
Fax +41 61 306 12 34
E-Mail karger@karger.ch
www.karger.com

 EURETINA – Review 

 Ophthalmologica 2011;226:161–181 
 DOI: 10.1159/000329597 

 Digital Ocular Fundus Imaging: A Review 

 Rui Bernardes    a, b     Pedro Serranho    a     Conceição Lobo    a–c   

  a    Institute of Biomedical Research on Light and Image, Faculty of Medicine, University of Coimbra,  b    Association for 
Innovation and Biomedical Research on Light and Image and  c    Coimbra University Hospital,  Coimbra , Portugal
 

 Digital Imaging 

 The availability of digital cameras – from dedicated 
photographic cameras to cell phones – has quickly de-
creased the use of film-based imaging. The development 
of medical imaging too has undergone a rapid transition 
in the same direction, one of enhancement.

  Some imaging modalities, e.g. computed tomography, 
scanning laser ophthalmoscopy (SLO) and optical coher-
ence tomography rely on digital imaging, in contrast to, 
fundus photography and fluorescein angiography which 
appeared quite early, do not.

  The first photographic images of the ocular fundus 
were obtained by the end of the 19th and the beginning 
of the 20th centuries, and the concept of a fundus camera 
dates back to that time  [1] . As stated in a recent review  [2] : 
‘The primary role of ophthalmic imaging however, goes 
well beyond documentation in its ability to aid in the di-
agnosis of a broad range of eye conditions’. Additional 
continuous efforts have been made to achieve the best 
possible fundus images  [3] .

  This review focuses on digital imaging of the human 
eye fundus and its impact on clinical use. It does not at-
tempt to provide an exhaustive description of all digital 
imaging modalities with application to the human ocular 
fundus; instead, it concentrates primarily on fundus pho-
tography.

  It establishes a link between traditional (analog/non-
digital) and digital imaging, and addresses intrinsic dif-
ferences, advantages and disadvantages of each.

   Abstract 
 Ocular fundus imaging plays a key role in monitoring the 
health status of the human eye. Currently, a large number of 
imaging modalities allow the assessment and/or quantifica-
tion of ocular changes from a healthy status. This review fo-
cuses on the main digital fundus imaging modality, color 
fundus photography, with a brief overview of complemen-
tary techniques, such as fluorescein angiography. While fo-
cusing on two-dimensional color fundus photography, the 
authors address the evolution from nondigital to digital im-
aging and its impact on diagnosis. They also compare sev-
eral studies performed along the transitional path of this 
technology. Retinal image processing and analysis, automat-
ed disease detection and identification of the stage of dia-
betic retinopathy (DR) are addressed as well. The authors 
emphasize the problems of image segmentation, focusing 
on the major landmark structures of the ocular fundus: the 
vascular network, optic disk and the fovea. Several proposed 
approaches for the automatic detection of signs of disease 
onset and progression, such as microaneurysms, are sur-
veyed. A thorough comparison is conducted among differ-
ent studies with regard to the number of eyes/subjects, im-
aging modality, fundus camera used, field of view and image 
resolution to identify the large variation in characteristics 
from one study to another. Similarly, the main features of the 
proposed classifications and algorithms for the automatic 
detection of DR are compared, thereby addressing comput-
er-aided diagnosis and computer-aided detection for use in 
screening programs.  Copyright © 2011 S. Karger AG, Basel 
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  Eye fundus imaging is useful to document its status 
and to assess any changes from a healthy condition. Im-
aging may focus on the structure or on a particular func-
tional aspect of the retina (e.g. color fundus photography 
or fluorescein angiography, respectively), or on a correla-
tion of the two  [1, 4] .

  Besides the diagnosis of ocular diseases, retinal imag-
ing also allows the detection, diagnosis and management 
of hypertensive and cardiovascular diseases  [1, 5] . The 
importance of easy access to the retinal microcirculation 
is clear: ‘The retinal microvasculature is unique in that it 
is the only part of the human circulation that can be di-
rectly visualised non-invasively in vivo, readily photo-
graphed and subject to digital image analysis’  [6] .

  The different options for fundus imaging are manifold 
(e.g. computed tomography, magnetic resonance imag-
ing, ultrasound imaging, infrared thermography  [7] , hy-
perspectral imaging  [8] , color Doppler imaging  [9] , or 
photoacoustic ophthalmoscopy  [10]  and blood flow mag-
netic resonance imaging  [11]  in the rat retina). We also 
refer to red-free photography, color fundus photography, 
stereofundus photography, SLO and angiography. These 
modalities share 2D imaging of the ocular fundus in con-
trast to 3D imaging by optical coherence tomography  [12, 
13–17]  or volumetric information from confocal SLO 
(CSLO). Each modality provides specific structural (e.g. 
color fundus photography) or functional information 
(e.g. fluorescein angiography) on the ocular fundus. This 
review only addresses 2D imaging.

  Among the advantages of digital imaging are the ease 
and speed of access to data (images)  [18] ; fast and exact 
duplication, archiving and transmission  [19–21] , and im-
mediate access to the results. The imaging procedure can 
be repeated if the quality of the initial result is inadequate 
 [20, 21] . Although film-based images can be digitized (to 
compute macular pigment density distribution from two 
different wavelength-based images  [22]  or to assess the 
status of the optic nerve  [23] ), immediate access to the 
images is not possible, as it is necessary to develop the 
film first. This delay prevents the photographer from ver-
ifying the results and therefore correcting any problem in 
the acquisition process, which can be easily achieved in 
digital imaging at no additional cost.

  The digitization of fundus photographs was addressed 
by Cideciyan et al.  [24] , who proposed a nonlinear resto-
ration model incorporating four components: the eye, the 
fundus camera, the film and the scanner. Scholl et al.  [25]  
found digitized images to be useful for grading age-relat-
ed maculopathy and age-related macular degeneration.

  Three advantages were enumerated in favor of digital 
imaging  [26] . First, ‘… digital imaging permits the pho-
tographer to judge instantly the quality of the captured 
image, and to take better pictures if necessary’. Second, 
‘… more time is needed for mounting and identifying 35-
mm slides, which occupy substantial storage space and 
have to be catalogued manually for retrieval’. Third, ‘… 
the total costs per stored image are lower than for 35-mm 
film, and damage to the environment is lower because of 
the avoidance of chemical processing, which is necessary 
for film-based photography’. 

 The ‘… easier access and improved ability to manipu-
late large volumes of data … enable more innovative ap-
proaches …’, as in the case of the quantification of fluo-
rescein angiograms  [27] .

  Because of easy transmission, digital imaging is a clear 
advantage for imaging in remote locations and popula-
tion screening  [28–33]  although the security of the infor-
mation can be a concern  [34] . Images can be sent to read-
ing centers for manual or automatic screening  [35] . In 
fact, several groups worldwide are pursuing research to 
find the best and most accurate automatic systems for 
disease grading. In addition, research is also under way 
in order to extract as much information as possible from 
digital images to provide information on the structure 
and function of the human retina and to improve knowl-
edge on the changes in the diseased retina at the earliest 
possible stage.

  As stated in an editorial by Bressler  [36] : ‘Findings 
from new imaging techniques may not represent a sig-
nificant scientific advance if the new procedures have not 
been shown to provide advantages that outweigh disad-
vantages in comparison with existing technology’. This 
important and obvious statement emphasizes the balance 
between gains and losses in information and knowledge. 
The large differences in image resolution (number of pix-
els) and its relationship to the field of view (FOV) in ocu-
lar fundus images, as compared to film-based fundus im-
ages are of particular importance in this regard. 

  Even so, as Dhawan et al.  [37]  have noted, the role of 
computerized medical imaging is clear: ‘Computerized 
medical imaging and analysis methods using multiple 
modalities have facilitated early diagnosis, treatment 
evaluation, and therapeutic intervention in the clinical 
management of critical diseases’. Research and develop-
ment in medical imaging, not restricted to the eye, have 
been reviewed  [38, 39] .

  Since color fundus photography and fluorescein angi-
ography play a special role, a small introduction should 
be made here.
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  In color fundus photography, contrast filters are used 
to modify the spectral range of the illumination source. 
In this way, the visibility of several structures can be en-
hanced.

  Red light is poorly absorbed by the retinal pigment 
epithelium, thus revealing the choroid and the choroidal 
pattern. Green light, however, is absorbed by blood and 
reflected by the retinal pigment epithelium, providing a 
good contrast for visualizing the retinal vascular net-
work, hemorrhages, drusen and exudates. Because of 
these features, green (red-free) photographs are routinely 
taken in addition to fluorescein angiograms. Moreover, 
blue light allows for better imaging of anterior retinal lay-
ers. It is absorbed by blood and by the retinal pigment 
epithelium, providing a dark background against which 
top layers of the retina are imaged  [2] . Elsner et al.  [40]  
and Fernandez et al.  [41]  have reported on the effects of 
wavelength on human fundus imaging.

  Based on this imaging modality, stereo imaging is par-
ticularly useful as it enhances the visual sense of depth. 
Due to the motion (shifting) of the camera, beams from 
the two images fall in opposite slopes of the cornea, en-
hancing the stereoscopic effect  [2] .

  In addition, mydriatic and nonmydriatic fundus im-
ages offer different advantages. Cameras that can capture 
images through small, nonmydriatic pupils are tailored 
for the physiological dilation that occurs in a darkened 
room. This feature makes them suitable for remote pri-
mary care units and for screening programs. In contrast, 
mydriatic retinal photographs are significantly more sen-
sitive than nonmydriatic photographs  [42] . Conversely, 
mydriatic cameras can provide better fundus images but 
require dilated pupils and are primarily used in ophthal-
mology clinics and research centers  [2] .

  Film versus Digital Fundus Images 

 Digital imaging developed in the mid 1960s following 
the space program of the National Aeronautics and Space 
Administration  [43] . Its application to the medical field 
led to the use of imaging modalities that were not avail-
able previously, such as computed tomography, ultra-
sound imaging and magnetic resonance imaging.

  A characteristic of digital images, in particular of ocu-
lar fundus images, is resolution. Resolution is normally 
expressed as the number of pixels present in the image. 
Although resolution correlates with the potential of the 
image to capture details of the objects present in the FOV, 
it does not convey information on image quality. To cap-

ture small details, a ‘sufficient’ number of pixels is re-
quired and is expressed as pixel density. As summarized 
by Prasad and Roy  [43] : ‘The number and density of pix-
els must be high enough to produce a faithful representa-
tion of the subject …’.

  Conventional 35-mm films contain silver elements 
that are packed to a density equivalent to approximately 
2,500 lines per inch, corresponding to a frame resolution 
in a digital image of about 4,096  !  2,736 pixels  [43] . The 
recommended resolution (100 lines per millimeter) de-
pends on the film used and development process (1–100 
cycles per millimeter for a response above 10% for a typ-
ical transparency film used for imaging diabetic retinop-
athy, DR  [20] ). In Fujichrome Velvia 100 films, resolution 
ranges from 80 to 160 lines per millimeter (http://www.
fujifilm.com/, accessed May 13, 2011) depending on con-
trast. In this way, a link is established between the intrin-
sic resolution of a 35-mm film and the resolution of the 
sensor used by a digital camera.

  Nonetheless, the quantitation process is usually not 
mentioned. Although the most common is 8 bits per col-
or channel, i.e. 256 different levels per color channel in 
the saved images, 10 and 12 bits per channel are usually 
available at the detector level  [44] .

  Also, grainy films have been replaced by a charge-cou-
pled device (CCD), and seldom by a complementary met-
al oxide semiconductor  [45] . While digital cameras ini-
tially used only one CCD sensor, newer cameras use three 
CCD sensors. This enhancement allows current cameras 
to separate information that is generated for each of the 
red-green-blue color channels for each pixel.

  In this way, a digital (red-green-blue color) image with 
a resolution similar to that of the film-based one should 
be 4,096  !  2,736  !  3 bytes (33,619,968 bytes, i.e. about 
32 megabytes), using 8-bit color channels only. On the 
other hand, according to Mead et al.  [19] , a digital image 
of 1,300  !  1,300 pixels (for a 45° FOV fundus image) is 
enough to detect microaneurysms.

Images of this resolution (4,069 ! 2,736 pixels) pre-
sent two major problems. At the acquisition step, through 
the time required in transmitting the image from the sen-
sor (camera) to the computer. In the case of fluorescein 
angiograms, it prevents sequences of images to be taken 
in a short period of time, e.g. in documenting the filling 
phase. At the archiving and transmission step, large hard-
disk computer space is needed in addition to long trans-
mission time through the network, e.g. to a reading cen-
ter, remote hard-disk drive or data warehouse.

    Research has shown  [46]  that a resolution of 50 pixels 
per degree may provide diagnostic power comparable to 
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film-based images to detect DR. Thus, 2,500 pixels should 
be required to produce a 50° FOV retinal image, which is 
much higher than frequently found in the literature.

  Evaluation of DR based on film usually makes use of a 
small FOV. Two 30° FOV 35-mm stereoscopic images are 
commonly used; these allow the assessment of lesions of 
the retinal capillaries such as microaneurysms. In con-
trast, digital imaging of the human ocular fundus is usu-
ally performed over a larger FOV, with 45°, 50° and 60° 
FOV being common. In addition, digital fundus images 
usually present lower resolution compared with film-
based images on top of lossy compression file formats  [20] .

  Different fundus camera makers follow different paths 
regarding these issues. Some produce large image files 
(uncompressed) and then compress them using a lossless 
compression, hence preserving all of the information on 
the acquired image. Others use lossy compression tech-
niques, which reduce image files to a small fraction of 
their original size, at the cost of losing information. In 
either case, virtually all centers that apply digital ocular 
fundus imaging use a much smaller image size for routine 
purposes and larger images (resolution and image file 
size) for research purposes.

  To cope with digital images, standard protocols for ar-
chiving, communication and the like have been pro-
posed. The Picture Archiving and Communication Sys-
tem is an image-based information system for the acqui-
sition, storage, communication, archiving, display and 
remote manipulation of medical images. The standard of 
Digital Imaging and Communications in Medicine, orig-
inally developed for radiological images, is now used in 
different areas of medical imaging  [47] .

   Table  1  summarizes the differences between several 
studies in relation to digital versus nondigital ocular im-
aging. Clear differences are noticeable in the number of 
eyes or patients used; the number of photographs per eye, 
resolution, and FOV, and image type or compression. Sev-
en studies do not mention the sensor type used. Five make 
no reference to the image resolution (number of pixels), 
and nine make no reference to the image file type used.

  Influence on the Diagnosis 

 Several studies on ocular fundus photography have es-
tablished the gains and losses in diagnosis and screening 
feasibility with the transition from film-based imaging to 
digital imaging.

  Henricsson et al.  [48]  compared the performance of 
digital images with slides in detecting and grading DR. 

Digital color and red-free images and 35-mm slides were 
obtained using the Topcon Imagenet System 1.53 system 
and Topcon TRC-50 VT fundus camera, Kodachrome 64 
color film system, respectively. They obtained 50° FOV 
images of 640  !  480 pixels in true color and 50° FOV 
color 35-mm film slides. Exact agreement was found be-
tween grading obtained from color slides and digital col-
or images in 82% of the cases. Exact agreement increased 
to 85% when red-free images were used as an adjunct to 
digital color images. Henricsson et al. reported that ‘Good 
to excellent agreement was found between the grading
of colour slides and digital colour images’, although the 
‘… tendency [was] towards undergrading of the digital 
colour images …’.

  In a study by Liesenfeld et al.  [28] , images from 129 
patients with diabetes were screened for DR by slit lamp 
examination using two-field 50° FOV nonstereo digital 
fundus photographs and 35-mm transparencies of the 
same field. The authors concluded that ‘Telescreening for 
diabetic retinopathy by an assessment of two-field 50° 
non-stereo digital images is a valid screening method’. In 
addition, in contrast to 35-mm transparencies, no digital 
images were lost.

  Lim et al.  [18]  compared digital images through undi-
lated pupils with 35-mm slide images through dilated pu-
pils for the detection of DR. A modified Canon CR6-
45NM camera equipped with a Sony DXC-970MD digital 
camera was used to obtain 45° FOV digital images. Image 
resolution was 640  !  480 pixels. The 35-mm film fundus 
images were obtained through dilated pupils using a 
Zeiss 30° fundus camera. The authors concluded that 
‘Nonmydriatic digital fundus imaging for detection of 
diabetic retinopathy has a low sensitivity rate and a high 
specificity rate and is less clinically useful than standard 
dilated 35-mm fundus slide images’.

  One year later, a study with similar conditions was 
published by Bursell et al.  [49] , who evaluated the ability 
to determine clinical severity of DR, the timing of the 
next retinal evaluation and the necessity of referral to an 
ophthalmologist by comparing stereoscopic nonmydri-
atic digital-video color retinal images to Early Treatment 
Diabetic Retinopathy Study (ETDRS) standard seven-
field 35-mm stereoscopic color fundus photographs. 
Their conclusion was slightly different. These authors 
found ‘substantial agreement ( �  = 0.65)’ for DR assess-
ment and ‘excellent ( �  = 0.87)’ agreement for suggested 
referral to an ophthalmologist. Digital images (45° FOV) 
were 640  !  480 pixels in size and true color (24 bits –
8 bits per color channel). In addition, compressed Joint 
Photographic Experts Group (JPEG) images were pro-
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Study Eyes
(sub-
jects), n

Digital
image

Fundus
camera

Digital
camera

FOV Resolution File type Nondigital
imaging

Fundus
camera
(film)

FOV Conclusions

Henricsson
et al. [48]
2000

–
(279)

1! C
and
1! RF

Topcon 
‘Imagenet 
System 
1.53’

Sony DXC 
930

50 °
and
50 °

640 ! 480
and
640 ! 480

7-field 35-mm 
color (ETDRS)
M

Topcon
TRC-50 VT 
(Kodachrome 
64 ASA)

50 ° Good to excellent 
agreement for detection 
and grading of DR 
RF as adjunct modality 
seems to facilitate the 
detection of DR lesions

Liesenfeld
et al. [28]
2000

–
(129)

2! NS
M

Topcon 
TRC 50X

50 ° 768 ! 576 Slit lamp 
biomicroscopy 
and
2! NS 35-mm
slide images

Topcon TRC 
50X (Kodak 
Ektachrome 
100 ASA)

50 ° Nonstereo digital images 
are a valid screening 
method for DR

Lim et al. 
[18]
2000

40
(22)

3! 
NM

Canon
CR6-
45NM

Sony DXC 
970MD

45 ° 640!480 35-mm slide
images
M

Zeiss
(Kodak 
Ektachrome 64 
ASA)

30 ° Nonmydriatic digital 
images are less clinically 
useful for detection of 
DR

Bursell et
al. [49]
2001

108
(54)

3! 
NM
ST

Topcon 
TRC NW-
5S

Sony 970-
MD

45 ° 640 ! 480 Com-
pressed
JPEG
(10:1)

7-field 35-mm
ST color 
(ETDRS)
M

Zeiss FF4
(Kodachrome
64 ASA)

30 ° Value of the 
nonmydriatic digital 
imaging for the 
determination of clinical 
DR

Razvi et al. 
[50]
2002

400
(200)

M Canon 
45NM

Sony 
HAD 
3CCD

45 ° Com-
pressed
JPEG

Direct 
ophthalmoscopy

Advantage of combining 
digital imaging and 
ophthalmoscopy in eye 
screening

Rudnisky
et al. [44]
2002

207
(105)

M
ST

Zeiss 
FF450

Kodak/
Canon 
DCS560

30 ° 3,040!2,008 Uncom-
pressed
TIFF

Contact lens 
biomicroscopy

High-resolution 
stereoscopic digital 
imaging biomicroscopy 
is both sensitive and 
specific for diagnosis of 
clinically significant 
macular edema

Herbert et 
al. [51]
2003

288
(145)

1! 
NM

Topcon 
TRC 
NW5-S

Sony 3-
Chip

45 ° 800 ! 600 Com-
pressed
JPEG

Slit lamp bio-
microscopy

Single-digital fundal 
image is insufficient for 
screening purposes

Leeuwen 
et al. [26]
2003

137
(91)

M
ST

Topcon 
TRC-50EX

Sony 
HAD 
3CCD

35 ° �800 ! 600 Uncom-
pressed
TIFF

35-mm slide 
images
M

Topcon TRC-
50EX (Kodak 
Ektachrome
64 ASA)

35 ° Digital images are as 
good as 35-mm film for 
grading of age-related 
maculopathy

Massin et
al. [52] 
2003

147
(74)

5! 
NM

Topcon 
TRC-
NW6S

Sony 
DXC-950
P

45 ° 800 ! 600 7-field 35-mm 
ST color 
(ETDRS)

Canon CF
60 UV

30 ° Nonmydriatic digital 
images are suitable for 
DR screening

Sabti et al. 
[53] 2003

92
(51)

Canon CF 
60 UV

30 °
and
60 °

Digital images provide 
an efficient method for 
diagnosing and 
classifying sight-
threatening DR, 
particularly proliferative 
DR

Table 1. D igital versus nondigital ocular imaging
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Table 1 (continued)

Study Eyes
(sub-
jects), n

Digital
image

Fundus
camera

Digital
camera

FOV Resolution File type Nondigital
imaging

Fundus
camera
(film)

FOV Conclusions

Lawrence 
[54] 2004

–
(151)
and
–
(103)

1! 
NM
3! M

Topcon
TRC-
NW5SF
and
Topcon 
TRC-NW6S

45 °
and
45 °

640 ! 480
and
800 ! 600

7-field 35-mm 
ST color 
(ETDRS)

Topcon TRC-
50VT

30 ° The 800 ! 600 digital 
image system is an 
accurate method of 
detecting DR, provided 
there is adequate 
pupillary dilation and 
three retinal images are 
taken

Pirbhai et 
al. [55]
2005

223
(118)

M
NS

Topcon 
TRC 50IX

1,024 ! 1,024 Fluorescein 
angiography

Digital images for 
screening exudative 
AMD were highly 
sensitive, specific, and 
showed high positive 
predictive and negative 
predictive value in 
confirming or excluding 
the presence of 
neovascularization

Saari et al. 
[29] 2004

108
(70)

2! C
M
and
1! RF
M

Topcon 
TRC 50 IA

50 °
and
50 °

768 ! 576
and
1,320 ! 1,032

Modified ETDRS 
classification

Digital 50º RF and 2 ! 
45º or 50º digital color 
images are suitable for 
DR screening
The hand-held camera 
(MediTell) does not 
fulfill the needs for DR 
screening

2! C
M

Canon 
CR6–45NM

45 ° 2,160 ! 1,440

MediTell 20 ° 768 ! 576 JPEG

Schiffman
et al. [56] 
2005

222
(111)

15 
fields

DigiScope 55 °
to
60 °

930 diagonal 
pixels (19 °)

Com-
pressed
JPEG 
2000
(9:1 to 
15:1)

7-field 35-mm ST 
color (ETDRS)

30 ° System may be useful to 
screen for DR

Somani et 
al. [57] 
2005

203
(103)

3! C
M
ST

Topcon 
TRC-
NW6S

Nikon
D100

45 ° 3,008 !
2,000

Com-
pressed
JPEG
(16:1)

3! C 35-mm 
film slide
M ST

Zeiss FF450
(Kodak 
Ektachrome)

30 ° Good correlation for the 
identification of 
moderate to advanced 
AMD

Chun et al. 
[58] 2007

231
(120)

1! C
NM

Canon 
CR6-
45NM

Sony 
DXC390 
3CCD

45 ° 800 ! 480 Com-
pressed 
JPEG
(7:1)

Slit lamp 
biomicroscopy 
and indirect 
ophthalmoscopy 
M

A single 45 °, 
nonmydriatic, digital 
image is not reliable as 
the sole modality for DR 
screening

Lopez-
Bastida et 
al. [59]
2007

1,546
(773)

2! 
NM

Topcon 
TRC-NW6S

30 °
and
45 °

Slit lamp 
biomicroscopy 
and indirect 
ophthalmoscopy 
M

Nonmydriatic camera is 
an effective option in 
community based 
screening programs for 
DR

Hubbard 
et al. [60]
2008

605
(0)

<several> <several> 30° (1) Com-
pressed 
JPEG
(20:1)

Digitized color 
slide films
(2)

<several>
(Kodak 
Ektachrome 
100 ASA)

In AREDS2, the best 
digital images matched 
the best film

C  = Color; RF = red-free; ST = stereo; NS = non-stereo; M = mydriatic; NM = nonmydriatic. 
(1) Images were received in different resolutions, but all were saved as compressed JPEG with a resolution of 2,912 ! 2,480 pixels. (2) Slide films were 

digitized at 3,400 ! 2,300 pixel resolution.
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duced. They also concluded that ‘This image validation 
study demonstrates the value of the JVN [Joslin Vision 
Network] system for nonmydriatic electronic retinal im-
aging and the determination of clinical diabetic retinop-
athy compared with gold standard ETDRS seven stan-
dard field 35-mm stereoscopic color 30° fundus photog-
raphy’.

  Leeuwen et al.  [26]  compared the quality and reliabil-
ity of grading age-related maculopathy in 137 eyes of 91 
patients using stereo digital images and stereo 35-mm 
color transparencies. Both 35-mm film and digital im-
ages of 35° FOV were obtained with a Topcon TRC-50EX 
fundus camera equipped with a Sony HAD 3CCD color 
video camera. Digital image resolution was 800  !  600 
pixels. The authors concluded that digital images were as 
good as 35-mm film for grading age-related maculopa-
thy.

  Similarly, Massin et al.  [52]  compared the results of 
fundus photography through a nonmydriatic digital 
camera with results of ETDRS retinal photographs for the 
detection of DR. Forty-five-degree color fundus photo-
graphs of the eyes (147 eyes) of 74 patients were taken us-
ing a Topcon nonmydriatic camera without pupil dila-
tion (Sony 3CCD DXC-950P digital camera). Digital im-
ages were captured at 800  !  600 pixel resolution in true 
color (24 bits). ETDRS 35-mm color slides were taken 
with a Canon CF 60 UV camera and were used as refer-
ence images for the detection of DR. Massin et al. con-
cluded that ‘… photographs taken by the Topcon TRC-
NW6S non-mydriatic camera, without pupillary dilation, 
are suitable for DR screening’.

  Lawrence  [54]  evaluated the accuracy of two digital 
imaging systems, with two different resolutions, in de-
tecting DR. A group of patients (n = 151) was imaged with 
a 640  !  480 pixel resolution (45° FOV) while another 
group of patients (n = 103) was imaged with an 800  !  600 
pixel resolution (45° FOV), in addition to the seven-field 
ETDRS (used as gold standard). The author concluded 
that the 800  !  600 resolution system ‘… offers an accu-
rate method of detecting diabetic retinopathy, provided 
there is adequate pupillary dilation and three retinal im-
ages are taken’.

  In the work of Saari et al.  [29] , three digital fundus 
cameras were assessed for DR screening. Digital color im-
ages and red-free retinal images were obtained with a 
Topcon TRC 50IA, a Canon CR6-45NM and a Meditell 
(a hand-held digital color video camera) in 70 patients 
with diabetes and control subjects. A total of 427 images 
were evaluated. Mydriatic ophthalmoscopy and color 
and red-free images were taken as reference standards. 

For all types of digital imaging, the pupils were dilated. 
Two-color 50° FOV images of 768  !  575 pixel resolution, 
one red-free image and one black-and-white image of 
1,320  !  1,032 pixel resolution were obtained with a Top-
con TRC 50IA camera. Two 45° FOV color images of 
2,160  !  1,440 pixel resolution were obtained with a Can-
on CR6-NM fundus camera. The hand-held digital video 
camera was used to capture 20° FOV color images of 768 
 !  576 pixels that were saved as JPEG images. According 
to the authors, one digital 50° red-free and two 50° or 45° 
color images are suitable for DR screening. The hand-
held digital video camera, however, did not achieve this 
goal.

  The DigiScope system, which was developed to be 
used in primary-care physicians’ offices, was presented 
by Zeimer et al.  [46] . Schiffman et al.  [56]  used the Digi-
Scope to compare digital retinal imaging obtained with 
seven-field color fundus photography for the detection of 
DR. Images from the DigiScope were used in the JPEG 
2000 image file format with a compression ratio of 9:   1 to 
15:   1. In this study, 15 slightly overlapping fields provided 
a 55–60° FOV centered on the maculae of 222 eyes (111 
patients); each of the 15 fields corresponded to 930 diago-
nal pixels for a 19° FOV  [46] . The agreement found be-
tween the DigiScope and the seven-field photography ‘ … 
indicates that the DigiScope may be useful to screen for 
diabetic retinopathy’.

  A total of 203 eyes of 103 patients with a diagnosis of 
age-related macular degeneration (AMD) were enrolled 
in the study of Somani et al.  [57] , who compared the sen-
sitivity and specificity of stereoscopic digital photogra-
phy of the dilated pupil with a 45° FOV nonmydriatic 
camera with those of 35-mm slide film photography in 
the identification of AMD. Digital images were saved as 
compressed JPEG image files. Images obtained were also 
of 45° FOV with a nonmydriatic fundus camera (Topcon 
TRC-NW6S equipped with a digital camera Nikon D100 
of 3,008  !  2,000 pixel resolution). Captured tag image 
file format (TIFF) files of 17.2 megabytes (of true color) 
were thereafter compressed to JPEG images of 1.1-mega-
byte file size. Stereoscopic images were viewed through 
liquid crystal display shutter glasses on a 21-in monitor of 
1,024  !  768 pixels, i.e. at a lower resolution than the im-
age acquired. On the other hand, a Zeiss FF450 fundus 
camera using Ektachrome Kodak film slides was used to 
obtain 30° film photographs of the optic disk and macu-
la. The results of the study allowed the authors to con-
clude that ‘High-resolution stereoscopic, mydriatic, 45° 
digital images captured with a nonmydriatic camera and 
JPEG compressed correlate well with stereoscopic slide 
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film photographs in the identification of moderate to ad-
vanced AMD (AREDS level 3a or greater)’. Although a 
good correlation was found, it was observed only for 
moderate to advanced AMD stages.

  Hubbard et al.  [60]  analyzed the brightness, contrast 
and color balance of digital versus film retinal images to 
propose a model tailored for the evaluation of AMD. 
They considered 3-megapixel systems, at 30° FOV, as ac-
ceptable to image AMD retinas where ‘… drusen as small 
as 32  � m diameter …’ can be found although resolutions 
over a 6-megapixel system are preferred  [60] . They con-
cluded that ‘In AREDS2, the best digital images matched 
the best film. Overall, however, digital provided lower 
contrast of retinal detail’.

  Apart from the work done by Liesenfeld et al.  [28] , ad-
ditional comparisons between digital imaging and other 
diagnostic techniques of direct observation performed 
during the last decade were analyzed.

  Razvi et al.  [50]  reported on the advantage of combin-
ing digital imaging and ophthalmoscopy in eye screen-
ing. They found that this combination was superior to 
either digital imaging or ophthalmoscopy alone in de-
tecting DR. Using a standard 45° FOV Canon 45NM ret-
inal camera equipped with a Sony HAD 3CCD color vid-
eo camera, they imaged 400 eyes of 200 patients with type 
1 or type 2 diabetes and found that ‘Screening systems 
using digital imaging in which images are collected and 
later viewed without patient present will miss the added 
benefit of added ophthalmoscopy as highlighted in this 
study’.

  A similar study, which was performed by Rudnisky et 
al.  [44] , compared high-resolution stereoscopic digital 
photography to contact lens biomicroscopy for the diag-
nosis of clinically significant macular edema (CSME). A 
total of 207 eyes of 105 patients had complete data sets for 
both diagnostic modalities. The digital images were eval-
uated (at least) 2 months thereafter by a masked grader.

  Special care was taken in digital imaging acquisition 
and storage. A 30°  FOV Zeiss FF450 fundus camera 
equipped with a ‘Kodak/Canon DCS560’ digital camera, 
a 6-megapixel digital camera (image resolution of 3,040 
 !  2,008 pixels) were used. In addition, images were saved 
uncompressed (TIFF image file format), thus preserving 
the information captured in 17.4-megabyte image files. 
Images were later viewed using 3D viewing software on a 
computer monitor with a screen resolution of 1,024  !  
768 pixels only. This fact was addressed by the authors in 
the discussion. They concluded that ‘High-resolution ste-
reoscopic digital photography is both sensitive and spe-
cific when identifying CSME and correlates well with the 

accepted standard of contact lens biomicroscopy for the 
diagnosis of CSME’.

  Herbert et al.  [51]  compared the detection of DR in 
digital images with slit lamp biomicroscopy. Digital im-
ages of 45° FOV were obtained using a Topcon TRC 
NW5-S with an 800  !  600 pixel Sony camera. The im-
ages were saved as JPEG images compressed with ‘… loss 
of quality, in this system estimated at 10%’. The authors 
concluded that ‘… a single digital fundal image is insuf-
ficient for screening purposes’.

  Sabti et al.  [53]  assessed the correlation between fun-
dus digital image and clinical examination. In addition, 
they assessed the possibility of developing a screening 
program for the early detection of sight-threatening DR 
using a Canon CF 60 UV fundus camera. Fifty-one pa-
tients (92 eyes) were enrolled in this study. All patients 
underwent digital fundus photography of 30° and 60° 
FOV. The authors concluded that ‘… digital images pro-
vide an efficient method for diagnosing and classifying 
sight-threatening DR, particularly proliferative diabetic 
retinopathy (PDR)’. They also noted that ‘… agreement 
between the digital fundus camera and clinical examina-
tion by an ophthalmologist for diabetic maculopathy de-
tection, though substantial statistically, was not very sat-
isfactory’.

  Pirbhai et al.  [55]  evaluated mydriatic nonstereo digi-
tal color fundus photographs as a screening tool for the 
identification and classification of exudative AMD. A to-
tal of 223 fundus images were obtained from 118 patients. 
Fundus photographs were taken at the time of fluores-
cein angiography with a Topcon TRC 50IX at a resolution 
of 1,024  !  1,024 pixels. There was no information on the 
sensor used. The authors stated in their conclusion that 
‘As a screening tool in exudative AMD, digital color fun-
dus photographs were highly sensitive, specific, and 
showed high positive predictive and negative predictive 
value in confirming or excluding the presence of neovas-
cularization’. In addition, ‘Very few treatable lesions are 
missed using telemedicine in age-related macular degen-
eration’.

  The conclusions of Chun et al.  [58]  differed from those 
of Saari et al.  [29]  and Lawrence  [54] . Chun et al. aimed 
‘… to evaluate a digital imaging system for diagnosing 
and grading diabetic retinopathy (DR) and cystoid macu-
lar edema (CME)’. To this end, an ophthalmologist prac-
ticing at a distance graded 231 nonmydriatic color fundus 
images from 120 patients (45° FOV); the results were 
compared with dilated ophthalmoscopy performed by a 
retinal specialist. The level of agreement was ‘moderate’ 
( �  = 0.44 and 0.60, respectively) for both DR and clini-
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cally significant macular edema. The authors therefore 
concluded that ‘A single 45°, nonmydriatic, digital image 
is not reliable as the sole modality for DR screening’. Nev-
ertheless, they suggested that the 0.38-megapixel (800  !  
480 pixels) low-resolution camera might be partially re-
sponsible for the moderate agreement, and that ‘… digital 
fundus image review may serve as a useful method to 
screen for DR in patients with limited access to an oph-
thalmologist’.

  In a study performed by Lopez-Bastida et al.  [59] , 773 
patients (1,546 eyes) diagnosed with type 1 or type 2 dia-
betes underwent screening for DR in a prospective obser-
vational study assessing the effectiveness of a nonmydri-
atic digital camera (45–30° FOV photographs) as com-
pared to the reference method for screening DR. Digital 
images were obtained with a nonmydriatic digital retinal 
camera Topcon TRC-NW6S, but there was no informa-
tion regarding image resolution. The authors considered 
‘… digital retinal imaging with a non-mydriatic camera 
as an effective option in community-based screening 
programmes for diabetic retinopathy’.

  As illustrated in this section, the use of digital imaging 
versus film or direct imaging techniques was not readily 
accepted for diagnosis and screening in ocular fundus 
imaging. However, recent work with larger data sets and 
at higher image resolution has shown that the feasibility 
of digital imaging is comparable to that of film or direct 
imaging techniques and offers more advantages in tele-
medicine and data storage.

  It is noteworthy that, in contrast to anterior eye imag-
ining, the effect of digital image resolution and compres-
sion was not studied for eye fundus imaging  [61] .

  Retinal Image Processing and Analysis 

 In the above survey of digital versus nondigital imag-
ing, we focused on the relationship between the two tech-
niques and their potential impact on diagnosis according 
to several studies. In this section, we survey computer-
aided detection (CAD) and associated procedures from 
image improvement (e.g. correction of nonuniform illu-
mination) to structure segmentation (e.g. optic disk and 
vascular network) and grading (e.g. DR grading). Image- 
and information-processing techniques are required for 
the quantitative analysis of images in a CAD system  [38] , 
a concept that applies to different medical fields. One as-
pect, in particular, needs mentioning: the distinction be-
tween CAD and computer-aided diagnosis (CADx). CAD 
focuses on the detection and location of diseased areas 

while CADx focuses on diagnostic classification or dis-
ease recognition  [62] . Unfortunately, most papers do not 
distinguish between them, and commonly use CAD for 
both meanings [e.g. ref.  63 ].

  We have already mentioned that digital imaging en-
ables easy acquisition and transmission to reading cen-
ters. These digital images also need to be analyzed for 
their ability to detect the presence of any signs of disease 
and classify a retina as healthy or diseased  [35, 64] . In ad-
dition, for images of diseased retinas, further analysis 
may be required to grade the lesions according to disease 
stage or type.

  The large number of images being currently acquired 
has the potential for overloading grading centers and in-
creasing costs. Therefore, any process that may facilitate 
or automate grading tasks is of great interest. As stated by 
Abràmoff et al.  [1] , the main screening application fo-
cuses on the early detection of DR although screening 
programs exist for the detection of glaucoma and AMD, 
among others, and these screening programs generate a 
quite large number of digital images to deal with.

  The large majority of systems rely on the identification 
of ‘… red or dark and yellow or bright lesions within the 
retina …’  [65] . On the other hand, venous caliber abnor-
malities, intraretinal microvascular abnormalities and 
retinal neovascularization are difficult to detect, and 
thus the detection rates are low  [65] .

  The areas called ‘computer processing and analysis of 
medical images’ are quite broad and range from image 
acquisition and enhancement to compression and storage 
 [66] . Again, the number of papers and the different ap-
proaches taken for each of these subjects prevent a full 
discussion of these topics here. Therefore, some represen-
tative papers have been selected to provide a global over-
view of this research area.

  Automated Detection of DR 

 A computer-based image analysis and statistical clas-
sification was published by Ege et al.  [67] . The authors 
described a tool for the automatic analysis of color fundus 
digital images of 50° FOV with a resolution of 640  !  480 
pixels from a three-CCD sensor camera. Thereafter, the 
results were analyzed and classified by the authors, and 
their performance was compared by three different clas-
sifiers: a Bayesian, a Mahalanobis and a K nearest neigh-
bor (KNN) classifier. Four abnormalities were consid-
ered: microaneurysms, hemorrhages, exudates and cot-
ton wool spots, for which the Mahalanobis distance 
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classifier yielded the best results, with sensitivities of 69, 
83, 99 and 80%, respectively.

  A method for the detection of microaneurysms in 50° 
FOV red-free fundus images was presented by Hipwell et 
al.  [68] . Two red-free images were obtained per eye using 
a Topcon TRC-50XT fundus camera, with an image reso-
lution of 1,024  !  1,024 pixels and an ‘approximate pixel 
resolution of 13  � m’. A sensitivity and specificity of 81 
and 93%, respectively, were achieved in the detection of 
images containing microaneurysms.

  Walter et al.  [69]  presented a new algorithm for the 
detection of exudates. They first located the optic disk 
and identified exudates on the green channel of the color 
fundus photograph. A sensitivity of 92.8% was achieved.

  A quantitative index of diabetes was proposed by 
Cheng and Huang  [70]  based on the fractal dimension of 
the vascular distribution. The rationale was based on the 
fact that the fractal dimension of the retinal vascular dis-
tribution of patients with severe diabetes appears to be 
greater than that of a healthy retina.

  Larsen et al.  [71]  evaluated the performance of the Ret-
inaLyze System (Retinalyze A/S, Hørsholm, Denmark), a 
system intended for the automatic detection of red lesions 
in color fundus photographs. The system was able to cor-
rectly identify 90% of patients with retinopathy and 81% 
of patients without retinopathy.

  Another work from the same group  [72]  demonstrated 
a specificity of 71% and a sensitivity of 96% in detecting 
DR in a larger set of images.

  Usher et al.  [73]  proposed a tool for DR screening from 
digital color fundus photographs. 95% sensitivity was 
achieved, with 46% specificity in detecting any retinopa-
thy. The software was able to identify microaneurysms, 
hemorrhages, exudates, drusen, and other (unspecified) 
lesions.

  In a study by Lalonde et al.  [74] , the RetsoftPlus soft-
ware was evaluated as a tool for retinal image analysis. 
This software was intended to be multipurpose; it includ-
ed the detection of microaneurysms and exudates, among 
other functions, as well as image coregistration. The sys-
tem achieved a sensitivity of 90% and a specificity of 75% 
in detecting microaneurysms and a sensitivity of 100% 
and a specificity of 87% in detecting exudates.

  Li and Chutatape  [75]  used principal-component anal-
ysis to detect the optic disk in color fundus images of the 
human retina and a novel approach to detect exudates. In 
addition, the authors used a fundus coordinate system to 
provide a better description of features within the retinal 
images.

  A method for the classification of red lesions (micro-
aneurysms and hemorrhages) from color fundus photo-
graphs of the human retina was presented by Niemeijer 
et al.  [76] . In this work, a KNN classifier was applied to 
classify lesions as red lesions, and the system achieved a 
sensitivity of 100% and a specificity of 87%. The comput-
ing time per image was about 15 min.

  A fully automated approach for the detection and clas-
sification of changes in a time series of color fundus im-
ages was described by Narasimha-Iyer et al.  [77] . (A sur-
vey on image change detection algorithms can be found 
in Radke et al.  [78] .) The authors applied a coregistration 
process to compare changes in the appearance of the eye 
fundus over time and a Bayesian detection and classifica-
tion algorithm to classify the differences. The system 
achieved a performance of 99% correctly classified chang-
es on a set of nonproliferative and proliferative DR fundus 
images.

  Quellec et al.  [79]  proposed a new scheme for the de-
tection of microaneurysms on color fundus photographs 
and fluorescein angiograms. The method is based on 
wavelet decomposition. The Haar wavelet provided the 
best results, with a sensitivity of 88% and a specificity of 
96%.

  In the work of Singalavanija et al.  [80] , a large series of 
images from healthy retinas and retinas diagnosed with 
DR was used to test a system capable of detecting the ret-
inal vascular network, optic disk and fovea. In addition, 
the system was able to detect diabetic features such as 
exudates, hemorrhages, microaneurysms and cotton 
wool spots. The system achieved a sensitivity of 75% and 
a specificity of 83%, respectively.

  Larsen et al.  [81]  presented a retrospective cross-sec-
tional study using digitized 35-mm color fundus slides 
from a set of patients referred to a DR screening clinic
for photocoagulation treatment. Two photographs were 
used: one centered on the fovea and one centered on the 
optic disk. The process automatically detected red and 
bright lesions following detection of the vascular network 
and the optic disk. The authors reported 100% sensitivity 
in detecting any abnormality.

  An information fusion system for DR computer-aided 
detection/diagnosis was assessed by Niemeijer et al.  [63] . 
While most systems focus on detecting a particular lesion 
type, the system studied by Niemeijer et al. aims at the 
integration of complementary detection systems. The au-
thors concluded that a supervised fusion technique, ei-
ther alone or associated with a ‘likelihood distribution 
normalization (PPDN)’, is ‘superior over other fusion 
methods’ for the type of lesions considered  [63] , with a 
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receiver operator characteristic area under the curve of 
0.881.

  Abràmoff et al.  [82]  compared the performance of au-
tomated DR detection using two different algorithms on 
a large scale (over 16,600 patient visits, two fundus im-
ages from each eye). In this work, the algorithm that won 
the 2009 Retinopathy Online Challenge Competition 
was compared with the algorithm in use, i.e. EyeCheck 
 [82] . The retinas of patients were imaged with nonmyd-
riatic digital retinal cameras (Topcon NW100, Topcon 
NW200, or Canon CR5-45NM) at 18 different centers. 
Different settings were used as well: 45° FOV with 640  !  
480 pixels, 35° FOV with 768  !  576 pixels, 35° FOV with 
1,792  !  1,184 pixels, and 35° FOV with 2,048  !  1,536 
pixels. All images were JPEG compressed (at the mini-
mum compression setting available) and were resampled 
to 640  !  640 pixels before processing. The results showed 
that ‘… further improvements in detection performance 
cannot be differentiated from best clinical practices, be-
cause the performance of competitive algorithm develop-
ment now has reached the human intrareader variability 
limit’. It should be noted that these algorithms, as most of 
the ones intended for this sort of application, were opti-
mized to recommend referral of patients with any form 
of DR to an ophthalmologist, hence the excellent perfor-
mance achieved.

  A prior study (2 years before) by the same group used 
the same dataset  [83] . In that study, the authors had con-
cluded that ‘Automated detection of diabetic retinopathy 
using published algorithms cannot yet be recommended 
for clinical practice’, demonstrating the fast pace in the 
progression of the techniques to automatically detect DR 
from eye fundus images.

  Other noninvasive approaches to diagnose DR from 
fundus photographs were evaluated in another study 
 [84] , in which DR was detected by focusing on microan-
eurysms and exudates (counting and location) in color 
fundus images. The study was thus not tailored for isch-
emia.

  In a recent paper, Quellec et al.  [85]  focused on the de-
tection of lesions from retinal images, in particular in the 
detection of microaneurysms (the first sign of DR) and 
drusen (the hallmark of AMD). A set of optimal filters 
representing the typical lesions to be detected in addition 
to negative and positive lesion confounders was devel-
oped. Lesions were classified using a classifier (e.g. KNN 
classifier), whereby a performance similar to previous 
methods from the same group was achieved although 
much faster (less than 1 s per image)  [85] .

   Table 2  summarizes the studies performed and includ-
ed in this review. Of particular interest are the differenc-
es between the imaging modalities, the number of im-
ages per eye, and the differences in image resolution. Six 
studies have not disclosed the FOV.

  Automated Identification of DR Stages 

 Cheng et al.  [70]  reported on a method for the classi-
fication of patients with diabetes into four groups of DR: 
normal, slight, medium and severe DR. In this study, 92 
images were analyzed, from which 75 were used as train-
ing set. The authors relied on the fractal dimension of the 
retinal vascular network in addition to ‘lacunarity’, a pa-
rameter that describes the characteristics of fractals hav-
ing the same dimension but different appearances. A set 
of classification schemes was analyzed, such as the back-
propagation algorithm, the radial basis function net-
work, the genetic algorithms and the combination of 
multiple classifiers on a voting scheme, which allowed 
similar results to be achieved.

  Later, Lee et al.  [86]  assessed a system to detect hem-
orrhages and microaneurysms, hard exudates and cot-
ton wool spots to classify retinas as mild, moderate and 
severe nonproliferative DR (NPDR). The system was de-
signed for color fundus photographs taken at 45° FOV, 
two per eye, one centered on the fovea and one centered 
on the optic disk. Images were captured on film and 
were digitized to produce images of 512  !  512 pixels. 
Lee et al. proposed a classification according to the ab-
normalities detected: (1) no NPDR – no lesions detected; 
(2) questionable NPDR – lesions automatically detected 
are not definite; (3) early NPDR – at least one microan-
eurysm/hemorrhage but no hard exudates or cotton 
wool spots; (4) moderate NPDR – microaneurysms/
hemorrhages and hard exudates or cotton wool spots 
present, and (5) severe NPDF – presence of 20 or more 
microaneurysms/hemorrhages in each 4 midperipheral 
quadrants.

  In the work of Yun et al.  [87] , 124 retinal images were 
used: 29 from the normal group, 38 from the moderate 
group, 18 from the severe group and 39 from the prolif-
erative group. Hemorrhages, microaneurysms and the 
retinal vascular network were segmented using image-
processing techniques. A supervised learning technique 
was applied using the backpropagation algorithm for
the training of artificial neural networks. The system 
achieved a percentage of correctly classified cases of 73% 
(moderate NPDR) to 100% (normal); the number of test 
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Table 2. A utomated disease detection based on digital ocular fundus imaging

Study Eyes
(subjects), n

Imaging Camera
(sensor)

FOV Resolution Main features Aux features Classifiers

Ege et al.
[67] 2000 

–
(–)

Digital
1! C

–
(3CCD)

50 ° 640!480 Microaneurysms
Hemorrhages/Exudates
Cotton wool spots

Bayesian
Mahalanobis
KNN

Hipwell et al. 
[68] 2000 

–
(–)

Digital
2! RF

50 ° 1,024!1,024 Microaneurysms

Walter et al. 
[69] 2002

30
(–)

Digital
1! C
(green channel)

Topcon TRC 
50IA
(Sony 3CCD)

– 640!480 Exudates OD

Cheng and 
Huang 
[70] 2003

–
(–)

Digitized
FA

(1) (2) Vascular network Backprojection algorithm
Radial basis function 
network
Genetic algorithm
Voting scheme

Larsen et al.
2003 [71]

260
(137)

Digitized
C

60 ° (3) Red lesions
(microaneurysms and 
hemorrhages)

Larsen et al. 
[72] 2003

400
(200)

Digitized
C

45 ° (4) Red lesions
(microaneurysms and 
hemorrhages)

Usher et al. 
[73] 2004

–
(1,273)

Digital
1! C

Topcon 
TRC-NW5S
(Sony)

45 ° 570 ! 570 Microaneurysms
Hemorrhages/Exudates
Drusen/Other

OD Neural network

Lalonde et al. 
[74] 2004

46
(–)

Microaneurysms
Exudates

OD
Macula

Li and Chutatape 
[75] 2004

89
(–)

1! C 512 ! 512
(5)

Exudates OD
Fovea

Niemeijer et al. 
[76] 2005 

50+50
(–)

1! C Topcon 
TRC-50
(Canon CR5 
3CCD)

45 ° 768 ! 576 Red lesions
(microaneurysms and 
hemorrhages)

KNN

Narasimha-Iyer 
et al. [77] 2006 

22
(–)

Digitized
2! C

Topcon TRC 
50IA

Differences between 
image pairs

Vascular 
network
OD, Fovea

Bayesian

Quellec et al. 
[79] 2006

995
(–)

C and FA 1,280 ! 1,008 Microaneurysms

Singalavanija et 
al.  [80] 2006

600+300
(–)

1! C Topcon TRC 
50IA

50 ° 570 ! 550 Microaneurysms
Hemorrhages
Exudates
Cotton wool spots

Vascular 
network
OD
Fovea

Larsen et al.
[81] 2007 

–
(106)

Digitized
2! C

Canon CF-
60UV

60 ° (6) Red lesions
Bright lesions

Vascular 
network, OD

Niemeijer et al. 
[63] 2009 

15,000
(–)

Digital
4! C

(7) (8) (9) Red lesions
(microaneurysms and 
hemorrhages)
Bright lesions
(exudates, cotton wool 
spots and drusen)

KNN

C  = Color; RF = red-free; FA = fluorescein angiography; OD = optic disk; (1) Apparent FOV of 50 °. (2) FA digitized at 50–800 dpi. (3) Color film 
digitized at 1,350 dpi to achieve an image resolution of 1,947 ! 1,296 pixels. (4) Color film digitized at 1,350 dpi to achieve an image resolution of 1,448 
! 1,296 pixels. (5) Several image sources were used. All images were resized to 512 ! 512 pixels. (6) Color film digitized at 1,350 dpi. (7) Three cameras 
used: Topcon NW 100, Topcon NW 200 and Canon CR5-45NM. (8) The FOV varied between 35 ° and 45 °. (9) Image resolution ranged from 768 ! 576 
to 2,896 ! 1,944 pixels.
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cases was about one half the number for the training of 
artificial neural networks in each of the groups.

  Acharya et al.  [88]  applied nonlinear features of the 
high-order spectra to identify the different stages of DR. 
Specifically, they proposed to identify mild nonprolifera-
tive retinopathy, moderate nonproliferative retinopathy, 
severe nonproliferative retinopathy and proliferative ret-
inopathy, in addition to healthy cases. A set of 300 retinal 
photographs (60 photographs of each DR level and 60 
photographs of healthy retinas) were acquired using a 
Zeiss fundus camera with an image resolution of 256  !  
256 pixels. Images were corrected by histogram equaliza-
tion and features were extracted thereafter. A support 
vector machine classification scheme was applied to clas-
sify each photograph into one of the five different groups 
using 40 images per group as a training set and the re-
maining 20 images per group as the test set. This pro-
cessed scheme allowed for a correct classification of 82% 
of the cases (average; range: 75–90%).

  Approaches using fluorescein angiography were also 
considered. For example, Reznicek et al.  [89]  character-
ized ischemic versus nonischemic retinas of DR patients 
in vivo.

  Segmentation 

 The segmentation of structures is a fundamental step 
in retinal image processing and analysis, and thus the 
retinal vascular network is of paramount importance. 
First, any change in the vascular network indicates the 
onset or progression of retinal disorders. Second, im-
portant information is gained when associated findings 
such as microaneurysms are detected. In this way, the 
vascular network, optic disk, fovea, and microaneu-
rysms are presented as specific subtopics of the seg-
mented structure.

  Segmentation refers to the process of identification 
within the fundus image of the respective structure along 
with its location and shape. Bartling et al.  [90]  manually 
identified the location of the center of the macula and 
four points on the optic disk border (defining the shortest 
and longest diameter) to convert length measurement 
from pixels to metric distance (e.g. pixels to micrometers) 
to correct for differences in magnification. Thereafter, 
they used this technique to measure optic disk parame-
ters from digital fundus photographs.

  The importance of the retinal vascular network is 
clearly expressed in the work of Liew et al.  [91]  as the link 
between ‘… a range of retinal microvascular signs and 

both clinical and subclinical cerebrovascular, cardiovas-
cular, and metabolic outcomes’.

  Similarly, Lin et al.  [92]  refer to the possibility of early 
diagnosis of cardiovascular diseases based on measure-
ments of arterial vascular trees in the retina; the narrow-
ing of the arterial blood vessels in the retina is an indica-
tor of hypertension and atherosclerosis.

  The problem of classifying retinal vessels into veins 
and arteries following retinal vessel segmentation was 
addressed by Rothaus et al.  [93]  with a semi-automated 
process to propagate a user classification via a vascular 
graph.

  Vickerman et al.  [94]  proposed a method to quantify 
vessel diameter, vessel density, vessel branch point den-
sity, vessel length density and vessel area density using 
fluorescein angiography and a semi-automated process 
to compute arterial and venous trees, they demonstrated 
that several factors (e.g. vascular endothelial growth fac-
tor 165) induce changes in the vascular pattern that are 
important for the identification of the dominant molecu-
lar signaling. The application of this method to the inves-
tigation of branching patterns of the arterial and venous 
trees during the progression of DR can be found in the 
work of Parsons-Wingerter et al.  [95] .

  Along the lines of extracting information from the ret-
inal vascular network, the measurement of vessel width 
within the human retina was addressed in the work of Xu 
et al.  [96]  using a graph-based method. Fractal analysis is 
used as well for analyzing the retinal vascular network 
 [97–99] .

  Moreover, segmentation of the vascular network has 
applications in retinal montage and tracking  [101–102]  
although other approaches, not explicitly resorting to 
vessels can be used, as shown, for instance, by Meijering 
et al.  [103] .

  Vascular Network 

 Bartsch et al.  [104]  reported on a method to compute 
3D information on blood vessels in the living human eye. 
Simultaneous fluorescein and indocyanine green angi-
ographies were performed. The former method was used 
to visualize the retinal circulation, while the latter meth-
od allowed visualization of the retina and choroidal ves-
sels in the posterior pole. A prototype CSLO (Heidelberg 
Retina Angiograph) was used in this study to obtain an 
image resolution of 256  !  256 pixels. Blind deconvolu-
tion was applied to the set of confocal images. Though 
desirable, no real 3D vascular reconstruction was achieved 
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although a clear improvement on the axial resolution of 
the system was obtained.

  To determine vessel and nonvessel regions along a ves-
sel profile, a fuzzy C-means clustering algorithm has 
been applied  [105] . According to the authors, the advan-
tages of this approach were a virtually parameter-free 
process, the lack of an explicit model for the morphology 
of the vessels, and no use of edge information.

  A real-time system able to cope with resolution im-
ages of 1,024  !  1,024 pixels at a frame rate of 30 images 
per second was proposed by Can et al.  [106] . The core 
tracing algorithm was based on a set of six 2D correlation 
kernels. Seed points were automatically selected.

  Another real-time system described by Solouma et al. 
 [107]  was intended for real-time systems based on image 
resolutions of 640  !  480 pixels from 50° FOV. Detection 
of vessel boundaries was achieved using deformable 
models. Disclosed performance results were in the order 
of 300 ms of processing time.

  A review on vessel extraction techniques by Kirbas 
and Quek  [108]  provided a thorough overview of the 
complexity of the task. These authors considered six 
main categories: ‘(1) pattern recognition techniques, (2) 
model-based approaches, (3) tracking-based approaches, 
(4) artificial intelligence-based approaches, (5) neural 
network-based approaches, and (6) miscellaneous tube-
like object detection approaches’. Pattern recognition al-
gorithms were further divided into seven subcategories, 
while model-based approaches were divided into four 
subcategories. Even though many techniques were pre-
sented, the authors concluded that this was still a poten-
tial area for additional research.

  Jelinek et al.  [109]  characterized vessels in the vicinity 
of the optic disk from color fundus photographs. Blood 
vessels were therefore tracked from the optic disk bound-
ary using the 2D fitting of a ‘… physically inspired mod-
el to a local region of a vessel’. The segmented vascular 
network was thereafter classified into arteries and veins 
based on color and hue by means of a classification algo-
rithm.

  Anzalone et al.  [110]  investigated a segmentation pro-
cess suited for implementation on a digital signal proces-
sor. This two-step approach was applied to red-free fun-
dus images (green channel of the red-green-blue color 
image). The first step was devoted to vessel enhancement 
and the second step produced a binary image based on 
thresholding procedures. The system was able to process 
10 images of 400  !  400 pixels per second.

  Although a rich body of literature exists on the extrac-
tion of tubular structures in medical images, little focus 

has been given to the delineation of the vascular network 
as a whole, including its tree structure  [92] . To address 
this problem, Lin et al. improved on a previous vessel seg-
mentation algorithm and grouped extracted vessel seg-
ments based on a Kalman filter to ensure their continuity.

  A supervised classification process for the segmenta-
tion of retinal vessels from fluorescein angiograms was 
proposed by Vargas and Liatsis  [111 . This approach is
‘… based on the eigenvalue decomposition of the Hessian 
matrix and Fisher’s linear discriminant analysis’.

  Xu et al.  [96]  described a method to segment both ves-
sel edges simultaneously using a graph-based approach. 
An initial vascular network was required to build the 
graph.

  Another supervised method for blood vessel detection 
was proposed  [112]  using a neural network to classify pix-
els from color fundus images of DRIVE  [113]  and STARE 
 [114]  public databases.

  Several authors have suggested various methodologies 
to achieve the segmentation of the vascular network from 
fundus images. In a brief overview of gradient-based 
methods, Lam and Yan  [115]  considered the divergence 
of vector fields of the image, while other approaches used 
the gradient co-occurrence matrix  [116] , the Hessian ma-
trix and clustering algorithms  [117] , or curvature-based 
methods  [118] . Apart from gradient-based algorithms, 
several other techniques have been suggested: the use of 
appropriate wavelet transforms  [119, 120] , contourlets 
 [121]  or filters  [122] , region-growing methods  [123]  or de-
formable contours  [124] .

  Furthermore, recently published work has distin-
guished arteries from veins. This is important, as it is ex-
pected that DR affects arteries and veins differently, de-
pending on disease stage  [125] . A Bayesian classifier was 
proposed  [126] , whereby the arteries, the veins, the fovea 
and the retinal background were identified. In other 
studies  [127, 128] , a local approach around the optic disk 
was considered using color, contrast and anatomical fea-
tures. Li et al.  [129]  applied a piecewise Gaussian model 
especially adapted to the central reflex of the vessels as a 
filter on the image for the classification of retinal vessels. 
Azegrouz and Trucco  [130]  presented an automated 
tracking technique of the central retinal vein in retinal 
images. In another study, two-feature extraction and 
two-classification methods were compared to discrimi-
nate between arteries and veins based on support vector 
machines and neural networks  [131] . Rothaus et al.  [93]  
also introduced a method that uses a presegmented vas-
cular structure and propagates a user classification based 
on the vascular graph to classify the entire structure. 
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Moreover, Muramatsu et al.  [132]  developed a set of com-
puterized methods for the segmentation of retinal blood 
vessels to identify major vessel segments and classify 
them into arteries and veins.

  Optic Disk 

 Two other retinal structures, the optic disk and the 
fovea, have demonstrated changes  [133]  in the eye fundus, 
and several research groups have concentrated on locat-
ing the optic disk within eye fundus images. It was noted 
that two types of ‘segmentations’ could be found: seg-
mentations that only determine the location of the optic 
disk, e.g. optic disk center or enclosing circle or ellipse, 
and segmentations that compute the boundaries of the 
optic disk.

  Walter et al.  [69]  used the local gray level variation to 
locate the optic disk and the watershed transformation to 
find its boundaries.

  Foracchia et al.  [134]  described a method that is based 
on the fact that major retinal vessels converge at the optic 
disk, which thus controls the blood supply to the human 
retina. They proposed a geometrical parametric model 
based on previously segmented retinal vascular networks. 
Because it does not specifically search for the optic disk 
within the image, this process was able to identify the lo-
cation of the optic disk even if it is outside of the FOV.

  Other authors  [135]  relied on the appearance of the 
optic disk to identify its location within the ocular fundus 
image, ‘… usually appearing as a bright, approximately 
circular region intersected by blood vessels’ although 
these authors used the Hough transform, a well-known 
image processing technique, to identify circular forms 
within an image, following gradient determination using 
the Sobel differential operator. The optic disk search area 
was previously restricted to the area of confluence of ma-
jor retinal vessels, similar to the approach used by Forac-
chia et al.  [134] . Fleming et al.  [135]  also provided an ex-
tensive description of prior approaches in their report.

  A similar (although simplified) approach was taken by 
Sekhar et al.  [136]  using the Hough transform following 
morphological operations within the fundus image.

  Youssif et al.  [137]  proposed to locate the optic disk
‘… based on matching the expected directional pattern of 
the retinal blood vessels’. Vessels were initially segment-
ed, therefore providing vessel orientation in a method 
similar to that used by Foracchia et al.  [134] . The optic 
disk was then located by the direction of the optic disk-
matched filter (model).

  In addition to locating the optic disk, Welfer et al.  [138]  
determined optic disk boundaries. The initial location 
(region of interest) was based on the main vessel arcade, 
as in other reports cited here. In addition, a particular ap-
proach was used to place the main vessel arcade outside 
of the retinal vascular network that was initially segment-
ed. Following optic disk segmentation, its boundaries 
were computed based on morphological mathematical 
operators and the watershed transformation.

  Lu and Lim  [139]  applied a different approach to locate 
the optic disk based on its bright appearance in color fun-
dus photographs. Using a set of concentric lines with dif-
ferent directions, they evaluated the image variation 
along the multiple directions. The optic disk was thereaf-
ter located using the orientation of the line segment with 
the maximum or minimum variation. This approach has 
the major advantage of not requiring the retinal vascular 
network to be segmented.

  Segmentation of optic disk boundaries based on active 
contours was used in the work of Marrugo and Millán 
 [140]  following optic disk location based on ‘color math-
ematical morphology’.

  Fovea 

 The fovea is a key feature of the ocular fundus. Any 
changes in the appearance of the fundus gain extra im-
portance if they occur close to the fovea, where the pho-
toreceptors crucial to central vision are located. This im-
portance is clearly demonstrated in the definition of clin-
ically significant macular edema, whose classification is 
based on the distance between the center of the fovea and 
the region of macular edema.

  Because the fovea is very difficult to identify within 
the ocular fundus image using an automated system, the 
related body of research is smaller than for vascular net-
work and optic disk segmentation. The exact center of the 
fovea is difficult to identify on color fundus photographs 
even for a human grader. The task becomes easier on 
high-definition fluorescein angiograms, which show the 
foveal avascular zone.

  Ibañez and Simó  [141]  applied Bayesian statistical 
methods to identify the location of the fovea on fluores-
cein angiograms. In addition, the contour of the fovea 
was modeled using a unidimensional Markov chain. Two 
algorithms were used to estimate the contour of the fovea: 
simulated annealing and iterated conditional-mode algo-
rithms. This procedure was later applied by Simó and de 
Ves  [126] .
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  Fleming et al.  [135]  searched for the fovea using a tem-
plate. By computing the correlation coefficient between 
the image and the template in a region of interest based 
on the location of the optic disk and the major arcades, 
they could reduce the number of potential false-positive 
results. In addition, this region was also delimited based 
on the distance to the center of the fovea and on the di-
mension of the optic disk previously estimated for the 
same image.

  Microaneurysms 

 Microaneurysms are the first visible sign of DR and 
thus are important features that can be identified in fluo-
rescein angiograms (mostly) or color fundus photographs 
(more recently) using automated methods.

  Spencer et al.  [142]  used digitized fluorescein angio-
grams to develop a procedure for the automated detection 
of microaneurysms using a set of matched filters. The 
same research group improved their initial approach 
 [143]  by applying a region-growing algorithm to delin-
eate each candidate microaneurysm, followed by the 
analysis of size, shape and energy characteristics of each 
candidate lesion.

  A similar approach was proposed by Mendonça et al. 
 [144] . Fluorescein angiograms were preprocessed and en-
hanced, and objects were then segmented. Final micro-
aneurysms were validated based on local intensity, con-
trast and shape.

  Hipwell et al.  [68]  used red-free images. They prepro-
cessed digital ocular fundus images to correct intensity 
variations in the background and enhance small round 
features. The use of red-free images, a noninvasive imag-
ing modality, represents a major step towards the nonin-
vasive assessment of the eye fundus. 

  Similarly, microaneurysms were detected in color fun-
dus images of the human retina by Niemeijer et al.  [76, 
145] : this was the first step towards automated screening 
for DR. In their earlier study  [76] , they referred to “red le-
sions”, including microaneurysms and hemorrhages; lat-
er on  [145] , they distinguished them by size: ‘This method 
allowed for the detection of larger ‘red lesions’ (i.e. hem-
orrhages) in addition to the microaneurysms using the 
same system’.

  The importance of identifying microaneurysms for 
the correct assessment of DR and its progression was 
stressed by Bernardes et al.  [146]  and Nunes et al.  [147] .

  Retinal Analysis: Global Importance 

 It has been suggested that information on the eye fun-
dus is important in a variety of diseases, including heart 
diseases and stroke, hypertension, peripheral vascular 
disease and DR  [148] . Based on the studies of Can et al. 
 [106]  and Catros and Mischler  [149] , Al-Diri et al.  [148]  
devised a ‘junction resolution algorithm’ that forms a ret-
inal vascular graph from previously segmented retinal 
vessels, therefore resolving the connectivity of the vascu-
lar network. This connectivity was not fully solved using 
earlier segmentation algorithms of retinal vascular net-
works. Using self-organizing feature map, the algorithm 
assigned segment ends to local sets based on position and 
alignment, choosing the most plausible solution in terms 
of geometry.

  Other Imaging Modalities 

 Other digital imaging modalities of special interest to 
ophthalmology (see Acharya et al.  [7]  and Alabboud et al. 
 [8] ) include fluorescein angiography  [150] , indocyanine 
green angiography, fundus autofluorescence and multi-
focal electroretinography  [151] .

  Fluorescein angiography is especially useful in the 
management of DR and macular degeneration as it pro-
vides information on the retinal circulation and on the 
status of the blood-retinal barrier. Developments based 
on high-speed confocal scanning laser ophthalmoscopy 
brought new insights into the onset and progression of 
DR from its earliest to its most advanced stages  [152–158] .

  In this imaging modality, sodium fluorescein is intra-
venously administered to the patient, and the passage of 
fluorescein is registered throughout the retinal circula-
tion.

  In contrast to fundus photography, fluorescein angi-
ography is not based on the reflection of light from the 
eye fundus. Instead, a light beam of appropriate wave-
length is used to excite sodium fluorescein molecules that 
emit light at a longer wavelength. The peaks wavelengths 
of absorption and emission are 490 and 520 nm  [150]  or 
490 and 510 nm  [159] , respectively.

  Similarly, indocyanine green angiography  [103, 160–
164]  requires the administration of a dye, but it is tailored 
for imaging the choroidal circulation because of the 
wavelength used. With peak wavelengths of absorption 
and emission in the near-infrared (805 and 835 nm, re-
spectively), indocyanine green angiography allows great-
er transmission through the retinal pigment epithelium 
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and blood than the visible wavelength used in fluorescein 
angiography or color fundus photography  [2] .

  Fundus autofluorescence  [165–169]  is similar to fluo-
rescein angiography but does not require administration 
of a dye. It enables accumulation of lipofuscin, which is 
produced by the oxidation of unsaturated fatty acids  [21]  
and can then be imaged in the retinal pigment epitheli-
um. Although the peak wavelengths of absorption and 
emission are slightly different from those of sodium fluo-
rescein, the same set of filters can be applied.

  Each of these techniques can take advantage of SLO 
and CSLO techniques  [170–173] . Instead of illuminating 
and imaging the entire area simultaneously, the SLO 
technique illuminates only a spot in the eye fundus. The 

final image is then assembled from point images taken 
sequentially. By adding confocality, the CSLO system al-
lows the performance of SLO at different depths to obtain 
volumetric information from the ocular fundus.

  All these imaging modalities are complementary to 
ocular fundus photography as they gather different infor-
mation. However, as stressed in this review, compared 
with other imaging modalities, digital ocular fundus 
photography has the unique potential of becoming a 
prominent and widespread screening tool of ocular dis-
eases (in particular DR), with additional advantages for 
data storage. Its digital format also represents an advan-
tage for telemedicine and the application of automated 
processing for disease detection and staging.
 

 References 

  1 Abràmoff M, Garvin M, Sonka M: Retinal 
imaging and image analysis. IEEE Rev 
Biomed Eng 2010;   3:   169–208. 

  2 Bennett T, Barry C: Ophthalmic imaging to-
day: an ophthalmic photographer’s view-
point – a review. Clin Experiment Ophthal-
mol 2009;   37:   2–13. 

  3 Hofer H, Chen L, Yoon G, Singer B, Yamau-
chi Y, Williams D: Improvement in retinal 
image quality with dynamic correction of 
the eye’s aberrations. Opt Express 2001;   8:  
 631–643. 

  4 Issa P, Troeger E, Finger R, Holz F, Wilke R, 
Scholl H: Structure-function correlation of 
the human central retina. PLoS One 2010;   5:  
 1–9. 

  5 Cuspidi C, Sala C: Retinal wall-to-lumen ra-
tio: a new marker of endothelial function? J 
Hypertens 2011;   29:   33–35. 

  6 Patton N, Aslam T, MacGillivray T, Deary I, 
Dhillon B, Eikelboom R, Yogesan K, Consta-
ble I: Retinal image analysis: concepts, ap-
plications and potential. Prog Retin Eye Res 
2006;   25:   99–127. 

  7 Acharya R, Yun W, Yu W, Suri J: Imaging 
systems of human eye: a review. J Med Syst 
2008;   32:   301–315. 

  8 Alabboud I, Muyo G, Gorman A, Mordant D, 
McNaught A, Petres C, Petillot Y, Harvey A: 
New spectral imaging techniques for blood 
oximetry in the retina; in Depeursinge C 
(ed): Novel Optical Instrumentation for Bio-
medical Applications III. Proc SPIE-OSA 
Biomed Optics, Optical Soc Am, 2007, vol, 
6631, paper 6631_22. 

  9 Dimitrova G, Kato S: Color Doppler imaging 
of retinal diseases. Surv Ophthalmol 2010;  
 55:   193–214. 

 10 Jiao S, Jiang M, Hu J, Fawzi A, Zhou Q, Shung 
K, Puliafito C, Zhang H: Photoacoustic oph-
thalmoscopy for in vivo retinal imaging. Opt 
Express 2010;   18:   3967–3972. 

 11 Li Y, Cheng H, Duong T: Blood-flow mag-
netic resonance imaging of the retina. Neu-
roimage 2008;   39:   1744–1751. 

 12 Fujimoto J, Boppart S, Tearney G, Bouma B, 
Pitris C, Brezinski M: High resolution in 
vivo intra-arterial imaging with optical co-
herence tomography. Heart 1999;   82:   128–
133. 

 13 Fujimoto J: Optical coherence tomography: 
principles and applications. Rev Laser Eng 
2003;   31:   635–642. 

 14 Drexler W, Morgner U, Kärtner F, Pitris C, 
Boppart S, Li X, Ippen E, Fujimoto J: In vivo 
ultrahigh-resolution optical coherence to-
mography. Opt Lett 1999;   24:   1221–1223. 

 15 Drexler W, Morgner U, Ghanta R, Kärtner F, 
Schuman J, Fujimoto J: Ultrahigh-resolution 
ophthalmic optical coherence tomography. 
Nat Med 2001;   7:   502–507. 

 16 Leitgeb R, Hitzenberger C, Fercher A: Per-
formance of Fourier domain vs time domain 
optical coherence tomography. Opt Express 
2003;   11:   889–894. 

 17 Schmitt J: Optical coherence tomography 
(OCT): a review. IEEE J Sel Top Quantum 
Electron 1999;   5:   1205–1215. 

 18 Lim J, LaBree L, Nichols T, Cardenas I: A 
comparison of digital nonmydriatic fundus 
imaging with standard 35-millimeter slides 
for diabetic retinopathy. Ophthalmology 
2000;   107:   866–870. 

 19 Mead A, Burnett S, Davey C: Diabetic retinal 
screening in the UK. J R Soc Med 2001;   94:  
 127–129. 

 20 Teng T, Lefley M, Claremont D: Progress to-
wards automated diabetic ocular screening: 
a review of image analysis and intelligent 
systems for diabetic retinopathy. Med Biol 
Eng Comput 2002;   40:   2–13. 

 21 Yannuzzi L, Ober M, Slakter J, Spaide R, 
Fisher Y, Flower R, Rosen R: Ophthalmic 
fundus imaging: today and beyond. Am J 
Ophthalmol 2004;   137:   511–524. 

 22 Bour L, Koo L, Delori F, Apkarian P, Fulton 
A: Fundus photography for measurement of 
macular pigment density distribution in 
children. Invest Ophthalmol Vis Sci 2002;   43:  
 1450–1455. 

 23 Morgan J, Sheen N, North R, Choong Y, An-
sari E: Digital imaging of the optic nerve 
head: monoscopic and stereoscopic analysis. 
Br J Ophthalmol 2005;   89:   879–884. 

 24 Cideciyan A, Nagel J, Jacobson S: Modeling 
of high resolution digital retinal imaging. 
Proc Annu Int Conf IEEE Eng Med Biol Soc, 
Orlando, 1991, vol 13. 

 25 Scholl H, Dandekar S, Peto T, Bunce C, Xing 
W, Jenkins S, Bird A: What is lost by digitiz-
ing stereoscopic fundus color slides for mac-
ular grading in age-related maculopathy and 
degeneration? Ophthalmology 2004;   111:  
 125–132. 

 26 Leeuwen R, Chakravarthy U, Vingerling J, 
Brussee C, Hooghart A, Mulder P, Jong P: 
Grading of age-related maculopathy for epi-
demiological studies: are digital images as 
good as 35-millimeter slides? Ophthalmol-
ogy 2003;   110:   1540–1544. 

 27 Chakravarthy U, Walsh A, Muldrew A, Up-
dike P, Barbour T, Sadda S: Quantitative flu-
orescein angiographic analysis of choroidal 
neovascular membranes: validation and cor-
relation with visual function. Invest Oph-
thalmol Vis Sci 2007;   48:   349–354. 

 28 Liesenfeld B, Kohner E, Piehlmeierand W, 
Kluthe S, Aldington S, Porta M, Bek T, Ober-
maier M, Mayer H, Mann G, Holle R, Hepp 
K: A telemedical approach to the screening 
of diabetic retinopathy: digital fundus pho-
tography. Diabetes Care 2000;   23:   345–348. 



 Bernardes   /Serranho   /Lobo    Ophthalmologica 2011;226:161–181178

 29 Saari J, Summanen P, Kivela T, Saari K: Sen-
sitivity and specificity of digital retinal im-
ages in grading diabetic retinopathy. Acta 
Ophthalmol Scand 2004;   82:   126–130. 

 30 Chiang M, Keenan J, Starren J, Du Y, Schiff 
W, Barile G, Li J, Johnson R, Hess D, Flynn J: 
Accuracy and reliability of remote retinopa-
thy of prematurity diagnosis. Arch Ophthal-
mol 2006;   124:   322–327. 

 31 Kemper A, Wallace D, Quinn G: Systematic 
review of digital imaging screening strate-
gies for retinopathy of prematurity. Pediat-
rics 2008;   122:   825–830. 

 32 Saleh M, Schoenlaub S, Desprez P, Bourcier 
T, Gaucher D, Astruc D, Speeg-Schatz C: Use 
of digital camera imaging of eye fundus for 
telemedicine in children suspected of abu-
sive head injury. Br J Ophthalmol 2009;   93:  
 424–428. 

 33 Taylor C, Merin L, Salunga A, Hepworth J, 
Crutcher T, O’Day D, Pilon B: Improving di-
abetic retinopathy screening ratios using 
telemedicine-based digital retinal imaging 
technology. Diabetes Care 2007;   30:   574–578. 

 34 Shanmugam P, Rajesh R, Perumal E: A re-
versible watermarking with low warping: an 
application to digital fundus image. Proc Int 
Conf Comput Commun Eng (ICCCE), Kuala 
Lumpur, 2008, pp 472–477. 

 35 Narasimha-Iyer H, Can A, Roysam B, Tanen-
baum H, Majerovics A: Integrated analysis of 
vascular and nonvascular changes from col-
or retinal fundus image sequences. IEEE 
Trans Biomed Eng 2007;   54:   1436–1445. 

 36 Bressler N: Evaluating new retinal imaging 
techniques. Arch Ophthalmol 1998;   116:   521–
522. 

 37 Dhawan A, D’Alessandro B, Fu X: Optical 
imaging modalities for biomedical applica-
tions. IEEE Rev Biomed Eng 2010;   3:   69–92. 

 38 Doi K: Diagnostic imaging over the last 50 
years: research and development in medical 
imaging science and technology. Phys Med 
Biol 2006;   51:R5–R27. 

 39 Hoheisel M: Review of medical imaging with 
emphasis on X-ray detectors. Nuclear In-
struments and Methods in Physics Research 
Section A: Accelerators, Spectrometers, De-
tectors and Associated Equipment. Proc 7th 
Int Works Radiat Imaging Detect (IWORID), 
Grenoble, 2006, vol 563, pp 215–224. 

 40 Elsner A, Burns S, Weiter J, Delori F: Infrared 
imaging of sub-retinal structures in the hu-
man ocular fundus. Vision Res 1996;   36:   191–
205. 

 41 Fernández E, Unterhuber A, Považay B, Her-
mann B, Artal P, Drexler W: Chromatic ab-
erration correction of the human eye for ret-
inal imaging in the near infrared. Opt Ex-
press 2006;   14:   6213–6225. 

 42 Hutchinson A, McIntosh A, Peters J, O’Keeffe 
C, Khunti K, Baker R, Booth A: Effectiveness 
of screening and monitoring tests for diabet-
ic retinopathy – a systematic review. Diabet 
Med 2000;   17:   495–506. 

 43 Prasad S, Roy B: Digital photography in 
medicine. J Postgrad Med 2003;   49:   332–336. 

 44 Rudnisky C, Hinz B, Tennant M, Leon A, 
Greve M: High-resolution stereoscopic digi-
tal fundus photography versus contact lens 
biomicroscopy for the detection of clinically 
significant macular edema. Ophthalmology 
2002;   109:   267–274. 

 45 Szirth B, Shahid K, Zarbin M, Khouri A, 
Bhagat N: Digital retinal imaging for vision-
threatening diseases – an integrated ap-
proach to diagnostic screening with a non-
mydriatic camera. Business Briefing: Future 
Directions in Imaging 2006:53–55. 

 46 Zeimer R, Zou S, Meeder T, Quinn K, Vitale 
S: A fundus camera dedicated to the screen-
ing of diabetic retinopathy in the primary-
care physician’s office. Invest Ophthalmol 
Vis Sci 2002;   43:   1581–1587. 

 47 Indrajit I: Digital imaging and communica-
tions in medicine: a basic review. Comput 
Radiol 2007;   17:   5–7. 

 48 Henricsson M, Karlsson C, Ekholm L, Kaik-
konen P, Sellman A, Steffert E, Tyrberg M: 
Colour slides or digital photography in dia-
betes screening – a comparison. Acta Oph-
thalmol Scand 2000;   78:   164–168. 

 49 Bursell S, Cavallerano J, Cavallerano A,
Clermont A, Birkmire-Peters D, Aiello L,
Aiello L, Team JVNR: Stereo nonmydriatic 
digital-video color retinal imaging com-
pared with Early Treatment Diabetic Reti-
nopathy Study seven standard field 35-mm 
stereo color photos for determining level of 
diabetic retinopathy. Ophthalmology 2001;  
 108:   572–585. 

 50 Razvi F, Illahi W, Ryder R: Is digital retinal 
imaging alone sufficient as a screening tool 
for diabetic retinopathy? Pract Diabet Int 
2002;   19:   240–244. 

 51 Herbert H, Jordan K, Flanagan D: Is screen-
ing with digital imaging using one retinal 
view adequate? Eye (Lond) 2003;   17:   497–500. 

 52 Massin P, Erginay A, Mehidi A, Vicaut E, 
Quentel G, Victor Z, Marre M, Guillausseau 
P, Gaudric A: Evaluation of a new non-myd-
riatic digital camera for detection of diabetic 
retinopathy. Diabet Med 2003;   20:   635–641. 

 53 Sabti K, Raizada S, Wani V, Ajmi M, Gayed 
I, Sugathan T: Efficacy and reliability of fun-
dus digital camera as a screening tool for di-
abetic retinopathy in Kuwait. J Diabetes 
Complications 2003;   17:   229–233. 

 54 Lawrence M: The accuracy of digital-video 
retinal imaging to screen for diabetic reti-
nopathy: an analysis of two digital-video ret-
inal imaging systems using standard stereo-
scopic seven-field photography and dilated 
clinical examination as reference standards. 
Trans Am Ophthalmol Soc 2004;   102:   321–
340. 

 55 Pirbhai A, Sheidow T, Hooper P: Prospective 
evaluation of digital non-stereo color fundus 
photography as a screening tool in age-relat-
ed macular degeneration. Am J Ophthalmol 
2005;   139:   455–461. 

 56 Schiffman R, Jacobsen G, Nussbaum J, Desai 
U, Carey J, Glasser D, Zimmer-Galler I, 
Zeimer R, Goldberg M: Comparison of a dig-
ital retinal imaging system designed for de-
tection of diabetic retinopathy in the prima-
ry care physician’s office to stereo seven-field 
color fundus photography. Ophthalmic Surg 
Lasers Imaging 2005;   36:   46–56. 

 57 Somani R, Tennant M, Rudnisky C, Weis E, 
Ting A, Eppler J, Greve M, Hinz B, Leon A: 
Comparison of stereoscopic digital imaging 
and slide film photography in the identifica-
tion of macular degeneration. Can J Oph-
thalmol 2005;   40:   293–302. 

 58 Chun D, Bauer R, Ward T, Dick J, Bower K: 
Evaluation of digital fundus images as a di-
agnostic method for surveillance of diabetic 
retinopathy. Mil Med 2007;   172:   405–410. 

 59 Lopez-Bastida J, Cabrera-Lopez F, Serrano-
Aguilar P: Sensitivity and specificity of digi-
tal retinal imaging for screening diabetic 
retinopathy. Diabet Med 2007;   24:   403–407. 

 60 Hubbard L, Danis R, Neider M, Thayer D, 
Wabers H, White J, Pugliese A, Pugliese M; 
Group ARED2R: Brightness, contrast, and 
color balance of digital versus film retinal 
images in the Age-Related Eye Disease Study 
2. Invest Ophthalmol Vis Sci 2008;   49:   3269–
3282. 

 61 Peterson R, Wolffsohn J: The effect of digital 
image resolution and compression on ante-
rior eye imaging. Br J Ophthalmol 2005;   89:  
 828–830. 

 62 Luculescu M, Lache S: Computer-aided di-
agnosis system for retinal diseases in medi-
cal imaging. WSEAS Trans Syst 2008;   7:   264–
276. 

 63 Niemeijer M, Abràmoff M, Ginneken B: In-
formation fusion for diabetic retinopathy 
CAD in digital color fundus photographs. 
IEEE Trans Med Imaging 2009;   28:   775–785. 

 64 Nayak J, Acharya R, Bhat P, Shetty N, Lim T: 
Automated diagnosis of glaucoma using dig-
ital fundus images. J Med Syst 2008;   28:   107–
115. 

 65 Silva P, Cavallerano J, Aiello L, Aiello L: Tele-
medicine and diabetic retinopathy – moving 
beyond retinal screening. Arch Ophthalmol 
2011;   129:   236–242. 

 66 Duncan J, Ayache N: Medical image analysis: 
Progress over two decades and the challeng-
es ahead. IEEE Trans Patt Anal Mach Intell 
2000;   22:   85–106. 

 67 Ege B, Hejlesen O, Larsen O, Møller K, Jen-
nings B, Kerr D, Cavan D: Screening for dia-
betic retinopathy using computer based im-
age analysis and statistical classification. 
Comput Methods Programs Biomed 2000;  
 62:   165–175. 

 68 Hipwell J, Strachan F, Olson J, McHardy K, 
Sharp P, Forrester J: Automated detection of 
microaneurysms in digital red-free photo-
graphs: a diabetic retinopathy screening 
tool. Diabet Med 2000;   17:   588–594. 



 Digital Ocular Fundus Imaging:
A Review 

Ophthalmologica 2011;226:161–181 179

 69 Walter T, Klein J, Massin P, Erginay A: A 
contribution of image processing to the diag-
nosis of diabetic retinopathy-detection of 
exudates in color fundus images of the hu-
man retina. IEEE T Image Process 2002;   21:  
 1236–1243. 

 70 Cheng S, Huang Y: A novel approach to diag-
nose diabetes based on the fractal character-
istics of retinal images. IEEE Trans Inf Tech-
nol Biomed 2003;   7:   163–170. 

 71 Larsen N, Godt J, Grunkin M, Lund-Ander-
sen H, Larsen M: Automated detection of 
diabetic retinopathy in a fundus photo-
graphic screening population. Invest Oph-
thalmol Vis Sci 2003;   44:   767–771. 

 72 Larsen M, Godt J, Larsen N, Lund-Andersen 
H, Sjølie A, Agardh E, Kalm H, Grunkin M, 
Owens D: Automated detection of fundus 
photographic red lesions in diabetic retinop-
athy. Invest Ophthalmol Vis Sci 2003;   44:  
 761–766. 

 73 Usher D, Dumskyj M, Himaga M, William-
son T, Nussey S, Boyce J: Automated detec-
tion of diabetic retinopathy in digital retinal 
images: a tool for diabetic retinopathy 
screening. Diabet Med 2004;   21:   84–90. 

 74 Lalonde M, Laliberté F, Gagnon L: Retsoft-
Plus: A tool for retinal image analysis. Proc 
17th IEEE Symp Computer-Based Med Syst 
(CBMS’04). Bethesda, MD, USA, 2004. 

 75 Li H, Chutatape O: Automated feature ex-
traction in color retinal images by a model 
based approach. IEEE Trans Biomed Eng 
2004;   51:   246–254. 

 76 Niemeijer M, Ginneken B, Staal J, Suttorp-
Schulten M, Abràmoff M: Automatic detec-
tion of red lesions in digital color fundus 
photographs. IEEE Trans Med Imaging 
2005;   24:   584–592. 

 77 Narasimha-Iyer H, Can A, Roysam B, Stew-
art C, Tanenbaum H, Majerovics A, Singh H: 
Robust detection and classification of longi-
tudinal changes in color retinal fundus im-
ages for monitoring diabetic retinopathy. 
IEEE Trans Biomed Eng 2006;   53:   1084–1098. 

 78 Radke R, Andra S, Al-Kofahi O, Roysam B: 
Image change detection algorithms: a sys-
tematic survey. IEEE Trans Image Process 
2005;   14:   294–307. 

 79 Quellec G, Lamard M, Josselin P, Cazuguel 
G, Cochener B, Roux C: Detection of lesions 
in retina photographs based on the wavelet 
transform. Proc 28th IEEE EMBS Annu Int 
Conf, New York, 2006, pp 2618–2621. 

 80 Singalavanija A, Supokavej J, Bamroongsuk 
P, Sinthanayothin C, Phoojaruenchanachai 
S, Kongbunkiat V: Feasibility study on com-
puter-aided screening for diabetic retinopa-
thy. Jpn J Ophthalmol 2006;   50:   361–366. 

 81 Larsen M, Gondolf T, Godt J, Jensen M, 
Hartvig N, Lund-Andersen H, Larsen N: As-
sessment of automated screening for treat-
ment-requiring diabetic retinopathy. Curr 
Eye Res 2007;   32:   331–336. 

 82 Abràmoff M, Reinhardt J, Russell S, Folk J, 
Mahajan V, Niemeijer M, Quellec G: Auto-
mated early detection of diabetic retinopa-
thy. Ophthalmology 2010;   117:   1147–1154. 

 83 Abràmoff M, Niemeijer M, Suttorp-Schulten 
M, Viergever M, Russell S, Ginneken B: Eval-
uation of a system for automatic detection of 
diabetic retinopathy from color fundus pho-
tographs in a large population of patients 
with diabetes. Diabetes Care 2008;   31:   193–
198. 

 84 Singh N, Tripathi R: Automated early detec-
tion of diabetic retinopathy using image 
analysis techniques. Int J Comput App 2010;  
 8:   18–23. 

 85 Quellec G, Russell S, Abràmoff M: Optimal 
filter framework for automated, instanta-
neous detection of lesions in retinal images. 
IEEE Trans Med Imaging 2011;   30:   523–533. 

 86 Lee S, Lee E, Wang Y, Klein R, Kingsley R, 
Warn A: Computer classification of nonpro-
liferative diabetic retinopathy. Arch Oph-
thalmol 2005;   123:   759–764. 

 87 Yun W, Acharya U, Venkatesh Y, Chee C, 
Min L, Ng E: Identification of different stag-
es of diabetic retinopathy using retinal opti-
cal images. Inform Sci 2008;   178:   106–121. 

 88 Acharya R, Chua C, Yu W, Chee C: Applica-
tion of higher order spectra for the identifi-
cation of diabetes retinopathy stages. J Med 
Syst 2008;   32:   481–488. 

 89 Reznicek L, Kernt M, Haritoglou C, Kampik 
A, Ulbig M, Neubauer A: In vivo character-
ization of ischemic retina in diabetic reti-
nopathy. Clin Ophthalmol 2011;   5:   31–35. 

 90 Bartling H, Wanger P, Martin L: Measure-
ment of optic disc parameters on digital fun-
dus photographs: algorithm development 
and evaluation. Acta Ophthalmol 2008;   86:  
 837–841. 

 91 Liew G, Wang J, Mitchell P, Wong T: Retinal 
vascular imaging: A new tool in microvascu-
lar disease research. Circ Cardiovasc Imag-
ing 2008;   1:   156–161. 

 92 Lin K, Tsai C, Sofka M, Tsai C, Chen S, Lin 
W: Vascular tree construction with anatom-
ical realism for retinal images. Proc 9th IEEE 
Int Conf Bioinformatics and Bioeng, Tai-
chung, 2009. 

 93 Rothaus K, Jiang X, Rhiem P: Separation of 
the retinal vascular graph in arteries and 
veins based upon structural knowledge. Im-
age Vis Comput 2009;   27:   864–875. 

 94 Vickerman M, Keith P, McKay T, Gedeon D, 
Watanabe M, Montano M, Karunamuni G, 
Kaiser P, Sears J, Ebrahem Q, Ribita D, Hyl-
ton A, Parsons-Wingerter P: VESGEN 2D: 
automated, user-interactive software for 
quantification and mapping of angiogenic 
and lymphangiogenic trees and networks. 
Anat Rec 2009;   292:   320–332. 

 95 Parsons-Wingerter P, Radhakrishnan K, 
Vickerman M, Kaiser P: Oscillation of an-
giogenesis with vascular dropout in diabetic 
retinopathy by VESsel GENeration Analysis 
(VESGEN). Invest Ophthalmol Vis Sci 2010;  
 51:   498–507. 

  96 Xu X, Niemeijer M, Song Q, Sonka M, 
Garvin M, Reinhardt J, Abràmoff M: Vessel 
boundary delineation on fundus images us-
ing graph-based approach. IEEE Trans Med 
Imaging 2011;   99:   1. 

  97 Azemin M, Kumar D, Wong T, Kawasaki R, 
Mitchell P, Wang J: Robust methodology 
for fractal analysis of the retinal vascula-
ture. IEEE Trans Med Imaging 2011;   30:  
 243–250. 

  98 Masters B: Fractal analysis of the vascular 
tree in the human retina. Ann Rev Biomed 
Eng 2004;   6:   427–452. 

  99 Stosic T, Stosic B: Multifractal analysis of 
human retinal vessels. IEEE Trans Med Im-
aging 2006;   25:   1101–1107. 

 100 Becker D, Can A, Turner J, Tanenbaum H, 
Roysam B: Image processing algorithms for 
retinal montage synthesis, mapping, and 
real-time location determination. IEEE 
Trans Biomed Eng 1998;   45:   105–118. 

 101 Can A, Stewart C, Roysam B, Tanenbaum 
H: A feature-based, robust, hierarchical al-
gorithm for registering pairs of images of 
the curved human retina. IEEE Trans Patt 
Anal Mach Intell 2002;   24:   347–364. 

 102 Lin G, Stewart C, Roysam B, Fritzsche K, 
Yang G, Tanenbaum H: Predictive schedul-
ing algorithms for real-time feature extrac-
tion and spatial referencing: application to 
retinal image sequences. IEEE Trans 
Biomed Eng 2004;   51:   115–125. 

 103 Meijering E, Zuiderveld K, Viergever M: 
Image registration for digital subtraction 
angiography. Int J Comput Vis 1999;   31:  
 227–246. 

 104 Bartsch D, Mueller A, O’Connor N, Holmes 
T, Freeman W: 3-D reconstruction of blood 
vessels in the ocular fundus from confocal 
scanning laser ophthalmoscope ICG angi-
ography. Proc Int Conf Image Process, 
Manchester, 1996, vol 3, pp 687–690. 

 105 Tolias Y, Panas S: A fuzzy vessel tracking 
algorithm for retinal images based on fuzzy 
clustering. IEEE Trans Med Imaging 1998;  
 17:   263–273. 

 106 Can A, Shen H, Turner J, Tanenbaum H, 
Roysam B: Rapid automated tracing and 
feature extraction from retinal fundus im-
ages using direct exploratory algorithms. 
IEEE Trans Inf Technol Biomed 1999;   3:  
 125–138. 

 107 Solouma N, Youssef A, Badr Y, Kadah Y: A 
new real-time retinal tracking system for 
image-guided laser treatment. IEEE Trans 
Biomed Eng 2002;   49:   1059–1067. 

 108 Kirbas C, Quek F: Vessel extraction tech-
niques and algorithms: a survey. Proc 3rd 
IEEE Symp on Bioinformatics Bioeng, 
IEEE Computer Society, Washington, 2003. 

 109 Jelinek H, Depardieu C, Lucas C, Cornforth 
D, Huang W, Cree M: Towards vessel char-
acterisation in the vicinity of the optic disc 
in digital retinal images. Proc Image Vision 
Comput Conf. Otago, New Zealand, 2005. 



 Bernardes   /Serranho   /Lobo    Ophthalmologica 2011;226:161–181180

 110 Anzalone A, Bizzarri F, Camera P, Petrillo 
L, Storace M: DSP implementation of a low-
complexity algorithm for real-time auto-
mated vessel detection in images of the fun-
dus of the human retina. Proc IEEE Int 
Symp Circuits Syst (ISCAS), 2007, pp 97–
100. 

 111 Vargas R, Liatsis P: Vessel extraction in flu-
orescein angiograms of the human retina 
using a supervised classifier. Proc Dev E-
Syst Eng (DESE), London, 2010. 

 112 Marín D, Aquino A, Gegúndez-Arias M, 
Bravo J: A new supervised method for blood 
vessel segmentation in retinal images by us-
ing gray-level and moment invariants-
based features. IEEE Trans Med Imaging 
2011;   30:   146–158. 

 113 Research Section, Digital Retinal Image for 
Vessel Extraction (DRIVE) Database. Utre-
cht, The Netherlands, University Medical 
Center, Utrecht, Image Science Institute 
[Online]. Available: http://www.isi.uu.nl/
Research/Databases/DRIVE. 

 114 STARE ProjectWebsite. Clemson, SC, 
Clemson University [Online]. Available: 
http://www.ces.clemson.edu/ 

 115 Lam B, Yan H: A novel vessel segmentation 
algorithm for pathological retina images 
based on the divergence of vector fields. 
IEEE Trans Med Imaging 2008;   27:   237–246. 

 116 HongQing Z: Segmentation of blood ves-
sels in retinal images using 2D entropies of 
gray level-gradient cooccurrence matrix. 
Proc IEEE Int Conf Acoustics, Speech, Sig-
nal Process (ICASSP ‘04), Monterey, 2004, 
vol 3, pp 509–512. 

 117 Salem N, Salem S, Nandi A: Segmentation 
of retinal blood vessels based on analysis of 
the Hessian matrix and clustering algo-
rithm. Proc 15th Eur Signal Process Conf 
(EUSIPCO), Poznan, 2007, pp 428–432. 

 118 Garg S, Sivaswamy J, Chandra S: Unsuper-
vised curvature-based retinal vessel seg-
mentation. Proc 4th IEEE Int SympBiomed 
Imaging: From Nano to Macro (ISBI), 
Washington, 2007, pp 344–347. 

 119 Soares J, Leandro J, Cesar R, Jelinek H, Cree 
M: Retinal vessel segmentation using the 
2-D Morlet wavelet and supervised classifi-
cation. IEEE Trans Med Imaging 2006;   25:  
 1214–1222. 

 120 Cornforth D, Jelinek H, Cree M, Leandro J, 
Soares J, Cesar R: Evolution of retinal blood 
vessel segmentation methodology using 
wavelet transforms for assessment of dia-
betic retinopathy. Intell Evol Syst (SCI) 
2009;   187:   171–182. 

 121 Do M, Vetterli M: The contourlet trans-
form: an efficient directional multiresolu-
tion image representation. IEEE Trans Im-
age Process 2005;   14:   2091–2106. 

 122 Yedidya T, Hartley R: Tracking of blood 
vessels in retinal images using Kalman fil-
ter. Proc Digital Image Comput: Techn 
Appl (DICTA ‘08), Canberra, 2008, pp 52–
58. 

 123 Mendonça A, Campilho A: Segmentation 
of retinal blood vessels by combining the 
detection of center lines and morphological 
reconstruction. IEEE Trans Med Imaging 
2006;   25:   1200–1213. 

 124 Espona L, Carreira M, Penedo M, Ortega 
M: Retinal vessel tree segmentation using a 
deformable contour model. Proc 19th Int 
Conf Patt Recogn (ICPR), Tampa, 2008, pp 
1–4. 

 125 Roy M, Klein R, Janal M: Retinal venular 
diameter as an early indicator of progres-
sion to proliferative diabetic retinopathy 
with and without high-risk characteristics 
in African Americans with type 1 diabetes 
mellitus. Arch Ophthalmol 2011;   129:   8–15. 

 126 Simó A, de Ves E: Segmentation of macular 
fluorescein angiographies. A statistical ap-
proach. Patt Recogn 2001;   34:   795–809. 

 127 Chrástek R, Wolf M, Donath K, Niemann 
H, Michelson G: Automated calculation of 
retinal arteriovenous ratio for detection 
and monitoring of cerebrovascular disease 
based on assessment of morphological 
changes of retinal vascular system. Proc 
IAPR Works Machine Vision Appl, Nara, 
2002, pp 240–243. 

 128 Grisan E, Ruggeri A: A divide et impera 
strategy for automatic classification of reti-
nal vessels into arteries and veins. Proc 25th 
Annu Int Conf IEEE Eng Med Biol Soc, 
Cancun, 2003, vol 1, pp 890–893. 

 129 Li H, Hsu W, Lee M, Wang H: A piecewise 
Gaussian model for profiling and differen-
tiating retinal vessels. Proc Int Conf Image 
Process (ICIP), Barcelona, 2003, vol 1, pp 
I-1069–I-1072. 

 130 Azegrouz H, Trucco E: Max-min central 
vein detection in retinal fundus images. 
Proc IEEE Int Conf Image Process (ICIP), 
Atlanta, 2006, pp 1925–1928. 

 131 Kondermann C, Kondermann D, Yan M: 
Blood vessel classification into arteries and 
veins in retinal images. Proc SPIE Med Im-
aging, San Diego, 2007, p 6512. 

 132 Muramatsu C, Hatanaka Y, Iwase T, Haraa 
T, Fujita H: Automated detection and clas-
sification of major retinal vessels for deter-
mination of diameter ratio of arteries and 
veins. Proc SPIE. San Diego, CA, USA, 
2010, vol 7624, pp 76240J-1–76240J-8. 

 133 Pinz A, Bernögger S, Datlinger P, Kruger A: 
Mapping the human retina. IEEE Trans 
Med Imaging 1998;   17:   606–619. 

 134 Foracchia M, Grisan E, Ruggeri A: Detec-
tion of optic disc in retinal images by means 
of a geometrical model of vessel structure. 
IEEE Trans Med Imaging 2004;   23:   1189–
1195. 

 135 Fleming A, Goatman K, Philip S, Olson J, 
Sharp P: Automatic detection of retinal 
anatomy to assist diabetic retinopathy 
screening. Phys Med Biol 2007;   52:   331–345. 

 136 Sekhar S, Al-Nuaimy W, Nandi A: Auto-
mated localisation of retinal optic disk us-
ing Hough transform. Proc 5th IEEE Int 
Symp Biomed Imaging: From Nano to Mac-
ro (ISBI). Paris, France, 2008, pp 1577–1580. 

 137 Youssif A, Ghalwash A, Ghoneim A: Optic 
disc detection from normalized digital fun-
dus images by means of a vessels’ direction 
matched filter. IEEE Trans Med Imaging 
2008;   27:   11–18. 

 138 Welfer D, Scharcanski J, Kitamura C, Pizzol 
M, Ludwig L, Marinho D: Segmentation of 
the optic disk in color eye fundus images 
using an adaptive morphological approach. 
Comput Biol Med 2010;   40:   124–137. 

 139 Lu S, Lim J: Automatic optic disc detection 
from retinal images by a line operator. IEEE 
Trans Biomed Eng 2011;   58:   88–94. 

 140 Marrugo A, Millán M: Retinal image analy-
sis: preprocessing and feature extraction. J 
Phys Conf Ser 2011, p 274. 

 141 Ibañez M, Simó A: Bayesian detection of 
the fovea in eye fundus angiographies. Patt 
Recogn Lett 1999;   20:   229–240. 

 142 Spencer T, Phillips R, Sharp P, Forrester J: 
Automated detection and quantification of 
microaneurysms in fluorescein angio-
grams. Graefes Arch Clin Exp Ophthalmol 
1992;   230:   36–41. 

 143 Spencer T, Olson J, McHardy K, Sharp P, 
Forrester J: An image-processing strategy 
for the segmentation and quantification of 
microaneurysms in fluorescein angio-
grams of the ocular fundus. Comput 
Biomed Res 1996;   29:   284–302. 

 144 Mendonça A, Campilho A, Nunes J: Auto-
matic segmentation of microaneurysms in 
retinal angiograms of diabetic patients. 
Proc ICIAP, 10th Int Conf Image Analysis 
Process (ICIAP ’99). Venice, Italy, 1999, p 
728. 

145 Niemeijer M, Ginneken B, Cree M, Mizu-
tani A, Quellec G, Sánchez C, Zhang B, 
Hornero R, Lamard M, Muramatsu C, Wu 
X, Cazuguel G, You J, Mayo A, Li Q, Ha-
tanaka Y, Cochener B, Roux C, Karray F, 
García M, Fujita H, Abràmoff M: Retinopa-
thy online challenge: automatic detection 
of microaneurysms in digital color fundus 
photographs. IEEE Trans Med Imaging 
2010;29:185–195.

 146 Bernardes R, Nunes S, Pereira I, Torrent T, 
Rosa A, Coelho D, Cunha-Vaz J: Computer-
assisted microaneurysm turnover in the 
early stages of diabetic retinopathy. Oph-
thalmologica 2009;   223:284–291. 

 147 Nunes S, Pires I, Rosa A, Duarte L, Ber-
nardes R, Cunha-Vaz J: Microaneurysm 
turnover Is a biomarker for diabetic reti-
nopathy progression to clinically signifi-
cant macular edema: Findings for type 2 
diabetics with nonproliferative retinopa-
thy. Ophthalmologica 2009;   223:   292–297. 

 148 Al-Diri B, Hunter A, Steel D, Habib M: Au-
tomated analysis of retinal vascular net-
work connectivity. Comput Med Imaging 
Graph 2010;   34:   462–470. 



 Digital Ocular Fundus Imaging:
A Review 

Ophthalmologica 2011;226:161–181 181

 149 Catros J, Mischler D: An artificial intelli-
gence approach for medical picture analy-
sis. Patt Recog Lett 1988;   8:123–130. 

 150 Novotny H, Alvis D: A method of photo-
graphing fluorescence in circulating blood 
in the human retina. Circulation 1961;   24:  
 82–86. 

 151 Poloschek C, Sutter E: The fine structure of 
multifocal ERG topographies. J Vis 2002;   2:  
 577–587. 

 152 Lobo C, Bernardes R, Santos F, Cunha-Vaz 
J: Mapping retinal f luorescein leakage with 
scanning laser fluorometry of the human 
vitreous. Arch Ophthalmol 1999;   117:   631–
637. 

 153 Lobo C, Bernardes R, Cunha-Vaz J: Altera-
tions of the blood-retinal barrier and reti-
nal thickness in preclinical retinopathy in 
subjects with type 2 diabetes. Arch Oph-
thalmol 2000;   118:   1364–1369. 

 154 Lobo C, Bernardes R, Abreu J, Cunha-Vaz 
J: One-year follow-up of blood-retinal bar-
rier and retinal thickness alterations in pa-
tients with type 2 diabetes mellitus and 
mild nonproliferative retinopathy. Arch 
Ophthalmol 2001;   119:   1469–1474. 

 155 Lobo C, Bernardes R, Figueira J, Abreu J, 
Cunha-Vaz J: Three-year follow-up study of 
blood-retinal retinal barrier and retinal 
thickness alterations in patients with type 2 
diabetes mellitus and mild nonproliferative 
diabetic retinopathy. Arch Ophthalmol 
2004;   122:   211–217. 

 156 Bernardes R, Dias J, Cunha-Vaz J: Mapping 
the human blood-retinal barrier function. 
IEEE Trans Biomed Eng 2005;   52:   106–116. 

 157 Cunha-Vaz J: Measurement and mapping 
of retinal leakage and retinal thickness – 
surrogate outcomes for the initial stages of 
diabetic retinopathy. Curr Med Chem 
2002;   2:   91–108. 

 158 Cunha-Vaz J, Bernardes R: Nonprolifera-
tive retinopathy in diabetes type 2. Initial 
stages and characterization of phenotypes. 
Prog Retin Eye Res 2005;   24:   355–377. 

 159 Docchio F (ed): Introduction to Ocular Flu-
orometry. EUROEYE. Coimbra, 1997. 

 160 Klein G, Baumgartner R, Flower R: An im-
age processing approach to characterizing 
choroidal blood flow. Invest Ophthalmol 
Vis Sci 1990;   31:   629–637. 

 161 Schmidt-Erfurth U, Teschner S, Noack J, 
Birngruber R: Three-dimensional topo-
graphic angiography in chorioretinal vas-
cular disease. Invest Ophthalmol Vis Sci 
2001;   42:   2386–2394. 

 162 Haritoglou C, Gandorfer A, Schaumberger 
M, Tadayoni R, Gandorfer A, Kampik A: 
Light-absorbing properties and osmolarity 
of indocyanine-green depending on con-
centration and solvent medium. Invest 
Ophthalmol Vis Sci 2003;   44:   2722–2729. 

 163 Rosen R, Hathaway M, Rogers J, Pedro J, 
Garcia P, Dobre G, Podoleanu A: Simulta-
neous OCT/SLO/ICG imaging. Invest Oph-
thalmol Vis Sci 2009;   50:   851–860. 

 164 Schallek J, Ts’o D: Blood contrast agents en-
hance intrinsic signals in the retina: Evi-
dence for an underlying blood volume com-
ponent. Invest Ophthalmol Vis Sci 2011;   52:  
 1325–1335. 

 165 Bellmann C, Rubin G, Kabanarou S, Bird A, 
Fitzke F: Fundus autofluorescence imaging 
compared with different confocal scanning 
laser ophthalmoscopes. Br J Ophthalmol 
2003;   87:   1381–1386. 

 166 Framme C, Roider J, Sachs H, Brinkmann 
R, Gabel V: Noninvasive imaging and mon-
itoring of retinal pigment epithelium pat-
terns using fundus autofluorescence – Re-
view. Curr Med Imaging Rev 2005;   1:   89–
103. 

 167 McBain V, Forrester J, Lois N: Fundus auto-
fluorescence in the diagnosis of cystoid 
macular oedema. Br J Ophthalmol 2008;   92:  
 946–949. 

 168 Schmitz-Valckenberg S, Holz F, Bird A, 
Spaide R: Fundus autofluorescence imag-
ing: review and perspective. Retina 2008;  
 28:   385–409. 

 169 Schmitz-Valckenberg S, Fleckenstein M, 
Scholl H, Holz F: Fundus autofluorescence 
and progression of age-related macular de-
generation. Surv Ophthalmol 2009;   54:   96–
117. 

 170 Webb R, Hughes G: Scanning laser oph-
thalmoscope. IEEE Trans Biomed Eng 
1981;   28:   488–492. 

 171 Sharp P, Manivannan A, Vieira P, Hipwell 
J: Laser imaging of the retina. Br J Ophthal-
mol 1999;   83:   1241–1245. 

 172 Beckman C, Bond-Taylor L, Lindblom B, 
Sjöstrand J: Confocal fundus imaging with 
a scanning laser ophthalmoscope in eyes 
with cataract. Br J Ophthalmol 1995;   79:  
 900–904. 

 173 Sharp P, Manivannan A, Xu H, Forrester J: 
The scanning laser ophthalmoscope – a re-
view of its role in bioscience and medicine. 
Phys Med Biol 2004;   49:   1085–1096. 

  


