963 research outputs found

    Cross-Modal Variational Inference For Bijective Signal-Symbol Translation

    Get PDF
    International audienceExtraction of symbolic information from signals is an active field of research enabling numerous applications especially in the Musical Information Retrieval domain. This complex task, that is also related to other topics such as pitch extraction or instrument recognition, is a demanding subject that gave birth to numerous approaches , mostly based on advanced signal processing-based algorithms. However, these techniques are often non-generic, allowing the extraction of definite physical properties of the signal (pitch, octave), but not allowing arbitrary vocabularies or more general annotations. On top of that, these techniques are one-sided, meaning that they can extract symbolic data from an audio signal, but cannot perform the reverse process and make symbol-to-signal generation. In this paper, we propose an bijective approach for signal/symbol translation by turning this problem into a density estimation task over signal and symbolic domains, considered both as related random variables. We estimate this joint distribution with two different variational auto-encoders, one for each domain, whose inner representations are forced to match with an additive constraint, allowing both models to learn and generate separately while allowing signal-to-symbol and symbol-to-signal inference. In this article, we test our models on pitch, octave and dynamics symbols, which comprise a fundamental step towards music transcription and label-constrained audio generation. In addition to its versatility, this system is rather light during training and generation while allowing several interesting creative uses that we outline at the end of the article

    Towards the automated analysis of simple polyphonic music : a knowledge-based approach

    Get PDF
    PhDMusic understanding is a process closely related to the knowledge and experience of the listener. The amount of knowledge required is relative to the complexity of the task in hand. This dissertation is concerned with the problem of automatically decomposing musical signals into a score-like representation. It proposes that, as with humans, an automatic system requires knowledge about the signal and its expected behaviour to correctly analyse music. The proposed system uses the blackboard architecture to combine the use of knowledge with data provided by the bottom-up processing of the signal's information. Methods are proposed for the estimation of pitches, onset times and durations of notes in simple polyphonic music. A method for onset detection is presented. It provides an alternative to conventional energy-based algorithms by using phase information. Statistical analysis is used to create a detection function that evaluates the expected behaviour of the signal regarding onsets. Two methods for multi-pitch estimation are introduced. The first concentrates on the grouping of harmonic information in the frequency-domain. Its performance and limitations emphasise the case for the use of high-level knowledge. This knowledge, in the form of the individual waveforms of a single instrument, is used in the second proposed approach. The method is based on a time-domain linear additive model and it presents an alternative to common frequency-domain approaches. Results are presented and discussed for all methods, showing that, if reliably generated, the use of knowledge can significantly improve the quality of the analysis.Joint Information Systems Committee (JISC) in the UK National Science Foundation (N.S.F.) in the United states. Fundacion Gran Mariscal Ayacucho in Venezuela

    A Parametric Sound Object Model for Sound Texture Synthesis

    Get PDF
    This thesis deals with the analysis and synthesis of sound textures based on parametric sound objects. An overview is provided about the acoustic and perceptual principles of textural acoustic scenes, and technical challenges for analysis and synthesis are considered. Four essential processing steps for sound texture analysis are identifi ed, and existing sound texture systems are reviewed, using the four-step model as a guideline. A theoretical framework for analysis and synthesis is proposed. A parametric sound object synthesis (PSOS) model is introduced, which is able to describe individual recorded sounds through a fi xed set of parameters. The model, which applies to harmonic and noisy sounds, is an extension of spectral modeling and uses spline curves to approximate spectral envelopes, as well as the evolution of parameters over time. In contrast to standard spectral modeling techniques, this representation uses the concept of objects instead of concatenated frames, and it provides a direct mapping between sounds of diff erent length. Methods for automatic and manual conversion are shown. An evaluation is presented in which the ability of the model to encode a wide range of di fferent sounds has been examined. Although there are aspects of sounds that the model cannot accurately capture, such as polyphony and certain types of fast modulation, the results indicate that high quality synthesis can be achieved for many different acoustic phenomena, including instruments and animal vocalizations. In contrast to many other forms of sound encoding, the parametric model facilitates various techniques of machine learning and intelligent processing, including sound clustering and principal component analysis. Strengths and weaknesses of the proposed method are reviewed, and possibilities for future development are discussed

    Audio source separation for music in low-latency and high-latency scenarios

    Get PDF
    Aquesta tesi proposa mètodes per tractar les limitacions de les tècniques existents de separació de fonts musicals en condicions de baixa i alta latència. En primer lloc, ens centrem en els mètodes amb un baix cost computacional i baixa latència. Proposem l'ús de la regularització de Tikhonov com a mètode de descomposició de l'espectre en el context de baixa latència. El comparem amb les tècniques existents en tasques d'estimació i seguiment dels tons, que són passos crucials en molts mètodes de separació. A continuació utilitzem i avaluem el mètode de descomposició de l'espectre en tasques de separació de veu cantada, baix i percussió. En segon lloc, proposem diversos mètodes d'alta latència que milloren la separació de la veu cantada, gràcies al modelatge de components específics, com la respiració i les consonants. Finalment, explorem l'ús de correlacions temporals i anotacions manuals per millorar la separació dels instruments de percussió i dels senyals musicals polifònics complexes.Esta tesis propone métodos para tratar las limitaciones de las técnicas existentes de separación de fuentes musicales en condiciones de baja y alta latencia. En primer lugar, nos centramos en los métodos con un bajo coste computacional y baja latencia. Proponemos el uso de la regularización de Tikhonov como método de descomposición del espectro en el contexto de baja latencia. Lo comparamos con las técnicas existentes en tareas de estimación y seguimiento de los tonos, que son pasos cruciales en muchos métodos de separación. A continuación utilizamos y evaluamos el método de descomposición del espectro en tareas de separación de voz cantada, bajo y percusión. En segundo lugar, proponemos varios métodos de alta latencia que mejoran la separación de la voz cantada, gracias al modelado de componentes que a menudo no se toman en cuenta, como la respiración y las consonantes. Finalmente, exploramos el uso de correlaciones temporales y anotaciones manuales para mejorar la separación de los instrumentos de percusión y señales musicales polifónicas complejas.This thesis proposes specific methods to address the limitations of current music source separation methods in low-latency and high-latency scenarios. First, we focus on methods with low computational cost and low latency. We propose the use of Tikhonov regularization as a method for spectrum decomposition in the low-latency context. We compare it to existing techniques in pitch estimation and tracking tasks, crucial steps in many separation methods. We then use the proposed spectrum decomposition method in low-latency separation tasks targeting singing voice, bass and drums. Second, we propose several high-latency methods that improve the separation of singing voice by modeling components that are often not accounted for, such as breathiness and consonants. Finally, we explore using temporal correlations and human annotations to enhance the separation of drums and complex polyphonic music signals

    Score-Informed Source Separation for Music Signals

    Get PDF
    In recent years, the processing of audio recordings by exploiting additional musical knowledge has turned out to be a promising research direction. In particular, additional note information as specified by a musical score or a MIDI file has been employed to support various audio processing tasks such as source separation, audio parameterization, performance analysis, or instrument equalization. In this contribution, we provide an overview of approaches for score-informed source separation and illustrate their potential by discussing innovative applications and interfaces. Additionally, to illustrate some basic principles behind these approaches, we demonstrate how score information can be integrated into the well-known non-negative matrix factorization (NMF) framework. Finally, we compare this approach to advanced methods based on parametric models

    Analysis and resynthesis of polyphonic music

    Get PDF
    This thesis examines applications of Digital Signal Processing to the analysis, transformation, and resynthesis of musical audio. First I give an overview of the human perception of music. I then examine in detail the requirements for a system that can analyse, transcribe, process, and resynthesise monaural polyphonic music. I then describe and compare the possible hardware and software platforms. After this I describe a prototype hybrid system that attempts to carry out these tasks using a method based on additive synthesis. Next I present results from its application to a variety of musical examples, and critically assess its performance and limitations. I then address these issues in the design of a second system based on Gabor wavelets. I conclude by summarising the research and outlining suggestions for future developments

    A computational framework for sound segregation in music signals

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 200

    Interactive real-time musical systems

    Get PDF
    PhDThis thesis focuses on the development of automatic accompaniment systems. We investigate previous systems and look at a range of approaches that have been attempted for the problem of beat tracking. Most beat trackers are intended for the purposes of music information retrieval where a `black box' approach is tested on a wide variety of music genres. We highlight some of the diffculties facing offline beat trackers and design a new approach for the problem of real-time drum tracking, developing a system, B-Keeper, which makes reasonable assumptions on the nature of the signal and is provided with useful prior knowledge. Having developed the system with offline studio recordings, we look to test the system with human players. Existing offline evaluation methods seem less suitable for a performance system, since we also wish to evaluate the interaction between musician and machine. Although statistical data may reveal quantifiable measurements of the system's predictions and behaviour, we also want to test how well it functions within the context of a live performance. To do so, we devise an evaluation strategy to contrast a machine-controlled accompaniment with one controlled by a human. We also present recent work on a real-time multiple pitch tracking, which is then extended to provide automatic accompaniment for harmonic instruments such as guitar. By aligning salient notes in the output from a dual pitch tracking process, we make changes to the tempo of the accompaniment in order to align it with a live stream. By demonstrating the system's ability to align offline tracks, we can show that under restricted initial conditions, the algorithm works well as an alignment tool
    corecore