27 research outputs found

    RegTransBase—a database of regulatory sequences and interactions in a wide range of prokaryotic genomes

    Get PDF
    RegTransBase is a manually curated database of regulatory interactions in prokaryotes that captures the knowledge in public scientific literature using a controlled vocabulary. Although several databases describing interactions between regulatory proteins and their binding sites are already being maintained, they either focus mostly on the model organisms Escherichia coli and Bacillus subtilis or are entirely computationally derived. RegTransBase describes a large number of regulatory interactions reported in many organisms and contains the following types of experimental data: the activation or repression of transcription by an identified direct regulator, determining the transcriptional regulatory function of a protein (or RNA) directly binding to DNA (RNA), mapping or prediction of a binding site for a regulatory protein and characterization of regulatory mutations. Currently, RegTransBase content is derived from about 3000 relevant articles describing over 7000 experiments in relation to 128 microbes. It contains data on the regulation of about 7500 genes and evidence for 6500 interactions with 650 regulators. RegTransBase also contains manually created position weight matrices (PWM) that can be used to identify candidate regulatory sites in over 60 species. RegTransBase is available at

    MicrobesOnline: an integrated portal for comparative and functional genomics

    Get PDF
    Since 2003, MicrobesOnline (http://www.microbesonline.org) has been providing a community resource for comparative and functional genome analysis. The portal includes over 1000 complete genomes of bacteria, archaea and fungi and thousands of expression microarrays from diverse organisms ranging from model organisms such as Escherichia coli and Saccharomyces cerevisiae to environmental microbes such as Desulfovibrio vulgaris and Shewanella oneidensis. To assist in annotating genes and in reconstructing their evolutionary history, MicrobesOnline includes a comparative genome browser based on phylogenetic trees for every gene family as well as a species tree. To identify co-regulated genes, MicrobesOnline can search for genes based on their expression profile, and provides tools for identifying regulatory motifs and seeing if they are conserved. MicrobesOnline also includes fast phylogenetic profile searches, comparative views of metabolic pathways, operon predictions, a workbench for sequence analysis and integration with RegTransBase and other microbial genome resources. The next update of MicrobesOnline will contain significant new functionality, including comparative analysis of metagenomic sequence data. Programmatic access to the database, along with source code and documentation, is available at http://microbesonline.org/programmers.html.United States. Dept. of Energy (Genomics: GTL program (grant DE-AC02-05CH11231)

    TFinDit: transcription factor-DNA interaction data depository

    Get PDF
    BACKGROUND: One of the crucial steps in regulation of gene expression is the binding of transcription factor(s) to specific DNA sequences. Knowledge of the binding affinity and specificity at a structural level between transcription factors and their target sites has important implications in our understanding of the mechanism of gene regulation. Due to their unique functions and binding specificity, there is a need for a transcription factor-specific, structure-based database and corresponding web service to facilitate structural bioinformatics studies of transcription factor-DNA interactions, such as development of knowledge-based interaction potential, transcription factor-DNA docking, binding induced conformational changes, and the thermodynamics of protein-DNA interactions. DESCRIPTION: TFinDit is a relational database and a web search tool for studying transcription factor-DNA interactions. The database contains annotated transcription factor-DNA complex structures and related data, such as unbound protein structures, thermodynamic data, and binding sequences for the corresponding transcription factors in the complex structures. TFinDit also provides a user-friendly interface and allows users to either query individual entries or generate datasets through culling the database based on one or more search criteria. CONCLUSIONS: TFinDit is a specialized structural database with annotated transcription factor-DNA complex structures and other preprocessed data. We believe that this database/web service can facilitate the development and testing of TF-DNA interaction potentials and TF-DNA docking algorithms, and the study of protein-DNA recognition mechanisms

    STAMP: a web tool for exploring DNA-binding motif similarities

    Get PDF
    STAMP is a newly developed web server that is designed to support the study of DNA-binding motifs. STAMP may be used to query motifs against databases of known motifs; the software aligns input motifs against the chosen database (or alternatively against a user-provided dataset), and lists of the highest-scoring matches are returned. Such similarity-search functionality is expected to facilitate the identification of transcription factors that potentially interact with newly discovered motifs. STAMP also automatically builds multiple alignments, familial binding profiles and similarity trees when more than one motif is inputted. These functions are expected to enable evolutionary studies on sets of related motifs and fixed-order regulatory modules, as well as illustrating similarities and redundancies within the input motif collection. STAMP is a highly flexible alignment platform, allowing users to ‘mix-and-match’ between various implemented comparison metrics, alignment methods (local or global, gapped or ungapped), multiple alignment strategies and tree-building methods. Motifs may be inputted as frequency matrices (in many of the commonly used formats), consensus sequences, or alignments of known binding sites. STAMP also directly accepts the output files from 12 supported motif-finders, enabling quick interpretation of motif-discovery analyses. STAMP is available at http://www.benoslab.pitt.edu/stam

    ProdoNet: identification and visualization of prokaryotic gene regulatory and metabolic networks

    Get PDF
    ProdoNet is a web-based application for the mapping of prokaryotic genes and the corresponding proteins to common gene regulatory and metabolic networks. For a given list of genes, the system detects shared operons, identifies co-expressed genes and deduces joint regulators. In addition, the contribution to shared metabolic pathways becomes visible on KEGG maps. Furthermore, the co-occurrence of genes of interest in gene expression profiles can be added to the visualization of the global network. In this way, ProdoNet provides the basis for functional genomics approaches and for the interpretation of transcriptomics and proteomics data. As an example, we present an investigation of an experimental membrane subproteome analysis of Pseudomonas aeruginosa with ProdoNet. The ProdoNet dataset on transcriptional regulation is based on the PRODORIC Prokaryotic Database of Gene Regulation and the Virtual Footprint tool. ProdoNet is accessible at http://www.prodonet.tu-bs.de

    Predicting Transcription Factor Specificity with All-Atom Models

    Get PDF
    The binding of a transcription factor (TF) to a DNA operator site can initiate or repress the expression of a gene. Computational prediction of sites recognized by a TF has traditionally relied upon knowledge of several cognate sites, rather than an ab initio approach. Here, we examine the possibility of using structure-based energy calculations that require no knowledge of bound sites but rather start with the structure of a protein-DNA complex. We study the PurR E. coli TF, and explore to which extent atomistic models of protein-DNA complexes can be used to distinguish between cognate and non-cognate DNA sites. Particular emphasis is placed on systematic evaluation of this approach by comparing its performance with bioinformatic methods, by testing it against random decoys and sites of homologous TFs. We also examine a set of experimental mutations in both DNA and the protein. Using our explicit estimates of energy, we show that the specificity for PurR is dominated by direct protein-DNA interactions, and weakly influenced by bending of DNA.Comment: 26 pages, 3 figure

    Phyloscan: locating transcription-regulating binding sites in mixed aligned and unaligned sequence data

    Get PDF
    The transcription of a gene from its DNA template into an mRNA molecule is the first, and most heavily regulated, step in gene expression. Especially in bacteria, regulation is typically achieved via the binding of a transcription factor (protein) or small RNA molecule to the chromosomal region upstream of a regulated gene. The protein or RNA molecule recognizes a short, approximately conserved sequence within a gene's promoter region and, by binding to it, either enhances or represses expression of the nearby gene. Since the sought-for motif (pattern) is short and accommodating to variation, computational approaches that scan for binding sites have trouble distinguishing functional sites from look-alikes. Many computational approaches are unable to find the majority of experimentally verified binding sites without also finding many false positives. Phyloscan overcomes this difficulty by exploiting two key features of functional binding sites: (i) these sites are typically more conserved evolutionarily than are non-functional DNA sequences; and (ii) these sites often occur two or more times in the promoter region of a regulated gene. The website is free and open to all users, and there is no login requirement. Address: (http://bayesweb.wadsworth.org/phyloscan/)

    RegPredict: an integrated system for regulon inference in prokaryotes by comparative genomics approach

    Get PDF
    RegPredict web server is designed to provide comparative genomics tools for reconstruction and analysis of microbial regulons using comparative genomics approach. The server allows the user to rapidly generate reference sets of regulons and regulatory motif profiles in a group of prokaryotic genomes. The new concept of a cluster of co-regulated orthologous operons allows the user to distribute the analysis of large regulons and to perform the comparative analysis of multiple clusters independently. Two major workflows currently implemented in RegPredict are: (i) regulon reconstruction for a known regulatory motif and (ii) ab initio inference of a novel regulon using several scenarios for the generation of starting gene sets. RegPredict provides a comprehensive collection of manually curated positional weight matrices of regulatory motifs. It is based on genomic sequences, ortholog and operon predictions from the MicrobesOnline. An interactive web interface of RegPredict integrates and presents diverse genomic and functional information about the candidate regulon members from several web resources. RegPredict is freely accessible at http://regpredict.lbl.gov

    RegPrecise: a database of curated genomic inferences of transcriptional regulatory interactions in prokaryotes

    Get PDF
    The RegPrecise database (http://regprecise.lbl.gov) was developed for capturing, visualization and analysis of predicted transcription factor regulons in prokaryotes that were reconstructed and manually curated by utilizing the comparative genomic approach. A significant number of high-quality inferences of transcriptional regulatory interactions have been already accumulated for diverse taxonomic groups of bacteria. The reconstructed regulons include transcription factors, their cognate DNA motifs and regulated genes/operons linked to the candidate transcription factor binding sites. The RegPrecise allows for browsing the regulon collections for: (i) conservation of DNA binding sites and regulated genes for a particular regulon across diverse taxonomic lineages; (ii) sets of regulons for a family of transcription factors; (iii) repertoire of regulons in a particular taxonomic group of species; (iv) regulons associated with a metabolic pathway or a biological process in various genomes. The initial release of the database includes ∼11 500 candidate binding sites for ∼400 orthologous groups of transcription factors from over 350 prokaryotic genomes. Majority of these data are represented by genome-wide regulon reconstructions in Shewanella and Streptococcus genera and a large-scale prediction of regulons for the LacI family of transcription factors. Another section in the database represents the results of accurate regulon propagation to the closely related genomes

    On the power and limits of evolutionary conservation—unraveling bacterial gene regulatory networks

    Get PDF
    The National Center for Biotechnology Information (NCBI) recently announced ‘1000 prokaryotic genomes are now completed and available in the Genome database’. The increasing trend will provide us with thousands of sequenced microbial organisms over the next years. However, this is only the first step in understanding how cells survive, reproduce and adapt their behavior while being exposed to changing environmental conditions. One major control mechanism is transcriptional gene regulation. Here, striking is the direct juxtaposition of the handful of bacterial model organisms to the 1000 prokaryotic genomes. Next-generation sequencing technologies will further widen this gap drastically. However, several computational approaches have proven to be helpful. The main idea is to use the known transcriptional regulatory network of reference organisms as template in order to unravel evolutionarily conserved gene regulations in newly sequenced species. This transfer essentially depends on the reliable identification of several types of conserved DNA sequences. We decompose this problem into three computational processes, review the state of the art and illustrate future perspectives
    corecore