8 research outputs found

    A comparative experimental design and performance analysis of Snort-based Intrusion Detection System in practical computer networks

    Get PDF
    As one of the most reliable technologies, network intrusion detection system (NIDS) allows the monitoring of incoming and outgoing traffic to identify unauthorised usage and mishandling of attackers in computer network systems. To this extent, this paper investigates the experimental performance of Snort-based NIDS (S-NIDS) in a practical network with the latest technology in various network scenarios including high data speed and/or heavy traffic and/or large packet size. An effective testbed is designed based on Snort using different muti-core processors, e.g., i5 and i7, with different operating systems, e.g., Windows 7, Windows Server and Linux. Furthermore, considering an enterprise network consisting of multiple virtual local area networks (VLANs), a centralised parallel S-NIDS (CPS-NIDS) is proposed with the support of a centralised database server to deal with high data speed and heavy traffic. Experimental evaluation is carried out for each network configuration to evaluate the performance of the S-NIDS in different network scenarios as well as validating the effectiveness of the proposed CPS-NIDS. In particular, by analysing packet analysis efficiency, an improved performance of up to 10% is shown to be achieved with Linux over other operating systems, while up to 8% of improved performance can be achieved with i7 over i5 processors

    A comparative experimental design and performance analysis of Snort-based Intrusion Detection System in practical computer networks

    Get PDF
    As one of the most reliable technologies, network intrusion detection system (NIDS) allows the monitoring of incoming and outgoing traffic to identify unauthorised usage and mishandling of attackers in computer network systems. To this extent, this paper investigates the experimental performance of Snort-based NIDS (S-NIDS) in a practical network with the latest technology in various network scenarios including high data speed and/or heavy traffic and/or large packet size. An effective testbed is designed based on Snort using different muti-core processors, e.g., i5 and i7, with different operating systems, e.g., Windows 7, Windows Server and Linux. Furthermore, considering an enterprise network consisting of multiple virtual local area networks (VLANs), a centralised parallel S-NIDS (CPS-NIDS) is proposed with the support of a centralised database server to deal with high data speed and heavy traffic. Experimental evaluation is carried out for each network configuration to evaluate the performance of the S-NIDS in different network scenarios as well as validating the effectiveness of the proposed CPS-NIDS. In particular, by analysing packet analysis efficiency, an improved performance of up to 10% is shown to be achieved with Linux over other operating systems, while up to 8% of improved performance can be achieved with i7 over i5 processors

    Improving network intrusion detection system performance through quality of service configuration and parallel technology

    Get PDF
    This paper outlines an innovative software development that utilizes Quality of Service (QoS) and parallel technologies in Cisco Catalyst Switches to increase the analytical performance of a Network Intrusion Detection and Protection System (NIDPS) when deployed in highspeed networks. We have designed a real network to present experiments that use a Snort NIDPS. Our experiments demonstrate the weaknesses of NIDPSes, such as inability to process multiple packets and propensity to drop packets in heavy traffic and high-speed networks without analysing them. We tested Snort’s analysis performance, gauging the number of packets sent, analysed, dropped, filtered, injected, and outstanding. We suggest using QoS configuration technologies in a Cisco Catalyst 3560 Series Switch and parallel Snorts to improve NIDPS performance and to reduce the number of dropped packets. Our results show that our novel configuration improves performance

    RT-MOVICAB-IDS: Addressing real-time intrusion detection

    Get PDF
    This study presents a novel Hybrid Intelligent Intrusion Detection System (IDS) known as RT-MOVICAB-IDS that incorporates temporal control. One of its main goals is to facilitate real-time Intrusion Detection, as accurate and swift responses are crucial in this field, especially if automatic abortion mechanisms are running. The formulation of this hybrid IDS combines Artificial Neural Networks (ANN) and Case-Based Reasoning (CBR) within a Multi-Agent System (MAS) to detect intrusions in dynamic computer networks. Temporal restrictions are imposed on this IDS, in order to perform real/execution time processing and assure system response predictability. Therefore, a dynamic real-time multi-agent architecture for IDS is proposed in this study, allowing the addition of predictable agents (both reactive and deliberative). In particular, two of the deliberative agents deployed in this system incorporate temporal-bounded CBR. This upgraded CBR is based on an anytime approximation, which allows the adaptation of this Artificial Intelligence paradigm to real-time requirements. Experimental results using real data sets are presented which validate the performance of this novel hybrid IDSMinisterio de Economía y Competitividad (TIN2010-21272-C02-01, TIN2009-13839-C03-01), Ministerio de Ciencia e Innovación (CIT-020000-2008-2, CIT-020000-2009-12

    Modélisation formelle des systèmes de détection d'intrusions

    Get PDF
    L’écosystème de la cybersécurité évolue en permanence en termes du nombre, de la diversité, et de la complexité des attaques. De ce fait, les outils de détection deviennent inefficaces face à certaines attaques. On distingue généralement trois types de systèmes de détection d’intrusions : détection par anomalies, détection par signatures et détection hybride. La détection par anomalies est fondée sur la caractérisation du comportement habituel du système, typiquement de manière statistique. Elle permet de détecter des attaques connues ou inconnues, mais génère aussi un très grand nombre de faux positifs. La détection par signatures permet de détecter des attaques connues en définissant des règles qui décrivent le comportement connu d’un attaquant. Cela demande une bonne connaissance du comportement de l’attaquant. La détection hybride repose sur plusieurs méthodes de détection incluant celles sus-citées. Elle présente l’avantage d’être plus précise pendant la détection. Des outils tels que Snort et Zeek offrent des langages de bas niveau pour l’expression de règles de reconnaissance d’attaques. Le nombre d’attaques potentielles étant très grand, ces bases de règles deviennent rapidement difficiles à gérer et à maintenir. De plus, l’expression de règles avec état dit stateful est particulièrement ardue pour reconnaître une séquence d’événements. Dans cette thèse, nous proposons une approche stateful basée sur les diagrammes d’état-transition algébriques (ASTDs) afin d’identifier des attaques complexes. Les ASTDs permettent de représenter de façon graphique et modulaire une spécification, ce qui facilite la maintenance et la compréhension des règles. Nous étendons la notation ASTD avec de nouvelles fonctionnalités pour représenter des attaques complexes. Ensuite, nous spécifions plusieurs attaques avec la notation étendue et exécutons les spécifications obtenues sur des flots d’événements à l’aide d’un interpréteur pour identifier des attaques. Nous évaluons aussi les performances de l’interpréteur avec des outils industriels tels que Snort et Zeek. Puis, nous réalisons un compilateur afin de générer du code exécutable à partir d’une spécification ASTD, capable d’identifier de façon efficiente les séquences d’événements.Abstract : The cybersecurity ecosystem continuously evolves with the number, the diversity, and the complexity of cyber attacks. Generally, we have three types of Intrusion Detection System (IDS) : anomaly-based detection, signature-based detection, and hybrid detection. Anomaly detection is based on the usual behavior description of the system, typically in a static manner. It enables detecting known or unknown attacks but also generating a large number of false positives. Signature based detection enables detecting known attacks by defining rules that describe known attacker’s behavior. It needs a good knowledge of attacker behavior. Hybrid detection relies on several detection methods including the previous ones. It has the advantage of being more precise during detection. Tools like Snort and Zeek offer low level languages to represent rules for detecting attacks. The number of potential attacks being large, these rule bases become quickly hard to manage and maintain. Moreover, the representation of stateful rules to recognize a sequence of events is particularly arduous. In this thesis, we propose a stateful approach based on algebraic state-transition diagrams (ASTDs) to identify complex attacks. ASTDs allow a graphical and modular representation of a specification, that facilitates maintenance and understanding of rules. We extend the ASTD notation with new features to represent complex attacks. Next, we specify several attacks with the extended notation and run the resulting specifications on event streams using an interpreter to identify attacks. We also evaluate the performance of the interpreter with industrial tools such as Snort and Zeek. Then, we build a compiler in order to generate executable code from an ASTD specification, able to efficiently identify sequences of events
    corecore