1,176 research outputs found

    DIAGNOSE EYES DISEASES USING VARIOUS FEATURES EXTRACTION APPROACHES AND MACHINE LEARNING ALGORITHMS

    Get PDF
    Ophthalmic diseases like glaucoma, diabetic retinopathy, and cataracts are the main cause of visual impairment worldwide. With the use of the fundus images, it could be difficult for a clinician to detect eye diseases early enough. By other hand, the diagnoses of eye disease are prone to errors, challenging and labor-intensive. Thus, for the purpose of identifying various eye problems with the use of the fundus images, a system of automated ocular disease detection with computer-assisted tools is needed. Due to machine learning (ML) algorithms' advanced skills for image classification, this kind of system is feasible. An essential area of artificial intelligence)AI (is machine learning. Ophthalmologists will soon be able to deliver accurate diagnoses and support individualized healthcare thanks to the general capacity of machine learning to automatically identify, find, and grade pathological aspects in ocular disorders. This work presents a ML-based method for targeted ocular detection. The Ocular Disease Intelligent Recognition (ODIR) dataset, which includes 5,000 images of 8 different fundus types, was classified using machine learning methods. Various ocular diseases are represented by these classes. In this study, the dataset was divided into 70% training data and 30% test data, and preprocessing operations were performed on all images starting from color image conversion to grayscale, histogram equalization, BLUR, and resizing operation. The feature extraction represents the next phase in this study ,two algorithms are applied to perform the extraction of features which includes: SIFT(Scale-invariant feature transform) and GLCM(Gray Level Co-occurrence Matrix), ODIR dataset is then subjected to the classification techniques Naïve Bayes, Decision Tree, Random Forest, and K-nearest Neighbor. This study achieved the highest accuracy for binary classification (abnormal and normal) which is 75% (NB algorithm), 62% (RF algorithm), 53% (KNN algorithm), 51% (DT algorithm) and achieved the highest accuracy for multiclass classification (types of eye diseases) which is 88% (RF algorithm), 61% (KNN algorithm) 42% (NB algorithm), and 39% (DT algorithm)

    Quantitative analysis of multi-spectral fundus images

    Get PDF
    We have developed a new technique for extracting histological parameters from multi-spectral images of the ocular fundus. The new method uses a Monte Carlo simulation of the reflectance of the fundus to model how the spectral reflectance of the tissue varies with differing tissue histology. The model is parameterised by the concentrations of the five main absorbers found in the fundus: retinal haemoglobins, choroidal haemoglobins, choroidal melanin, RPE melanin and macular pigment. These parameters are shown to give rise to distinct variations in the tissue colouration. We use the results of the Monte Carlo simulations to construct an inverse model which maps tissue colouration onto the model parameters. This allows the concentration and distribution of the five main absorbers to be determined from suitable multi-spectral images. We propose the use of "image quotients" to allow this information to be extracted from uncalibrated image data. The filters used to acquire the images are selected to ensure a one-to-one mapping between model parameters and image quotients. To recover five model parameters uniquely, images must be acquired in six distinct spectral bands. Theoretical investigations suggest that retinal haemoglobins and macular pigment can be recovered with RMS errors of less than 10%. We present parametric maps showing the variation of these parameters across the posterior pole of the fundus. The results are in agreement with known tissue histology for normal healthy subjects. We also present an early result which suggests that, with further development, the technique could be used to successfully detect retinal haemorrhages

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    A novel automated approach of multi-modality retinal image registration and fusion

    Get PDF
    Biomedical image registration and fusion are usually scene dependent, and require intensive computational effort. A novel automated approach of feature-based control point detection and area-based registration and fusion of retinal images has been successfully designed and developed. The new algorithm, which is reliable and time-efficient, has an automatic adaptation from frame to frame with few tunable threshold parameters. The reference and the to-be-registered images are from two different modalities, i.e. angiogram grayscale images and fundus color images. The relative study of retinal images enhances the information on the fundus image by superimposing information contained in the angiogram image. Through the thesis research, two new contributions have been made to the biomedical image registration and fusion area. The first contribution is the automatic control point detection at the global direction change pixels using adaptive exploratory algorithm. Shape similarity criteria are employed to match the control points. The second contribution is the heuristic optimization algorithm that maximizes Mutual-Pixel-Count (MPC) objective function. The initially selected control points are adjusted during the optimization at the sub-pixel level. A global maxima equivalent result is achieved by calculating MPC local maxima with an efficient computation cost. The iteration stops either when MPC reaches the maximum value, or when the maximum allowable loop count is reached. To our knowledge, it is the first time that the MPC concept has been introduced into biomedical image fusion area as the measurement criteria for fusion accuracy. The fusion image is generated based on the current control point coordinates when the iteration stops. The comparative study of the presented automatic registration and fusion scheme against Centerline Control Point Detection Algorithm, Genetic Algorithm, RMSE objective function, and other existing data fusion approaches has shown the advantage of the new approach in terms of accuracy, efficiency, and novelty

    Quantitative analysis of multi-spectral fundus images

    Get PDF
    We have developed a new technique for extracting histological parameters from multi-spectral images of the ocular fundus. The new method uses a Monte Carlo simulation of the reflectance of the fundus to model how the spectral reflectance of the tissue varies with differing tissue histology. The model is parameterised by the concentrations of the five main absorbers found in the fundus: retinal haemoglobins, choroidal haemoglobins, choroidal melanin, RPE melanin and macular pigment. These parameters are shown to give rise to distinct variations in the tissue colouration. We use the results of the Monte Carlo simulations to construct an inverse model which maps tissue colouration onto the model parameters. This allows the concentration and distribution of the five main absorbers to be determined from suitable multi-spectral images. We propose the use of "image quotients" to allow this information to be extracted from uncalibrated image data. The filters used to acquire the images are selected to ensure a one-to-one mapping between model parameters and image quotients. To recover five model parameters uniquely, images must be acquired in six distinct spectral bands. Theoretical investigations suggest that retinal haemoglobins and macular pigment can be recovered with RMS errors of less than 10%. We present parametric maps showing the variation of these parameters across the posterior pole of the fundus. The results are in agreement with known tissue histology for normal healthy subjects. We also present an early result which suggests that, with further development, the technique could be used to successfully detect retinal haemorrhages

    Digital ocular fundus imaging: a review

    Get PDF
    Ocular fundus imaging plays a key role in monitoring the health status of the human eye. Currently, a large number of imaging modalities allow the assessment and/or quantification of ocular changes from a healthy status. This review focuses on the main digital fundus imaging modality, color fundus photography, with a brief overview of complementary techniques, such as fluorescein angiography. While focusing on two-dimensional color fundus photography, the authors address the evolution from nondigital to digital imaging and its impact on diagnosis. They also compare several studies performed along the transitional path of this technology. Retinal image processing and analysis, automated disease detection and identification of the stage of diabetic retinopathy (DR) are addressed as well. The authors emphasize the problems of image segmentation, focusing on the major landmark structures of the ocular fundus: the vascular network, optic disk and the fovea. Several proposed approaches for the automatic detection of signs of disease onset and progression, such as microaneurysms, are surveyed. A thorough comparison is conducted among different studies with regard to the number of eyes/subjects, imaging modality, fundus camera used, field of view and image resolution to identify the large variation in characteristics from one study to another. Similarly, the main features of the proposed classifications and algorithms for the automatic detection of DR are compared, thereby addressing computer-aided diagnosis and computer-aided detection for use in screening programs.Fundação para a Ciência e TecnologiaFEDErPrograma COMPET
    corecore