming - Lin/Lo
to the vascular balloon with respect to the
steady state
lout(v) Relative flow rate of the blood outgoing - Lout/Lo
from the vascular balloon with respect to
the steady state
v(t) Volume of the intravascular blood (the bal- - V(t)/Vo=V(@#)T/ VOJr
loon) relative to the steady state
q(t) Deoxyhaemoglobin content relative to the - Q(t)/Qo
steady state
Table 6.1:  Parameter values and state variables of the Balloon and the Balloon-

Windkessel models as specified by Buxton and Frank (1997) and Friston et al. (2000), re-
spectively. ‘- means that the variable or parameter is dimensionless. All symbols with
subscript ‘0" refer to the lower steady state. Variables denoted with lowercase symbols
stand for the values relative to this state. In order to avoid confusion between relative
and absolute volume, we here distinguish the latter with a dagger. NS’ stands for "Not

Specified’.
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(Stimuli)
i
Neuronal
activity 1. Neuronal model

Neuronal|activity

Neurovascular ‘/

2. Neurovascular

S model .
Haemodynamics Bboqybw
3. Balloon and
"""""""""""""" Balloon-Windkessel
) models
Metabolism |
BOLD

Figure 6.2: Chain of transformations performed in consecutive steps of the work-
flow pipeline. The grey boxes stand for models of different processes and the red,
annotated arrows stand for their input/output signals. Dashed horizontal lines
separate domains of classes of physiological processes. Simulating neuronal ac-
tivity is optional; in a simplified case the neuronal model is not included in the
pipeline, and some characteristics of the stimulation applied to subjects (e.g. its
intensity or frequency) serves directly as an input to the neurovascular model.
This simplified path is illustrated here with the curved arrow. If the neuronal
model is present, it may generate resting state activity (no stimuli) or it may be
externally perturbed.

The BOLD signal

Buxton et al. (1998) obtained the following formula for the BOLD signal by
combining earlier numerical studies (references 21-25 from Buxton et al.,
1998) and assuming small deviations from equilibrium:

BOLD(t) = Vp [k1(1 — q(t)) + ko (1 - Q) Fks(1— v(t))] . (61)

v

where v(t) is a normalised variable equal to V' (¢)/Vy, with V) being the
fraction of blood that is intravascular in the steady state, and V() de-
noting the change of this fraction over time. An increase of v(t) corre-
sponds to inflation of the vascular ‘balloon’, which is assumed here to be
the main contributor to the change of the overall blood volume. Similarly,

the model assumes that all the deoxyhaemoglobin remains in the venous

142



6.2. Models and Methods

compartments. ¢(t) = Q(t)/Qo stands for the relative change in the deoxy-
haemoglobin content with respect to the steady state. Subscript naught
indicates variables referring to the steady state, in which the relative val-
ues, denoted by lowercase variables (e.g. v(t), q(t)), equal 1. ki, k2, k3 are
dimensionless constants taken from earlier works (see references 23 and 25
from Buxton et al., 1998) and set accordingly to the specific settings of the
fMRI magnet.

Dynamics of the venous compartment - the balloon

In steady state, blood delivery to the venous balloon (blood input flow)
Lin(t) equals blood output flow Loy(t), and they both equal L. Therefore,
in that state the relative quantities: lin(t) = Lin(t)/Lo and lout = Lout(t)/Lo
are both equal to 1. When blood delivery exceeds blood outflow, the ve-
nous balloon inflates. [y () in turn, gets amplified by pressure caused by
the inflated balloon. This quantity is an input (in general time-dependent)
to the model, and the output flow, /o, is one of the model’s state variables
that is a function solely of the venous compartment volume v(¢) (denoted
in this relation ‘v’ for readability). Grubb et al. (1974) found experimentally
that the latter function in the steady state follows:

lout(v) = vl/a, (6.2)

where « is a constant exponent describing the stiffness of the balloon, esti-
mated by Grubb et al. (1974) to 0.38.

Additionally, Buxton et al. (1998) took into account experimental results
of Mandeville et al. (1996, 1999), from which it follows that the tight tem-
poral coupling between v(t) and lout(v) is transiently lost during periods of
rapid changes of the state variables. Buxton et al. (1998) modified Grubb’s
formula in a way that complies with Equation (6.2) in two limit steady
states: in the absence of stimulation and during long, constant stimulation
that results in a steady, maximal increase of blood flow. In the former case
(from now on referred to as the ‘lower steady state’) [,y = 1 by definition.
For the latter case (from now on referred to as the ‘higher steady state’),
both Buxton et al. (1998) and Mandeville et al. (1996, 1999) observed an
increase of blood flow up to 70% with respect to the lower steady state,
therefore Iy, n = 1.7 (output blood flow in the high steady state). Buxton
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et al. (1998) suggested that in between the two limits the new loyt = f(v)
relation® should have increased nonlinearity, in order to account for the
temporal decoupling between [oyt(v) and v(t). This approach is alterna-
tive to the explicit non-stationarity introduced by Mandeville et al. (1999).
Here, the relation in fact remains stationary, but due to the increased non-
linearity, there is a regime in which small changes of volume are needed
to significantly affect the flow. During deflation it results in an apparent
lag of the volume behind the flow, and it mimics decoupling of these two
quantities.

Buxton et al. (1998) do not specify the exact formula governing the rela-
tion loyt = f(v) used in their article. Since this formula is needed to exam-
ine their approach, we propose it in the following form, which generalises
Grubb’s relation:

lowt(v) = a - v/ + b, (6.3)

Taking into account the steady state constraints imposed by Buxton et al.
(1998) leads to the following values of coefficients a and b:

louth — 1

a= P (6.4)
v, —1

b=1-a, (6.5)

where [y, = 1.7 is the relative flow in the high steady state and v, =
Vlouth =~ 1.3 is the relative volume in that state. These values assure ful-
filment of the boundary constraints, thus compliance with Equation (6.2)
in the lower (loy) = v; = 1) and higher (loytn = 1.7, vp, = V1.7) steady
states for o equal to the reference value 0.5. At the same time, through
variations of the a parameter, Equation (6.3) allows to alter the nonlinear-
ity of the relation I,y = f(v), affecting the system’s behaviour in between
the steady states. We therefore propose a concrete implementation of the
temporal decoupling as suggested by Buxton et al. (1998). In the Balloon-
Windkessel Model, Friston et al. (2000) used a power law (Equation (6.2))
and by fitting experimental data they estimated the exponent « to be equal
to 0.33. This value is relatively close to the value observed by Grubb et al.

% f” means simply ‘a function’ here.
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(1974) (o = 0.38) and to the asymptotic steady state value predicted by
Mandeville et al. (1999) (o = 0.36).

In order to complete the description of the balloon dynamics, we spec-
ify one more relation, concerned with the rate of change of the relative
volume of the venous balloon. It is dictated by mass conservation and the
resulting balance between the input and output flows, and is given by the

following formula:

= = linlt) = lo(0)] 66)

where 7y determines the rate of change of the volume.

Dynamics of metabolic processes

According to Buxton et al. (1998), the rate of change of the normalised de-
oxyhaemoglobin content is given by:

E(lin(t))
Ey

dg _ 1
dt_’TO

- lout(v)ijgg (67)

Here Ej is the rate of oxygen extraction in the lower steady state, and

lin(t)

E(lin(t)) is this rate in an arbitrary state. This rate is given by a nonlin-
ear formula, which couples metabolism and flow (for readability we drop
time dependence of lin):

E(lin) = 1= (1 — Eg)"/". 6.8)

This formula follows from the microscopic oxygen transport model devel-
oped earlier by the authors of the Balloon Model (Buxton and Frank, 1997).
In brief: when blood passes through capillaries faster, then the probability
of oxygen uptake decreases. The oxygen limitation model adopted here
(Buxton and Frank, 1997) assumes that (1) all oxygen that passes from cap-
illaries to tissue is metabolised (there is no oxygen reservoir in tissue), and
(2) no capillary recruitment is possible (all capillaries are perfused all the
time). From these assumptions it follows that the increased demand for
oxygen can be satisfied only by increased blood flow. Higher blood veloc-
ity entails reduced blood passage time through capillaries, and thus reduc-
tion of oxygen uptake probability, which in macroscopic terms translates to

a reduction of oxygen extraction efficiency as expressed in Equation (6.8).
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Parameter | Meaning Units | Value
€ Efficacy of the ‘neuronal activity — blood | s~} 0.54
flow’ reaction
Ts Time constant of the signal decay s 1.54
Tf Time constant of the autoregulatory feed- | s* 2.46
back of blood flow
Variable | Meaning Units
s(t) Flow inducing signal (vasodilatory sig- | s™*
nal)
n(t) Neuronal activity indicator s !

Table 6.2: Parameters and variables of the neurovascular model (Friston et al.,
2000). Units and the value of e correspond to the approach adopted by Friston
et al. (2000), who considered the rate of stimulus presentation n(t) as an input to
the model.

6.2.2 Neurovascular model

Friston et al. (2000) proposed a linear neurovascular model that couples

neuronal activity with the cerebral blood flow in the following way:

lin(t) = s(1) (6.9)
$(t) = en(t) — s(t)/7s — (linery — 1) /75, (6.10)

where [in(f) has the same meaning (incoming blood flow) as in the Bal-
loon and Balloon-Windkessel models. 7, and 7; are time constants (see
table 6.2), s(t) is some flow-inducing signal (vasodilatory signal), and n(¢)
is an input proportional to neuronal activity. Friston et al. (2000) did not
relate this input strictly to neuronal physiology, but assumed instead that
the neuronal activity is in general linearly proportional to the rate of stim-
ulus presentation n(t), which is known in experiments. The coefficient of
this proportionality is given by e. In general, the input n(¢) can come from
the output of a neuronal model, such as the Jansen-Rit model employed
in earlier chapters of this Thesis. Such approach relies on the correspon-
dence of spatial scales considered in the two modelling domains (neuronal
and haemodynamic). The assumption mentioned above about linearity
of neurovascular coupling was later supported by experimental evidence
(Logothetis, 2003).
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Equations (6.9)-(6.10) can be put together and expressed in a compact
form:

fin(8) + lin(£) /7 + (In(t) — 1) /75 = en(t) (6.11)

This is a formula governing a driven damped harmonic oscillator, which
in an undriven case has a steady state at /;, = 1. From this equation, sim-
ilarly to Friston et al. (2000) and Bojak and Breakspear (2015), we derive
the damping coefficient ¢, the natural frequency fj, and the resonant fre-
quency f,. Since our result for f, slightly differs from those published
earlier, we examined them in detail and found that Friston et al. (2000) in
fact specify the natural frequency of the oscillator, although they refer to
it as the ‘resonance frequency’, and Bojak and Breakspear (2015) specify a
different value of the resonant frequency (0.088 Hz instead of 0.07 Hz). In
order to clarify the characteristics of this oscillator, we list them in Table 6.3.
The oscillator is found to be (significantly) underdamped, what introduces
a rebound that yields an undershoot of the relative cerebral blood flow /.

Table 6.3 also shows that the natural and resonant frequencies of the
oscillator are of the order of 0.1 Hz. Next, we estimate the amplitude of
the response of this oscillator under driving with frequencies such as those
generated by the neuronal model used in previous chapters of this Thesis.
We assume that the driving is harmonic, has an amplitude A and angular
frequency w, and we consider the resulting formula for amplitude of forced
oscillations, A/+/(w? — w?)? + (2Cwwp)?, in two limits: when w = wy and
when w > wp. In the first case, with ( = 1/2 (like here, see Table 6.3),
the amplitude of the resulting oscillations is A/w?. In the second case, the

amplitude of these oscillations can be approximated by A/w?. The second
case applies to the Jansen-Rit model, which we utilised in the previous
chapters of this Thesis. This model exhibits oscillations, characterised with
a natural frequency fIR ~ 10 Hz, thus ~ 10? times greater than the natural
frequency of the neurovascular model discussed here. As a result, the am-
plitude of oscillations elicited by a driving at this frequency is reduced by
the factor of ~ 10 with respect to slow driving close fo.
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Variable | Meaning Formula Units | Value

wo Angular  natural fre- | 1/,/7f Hz 0.64
quency

fo Ordinary natural fre- | wo/27 Hz 0.1
quency

¢ Damping coefficient %\/ﬁ /Ts - 0.51

fr Ordinary resonant fre- | woy/1 —2¢?/27 | Hz 0.07
quency

Table 6.3: Characteristics of the neurovascular model (Friston et al., 2000).

6.2.3 Scaling of the neuronal activity input signal

The Balloon and the Balloon-Windkessel models were developed to model
evoked potentials: deviations of the BOLD signal from baseline. The ques-
tion arises, however, how should these models be used in case of the rest-
ing state, where no clear distinction between (lower) steady states and
stimulus application periods can be made. Furthermore, since neuronal
activity may be quantified in general by different physical or physiological
quantities, (e.g. firing rate, LFP or EEG potential) it may be expressed in
different units, with different magnitudes, etc. For this reason, driving the
neurovascular model (Friston et al., 2000) with this signal should be pre-
ceded by a transformation converting it to a suitable format and magnitude
that allows to match it to this model. For example, in order to assure that
the signal varies around zero, one can subtract the mean from the whole
neuronal activity time series (Bojak, 2014). Furthermore, although it is not
clear how various aspects of neuronal activity map onto the haemody-
namic response, it is clear that the resulting increase of the cerebral blood
has physiological limits. In order to guarantee this, Bojak and Breakspear
(2015) proposed to set € = w3(/A, where A is the amplitude of the driving.
When the driving is harmonic, this choice limits the resulting amplitude of
the relative blood flow to 1/ V2 ~ 0.71. We note the consistency between
this limitation and experimental observations of the maximal blood flow
(~ 70%, see above). We employ this scaling in Section 6.3.2.
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6.2.4 Experimental data

We test the models described above on experimental data shared with us
by Mullinger et al. (2013). A detailed description of the experimental pro-
cedure can be found in their publication. Here, we stress that these data
include blood flow (measured with the arterial spin-labelling technique)
and the BOLD signal. This allows us to examine separately components 2’
and ‘3" from Figure 6.2. Moreover, a simultaneous EEG recording was per-
formed and the collected blood flow and BOLD signal data were divided
into four groups according to the power of EEG PERS of the mu rhythm
(8 — 13 Hz). The first group corresponds to the lowest quartile of power
(0% — 25%), the second group to the median quartile (37.5% — 62.5%), the
third group to the highest quartile (75% — 100%), and the fourth group to
the data corresponding to these three quartiles. According to Mullinger
et al. (2013), the EEG PERS power in the mu band correlates with the post-
stimulus behaviour of the BOLD signal, therefore this signal from the first
(third) group is characterised with a poststimulus overshoot (undershoot).
We model signals from distinct groups separately, referring to them as
‘PERS group -1V,

The EEG, fMRI and the blood flow measurements were performed si-
multaneously via the following protocol: 10 seconds of median nerve stim-
ulation followed by 20 seconds of rest (see Figure 6.4B), repeated 40 times
for each of the 11 subjects. The power of PERS was measured in the first
10 seconds of rest. For each subject the BOLD and the blood flow time
series were averaged over trials within each quartile. Baselines were cal-
culated independently for each subject as the mean value of the last 6 s of
signal within each trial. As a result, 11 time series of BOLD data and 11
time series of blood flow data - each corresponding to one subject and each
30 s long - were obtained in each PERS group. Hardware sampling of the
BOLD and CBF data was 2.6 s, which was then oversampled to 0.1 s. Dr
Karen Mullinger provided us data in this form and then we averaged them
over the subjects to get the mean value and standard error of the mean of
the BOLD and blood flow data.
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6.2.5 Numerical methods

In order to integrate the model we used the SciPy method
scipy.integrate.odeint (), wrapping a FORTRAN LSODA rou-
tine from ODEPACK library. We used a constant 0.001 s long integration
time step.

6.3 RESULTS

In this section we study the differences between the Balloon Model (Buxton
et al., 1998, additionally furnished with the relation [,y = f(v) introduced
by us) and the Balloon-Windkessel Model (Friston et al., 2000). In partic-
ular we explore the relevance to the post stimulus behaviour of the BOLD
signal of the dependence of /,y(v) and of the value of the stiffness param-
eter a . Then we focus on the neurovascular model, in particular on the
effect of its input signal transformation and on its relevance in reproduc-
ing experimentally measured blood flow. Finally, we test the Balloon and
the Balloon-Windkessel models on experimental data.

6.3.1 Modelling the poststimulus undershoot

Here we compare the dynamics of the Balloon (Buxton and Frank, 1997)
and the Balloon-Windkessel (Friston et al., 2000) models, and in particu-
lar we focus on the mechanisms generating the post-stimulus undershoot.
The former model is furnished with the [,y = f(v) relation as proposed
by Buxton and Frank (1997) using the concrete form proposed by us (see
Equation (6.3)). The latter model involves the Grubb’s relation (see Equa-
tion (6.2)). In order to disentangle the effects following from the choice of
the relation loyt = f(v) from the effects following from the choice of pa-
rameter values, we test each model on its own parameter set and on the set
of the other model*. Both sets of parameters are listed in Table 6.1.

Figure 6.3 shows chosen state variables of the Balloon and Balloon-
Windkessel models: relative blood flow input (lin) and output (lout), ve-
nous compartment volume (v), and the BOLD signal. i, follows a trape-
zoidal function, identical to the one used by Buxton et al. (1998): it has a

*In general swapping parameter values between two different representations might
lead to unrealistic results. Therefore such two cases presented here should be understood
only as studies of the dynamical properties of the models.
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minimum at 1, a maximum at 1.7, 4 s of raise, 4 s of plateau, and 4 s of
decay. The top panels correspond to the case in which lou(v) = a - v/ +b
(the Balloon Model) with a and b values following from Equations (6.4)
and (6.5), respectively. The bottom panels correspond to the case in which
lout(v) = v/ (the Balloon-Windkessel Model). The panels on the left cor-
respond to the set of parameters proposed by Buxton et al. (1998) for the
Balloon Model, and the panels on the right to the set of parameters pro-
posed by Friston et al. (2000) for the Balloon-Windkessel Model (see Ta-
ble 6.1 for both parameter sets). In the former case, the value of the stiffness
parameter o = 0.066 is suggested by us in a way that provides increased
nonlinearity, as described by Buxton and Frank (1997). Each panel in Fig-
ure 6.3 includes an inset showing the relation /oyt = f(v) within the range
concerned by the simulation.

The BOLD signal exhibits an undershoot observed only in the case
shown in Figure 6.3A, i.e. for parameter values and the relation loyt = f(v)
corresponding to the Balloon Model. This reproduces the result of Bux-
ton et al. (1998), and since we have here an expression for the relation
lout = f(v), we can additionally analyse the mechanism of the undershoot
effect. Returning of the input blood flow (green) to the lower steady state
(t = 13 s, lin = 1) entails that also E(lin) = 1 (see Equation (6.7)). There-
fore, Equation (6.7) reduces to: % = %[1 —q(t) l"“t(”)], which has a fixed

v(t)
point g* = v/loyt. From Equation (6.1) it follows that the BOLD signal is

negative approximately when ¢ > 1, so one can expect an undershoot of
BOLD when ¢* > 1, and thus v > loy. This is the aforementioned delayed
(with respect to blood flow) elevation of the balloon volume and this ex-
plains why the BOLD undershoot depends on the relation loyt = f(v). The
inset in panel 6.3A shows this relation along with the 1 : 1 reference line
(dotted), which highlights the existence of a regime where v > loy. We
find numerically that this regime exists for v € (1,1.2). Continuous in-
crease of v from the lower steady state (at v = 1) requires passing through
that regime, which results in a characteristic dip in the BOLD signal at the
beginning of the time course (blue in Figure 6.3, around t = 4 s).

Next, we found the limit value of the o parameter, above which the
undershoot does not occur. It is given by the solution of the following
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Figure 6.3: Dynamics of the Balloon and the Balloon-Windkessel models. Time
evolution of the relative input (green) and output (red) blood flows, as well as
volume (cyan) and the BOLD signal (blue) are shown for four different settings.
Panels A and B correspond to the Balloon Model (Buxton and Frank, 1997) with
the relation I, = f(v) given by Equation (6.5). Panels C and D correspond to
the Balloon-Windkessel Model (Friston et al., 2000). Parameter values were set
according to Table 6.1. Panels A and C correspond to the parameter set of the
Balloon Model (with a = 0.066), and panels B and D to the parameter set of the
Balloon Model-Windkessel Model. In all cases the relation /oy = f(v) is explic-
itly given and plotted in insets. Note that in order to highlight the correlation
between all time traces, the BOLD signal was shifted upwards by 1. For all cases
the relative input blood flow (green) follows a trapezoidal function (see text for
details).
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equation:

dlout(v)
=1 12
7o (6.12)

v=1
where [out(v) is given by Equation (6.3) with values of the coefficients a(«)
and b(«) following from Equations (6.4) and (6.5), respectively. Solving
Equation (6.12) is straightforward and yields a(imit) = limit, from where
we numerically find ajimie >~ 0.156. By integrating the Balloon Model we
verified that no undershoot is present for & > ajjn;. Indeed, Figure 6.3B
shows that changing the parameter set to the one with o = 0.33 does not
yield the undershoot. Figures 6.3C,D show that for the two values of alpha
used here, the undershoot is not present when lo,(v) simply equals v'/.
This is related to the lack of a regime where v > [y (see insets to both

these panels).

6.3.2 Neurovascular model

In this section we present the result of transforming neuronal activity to
blood flow within the neurovascular model (Friston et al., 2000). We com-
pare the results obtained with the previously published experimental data
(Mullinger et al., 2013). Additionally we test the scaling of the input, which
is performed in the resting state, where no clear stimulus can be distin-
guished.

Figure 6.4A shows the response (blood flow) of the neurovascular
model to harmonic driving at the model’s resonant frequency (f, = 0.07 Hz,
see Table 6.3). The unscaled signal (blue) is given by: Asin(2nf,) + B,
where A and B were set to arbitrary values 1.5 and 0.5, respectively. The
green line shows the same signal after removal of the mean and after scal-
ing by A/w3(, as discussed in Section 6.2.3. This scaling assures that the
relative blood flow does not increase over the limit value. For the value
of ( slightly rounded to 1/2 (corresponding to our case) we found analyti-
cally that this limit value is 1 + 1/4/3 ~ 1.58. Indeed, after a long transient
is discarded, the relative blood flow (red line in panel Figure 6.4A) reaches
its maximal value at ~ 1.58. The minimal value of this signal, however, is
~ 0.42, which means significant relative variations of blood flow. The ex-
perimental data presented in panel Figure 6.4B (red, green, blue, and cyan
lines for four PERS groups) indicate that these variations are significantly
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Figure 6.4: Dynamics of the neurovascular model (Friston et al., 2000). Panel A
shows the effect of driving this model with a shifted and scaled harmonic input
signal (green) characterised with the resonant frequency of the model (~ 0.07 Hz).
The raw input signal, represented here by the shifted sinusoid (blue), can be in
general an arbitrary time course (e.g. output from a neuronal model). After shift-
ing and scaling, this signal (green) drives the neurovascular model, yielding blood
flow (red). Panel B shows changes to blood flow resulting from 10 s of stimulation
(grey). This panel shows both experimental and simulated data. The former are
divided in four PERS groups: group I (blue), group II (green), group III (red), and
group IV (cyan). The latter ones are obtained from the neurovascular model stim-
ulated with a 10 seconds-long step function characterised by an amplitude 0.15.
The choice of 10 s follows from the duration of stimulation during experiment.
Panel B shows the resulting blood flow, computed from the unscaled (black) and
scaled (maroon) input.

smaller (approximately between 0.9 and 1.2) even when stimulation is ap-
plied, therefore we suggest that the model should not allow for exceeding
these values in the absence of stimulation (the resting state).

Apart from experimental data, Figure 6.4B shows the blood flow ob-
tained from the neurovascular model driven with a step function, which
represents stimulation. Consistently with the experimental protocol, this
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function has non-zero values for the first 10 seconds of each trial. The fig-
ure shows the result corresponding to driving with an unscaled step func-
tion, with an arbitrary amplitude 0.15 (black) and a result corresponding
to the same step function scaled accordingly to the procedure described
above (maroon). The PERS groups I, II, III, and IV are shown in blue, green,
red, and cyan, respectively. The results shown in Figure 6.4B indicate that
the simulated time course evolves faster than the experimental one. They
also show that the rebound effect of the neurovascular model yields devia-
tions from baseline smaller than the observed in the experimental data and
that could not fit the overshoot (blue line).

Furthermore, Figure 6.4B shows how the scaling of the input signal
affects the blood flow baseline (lower steady state), which is shifted down-
wards (maroon, for ¢ € (25,30)). This shift demonstrates how the scaling
of the input signal adopted for the need of modelling the resting state af-
fects the results obtained for the stimulation protocol. The amplitude of
the driving, that is 0.15, was set in such a way that the resulting blood
flow would have an amplitude corresponding to the experimental one.
The scaled signal, however, is not biased with this arbitrary choice and
yields a blood flow signal significantly exceeding the experimental one. It
is a consequence of the fact that in this case the scaling in fact increases,
rather than decreases the amplitude. As a result the simulated relative in-

crease of blood flow is three times larger than the experimental one.

6.3.3 Simulating the BOLD signal from experimentally measured
blood flow

In this section we simulate the BOLD signal from experimentally mea-
sured blood flows (presented in Figure 6.4B), which following other stud-
ies (Kamrani, 2012), we consider input to the haemodynamic models. We
perform eight simulations, corresponding to all combinations between the
four PERS groups of data and the two models: (Balloon and the Balloon-
Windkessel). In the former case we used the relation [yt = f(v) in the form
specified in Equation (6.3) with o = ayjpit = 0.156 (Which entails a = agjm;t
and b = 1 — ajjmit). We increase the value of the o parameter (with respect
to a = 0.066 used in Section 6.3.1), in order to allow for entering the regime
where [,y > v and thereby allowing a positive BOLD signal generation. As
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discussed in Section 6.3.1, for o = 0.066 this regime is not reached for blood
flow < 1.2, which is the case for virtually all data that we use here (see Fig-
ure 6.4B). The rest of parameter values follow from Table 6.2. The results
obtained, along with the experimental data, are presented in Figure 6.5.

The experimental BOLD signal in Figure 6.5 (black line, with standard
error of the mean in grey), is shown along with the simulated one from the
Balloon (blue) and the Balloon-Windkessel (green) models, in four panels
corresponding to PERS group I (panel A), II (panel B), III (panel C), and
IV (panel D). Figure 6.5 shows that deviations of the BOLD signal gen-
erated with the Balloon Model (blue) from the baseline (the lower steady
state) are suppressed in comparison to the experimental data. For none of
the PERS groups an undershoot effect is observed (in agreement with our
expectation) and a very small overshoot is detected for the PERS group
I. Moreover, poststimulus differences in driving blood flows (red, green,
blue, cyan for ¢ > 10 s in Figure 6.4B) are not captured by the model and all
four BOLD signals produced look alike (compare blue in Figures 6.5A-D).
We also note that for the Balloon Model case, the simulated signal slightly
lags behind the experimental one.

The BOLD signals obtained from the Balloon-Windkessel Model
(green) show a qualitative consistency with the experimental data for all
PERS groups. All these signals, as well as the experimental ones (black) fol-
low the time courses of blood flow presented in Figure 6.4B. In general, the
shape, amplitude and time alignment of the simulated signal corresponds
well to the experimental data. Nevertheless, the simulated signal on pan-
els A, C and D starts with a dip, not present in the experimental BOLD. It
is a reminiscence of the low values of blood flow (< 1) at the beginning of
the trials (see red, blue and cyan lines around ¢ = 0 s in Figure 6.4B). We

conclude that this dip is a consequence of the baseline-finding procedure.

6.4 DISCUSSION

Several studies were presented in this chapter. We analysed theoretically
the poststimulus behaviour of the BOLD signal. We proposed the imple-
mentation of a concept put forward by Buxton et al. (1998), and showed
that it renders the Balloon Model capable of yielding the poststimulus
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Figure 6.5: Experimental and simulated BOLD signals. The experimental signal
is shown in black, with standard error of mean in grey. The simulated signal
was generated with the Balloon (blue) and the Balloon-Windkessel (green) models
separately in four different PERS groups: I (panel A), II (panel B), III (panel C)
and IV (panel D). In the case of the Balloon Model, the relation Iy (v) = 0.156 -
v1/0-156 10 844 was used and in case of the Balloon-Windkessel Model the relation
lout(v) = v°-33 was used.
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BOLD undershoot even if the cerebral blood flow does not drop below
the baseline. This is due to the delayed elevation of the venous compart-
ment volume with respect to the output blood flow. We explained this
mechanism quantitatively and determined conditions under which it oc-
curs. From these conditions it follows that for our choice of the value of
a = 0.066 (which allows to reproduce the results of Buxton et al., 1998),
and for the relative blood flow remaining below 1.2, the BOLD signal takes
exclusively negative values. Interestingly, the experimentally measured
relative blood flow that we analysed here, hardly ever exceeds 1.2. For
this reason, we increased the value of the coefficient « in tests of the Bal-
loon Model on experimental data. We thereby suppressed the BOLD sig-
nal undershoot generation mechanism based on the delayed elevation of
the compartment volume, when blood flow has already returned to base-
line, and we focused on another possible mechanism: a simple following
of blood flow by the BOLD signal. Furthermore, we explained why the
undershoot caused by the delayed elevation of volume is absent in the
Balloon-Windkessel Model (Friston et al., 2000). This is not obvious, be-
cause this model is usually coupled with the neurovascular model (also
discussed here), which yields a rebound (a drop below baseline due to
damping) of blood flow. This, in turn, due to simple following of blood
flow by the BOLD signal, entails its undershoot produced by the Balloon-
Windkessel Model. Nevertheless, in this case the mechanism of the under-
shoot is very different than in the delayed elevation scenario.

The experimental data that we used exhibit an undershoot of the BOLD
signal, whenever an undershoot in the corresponding blood flow time
course is present. This suggests that the Balloon-Windkessel model might
be (partially) valid. Our results show that indeed this model is able to
reproduce both the poststimulus under- and overshoot, given that it is
driven by an undershooting or overshooting blood flow, respectively. On
the other hand, the Balloon-Windkessel Model neglects temporal decou-
pling between the venous compartment volume and the blood flow, al-
though it is known to occur Mandeville et al. (1996, 1998) and might be
contributing to the undershoot of the BOLD signal. We found that the
Balloon Model with our implementation of the relation /oy = f(v) does
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not reproduce the BOLD signal from experimental blood flow as well as
the Balloon-Windkessel Model. This relation is simplified and does not
faithfully corresponding to the experimental observations Mandeville et
al. (1996, 1998), in which case it would be expected to exhibit hysteresis,
with blood flow increasing and decreasing rapidly and with blood volume
catching up slowly.

We also examined the neurovascular model of Friston et al. (2000).
We showed that it has strong low-pass filtering properties which would
strongly attenuate relatively fast oscillations generated by a model such as
the Jansen-Rit module, utilised earlier in this Thesis. We noted that ad-
ditional dependence on neuronal activity needs to be introduced in this
model in order to render it capable of reproducing both over- and under-
shooting poststimulus BOLD behaviour. Furthermore, we argued that the
widely used Balloon-Windkessel Model, coupled with the neurovascular
model, might not be accurate in generating physiologically plausible be-
haviour for the resting state. This is understandable, because originally
these models were considering the resting state a flat baseline from which
(positive) prominent deviations arise due to stimulation. Modelling subtle,
in particular negative, fluctuations around the baseline was not an objec-
tive of the model. Nevertheless, although a number of more sophisticated
models have been recently proposed (see review, Buxton, 2012) and al-
though they account for some physiological effects better than the Balloon-
Windkessel Model, it is still precisely this model that is until today used in
the neuronal modelling community, also in the context of the resting state
(Cabral et al., 2013). For example, the Balloon-Windkessel Model is part of
The Virtual Brain (http://thevirtualbrain.org) software package and it is
used in Dynamic Causal Modelling (Havlicek et al., 2015).

The Balloon-Windkessel Model might still be sufficient in some appli-
cations to modelling of brain dynamics, when it converts neuronal activity
to the BOLD signal, which can later be compared with experimental fMRI
recordings. Very often in such cases one is interested not in absolute values
of these signals, but rather in correlations between signals from different
brain areas (see ‘functional connectivity” in Section 1.4.6). In the case of

linear correlations, such as the Pearson correlation, scaling and shifting of
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signals does not affect the result. It is the low-pass filtering property of
the haemodynamic and neurovascular models that plays a crucial role in
this kind of analysis, since it limits the bandwidth of the simulated signal
to frequencies typical of fMRI recordings. In the future it would be inter-
esting to compare simulated signals and functional connectivities obtained
from the Balloon-Windkessel Model and from a simple spectral low-pass
filter.

Nevertheless, from the physiological perspective, it is crucial not only
to obtain secondary relative quantities such as correlations, but to model
biological processes accurately. Comprehending these processes would al-
low to infer neuronal activity from registered fMRI BOLD signals. Cur-
rently it is not known how neuronal activity maps onto the BOLD signal.
In particular, different aspects of neuronal activity may be driving haemo-
dynamic and metabolic processes (Buxton, 2012; Mullinger et al., 2013).
For these reasons we see a need to bridge physiological modelling (focused
around metabolism and haemodynamics) with neuronal modelling. This
would allow to obtain more insight from experimental data and exploit

computational models more richly.

6.5 SUMMARY AND OUTLOOK

In this chapter we broadened the scope of interest of this Thesis to include
large scale-dynamics qualified from fMRI recordings. We studied dynam-
ical properties of models devised to simulate the BOLD signal and related
physiological quantities. In particular we focused on the Balloon (Buxton
and Frank, 1997) and the Balloon-Windkessel (Friston et al., 2000) mod-
els, and on the neurovascular model (Friston et al.,, 2000). Similarly to
authors of these models, in order to study local phenomena, we consid-
ered a single vascular compartment (a voxel), although efforts to model
inter-voxel interactions have already been made (Drysdale et al., 2010).
We quantitatively analysed the poststimulus behaviour of the BOLD signal
and brought up issues related to modelling the resting state as registered in
fMRI recordings. We conjectured that for some applications of the haemo-
dynamic models (in particular related to neuronal dynamics) a high level

of biological fidelity is not indispensable to obtain realistic results. At the

160



6.5. Summary and outlook

same time, progress in the field of haemodynamic modelling would also

empower studies of the neuronal dynamics.
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CHAPTER 7

CONCLUSIONS AND PERSPECTIVES

7.1 SUMMARY OF FINDINGS

Neuronal dynamics span a wide range of temporal and spatial scales, ren-
dering the brain a uniquely complex system. The aim of this Thesis was to
study temporal properties of brain processes occurring in the mesoscopic
spatial scale, i.e. processes generated by neuronal assemblies, rather than
by individual neurons. We were particularly interested in advancing the
understanding of the role that temporally correlated noise plays in shaping
the mesoscopic-scale neuronal dynamics. We consider this issue specially
relevant, because current studies of these dynamics have for the most part
been concerned with temporally uncorrelated white noise (Garnier et al.,
2015; Lopes da Silva et al., 1974; Petkov et al., 2014; Roberts and Robin-
son, 2012; Touboul et al., 2011; Victor et al., 2011) characterised by a flat
power spectrum. However, it is known that EEG recordings yield a back-
ground shape of their power spectra that follows a ‘1/f%" dependence on
the frequency f. We therefore examined the question of the significance of
the spectral composition of the background (stochastic) activity affecting
a neuronal population. In order to disentangle effects related to different
frequencies of this background activity, we systematically studied the re-
sponse of the neuronal model to harmonic driving of varying frequency
and amplitude. Our findings following from this procedure were related
to particular experimental observations of brain dynamics, as registered in
the EEG recordings in both healthy and unhealthy subjects.

We specifically focused on effects related to epilepsy. This neu-
rological disorder affects millions of people worldwide, severely im-
pairing their quality of life. ~ Around 30% of epileptic patients
(http:/ /www.who.int/mediacentre/factsheets/fs999 /en/) are resistant to
pharmacological treatment and need alternative means of medical care.
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One of the approaches towards the development of alternative thera-
pies involves considering epilepsy a dynamic disease (Milton, 2010) and
analysing it in the framework of nonlinear dynamics theory. We took that
approach in this Thesis, by employing the Jansen-Rit nonlinear neuronal
model, which is capable of recapitulating both healthy and epileptic brain
dynamics. We studied the dynamics of this model in the context of three
types of external driving: (1) stochastic, (2) harmonic, and (3) internal,
the latter arising from the coupling between distinct neuronal populations
(modules). We developed our framework methodically, starting from stud-
ies of a single Jansen-Rit module in Chapter 3, moving on to two coupled
modules in Chapter 4 and finally focusing on a network of such modules
in Chapter 5.

We related our theoretical findings to a number of phenomena found
experimentally in the human brain. Those phenomena include initiation
and termination of epileptic activity, visually induced seizures and in-
crease of power in a high frequency band due to sensory stimulation in
a low frequency band. In Chapter 6 we extended the scope of the mod-
elled mesoscopic brain processes from neuronal activity to the haemody-
namic and metabolic process that underlie the BOLD signal, as registered
in the fMRI recordings. Accurate models of these processes allow to com-
pare neuronal activity (e.g. simulated with models such as the Jansen-Rit
model) with those recordings. Our work is, therefore, organised around
dynamical properties of mesoscopic-scale models of brain activity and on
their relation to experimental observations. In what follows we summarise

the main findings presented in each chapter of this Thesis.

Conclusions from Chapter 3

Dynamics of a stochastically and harmonically driven neural mass model. In
that chapter we focused on the dynamics of an individual Jansen-Rit mod-
ule driven by harmonic signals and by Ornstein-Uhlenbeck noise. We
found that epileptiform dynamics in this model are most easily initiated
by noise characterised by certain temporal correlations. Our analysis re-
vealed that these correlations maximise spectral power in combined al-
pha, delta and theta frequency bands. By introducing harmonic driving
to the system, we showed that rhythms from this wide band indeed elicit
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epileptiform dynamics in the model. Our findings are supported by clin-
ical observations: indeed, an increase of power in delta and theta bands
was observed prior to initiation of epileptic seizures (Gupta et al., 2011;
Sadleir et al., 2011). We also found that although driving with a rhythm
of frequency ~ 10 Hz leads to a resonance with the natural frequency of
the model, it is harmless” with respect to evoking epileptic activity in the
model. Nevertheless, this activity was elicited when the excitability of the
system was increased, what we consider a model of an “unhealthy-like’,
potentially epileptogenic neuronal tissue. Since the resonance frequency
corresponds to the alpha rhythm, which is most prevalent over the visual
cortex, we related the epileptogenic resonance to photosensitive epilepsy,
which is known to occur in susceptible subjects, in particular, for stimula-
tion falling into the alpha band (Takahashi and Tsukahara, 1998). All the
effects observed were explained as interplays between the specific driv-
ing frequencies and the bifurcation structure of the model. We therefore
showed the importance of coloured (temporally correlated) noise in the
context of dynamical modelling of brain (dys-)function.

Conclusions from Chapter 4

Interactions between two reciprocally coupled neural masses: collective excitabil-
ity. In Chapter 4 we extended our model to two coupled neural masses
stimulated with white noise. We explored a rare feature of this neural mass
model: the coexistence of two limit cycles. Their noise-initiated mutual in-
teractions lead to long excitation transients. We showed that the initiation
rate of these transients depends in a non-monotonic way on the coupling
strength between the modules. For low coupling, transient noise-induced
activations of one module are less likely to initiate activity in the other
module, thus the initiation rate remains low. To the contrary, for high cou-
pling the modules tend to fully synchronise, what excludes mixing of two
distinct oscillatory modes. It is the intermediate coupling strength that pro-
motes appearance of prolonged activity episodes. These episodes termi-
nate due to simultaneous falling into refractory period; such scenario has
been conjectured to underlie synchronous termination of epileptic seizures
(Schindler et al., 2007). In summary, we quantitatively showed how oscil-
latory multistability leads to appearance of complex temporal patterns in a
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relatively simple neuronal model. Moreover, in that chapter we introduced
a simple and fast method of finding loss of stability in a bidirectionally all-
to-all coupled network of dynamical systems featuring saddle-node bifur-
cation.

Conclusions from Chapter 5

Cross-frequency transfer in a stochastically driven mesoscopic neuronal model.
In that chapter we found that a network of Jansen-Rit modules driven by
temporally correlated noise yields realistic power spectra characterised by
a ‘1/f¥ background (without relying on critical phenomena) with an em-
bedded alpha peak. The peak grows when the network is driven by a slow
rhythm. This result reproduces an experimental observation of Bayer et al.
(2011). By analysing the bifurcation structure of the Jansen-Rit module we
proposed a mechanism underlying this observation. We suggested that it
relies on both the dynamical properties of a single module and collective
synchronisation effects between the modules. Our results allowed to pre-
dict that for faster driving frequencies this increase of power in the alpha
band would be substituted by a decrease.

Conclusions from Chapter 6

BOLD signal modelling. In that chapter we performed dynamical analy-
sis of mechanisms potentially leading to a poststimulus undershoot in the
BOLD fMRI signal. We tested two implementations of the Balloon Model
(one of which is called ‘Balloon-Windkessel Model’) and showed that they
involve different mechanisms responsible for the generation of the under-
shoot. According to the current state of knowledge (Buxton, 2012) both
mechanisms could be significant. Moreover, by running the models on ex-
perimental data we demonstrated that the Balloon-Windkessel Model can
reproduce both the poststimulus under- and overshoot of the BOLD signal,
given that the flow of cerebral blood is also under- or overshooting, respec-
tively. Finally, we examined the characteristics of a neurovascular model
commonly used to couple neuronal activity with haemodynamics. In par-

ticular we considered the consequences of modelling the resting state, and
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we concluded that the models we tested might be sufficient for some ap-
plications (e.g. modelling linear functional correlations between brain re-
gions, as those measured by the fMRI recordings). Further development is
needed in order to account for the role of neuronal activity in the genera-
tion of the BOLD signal.

7.2 DISCUSSION

This Thesis started with a comprehensive ‘Introduction” that put our re-
search in a wider context of theoretical neuroscience. In all chapters that
are concerned with neuronal dynamics (Chapters 3-5) we worked under
the hypothesis that the brain operates close to a phase transition or bifur-
cation (Section 1.4.4, ‘Criticality and the verge of transition”). In Chap-
ters 3 and 5 we set our model parameters according to this hypothesis.
Indeed, the results we obtained were in agreement with experimental find-
ings, and the mechanism we suggested as their potential explanation relies
on closeness to a Hopf bifurcation. Therefore, the scenario we considered
goes along the lines of the hypothesis. Nevertheless, this scenario neither
requires nor entails that the brain operates close to a strictly understood
(self-organised) critical state (Chialvo et al., 2008). We also demonstrated
that a 1/ f*’-like power spectrum (Section 1.4.5, ‘1/ f* power spectra’), of-
ten considered a signature of critical phenomena, can be generated by a
mesoscopic neuronal model driven by temporally correlated noise. More-
over, in Chapters 3 and 5 we focused on a ‘catastrophic transition” in order
to model unhealthy-like (epileptic) brain dynamics. In this case the im-
pairment was modelled as moving the system further away from the Hopf
bifurcation and setting it closer to the ‘catastrophic’ saddle-node on invari-
ant circle bifurcation.

We also focused on brain rhythmicity (Section 1.4.1, ‘/Rhythms of the
brain’) and interactions between rhythms from distinct frequency bands.
In Chapter 5 we proposed a minimalistic model of cross-frequency trans-
fer of power. Indeed, the same mechanism has been suggested to under-
lie the phase-to-amplitude coupling in other mesoscopic neuronal models
(Onslow et al., 2014). Our results on rhythmic driving (Chapters 3 and 5)
revealed a number of phenomena evoked in the model for certain driving
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amplitudes, frequencies and phases. This puts our research in the con-
text of brain stimulation of both healthy Ngo et al. (2013), Spiegler et al.
(2011), and Summerson et al. (2015) and epileptic subjects (Durand, 2009;
Kasteleijn-Nolst Trenite, 2006). In the former case, we were able to make
the prediction that an increase of driving frequency above the one that had
been tested experimentally (Bayer et al., 2011), would lead to an effect op-
posite to the one observed experimentally. In the latter case, epileptogenic
rhythms that we identified can be attributed either to intrinsic brain activ-
ity or to external stimulation. From the dynamical perspective, these two
situations may be very different, because external stimulation is highly
likely to be characterised with a well-defined phase (such was the case
of Takahashi and Tsukahara, 1998), which may lead to entrainment and
excessive synchronisation of neuronal activity in distinct brain sites, and
consequently to a seizure.

A substantial part of the Introduction (Section 1.1.3, “Cortical columns’)
was devoted to the discussion of the putative anatomical structures mod-
elled by population (neural mass) models. Taking it together with the con-
siderations about the internal synchrony of the modelled populations (Sec-
tion 1.3, ‘Population modelling’) leads to the conclusion that population
modelling is not limited to a single spatial scale of the modelled struc-
ture. In Chapter 4 we demonstrated that reciprocally coupled instances
of a neuronal model tend to behave like one system when the coupling is
strong. Therefore, here we conclude that their activity could be approx-
imated by just one instance of the model. Indeed, neural masses have
been used to model structures ranging from minicolumns (Babajani and
Soltanian-Zadeh, 2006) to whole brain areas (or even to the whole brain
when synchrony is high due to epilepsy, Breakspear et al., 2006). We note,
however, that in the latter case effects related to delays might play a role
(Coombes and Laing, 2009).

Comparison of the results presented in Chapters 3 and 5 reveals that
the value of the noise correlation time that was found to generate most
realistic power spectrum falls within the range of values that entail gen-
eration of epileptic spikes. Nevertheless, in the former case our model

involves a network of neural masses and individual spikes are smeared

168



7.2. Discussion

out in the background signal generated by the network. This is possible
as long as coupling between the network elements is not excessive. If it
is, as we demonstrated in Chapter 4, a full synchronisation of the coupled
elements may enhance the spikes and impair the smearing. On the other
hand, increased synchrony -typical to epilepsy- allows us to approximate
the activity of a number of synchronised neural masses with the activity of
only one neural mass model. In this context, the approach adopted by us
in Chapter 3 can be considered such reduction.

When neural masses model cortical columns, local patches of neuronal
tissue, or brain areas, are often organised into networks accounting for
larger, complex brain structures (Section 1.4.6, ‘Brain networks’). Our re-
sults concern also such networks. We introduced a method of localising
the loss of stability of a neuronal network via a saddle-node bifurcation.
This method is limited to all-to-all coupled networks; nevertheless its ap-
plicability may be wider than it seems, because the dynamics of all-to-all
connected networks was shown to approximate the dynamics of random
graphs, when exposed to Ornstein-Uhlenbeck noise (Torcini and Angulo-
Garcia, 2014). We showed how interactions between two isolated network
nodes (modelled as neural masses) lead to occurrence of complex tran-
sients (Chapter 4), and how synchronisation in networks leads to buildup
of peaks in the power spectrum (Chapter 5).

We note a parallel from the latter scenario to event-related potentials
and synchronisation (Pfurtscheller and Lopes da Silva, 1999). Neverthe-
less, as discussed in Chapter 2, ‘Modelling mesoscopic brain dynamics’,
traditional neural mass models can only account for interpopulation (in
contrary to intrapopulation) synchrony. Furthermore, our analysis of the
limitations of neural mass models presented in that chapter also showed
that these models assume that the average membrane potential is close to
the steady state, which might not be, in general, the case for abrupt evoked
potentials. Although neural mass models were shown successful in mod-
elling some effects related to event-related (de)synchronisation (Grabska-
Barwiriska and Zygierewicz, 2006; Suffczynski et al., 2001), and evoked
(David et al., 2005) and induced (David et al., 2006) potentials, we would
expect that they have limited capabilities in this field.
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Also our research on haemodynamic processes and modelling the
BOLD signal presented in Chapter 6 could be related to closeness to
a phase transition and to the dynamics of neuronal networks. Slow
timescales characterising these processes filter out fast rhythms of the neu-
ronal dynamics and as a result they relatively magnify slow processes,
which are likely to be enhanced in the vicinity of a phase transition (see
‘critical slowing down’ in Sections 1.4.5 and 1.4.4), and they may also fol-
low from emergent network dynamics. Therefore, BOLD modelling might
be helpful in determining certain aspects of neural dynamics and (func-
tional) connectivity (Cabral et al., 2013). A natural continuation of the
work presented here is coupling the Jansen-Rit model with the Balloon-
Windkessel Model and constructing a network of neural masses intercon-
nected according to the connectome. Such two-level model would allow to
compare simulated signals with experimentally collected fMRI recordings.
Our results from such comparison are preliminary and were not included
in this Thesis.

Finally, noise was a common theme present in most of this Thesis. We
used both white and temporally correlated Ornstein-Uhlenbeck noise. By
driving a mesoscopic neuronal model with the latter, we emphasised the
importance of temporal correlations in generating rich neuronal dynamics,
and we explored a potential scenario leading to one of scenarios of genera-
tion of a 1/ f* power spectra (see Section 1.4.5, “1/ f* power spectra’). Our
research on the dynamical properties of a stochastically driven neuronal
model contributes to the vast body of work on stochasticity in theoretical
neuroscience (Laing and Lord, 2010). In particular, our identification of the
level of noise autocorrelation time that maximises certain effects could be
related to stochastic resonance (Gluckman et al., 1996), in which maximi-
sation of a particular quantity (e.g. signal-to-noise ratio) is obtained via
tuning of the noise characteristics.

We suggest that future work could elaborate on the way noise is de-
livered to the neuronal model. In particular, populations of interneurons
could also be subject to stochastic driving. Furthermore, intrinsic noise
could be considered; it would more faithfully account for stochasticity in

neuronal interactions and it could itself lead to a ‘1/f* power spectrum
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(Kaulakys et al., 2005). Finite correlations between noise realisations deliv-
ered to distinct neuronal modules could also be taken into account. Firstly,
they would be motivated by experimental observations (see Mochol et al.,
2015, and references from therein) and secondly they could alter our re-
sults, in which noise had mostly a destructive impact on synchronisation
and was competing with coupling in this respect. To the contrary, corre-
lated stochastic driving would be expected to promote synchrony. Further-
more, it would also be natural to promote the stochastic process used in
Chapter 4 from white noise to a temporally correlated one. Finally, a num-
ber of Ornstein-Uhlenbeck noise sources could be combined in order to
generate a signal more faithfully recapitulating a ‘1/ f* shape of the power
spectrum (Hausdorff and Peng, 1996). We speculate that effects presented
in this Thesis would hold also for such linearly composed signals.

In the future it will be important to study the effects of coloured noise in
a variety of different models, such as extensions to the neural mass model
(Goodfellow et al., 2011; Wendling et al., 2002) that can generate alternative
dynamics. Furthermore, future development of our work could combine
approaches presented here in Chapters 3 and 5, and could examine ex-
plicitly the dynamics of networks of neural masses in order to investigate
conditions for the propagation or restriction of epileptiform activity. Our
studies on rhythms driving epileptiform dynamics could be extended to
searching for stimulation protocols that are likely to terminate, but not ini-
tiate a seizure. There is an ongoing increase in interest in this stream of
research in both theoretical (Jiruska et al., 2010; Wang et al., 2015) and ex-
perimental (Berenyi et al., 2012) studies. In particular, recent results (Taylor
et al., 2014) emphasise the importance of taking into account the phase of
the ongoing (epileptic) brain activity in these stimulation protocols. In-
deed, results presented in Chapter 3 revealed that for some conditions, the
model’s response depends on the driving signal phase.

In this Thesis we demonstrated a number of phenomena occurring in
models of brain dynamics at the mesoscopic scale, and explained them
qualitatively on the ground of dynamical systems theory. In particular, we
focused on effects arising from stochasticity, coupling and bifurcations of
a specific neural mass model. Although this model (Jansen and Rit, 1995)
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has been in use for over two decades now, we found novel physiological
relevance of its properties, which we hope, due to the model’s popularity,

will be of interest to many.

172



APPENDIX

PUBLICATIONS AND PRESENTATIONS

Publications

1. M. Jedynak, A. J. Pons, ]. Garcia-Ojalvo, M. Goodfel-
low (2016). “Temporally correlated fluctuations drive
epileptiform  dynamics”. In:  Neurolmage 16;146:188-196.

doi:10.1016/j.neuroimage.2016.11.034.

2. M. Jedynak, A. J. Pons, ]. Garcia-Ojalvo (2015). “Cross-
frequency transfer in a stochastically driven mesoscopic neu-

ronal model”. In: Frontiers in Computational Neuroscience 9, 14.
doi:10.3389/fncom.2015.00014.

3. M. Jedynak, A. J. Pons, J. Garcia-Ojalvo “Collective excitability and
noise in a mesoscopic neuronal model”. Manuscript in preparation.

Talks

1. “Identification of epileptogenic rhythms in a mesoscopic neuronal
model”. ICANN Conference on Artificial Neural Networks, 2016 IX 6-9,

Barcelona, Spain.

2. “Colored noise as a driver of epileptiform dynamics in a meso-
scopic neuronal model”. XXXVI Dynamics Days, 2016 VI 6-10, Corfu,
Greece.

3. “Noise induced effects and synchronization in mesoscopic brain dy-
namics”. Donders Discussions, 2015 X 5-6, Nijmegen, the Netherlands.

4. “Brain research in the mesoscopic scale”. 3rd Jornada d’Investigadors
Predoctorals Interdisciplinaria, 2015 11 5, Barcelona, Spain.

5. “Mesoscopic brain activity in the presence of stochastic and peri-
odic inputs”. The Brain: Criticality, Dynamics, Networks and Function,
2013 IX 2-6, Capri, Italy.

173


http://dx.doi.org/10.1016/j.neuroimage.2016.11.034
http://journal.frontiersin.org/article/10.3389/fncom.2015.00014/full

Poster presentations

1. “Stimulus induced resonance in a neural mass model driven with a
temporally correlated noise”. International Conference on System Level
Approaches to Neural Engineering, 2015 IX 21-23, Barcelona, Spain.

2. “Stimulus induced resonance in a neural mass model driven with
a temporally correlated noise”. CNS 2015 Meeting, 2015 VII 18-23,
Prague, Czech Republic.

3. “Cross-frequency transfer in a mesoscopic model of the brain with
noisy oscillatory input”. IV Summer School on Statistical Physics of
Complex and Small Systems, 2014 IX 8-19, Mallorca, Spain.

4. “Cross-frequency transfer in a mesoscopic model of the brain with
noisy oscillatory input”. Meeting of the Catalan Network for the Study
of Complex Systems, 2014-VI-19, Barcelona, Spain.

5. “Cross-frequency transfer in a mesoscopic model of the brain with
noisy oscillatory input”. Barcelona Computational and Systems Neuro-
science Meeting, 2014 VI 16-17, Barcelona, Spain.

6. “Cross-frequency transfer in a mesoscopic model of the brain with
noisy oscillatory input”. NETT Florence workshop Dynamics of Neural
Circuits, 2014 III 17-20, Florence, Italy.

7. “Mesoscopic brain activity in the presence of stochastic and periodic
inputs”. Donders Discussion, 31 X-1 XI 2013, Nijmegen, the Nether-
lands.

8. “Mesoscopic brain activity in the presence of stochastic and periodic
inputs”. Brain Modes 2013: Criticality, connectivity, and neural masses,
2-3 X1II 2013, Amsterdam, the Netherlands.



BIBLIOGRAPHY

Abbott, L. F. and S. B. Nelson (2000). “Synaptic plasticity: Taming the
beast”. In: Nat. Neurosci. 3.November, pp. 1178-1183.

Abrams, D. M., R. Mirollo, S. H. Strogatz, and D. A. Wiley (2008). “Solvable
model for chimera states of coupled oscillators”. In: Physical Review Let-
ters 101.8, pp. 1-4.

Aburn, M. J., C. A. Holmes, J. A. Roberts, T. W. Boonstra, and M. Break-
spear (2012). “Critical fluctuations in cortical models near instability.”
In: Frontiers in physiology 3.August, p. 331.

Alarcon, G., C. D. Binnie, R. D. Elwes, and C. E. Polkey (1995). “Power spec-
trum and intracranial EEG patterns at seizure onset in partial epilepsy.”
In: Electroencephalography and clinical neurophysiology 94, pp. 326-337.

Albada, S. J. van and P. A. Robinson (2009). “Mean-field modeling of
the basal ganglia-thalamocortical system. I. Firing rates in healthy and
parkinsonian states”. In: Journal of Theoretical Biology 257.4, pp. 642-663.

Andreae, L. C. and J. Burrone (2015). “Spontaneous Neurotransmitter Re-
lease Shapes Dendritic Arbors via Long-Range Activation of NMDA
Receptors”. In: Cell Reports 10.6, pp. 873-882.

Anishchenko, V., V. Astakhov, A. Neiman, T. Vadivasova, and L.
Schimansky-Geier (2007). Nonlinear Dynamics of Chaotic and Stochastic
Systems: Tutorial and Modern Developments. Springer Series in Synerget-
ics. Springer Berlin Heidelberg.

Aru, ], J. Aru, V. Priesemann, M. Wibral, L. Lana, G. Pipa, W. Singer, and R.
Vicente (2015). “Untangling cross-frequency coupling in neuroscience.”
In: Current opinion in neurobiology 31C, pp. 51-61.

Atay, F. M. and A. Hutt (2006). “Neural Fields with Distributed Transmis-
sion Speeds and Long-Range Feedback Delays”. In: SIAM Journal on
Applied Dynamical Systems 5.4, pp. 670-698.

Azevedo, F. A. C,, L. R. B. Carvalho, L. T. Grinberg, ]J. M. Farfel, R. E. L.
Ferretti, R. E. P. Leite, W. J. Filho, R. Lent, and S. Herculano-Houzel

175



BIBLIOGRAPHY

(2009). “Equal numbers of neuronal and nonneuronal cells make the
human brain an isometrically scaled-up primate brain”. In: Journal of
Comparative Neurology 513.5, pp. 532-541.

Babajani, A. and H. Soltanian-Zadeh (2006). “Integrated MEG/EEG and
fMRI model based on neural masses.” In: IEEE transactions on bio-
medical engineering 53.9, pp. 1794-801.

Babiloni, C., F. Vecchio, A. Bultrini, G. Luca Romani, and P. M. Rossini
(2005). “Pre- and Poststimulus Alpha Rhythms Are Related to Con-
scious Visual Perception: A High-Resolution EEG Study”. In: Cerebral
Cortex 16.12, pp. 1690-1700.

Babiloni, C., C. Del Percio, L. Arendt-Nielsen, A. Soricelli, G. L. Romani,
P. M. Rossini, and P. Capotosto (2014). “Cortical EEG alpha rhythms
reflect task-specific somatosensory and motor interactions in humans”.
In: Clinical Neurophysiology 125.10, pp. 1936-1945.

Babloyantz, A., J. Salazar, and C. Nicolis (1985). “Evidence of chaotic dy-
namics of brain activity during the sleep cycle”. In: Physics Letters A
111.3, pp. 152-156.

Baier, G., M. Goodfellow, P. N. Taylor, Y. Wang, and D. J. Garry (2012). “The
importance of modeling epileptic seizure dynamics as spatio-temporal
patterns.” In: Frontiers in physiology 3.July, p. 281.

Bak, P. (1996). How nature works: the science of self-organized criticality. Coper-
nicus.

Bak, P. and D. R. Chialvo (2001). “Adaptive learning by extremal dynamics
and negative feedback”. In: Physical Review E 63.3, p. 031912.

Bak, P, C. Tang, and K. Wiesenfeld (1987). “Self-organized criticality: An
explanation of the 1/f noise”. In: Physical Review Letters 59.4, pp. 381—
384.

Barabaési, A.-L. (2002). Linked: The New Science of Networks. Perseus Pub.

Barardi, A., B. Sancrist6bal, and J. Garcia-Ojalvo (2014). “Phase-Coherence
Transitions and Communication in the Gamma Range between Delay-
Coupled Neuronal Populations”. In: PLoS Computational Biology 10.7.

Bartos, M., I. Vida, and P. Jonas (2007). “Synaptic mechanisms of synchro-
nized gamma oscillations in inhibitory interneuron networks”. In: Na-

ture Reviews Neuroscience 8.1, pp. 45-56.

176



Bibliography

Bastos, A. M., J. Vezoli, and P. Fries (2015). “Communication through co-
herence with inter-areal delays”. In: Current Opinion in Neurobiology 31,
pp- 173-180.

Battaglia, D. and D. Hansel (2011). “Synchronous chaos and broad band
gamma rhythm in a minimal multi-layer model of primary visual cor-
tex.” In: PLoS computational biology 7.10, €1002176.

Bayer, L., I. Constantinescu, S. Perrig, ]. Vienne, P.-P. Vidal, M. Miihlethaler,
and S. Schwartz (2011). “Rocking synchronizes brain waves during a
short nap.” In: Current biology : CB 21.12, R461-2.

Baar, E., C. Baar-Eroglu, S. Karaka, and M. Schiirmann (2001). “Gamma,
alpha, delta, and theta oscillations govern cognitive processes”. In: In-
ternational Journal of Psychophysiology 39.2-3, pp. 241-248.

Bédard, C., H. Kroger, and A. Destexhe (2006). “Does the 1/f Frequency
Scaling of Brain Signals Reflect Self-Organized Critical States?” In:
Physical Review Letters 97.11, p. 118102.

Bédard, C. and A. Destexhe (2009). “Macroscopic models of local field po-
tentials and the apparent 1/f noise in brain activity”. In: Biophysical
Journal 96.7, pp. 2589-2603.

Beggs, J. M. and D. Plenz (2003). “Neuronal avalanches in neocortical cir-
cuits.” In: The Journal of neuroscience : the official journal of the Society for
Neuroscience 23.35, pp. 11167-77.

Beggs, ]. M. and N. Timme (2012). “Being Critical of Criticality in the
Brain”. In: Frontiers in Physiology 3.June, pp. 1-14.

Benayoun, M., J. D. Cowan, W. van Drongelen, and E. Wallace (2010).
“Avalanches in a stochastic model of spiking neurons”. In: PLoS Com-
putational Biology 6.7, p. 21.

Berenyi, a., M. Belluscio, D. Mao, and G. Buzsaki (2012). “Closed-Loop
Control of Epilepsy by Transcranial Electrical Stimulation”. In: Science
337.6095, pp. 735-737.

Berg, A. T. et al. (2010). “Revised terminology and concepts for organi-
zation of seizures and epilepsies: Report of the ILAE Commission on
Classification and Terminology, 2005-2009”. In: Epilepsia 51.4, pp. 676~
685.

177



BIBLIOGRAPHY

Berger, H. (1933). “Uber das Elektrenkephalogramm des Menschen”. In:
Archiv fiir Psychiatrie und Nervenkrankheiten 99.1, pp. 555-574.

Beurle, R. L. (1956). “Properties of a Mass of Cells Capable of Regenerat-
ing Pulses”. In: Philosophical Transactions of the Royal Society B: Biological
Sciences 240.669, pp. 55-94.

Bhattacharya, B. S., D. Coyle, and L. P. Maguire (2011). “A thalamo-cortico-
thalamic neural mass model to study alpha rhythms in Alzheimer’s
disease”. In: Neural Networks 24.6, pp. 631-645.

Boccaletti, S., J. Kurths, G. Osipov, D. L. Valladares, and C. S. Zhou (2002).
“The synchronization of chaotic systems”. In: Physics Reports 366, pp. 1-
101.

Bojak, I. (2014). Personal communication.

Bojak, I. and M. Breakspear (2015). “Neuroimaging, Neural Population
Models for”. In: Encyclopedia of Computational Neuroscience. New York,
NY: Springer New York, pp. 1919-1944.

Bojak, I., T. E. Oostendorp, A. T. Reid, and R. Kétter (2010). “Connecting
mean field models of neural activity to EEG and fMRI data.” In: Brain
topography 23.2, pp. 139—49.

Bonachela, J., S. de Franciscis, J. J. Torres, and M. Muiioz (2010). “Self-
organization without conservation: are neuronal avalanches generi-
cally critical?” In: Journal of Statistical Mechanics: Theory and Experiment
2010.02, P02015.

Bonjean, M., T. Baker, M. Bazhenov, S. Cash, E. Halgren, and T. Sejnowski
(2012). “Interactions between core and matrix thalamocortical projec-
tions in human sleep spindle synchronization.” In: The Journal of neuro-
science : the official journal of the Society for Neuroscience 32.15, pp. 5250—
63.

Botcharova, M., S. F. Farmer, and L. Berthouze (2012). “Power-law distri-
bution of phase-locking intervals does not imply critical interaction”.
In: Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 86.5,
pp- 1-13.

Braun, W,, P. C. Matthews, and R. Thul (2015). “First-passage times in
integrate-and-fire neurons with stochastic thresholds”. In: Physical Re-
view E 91.5, pp. 1-7.

178



Bibliography

Breakspear, M., J. A. Roberts, J. R. Terry, S. Rodrigues, N. Mahant, and P.
A. Robinson (2006). “A unifying explanation of primary generalized
seizures through nonlinear brain modeling and bifurcation analysis.”
In: Cerebral cortex (New York, N.Y. :1991) 16.9, pp. 1296-313.

Brinkmann, B. H. et al. (2016). “Crowdsourcing reproducible seizure fore-
casting in human and canine epilepsy”. In: pp. 1713-1722.

Bruns, A. and R. Eckhorn (2004). “Task-related coupling from high- to
low-frequency signals among visual cortical areas in human subdural
recordings”. In: International Journal of Psychophysiology 51.2, pp. 97-116.

Bullmore, E. T. and O. Sporns (2012). “The economy of brain network or-
ganization.” In: Nature reviews. Neuroscience 13.5, pp. 336—49.

Bullock, T. H., M. C. Mcclune, J. Z. Achimowicz, V. J. Iragui-Madoz, R. B.
Duckrow, and S. S. Spencer (1995). “EEG coherence has structure in the
millimeter domain: subdural and hippocampal recordings from epilep-
tic patients”. In: Electroencephalography and Clinical Neurophysiology 95.3,
pp. 161-177.

Buxhoeveden, D. P. and M. F. Casanova (2002). “The minicolumn hypoth-
esis in neuroscience.” In: Brain : a journal of neurology 125.Pt 5, pp. 935—
51.

Buxton, R. B. and L. R. Frank (1997). “A model for the coupling between
cerebral blood flow and oxygen metabolism during neural stimula-
tion.” In: Journal of Cerebral Blood Flow and Metabolism 17, pp. 64-72.

Buxton, R. B. (2012). “Dynamic models of BOLD contrast”. In: Neurolmage
62.2, pp. 953-961.

Buxton, R. B., E. C. Wong, and L. R. Frank (1998). “Dynamics of blood flow
and oxygenation changes during brain activation: the balloon model.”
In: Magnetic resonance in medicine : official journal of the Society of Magnetic
Resonance in Medicine / Society of Magnetic Resonance in Medicine 39.6,
pp- 855-64.

Buzsdki, G. (2006). Rhythms of the Brain. Oxford University Press.

Buzsdki, G. and A. Draguhn (2004). “Neuronal oscillations in cortical net-
works.” In: Science (New York, N.Y.) 304.5679, pp. 1926-9.

179



BIBLIOGRAPHY

Buzsdki, G. and E. I. Moser (2013). “Memory, navigation and theta rhythm
in the hippocampal-entorhinal system”. In: Nature Neuroscience 16.2,
pp- 130-138.

Buzsdki, G., C. Anastassiou, and C. Koch (2012). “The origin of extracellu-
lar fields and currents—EEG, ECoG, LFP and spikes.” In: Nature reviews.
Neuroscience 13.6, pp. 407-20.

Buzsédki, G., N. Logothetis, and W. Singer (2013). “Scaling brain size, keep-
ing timing: evolutionary preservation of brain rhythms.” In: Neuron
80.3, pp. 751-64.

Cabral, J., H. M. Fernandes, T. J. Van Hartevelt, A. C. James, M. L. Kringel-
bach, and G. Deco (2013). “Structural connectivity in schizophrenia and
its impact on the dynamics of spontaneous functional networks.” In:
Chaos (Woodbury, N.Y.) 23.4, p. 046111.

Cannon, J.,, M. M. McCarthy, S. Lee, J. Lee, C. Borgers, M. A. Whittington,
and N. Kopell (2014). “Neurosystems: brain rhythms and cognitive pro-
cessing”. In: European Journal of Neuroscience 39.5, pp. 705-719.

Canolty, R. T. and R. T. Knight (2010). “The functional role of cross-
frequency coupling.” In: Trends in cognitive sciences 14.11, pp. 506-15.
Chakravarthy, N., S. Sabesan, K. Tsakalis, and L. lasemidis (2009). “Con-
trolling epileptic seizures in a neural mass model”. In: Journal of Combi-

natorial Optimization 17.1, pp. 98-116.

Chialvo, D. R., A. Longtin, and ]. Miiller-Gerking (1997). “Stochastic res-
onance in models of neuronal ensembles”. In: Physical Review E 55.2,
pp- 1798-1808.

Chialvo, D. R,, P. Balenzuela, D. Fraiman, L. M. Ricciardi, A. Buonocore,
and E. Pirozzi (2008). “The Brain: What is Critical About It?” In: AIP
Conference Proceedings. Vol. 1028. AIP, pp. 28—45.

Cohen, M. X., N. Axmacher, D. Lenartz, C. E. Elger, V. Sturm, and T. E.
Schlaepfer (2009a). “Good vibrations: cross-frequency coupling in the
human nucleus accumbens during reward processing.” In: Journal of
cognitive neuroscience 21.5, pp. 875-89.

Cohen, M. X,, C. E. Elger, and J. Fell (2009b). “Oscillatory activity and
phase-amplitude coupling in the human medial frontal cortex during
decision making.” In: Journal of cognitive neuroscience 21.2, pp. 390-402.

180



Bibliography

Collins, J. J., C. C. Chow, a Capela, and T. T. Imhoff (1996a). “Aperiodic
stochastic resonance”. In: Physical Review E 54.5, pp. 5575-5584.

Collins, J. J., T. T. Imhoff, and P. Grigg (1996b). “Noise-enhanced informa-
tion transmission in rat SA1 cutaneous mechanoreceptors via aperiodic
stochastic resonance.” In: Journal of neurophysiology 76.1, pp. 642-5.

Compte, A., M. V. Sanchez-Vives, D. A. McCormick, and X.-J. Wang (2003).
“Cellular and network mechanisms of slow oscillatory activity (<1 Hz)
and wave propagations in a cortical network model.” In: Journal of neu-
rophysiology 89.5, pp. 2707-25.

Coombes, S. and A. Byrne (2016). “Next generation neural mass models”.

Coombes, S. and C. Laing (2009). “Delays in activity-based neural net-
works”. In: Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences 367.1891, pp. 1117-1129.

Coombes, S. and J. R. Terry (2012). “The dynamics of neurological disease:
Integrating computational, experimental and clinical neuroscience”. In:
European Journal of Neuroscience 36.2, pp. 2118-2120.

Costa, N. M. da and K. A. C. Martin (2010). “Whose Cortical Column
Would that Be?” In: Frontiers in neuroanatomy 4.May, p. 16.

Cox, R., J. van Driel, M. de Boer, and L. M. Talamini (2014). “Slow Oscilla-
tions during Sleep Coordinate Interregional Communication in Corti-
cal Networks”. In: Journal of Neuroscience 34.50, pp. 16890-16901.

Daducci, A. et al. (2014). “Quantitative comparison of reconstruction meth-
ods for intra-voxel fiber recovery from diffusion MRI”. In: IEEE Trans-
actions on Medical Imaging 33.2, pp. 384-399.

David, O. (2014). Functional Brain Tractography Project.

David, O. and K. J. Friston (2003). “A neural mass model for
MEG/EEG:coupling and neuronal dynamics”. In: Neurolmage 20.3,
pp- 1743-1755.

David, O., D. Cosmelli, and K. J. Friston (2004). “Evaluation of different
measures of functional connectivity using a neural mass model”. In:
Neurolmage 21.2, pp. 659-673.

David, O., L. Harrison, and K. ]J. Friston (2005). “Modelling event-related
responses in the brain.” In: Neurolmage 25.3, pp. 756-70.

181



BIBLIOGRAPHY

David, O., J. M. Kilner, and K. J. Friston (2006). “Mechanisms of evoked
and induced responses in MEG/EEG”. In: Neurolmage 31.4, pp. 1580-
1591.

Davidsen, J. and H. G. Schuster (2000). “1/f“ noise from self-organized
critical models with uniform driving”. In: Physical Review E 62.5,
pp. 6111-6115.

Davidsen, J. and H. G. Schuster (2002). “Simple model for 1/ f“ noise”. In:
Physical Review E 65.2, p. 026120.

Davis, T., K. Kwong, R. Weisskoff, and B. Rosen (1998). “Calibrated func-
tional MRI: Mapping the dynamics of oxidative metabolism”. In: Pro-
ceedings of the National Academy of Sciences 95 (4), pp. 1834-1839.

Dayan, P. and L. Abbott (2001). Theoretical Neuroscience: Computational and
Mathematical Modeling of Neural Systems. Computational Neuroscience
Series. Massachusetts Institute of Technology Press.

Deco, G., A. R. McIntosh, K. Shen, R. M. Hutchison, R. S. Menon, S.
Everling, P. Hagmann, and V. K. Jirsa (2014). “Identification of Opti-
mal Structural Connectivity Using Functional Connectivity and Neural
Modeling”. In: Journal of Neuroscience 34.23, pp. 7910-7916.

Deco, G. and M. L. Kringelbach (2016). “Metastability and Coherence: Ex-
tending the Communication through Coherence Hypothesis Using A
Whole-Brain Computational Perspective”. In: Trends in Neurosciences
39.3, pp. 125-135.

Deco, G., V. K. Jirsa, P. a. Robinson, M. Breakspear, and K. Friston (2008).
“The dynamic brain: from spiking neurons to neural masses and corti-
cal fields.” In: PLoS computational biology 4.8, €1000092.

Deco, G., V. Jirsa, a. R. McIntosh, O. Sporns, and R. Kétter (2009). “Key
role of coupling, delay, and noise in resting brain fluctuations.” In: Pro-
ceedings of the National Academy of Sciences of the United States of America
106.25, pp. 10302-7.

Deco, G., M. Senden, and V. Jirsa (2012). “How anatomy shapes dynamics:
a semi-analytical study of the brain at rest by a simple spin model”. In:

Frontiers in Computational Neuroscience 6.September, pp. 1-7.

182



Bibliography

Deco, G., V. K. Jirsa, and A. R. McIntosh (2013). “Resting brains never
rest: computational insights into potential cognitive architectures.” In:
Trends in neurosciences 36.5, pp. 268-74.

Deco, G., G. Tononi, M. Boly, and M. L. Kringelbach (2015). “Rethinking
segregation and integration: contributions of whole-brain modelling.”
In: Nature reviews. Neuroscience 16.7, pp. 430—439.

DeFelipe, J. and 1. Farifias (1992). “The pyramidal neuron of the cerebral
cortex: morphological and chemical characteristics of the synaptic in-
puts”. In: Prog Neurobiol 39.6, pp. 563-607.

DeFelipe, J., L. Alonso-Nanclares, and J. I. Arellano (2002). “Microstruc-
ture of the neocortex: Comparariv aspects”. In: | Neurocytology 31.2002,
pp- 299-316.

Dehghani, N., C. Bédard, S. S. Cash, E. Halgren, and A. Destexhe
(2010). “Comparative power spectral analysis of simultaneous ele-
croencephalographic and magnetoencephalographic recordings in hu-
mans suggests non-resistive extracellular media”. In: Journal of Compu-
tational Neuroscience 29.3, pp. 405-421.

Dehghani, N., N. G. Hatsopoulos, Z. D. Haga, R. A. Parker, B. Greger,
E. Halgren, S. S. Cash, and A. Destexhe (2012). “Avalanche Analysis
from Multielectrode Ensemble Recordings in Cat, Monkey, and Human
Cerebral Cortex during Wakefulness and Sleep”. In: Frontiers in Physi-
ology 3.August, pp. 1-18.

Destexhe, A. (2007). “Spike-and-wave oscillations”. In: 2.2, p. 1402.

Destexhe, A. and M. Rudolph (2004). “Extracting information from the
power spectrum of synaptic noise.” In: Journal of computational neuro-
science 17.3, pp. 327-45.

Dijk, H. van, J.-M. Schoffelen, R. Oostenveld, and O. Jensen (2008). “Pres-
timulus Oscillatory Activity in the Alpha Band Predicts Visual Discrim-
ination Ability”. In: Journal of Neuroscience 28.8, pp. 1816-1823.

Diniz, A., M. L. Wijnants, K. Torre, ]J. Barreiros, N. Crato, A. M. T. Bosman,
F. Hasselman, R. F. A. Cox, G. C. Van Orden, and D. Delignieres (2011).
“Contemporary theories of 1/f noise in motor control”. In: Human
Movement Science 30.5, pp. 889-905.

183



BIBLIOGRAPHY

Douglas, R. J. and K. A. Martin (1991). “A functional microcircuit for cat
visual cortex”. In: The Journal of physiology 440.1, pp. 735-769.

Drysdale, P. M., ]. P. Huber, P. a. Robinson, and K. M. Aquino (2010). “Spa-
tiotemporal BOLD dynamics from a poroelastic hemodynamic model.”
In: Journal of theoretical biology 265.4, pp. 524-534.

Duch, W, K. Dobosz, and D. Mikolajewski (2013). “Autism and ADHD -
Two ends of the same spectrum?” In: Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics) 8226 LNCS.PART 1, pp. 623-630.

Durand, D. M. (2009). “Control of seizure activity by electrical stimulation:
Effect of frequency”. In: Proceedings of the 31st Annual International Con-
ference of the IEEE Engineering in Medicine and Biology Society: Engineering
the Future of Biomedicine, EMBC 2009, p. 2375.

Eddy, S. R. (2004). “What is Bayesian statistics?” In: Nature biotechnology
22.9, pp. 1177-1178.

Eguiluz, V. M., D. R. Chialvo, G. a. Cecchi, M. Baliki, and a. V. Apkarian
(2005). “Scale-Free Brain Functional Networks”. In: Physical Review Let-
ters 94.1, p. 018102.

El Boustani, S., O. Marre, S. Béhuret, P. Baudot, P. Yger, T. Bal, A. Des-
texhe, and Y. Frégnac (2009). “Network-state modulation of power-law
frequency-scaling in visual cortical neurons”. In: PLoS Computational
Biology 5.9.

Engel, A. K., P. Fries, and W. Singer (2001). “Dynamic predictions: Oscilla-
tions and synchrony in topdown processing”. In: Nature Reviews Neu-
roscience 2.10, pp. 704-716.

Ermentrout, B. (2002). Simulating, analyzing, and animating dynamical sys-
tems : a guide to XPPAUT for researchers and students. Philadelphia, Soci-
ety for Industrial and Applied Mathematics.

Ermentrout, G. B, R. E. Galdn, and N. N. Urban (2008). “Reliability, syn-
chrony and noise”. In: Trends in Neurosciences 31.8, pp. 428-434.

Faisal, A. A., L. P.]. Selen, and D. M. Wolpert (2008). “Noise in the nervous
system”. In: Nature Reviews Neuroscience 9.4, pp. 292-303.

Fisher, R. S. and A. L. Velasco (2014). “Electrical brain stimulation for
epilepsy.” In: Nature reviews. Neurology 10.5, pp. 261-70.

184



Bibliography

Fisher, R. S., W. Van Emde Boas, W. Blume, C. Elger, P. Genton, P. Lee, and J.
Engel (2005). “Epileptic seizures and epilepsy: Definitions proposed by
the International League Against Epilepsy (ILAE) and the International
Bureau for Epilepsy (IBE)”. In: Epilepsia 46.4, pp. 470-472.

FitzHugh, R. (1961). “Impulses and Physiological States in Theoretical
Models of Nerve Membrane”. In: Biophysical Journal 1.6, pp. 445-466.

Fox, M. D. and M. E. Raichle (2007). “Spontaneous fluctuations in brain
activity observed with functional magnetic resonance imaging”. In: Nat
Rev Neurosci 8.9, pp. 700-711.

Freeman, W. J. (1967). “Analysis of function of cerebral cortex by use of
control systems theory”. In: The Logistics Review 3, pp. 5-40.

Freeman, W. ]. (1972a). “Linear analysis of the dynamics of neural masses.”
In: Annual review of biophysics and bioengineering 1, pp. 225-56.

Freeman, W. J. (1972b). “Waves, pulses, and the theory of neural masses.”
In: Progress in theoretical biology 2.1.

Freeman, W. J. (1975). Mass action in the nervous system.

Freeman, W. J. (2000). “A proposed name for aperiodic brain activity:
stochastic chaos”. In: Neural Networks 13.1, pp. 11-13.

Freeman, W.]. and J. Zhai (2009). “Simulated power spectral density (PSD)
of background electrocorticogram (ECoG)”. In: Cognitive Neurodynam-
ics 3.1, pp. 97-103.

Freeman, W. ], L. J. Rogers, M. D. Holmes, and D. L. Silbergeld (2000).
“Spatial spectral analysis of human electrocorticograms including the
alpha and gamma bands.” In: Journal of neuroscience methods 95.2,
pp. 111-121.

Freestone, D. R., P. J. Karoly, D. NeAiA, P. Aram, M. J. Cook, and D. B.
Grayden (2014). “Estimation of effective connectivity via data-driven
neural modeling”. In: Frontiers in Neuroscience 8 November, pp. 1-20.

Freyer, F., ]. A. Roberts, R. Becker, P. A. Robinson, P. Ritter, and M. Breaks-
pear (2011). “Biophysical Mechanisms of Multistability in Resting-State
Cortical Rhythms”. In: The Journal of Neuroscience 31.17, pp. 6353-6361.

Fries, P. (2005). “A mechanism for cognitive dynamics: Neuronal commu-
nication through neuronal coherence”. In: Trends in Cognitive Sciences
9.10, pp. 474-480.

185



BIBLIOGRAPHY

Fries, P. (2009). “Neuronal Gamma-Band Synchronization as a Fundamen-
tal Process in Cortical Computation”. In: Annual Review of Neuroscience
32.1, pp. 209-224.

Friston, K. J., A Mechelli, R Turner, and C. J. Price (2000). “Nonlinear re-
sponses in fMRI: the Balloon model, Volterra kernels, and other hemo-
dynamics.” In: Neurolmage 12.4, pp. 466-77.

Friston, K. J. (1994). “Functional and effective connectivity in neuroimag-
ing: A synthesis”. In: Human Brain Mapping 2.1-2, pp. 56-78.

Friston, K., L. Harrison, and W. Penny (2003). “Dynamic causal mod-
elling”. In: NeurolImage 19.4, pp. 1273-1302.

Gai, Y., B. Doiron, and J. Rinzel (2010). “Slope-based stochastic resonance:
How noise enables phasic neurons to encode slow signals”. In: PLoS
Computational Biology 6.6, pp. 1-22.

Garnier, A., A. Vidal, C. Huneau, and H. Benali (2015). “A neural mass
model with direct and indirect excitatory feedback loops: identification
of bifurcations and temporal dynamics.” In: Neural computation 27.2,
pp- 329-64.

Ghosh, A., Y. Rho, A. R. McIntosh, R. Kétter, and V. K. Jirsa (2008). “Noise
during Rest Enables the Exploration of the Brain’s Dynamic Reper-
toire”. In: PLoS Computational Biology 4.10. Ed. by K. J. Friston, e1000196.

Gluckman, B. J., T. I. Netoff, E. J. Neel, W. L. Ditto, M. L. Spano, and S. J.
Schiff (1996). “Stochastic Resonance in a Neuronal Network from Mam-
malian Brain”. In: Physical Review Letters 77.19, pp. 4098-4101.

Golos, M., V. Jirsa, and E. Daucé (2015). “Multistability in Large Scale Mod-
els of Brain Activity”. In: PLoS Computational Biology 11.12, pp. 1-32.
Goodfellow, M., C. Rummel, E. Abela, M. P. Richardson, K. Schindler, and
J. R. Terry (2016). “Estimation of brain network ictogenicity predicts

outcome from epilepsy surgery”. In: Scientific Reports 6.0, p. 29215.

Goodfellow, M. and P. Glendinning (2013). “Mechanisms of intermit-
tent state transitions in a coupled heterogeneous oscillator model of
epilepsy.” In: Journal of mathematical neuroscience 3.1, p. 17.

Goodfellow, M., K. Schindler, and G. Baier (2011). “Intermittent spike-
wave dynamics in a heterogeneous, spatially extended neural mass
model.” In: Neurolmage 55.3, pp. 920-32.

186



Bibliography

Grabska-Barwiniska, A. and J. Zygierewicz (2006). “A model of event-
related EEG synchronization changes in beta and gamma frequency
bands”. In: Journal of Theoretical Biology 238.4, pp. 901-913.

Griffith, J. S. (1963). “A field theory of neural nets: I. Derivation of field
equations.” In: Bulletin of Mathematical Biophysics 25.1957, pp. 111-120.

Griffith, J. S. (1965). “A field theory of neural nets: II. Properties of the field
equations”. In: Bulletin of Mathematical Biophysics 27.1, pp. 187-195.

Grimbert, F. and O. Faugeras (2006). “Bifurcation analysis of Jansen’s neu-
ral mass model.” In: Neural computation 18.12, pp. 3052-68.

Grothe, I, S. D. Neitzel, S. Mandon, and A. K. Kreiter (2012). “Switching
Neuronal Inputs by Differential Modulations of Gamma-Band Phase-
Coherence”. In: Journal of Neuroscience 32.46, pp. 16172-16180.

Grubb, R. L. J., Raichle M. E., and T.-P. M. M. Eichling J. O. (1974). “The
effects of changes in PaCO_2 on cerebral blood volume, blood flow, and
vascular mean transit time”. In: Stroke 5.5, pp. 603-609.

Gupta, D., P. Ossenblok, and G. van Luijtelaar (2011). “Space-time network
connectivity and cortical activations preceding spike wave discharges
in human absence epilepsy: a MEG study”. In: Med Biol Eng Comput
49.5, pp. 555-565.

Hagmann, P. (2005). “From diffusion MRI to brain connectomics”. eng.
PhD thesis. Lausanne: STI - School of Engineering.

Haimovici, A., E. Tagliazucchi, P. Balenzuela, and D. R. Chialvo (2013).
“Brain Organization into Resting State Networks Emerges at Critical-
ity on a Model of the Human Connectome”. In: Physical Review Letters
110.17, p. 178101.

Handel, P. and A. Chung (1993). “Noise in physical systems and 1/f fluc-
tuations”. In: New York, NY (United States); AIP.

Harmony, T. (2013). “The functional significance of delta oscillations in
cognitive processing”. In: Frontiers in Integrative Neuroscience 7.Decem-
ber, p. 83.

Harmony, T., T. Fernandez, J. Silva, J. Bosch, P. Valdés, A. Fernandez-
Bouzas, L. Galdn, E. Aubert, and D. Rodriguez (1999). “Do specific EEG
frequencies indicate different processes during mental calculation?” In:
Neuroscience Letters 266.1, pp. 25-28.

187



BIBLIOGRAPHY

Hashemi, M., A. Hutt, and J. Sleigh (2015). “How the cortico-thalamic feed-
back affects the EEG power spectrum over frontal and occipital regions
during propofol-induced sedation”. In: Journal of Computational Neuro-
science 39.2, pp. 155-179.

Hausdorff, J. and C.-K. Peng (1996). “Multiscaled randomness: A possible
source of 1/fnoise in biology”. In: Physical Review E 54.2, pp. 2154-2157.

Havlicek, M., A. Roebroeck, K. Friston, A. Gardumi, D. Ivanov, and K.
Uludag (2015). “Physiologically informed dynamic causal modeling of
fMRI data”. In: Neurolmage 122, pp. 355-372.

Hayes, S., C. Grebogi, and E. Ott (1993). “Communicating with chaos”. In:
Physical Review Letters 70.20, pp. 3031-3034.

He, B. J. (2011). “Scale-Free Properties of the Functional Magnetic Reso-
nance Imaging Signal during Rest and Task”. In: Journal of Neuroscience
31.39, pp. 13786-13795.

He, B. J. (2014). “Scale-free brain activity: past, present, and future”. In:
Trends in Cognitive Sciences 18.9, pp. 480-487.

He, B.].,J. M. Zempel, A. Z. Snyder, and M. E. Raichle (2010). “The tempo-
ral structures and functional significance of scale-free brain activity”.
In: Neuron 66.3, pp. 353-369.

Heeger, D. J. and D. Ress (2002). “WHAT DOES fMRI TELL US ABOUT
NEURONAL ACTIVITY?” In: Nature Reviews Neuroscience 3.2, pp. 142—
151.

Herculano-Houzel, S. (2011). “Scaling of brain metabolism with a fixed en-
ergy budget per neuron: Implications for neuronal activity, plasticity
and evolution”. In: PLoS ONE 6.3.

Hesse, J. and T. Gross (2014). “Self-organized criticality as a fundamen-
tal property of neural systems”. In: Frontiers in Systems Neuroscience
8.September, p. 166.

Heuvel, M. P. van den and O. Sporns (2011). “Rich-Club Organization of
the Human Connectome”. In: Journal of Neuroscience 31.44, pp. 15775-
15786.

Heuvel, M. P. van den and O. Sporns (2013). “Network hubs in the human
brain”. In: Trends in Cognitive Sciences 17.12, pp. 683-696.

188



Bibliography

Hilgetag, C. C. and A. Goulas (2015). “Is the brain really a small-world
network?” In: Brain Structure and Function.

Hindriks, R. and M. ]J. A. M. van Putten (2012). “Meanfield modeling of
propofol-induced changes in spontaneous EEG rhythms”. In: Neurolm-
age 60.4, pp. 2323-2334.

Hlinka, J. and S. Coombes (2012). “Using computational models to relate
structural and functional brain connectivity.” In: The European journal of
neuroscience 36.2, pp. 2137-45.

Hodgkin, A. L. and A. F. Huxley (1990). “A quantitative description of
membrane current and its application to conduction and excitation in
nerve”. In: Bulletin of Mathematical Biology 52.1-2, pp. 25-71.

Hofman, M. A. (1988). “Size and shape of the cerebral cortex in mammals.
II. The cortical volume.” In: Brain, behavior and evolution 32.1, pp. 17-26.

Huang, G., D. Zhang, J. Meng, and X. Zhu (2011). “Interactions between
two neural populations: A mechanism of chaos and oscillation in neu-
ral mass model”. In: Neurocomputing 74.6, pp. 1026-1034.

Hubel, D. H. and T. N. Wiesel (1963). “Shape and arrangement of columns
in cat’s striate cortex”. In: The Journal of physiology 165.3, pp. 559-568.

Hubel, D. H. and T. N. Wiesel (1974). “Sequence regularity and geometry
of orientation columns in the monkey striate cortex.” In: The Journal of
comparative neurology 158.3, pp. 267-293.

Hubel, D. H. and T. N. Wiesel (1977). “Functional architecture of macaque
monkey visual cortex”. In: Proceedings of the Royal Society of London. Se-
ries B 198, pp. 1-59.

Hutcheon, B. and Y. Yarom (2000). “Resonance, oscillation and the intrin-
sic frequency preferences of neurons”. In: Trends in Neurosciences 23.5,
pp. 216-222.

Hutchings, F.,, C. E. Han, S. S. Keller, B. Weber, P. N. Taylor, and M. Kaiser
(2015). “Predicting Surgery Targets in Temporal Lobe Epilepsy through
Structural Connectome Based Simulations”. In: PLoS Computational Bi-
ology 11.12, pp. 1-24.

Hutt, A. and T. D. Frank (2005). “Critical Fluctuations and 1/fa-Activity of
Neural Fields Involving Transmission Delays”. In: Acta Physica Polonica
A 108.2005, pp. 1021-1040.

189



BIBLIOGRAPHY

Hutt, A. (2013). “The anesthetic propofol shifts the frequency of maxi-
mum spectral power in EEG during general anesthesia: analytical in-
sights from a linear model”. In: Frontiers in Computational Neuroscience
7 February, pp. 1-10.

Hutt, A. (2015). “Neural Fields Tutorial”. In: CNS Meeting in Prague.

Iannotti, G. R. et al. (2016). “Epileptic networks are strongly connected with
and without the effects of interictal discharges”. In: Epilepsia, pp. 1-11.

Isler, J. R., P. G. Grieve, D Czernochowski, R. I. Stark, and D. Friedman
(2008). “Cross-frequency phase coupling of brain rhythms during the
orienting response.” In: Brain research 1232, pp. 163-72.

Jankovic, J. (2008). “Parkinson’s disease: clinical features and diagnosis”.
In: Journal of Neurology, Neurosurgery & Psychiatry 79.4, pp. 368-376.
Jansen, B. H. and V. G. Rit (1995). “Electroencephalogram and visual
evoked potential generation in a mathematical model of coupled corti-

cal columns”. In: Biological Cybernetics 73.4, pp. 357-366.

Jansen, B. H., G. Zouridakis, and M. E. Brandt (1993). “A
neurophysiologically-based mathematical model of flash visual
evoked potentials”. In: Biological Cybernetics 68.3, pp. 275-283.

Jensen, O. and L. L. Colgin (2007). “Cross-frequency coupling between
neuronal oscillations.” In: Trends in cognitive sciences 11.7, pp. 267-9.
Jensen, O., J. Kaiser, and J.-P. Lachaux (2007). “Human gamma-frequency
oscillations associated with attention and memory”. In: Trends in Neu-

rosciences 30.7, pp. 317-324.

Jiménez-Jiménez, D. et al. (2015). “Prognostic value of intracranial seizure
onset patterns for surgical outcome of the treatment of epilepsy”. In:
Clinical Neurophysiology 126.2, pp. 257 —267.

Jirsa, V. and V. Miiller (2013). “Cross-frequency coupling in real and virtual
brain networks.” In: Frontiers in computational neuroscience 7 July, p. 78.

Jirsa, V. et al. (2016). “The Virtual Epileptic Patient: Individualized whole-
brain models of epilepsy spread”. In: Neurolmage.

Jiruska, P, A. D. Powell, ]J. K. Deans, and J. G. Jefferys (2010). “Effects
of direct brain stimulation depend on seizure dynamics”. In: Epilepsia
51.SUPPL. 3, pp. 93-97.

190



Bibliography

Johnson, J. B. (1925). “The Schottky Effect in Low Frequency Circuits”. In:
Phys. Rev. 26 (1), pp. 71-85.

Jones, E. G. (1998). “Viewpoint: The core and matrix of thalamic organiza-
tion”. In: Neuroscience 85.2, pp. 331-345.

Kaczmarek, L. K. and A Babloyantz (1977). “Spatiotemporal patterns in
epileptic seizures”. In: Biol.Cybern. 26, pp. 199-208.

Kaern, M., T. C. Elston, W. ]. Blake, and J. J. Collins (2005). “Stochasticity
in gene expression: from theories to phenotypes”. In: Nature Reviews
Genetics 6.6, pp. 451-464.

Kaiser, M. (2010). “Optimal hierarchical modular topologies for producing
limited sustained activation of neural networks”. In: Frontiers in Neu-
roinformatics 4. May, p. 8.

Kalman, R. E. (1960). “A New Approach to Linear Filtering and Prediction
Problems”. In: Journal of Basic Engineering 82.1, p. 35.

Kamrani, E. (2012). “Efficient hemodynamic states stimulation using fNIRS
data with the extended Kalman filter and bifurcation analysis of bal-
loon model”. In: Journal of Biomedical Science and Engineering 05.11,
pp. 609-628.

Kang, K., M. Shelley, J. A. Henrie, and R. Shapley (2010). “LFP spectral
peaks in V1 cortex: network resonance and cortico-cortical feedback.”
In: Journal of computational neuroscience 29.3, pp. 495-507.

Karlsen, A. S. and B. Pakkenberg (2011). “Total numbers of neurons
and glial cells in cortex and basal ganglia of aged brains with down
syndrome-a stereological study”. In: Cerebral Cortex 21.11, pp. 2519—
2524.

Kasteleijn-Nolst Trenite, D. G. A. (2006). “Photosensitivity, visually sensi-
tive seizures and epilepsies”. In: Epilepsy Research 70.SUPPL.1, pp. 269-
279.

Kaulakys, B., V. Gontis, and M. Alaburda (2005). “Point process model of
1/f noise vs a sum of Lorentzians”. In: Physical Review E - Statistical,
Nonlinear, and Soft Matter Physics 71.5, pp. 1-11.

Khakh, B. S. and K. D. McCarthy (2015). “Astrocyte calcium signaling:
From observations to functions and the challenges therein”. In: Cold
Spring Harbor Perspectives in Biology 7.4, pp. 1-18.

191



BIBLIOGRAPHY

Khambhati, A., B. Litt, and D. S. Bassett (2014). “Dynamic network
drivers of seizure generation, propagation and termination in human
epilepsy”. In: Proceedings of the National Academy of Sciences of the United
States of America 104.51, p. 7.

Khambhati, A. N., K. A. Davis, T. H. Lucas, B. Litt, and D. S. Bassett (2016).
“Virtual Cortical Resection Reveals Push-Pull Network Control Preced-
ing Seizure Evolution”. In: Neuron 91.5, pp. 1170-1182.

Kitzbichler, M. G., M. L. Smith, S. R. Christensen, and E. Bullmore (2009).
“Broadband Criticality of Human Brain Network Synchronization”. In:
PLoS Computational Biology 5.3. Ed. by T. Behrens, e1000314.

Klimesch, W. (1999). “EEG alpha and theta oscillations reflect cognitive
and memory performance: a review and analysis”. In: Brain Research
Reviews 29.2-3, pp. 169-195.

Klimesch, W. (2012). “Alpha-band oscillations, attention, and controlled
access to stored information”. In: Trends in Cognitive Sciences 16.12,
pp- 606-617.

Knill, D. C. and A. Pouget (2004). “The Bayesian brain: the role of uncer-
tainty in neural coding and computation”. In: Trends in Neurosciences
27.12, pp. 712-719.

Koch, M., J. Mostert, D. Heersema, and J. De Keyser (2007). “Tremor in
multiple sclerosis”. In: Journal of Neurology 254.2, pp. 133-145.

Kramer, M. a. and S. S. Cash (2012). “Epilepsy as a Disorder of Cortical
Network Organization”. In: The Neuroscientist 18.4, pp. 360-372.

Kramer, M. a. et al. (2012). “Human seizures self-terminate across spatial
scales via a critical transition”. In: Proceedings of the National Academy of
Sciences 109.51, pp. 21116-21121.

Labyt, E., L. Uva, M. D. Curtis, and F. Wendling (2006). “Realistic Model-
ing of Entorhinal Cortex Field Potentials and Interpretation of Epileptic
Activity in the Guinea Pig Isolated Brain Preparation”. In: pp. 363-377.

Laing, C. and J. Lord (2010). Stochastic Methods in Neuroscience. Oxford Uni-
versity Press.

Lam, Y. W. and S. M. Sherman (2010). “Functional organization of the so-
matosensory cortical layer 6 feedback to the thalamus”. In: Cerebral Cor-
tex 20.1, pp. 13-24.

192



Bibliography

Lange, F. P. de, O. Jensen, M. Bauer, and I. Toni (2008). “Interactions
between posterior gamma and frontal alpha/beta oscillations during
imagined actions.” In: Frontiers in human neuroscience 2.August, p. 7.

Larsson, P. G. and H. Kostov (2005). “Lower frequency variability in the
alpha activity in EEG among patients with epilepsy”. In: Clinical Neu-
rophysiology 116.11, pp. 2701-2706.

Lee, E., J. Lee, and E. Kim (2016). “Excitation/Inhibition Imbalance in Ani-
mal Models of Autism Spectrum Disorders”. In: Biological Psychiatry 6,
pp- 1-10.

Lee, S.-A., D. D. Spencer, and S. S. Spencer (2000). “Intracranial EEG
Seizure-Onset Patterns in Neocortical Epilepsy”. In: Epilepsia 41.3,
pp- 297-307.

Liley, D., I. Bojak, M. P. Dafilis, L. V. Veen, F. Frascoli, and B. L. Foster (2010).
Modeling Phase Transitions in the Brain. Ed. by D. A. Steyn-Ross and M.
Steyn-Ross. 126. New York, NY: Springer New York, pp. 117-145.

Liley, D. T. J., P. J. Cadusch, and M. P. Dafilis (2002). “A spatially contin-
uous mean field theory of electrocortical activity.” In: Network (Bristol,
England) 13.1, pp. 67-113.

Liley, D. T. J., B. L. Foster, and I. Bojak (2012). “Co-operative Populations
of Neurons: Mean Field Models of Mesoscopic Brain Activity”. In:
Computational Systems Neurobiology. Dordrecht: Springer Netherlands,
pp- 317-364.

Lindén, H., K. H. Pettersen, and G. T. Einevoll (2010). “Intrinsic dendritic
filtering gives low-pass power spectra of local field potentials”. In: Jour-
nal of Computational Neuroscience 29.3, pp. 423-444.

Lindner, B., ]. Garcia-Ojalvo, A. Neiman, and L. Schimansky-Geier (2004).
“Effects of noise in excitable systems”. In: Physics Reports 392, pp. 321-
424.

Lindner, J. E, B. K. Meadows, W. L. Ditto, M. E. Inchiosa, and A. R. Bul-
sara (1995). “Array enhanced stochastic resonance and spatiotemporal
synchronization”. In: Physical Review Letters 75.1, pp. 3-6.

193



BIBLIOGRAPHY

Linkenkaer-Hansen, K., V. V. Nikouline, J. M. Palva, and R. J. Ilmoniemi
(2001). “Long-range temporal correlations and scaling behavior in hu-
man brain oscillations.” In: The Journal of neuroscience : the official journal
of the Society for Neuroscience 21.4, pp. 1370-7.

Logothetis, N. K. (2003). “The underpinnings of the BOLD functional mag-
netic resonance imaging signal.” In: The Journal of neuroscience : the offi-
cial journal of the Society for Neuroscience 23.10, pp. 3963-71.

Longtin, A. (1993). “Stochastic resonance in neuron models”. In: Journal of
Statistical Physics 70.1-2, pp. 309-327.

Lopes da Silva, F. H., A. Hoeks, H. Smits, and L. H. Zetterberg (1974).
“Model of brain rhythmic activity”. In: Kybernetik 15.1, pp. 27-37.

Lopes da Silva, F. H., A. van Rotterdam, P. Barts, E. van Heusden, and W.
Burr (1976). “Models of Neuronal Populations: The Basic Mechanisms
of Rhythmicity”. In: Progress in Brain Research 45.C, pp. 281-308.

Lopes da Silva, F. H., W. Blanes, S. N. Kalitzin, J. Parra, P. Suffczynski,
and D. N. Velis (2003). “Dynamical diseases of brain systems: differ-
ent routes to epileptic seizures.” In: IEEE transactions on bio-medical en-
gineering 50.5, pp. 540-8.

Lorente de No, R. (1938). “Architectonics and structure of the cerebral cor-
tex”. In: Physiology of the nervous system, pp. 291-330.

Lytton, W. W. (2008). “Computer modelling of epilepsy.” In: Nature reviews.
Neuroscience 9.8, pp. 626—637.

Ma, W. ], J. M. Beck, P. E. Latham, and A. Pouget (2006). “Bayesian infer-
ence with probabilistic population codes.” In: Nature Neuroscience 9.11,
pp- 1432-8.

Majumdar, K., P. D. Prasad, and S. Verma (2014). “Synchronization implies
seizure or seizure implies synchronization?” In: Brain Topography 27.1,
pp- 112-122.

Malagarriga, D., A. E. P. Villa, J. Garcia-Ojalvo, and A. J. Pons (2015a).
“Mesoscopic Segregation of Excitation and Inhibition in a Brain Net-
work Model”. In: PLoS Computational Biology 11.2, pp. 1-21.

Malagarriga, D., M. a. Garcia-Vellisca, A. E. P. Villa, J. M. Buldd, ]. Garcia-
Ojalvo, and A. J. Pons (2015b). “Synchronization-based computation

194



Bibliography

through networks of coupled oscillators”. In: Frontiers in Computational
Neuroscience 9.August, pp. 1-13.

Mandeville, J. B. et al. (1996). “CBV functional imaging in rat brain using
iron oxide agent at steady state concentration”. In: Proc. ISMRM 4th
Annual Meeting, New York 666, p. 292.

Mandeville, J. B.,J. J. A. Marota, B. E. Kosofsky, J. R. Keltner, R. Wcissleder,
B. R. Rosen, and R. M. Weisskoff (1998). “Dynamic functional imaging
of relative cerebral blood volume during rat forepaw stimulation”. In:
Magnetic Resononance in Medicine 39, pp. 615-624.

Mandeville, J. B., J. J. Marota, C Ayata, G Zaharchuk, M. a. Moskowitz, B.
R. Rosen, and R. M. Weisskoff (1999). “Evidence of a cerebrovascular
postarteriole windkessel with delayed compliance.” In: Journal of cere-
bral blood flow and metabolism : official journal of the International Society of
Cerebral Blood Flow and Metabolism 19.6, pp. 679-689.

Marieb, E. and K. Hoehn (2007). Human Anatomy and Physiology. Pearson
Education.

Markovi¢, D. and C. Gros (2013). “Power laws and self-organized criticality
in theory and nature”. In: Physics Reports.

Markram, H. (2006). “The blue brain project.” In: Nature reviews. Neuro-
science 7.2, pp. 153-60.

Markram, H., M. Toledo-Rodriguez, Y. Wang, A. Gupta, G. Silberberg, and
C. Wu (2004). “Interneurons of the neocortical inhibitory system.” In:
Nature reviews. Neuroscience 5.10, pp. 793-807.

Marshall, L., H. Helgadéttir, M. Mélle, and J. Born (2006). “Boosting slow
oscillations during sleep potentiates memory.” In: Nature 444.7119,
pp- 610-3.

Massimini, M., E. Ferrarelli, S. K. Esser, B. A. Riedner, R. Huber, M. Mur-
phy, M. ]. Peterson, and G. Tononi (2007). “Triggering sleep slow waves
by transcranial magnetic stimulation.” In: Proceedings of the National
Academy of Sciences of the United States of America 104.20, pp. 8496-501.

Mazziotta, J. C., A. W. Toga, A. Evans, P. Fox, and J. Lancaster (1995). A
probabilistic atlas of the human brain: theory and rationale for its development.
The International Consortium for Brain Mapping (ICBM).

195



BIBLIOGRAPHY

Mazzoni, A., S. Panzeri, N. K. Logothetis, and N. Brunel (2008). “Encod-
ing of naturalistic stimuli by local field potential spectra in networks of
excitatory and inhibitory neurons.” In: PLoS computational biology 4.12,
€1000239.

Mazzoni, A., K. Whittingstall, N. Brunel, N. K. Logothetis, and S. Panz-
eri (2010). “Understanding the relationships between spike rate and
delta/gamma frequency bands of LFPs and EEGs using a local corti-
cal network model.” In: Neurolmage 52.3, pp. 956-72.

Mazzoni, A., N. Brunel, S. Cavallari, N. K. Logothetis, and S. Panzeri
(2011). “Cortical dynamics during naturalistic sensory stimulations: ex-
periments and models.” In: Journal of physiology, Paris 105.1-3, pp. 2-15.

McDonnell, M. D. and D. Abbott (2009). “What Is Stochastic Resonance?
Definitions, Misconceptions, Debates, and Its Relevance to Biology”.
In: PLoS Computational Biology 5.5. Ed. by K. J. Friston, e1000348.

McDonnell, M. D. and L. M. Ward (2011). “The benefits of noise in neural
systems: bridging theory and experiment”. In: Nature Reviews Neuro-
science 12.7, pp. 415-426.

McDonnell, M. D,, J. H. Goldwyn, and B. Lindner (2016). “Editorial : Neu-
ronal Stochastic Variability : Influences on Spiking Dynamics and Net-
work Activity”. In: 10.April, pp. 1-3.

Meisel, C., A. Storch, S. Hallmeyer-Elgner, E. Bullmore, and T. Gross (2012).
“Failure of adaptive self-organized criticality during epileptic seizure
attacks”. In: PLoS Computational Biology 8.1.

Meyer, G. (1987). “Forms and spatial arrangement of neurons in the pri-
mary motor cortex of man”. In: J. Comp. Neurol. 262.3, pp. 402—428.
Milanowski, P. and P. Suffczynski (2016). “Seizures Start without Common
Signatures of Critical Transition”. In: International Journal of Neural Sys-

tems 26.8, p. 1650053.

Miller, K. J., L. B. Sorensen, J. G. Ojemann, and M. Den Nijs (2009). “Power-
law scaling in the brain surface electric potential”. In: PLoS Computa-
tional Biology 5.12.

Millman, D., S. Mihalas, A. Kirkwood, and E. Niebur (2010). “Self-
organized criticality occurs in non-conservative neuronal networks

during up’ states”. In: Nature Physics 6.10, pp. 801-805.

196



Bibliography

Milstein, J., E. Mormann, 1. Fried, and C. Koch (2009). “Neuronal shot noise
and Brownian 1/f2 behavior in the local field potential.” In: PloS one 4.2,
e4338.

Milton, J. and P. Jung (2002). Epilepsy as a Dynamic Disease. Biological and
Medical Physics, Biomedical Engineering. Springer.

Milton, J. G., ] Foss, J. D. Hunter, and J. L. Cabrera (2004). “Controlling
neurological disease at the edge of instability”. In: Quantitative Neu-
roscience: Models, Algorithms, Diagnostics, and Therapeutic Applications 2,
pp. 117-143.

Milton, J. G. (2010). “Epilepsy as a dynamic disease: A tutorial of the past
with an eye to the future”. In: Epilepsy and Behavior 18.1-2, pp. 33-44.
Mochol, G., A. Hermoso-Mendizabal, S. Sakata, K. D. Harris, and J. de la
Rocha (2015). “Stochastic transitions into silence cause noise correla-
tions in cortical circuits”. In: Proceedings of the National Academy of Sci-

ences, p. 201410509.

Molaee-Ardekani, B., P. Benquet, F. Bartolomei, and F. Wendling (2010).
“Computational modeling of high-frequency oscillations at the onset of
neocortical partial seizures: From “altered structure” to “dysfunction”.
In: Neurolmage 52.3, pp. 1109-1122.

Mormann, F, R. G. Andrzejak, C. E. Elger, and K. Lehnertz (2007). “Seizure
prediction: The long and winding road”. In: Brain 130.2, pp. 314-333.

Moss, E. (2004). “Stochastic resonance and sensory information processing:
a tutorial and review of application”. In: Clinical Neurophysiology 115.2,
pp. 267-281.

Mountcastle, V. B. (1957). “Modality and topographic properties of single
neurons of cat’s somatic sensory cortex.” In: Journal of neurophysiology
20.4, pp. 408-34.

Mountcastle, V. B. (1997). “The columnar organization of the neocortex”.
In: Brain 120.4, pp. 701-722.

Mullinger, K. J., S. D. Mayhew, A. P. Bagshaw, R. Bowtell, and S. T. Francis
(2013). “Poststimulus undershoots in cerebral blood flow and BOLD
fMRI responses are modulated by poststimulus neuronal activity”. In:
Proceedings of the National Academy of Sciences 110.33, pp. 13636-13641.

197



BIBLIOGRAPHY

Murfioz, M. A., R. Juhéasz, C. Castellano, and G. Odor (2010). “Griffiths
phases on complex networks”. In: Physical Review Letters 105.12, pp. 1-
4.

Narayanan, R. T., R. Egger, A. S. Johnson, H. D. Mansvelder, B. Sakmann,
C. P. de Kock, and M. Oberlaender (2015). “Beyond Columnar Orga-
nization: Cell Type- and Target Layer-Specific Principles of Horizontal
Axon Projection Patterns in Rat Vibrissal Cortex”. In: Cerebral Cortex
25.11, pp. 4450-4468.

Naze, S., C. Bernard, and V. Jirsa (2015). “Computational Modeling
of Seizure Dynamics Using Coupled Neuronal Networks: Factors
Shaping Epileptiform Activity”. In: PLOS Computational Biology 11.5,
€10042009.

Ngo, H.-V. V,, T. Martinetz, J. Born, and M. Mélle (2013). “Auditory closed-
loop stimulation of the sleep slow oscillation enhances memory.” In:
Neuron 78.3, pp. 545-53.

Nguyen Trong, M., I. Bojak, and T. R. Knosche (2012). “Associating spon-
taneous with evoked activity in a neural mass model of visual cortex.”
In: Neurolmage 66C, pp. 80-87.

Niedermeyer, E. and F. H. Lopes da Silva (2005). Electroencephalography:
basic principles, clinical applications, and related fields. 5th ed. Philadelphia:
Lippincott Williams and Wilkins.

Nunez, P. and R. Srinivasan (2006). Electric Fields of the Brain: The Neuro-
physics of EEG. Oxford University Press.

O’Muircheartaigh, J., C. Vollmar, G. J. Barker, V. Kumari, M. R. Symms, P.
Thompson, J. S. Duncan, M. J. Koepp, and M. P. Richardson (2012). “Ab-
normal thalamocortical structural and functional connectivity in juve-
nile myoclonic epilepsy”. In: Brain 135.12, pp. 3635-3644.

Onslow, A. C. E.,, M. W. Jones, and R. Bogacz (2014). “A canonical circuit
for generating phase-amplitude coupling”. In: PLoS ONE 9.8.

Osipova, D., A. Takashima, R. Oostenveld, G. Fernandez, E. Maris, and
O. Jensen (2006). “Theta and Gamma Oscillations Predict Encoding
and Retrieval of Declarative Memory”. In: Journal of Neuroscience 26.28,
pp- 7523-7531.

198



Bibliography

Osipova, D., D. Hermes, and O. Jensen (2008). “Gamma power is phase-
locked to posterior alpha activity.” In: PloS one 3.12, €3990.

Padmanabhan, K. and N. N. Urban (2010). “Intrinsic biophysical diversity
decorrelates neuronal firing while increasing information content”. In:
Nature Neuroscience 13.10, pp. 1276-1282.

Pakkenberg, B., D. Pelvig, L. Marner, M. J. Bundgaard, H. J. G. Gundersen,
J. R. Nyengaard, and L. Regeur (2003). “Aging and the human neocor-
tex”. In: Experimental Gerontology 38.1-2, pp. 95-99.

Pang, R., B. J. Lansdell, and A. L. Fairhall (2016). “Dimensionality reduc-
tion in neuroscience”. In: Current Biology 26.14, pp. 1-5.

Park, H.-J]. and K. Friston (2013). “Structural and functional brain net-
works: from connections to cognition.” In: Science (New York, N.Y.)
342.6158, p. 1238411.

Petermann, T., T. C. Thiagarajan, M. A. Lebedev, M. A. L. Nicolelis, D. R.
Chialvo, and D. Plenz (2009). “Spontaneous cortical activity in awake
monkeys composed of neuronal avalanches”. In: Proceedings of the Na-
tional Academy of Sciences 106.37, pp. 15921-15926.

Petkov, G., M. Goodfellow, M. P. Richardson, and J. R. Terry (2014). “A
Critical Role for Network Structure in Seizure Onset: A Computational
Modeling Approach”. English. In: Frontiers in Neurology 5.

Pfurtscheller, G. and F. H. Lopes da Silva (1999). “Event-related EEG /
MEG synchronization and desynchronization : basic principles”. In:
Clinical Neurophysiology 110, pp. 1842-1857.

Pturtscheller, G., C. Neuper, C. Andrew, and G. Edlinger (1997). “Foot
and hand area mu rhythms”. In: International Journal of Psychophysiol-
0gy 26.1-3, pp. 121-135.

Pfurtscheller, G., C. Neuper, C. Brunner, and F. L. da Silva (2005). “Beta re-
bound after different types of motor imagery in man”. In: Neuroscience
Letters 378.3, pp. 156-159.

Pikovsky, A., M. Rosenblum, and J. Kurths (2001). Synchronization: a uni-
versal concept in nonlinear sciences. Cambridge University Press.

Pikovsky, A. S. and J. Kurths (1997). “Coherence Resonance in a Noise-
Driven Excitable System”. In: Physical Review Letters 78.5, pp. 775-778.

Plenz, D. (2013). “The Critical Brain”. In: Physics 6, p. 47.

199



BIBLIOGRAPHY

Pons, A.].,J. L. Cantero, M. Atienza, and J. Garcia-Ojalvo (2010). “Relating
structural and functional anomalous connectivity in the aging brain via
neural mass modeling.” In: Neurolmage 52.3, pp. 848-61.

Priesemann, V., M. Wibral, M. Valderrama, R. Propper, M. Le Van Quyen,
T. Geisel, J. Triesch, D. Nikoli¢, and M. H. J. Munk (2014). “Spike
avalanches in vivo suggest a driven, slightly subcritical brain state.”
In: Frontiers in systems neuroscience 8.June, p. 108.

Pruessner, G. (2012). Self-Organised Criticality.

Rabinovich, M. and H. Abarbanel (1998). “The role of chaos in neural sys-
tems”. In: Neuroscience 87.1, pp. 5-14.

Rajan, K., L. F. Abbott, and H. Sompolinsky (2010). “Stimulus-dependent
suppression of chaos in recurrent neural networks”. In: Physical Review
E - Statistical, Nonlinear, and Soft Matter Physics 82.1, pp. 1-5.

Ray, W. and H. Cole (1985). “EEG alpha activity reflects attentional de-
mands, and beta activity reflects emotional and cognitive processes”.
In: Science 228.4700, pp. 750-752.

Richardson, M. P. (2012). “Large scale brain models of epilepsy: dynamics
meets connectomics.” In: Journal of neurology, neurosurgery, and psychia-
try 83.12, pp. 1238-48.

Rilling, J. K. and T. R. Insel (1999). “The primate neocortex in comparative
perspective using magnetic resonance imaging”. In: | Hum Evol 37.2,
pp- 191-223.

Roberts, J. A. and P. A. Robinson (2012). “Quantitative theory of driven
nonlinear brain dynamics”. In: Neurolmage 62.3, pp. 1947-1955.

Robinson, P. A., C. ]J. Rennie, and D. L. Rowe (2002). “Dynamics of large-
scale brain activity in normal arousal states and epileptic seizures”.
In: Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 65.4,
pp- 1-9.

Robinson, P. A., C. J. Rennie, and J. J. Wright (2006). “Propagation and
stability of waves of electrical activity in the cerebral cortex”. In: 56.1,
pp- 826-840.

Rockland, K. S. and N. Ichinohe (2004). “Some thoughts on cortical mini-
columns”. In: Experimental Brain Research 158.3, pp. 265-277.

200



Bibliography

Rockland, K. S. and D. N. Pandya (1979). “Laminar origins and termina-
tions of cortical connections of the occipital lobe in the rhesus monkey”.
In: Brain Research 179.1, pp. 3-20.

Rothkegel, A. and K. Lehnertz (2011). “Recurrent events of synchrony in
complex networks of pulse-coupled oscillators”. In: EPL (Europhysics
Letters) 95.3, p. 38001.

Rotterdam, A. van, F. H. Lopes da Silva, J. van den Ende, M. A. Viergever,
and A. ]. Hermans (1982). “A model of the spatial-temporal charac-
teristics of the alpha rhythm”. In: Bulletin of Mathematical Biology 44.2,
pp- 283-305.

Rowe, D. L., P. A. Robinson, and E. Gordon (2005). “Stimulant drug ac-
tion in attention deficit hyperactivity disorder (ADHD): Inference of
neurophysiological mechanisms via quantitative modelling”. In: Clini-
cal Neurophysiology 116.2, pp. 324-335.

Rubio-Garrido, P, E. Pérez-De-Manzo, C. Porrero, M. J. Galazo, and F.
Clasca (2009). “Thalamic input to distal apical dendrites in neocorti-
cal layer 1 is massive and highly convergent”. In: Cerebral Cortex 19.10,
pp- 2380-2395.

Ruseckas, J. and B. Kaulakys (2010). “1/f Noise From Nonlinear Stochastic
Differential Equations”. In: Physical Review E - Statistical, Nonlinear, and
Soft Matter Physics 81.3, pp. 1-7.

Sadleir, L. G., K. Farrell, S. Smith, M. B. Connolly, and I. E. Scheffer (2011).
“Electroclinical features of absence seizures in sleep”. In: Epilepsy Re-
search 93.2-3, pp. 216-220.

San Miguel, M. and R. Toral (1997). “Stochastic Effects in Physical Sys-
tems”. In: p. 93.

Sancristébal, B., R. Vicente, J. M. Sancho, and J. Garcia-Ojalvo (2013).
“Emergent bimodal firing patterns implement different encoding
strategies during gamma-band oscillations.” In: Frontiers in computa-
tional neuroscience 7.March, p. 18.

Sancristébal, B., B. Rebollo, P. Boada, M. V. Sanchez-Vives, and J. Garcia-
Ojalvo (2016). “Collective stochastic coherence in recurrent neuronal
networks”. In: Nature Physics May, pp. 1-8.

201



BIBLIOGRAPHY

Sanz-Leon, P, S. A. Knock, A. Spiegler, and V. K. Jirsa (2015). “Mathemat-
ical framework for large-scale brain network modeling in The Virtual
Brain”. In: Neurolmage 111, pp. 385-430.

Sapienza, L., P. A. Moro, and I Roma (2000). “Chaos or noise: Dif culties of
a distinction”. In: Physical Review E 62.1, pp. 427-437.

Sarpeshkar, R. (1998). “Analog versus digital: extrapolating from electron-
ics to neurobiology.” In: Neural computation 10.7, pp. 1601-1638.

Scheffer, M. (2009). Critical Transitions in Nature and Society. Princeton stud-
ies in complexity. Princeton University Press.

Scheffer, M., S. Carpenter, J. A. Foley, C. Folke, and B. Walker (2001).
“Catastrophic shifts in ecosystems.” In: Nature 413.6856, pp. 591-6.
Scheffer, M., J. Bascompte, W. A. Brock, V. Brovkin, S. R. Carpenter, V.
Dakos, H. Held, E. H. van Nes, M. Rietkerk, and G. Sugihara (2009).
“Early-warning signals for critical transitions.” In: Nature 461.7260,

pp- 53-59.

Schiff, S.]., K Jerger, D. H. Duong, T Chang, M. L. Spano, and W. L. Ditto
(1994). “Controlling chaos in the brain.” In: Nature 370.6491, pp. 615-
620.

Schindler, K., C. E. Elger, and K. Lehnertz (2007). “Increasing synchroniza-
tion may promote seizure termination: Evidence from status epilepti-
cus”. In: Clinical Neurophysiology 118.9, pp. 1955-1968.

Scholl, E. and H. G. Schuster (2008). Handbook of chaos control. John Wiley &
Sons.

Segev, I. and E. Schneidman (1999). “Axons as computing devices: basic in-
sights gained from models.” In: Journal of physiology, Paris 93.4, pp. 263—
70.

Shanahan, M. (2010). “Metastable chimera states in community-structured
oscillator networks”. In: Chaos 20.1.

Shepherd, G. M. and G. Sten (2010). Handbook of Brain Microcircuits. Oxford
University Press.

Shew, W. L. and D. Plenz (2013). “The Functional Benefits of Criticality in
the Cortex”. In: The Neuroscientist 19.1, pp. 88-100.

Shirvalkar, P. R.,, P. R. Rapp, and M. L. Shapiro (2010). “Bidirectional
changes to hippocampal theta-gamma comodulation predict memory

202



Bibliography

for recent spatial episodes.” In: Proceedings of the National Academy of
Sciences of the United States of America 107.15, pp. 7054-9.

Shriki, O., J. Alstott, F. Carver, T. Holroyd, R. N. a. Henson, M. L. Smith,
R. Coppola, E. Bullmore, and D. Plenz (2013). “Neuronal Avalanches in
the Resting MEG of the Human Brain”. In: Journal of Neuroscience 33.16,
pp- 7079-7090.

Silva, L. A. da and R. D. Vilela (2015). “Colored noise and memory effects
on formal spiking neuron models”. In: Physical Review E 91.6, p. 062702.

Sitnikova, E. and G. van Luijtelaar (2009). “Electroencephalographic pre-
cursors of spike-wave discharges in a genetic rat model of absence
epilepsy: Power spectrum and coherence EEG analyses”. In: Epilepsy
Research 84.2-3, pp. 159-171.

Skarda, C. A. and W. J. Freeman (1987). “How brains make chaos in or-
der to make sense of the world”. In: Behavioral and Brain Sciences 10.02,
p. 161.

Slutzky, M. W, P. Cvitanovic, and D. J. Mogul (2001). “Deterministic chaos
and noise in three in vitro hippocampal models of epilepsy.” In: Annals
of biomedical engineering 29.7, pp. 607-18.

Slutzky, M. W, P. Cvitanovic, and D. J. Mogul (2002). “Identification of de-
terminism in noisy neuronal systems”. In: Journal of Neuroscience Meth-
ods 118.2, pp. 153-161.

Slutzky, M. W., P. Cvitanovic, and D. ]J. Mogul (2003). “Manipulating
epileptiform bursting in the rat hippocampus using chaos control and
adaptive techniques.” In: IEEE transactions on bio-medical engineering
50.5, pp. 559-570.

Sobie, C., A. Babul, and R. De Sousa (2011). “Neuron dynamics in the pres-
ence of 1/f noise”. In: Physical Review E - Statistical, Nonlinear, and Soft
Matter Physics 83.5, pp. 1-11.

Soltesz, I. and K. Staley (2011). Computational Neuroscience in Epilepsy. Else-
vier Science.

Sompolinsky, H., A. Crisanti, and H. J. Sommers (1988). “Chaos in Random
Neural Networks”. In: Physical Review Letters 61.3, pp. 259-262.

Sotero, R. C. (2016). “Topology, Cross-Frequency, and Same-Frequency
Band Interactions Shape the Generation of Phase-Amplitude Coupling

203



BIBLIOGRAPHY

in a Neural Mass Model of a Cortical Column”. In: PLoS Computational
Biology 12.11, pp. 1-29.

Sotero, R. C., N. J. Trujillo-Barreto, Y. Iturria-Medina, F. Carbonell, and J. C.
Jimenez (2007). “Realistically coupled neural mass models can generate
EEG rhythms.” In: Neural computation 19.2, pp. 478-512.

Spencer, S. S. (2002). “Neural networks in human epilepsy: evidence of and
implications for treatment.” In: Epilepsia 43.3, pp. 219-27.

Spiegler, A., S.]. Kiebel, F. M. Atay, and T. R. Knosche (2010). “Bifurcation
analysis of neural mass models: Impact of extrinsic inputs and den-
dritic time constants.” In: Neurolmage 52.3, pp. 1041-58.

Spiegler, A., T. R. Knosche, K. Schwab, ]J. Haueisen, and F. M. Atay (2011).
“Modeling brain resonance phenomena using a neural mass model.”
In: PLoS computational biology 7.12, €1002298.

Sporns, O. (2013). “Network attributes for segregation and integration in
the human brain”. In: Current Opinion in Neurobiology 23.2, pp. 162-171.

Sporns, O. and J. D. Zwi (2004). “The small world of the cerebral cortex.”
In: Neuroinformatics 2.2, pp. 145-162.

Sporns, O., G. Tononi, and R. Kétter (2005). “The human connectome: A
structural description of the human brain”. In: PLoS Computational Bi-
ology 1.4, pp. 0245-0251.

Spruston, N. (2008). “Pyramidal neurons: dendritic structure and synaptic
integration.” In: Nature reviews. Neuroscience 9.3, pp. 206-221.

Stam, C. J. (2014). “Modern network science of neurological disorders”. In:
Nature Reviews Neuroscience 15.10, pp. 683-695.

Stamoulis, C. and B. S. Chang (2012). “Modeling Non-Invasive Neurostim-
ulation in Epilepsy as Stochastic Interference in Brain Networks”. In:
Changes 29.6, pp. 997-1003.

Stead, M., M. Bower, B. H. Brinkmann, K. Lee, W. R. Marsh, F. B. Meyer,
B. Litt, J. Van Gompel, and G. a. Worrell (2010). “Microseizures and the
spatiotemporal scales of human partial epilepsy.” In: Brain : a journal of
neurology 133.9, pp. 2789-97.

Steriade, M. and R. McCarley (2005). Brain Control of Wakefulness and Sleep.
Springer.

204



Bibliography

Steyn-Ross, D. A., M. L. Steyn-Ross, ]. W. Sleigh, M. T. Wilson, I. P. Gillies,
and J. J. Wright (2005). “The sleep cycle modelled as a cortical phase
transition”. In: Journal of Biological Physics 31.3-4, pp. 547-569.

Steyn-Ross, M. L., D. a. Steyn-Ross, J. W. Sleigh, and D. T. Liley (1999).
“Theoretical electroencephalogram stationary spectrum for a white-
noise-driven cortex: evidence for a general anesthetic-induced phase
transition.” In: Physical review. E, Statistical physics, plasmas, fluids, and
related interdisciplinary topics 60.6 Pt B, pp. 7299-7311.

Stocks, N. (2000). “Suprathreshold stochastic resonance in multilevel
threshold systems”. In: Physical review letters 84.11, pp. 2310-3.

Suffczynski, P, S. Kalitzin, and F. Lopes Da Silva (2004). “Dynamics of
non-convulsive epileptic phenomena modeled by a bistable neuronal
network”. In: Neuroscience 126.2, pp. 467-484.

Suffczynski, P. (2000). “Neural dynamics underlying brain thalamic oscil-
lations investigated with computational models”. PhD dissertation. In-
stitute of Experimental Physics, Department of Physics, Warsaw Uni-
versity.

Suffczyniski, P, S. Kalitzin, G. Pfurtscheller, and F. H. Lopes Da Silva (2001).
“Computational model of thalamo-cortical networks: Dynamical con-
trol of alpha rhythms in relation to focal attention”. In: International
Journal of Psychophysiology 43.1, pp. 25-40.

Suffczyniski, P., E. Wendung, J. J. Bellanger, and F. H. L. Da Silva (2006).
“Some insights into computational models of (patho)physiological
brain activity”. In: Proceedings of the IEEE 94.4, pp. 784-804.

Summerson, S. R., B. Aazhang, and C. Kemere (2015). “Investigating irreg-
ularly patterned deep brain stimulation signal design using biophysical
models”. In: Frontiers in Computational Neuroscience 9.June, pp. 1-10.

Takahashi, T. and Y. Tsukahara (1998). “Pocket Monster incident and low
luminance visual stimuli: Special reference to deep red flicker stimula-
tion”. In: Pediatrics International 40.6, pp. 631-637.

Tang, Y., J. R. Nyengaard, D. M. G. De Groot, and H. J. G. Gundersen (2001).
“Total regional and global number of synapses in the human brain neo-
cortex”. In: Synapse 41.3, pp. 258-273.

205



BIBLIOGRAPHY

Tao, J. X, X. ]J. Chen, M. Baldwin, I. Yung, S. Rose, D. Frim, S. Hawes-
Ebersole, and J. S. Ebersole (2011). “Interictal regional delta slowing
is an EEG marker of epileptic network in temporal lobe epilepsy”. In:
Epilepsia 52.3, pp. 467-476.

Taylor, P. N., Y. Wang, G. Marc, D. Justin, M. Friederike, S. Ulrich, and
B. Gerold (2014). “A computational study of stimulus driven epileptic
seizure abatement”. In: PLoS ONE 9.12, pp. 1-26.

Terry, J. R., O. Benjamin, and M. P. Richardson (2012). “Seizure generation:
The role of nodes and networks”. In: Epilepsia 53.9, pp. 166-169.

Tessone, C. J., C. R. Mirasso, R. Toral, and J. D. Gunton (2006). “Diversity-
Induced Resonance”. In: Physical Review Letters 97.19, p. 194101.

Tetzlaff, C., S. Okujeni, U. Egert, F. Worgotter, and M. Butz (2010). “Self-
organized criticality in developing neuronal networks”. In: PLoS Com-
putational Biology 6.12.

Thanarajah, S. E., C. E. Han, A. Rotarska-Jagiela, W. Singer, R. Deichmann,
K. Maurer, M. Kaiser, and P. J. Uhlhaas (2016). “Abnormal connectional
fingerprint in schizophrenia: A novel network analysis of diffusion ten-
sor imaging data”. In: Frontiers in Psychiatry 7 JUN, pp. 1-10.

Todorov, E. and M. I. Jordan (2002). “Optimal feedback control as a theory
of motor coordination”. In: Nature Neuroscience 5.11, pp. 1226-1235.
Tononi, G., O. Sporns, and G. M. Edelman (1994). “A measure for brain
complexity: relating functional segregation and integration in the ner-
vous system.” In: Proceedings of the National Academy of Sciences of the

United States of America 91.11, pp. 5033-7.

Tononi, G. and C. Koch (2015). “Consciousness: here, there and every-
where?” In: Philosophical Transactions of the Royal Society B: Biological Sci-
ences 370.1668, pp. 20140167-20140167.

Toral, R. and P. Colet (2014). Stochastic Numerical Methods: An Introduction
for Students and Scientists. Physics Textbook. Wiley.

Torcini, A. and D. Angulo-Garcia (2014). “Diluted neural networks : deter-
ministic versus stochastic evolution”. In: Dd.

Tort, A. B. L., R. W. Komorowski, J. R. Manns, N. J. Kopell, and H. Eichen-
baum (2009). “Theta-gamma coupling increases during the learning of

206



Bibliography

item-context associations.” In: Proceedings of the National Academy of Sci-
ences of the United States of America 106.49, pp. 20942-7.

Touboul, J. and A. Destexhe (2010). “Can power-law scaling and neuronal
avalanches arise from stochastic dynamics?” In: PLoS ONE 5.2.

Touboul, J., F. Wendling, P. Chauvel, and O. Faugeras (2011). “Neural
Mass Activity, Bifurcations, and Epilepsy”. In: Neural computation 23.12,
pp. 3232-86.

Truccolo, W, J. a. Donoghue, L. R. Hochberg, E. N. Eskandar, J. R. Madsen,
W.S. Anderson, E. N. Brown, E. Halgren, and S. S. Cash (2011). “Single-
neuron dynamics in human focal epilepsy.” In: Nature neuroscience 14.5,
pp. 635-41.

Tsodyks, M. V., W. E. Skaggs, T. J. Sejnowski, and B. L. Mcnaughton
(1997). “Paradoxical effects of external modulation of inhibitory in-
terneurons”. In: Journal of Neuroscience 17.11, pp. 4382—-4388.

Uhlenbeck, G. E. and L. S. Ornstein (1930). “On the Theory of the Brownian
Motion”. In: Physical Review 36.5, pp. 823-841.

Uhlhaas, P. J. and W. Singer (2006). “Neural Synchrony in Brain Disorders:
Relevance for Cognitive Dysfunctions and Pathophysiology”. In: Neu-
ron 52.1, pp. 155-168.

Uhlhaas, P. J. and W. Singer (2013). “High-frequency oscillations and the
neurobiology of schizophrenia”. In: Dialogues in Clinical Neuroscience
15.3, pp. 301-313.

U.S. National Library of Medicine (2001-2015). The Visible Human Project.
8600 Rockville Pike, Bethesda, MD 20894.

Valentin, A., G. Alarcén, M. Honavar, J. J. Garcia Seoane, R. P. Selway, C. E.
Polkey, and C. D. Binnie (2005). “Single pulse electrical stimulation for
identification of structural abnormalities and prediction of seizure out-
come after epilepsy surgery: a prospective study.” In: Lancet neurology
411, pp. 718-26.

Valentin, A., G. Alarcén, S. F. Barrington, J. J. Garcia Seoane, M. C. Martin-
Miguel, R. P. Selway, and M. Koutroumanidis (2014). “Interictal estima-
tion of intracranial seizure onset in temporal lobe epilepsy”. In: Clinical
Neurophysiology 125.2, pp. 231-238.

207



BIBLIOGRAPHY

Valverde, S., S. Ohse, M. Turalska, B. J. West, and J. Garcia-Ojalvo (2015).
“Structural determinants of criticality in biological networks.” In: Fron-
tiers in physiology 6. May, p. 127.

Van Diessen, E., S. ]. H. Diederen, K. P.J. Braun, E. E. Jansen, and C. J. Stam
(2013). “Functional and structural brain networks in epilepsy: What
have we learned?” In: Epilepsia 54.11, pp. 1855-1865.

Van Luijtelaar, G., A. Hramov, E. Sitnikova, and A. Koronovskii (2011).
“Spike-wave discharges in WAG/Rij rats are preceded by delta and
theta precursor activity in cortex and thalamus”. In: Clinical Neurophys-
iology 122.4, pp. 687-695.

Vicente, R., L. L. Gollo, C. R. Mirasso, I. Fischer, and G. Pipa (2008). “Dy-
namical relaying can yield zero time lag neuronal synchrony despite
long conduction delays”. In: Proceedings of the National Academy of Sci-
ences 105.44, pp. 17157-17162.

Victor, J. D., J. D. Drover, M. M. Conte, and N. D. Schiff (2011). “Mean-field
modeling of thalamocortical dynamics and a model-driven approach
to EEG analysis.” In: Proceedings of the National Academy of Sciences of the
United States of America 108 Suppl, pp. 15631-8.

Villegas, P., P. Moretti, and M. a. Mufoz (2014). “Frustrated hierarchical
synchronization and emergent complexity in the human connectome
network”. In: Scientific Reports 4.

Voytek, B., R. T. Canolty, A. Shestyuk, N. E. Crone, J. Parvizi, and R. T.
Knight (2010). “Shifts in gamma phase-amplitude coupling frequency
from theta to alpha over posterior cortex during visual tasks.” In: Fron-
tiers in human neuroscience 4.October, p. 191.

Vreeswijk, C. van and H. Sompolinsky (1996). “Chaos in Neuronal Net-
works with Balanced Excitatory and Inhibitory Activity”. In: Science
274.5293, pp. 1724-1726.

Wang, P. and T. R. Knosche (2013). “A realistic neural mass model of the
cortex with laminar-specific connections and synaptic plasticity - eval-
uation with auditory habituation.” In: PloS one 8.10, e77876.

Wang, S.-]. and C. Zhou (2012). “Hierarchical modular structure enhances
the robustness of self-organized criticality in neural networks”. In: New
Journal of Physics 14.2, p. 023005.

208



Bibliography

Wang, Y., F. Hutchings, and M. Kaiser (2015). Computational modeling of neu-
rostimulation in brain diseases. 1st ed. Vol. 222. Elsevier B.V.,, pp. 191-228.

Ward, L. and P. Greenwood (2007). “1/f noise”. In: Scholarpedia.

Watts, D. J. and S. H. Strogatz (1998). “Collective dynamics of 'small-world’
networks”. In: Nature 393.6684, pp. 440—442.

Weigenand, A., M. Schellenberger Costa, H. V. V. Ngo, J. C. Claussen, and
T. Martinetz (2014). “Characterization of K-Complexes and Slow Wave
Activity in a Neural Mass Model”. In: PLoS Computational Biology 10.11.

Wendling, F, J. J. Bellanger, F. Bartolomei, and P. Chauvel (2000). “Rele-
vance of nonlinear lumped-parameter models in the analysis of depth-
EEG epileptic signals.” In: Biological cybernetics 83.4, pp. 367-78.

Wendling, E, F. Bartolomei, J. J. Bellanger, and P. Chauvel (2002). “Epilep-
tic fast activity can be explained by a model of impaired GABAergic
dendritic inhibition”. In: European Journal of Neuroscience 15.9, pp. 1499—
1508.

Wendling, F.,, P. Benquet, F. Bartolomei, and V. Jirsa (2015). “Computational
models of epileptiform activity”. In: Journal of Neuroscience Methods,
pp- 1-19.

Wiesenfeld, K. (1991). “Amplification by globally coupled arrays: Coher-
ence and symmetry”. In: Physical Review A 44.6, pp. 3543-3551.

Wilson, H. R. and J. D. Cowan (1972). “Excitatory and inhibitory interac-
tions in localized populations of model neurons.” In: Biophysical journal
12.1, pp. 1-24.

Woolsey, T. A. and H. Van der Loos (1970). “The structural organization of
layer IV in the somatosensory region (S I) of mouse cerebral cortex. The
description of a cortical field composed of discrete cytoarchitectonic
units”. In: Brain Research 17.2, pp. 205-242.

Yuan, H. and S. D. Silberstein (2016). “Vagus Nerve and Vagus Nerve Stim-
ulation, a Comprehensive Review: Part II1”. In: Headache 56.3, pp. 479-
490.

Zamora-Lopez, G., Y. Chen, G. Deco, M. L. Kringelbach, and C. Zhou
(2016). “Functional complexity emerging from anatomical constraints
in the brain: the significance of network modularity and rich-clubs”.
In: Scientific Reports 6.November, p. 38424.

209



Zetterberg, L. H., L Kristiansson, and K Mossberg (1978). “Performance of
a model for a local neuron population.” In: Biological cybernetics 31.1,
pp- 15-26.

Zilles, K. and K. Amunts (2010). “Centenary of Brodmann’s map concep-
tion and fate”. In: Nature Reviews Neuroscience 11.2, pp. 139-145.

210



	Acknowledgements
	Summary
	Resum
	Contents
	Abbreviations
	Introduction
	Anatomical and physiological foundations of mathematical brain modelling
	Forebrain
	Cerebral cortex
	Cortical columns

	EEG and physiology of neuronal oscillations
	Population modelling
	The brain as a dynamical complex system
	Rhythms of the brain
	Chaos and noise
	Metastability
	Criticality and the verge of transition
	1/fb power spectra
	Brain networks
	Dynamical traits of neuronal diseases

	Epilepsy
	Aim and organisation of the Thesis

	Modelling mesoscopic brain dynamics
	Historical overview of neural mass models
	Foundations of neural mass models
	Jansen-Rit model
	Recent development and extensions

	Principles, advantages and disadvantages of neural mass modelling
	Extended Jansen-Rit model
	Model of a cortical column
	Intracolumnar and intercolumnar connectivity
	External input to cortical columns


	Noise-induced epileptiform dynamics
	Introduction
	Methods
	`Healthy-like' and `unhealthy-like' paradigms
	Classification of model dynamics
	Spectral composition of the noise
	Computational simulation

	Results
	Stochastic driving
	Relationship to brain rhythms
	Periodic driving in the deterministic system

	Discussion
	Summary and outlook

	Collective excitability and noise
	Introduction
	Methods
	Codimension-1 bifurcation analysis
	Codimension-2 bifurcation analysis and the derivative method
	Classification of model dynamics
	Computational simulation
	Averaging and computation of rates

	Results
	Discussion
	Summary and outlook

	Cross-frequency transfer with stochastic driving
	Introduction
	Methods
	Numerical methods

	Results
	Spectral and temporal properties of a single column
	Coupled cortical columns
	Effect of an oscillatory input

	Discussion
	Summary and outlook

	BOLD signal modelling
	Introduction
	Basics of BOLD signal generation and detection
	Modelling the poststimulus undershoot: the Balloon Model
	Poststimulus overshoot
	Modelling the resting state fMRI

	Models and Methods
	Balloon and Balloon-Windkessel models
	Neurovascular model
	Scaling of the neuronal activity input signal
	Experimental data
	Numerical methods

	Results
	Modelling the poststimulus undershoot
	Neurovascular model
	Simulating the BOLD signal from experimentally measured blood flow

	Discussion
	Summary and outlook

	Conclusions and perspectives
	Summary of findings
	Discussion

	Publications and presentations
	Bibliography

