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ABSTRACT 

This thesis examines applications of Digital Signal Processing to the analysis, transformation, and 

resynthesis of musical audio. First I give an overview of the human perception of music. I then examine 

in detail the requirements for a system that can analyse, transcribe, process, and resynthesise monaural 

polyphonic music. I then describe and compare the possible hardware and software platforms. After this 

I describe a prototype hybrid system that attempts to carry out these tasks using a method based on 
.. 

additive synthesis. Next I present results from its application to a variety of musical examples, and 

critically assess its pert:ormance and limitations. I then address these issues in the design of a second 

system based on Gabor wavelets. I conclude by summarising the research and outlining suggestions for 

future developments. 
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1. Introduction 

What is music? How do we perceive it? How do we separate simultaneous sounds? How do we 

mentally represent timbre? How do we form higher concepts such as harmony, melody, and rhythm? 

How could a computer mimic the perception process? How could it write down the score? How could 

we fit more music onto a CD? How could a computer explore the vast multidimensional space of 

possible timbres? How can we transform musical sounds? This work develops a framework for 

computer analysis and resynthesis of polyphonic music in which these questions are addressed. 

1.1 Background 

mustc 

Figure 1 - Disciplinary context of computer music. 

• • lin. f . . h . F' 1 aft M (MoonF IOJ Th haded The d1sc1p ary context o computer mus1c IS s own m tgure , er oore. e s area 

represents the fields with which this thesis will be concerned. 
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The needs of electroacoustic 1 composition are complex and varied. Composers often wish to use 

entirely new sounds, and much research has concentrated on the development and exposition of new 

synthesis techniques. Yet most current techniques only allow the creation of a different but limited 

subset of timbres, and hence the ability to explore another small part of what is loosely called timbre 

space. Composers also wish to use sounds that resemble acoustic instruments. This has led to much 

research into analysis-by-synthesis, an attempt to emulate the sound of individual acoustic instruments 

by adjusting synthesis parameters. However, this cannot be guaranteed to reproduce every nuance of a 

sound, as even the most realistic physical models make approximations. Thus, while we can make a 

synthetic violin that is 'good enough' to use, we still cannot reproduce the sound of a specific 

Stradivarius or mimic the interpretation of a real violinist. Composers often want to incorporate existing 

sounds into their own compositions, but this is generally difficult or impossible, except for directly 

sampling a wave file, which does not permit musical editing. One goal of this research, then, is to 

achieve synthesis-by-analysis, whereby an arbitrary sound can be described and reproduced perfectly, as 

this would allow the use of any existing soung source, completing the loop t>etween synthesis and 

analysis. While this is possible for monophonic sounds, the quest for polyphonic synthesis-by-analysis 

has so far eluded solution. 

We also have an interest in examining our own cognition of music. Here, analysis of audio is more 

important than synthesis. Important questions remain unsolved concerning how we perceive and 

mentally represent music. While simple single-tone phenomena have been researched, our perception of 

timbre and timbral nuance is not well understood. Less still is known about perception of chords, 

melodies, and other musical constructs, let alone more abstract and personal questions of aesthetics and 

style. Musicologists and educationalists also wish to be able to analyse performance practice; that which 

distinguishes a performance by a competent instrumentalist from one by a poor instrumentalist. In both 

of these cases, too, the greatest difficulty lies in untangling the polyphony. 

This thesis examines how musical information can be derived from an arbitrary raw waveform, and 

concentrates on methods by which note and timbral information can be deduced, in order to allow 

display and transformation of musically useful parameters, while retaining the generality required for 

resynthesis. This will not only allow practical tools for analysis, transformation, and resynthesis, but may 

offer insights into our own perception of music. 

1 I shall mention at this early point my dislike of the term 'electroacoustic music'. All music is acoustic. 
However, I will use it in its sense of'music featuring electr(on)ic instruments including computers'. 
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1.2 Outline of this thesis 

Chapter 2 examines human music perception in detail. In chapter 3, the motivation for computer analysis 

and resynthesis of audio is discussed, and applications are outlined. This is followed by a discussion of 

the computational requirements and possible architectures in chapter 4. Earlier research on the topic is 

reviewed in chapter 5. Chapter 6 presents a model based on multirate additive synthesis that attempts to 

recognise and characterise musical events. Chapter 7 evaluates its analysis performance on a variety of 

musical examples, and discusses its limitations. Chapter 8 addresses the issues raised by redesigning the 

system using a related technique based on Gabor wavelets, which appears to address many of the 

problems. Finally, conclusions are drawn and proposals for future work are presented in chapter 9. 
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2. Music perception 

In this chapter I first examine whether and how music can be defined. Next I give an overview of the 

human auditory system and its functioning. I then discuss the process of source separation. Next I 

outline the physical and psychoacoustical properties of notes in a musical context, and discuss 

possibilities for a computer model. 

2.1 The nature of music 

2.1.1 What is music? 

Defining the word 'music' is only slightly less difficult than defining art. Indeed, the very question of 

whether music can be defined may prompt heated debate from those who choose to view music as 

inherently undefinable. However, as this work is entirely focused on music, I feel it important to 

endeavour to clarify what I mean by the word. Here I am not trying to distinguish good music from bad 

music, but trying to distinguish music from non-music. 

Note also that throughout this work I am concentrating solely on the audio, separating it from other 

aspects of music such as the visuals of a performance. While there is some evidence that vision can 

affect audition (as illustrated by the McGurk effect2) and vice versa[Churchland, Cohen, Slaney S&bJ, this work 

will be examining music from the unimodal viewpoint of a blind listener. 

In order to discuss the definitions, we will apply them to several audio waveforms. Many of them are 

extreme cases chosen specifically to illustrate the differences. 

PI) Yesterday, written by John Lennon and Paul McCartney and performed by the Beatles on 
vocals, guitar, bass guitar, percussion, and string quartet. 

P2) Agony, conceived by the author. This is deliberately unpleasant music, and features the sounds 
of pneumatic drills, chainsaws, dog fights, crying babies, and fingernails on a blackboard. It is played at 
0 dB outside the diplomatic mission of one's choice. 

P3) 4 '33 ", written by John Cage. This piece consists of 273 seconds of silence, performed using a 
grand piano. 

P4) White Haze, conceived by the author. This piece consists of 273 seconds of white noise, 
performed using a Geiger counter and a lump.ofuranium. 

PS) Symphony for Helicopter, conceived by the author. This piece makes extensive use of the 
sampled sound of a helicopter, manipulated by an array of audio processing tools, and is performed via 
tape. 

P6) Scramble for Helicopter, conceived by the author. This is the actual sound produced by a 
helicopter in its usual military context. 

P7) Winword, conceived by the author. This is created by renaming WINWORD.EXE, the 
executable binary file for Microsoft Word for Windows, to WINWORD.SND. 

P8) No Rain, conceived by the author. This is the sound made by the windscreen wipers of a car on 
a dry day. 

2 The visual image of a speaker saying "ba" or "va" can affect whether an ambiguous sound is taken as 
o~e or the other syllable. · 
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P9) Dream, conceived by Martin Luther King. This is a recording of MLK's "I Have a Dream" 
speech. 

Below are six definitions we will examine:-

D I) Music is the language of sound. 

D2) Music is any sound. 

D3) Music is any sound intended as musical. 

D4) Music is any sound perceived as musical. 

D5) Music is any sound with regular patterns in time and frequency. 

D6) Music is organised sound. 

"Music is th~ language of sound." The analogy with languages is at times useful, but if music is a 

language, what meaning does it convey? A voice recognition system can detect the spoken phonemes 

'K', 'A', 'T' as the symbolic "cat" and flash a small feline on the screen, at which point we deduce that 

it has understood the sound correctly. The path from phonemes to spelling to concept, from low-level to 

high-level, is relatively clear. However, for music, it is not known what the intermediate representations 

are. It is difficult to assign meaning to 'a high F# on a bassoon', and harder still to define the meaning of 

a whole piece of music. (An alternative definition is "Music is the art of sound", but this simply shifts us 

to an even larger problem of defining art, where one man's work of art is another man's pile ofbricks.) 

This point is also raised by Wiggins, who points out that "If there is an analogy between the syntax of 

language and musical structure, what, if any, is the relationship between linguistic semantics and the 

'meaning of music'? Indeed, it is by no means clear that such 'meaning' exists."(Wiggins) For this reason 

we ignore definition I. 

"Any sound is music." This would imply that white noise, the sound of a helicopter on its pad, and 

speech, are all musical. Most people would consider pure speech to not be music. Yet, if speech is not 

music, we should examine the continuum from pure speech to speech with background music to music 

heavily employing speech, and ask at which point it becomes music. This definition could exclude 4'33" 

if it were defined as the tape version on headphones, although the 'live' version would contain sounds 

such as footsteps and background concert hall noise. 

"Music is any sound intended as music" is less broad, and would include the helicopter in a musical 

context, and 4'33". It would exclude the original helicopter, the white noise, and the speech. However, 

is the composer's assertion of its musicality a sufficient condition? Composers can use any available tool 

to create an audio wavefornt, and are not restricted to the vibrations of physical objects and electrical 

circuits. A composer would be free to assert that Winword is music, maybe adding in program notes that 

it represents "a para-metaphysical hyperconscious realisation of a pseudo-surrealistic sonic installation 

exploring the interconnectedness of meaning and substance, created by a novel and efficient 
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Figure 2 - The music of the Epson Stylus Color 200 printer. 

printer noise shown in Figure 2 is in a twelve-tone scale and a fairly regular tempo - the low E is the 

printing, the middle C is the print head returning, and the quavers in the treble clef are caused by the 

paper advance mechanism. 

"Music is any sound perceived as musical." This is perhaps the best definition, as it includes the 

mechanically and unintentionally produced music described above. However, it is also a weak and 

circular definition. 

"Music is any sound with regular patterns in time and frequency." This would appear to include. the 

windscreen wipers but exclude 4'33". This is too inclusive and, like D2, cannot differentiate music from 

other audio, unless we further specified the types of 'regular patterns' we expected to see. It would 

certainly include the printer noise as it has a regular rhythm and a pitch structure. 

"Music is organised sound" is ambiguous - it may be taken to mean either "sound organised by a 

composer" or "sound that has self-organisation" - in which case the definition can be considered 

equivalent to either "sound intended as music" (D3) or "sound with regular patterns" (DS). 

This table summarises the distinctions between the definitions, ignoring definitions 1 and 6. 

D2 D3 D4 D5 

any sound intended as perceived as regular patterns 
musical musical 

Pl Yesterday yes yes yes yes 

P2 Agony yes yes? yes?. yes 

P3 4'33" no? yes yes? no 

P4 White Haze yes yes no no 

P5 Symphony yes yes yes yes 

P6 Scramble yes no no yes 

P7 Winword yes yes? no no? 

P8 No Rain yes no yes? yes 

P9 Dream yes no no yes 

Table 1 -Applications of definitions of music to nine pieces. 

Scientific research has allowed us to explain much of the world around us by breaking an object into its 

components, analysing them, and using their properties to infer the properties of the whole. Given that 

19 



we have an increasingly complete understanding of hailstorms, bridges, raspberries, holography, plate 

tectonics, malaria, prime numbers, and sea urchins, why do we apparently know so little about the 

phenomenon of music, which we may subject ourselves to for many hours per day? 

One possible reason is the difficulty of describing our reactions to music in concise terms. It is not 

surprising that we have failed to concisely answer the question "what is jazz?" when we cannot answer 

the simpler question "what is the sound of a trombone?". A listener might describe it in terms of its 

similarity to the sound of a trumpet or a baritone, but this is no more useful than knowing that a lime 

tastes "a bit like a lemon". 

Another reason that music has· primarily been examined in the artistic rather than the scientific context is 

historical - the computational power required has not existed until now. However, recent leaps in 

processing power have brought many musical problems from the realm of the impossible to the feasible, 

and computers are certainly capable of mimicking some aspects of musical perception. It is worth noting 

the philosophical arguments against artificial intelligence - that a computer is fundamentally unable to 

carry out high-level tasks. A good example is computer chess; as chess programs reached higher levels 

of competence, they were set against increasingly skilled human players, and detractors claimed that .it 

would· still be impossible to beat the best human, citing factors such as emotion, intuition, and 

experience. Now that victories at the highest level have been achieved, there seems little doubt that the 

task of winning a chess game can be successfully carried out algorithmically. However, for AI 

researchers the larger question is "In what manner is the chess strategy similar to those we use?". We 

can describe how the computer is 'thinking' in hard program code, but it is ridiculous to suggest that 

Karpov is thinking in the same manner. For the task of listening to music, similar arguments· apply. A 

program may be able to carry out tasks such as transcription, but this does not necessarily imply that it is 

hearing the music the way we hear it. One challenge, therefore, is to ensure that the analysis model 

reflects our own listening as far as is reasonable. 

2.1.2 Time-frequency representations 

Perhaps the only thing that can be said with complete certainty about music is that it is a continuous 

function of time- variations in air pressure. (Digital devices encode jumps in value, but the DAC output 

must be continuous.) If its first derivative is allowed to be discontinuous, i.e., the wave can contain 

comers, then we know3 that its spectrum must be bounded by 0(1/f). This implies that its amplitude 

spectrum is bounded by a line falling by 6 dB/octave, and its power spectrum is bounded by a 12 

dB/octave line.[Bracewell) 

3 As Bracewell concisely puts it, if the nth derivative of a function becomes impulsive, then its spectrum 
is bounded by O(f"n) as f~oo. 
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There is a curious duality inherent in an audio waveform; we interpret it as both a time-domain and a 

frequency-domain representation, and treat seconds and Hertz as if they were independent dimensions. 

Figure 3 illustrates the frequency-time axis. 

It has been shown using a-EEG (electroencephalogram) measurements that sounds above 20 kHz are 

sensed, and can affect our subjective perception of sound. [OohashiB9, Oohashi 91• Oohashi 931 This was named 

the 'hypersonic effect', and was demonstrated using an Indonesian gamelan ensemble.4 However, ultra-

4 This is a good choice of source material - most gamelan instruments are percussive, so we would 
expect more high frequencies to be present. 
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high frequencies reaching us by non-aural paths raise the practical difficulties of designing recording and 

playback equipment. While conventionally recorded music may be missing something, it is clearly not 

missing much. It will thus be of little value to speculate on such details until we have a satisfactory 

explanation of the main part ofthe hearing range. 

The conventional figure quoted for the top end of the range is around 20 kHz, although our high

frequency perception decreases with age (presbycusis). The sensitivity is highest in early 

childhood. (Rossing) In general, the power at these high frequencies is low. In this context, however, it is 

important to bear in mind that the notion of a limiting frequency is inaccurate; there is inevitably a finite 

roll-off that never reaches the conceptual minus infinity decibels. Also, while we can hear frequencies of 

10-20kHz, our resolution is measurably poorer than at lower frequencies. 

The normal musical spectrum is from 20 kHz down to 20 Hz, a large range of ten octaves. Our 

perception of frequency ends at around 20 Hz. In musical practice, the lowest notes in the contrabass 

register are around 30 Hz. Very low pitches are the exception rather the rule, and are less musically 
.. -

useful. 

The next frequency range is the transition region between low notes and fast rhythms. The only musiciu 

sounds with fundamentals in this range are rattles or drum rolls. (This frequency range is also used for 

effects such as vibrato, tremolo, and flutter-tonguing.) The sensation of low pitch blends into the 

sensation of a fast rhythm. Semiquavers at the dance music standard tempo of 120 bpm are at 8 Hz. This 

raises the question of whether rhythms can be said to interact with the bass, given that the 'harmonics' 

of the rhythm would fall at the same frequencies as the bass. If not, the alternative question is how do 

we dissociate information in the fast rhythm domain from that in the low pitch domain when both are 

functions of the same time axis? 

As the frequency keeps falling, the units become seconds and minutes, not Hertz or milliHertz. The 

information is perceived in terms of beats, bars, phrases, sections, and so on. This is illustrated above -

in the figure, many of the values shown are approximate- the note durations use a typical tempo of 120 

crotchet beats per minute, and the figures on the right for stereo effects(HaiiJ are intermediate values in 

overlapping ranges. 

2.1.3 The frequency domain - scales and temperament 

The description above of frequency should be extended further. When dealing with the frequency 

domain, we actually treat it as if it were two dimensions, f and log( f). There is also now considerable 

support in the music cognition and psychoacoustic communities for log(t) itself being treated as 

I "d" · al" d · h , 1 , fC G [Shephard, Moreno] mu t1 1mens10n m or er to recogruse t e c oseness o to . 

The harmonics of a single note are spaced approximately evenly on the linear frequency axis, (although 

frequencies can be stretched slightly, as discussed later). The pitches of the notes in the scale are related 
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according to their log-frequency. Thus, we can view relationships between frequencies on either a 

logarithmic or a linear scale. We effectively do both by choosing the base of logs appropriately. The 

most fundamental attribute of music world-wide is octave equivalence5 When a male and a female sing 

together, the consonance is greatest when the frequency ratio is 2:1 -an interval of an octave. Since the 

octave ratio is 2: 1, the base 2 will come into the equations. The log to the base 2 of the ratio 3:2 is 

0.5849, which happens to be very close to 7112. The log of 5:4 is 0.3219, close to 4/12, and the log of 

9:8 is 0.1699, close to 2112. Thus, these intervals, and by extension all other intervals in the twelve-tone 

scale, can be interpreted in both the linear frequency domain and the domain of log-frequency to the 

base 1.05946 ... , the twelfth root of two. 

It is informative to ask whether any other tuning systems are feasible in this way. The log of 11h, as 

mentioned above, is 0.5849. The only other small fractions6 which are relatively close to this are 3/5 

(0.6) and 4/7 (0.5714). The former would imply an octave with five equal subdivisions (corresponding 

to 2.4 semitones), and the interval in question is three of these divisions. Curiously enough, this does 

exist, and is known as the s/endro scale.1sundber9911 It is only common in Indonesia (although it has also 

been found in Uganda), and even there is less used than the 12-note scale7 The second option would 

imply seven subdivisions (of 1.714 semitones), the 3:2 ratio being four of these. This scale has been 

reported in Thailand and Uganda.(Bums) These two alternative scales, while permitting the 3:2 ratio, do 

not give simple figures for the 5:4 or 6:5 ratios, and are thus less suited to the harmonic series. 

We have thus shown by simple arithmetic the conclusion that 12 notes per octave is the most natural and 

pleasing, since the ratios 1:2:3:4:5:6:8:9 fit into it closely, an observation that is resoundingly backed up 

by actual musical practice world-wide. This also has led to interest from a group-theoretic point of 

view. (Balzano) 

This method of making all the semitones equal is known as equal temperament. There are various 

alternatives, where some semitones are slightly larger than others. This permits certain intervals to be 

closer to the integer ratios, as the expense of making other intervals more out-of-tune. This allows the 

5 No rule is complete without its exceptions, but in this case such exceptions are hard to find. An 
alternative tuning system was devised by Bohlen and Pierce(Mathews 91

' Moreno), where the fundamental 
interval was the ratio 3: 1 rather than 2: 1. This is consonant, but rather large. Two such 'tritaves' span 
the equivalent of three octaves plus one tone, a rather dissonant interval. The tritave is divided into 13 
equal intervals, with a 9-note subset (0/1/3/4/6/7/9/10112) used as the scale. Our overleamt familiarity 
with octave relationships makes this particularly difficult to listen to in the manner intended. 

6 Ratios of larger integers are possible; of these, some are multiples of twelve, such as the Arab-Persian 
24-note scale; others that have been used are 19-, 31-, and 41-note octaves. However, with such scales, 
the distinction between consecutive notes becomes much more difficult to hear. 

7 It has been said that in Indonesia, there are as many different scales as gamelans. This may largely be 
attributed to the fact that most game/an instruments are gongs or bars which have an inharmonic partial 
structure and cannot be tuned easily. 
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intonation to be closer to 'just' intonation for some keys, but adds dissonance to music in other keys. In 

most contemporary music, equal temperament is adopted as the best compromise. 

We have assumed that all of the instruments are in the same temperament. An important exception is in 

music created from many polyphonic sources. Rave and techno music are good examples - since it is 

crucial to align the temporal structure of several independent sources (e.g. two record decks), the 

pitches will be shifted by an amount that is probably not an exact number of semitones. It is not 

uncommon in this genre for there to be several temperaments at once. 

Complicating the picture again, the instruments themselves can have an important effect on tuning. 

Consecutive strings of stringed instruments are separated by intervals of a fourth (double bass, guitar, 

bass guitar) or a fifth (violin, viola, cello), and the musician tunes them in just intonation. On valved 

brass instruments, each valve adds a constant amount to the length of tubing, rather than multiplying it 

by a constant. Thus, the combination of two or more valves adds slightly less than necessary, since 

l+a+b < ( 1 +a)( l+b ). 8 In both these cases, the player has fine continuous control over the intonation, 

and can use this to correct mistuning or to add nuances. Even the octave equivalence can be distorted 

slightly; pianos are typically tuned slightly flat in the bass, and slightly sharp at the top end. This is 

known as 'Railsback stretching' .(Wood, Schuck, Railsback, MartinO) 

Even when a fixed scale is in use, the fundamental pitches are not restricted to this discrete set. Notes 

are often played 'deliberately' out of tune- an instrument stands out more in the auditory scene if it is a 

little sharp. Notes might also be mistuned due to inaccuracy in controlling a continuous device (such as a 

trombone slide or a finger on a fretless string). The pitch of woodwind and brass instruments can be 

altered by the shape of the mouth. A high degree of expressiveness in music stems from pitch inflections 

such as glissando, portamento, and vibrato. 

Despite these factors, the tuning is likely to be close to the equal-tempered scale. Thus, if we examine 

the distribution of frequencies in western music, we find that most of them are close to 

A *(2Mil2)*N 

where A is a fixed tuning standard, M is an integral 'note number', and N is the harmonic. M and N 

need not be integers, but the point here is that they usually are very close, and A is usually fixed for each 

piece. The factor 12...J2 is what we know as a semitone- some musics use 5...J2, 7...J2, 19...J2, 24 ...J2, 37...J2, or 

13...J3 as the basic pitch interval, but these are a tiny minority. 

Generally, the octave relationship is exploited fully, with music staying in a fixed key, so the distribution 

is better described as 

8 Compensation is used to correct this error on larger instruments. 
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where 0 is an integer, K is the nearly fixed key, and M is a pitch class from 0 to 11. 

M may be further restricted to a subset of {0, 1 ,2,3,4,5,6, 7,8,9, 10,11}. For a piece in a major key, we 

use {0,2,4,5,7,9,11}. The major pentatonic, which is widely used in Westem9 and Eastern music, uses 

{0,2,4,7,9} F# major pentatonic includes the five black notes. For 7-note WestemiO diatonic scales, the 

notes are {0,2,4,5, 7,9, 11}, given by solutions to:-

-1 ~(7x)mod 12~5 

The Ionian (major), Dorian, Phrygian, Lydian, Mixolydian, Aeolian (minor), and Locrian modes refer to 

rotations of the same 7-note set, 

but with the root of the scale being 

at C, D, E, F, G, A, or B. 

The standard notation for musical 

notes assigns AO to the lowest note 

on the piano, C 1 to the C above 

that, C4 to middle C, A4 to 440 

Hz, etc., with octaves running from 

C to B. This is illustrated in Figure 

4, which also shows the three new 

clefs proposed by Rossing. [Rossing) 

The highest clef is not for 

fundamentals. Rossing sticks with 

the convention of two different 
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Figure 4 -Note notation and Rossing's new clefs. 

clefs. I cannot help but suspect that transposed treble clefs would be more convenient, but habit dies 

hard. 

2.1.4 The time domain 
/ 

The time domain can also be resolved into two domains; linear and logarithmic. A sequence of notes will 

have onset times related to each other by approximately linear relationships, but the subdivisions of time 

are related logarithmically. For example, a typical song might have four phrases, each of which has four 

bars. Each bar (assuming 4/4 time) contains heavier stresses on minims, weaker stresses on crotchets, 

and further subdivisions into quavers and semiquavers. The periods here are related by factors of two. 

This is predominant in most types of music. Division i!lto other primes is possible; 3 is common (much 

more so for divisions of crotchets into three triplet quavers than for divisions of phrases into three bars), 

9 Even for pieces in the 7-note diatonic scale, often the most commonly used notes are those in the 
pentatonic scale. Fleetwood Mac illustrate this particularly well. 

IO This excludes various scales termed Arabic, Jazz, whole-tone, etc. 
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but 5 and 7 are rare. Higher primes are most unusual for several reasons. First, they are hard rhythms for 

our perception to lock onto. Second, they tend to decompose into several unequal parts; a time

signature of 13/8 might be perceived as alternating bars of 6/8 and 7/8. In fact, comP.osers who use such 

time-signatures usually specify this subdivision explicitly. 

When there is a regular metre, the onset times are related to the bar times:-

(n+k)*T* J(l/tempo) 

where n is an integer, T is the bar length, and k is a fraction. This fraction is usually nearly rational, and 

its denominator is a small, highly composite number such as 2, 3, 4, 6, 8, 9, 12, or i6, that stays fixed 

for long periods. 

The durations of notes are generally notated in terms of the musical time - a legato note (on a driven 

instrument) may nominally be one crotchet in duration. However, the actual duration will be shorter for 

non-legato notes. Also, on non-driven instruments (percussion or plucked strings), where there is no 

control over the 'end' of the note, the duration is meaningless. The duration of a note is of less musical 

relevance than its start time. 

The intention here is not to imply that all music has, or should have, the simpler distributions describect 

above. Rather, we should say that, on observation, a surprisingly large amount of music tends to 

approximately follow these pseudo-rules for relatively long periods of time, weather pennitting. 

2.1.5 Redundancy 

By identifying many floating-point numbers as being nearly integral, we have identified points where the 

data is compressible, at least in principle. To illustrate this, the decimal number 5.001234 is 

101.0000000110101001 in binary. It is clear that all 'near-integers' have a format:-

(ones and zeros). (all zeros or all ones) (ones and zeros) 

This format is clearly compressible by using run-length encoding on the middle section. Thus, a stream 

of floating-point numbers that are likely to be near integers has, in theory at least, a lower information 

rate than an arbitrary stream of numbers. Likewise, the pseudo-types "small integer", "slowly-varying 

float", and "near-rational" have a format in which the data redundancy can be seen. It may not be 

practical to use this format, due to the complexity and cost of the coding and decoding. 

2.1.6 Appreciation 

Every 'rule' of music can be broken, and breaking the rules is how composers add· interest and 

information to the music. However, when too many rules are broken at the same time, we reach a state 

of 'information overload', or 'musical chaos'. Here, our subjective appreciation of the music starts to 

fall, and we cannot use the preceding music to infer the future with much certainty. As the information 

increases, we ultimately reach noise, as shown in Figure 5. 
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Figure 5 -Music appreciation versus information content. 

The curve shown depends of 

course on the individual, the 

setting, the time of day, and a 

large number of other unknown 

parameters. However, the idea of 

information overload can be 

demonstrated easily by playing 

more than one piece of music 

simultaneously - this is instantly 

uncomfortable. The information 

rate obviously depends on tempo - excessively slow music tends to be boring, and excessively fast music 

(assuming no change in pitch) becomes uncomfortable. 

2.1.7 Memory, context, and prediction 

When listening to music, we interpret it with reference to both long-term and short-term memory. Our 

long-term memory is used to recognise an instrument, melody, orchestration, voice, and style as bei~g 

familiar to something heard days or years ago. Short-term memory governs our appreciation of the 

current piece of music, and this applies to intervals of seconds (recognising a note as being the same 

pitch as the previous one) to minutes (interpreting a verse-chorus-verse-chorus structure) to hours 

(hearing a theme from the first movement repeated in the last). Here I use context to mean the 

interpretation of the current piece, as opposed to similarity to other pieces. 

We are also able to predict what the music is likely to do in the future, and are pleasantly or unpleasantly 

surprised when these predictions do not come true. Repetitive instruments. such as a bass drum beat 

blend into the background. We can also consciously choose to follow particular features in the music. 
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2.2 Perceptual properties of musical audio 

2.2.1 Biology of the ear 

It is informative to know the physical structure of the ear. This has been 

studied for many years, most notably by von Bekesy (1899-1972).(von 
Bekesy) 

The brief summary below borrows from Rossing and others. (Rossing, Neely, 

Wood, Plomp 78, MooreF 90, MooreS 95) Th t f th . ghl e ana omy o e ear Is rou y as 

shown in Figure 7. The outer ear passes external vibrations to the 

tympanic membrane, commonly referred to as the eardrum (also boosting Figure 6- Georg von Bekisy. 

the 2-7 kHz region). Rossing notes that the range of pressure variations is 

over six orders of magnitude, and that the displacement of the eardrum for the quietest note may be I o-B 
mm = 10 picometres. 

Figure 7- Anatomy of the ear. 

(J out~e;w 

0 mictdle •n 

0 illllerear 

In the middle ear, the vibrations collected are passed via three minuscule bones called ossicles. These 

are known individually as the hammer, anvil, and stirrup (malleus, incus, and stapes). These act as a 

mechanical transformer; the lever action amplifies the force by about 1 lh, and the oval window is 20 

times smaller than the eardrum. The pressure variations are thus amplified by a factor of30. These bones 

also protect the inner ear from very loud sounds and sudden pressure changes. This process boosts 
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frequencies near I kHz. 

The middle ear also 

introduces various 

nonlinearities(Piomp 761 

that give rise to aural 

harmonics and 

combination/difference 

tones.11 

The inner ear contains 

the semicircular canals 

(our 3-d balance 

sensors) and the 

cochlea, shown in 
Figure 8 -Interior of the cochlea. 

Figure 8. The cochlea 

can be thought of as a fluid-filled tube. Inside this tube are around 30000 hairs which vibrate at th~ir 

own characteristic frequencies (CFs). The responses shown in Figure 9 show results of measurements on 

a cafs cochlea.lKiang, Rossing) It will be noticed that the 'filters' are not symmetrical; they have a slower 

roll-off on the lower-frequency side (the 'tail') than on the higher-frequency side.l2 

11 When frequencies fl and f2 are presented to the ear, nonlinear transmission also causes terms f.+f2, f.
f2, 2f1-f2, etc. to be perceived. These are known as combination or difference tones.lPierceJ It also causes 
2f., 3f., 2f2, etc. -these are called aural harmonics. (Goldstein 

611 

12 Kiang comments on the dangers of applying data from anaesthetised cats to humans; however, the 
cochlear structures are similar, so one could reasonably expect similar results for humans. 
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Figure 9 - Responses of six fibres in the auditory nerve of a cat. 

The CFs are roughly evenly distributed by pitch, although gammatone filters are a closer approximation. 

The impulses are fed into the auditory cortex, and these are thought to then form 'maps' of amplitude 

and other parameters against frequency. (MooreD, BrownG 92a, BrownG 94aJ 

2.2.2 Critical bands and masking 

When two tones overlap in frequency such that their responses overlap considerably, they are said to lie 

in the same critical band. (Rossing, Zwicker) The critical bandwidth is around a third of an octave for much 

of the frequency range, but is greater at low frequencies. An approximate linear expression for the 

critical bandwidth at fHz is (£79+80) Hz, though the data does not fit a line perfectly. 

2.2.3 What are the musical atoms? 

We still have the decidedly non-trivial problem of defining the basic entities of music. How many partials 

must a note have? How much frequency stretching is permissible? Is a timpani roll one note or many? Is 

a violin section a single instrument or sixteen? When is the onset of a reversed cymbal crash? How can 

we recognise notes as wrong or missing without any prior knowledge of the score? When does a 

repeated motif become part of the background? Is Haydn's 'Surprise Symphony' a different piece of 

music the second time round? What is the sound of one hand clapping, and how much disk space does it 

require? A computer model can at least attempt to answer some of these questions in an objective and 

repeatable manner, and some limitations of the model developed later are analogous to limitations of our 

own perception. Whether we can use the reactions of an artificial listener to infer anything about our 

own listening is of course debatable. 
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2.3 Source separation and stereo imaging 

The aspect that makes polyphonic transcription so much harder than monophonic transcription is that 

we effortlessly separate the two channels into their component notes. The sound reaching our ears 

includes noises that we identifY as being entirely unrelated to the music, such as the noise of traffic or 

the hum of electrical devices. It has been thought that we dissociate separate sources by lower-level 

processes. However, some studies[BrownG 94aJ have pointed out that this mechanism could also form the 

Localise by 
phase/time 
difference 

Localise by 
intensity 
difference 

1 kHz 4 kHz 

Figure 10 - Schematic of the two mechanisms for toea/ising pure tones. 

intensity difference or IID) for tones above 4 kHz. oore 

basis of source separation and 

timbre identification. 

The preliminary processes 

also involve identification of 

the position of the source. We 

judge this by the interaural 

phase difference and the 

interaural time difference 

(lTD) for tones below I kiJz 

and the relative amplitudes at 

each ear (the interaural 

On the left-right axis, our accuracy is 

greater for high notes than for low notes, and has a dip at around 3 kHz. This is illustrated in Figure 10. 

Kendall gives a more detailed overview of directional hearing. [Kendall 
91

' Kendall 
951 The complex shape of 

our outer ear helps to distinguish up/down and back/front, although in these axes our accuracy of 

I . h (MartinK 96) p acement ts muc poorer. 

Another aspect of real music to bear in mind is that there are usually effects such as reverberation and 

filtering applied to the signal. Our preliminary auditory processes are largely responsible for determining 

the distance and environment of a sound. With acoustic reverb, the impulse response of the room js 

constant but very complex. In a digital enviroi1lrient, even more effects can be applied to the sound, and 

these can create sonic environments that are physically unrealisable, such as a sound that reaches the left 

ear first but is stronger in the right ear. Frequently, different effects are applied to different instruments. 

2.4 Perceptual properties of notes 

Most music is created and perceived in terms of individual notes. As usual, there are exceptions - music 

can be organised as slowly changing textures, without any concept of onsets and offsets. Individual 

notes can be studied in isolation more readily than polyphonic music. The physical parameters of audio 

waveforms have analogies in the perceptual parameters, but the relationships between them are often 

very complex and interdependent. The table below, after Rossing, shows the dependence of perceptual 
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parameters on physical parameters - note that every perceptual parameter depends on every physical 

parameter. [Rossing) 

Loudness Pitch Timbre Duration 

Pressure STRONG weak weak weak 

Frequency weak STRONG moderate weak 

Spectrum weak weak STRONG weak 

Duration weak weak weak STRONG 
Envelope weak weak moderate weak 

Table 2- Dependence of perceptual parameters on physical parameters. 

In addition, subjective onset time may vary from physical onset time. (Wesse
1781 

2.4.1 Amplitude- loudness 

Listeners can reliably and repeatably adjust sounds to 'twice as loud', 'half as loud', and there is little 

variation between people. (Sundberg 
911 However, what is it that people are describing by loud? The 

relations between loudness and physical factors are complex, and there are several competing 

definitions. Below is a brief summary. [Rossing) 

The sound pressure level (SPL) is defined from the logarithm of the ratio of a sound's pressure to a 

reference pressure of20 f..lPa. All logarithms are to base 10. 

Lp = 20 log (p/po) 

This gives the following levels:-

Source 

Jet takeoff at 60 m 
Construction site 
Shout at 1~ m 

Heavy truck at 15 m 
Urban street 
Car interior 

Normal conversation at 1m 
Office/classroom 

Living room 
Bedroom at night 

Broadcast studio 
Rustling leaves 

Silence 

SPL (dB) 

120 

110 

100 

90 

80 

70 

60 

50 

40 

30 

20 

10 

0 

Table 3- Sound pressure levels of several sounds. 

quality pressure 

20Pa 

intolerable 6.3 Pa 

2Pa 

very noisy 630 mPa 

200 mPa 

noisy 63 mPa 

20mPa 

moderate 6.3 mPa 

2mPa 

quiet 630 ~a 

200~a 

barely audible 63 ~a 

20 f..lPa 

The sound power level is the total power emitted by a source in all directions. It is defined by:-

Lw = 10 log (W/Wo) 

where W0 is one picowatt. 
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The following table from Wood gives the powers of several instruments.[Wood) These are maximum 

values unless otherwise stated. 

Source Power SPL (djjj 

Orchestra of 75 70W !38.5 
Bass drum 25W 134.0 
Pipe organ 13 w 131.1 
Snare drum 12 w 130.8 

Cymbals lOW 130.0 
Trombone 6W 127.8 

Piano 400mW 116.0 
Bass saxophone 300mW 114.8 

Bass tuba 200mW 113.0 
Double bass 160mW 112.0 

Orchestra at average loudness 90mW 109.5 
Piccolo 80mW 109.0 
Flute 60mW 107.8 

Clarinet 50mW 107.0 
French hom 50mW 104.8 

Triangle 50mW 104.8 
Bass voice 30mW 104.8 

Alto voice pp 1mW 90.0 
Average speech 24~W 73.8 

Violinppp 3.8 ~w 65.8 

Table 4- Sound power levels of several sounds. 

The sound intensity is the rate of energy flow across a unit area, relative to 10"12 wm-2 

The loudness level LL of a sinusoid is the sound pressure level of an equally loud 1000-Hz sine. This is 

strongly dependent on frequency, as shown by the Fletcher-Munson curves of equal loudness in Figure 

11. 
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Figure 11 - Fletcher-Munson curves. 

The loudness of a complex tone depends on the loudnesses of its components, and whether they fall into 

the same critical band. 

2A.l.l Loudness vs. spectral cues 

We have discussed the main factor in loudness, intensity. John Chowning discusses how loudness also 

depends on other factors. [Chowning 
931 He illustrates with the example of two singers; one singing forte at 

a distance of 50 metres, and another singing pianissimo at 1 metre. The listener will judge the distant 

sound to be louder, despite the fact that the close sound 

has an intensity 2V2 times greater. To do this, we must 

first judge distance, and von Bekesy shows that this is 

primarily dependent on the ratio of direct sound to 

indirect sound. (von Bekesy) 

2.4.1.2 Dynamic range 

The dynamic range of an instrument is defined as the 

difference in loudness between the loudest and the 

quietest notes. Several values are shown in the 

table. [PattersonB) 

Instrument Dynamic range (dB) 

Recorder 10 

Double bass 30 

Flute 30 

Trombone 38 

Bassoon 40 

Violin 40 

Clarinet 45 

Table 5- Dynamic ranges of several 
instruments. 
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2.4.1.3 Amplitude resolution 

Rossing estimates that our amplitude resolution is 1.7 dB_(RossingJ MIDI keyboards have 127 discrete 

velocity levels, which would imply around 1-dB steps, and no complaints are raised about the lack of 

resolution. A lower figure still is suggested by Rasch, though, who states that "SPL differences of less 

than 1 dB ... can have a profound effect on the subjective response to a stimulus'dRasch 821 Sundberg 

gives the lowest estimate of 0.43 dB.(sundberg 911 However, Risset comments that the room response 

fluctuations ofup to 20 dB are much greater than our amplitude resolution_[RissetS2J 

2.4.2 Frequency- pitch 

Pitch is defined[ANSIJ as "that' attribute of auditory sensation in terms of which sounds may be ordered 

on a scale extending from low to high". While few would disagree with this, it is not obvious why we 

assign the terms "high" and "low" to pitches in the first instance. 13 Although pitch is nominally treated 

as the logarithm of frequency, it is a more complex phenomenon. Most people do not have absolute 

pitch(WardJ (otherwise known as perfect pitch), although some learn it. For many, the lowest pitch they 
- -

can sing is a fairly stable reference, and others imagine certain notes for instruments or pieces in 

distinctive keys. 14 Most can only recognise relative pitch- i.e. the ratio of two frequencies. Sundberg 

draws attention to the concept of extra-musical pitch, such the pitch of voices, sibilance, drums, and 

cymbals. [Sundberg 911 Plomp uses the term nontonal pitch. [Piomp 761 Plomp also points out the 

phenomenon of binaural diplacusis, whereby the pitch in one ear may differ from that in the other, by 

up to 2% - a third of a sernitone. 

The prevailing standards define A (A4) above middle C (C4) to be 440Hz. (Wood] The 'old' notation for 

C IIC2/C3/C4/C5 is C1 /C/c/c' /c''. The cent is a convenient interval of a hundredth of a sernitone, equal 

to !2oo..J2. 

2.4.2.1 Psychophysical pitch 

There are two scales on which psychophysical pitch can be measured. The unit of subjective pitch is the 

mel, where doubling the number of mels "doubles the tone height". A different scale defines one bark as 

equal to the critical bandwidth, and this gives· one bark as very close to 100 mels. However, the mel and 

bark scales are of little use as they distort the low end of the spectrum compared to the linearity of the 

log-frequency definition. 

13 In this context, an interesting story is told of a 6-year-old girl thumping on the bass end of a piano; 
when an adult suggested that she played at the high end, she replied that she was already at the high end 
because the notes 'sounded so much bigger' than those produced by the keys to her right. This agrees 
with Dowling's comments on young children's pitch perception_[DowtmgJ 

14 For this author, common 'tuning references' include the C# key of the "Moonlight Sonata", the Eb 
tonic of the Mozart hom concertos on an Eb tenor horn, and the EADGBE of a guitar. 
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2.4.2.2 Pitch resolution 

Pitch resolution depends on several factors such as frequency, sound level, duration, smoothness of 

transition, measurement method, and musical ability. 

F . h b h [Zwicker Rossing) h h · · bl d"ffi ( . or pure tones, It as een s own ' t at t e JUSt-noticea e I erence JND) between two 

frequencies is about a twelfth of a semitone from 1000 to 4000Hz (although at 2000Hz there is a slight 

dip). From 1 kHz to 4kHz, we can resolve pitch to around 0.05%, or a twelfth of a semitone, or one 

thirtieth of the critical bandwidth (the JND depends on the frequency, duration, sound level, and the 

abruptness of the change). Rossing comments that we can thus hear around 5000 different frequencies, 

but Sundberg gives a lower figure of 1400. [Sundberg 911 

The resolution is poorer at lower frequencies, and is never better than 2 Hz. Throughout most of the 

range, there are about 30 JNDs in one critical band. The table below summarises the results. [Zwicker) 

frequency JND JND critical band JNDsper semitone JNDsper 
(Hz) (Hz) (cents) (Hz) critical band (Hz) semitone 

60 3 84 90 30 3.57 1.19 

100 2.4 40 90 37.5 5.95 2.48 

200 2.5 21 90 36 11.90 4.76 

500 3 10.1 110 36.7 29.74 9.91 

1000 4 6.7 150 37.5 59.5 14.88 

2000 10 8.4 280 28 119.0 11.90 

5000 20 6.7 700 35 297.4 14.87 

10000 80 13.4 1200 15 595 7.44 

Table 6- Critical bandwidths and JNDs at various frequencies. 

Rakowski shows that under ideal conditions, pitch changes of0.03 to 0.08 Hz can be noticed at 160Hz. 

This corresponds to a much better resolution of one three-hundredth of a semitone_(Rokowski, Jansen 911 It 

is unclear, however, what these conditions are. 

2.4.2.3 Pitch and amplitude- Stevens's Rule 

In 1935, Stevens showed that low tones get flatter as they get louder and high tones get sharper_!StevensJ 

This is sometimes termed Stevens's Rule. The maximum shifts were recorded at 150 and 8000 Hz. The 

transition, where pitch is independent of loudness, is at 2000 Hz. Measurements[Terllardt 791 at frequencies 

between 200 and 6000 Hz show that the amount of shifting is approximately linear, and agrees closely 

with the following approximation, shown in Figure 12, where fis the frequency, Lp is the sound pressure 

level in dB, pitc~odB is the pitch at Lp=60 dB, and 'Stevens's constant', K.t::::: 3.362 • 104 cents per 

decibel per Hertz. 

pitch= pitc~odB + K.t *(f-2000)*(Lp-60) 
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Figure 12- Pitch variation in cents per dB amplitude change. 

For a 200-Hz pure tone, an increase in amplitude of 40 dB (comparable although not equivalent to the 

difference betweenpp andJl) flattens the pitch by 22 cents, nearly a quarter of a semitone. A 6-kHz tone 

would be sharpened by 56 cents, and would be closer to the semitone above. 

Although this effect is noticeable for sine tones; the pitch of complex tones depends little on intensity. 

Complex tones will have harmonics both below and above 2 kHz. 

2.4.2.4 Pitch and duration 

In 1840 Savart first examined how long a tone must last for in order for it to be a pitch rather than a 

click. His results suggested that 2 cycles were sufficient, but later experiments gave higher figures, and 

showed that the number of periods increases with increasing frequency. From 50 to 1000 Hz, the 

number increases slowly from 3 to I1, corresponding to the recognition period falling from 60 to II ms. 

It then increases rapidly to 250 at IO kHz. Truax quotes Olson's experiments showing that pitch 

develops after I3 ms. [Olson, Truax 881 

2.4.2.5 Pitch of complex tones 

The pitch of a complex tone is determined by the pitches of each harmonic. [Goldstein 
73

• Terhardt 
79

• Terhardt 

82
bl When the fundamental is absent, the sensation of pitch is still clear (for fundamentals under 1000-

2000 Hz[GreenD]) - this is an example of virtual pitch, and such a tone is known as a residue tone. 

Rossing cites experiments showing that the fourth and fifth harmonics are the most important for 

determining pitches up to 200Hz. For higher pitches, lower harmonics are more important, and above 

2500 Hz, the fundamental is the most important. Rasch describes this as a 'dominance region' for 

partials to affect pitch, and also quotes Terhardt's results showing that a complex tone is heard as being 

lower than a pure sine at the same frequency. [Rasch 
82

• Temardt 
711 

2.4.2.6 Frequency stretching 

The frequency of a complex tone with not-quite-harmonic partials is harder to specify, but the brain is 

assumed to find a set of "nearly harmonic" partials and decide a fundamental. [MooreB 
85

• Piszczalski 
791 On 

· t t · I d" t · [Shankland, Fletcher 62, Fletcher 77a, Fletcher 77b, Blackham, Schuck, Rossing, Kottick, many ms rumen s, me u mg s nngs · 
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Kurz), organ pipes(Fietcher 631, and flutes(Benade 651, the partials are approximately, but not exactly, 

harmonic. The most common example of this is in low strings on an upright piano, which are very thick 

and insufficiently long. 15 As a result the relative frequency rises faster than the partial number.I6 Stiff 

strings' harmonics are given by the following equation:-

where fn is the frequency of the nth partial, r is the string radius, Y is the Young's modulus, I is the 

length, T is the tension, C is a 'bridge parameter' of around 0.27, and An is the amplitude of the nth 

harmonic. Rossing gives the simpler version of this formulalRossingJ, with C=O:-

Data from tests by Blackham on the lowest note, AO (27.5 Hz), is shown in Figure 13, and data from 

tests by Schuck on a higher note, Fl (44Hz), on a different piano, is shown in Figure 14.1Biackham, Schuc.kJ 

>
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~ 40+-------~-------~------~~~-~~~-----; 
~ 30+-------;---------r~~~~~~-----r--------; 
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partial number 

Figure 13- Inharmonicity of AO from Blackham's data. 

15 · · hi ffi al · · (Railsback, MartinO) H inh . .ty Railsback exammes how t s a ects actu prano turung. owever, armorucr 
affi 

. (Sundberg 73] 
does not appear to ect organ turung. 

16 I am not aware of any acoustic instruments exhibiting the opposite phenomena of 'frequency 
squashing'- where higher partials become flatter. 
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Figure 14 - Inharmonicity ofF I from Schuck's data. 

The above has discussed frequency stretching, but another factor counteracts this. Given one tone and 

asked to tune another to an octave above, listeners will actually stretch the octave to an average of 

around 1215 cents, nearly a sixth of a sernitone sharp. This sharpness depends on frequency, amplitude 

(d S , I ) d [Sundberg 91 Sundberg 73) O I fi I . h ue to tevens s rue , an spectrum. .• ur og or perceptu_a p1tc , as opposed to 

frequency, should be 2.0174 rather than 2. Perfectly harmonic tones would actually be slightly pitch

squashed. 

2.4.2. 7 Inharmonicity 

The pitch of timpani, and to a lesser extent bells, are borderline cases between pitched and unpitched. 

The pitch is implied by approximate relationships between some ofthe partials, but the sensation of pitch 

is less clear. In some cases, there may be a sensation of several pitches, as in some bells, or no pitch, as 

in a bass drum. 

2.4.2.8 Discussion of contrabass instruments 

Acoustic contrapass instruments are difficult to construct due to their size, and low notes are often 

difficult to produce. In many cases there is little energy at the fundamental, which is instead implied by 

the higher harmonics, which have been shown to be more relevant to pitch than the fundamental. As an 

alternative to using a single low note of, say, 30 Hz, it is common for composers to use fifths - 60 and 

90 Hz - to "thicken the bass" by implying a pitch an octave below. 

The lowest notes on several contrabass instruments are listed in the table below. We can assume that 

most music goes down to 30Hz and in extreme cases to 15Hz. 
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Instrument · · Lowest note Frequency (Hz) Period (ms) 

Human voice AI 55 18.1 

Double bass and contrabass violin <I> E 1 41.2 24.3 

Bass guitar E 1 41.2 24.3 

Harp c 1 32.8 30.8 

Subcontrabass recorder F2 87.3 11.5 

Double contrabass flute <
2

> c 1 32.8 30.8 

Contrabass clarinet (BBb) D1 36.7 27.2 

Octocontrabass clarinet (BBBb) <
3

> D 0 (C 0) 18.3 (16.4) 54.6 (61.6) 

Bass saxophone (Bb) Ab 1 51.9 19.2 

Contrabass saxophone (Eb) '<3
> Db 1 34.6 28.9 

Bassoon Bb 1 58.2 20.4 

Contrabassoon <4
> BbO 29.1 44.9 

Eb Bass tuba A 0 (E 0) <5> 27.5 (20.6) 36.4 (48.5) 

BBb (Contrabass) tuba E 0 (B -1) <5> 20.6 (15.5) 48.5 (64.5) 

~ba, bass steel drum .. C2 65.6 15.4 

0 AO 27.5 36.2 

Organ A -1 (C -1) <6> 13.8 (8.12) 72.4 (123.2) 

Table 7- Frequencies of contrabass instruments. 

<I> The contrabass violin is the largest of the new viol family developed by the Catgut Acoustical 
Society. (Rossing) 

<
2
> This modem instrument is three octaves below the standard flute. 

<3> Contrabass saxophones are extremely rare - Grant Green, a contrabass woodwind fanatic, reports 
that only fifteen are known to exist. There are three octocontralto (EEEb) clarinets and only one 
octocontrabass (BBBb) clarinet. (GreenGJ 

<
4
> The record for a double-reed instrument is a 'sub-double' bassoon, no longer surviving_(MatthewsJ 

This is an octave below the contrabassoon, and reaches down to B-1 (14.6 Hz). The EEb 
contrabass sarrusophone, still used in continental Europe, reaches Db 1 (34.6 Hz). 

<5
> AO is the lowest pedal note (first mode) on a 3-valve Eb tuba. This is the lowest note in the 

symphonic repertoire(BevanJ, and can be considered the bottom of the tuba range. A compensated 
4-valve Eb tuba can theoretically play EO, but the low end of the pedal-note register is very 
difficult to play. The BBb tuba (the nomenclature 'contrabass tuba' is not often used) would 
reach EO (3-valve) or B-1 (4-valve): The rare BBb contrabass trombone can also reach EO. 
There are a few EEb ('subbass') and two BBBb subcontrabass tubas, the last theoretically 
capable ofE-1 (10.3 Hz).(BainesJ The obsolete contrabass ophicleide reached Eb1 (38.9 Hz). 

<
6
> The C-1 figure is exceptional(Matthewsl, from a 64-ft pipe, and would not be found on most organs. 

The lowest organ notes are often made using two shorter pipes with fundamentals corresponding 
to the 2nd and 3rd harmonics, a practice developed by Abbot Vogler (1749-1814).(WoodJ 

The difficulties of constructing and playing physically large instruments do not apply to electroacoustic 

synthesis .as computer models do not have such physical restrictions. (Low notes may still be 

problematic - for example, a sampler needs more memory, and a recursive oscillator is more susceptible 

to round-off error due to the small phase increment.) Composers have been able to explore the transition 

region between pitch (such as a snare drum roll played double speed) and rhythm (the same roll played 
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half speed). The notion of a ' lowest possible frequency' is thus impossible to define. Frequency does not 

always have to be seen as high or low; sometimes it has its absolutely literal meaning of 'very often' or 

'not very often' . This will be familiar to those working with wavetable synthesis and pitch-synchronous 

granular synthesis. 

2.4.3 Spectrum- timbre 

Helmholtz (1821-1894) was the first to assert that the timbre of the 

steady-state portion of a sound depends on its spectral 

characteristics. (Helmholtz) Relatively pure tones, such as flutes, and tubas in 

the high register, sound dull. When most of the energy is in lower 

harmonics, the sound may be described as dull or mellow or bassy. When 

higher harmonics have more energy, the sound is bright. Some 

instruments, notably clarinets, have stronger odd harmonics, and this 

causes ' reediness' . The steady-state timbres of many orchestral 

instruments have been analysed and made. available by Gregory 

S d II (Sandell 11 S•ndell HJ H F · • 1 · · all n1 an e . · . owever, ouner s exp anat1on IS re y o y 

Figure 15 - Hermann von 
Helmholtz. 

true during the steady-state portion of the sound. Indeed, there may be no 'steady state', as the temporal 

variation of these parameters contributes greatly to the qualities of a sound. It is also known that partials 

will only fuse if their rates of vibrato are the same. (DubnovJ 

Several studies have used multidimensional scaling to determine what the most important aspects of 

timbre are. (Ptomp 78, Grey n •. Wessel 78, Wessel 71, Rossing, De Poll 13, ToivialnenJ Miller showed that subjective 

similarity depends on the envelope.IMillerJ Plomp gives the following ' dissimilarity matrix' for nine 

instruments(Piomp 701
, and maps the differences onto three dimensions. Darker shading represents higher 

similarity between instruments. 

Table 8- Dissimilarity matrix for notes. 

Von Bismarck' s studtvon Bl~m~~rckJ gives dulVbright, cold/warm, pure/rich, and Plomp' s(Piomp 781 gives 

dulVsharp, compact/scattered, fuWempty, colourfuVcolourless. DulVbright has appeared as the main 

factor in every study of timbre. Terhardt contributes 'roughness', corresponding to spectral line-
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·d · (Temantt 78• Riuet 821 E hi 1· 124 d. . lied . b d WI erung. t ngton tsts a ~ecttves app to tun res an presents a system that 

implements ' text-to-timbre' for 16 of them, namely blown, bowed, hammered, keyed, plucked, struck, 

damped, legato, percussive, staccato, sustained, resonant, clear, ringing, bright, and surging. [Ethington] 

This allows the user to change from one timbre to a "slightly more plucked, much less resonant, more 

damped" timbre. 

Risset cautions against placing too much reliance on the spectrum as a means of identification, pointing 

out that the response of a normal room has fluctuations of up to 20 dB.[Riuet 821 This varies with 

position, but our moving around in a room does little to alter our perception of timbre. 

Timbre was also shown(MIIIer, Grey na, Wessel 781 to be strongly connected to the order and rate with which 

the harmonics start. On a plucked string, for example, the higher harmonics start before the lower 

harmonics. On brass instruments, the reverse is true. (Riuet 811 

Diana Deutsch examined grouping mechanisms. [Deutsch) She showed that timbre is very dependent on the 

attack of the sound, by splicing the attack of a trumpet (- 20 ms) onto the sustain part of a clarinet, and 

showing that the timbre was perceived as a trumpet. Berger carried out similar experiments, removing 

the first and last half seconds of a note on 1 0 instruments and asking listeners to identify them. [8etgeft<J 

The result was the following ' confusion matrix' . Darker shading represents more identifications. 

Response 

Flute Oboe Clarinet Tenor French Baritone Trom- No 
Stimulus sax 

Alto 
sax 

Trumpet Comet 
hom bone answer 

Flute 

Oboe 

Clarinet 

Tenor sax 

Alto sax 

Trumpet 

Comet 

French hom 

Baritone 

Trombone 

Table 9- Confusion matrix for notes without onsets and offsets. 

Alfred Bregman also examined auditory grouping in detail. [Bnlgmlin 
881 He identifies the characteristics 

linking auditory elements as common location, harmonicity, common onsets and offsets, and common 

frequency and amplitude modulation. 

2.4.3 .1 Timbre resolution 

Timbre being a multidimensional and time-varying quantity, it is hard to quantify how much resolution 

of timbre space we have. It is clear that only a very short duration is needed. Robinson showed that 
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listeners can distinguish between brass, flute, harpsichord, and strings given a single period of the 

t (Robinson!<] d G h d b h no e , an ray s owe a ove-c ance performance for identifYing a vowel from a single 

period. (Gray] 

2.4.3.2 The sound of an instrument 

An important question in both analysis and synthesis is "What is the sound of a trombone?", or any 

known instrument. For analysis, we wish to know "What does this sound data represent or mean in 

terms of higher-level parameters such as pitch, loudness, duration, bite, meatiness, roundness, etc.?". 

For synthesis, we wish to know "What function of pitch, loudness, duration, bite, meatiness, roundness, 

etc. would create a sound similar or identical to what a trombonist and a trombone would create?". 

The spectrum of a note on a particular instrument depends on its frequency - often high notes have most 

of their energy in the first few harmonics, but low notes have very little. In many cases, the prominent 

range of frequencies is nearly fixed. This is known as a formant, especially in reference to the human 

voice. In general, our perception of timbre depends more on formant structure than a theory based on 

overtones. A low 'ah' and a high 'ab' have similar timbres because they have roughlyl 7 the same 

formants, even though the relative strengths of overtones are different. (Slawson, Plornp 78• Risset 82• Cook 911 

The frequencies of speech formants(MooreF 901 are illustrated in Figure 16 . 
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Figure 16- Vowel formants. 

Many, indeed most, other instruments also have formants. It has been suggested, in the context of a 

Stradivarius violin, that a third formant at the sum of the freql!encies of the first two is an important 

17 Slawson suggests that if the fundamental frequency doubles, the formants should rise by 10%. 

43 



parameter in subjective timbre quality.[Dubnov) This can be achieved by non-linear effects devices which, 

amongst other spectral alterations, have the effect of adding a 'third formant' to an instrument with two. 

The spectrum also depends on the precise manner of playing a certain pitch. A (sounding) F4 played in 

sixth position on the eighth mode of a trombone will have a brighter spectrum than one played in the 

first position on the sixth mode. A trumpet with all valves down has different acoustics to one played 

open, both because the cylindrical section is longer and because the bends in the tube add fluid 

impedance (and as discussed earlier, it also has poor intonation). Different ways of fingering also affect 

keyed woodwind[Sandell 911 and keyed brass18 in similar ways. Likewise, the top E4 string of a guitar has 

a mellower and more harmonic timbre than one played on the 24th fret of the low E2 string. Both 

research and compositional experience show that modelling the playing structure of an instrument with 

special attention to the valves19, slides20, keys, or frets adds a great deal of realism. 

The spectrum also depends on amplitude - louder notes generally have more energy m higher 

harmonics. Even if these can be deduced, the spectrum, and the envelope of each harmonic, depends on 

the actual articulation used for each note. Some instruments can make distinct .sets of timbres. A good 

example is the clarinet, which has three registers ( chalumeau, clarion, and altissimo) that have different 

timbres. However, in listening to music, we invariably can tell that one group of notes came from one 

instrument, whether a familiar or a new instrument. 

2.4.4 Phase 

In almost all cases, we cannot hear a difference when the relative phases of the harmonic are 

changed.[Risset 891 This insensitivity to phase is termed 'Ohm's acoustical law'. A few experiments have 

found counter -examples. [Licklider, Plomp 78' Van Klitzing, Leman 941 Plomp concludes that the maximum effect is 

between a tone with harmonics in phase 

(sine or cosine summation) and a tone with 

harmonics differing by 90°. Wang proves 

that arbitrarily many zero-crossings may be 

introduced into a wave with the same 

magnitude spectrum as a square wave. (Wang) . 

Another possibility is that some non-linear 

distortion is taking place in the ear. This is 

Figure 17- Non-linear distortion. 

18 Keyed brass are now rare; they include ophicleides and bugles. 

19 The Yamaha SY77 allows each note to be tuned individually. This allows the faulty intonation of an 
uncompensated brass instrument to be modelled more realistically. 

20 Processing has been implemented (using Cakewalk's CAL language) to map a MIDI trombone line so 
as to add portamento corresponding to the slide position for each note. Again, this subtle effect adds 
realism. 



schematically illustrated in Figure 17. In this example, the tone has only the first and third harmonics, but 

the absolute value of the output is clipped. Whether the signal is clipped depends on the relative phases 

of the harmonics. It is known that the middle ear does introduce some non-line~ties, but it is unlikely to 

be as simple as clipping. 

2.4.5 Time- musical time 

The timings of notes are interpreted using an overall tempo and a hierarchical metrical structure, as 

discussed earlier. 

2.4.5.1 Time resolution 

The order of onsets can be judged with an accuracy of around 1-2 ms[GreenDJ, although this accuracy 

decreases as the frequency falls. Scheirer quotes Handel's figure of 5 ms. [Scheirer 95b• Handel) 

Rasch showed that onset asynchrony is an important cue in the perception of music. [Rasch 781 He carried 

out threshold experiments on distinguishing whether a motif is played up or down in the presence of a 

masking tone. The threshold fell by 35 dB when the asynchrony was 20 ms. However, up to 30 ms, 

subjects did not report any perceived asynchrony. This agrees with data from research by Hirsh and 

b · (Hirsh MooreF 88) J-1'. al h d h h f 1 · . comments y Moore. ' morm tests s owe t at t e accuracy o actually p aymg a 

musical example on a keyboard varies from 10-30 ms, and the accuracy of playing repeated notes is 

around 5-15 ms. 

2.4.5.2 Heisenberg's uncertainty principle 

The uncertainty in time and the uncertainty in frequency are related by Heisenberg's uncertainty 

principle. Where Llt5 and M;. are the 'inertial' width, Llt5xllf. ~ 11( 47t). This is derived in Appendix 

G. [Solbach 96b· PapoulisJ Gabor chooses a different definition, where Llt and M are 2~7t times llt. and llf. 

respectively. (Gabor 471 With these definitions, LltxM ~ 1. But how closely does our auditory system come 

to this inequality? 

Gabor quotes data from perceptual tests by Burck giving LltxM= 2.1 at 500Hz and 3.0 at 1 kHz[BiirckJ, 

and data from Shower giving LltxM= 2.34.[Shower) Srinivasan's figures give LltxM=2.07.15""ivasan) Later 

data from Majernik suggests that LltxM can be less than 1.26.(MajemlkJ It seems that our perception is 

nearly as sharp as possible. Gabor notes, "the best ears in the optimum frequency range can just about 

discriminate one acoustical quantum". Mont-Reynaud suggests, without stating sources, that the ear can 

even beat the uncertainty principle. [Mont-Reynaud 931 

For complex tones, the situation is different. Winckel showed that a sense of pitch can develop for a 

note as short as 3 ms[WinckeiJ, although Burck's data shows this interval falling from 60 ms (3 periods) at 

50 Hz to 18 ms at 400Hz (7.2 periods) to 13 ms at 2000Hz (26 periods) then rising to 28 ms at 10000 

·Hz (280 periods).IBiirckJ It is likely they used differing definitions and/or experimental setups. Robinson 
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showed that 4-32 cycles are needed to reliably determine the pitch chroma (sufficiently to distinguish 

C/D/E/F), which was longer than it took to identifY the instrument. [RobinsonKJ 

2.4.5.3 Duration 

Although CPN notes have a specific written duration, the actual duration is usually shorter. The concept 

of duration is also harder to define for non-driven instruments - it is meaningless to ask the 'duration' of 

a cymbal crash, for example. 

Offset times are probably not detected with as much resolution as onset times because note durations 

have less musical importance and note decays are usually less abrupt. 

2.4.6 Acoustical illusions 

2.4.6.1 Competing 
grouping mechanisms 

There are many cases where the 

ear/brain can be misled. Diana 

Deutsch has studied grouping 

mechanisms extensively. One 

experiment[Deutsch 821 played the 

phrase shown in Figure 18, with 

the same timbres at hard left and 

hard right:-

Right 

Figure 18 -Deutsch 's example as played. 

Subjects, however, tended to hear Right 

r 
it as the more musically plausible ~_,..--t----il---__._----1!---__._---1----f----t-.,..... 

phrase shown in Figure 19. 

In this case, melody consistency 

overrode positional information, 

but she showed that for another 

sequence, the reverse occurs. 

Butler showed that melody Figure 19- Deutsch 's example as heard. 

consistency can also override 

tim bra! differences. [Butler] 

2.4.6.2 Inability to separate sources 

r 

Another case is when we hear a violin section playing in unison. Even if we know that there are sixteen 

players, we cannot distinguish them, and hear it as a single but very complex instrument. 
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2.4.6.3 The continuity illusion 

J J J 
r r 0 0 r r -------

Figure 20- The continuity illusion. 

Another acoustical illusion is the continuity illusion. [Bregman 
90

' Rasch 
781 This uses sounds consisting of 

130 ms of a sine tone alternating with 130 ms of noise centred on the same frequency. If the noise 

energy is low, the listener hears the tone being interrupted by the noise, but when it is higher, the 

impression is that the noise has been added and that the tone is 'still there' beneath the noise. Figure 20 

illustrates the continuity illusion. It is interesting to note that the illusion also occurs visually. 

2.4.6.4 Effects of timbre on separation 

Trumpet 

Xylophone 

Our separation of sounds, in a musical 

context, depends strongly on pitch and 

timbre. An interesting demonstration of 

this is given by Wessel. [Wessel 
791 He 

played the sequence of tones shown in 

Figure 21. When the timbres are similar, 

an ascending B-E-A sequence is heard. 

When the timbres are dissimilar, two 

descending A-E-B sequences are heard. 

Figure 21 - Wessel's tone sequences. 

Composers have been well aware of such effects. A single instrument can alternate between two melodic 

streams, or a single stream can be formed from several instruments, as shown schematically in Figure 22. 

This extract is from the second movement of Gunther Schuller's 'Symphony for Brass and Percussion'. 
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Figure 22- Melodic streaming. 

2.4.6.5 Discussion 

Tpt. I (I) 

In all these cases, there is a difference between the music as played and the music as heard. The 

question is:- which ofthese should a transcription system attempt to deduce? If we added a rule saying 

"If all the notes are C, E, and G, except for one G#, then change the G# to G", tlien we might C<?rrect an 

error in a simple piece but introduce an error to a piece that used a C/E/G/G# chord. Fortunately, the 

implementation described later is not yet able to carry out such high-level processing, so we can at least 

postpone answering the above question. 

2.5 Summary 
I have examined our low-level and mid-level perception of audio, and discussed our characterisation of 

notes and musical instruments. In the next chapter, I apply this to a discussion of analysis methods that 

can mimic some of the perception processes. 
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3. Computer analysis and synthesis 

In this chapter I first examine several analysis and synthesis tasks that may be carried out automatically. 

I follow this by discussing how audio can be represented on a computer. Finally I outline possible routes 

to developing an analysis/resynthesis engine. 

3.1 Analysis and resynthesis tasks 

Below I discuss various analysis and synthesis tasks. While analysis and synthesis are often treated 

separately, they can also be viewed as complementary processes with similar aims. 

3.1.1 Analysis without resynthesis 

First I examine analysis tasks that do not require resynthesis. This classification is made because such 

applications are able to substantially reduce the amount of data. 

3 .1.1.1 Perception modelling 

Research into psychoacoustics, fuelled by with the ability of computers to prepare more complex 

experiments on hearing, is making some progress, although it is widely recognised that the ear is a very 

complex organ. A system that can 'understand' sounds can be thought of as modelling our perception. 

The major difficulty in specifYing a computer model lies in the fact that it is difficult to objectively 

describe what we hear, particularly when entirely new timbres are presented. Obviously, we cannot 

resynthesise a sound. Perception modelling thus must fall into the 'analysis without resynthesis' 

category. 

Our recognition of musical events is restricted to how much we can take in in real time. An important 

distinction between modelling our perception and designing a transcription system lies in the fact that a 

computer can pass through the data more slowly (slow real time) or even in reverse (unreal time) to 

allow precise characterisation. However, this could not be deemed a valid model of the perceptual 

processes. 

3.1.1.2 Note transcription 

One task that musically-inclined humans can do relatively easily but computers cannot is to characterise 

the pitches, amplitudes, and durations of the notes in polyphonic music. For this, I will use the term note 

transcription. (The task of providing a complete description for exact resynthesis is discussed later and 

will be termed full transcription.) Here I discuss such systems that do not completely characterise the 

input. This is often done for expressive performance analysis or score derivation. 

The resultant CPN notation or MIDI file only provides an approximate characterisation - "on the third · 

beat of the eighth bar, the clarinet played an F# crotchet" or "at tick 9824, channel 7 plays note 66 for 

100 ticks", not a complete specification sufficient. for resynthesis. This is because timbral and control 

information cannot be written on paper. Figure 23, inspired by Tanguiane, illustrates.[TanguianeSSJ 
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Transcription has applications in musicological study and in auto

accompaniment systems for live performance. Previous work on 

transcription systems will be examined fully in the next chapter. 

Transcription systems are often designed for a particular instrument 

and/or for a particular piece. Given enough a priori knowledge of the 

signal's characteristics, an optimised design can be developed to look for 

features that we know should be there. 

If the input is known to be monophonic, it is relatively straightforward to 

determine the fundamental frequency. For some instruments it can be 

assumed that the partials are close to being exactly harmonic. (See the 

earlier sections on frequency stretching and inharmonicity.) 

T 
hi 
sis 
AnEb 
Playe 
dOnATe 
norSaxo 
phon~Wit 
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tack AhdAR 
ound edTim 
breW ithAH 
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*H~ 
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GrowingVib 
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Reverberat 
ionUnit 

Figure 2 3 - What's in a note? 

However,· transcription of polyphonic music is particularly difficult because before we can classify 

individual notes, we must in some way separa~e the individual sources. For this reason, some form of 

source separation is an important part of any polyphonic transcription engine. 

3. 1.1. 3 Beat tracking 

One application of analysis is in a field variously known as beat tracking, beat induction, or foot-tapping. 

Desain introduces many of these systems at the 1994 ICMC. (Desain 
941 A practical application would be 

in automated mixing desks- for this, several pieces would be beat-tracked and rate-changed in order to 

synchronise their time structures. A logical extension of this would use chord induction to control pitch

shifting in order to also synchronise their temperaments. 

3.1.1.4 Spectral analysis 

Our inner ear converts the incoming pressure waveform into a frequency spectrum, and most systems 

for perceptual modelling or other audio analysis applications initially do something similar. Below I 

compare Fourier analysis with constant-Q transforms and a multirate scheme known as Octave Spectral 

Analysis. 

3.1.1.4.1 Fourier analysis 

3. 1. 1. 4. 1.1 Theory ofF ourier Analysis 

The main theorem of the Fourier Transform (FT) states that an arbitrary wave with period T can be 

rewritten as a sum ofsinusoids at integrally related frequencies. The Discrete Fourier Transform (DFT) 

is basically the same for a discrete waveform. The Nyquist theorem qualifies this by stating that if the 

input contains frequencies up to f, then we must sample it at a frequency of 2xf if we are to correctly 

reconstruct the waveform. The Fast Fourier Transform (FFT) is a computationally efficient algorithm for 

. calculating the DFT when the number of samples is a power of two.(BraceweiiJ For n samples, the DFT 

requires O(N2
) calculations compared to O(N.log2N) for the FFT. Other integral factors can be 
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implemented in a similar manner through the use of the mixed-radix transform, albeit with smaller gains 

in efficiency21 

Although the FFT is widely used in fields from chemistry to seismology, it is ideal ONLY when the 

fundamental period is a known fixed power of2. What if it isn't a power of2? If it's still known, fixed, 

and integral, we can use the more computationally demanding DFT. What if it isn't known? If it's still 

fixed, then we can do one analysis to determine the frequency and a second to carry out the transform. 

What if it's not fixed? Then we can perform the transform over many shorter periods in each of which it 

can be assumed to be fixed. What if it has inharmonic partials? What if it's a musical noise such as a 

cymbal? What if we have the sum of many waves with different periods? What if we add the results of 

seventy-five people blowing into, hitting, bowing, plucking, or otherwise driving different non-linear air 

columns, membranes, bars, or strings? What if the timbres evolve continuously? What if they play with 

vibrato, tremolo, or rubato? What if there is noise, reverberation, tape flutter, or clipping? Clearly, the 

ideal conditions are never attained with real music. Some of these problems must be addressed in the 

design of the analysis system. 

3.1.1.4.1.2 Resolution ofFourier analysis 

The FFT is commonly used for frequency analysis where the range pf interest covers a relatively small 

bandwidth, and we wish to determine the frequencies involved. However, music covers at least ten 

bin 1 bin 2 bin 3 bin 4 

llj: I I I 
e 

0 
-- 0 
--
--

-e 
Figure 24- Frequencies of bins 1-6 in 1024-point FFT. 

bin 5 bin 6 

e -e 

I I 

octaves, and the 

characteristic of 

interest is its pitch, 

which is related to 

log-frequency. With 

the FFT, the constant 

frequency resolution 

implies a widely 

varying pin:h 

resolution. For 

example, a 1024-point FFT at a fixed sample rate of 44.1 kHz has bins l-6 at Fl, F2, C3, F3, A3, and 

C4 (middle C) to cover the entire range of the bass clef, as shown in Figure 24. 

Conversely, bins 256-512 give far more frequency resolution than is required, as they cover the single 

octave 11-22 kHz in steps of around l/20 semitone. Linear and logarithmic spectra are illustrated in 

Figure 25. 

21 Even faster than the STFT is an approximate STFT. Nawab's scheme quantises the amplitudes to+ 1, 
0, and -1 to derive an STFT with a 9-dB SNR.(NawabJ Hughes instead quantises the sine functions to 
these three values. [Hughes) 
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Fourier Spectrum 

lor; (f) 

Desired spectrum 

Figure 25- Comparison of linear and logarithmic spectra. 

One of the main problems with the FFT is that its resolution is a constant frequency, not a constant 
.. -

interval (log-frequency). This does not correspond to our own hearing. In the main part of our range of 

hearing, we can distinguish frequencies to an approximately constant resolution in log-frequency, 

meaning, roughly, that we can distinguish a low C from a low C# as easily as we can distinguish a high 

C from a high C#. 22 Another complication lies in the fact that we must hear a certain number of periods 

of a wave in order to determine its frequency to a given resolution, as indicated by Heisenberg's 

uncertainty principle. This makes it easier to distinguish pitch at higher frequencies when the durations 

are the same. This factor may partly contribute to the fact that we have poorer frequency discrimination 

at low frequencies. 

Setting aside certain exceptions, it is fair to say that our frequency resolution is a constant interval, on 

the order of 10 cents (0.1 semitones) for notes of 'reasonable' length - a certain (and as yet 

undetermined) number of periods. This is justified by the fact that in conventional music, lower notes are 

typically longer. As a crude over-simplification, we might say that violins play semiquavers, violas play 

quavers, cellos play crotchets, and basses play minims. However, pitch is riot frequency - pitch is 

determined by higher harmonics as well as the fundamental, so rapid bass notes can be articulatect 

clearly. Figure 26 shows an excerpt from the double bass part of"The Magic Flute", shown as sounding 

pitch. Here the semiquavers have a length of around 90 ms, so the 55-Hz A is represented by around 5 

periods. Such low notes would have to have a clear attack, though; one could not discern the pitches 

well if the same line were played slurred on a sine wave. 

22 This is not entirely accurate. As noted earlier, the critical bands in our ears are indeed larger at low 
frequencies. To counterbalance this, it is worth noting that the intervals used in the low register are 
generally larger; two bass instll)ments are rarely less than a perfect fifth apart. Our frequency resolution 
is also poorer at very high frequencies. 
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Figure 26- Double bass line from overture to "The Magic Flute". 

3.1.1.4.2 Constant-Q and gammatone filters 

Constant-Q filters can be implemented by designing a filter (usually IIR) specifically for each analysis 

bin. This has been used in several analysis systems.(Kashino, Ellis 92bJ However, such systems are generally 

designed for recognition but not resynthesis; the signal cannot be reconstructed as the impulse responses 

of the filters do not form an orthogonal set. Other researchers(BrownG 94a, Leman, Wohnnann, Solbach saa, 

Solbach 96b) h d . .1 fil (PattersonR) hi h I · · h ave use garnmatone or sum ar ters , w c are a c oser apprmomatron to t e 

ear's analysis, but in general these filters are not orthogonal and thus would not allow reconstruction of 

the input signal. (For a discussion of "Physiological vs. Functional Models", see Slaney's report on the 

Quebec CASA Workshop.(SianeyS&aJ) 

3.1.1.4.3 Octave Spectral Analysis 

A multirate system approximates the constant-Q transform by splitting the signal into individual octaves 

and analysing them separately. This is sometimes referred to as Octave Spectral Analysis.lEIIiott) The 

basic principle is to use a half-band filter (also known as a Quadrature Mirror Filtet"aidyanathan 871) to 

extract the top octave, 11-22kHz, and take its Fourier Transform. Since the remainder of the signal is 

below 11 kHz, we reduce the sampling rate to 22 kHz by only sending every second sample to the next 

stage. This is repeated as many times as necessary. A non-ideal filter will cause aliasing between 

adjacent octaves, but when certain conditions are met, we can guarantee that all such errors will cancel 

out exactly at the resynthesis stage. (Vaidyanathan 901 

3.1.1.4.4 Comparison of spectral analysis methods 

With the FFT, increasing the FFT size allows more frequency resolution at the bass end, but decreasing 

it is the only way to get more time resolution at the top end. We would need the transform size to 

depend on the frequency for the filter to have a constant Q. With constant-Q transforms, it is possible to 

achieve this exactly, but such systems cannot give exact resynthesis. Multirate systems appear to be a 

viable compromise. The Q is relatively constant (it varies within a factor of 2), and exact resynthesis is 

possible. 

A multirate system offers a more equitable allocation of the time-frequency bandwidth than a single-rate 

system, and it is expected that the benefits of more accurate analysis will outweigh the added 
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complexity. For these reasons, Octave Spectral Analysis appears to be the most promising option for 

spectral analysis. 

3.1.1.5 Graphical display 

The display of audio as one or two one-dimensional waveforms reveals little about its nature, expect 

perhaps its overall loudness. For a single tone, the timbre may be discernible, but only to those familiar 

with both the look and the sound of, say, a square wave. Even this is of limited use as timbres generally 

depend more on formants than on waveshapes. 

A slightly better approach is to show the analytic signal, where we tum the input into two-dimensional 

data. (Justice) A single sini.isoid can be viewed as the projection onto one dimension of a point on a circle, 

with a radius equal to the amplitude. The analogous process for an arbitrary waveform is known as the 

Hilbert Transform23, and the two-dimensional space is known as Hilbert space. To do this, first take a 

set of short-time FFTs. Then, shift all the phases by 90 degrees24, retransform to the time domain, and 

interleave these values with the original data. Finally, plot the N most recent line segments made from 
·- -

these pairs. (This process is actually carried out in five separate stages.) This gives a striking two

dimensional display, as in Figure 27, analogous to patterns drawn with the children's toy known as a 

spirograph25 For single tones, the effect of overtones is easy to see. If the tone has a strong sixth 

harmonic, as in the first example below, then the shape will have six clear 'petals'. If there is an 

inharmonic component, such as a component at 6.1 times the fundamental frequency, then the six petals 

will revolve slowly. This method of display is useful for single tones, but is of little use in representing 

many simultaneous notes. Another disadvantage is that for speed the current implementation draws 

straight lines between successive points in the x-y plane, whereas smooth interpolation would be more 

appropriate. 

23 The Hilbert Transform is equivalent to convolution with 11(1tX). 

24 An additional complication arises because we cannot determine the imaginary part of the DC 
component or the component at the Nyquist frequency. The latter will be negligible, but the former 
causes the pattern to jump erratically in one direction. At the boundary between successive time-frames, 
there will also be a small spike because of this. 

25 The mathematics of the spirograph - addition of phasors - is in fact identical to the mathematics of 
additive synthesis in the complex domain. 
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Note strong sixth harmonic Spike caused by incorrect DC phase 

Strong eleventh harmonic 

Figure 27- Hilbert-space representation of waveforms. 

For polyphonic music, this approach does not work due to the interference between notes, and a 

spectral method is called for. The sonogram[UngvaryJ or spectrogram is a common way to show data 

derived from the FFT. 

As an early experiment, a set of analysis and display routines based on the SIFT were written for the 

PC. The results can be presented in many ways. Spectra are displayed by either assigning colours or 
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greyscales to different amplitude ranges, or by the contours of a spectrogram. It is difficult to pick out 

individual peaks in the standard spectrogram, so the axis was tilted as shown in Figure 28. 

Figure 28 - Skewed spectrogram. 

The spectrogram inherits and illustrates the disadvantages of the FFT, namely, its lack of a constant Q, 

or constant pitch resolution. Most of the information is gathered into the lowest bins. A similar tool26 

for displaying a multirate quasi-constant-Q spectrum will be developed and discussed in the next 

chapter. 

Nevertheless neither the sonogram nor its multirate counterpart allow uS"to see concepts like trumpets 

and minor chords with the same ease that we can hear them, and can be described well using CPN. 

Acknowledging that some relevant information is not conveyed well by the sonogram, Helmuth 

describes a representation using five elements:- a sonogram, an amplitude representation, a traditional 

CPN stave for pitches, phrase marks, and text comments. (Helmuth 
981 

Animated graphical display is also of primary importance for videos, although the aims here are often 

aesthetic rather than analytical. Several composers have examined ways of creating animations along 

with sound. (Pringle] Real-time performance is generally impossible and a second of output may require I 0 

to 1200 hours. (Bargar 921 This fact is grimly accepted by the graphics rendering community. It is also of 

interest to researchers to create animations directly from the sound. This can serve as documentation of 

electroacoustic music. 

26 The tenn sca/eogram is often used for this. 
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3.1.2 Analysis and resynthesis 

We now tum to systems that analyse data in order to resynthesise it. 

3.1.2.1 Time shifting 

A number of researchers have examined a problem that is deceptively straightforward to state but 

difficult to solve - time shifting or timescale modification. This means altering the temporal features of 

the sound without altering its frequency content. The fast-forward button on a CD player is a very crude 

example - it plays a little, then skips on. However, the artefacts are severe discontinuities. Dennis 

Gabor, pioneer in many fields, developed an optical device for time-stretching a film soundtrack. 

Manning describes another early tape-based device with four play heads on a rotating drum. (Manning) 

These techniques correspond to pitch-shifting by granulation, which is a popular choice. (Raucous, Jones 88• 

Lippe 93a, Truax 90, Truax 91, Truax 93, Truax 94, Di Scipio, Hagaki 98a) Researchers have also used the STFT(Portnoff, 

Settel); the phase vocode~Moorer 78' Dolson 88' ErbeJ, and wavelets. (Arfib 91' Ellis 92bJ Time stretching is the most 

common case, where we wish to slow down __ a sound - very few researche~s or composers have 

examined time compression as with fast-forwarding a CD. Pitch shifting is closely related, and refers to 

changing the frequency but not the pitches. This is equivalent to time shifting followed by resampling. 

Crude forms of this are sometimes implemented in children's toys and telephone voice changers as well 

. al ffi d . d (Prosoniq) as commerc1 e ects eVIces an programs. 

The task is difficult to perform without introducing artefacts because frequency is intimately dependent 

on time - we cannot distort the t axis whilst leaving the lit axis unchanged. I would go so far as to 

hypothesise that in many cases of time-stretching, the timbral detail that emerges may largely be the 

result of such artefacts, and perhaps not a magnification of the 'inner complexity' ofthe sound. 

3.1.2.2 Timbral interpolation and cross synthesis 

In searching for new sounds, composers may wish to create hybrid instruments from two others. This 

comes in two forms: timbral interpolation is forming a timbre between two other timbres(Moorer na, Lo, 

Haken 891, and cross synthesis is combining timbres in other ways, such as using the envelope of one 

· t . t "th th t f th [Kronland-Martinet 88, Settel, Homer 93, Rodet 94) ms rumen WI e spec rum o ano er. 

3.1.2.3 Compression 

One 'musical engineering' challenge is straightforward to define: how much music can you fit into X 

megabytes of storage? With CD-quality coding, the answer is about 6 seconds per megabyte, or 

1411200 bits/s. However, there is much less than 1Mb of perceptible information in this 6 seconds. For 

transmission over networks, and for storage, we wish to minimise the amount of data without losing any 

information. There are three routes to this, as shown in the table below. 
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Type Perceptually different Physically different 

Lossless no no 

Near-Iossless no yes 

Lossy no/yes yes 

Table I 0- Comparison of compression schemes. 

Lossless compression of an arbitrary signal is, in theory, impossible. It is obvious that we cannot 

describe the 16 possible outcomes of tossing four different coins in three bits without losing information. 

The key is to realise that the input is not in fact arbitrary - we know that it is musical, and this points to 

a scheme by which the more like 'typical music' the input is, the more compactly it is encoded. This 

forces us to examine what the salient properties of music are, and to develop data structures into which 

the input should fit neatly. 

Various compression schemes exist. The idea behind lossy compression is that it is possible to distort 

aspects of the waveform in ways that cannot or can hardly be heard. One lossy scheme is MPEG. [ISO, 

HyunJ The Motion Picture Engineering Group formed the MPEG audio standard, which exploits 

perceptual weaknesses such as our inability to clearly identify closely-spaced frequencies due to 

masking. In these cases, the output is not the same as the input,- and the compression of the sounds may 

be traded off against the audibility of the differences. MPEG exists in various forms; 'CD-like' quality is 

achieved with 4:1 compression for audio layer 1, 6-8:1 for layer 2, and 12-14:1 for layer 3. These 

correspond to bit rates of384, 256-192, and 128-112 kilobits per second. 

The program SHORTEN by Tony Robinson can be run in either lossy or Iossless modes. On average, it 

achieves 2:1 for 'strictly lossless' compression, and 4: I for 'transparent' slightly lossy 

compression. (RobinsonAJ Robinson estimates that 64 kbit/s for 'transparent' coding is achievable, a factor 

of 21.5: 1. Another compression scheme is the Parallel Transform Method in which many compressors 

compete- this reportedly gives at least 2:1 compression with simple compressors.rcrandaiiJ There is also 

DPCM and ADPCM, which capitalise on the high sample-to-sample correlation of musical audio. 

ADPCM gives lossy compression to 128 kbit/s for a signal band-limited to 15 kHz; this would translate 

to 188 kbit/s27 for music at the CD sample rate. (Smyth, Bosi, Davidson) 

Note that source separation is generally not part of a compression system - the compressor may 

separate different frequencies, but it has no concept of a frequency belonging to a particular note. A 

related application is denoising, where again complete source separation is not required. (BergerJ 
948

' 

Berger J 94b, Berger J 94c, Berger J 96, Settel) 

27 Here I ignore the fact that the compression may well be more efficient at higher sample rates. 
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3.1.2.4 Source separation 

The "cocktail party effect" is a term for our ability to isolate and understand a single speaker when 

surrounded by other speakers. (Mitchell) This is an illustration of source separation. Music analysis is much 

more complex than speech analysis because music typically has an unknown and varying number of 

sources. We find it relatively easy to distinguish and identify these components, yet the task of 

separating the sum into its parts is horrendously complex. 

In terms of information theory, when we combine signals, we invariably lose information. We might thus 

ask: if we can apparently separate one 16-bit signal into six 16-bit signals, where do the rest of the bits 

come from? 

Source separation is an elusive goal in computer music research. It is mathematically impossible - we 

cannot derive a(t) from a(t)+b(t)+c(t)+d(t) -yet humans do it without conscious thought, and with no 

previous knowledge of the score or the instruments. 

Ueda gives a good description of source separation, referring to it as blind decomposition. He observes 

that we can separate sources with a monaural signal, with unknown sounds, and with inharmonic 

timbres. (UedaJ He then presents results from a system that attempts to carry out blind decomposition ~f 

two sounds with no background noise. It does this by assuming (i) that all amplitude envelopes have the 

same shape, a questionable assumption, and (ii) that there is a frequency where the spectra do not 

overlap, which applies unless the notes are in unison. 

Ueda's comments on monaural separation are accurate, and this work will largely examine the monaural 

case. Nevertheless, we are losing one potential cue for source separation(Bregman 891 -the pan position of 

each partial. For truly acoustic instruments, this is the same for each partial, although for heavily 

processed electroacoustic music, this is not necessarily true. Source separation may or may not be easier 

for stereo signals. 

3.1.2.5 Full transcription 

Note transcription in the sense of 'approximate characterisation' was discussed above. In this paragraph 

I use the term 'full transcription' to refer to the processes of source separation and complete 

characterisation of the input waveform, such as would allow resynthesis. As well as encoding, we wish 

to be able to carry out musically useful transformations on the data. Several systems for this task are 

reviewed in the next chapter. Almost all begin with one of the spectral analysis schemes described 

earlier. 

This task is the most general. Full transcription includes source separation. As notes are the main mid

level entity in music, note transcription will be a by-product of full transcription. Moreover, if the 

representation is good, it is likely to permit compression. Indeed, the optimal representation can be said 

to be the one that allows the highest lossless compression. 
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Figure 29, after Risset(Risset 821
, illustrates the framework for analysis and resynthesis. 

Synthesis 
Model 

Figure 29 - The analysis/resynthesis process. 

Original 
Sound 

Synthetic 
Sound 

3.1.3 Comparison of analysis tasks 

Task Known Known Input 
score orchestra 

Spectral analysis. no no any 

Perception modelling no no any 

Mono note transcription YES/no YES/no mono 

Poly note transcription YES/no YES/no any 

Time shifting no no any 

Compression no no any 

Source separation no no poly 

Full transcription no no any 

Table 11 - Comparison of analysis tasks. 

Source 
separation 

no 

YES 

no 

YES 

no 

no 

YES 

YES 

Comparison 
by Listener 

Derive Resynth. 

spectra no 

? no 

midi no 

midi no 

wave YES 

binary YES 

waves YES 

synth params YES 

The above table summarises the differences between the main analysis tasks. Transcription is not always 

intended for, and does not necessarily permit, resynthesis. Various types of transcription exist, and of 

these, some depend on other assumptions about the input. Compression implies that resynthesis will be 

used, and that no assumptions will be made about the input. Lossless compression thus overlaps with the 

last form of transcription. The difference is that in the first, the primary aim is data size, and the data will 

not be processed. In analysis/resynthesis, however, we are hoping that musically relevant 

transformations can be carried out in the intermediate domain. 
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3.1.4 Specification of our task 

The system that will be developed in the next chapters is designed for analysis and resynthesis - it is 

intended as a 'full transcription' system, with resynthesis as an eventual goal. 'Note transcription' is a 

useful side-effect that allows judgement of the accuracy. Compression may be a side result of this 

process, but this is not its primary use. 

3.2 Representations for music 

The following section compares various representations of musical data, and discusses their differing 

advantages and disadvantages for analysis and synthesis. 

3.2.1 Wave-based representations 

One of the few things that can be said with complete certainty about musical audio is that it is a 

continuous signal. A few representations are inherently continuous, but many more are discrete. Other 

methods make use of'frames' of information. 

3.2.1.1 Continuous representations 

The concept of continuousness in a waveform can be modelled by fitting the waveform to a series of 

polynomials. One example is the use of Bezier curves in graphics fonts. These have the advantages of 

being compact and instantly scalable. Compactness is of course desirable, and the scalability is most 

attractive for time-stretching. It is also easier to add polynomials than to add sinusoids, for example. 

However, polynomials inevitably tend to ±oo as t~±oo, and as a result are not well suited to modelling 

periodic functions. Piecewise polynomials are advocated by Hung, who uses them for 

analysis/resynthesis and shows that 'high subjective similarity' is obtained while giving compression to 

·0.1-0.2 times the size.[Hung) 

3.2.1.2 Discrete representations 

3.2.1.2.1 Pulse Code Modulation (PCM) 

The most obvious, and the most common, digital representation of a continuous wave is to sample it at 

equally-spaced time intervals. Nyquist's theorem tells us that when the maximum frequency is fHz, we 

can represent it by samples at a rate of2xfHz. 

In practice, the values are quantised to a discrete set. The values may be linearly or logarithmically 

spaced. Linear encoding is simpler, and is the standard for CDs. The signal-to-noise ratio (SNR) for 

linear encoding is given by:-

SNR :o; 4.8 + 6.0*Nbits 

In theory 16-bit encoding gives an SNR of 100.8 dB. However, as the noise floor is fixed, the SNR 

depends on the overall amplitude. In pianissimo passages the SNR is much poorer. Logarithmic 
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encoding, or companding, gives an approximately constant SNR, and higher effective fidelity per bit, but 

is more complex and less widely supported. 

3.2.1.2.2 Irregular samples 

It is also possible to use unequally-spaced samples to record a wave. This in principle allows the data 

rate to be lowered to twice the local maximum frequency. However, the fact that the times of the 

samples must also be encoded in the output waveform is likely to outweigh any compression, and both 

processing and playback are considerably more complex. 

3.2.1.2.3 Predictive coding schemes 

A sample of a continuous waveform inevitably has a high autocorrelation at small delays, and in music, 

the high-frequency content is much lower than the low-frequency content. Various statistical coding 

schemes exploit this to allow compression. Delta modulation, DPCM (Differential PCM), and ADPCM 

(Adaptive Differential PCM)[SmythJ use a prediction method, and send the difference between the 

predicted and the actual values. 

3.2.1.3 Frame-based representation 

Frame-based representations divide the signal into frames, often of size 2N It should be noted 

immediately that this is an artificial division and has no correlation with any periodicity in the input. 

3.2.1.3.1 Short-Time Fourier Transform 

The Fast Fourier Transform[Bracewell) presents a feasible scheme fo"r encoding music, by dividing the 

signal into blocks of size 2N and recording the FFT of each. Of course, this gives no compression. 

Compression can be achieved only by missing out the lowest-level bins, but this adds the overhead of 

coding which bins are present. Often, the spectra are converted to a set of linked amplitude-frequency 

envelopes, and straight-line interpolation is used to compress the data, but this adds distortion. 

The STFT is popular as a starting point in analysis leading to additive or Fourier synthesis. However, the 

time/frequency resolution is less than ideal, as will be discussed later. Another objection is that if the 

source contains a single sine wave at 123.456 Hz, the Fourier transform cannot represent it compactly. 

The FFT permits multiples of Mx44100/2N, .but no other frequency can be represented; it in principle 

requires all frequencies in order to reconstruct one of the non-chosen frequencies. In much the same 

way, an arbitrary time cannot be specified - it cannot tell us what happened at sample 1000, it can only 

report on the periods 896-1023 and 1024-1152. 

3.2.1.3.2 Linear Predictive Coding 

LPC breaks the input into frames and models each frame by an n-tap filter excited either by noise or 

pulses. (Markel) This is designed primarily for speech applications, where it is expected . that there is a 

single signal in the input, and that exact reconstruction is not necessary. It is unlikely that this method 

would work effectively with a more complex signal such as polyphonic music. 
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3.2.2 Event-based representations 

Many other coding schemes make use of events. An event "happens" at a single point in time, rather 

than existing over a period of time. They encapsulate information regarding the sound between T 1 and 

T2 into an entity at the start point T 1. For example, a MIDI note at time 1000 might represent a 

waveform between times 1000 and 1100. In many cases it is indeed valid to suggest that every note has 

a start and an end, but this is not necessarily the case. On a non-driven instrument, such as a free harp 

string, a note has no offset. It will die towards zero, but the point to which we assign the end depends 

,on the available resolution and/or the limit of audibility. Similarly, if an instrument fades in gradually, 

there will be to the listener an increasing certainty that the note is there, but there will be no point when 

the note started. This is also the case when an instrument is reversed, the reversed cymbal being the best 

example. 

When there is little change in the characteristics of the note over its duration, events are a particularly 

efficient form of coding. On non-driven instruments (e.g. plucked strings, percussion), the initial energy 

dissipates; there is generally no control during the note, except perhaps for stopping it. However, on 

driven instruments (bowed and blown instruments, voice, tape, electric, electronic), notes can be 

sustained for long durations, and there may be a high amount of control information as the note evolves. 

A single note might be a ten-minute performance on a didgeridoo. In such cases, events are less 

effective, as they must be accompanied by a stream of control information. The size of this control 

information is one of the main concerns of this research. 

The control information may be a continuous variable (such as slide position, bow angle, or tongue 

position), and this implies that the bandwidth of control information will be band-limited. The bandwidth 

of control information for acoustic instruments is unknown, but we can argue that the maximum 

frequency of one parameter cannot exceed half of the fundamental frequency. It is impossible to impose 

a 30-Hz vibrato on a 40-Hz fundamental as this would be perceived as a different (FM) timbre rather 

than a control envelope. However, there may be several independent controls - the control information 

is not one-dimensional. 

In most electronic instruments, the control information is digital and thus discrete, and falls at times 

dictated by the MIDI clock, the Csound(Vercoe 90
' Vercoe 931 control rate (typically 20 ms), or an unknown 

parameter inside a proprietary chip. (Arguably, acoustic instruments can have discrete controls - violin 

trills, xylophone rolls, and guitar hammer-ons being examples. All of these, however, can also be viewed 

as successions of notes rather than single notes.) 

The assertion that music is necessarily organised in terms of discrete events bears further scrutiny. It is 

certainly possible to compose music that consists primarily of gradual textural changes, with no 

sensations of onsets and offsets. However, it is fair to say that this music forms a small minority. 
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There are several reasons for attempting to convert a waveform into an event-based representation. 

First, composers generally wish to create music as parallel streams of events. 28 Second, we perceive 

music as events, and higher abstractions such as harmonies, melodies, and rhythms are defined in terms 

of events. Third, events allow us to separate the time-domain information from the frequency-domain 

information, for example, to change the pitch independently of the duration or vice versa. 

3.2.3 Wavelet representations 

Much recent research has revolved around the wavelet transform.1Daubechies BBa) A wavelet is a short 

wave, rather like a grain in granular synthesis. It is a short continuous function, specified by a small 

number of parameters. Wavelets are explored more fully in a later chapter. 

3.2.4 Comparison of representations 

Since the invention of the wax cylinder, it has been conventional to regard music simply as one

dimensional audio waveforms, to be recorded, stored, and reproduced with as little distortion as 

possible. Both analogue and digital can now oifer sufficient fidelity. The wave(orm representation has 

the important characteristic of almost-complete generality, in that any band-limited waveform can be 

encoded to an arbitrary resolution determined by the effects of quantisation noise. However this 

generality comes at the expense of size - it requires around ten megabytes per minute for CD-quality 

sound. This typically places high demands on both the processor and the disk. Second, the syntax cannot 

be related to the semantics, in that the string of numbers tells us nothing about its meaning- i.e. the way 

we will perceive it. The waveform representation is much more suited to the media than to the human. 

An event-based representation, such as the MIDI file, the printed score, and the player piano roll, is at 

the other end of the scale. It does not allow generality, but has the equally important attribute of 

compactness. It also scores highly for intuitiveness, as its parameters - note number, loudness, and 

duration - indicate the method of producing the sound (in the case of traditional music), and (arguably) 

the parameters by which we perceive it. Another advantage of such representations is their parallelism -

we record what each instrument does, rather than the sum of the whole ensemble. (With MIDI, a major 

complaint has been its limit of 16 channels.) Parallelism permits detailed editing at the symbolic level. 

However, the· global timbres of each instrument must be defined separately, and the complexity and 

controllability of each note are limited by the capabilities of the target synthesiser. 

There are many alternatives between these two extremes. When the aim is solely the creation of new 

music, most musicians are happy to accept the restrictions of the chosen synthesis method, and to adjust 

the performance parameters until the results sound good. However, this cannot be used for processing 

28 As early as 1977, Moorer ascribes the preference of music languages (acoustic compilers) over 
. . (Moorer 77a) 

general-purpose languages to the des1re for parallelism. 
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audio, as there is generally no way to map an input waveform onto the control parameters. Synthesis 

should be viewed in a broader context, as one part of the analysis-transformation-resynthesis paradigm. 

The optimal representation for music would be general, compact, parallel, and intuitive. Generality 

means that we must be able to encode any input, yet lossless compression of an arbitrary signai is 

theoretically impossible. A central hypothesis of this research is that any musical waveform contains 

sufficient redundancy to be coded more efficiently. To exploit this redundancy, however, we must first 

break the waveform into its constituent musical entities, i.e. we must carry out source separation. 

Wave-based Event-based Wavelet-based 

General YES no YES 

Parallel no YES YES 

Compact no YES YES? 

Intuitive no YES YES? 

Table 12- Comparison of representations. 

As shown in the table above, wave-based representations' only benefit is their generality. 

Representations based on events offer parallelism, compactness, and intuitiveness, but most of the 

methods described are unsuitable for analysis-driven resynthesis. The most promising options appear to 

be additive synthesis, parallel wavetables, and wavelets. 

Wiggins discusses representations, concentrating on note-level issues rather than waveforms. [Wiggins) He 

discusses the need for a representation to permit a range of structures above notes, such as chords, 

rhythms, and trills. Dannenberg also examines representations in some detail. (Dannenberg 
93al 

3.3 Choice of paradigm 

It is worth examining existing synthesis schemes to determine their applicability to analysis and 

resynthesis. 

Composers are free to use any method available to create sound. Since the composition process entails 

turning a small amount of data into a large amount of data, much research has gone into developing 

ways of creating new and interesting sounds given a finite and insufficient amount of computational 

power. Julius Smith gives a good overview of synthesis techniques. (SmithJ 
911 In some cases, synthesis is 

done without regard to laws governing vibration of real objects. There is often no analysis scheme that 

corresponds to the synthesis method. 

The following are Jaffe's ten criteria for evaluating synthesis techniques29, with my interpretations added 

in italics. [Jaffe) 

29 One criteria Jaffe misses is "Can timbres be combined?" Composers wish to use timbral interpolation 
or cross synthesis, combining the characteristics of two instruments. 
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1) How intuitive are the parameters? Is there a brightness knob? 

2) How perceptible are the parameter changes? Can I hear what each knob does? 

3) How physical are the parameters? Can I map things like 'bow speed'? 

4) How well behaved are the parameters? Does a small tweak-cause a small change? 

5) How robust is the sound's identity? Can I make all the sounds of an instmment? 

6) How efficient is the algorithm? Is it computationally costly? 

7) How sparse is the control stream? How low is the bandwidth? 

8) What classes of sounds can be represented? Is it general? 

9) What is the smallest possible latency? How fast is it? 

10) Do analysis tools exist? Can I input any sound? 

While all of these are valuable properties, it is the last of these that is the most critical factor in 

considering their suitability. Below I examine the applicability of some existing synthesis methods to 

analysis and resynthesis. 

3.3.1 Additive synthesis 

One traditional approach to synthesising sound has been to treat individual notes as being either strictly 

periodic or quasi-periodic, and to generate each partial separately. I refer to this as additive synthesis, 

although it should be noted the term is sometimes used to mean any method that constructs sound by 

adding things (such as granular sampling). Those who favour the latter terminology use the term 

Additive Sine Wave Synthesis (ASWS). (Houghton) Others prefer the slightly misleading term Fourier 

Synthesis. 

If the pitch is known, then the Fourier Transform can be used to give the amplitude envelopes of each 

harmonic. In some schemes, partials are assumed to be harmonic, which allows computational 

efficiencies. In other schemes, harmonics need not be at multiples of the fundamental frequency, which 

means we must also record the frequency envelope of each partial. 

The analysis can be done using Fourier or other spectral analysis if each note is available individually, 

but in polyphonic music, the spectra of individual notes interfere with each other, and thus the partials 

cannot be determined easily. The implementation of Fourier analysis is discussed in more detail in a later 

section. 

3.3.1.1 Number of sines 

Additive synthesis is computationally expensive. The amount of computation depends on the polyphony 

and on the number of partials needed per note. Samson quotes 20 to 30 partials for a bowed string; 

Moorer uses 21 for cello, clarinet, and trumpet tones; Wessel uses 25; Haken quotes 20 to 80, 

Houghton uses 64, and Freed says a hundred or more are needed for low piano tones.[Samson, Moorer na, 

Wessel 78• Haken 92• Houghton, Freed 93a) This implies that additive synthesis of an ensemble could involve 

thousands of partials. This means serious processing power is needed - approaches include Cray 
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supercomputers[Kriese) and custom-built VLSI. (Houghton, Phillips 94' Phillips 981 Possible optirrtisations include 

CORDIC operations(Hu, Phillips 94, Phillips 98) or a multirate approach. [Phillips 94, Phillips 98, Nunn 94) 

It is worth noting that no current commercially-available synthesiser is based on additive synthesis. 30 As 

well as computational restrictions, this may also be due to the lack of easily-tweakable parameters. If we 

wish to increase the 'brightness' of a note, we must update all ofthe partial amplitudes. 

3.3.1.2 Synthesising sines 

There are two ways to generate sines. One is to use a recursive oscillator, and the other, a more popular 

choice, is to use a lookup table. (MooreF 90' Freed 93a) The SNR of a lookup table is a function of the 

resolution in the magnitude and time domains. (MooreF 771 Listening tests show that an isolated sine from a 

4k by 12-bit lookup table is heard as being as good as one from a 64k by 16-bit table.[Snell) However, 

Jan sen recommends a larger table to rrtinirrtise distortion when there are many close sinusoids. (Jansen 911 

3.3.1.3 Hardware-based approaches 

The 'strong-arm' method of generating many partials is to use powerful hardware. Cor Jansen presents a 

scheme using a transputer-based architecture that can generate 10000 partials at 44.1 kHz, 625 on each 

of 16 cards.(Jansen 91' Jansen 921 It can also generate short bursts of 'noise' using many sinusoids 16Hz 

apart, although he notes that for longer periods the sines should be more closely spaced. Transputer

based parallel architectures are also under study in this research group. Takeburrti Itagaki presents an 

implementation for 27 notes of 24 partials on a ternary tree of T800 transputers. (ltagaki 94
' ltagaki 9581 Des 

Phillips defends the hardware approach to synthesis, and outlines a CORDIC coprocessor to do the 

b hi [Phillips 94, Phillips 98) num er-crunc ng. 

Haken implements 100 partials on the CERL Platypus system, and gives (debatable) informal results 

suggesting that no more than 75 partials are needed.(Haken ·921 Houghton developed an ASIC 

(application-specific integrated circuit) for sine wave synthesis, and shows a prototype where 127 

sinusoids can be generated on a card that plugs into a PC.(Houghton) Di Giugno presented a chip for 

ASWS with 256 oscillators. [Di Giugno) 

3.3.1.4 IFFT 

Additive synthesis can also be carried out by mapping sinusoids onto an STFT and then using the 

Inverse FFT.(Depalle 90, Depalle 93, Rodet 92a, Rodet 92c, Freed 93a, Freed 93bJ Freed shows that this can be many 

times more efficient and could allow several hundred partials on a 'desktop computer', which is a rather 

30 Older synthesisers that used additive synthesis include the Casio SK-I and FZ-10, the Kawai K-1, K-
5, and K-5000, the Fairlight CMI and Fairlight II, the Axcel resynthesizer, the Kurzweil K-150-FS, the 
Lyre Fourier Digital Synthesizer, the Synclavier, the Synergy GDS, the Slave 32, the Synergy GDS, the 
Seiko DS-250, the RMI harmonic synthesiser, the Akai AX-80, the Oscar-!, and the Korg DW-6000. 
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modest description of his Silicon Graphics Indigo workstation. Rodet quotes 300 sinusoids on the same 

machine. 

3.3.1.5 Envelopes 

Most researchers using additive synthesis come up against the same problem - even when we have the 

envelope of each harmonic, this is still a large amount of data. Sometimes a block-based approach is 

used; as Dannenberg points out, this adds efficiency at the expense of accuracy. (Dannenberg 921 

To reduce the amount of control data, piecewise linear approximation (PLA) is often used, giving 

interpolation between several31 'breakpoints' in the envelope. (Risset 69• Beauchamp, Grey 75• Grey 7Tb, Wessel 78, 

Strawn, Feiten 90, Jansen 91, Kriese, Horner 96) H o o f th [Homer 96) Thi I I omer gtves an overvtew or many o ese. s arge y 

achieves its aim, giving compression from 43: 1 [Risset 69
' Moorer na] to 100: 1 (Serra 901, but also introduces 

artefacts - each sharp comer in the envelope causes a transient with a power spectrum falling at 12 

dB/octave. While experiments seem to indicate that much data can indeed be discarded[Risset 69
• 

Beauchamp Grey 76 Grey 77b) S h " h o 'II d fi o o h · f h ' ' , trawn notes t at t ere ts stt no e ruttve answer .to t e questiOn o ow 

much data can be omitted without changing the tone significantly". Additive synthesis methods' claim to 

reproduce the exact nuances of a sound is compromised when such approximations are made. 

Assuming linear interpolation of amplitude and frequency, and the use of a lookup table for sine 

generation, the following table shows how many operations are required per partial per sample. [Freed 93aJ 

Operation Additions Multiplications Modulo Lookup 

amplitude interpolation lfp 

frequency interpolation 2 

sine evaluation 1 1 

output lfp lfp 

Table 13- Operations for additive synthesis of one sine. 

3.3.1.6 Group additive synthesis 

A change in one actual controller, such as tongue-palette distance, will affect all of the harmonics, often 

in similar ways. One way to reduce the high computational cost of additive is to use fewer envelopes 

than partials, and interpolate the missing ones. This is known as group additive synthesis. (Kieczkowski, 

Eaglestone) The problem of determining the simplified set of envelopes has been approached using genetic 

algorithms and principal component analysis(Homer 961, multidimensional scaling[Grey na, De Poli 93
1, neural 

networks(De Poli 93, Mourjopoulos, Feiten 91, Kohonen), and wavelets.[Kronland-Martinet 93) Homer shows that 

trumpet. and pipa tones could be modelled by four different amplitude envelopes and an erhu by three, 

3 ! o 
0 d o fr o ( o d o ) I ( ) (Homer96) The number ofbreakpomts requtre vanes om nme ptano an guttar to twe ve trumpet . 

In the best conditions listeners needed 12, 20, and 25 breakpoints for indistinguishability. The timbre of 
. a didgeridoo will be analysed later; a long note would require many more breakpoints. 
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with most listeners unable to distinguish them from real tones. Kronland-Martinet also successfully used 

six master envelopes to represent 3 2 partials of a trumpet sound. 

As well as sharing amplitude envelopes, it is also possible to share frequency movement envelopes 

between partials. On real notes, each partial will have the same rate of vibrato, and this is known to be 

an important factor in fusion into a note. 

It should, however, be remembered that these assumptions may not apply to non-acoustic instruments 

and thus detract from the generality of an analysis method. It is easy to form artificial tones that do not 

conform to a model's 

expectations - for example a 

tone whose partials had different 

vibratos and tremolos, and 

stereo locations. 

3.3.1.7 Alternatives to 
FFTs 

Some analysis methods use 

methods similar to, but not, the 

FFT. This includes the Modified 

Moving Window Method 

(MMWM), invented by 

Kodera. (Kodera 78, Kodera 78, Auger, 

Holdrich 951 Another variant is the 

I Ill 111111 
I II II 

I I 1111 
Ill 1111 

.. ~ ~ .tf 

I I I 1 
1/.11 II II I 

Figure 30- The Multi resolution Fourier Transform. 

MFT (Multiresolution FT)(Catway, Pearson 911, which uses SIFTs of several lengths simultaneously. This is 

shown in Figure 30. 

Other techniques include the phase vocoder, which is often used for speech(Dolson 911
, and linear 

prediction. (Rabiner 78• Markel) The cost depends on the number of partials or filter taps. This is equivalent to 

the number of concurrent partials, which is low for speech but high for music. Speech research has also 

employed cepstral methods32, which are defined using the 'spectrum' of the magnitude spectrum of a 

signal. (Noll, Pabon 94b, Boatin] An interesting approach using higher-order statistics of the signal known as 

polyspectra is also outlined by Dubnov.(Dubnov) 

3.3.2 Amplitude modulation 

AM, in its simplest form, produces three spectral components for the computational cost of 

two.(Du1!$51!nberry] However, we do not have independent control over the two. sidebands so there is no 

computational gain if generality is required. Ring modulation (RM) is a closely related technique, more 

32 Cepstral techniques have given the language the words cepstrum, quefrency, and saphe. 
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technically called double-sideband (DSB) suppressed carrier modulation33 There is no corresponding 

analysis method, although Delprat illustrates how AM parameters can be derived from additive synthesis 

parameters. [Detprat 901 

3.3.3 Frequency modulation and phase modulation 

The distinction between FM and PM is primarily a mathematical technicality- many "FM synthesisers", 

including the Yamaha DX7[Chowning 73' Chowning 86a] and SY77[YarnahaJ, actually implement phase 

modulation, and the term FM is often used to mean FM or PM. 34 Both can create a rich spectrum from 

a small number of controls. FM, needing two modulo operations, two table lookups, two 

multiplications, and one addition per output sample. Discrete closed-form summation formulae are a 

a!. t. f thi t hni [Moorer 76, Moorer 77a, MooreF 90] gener tsa ton o s ec que. 

FM is a prime example of real-time synthesis with limited computational resources. Since real-time 

additive synthesis was not possible, Chowning then asked "what can be produced in real time?'', and 

found a computationally efficient way to make spmething. It was then realised that the something was a 

new and unexplored range of timbres, and the Yamaha DX7 became hugely popular. Naturally, this 

popularity led to FM ·sounds becoming more commonplace - the sounds are now almost passe. FM 

sounds correspond to an electronic rather than a physical process, and recreate little of the realism of 

acoustic instruments. 

As with AM, there is no directly analogous analysis technique, but Delprat's analysis als() succeeds in 

extracting PM parameters. [Detprat 901 

3.3.4 Physical modelling 

Physical modelling (confusingly also abbreviated to PM) has attracted much attention recently.15
mithJ 

92
' 

Rodet 
93

• Janosy, Szilas] Computer models of physical objects can be implemented using waveguides, and 

these can be shown to · have many of the quirks of real instruments. Models exist for stringed 

. t t [Chafe 91, SmithJ 92, SmithJ 93, Karjalainen 93, Karjalainen 96, Kurz] b . t t [Rodet 96] ms rumen s , rass ms rumen s , 

d 
. d[Cook 88, Vlilimiiki 93, Valimiiki 96, Verge 96, Scavone] . [Cook 90, Sawada] d . [Van Duyne 93, 

woo wm , vmces , an percussiOn. 

Van Duyne 96• Fontana, Cook 961 Transitions between notes, for example, are realistically synthesised. Another 

advantage is that they allow easier interfacing to physical controllers. However, the method is again 

synthesis-oriented, and is only suitable for instruments for which a physical model has been derived. 

There is no way to transcribe an arbitrary waveform into a physical model; physical modelling largely 

derives its parameter settings by the 'tweak-it-and-listen' approach. 

33 The name is derived from its implementation using a ring of diodes. 

34 The output ofmodulation is cos(co.t + z). Ifz is proportional to the modulating signal, we get phase 
modulation. If z is proportional to the derivative of the modulating signal, we get frequency 
modulation. [Sc:hottstaedt 
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3.3.5 Waveshaping 

If we generate a sine and apply a non-linear function to it, other frequencies are generated at multiples of 

the fundamental. This is known as waveshaping. Chebyshev polynomials can be used to derive the 

waveshaping function for a given spectrum. This does not reproduce phase information and cannot give 

inharmonic timbres. Delprat' s analysis has been extended to deriving non-linear waveshaping 

functions. [Kronland-Martinet 93] 

3.3.6 Subtractive synthesis 

With subtractive synthesis, we take a broadband source - often noise or impulses - and apply filters to 

shape the spectrum as desired. This is suited to approximate reconstruction but not to exact 

reconstruction. 

3.3.7 Chaos 

Chaos, or non-linear dynamics, is potentially an attractive way to produce musically interesting 

d [Rodet 92b, Pressing 93b, Degazio, Radunskaya, Milicevic] H · th · d" a1 · soun s. - owever, agrun ere IS no- correspon mg an ys1s 

method, and by definition the calculations are unstable. 

3.3.8 Wavetables and sampling 

Wavetable synthesis is another common method of synthesis[Mathews 891, and is implemented on many 

synthesisers. [Yamaha] There are three categories of wavetable synthesis, depending on the size of the data 

block. At one extreme is sampling, where it is possible, and fairly common, to use very long sample 

loops containing many notes on many instruments. In the middle are samplers and sample-based 

synthesisers, where each sample represents a single note. However, the spectrum of an instrument 

generally depends on its pitch, requiring us to use many samples to simulate the whole range of an 

instrument. It is also necessary to interpolate one of the basic samples to each frequency requested. This 

may cause a noticeable change in the character of the instrument as it moves from the highest note in 

one range to the lowest in the next. Similarly, the strong dependence of timbre on the loudness forces us 

to also sample each note at many dynamic levels. Homer showed that this can be partly modelled by 

wavetable interpolation. [Homer 96bJ 

Wavetable methods are appealing because of their simple implementation. Essentially, no control 

information is needed, as all of the information is retained in the sample. Wavetable-based methods must 

be considered as a possible paradigm for analysis and resynthesis. 

3.3.9 Granular synthesis and granular sampling 

When the samples are very short (e.g. 20 ms) we have granular synthesis. This involves assembling a 

very large number of grains to form the output. This can either involve using windowed 

. "d [Xenakis, Roads 86] . d d art f th c. [Truax 87, Truax 88, Truax 90, Truax 91, Truax 93, smusm s or wm owe p s o o er wavetorms 

Truax 94, Jones 88, Roads 78, Roads 86, Roads 88, Roads 91, Roads 92, Lippe 93a, Helmuth 93, de Tintis, ltagaki 98a], which is 
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sometimes tenned granular sampling and is often used for time stretching. [Truax 87-941 Often the grains 

are specified by a higher-level process such as a stochastic approach[Xenakis, Roads 86• Roads 88• Truax 88• 

Helmuth 931 or cellular automata. [Miranda) Chapman discusses several other methods. [Chapman) 

Granular synthesis or sampling has been implemented on the ISPW[Lippe 91• Lippe 93a, Helmuth 931, the 

Durham transputer network(ltagaki 96a1, the NeXT compute~Helmuth 931, the IRIS MARS workstation(de 

Tintis) th DMX 1000(Wallraff, Truax 87-94) d d d. t d DSP hi h h M. I 56000 (Bartoo) , e - , an e tea e c ps sue as t e otoro a . 

While designed for synthesis, granular analysis and transformation are possible. Like additive synthesis, 

granular synthesis requires hundreds(Roads 881
, or more likely thousands, of grains to create sounds. 

Granular sampling has a much sparser control stream. 

3.3.10 Square waves 

Fourier analysis treats a square wave as a sum of sinusoids. It is equally possible to treat a sine wave as 

a sum of square waves. Specifically, 

sin(x) = sq(x) + 113 sq(3x) + 115 sq(5x) + 1/7 sq(7x) + 1111 sq(11x} +1113 sq(13x)- 1115 sq(15x) 
+ 1117 sq(17x) + 1119 sq(19x) -1121 sq(21x) + 1123 sq(23x) + 1129 sq(29x) + ... 

where sq(x)=sgn(sin(x)) 

Note that the coefficients do not fonn a regular sequence; they depend on the prime factors of the index, 

and may be zero. In fact, approximately 10% are zero, suggesting that making a sine from square waves 

is slightly easier than making a square wave from sines. 35 

The possible advantage of sq~are waves as basis functions is that we could tum the entire wave into a 

large number .. of step functions, and then use statistical methods to allow these to evolve into the 

minimum set of square waves required to characterise the sound. Furthennore, the problems of round

off error and interpolation are removed with functions that are discrete in both value and time. However, 

their time localisation means a poor frequency localisation. 

3.3.11 Walsh functions 

Walsh functions are another potential set ofbasis functions- the transfonn is easier to compute than the 

FFT. However, like the FFT, Walsh functions are designed specifically for blocks of length 2N Also, as 

with square waves, they have poor frequency localisation. 

3.3.12 Wavelets 

Wavelets are short waves. Recent research has examined the decomposition of a given wavefonn into 

stretched and shifted or modulated copies of a single waveshape. Analysis and synthesis are both 

feasible. Wavelets appear to be worth examining, and will be discussed more in a later chapter. 

35 The same argument also applies to triangular waves, which, like square waves, contain all odd 
hannonics. The disadvantage again is that we require an infinite series of these waves to fonn a pure 
tone. 
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3.4 Summary 

I have discussed the issue of representation, and various methods of designing a system for analysis, 

transcription, and resynthesis. There appear to be two possible routes that will be investigated. One is 

based on additive synthesis, and is the subject of chapters 5 to 7. Another possibility is through wavelets, 

and this will be examined in chapter 8. 
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4. Computing platforms 

In this chapter I first discuss the requirements for music analysis and synthesis. I then examine the 

available hardware and software platforms. I conclude by comparing the systems' suitability for music 

analysis and synthesis. 

4.1 Requirements 

Audio is a single-dimensional entity that can be stored in analogue or digital form, on a variety of media, 

with a usually generous signal-to-noise ratio. The storage and reproduction are well understood and 

straightforward to implement, and the current state-of-the-art in digital audio satisfies most user 

applications. It is a bulky representation, though- a CD-ROM can hold several encyclopaedias, but only 

80 minutes of music. The major technical issues to be addressed are not fidelity or generality, but bus 

bandwidth, disk speed, and storage capacity, and in a few years' time increased computing power may 

essentially have solved these problems. However, questions remain as to how composers, 

psychoacousticians, and musicologists can bene~t most from such computational power. 

It is clear that a system to analyse and resynthesise sound will have very high computational 

requirements. Below I discuss these in more detail. 

4.1.1 Memory requirements 

A common problem in DSP is the need for storage space. CD-quality36 sound is two channels of 16-bit 

samples at 44.1 kHz. This means that 8MB ofmemory can hold 47.6 seconds of audio. Given that we 

also need space for data derived from it, and for the program itself, limited memory may limit the 

complexity of processing. 

In some parts of the analysis procedure, the memory of the PC was indeed insufficient. This was solved 

by using both extended memory and disk-based virtual memory, as described in chapter 6. 

4.1.2 Software requirements 

The calculations required are likely to include Fourier transformation, filtering, sine generation, and 

convolution. These are all implemented as addition, multiplication, and table lookup. 

The first practical requirements of the compiler are that it produces efficient code, and permits assembly 

language when necessary for speed. Both are met by Borland Turbo ciBortand] for the PC, and 3L 

Parallel C[ThreeLJ for the C40. Inmos transputers can be programmed in Occam or another version of 

3L's Parallel C. 

36 The term 'CD-quality' is taken to mean stereo, 16-bit linear samples at a sample rate of 44100 Hz. 
The term is often also applied, inaccurately, to devices such as soundcards that support this format, but 
in many cases the lowest 2 or 3 bits may be obscured by noise. 
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Languages such as C are purely sequential, but if the analysis/synthesis system is to be an accurate 

model of the perception or production of music, it should process the infonnation in parallel. While 

listening to music, we are aware of many different processes taking place at the same time. Our attention 

drifts away from the elements that stay more or less the same. For example, most rock music has a 

repetitive rhythm on the bass and snare drums that will become part of the background until it changes 

or stops abruptly. In trying to model this, we need a structure that is itself parallel. Parallel C seems well 

suited to this goal. The parallelism in software will be much greater than the actual parallelism in 

hardware. For example, a parallel synthesis system might have a thread running for each instrument in 

the ensemble, another for global reverberation, plus others for housekeeping tasks such as memory 

allocation, screen output, and file access. It would be beneficial for these threads to be able to schedule 

themselves dynamically during run-time. It is also necessary to stop each thread periodically, using 

thread_ de schedule (),in order that others can be given their chance to run. 

As an alternative to procedural languages such as C or FORTRAN, some researchers suggest using 

declarative languages such as Lisp or Pro log. [W~ggins) 

Reekie exami~es the software architecture requirements for real-time parallel DSP applications, and 

D b I k h diffi I · f h d 1· [Reekie Dannenberg 91) H . . · annen erg oo s at t e cu ties o sc e u mg. ' owever, our transcnpt10n system 

has such high computational requirements that it is not possible to contemplate real-time operation, as 

discussed below. 

4.1.3 Arithmetic issues 

4.1.3.1 Integer v floating-point arithmetic 

The standard CD fonnat uses 16-bit linear encoding. This, and integer arithmetic in general, allows a 

100.8-dB signal-to-noise ratio only where the signal has maximum amplitude. The drop in amplitude 

from Iff to ppp is around 40 dB, which leaves the quietest passages with an SNR of 61 dB37 

Logarithmic encoding of the sample range, i.e. floating-point arithmetic, improves the situation, but is 

not supported by most hardware. 

4.1.3.2 Word size 

The PC has an 8-bit word, and C allows us to address memory as 8-, 16-, or 32-bit integers, and 32- or 

64-bit floating-point numbers. This allows us to economise on memory costs by choosing the type of the 

variable to reflect its likely range or accuracy. One example, assigning only 8 bits to the phase of a 

sinusoid, was implemented specifically to save memory. 

37 Arguably it depends on the dynamic range of the instrument, discussed in chapter 2. The clarinet has 
a large dynamic range of 45 dB whereas the recorder has only 10 dB.(PattersonJ 
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The C40 has 32-bit words, and all arithmetical operations refer to the full 32 bits. This requires the use 

of programming tricks to fit several values into one word. This is awkward but feasible for integer 

arithmetic, but more troublesome for floating-point arithmetic. 

With fixed wordlengths, the possibilities of overflow and underflow always exist. A more flexible but 

more complex solution would be to implement integer arithmetic with a variable width. For example, if 

we added two 1 O-bit arrays, we would get an array at most 11 bits wide. Then we could check to see 

whether the top bits are actually used, and reduce the width to the smallest width possible. It is, 

however, unlikely that the potential memory saVing would outweigh the complexities of such an 

approach. 

4.1.4 Disk requirements 

Digital audio processing also depends on massive amounts of disk space being available. A standard 

1.44-MB floppy only holds about 8 seconds ofCD-quality music, and a 74-minute CD contains 780MB 

of data. Long-term storage uses the drives of two Sun workstations, whereas immediate ·storage is 
.. -

handled by the hard disk of the PC. 

For real-time audio, the high data rate places high demands on the disk controller and other hardware. A 

66-MHz PC can only just keep up with the playback, let alone any processing of the signal. In such 

cases, the disk access time should be as low as possible. 

The work of Nick Bailey on a parallel version of Csound running on the T800 transputers came to the 

tentative conclusion that the bottleneck was the disk access rather than the calculation speed. (Bailey 90' 

Bailey 911 Preliminary results, presented later, give support to this hypothesis. Note that the only file being 

accessed in the C40 experiments described later is the input file. When an output file must be written 

too, the overhead for disk access will approximately double. It should also be noted that all tests refer to 

mono sound files, implicitly halving the amount of data dealt with. The perception of stereo sound will 

not be dealt with until an effective treatment of monaural sound has been developed. 

4.2 Platforms 
There are many other platforms for computer music. Pope gives a good overview and comparison of 

hardware, and Gareth Loy examines the software_(Pope, Loy) General-purpose, or 'off-the-shelf 

computers include the Atari(DorfmanJ, the Commodore Amiga(Biochl, the Apple Macintosh(Perez. Erbe, Mont

Reynaud 931, the IBM PC, UNIX workstations(BrownG 94b, Mellinger 91b, Pacheco), the NeXT machine(Helrnuth, 

Mellinger 91b, wang, stainsbyJ, the SGI Indigo(Freed 93a, Bargar 92, Rodet 92a), and the Cray supercomputer. (Kriese] 

. . . d fi . . 1 d h DMX 1 ooo(Wallraff, Truax 88, Pennycook 86) ( . h DEC Specialised systems designe or music me u e t e - wtt a 
· · · k . [Lindemann 90 Lindemann 91, Puckette 

PDP-11 host), the i860-based IRCAM S1gnal Processmg Wor stat10n · 

91a• Lippe 91· Doval, Maggi], and the IRIS MARS workstation.(Armani, de Tintis] Other platforms have been 

.developed around DSP chips, including the Analog Devices 21 020(AnalogJ and 21 060(Vercoe 961, the 
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Motorola 5600l[Bartoo, Nieberle, Bosi, Feiten 90) and 96002(MotorolaJ. the Intel i860[SilbergJ, Inmos 

t t (Bailey 90, Bailey 91, Parash, ltagaki 94, ltagaki 95a, ltagaki 96a) th C40(Nunn 94) d h hi · h ranspu ers , e , an ot er c ps m t e 

Texas Instruments TMS320Cxx range. (Jones 881 

Hardware can be custom-designed for a particular task(Wawrzynek 84' Wawrzynek 91• Jansen 911, but this has the 

obvious disadvantage that the overall design becomes intimately dependent on the hardware. As a result, 

the tool can only be used by a very small number of people, and cannot be ported to another platform 

easily. The punched cards and state-of-the-art-then electronics that allowed the earliest computers to 

make music have only sentimental value today. 

There were four environments available:- a TMS320C40 in a PC, a standalone PC, a transputer network 

hosted by a PC, and a UNIX workstation. Below I describe and compare these platforms. 

4.2.1 PC 

4.2.1.1 PC software 

All programs used the DOS operating system. Windows 3.1 was available from the start of this work, 

but was not used for any of the programs developed. In Windows, allocation of system resources and 

control of devices is more problematic than with DOS. Windows 95 was not released until the later 

stages ofthis work, and was never used. Some of the programs developed were later found not to work 

under Windows 95. 

Almost all the PC programs were written in Borland Turbo c.IBorlandJ This allows easy access to 

graphics, a feature not shared by the C40 and transputer platforms. The desired parallelism is not 

available with a sequential language such as C, but by way of consolation it may be noted that sequential 

programs are much easier to debug than parallel programs. Some shorter programs were written in 

Microsoft QBasic. [Microsoft) Other analysis was carried out using the mathematical word processor 

MathCad, which unfortunately cannot read large enough arrays for audio data.(MathsoftJ 

4.2.1.2 PC hardware 

The PC experiments were performed on one of three machines, summarised in the table below. 'Dan' is 

Dan Technology, and 'CMC' is Cam~ridge MicroComputers. 

Name Brand Processor & speed RAM Disk Graphics Other 

Wendy CMC 486DX SOMHz 4MB 250MB non-VESA internet access 
SVGA 

Dan Dan 486DX2 66 MHz 8MB 340 MB, 1.2 GB VESASVGA 2 MB hardware disk cache, 
Gravis UltraSmmd, tape drive, 
KEE MIDI interface 

Lab CMC 486DX2 66 MHz 16MB 340MB VESASVGA Gravis UltraSound, 
internet access, 
GUS MIDI interface 

Table 14- Specifications of PCs. 

77 



The limited memory of the PC means that some stages require virtual memory. This is described in more 

detail in the next chapter. 

4.2.1.2.1 VGA/SVGA graphics 

All of the PCs used had standard VGA graphics, which aresupported by Turbo C, and various forms of 

SVGA graphics, which are not. SVGA (Super VGA) is a description rather than a standard, and at the 

lowest level each chipset requires individual support. VESA (Video Electronics Standards Association) 

offers the programmer a more standardised interface. 

There are three ways of using SVGA graphics:-

- hand-coded low-level calls for a specific chipset 

- VESA calls (using UniVesa if needed) 

-an SVGA BGI (Borland Graphics Interface) library 

All of these were used at one time or another_. The first option was used on 'Wendy', whose Trident 

chipset is not VESA-compliant. This entailed finding detailed specifications for one particular 

chip_!Feldman) Since the C40 was to be used in both the 'Wendy' and 'Lab' PCs, the code was then 

unusable on the 'Lab' PC. Since two of the three PCs were VESA-compliant, I opted to use UniVesa 

with Wendy; UniVesa implements the VESA standard in software.[SciTechJ For the standalone PC 

programs, the second and third options were used. The SVGABGI drivers are written by Jordan 

Hargraphix Software. [Jordan) 

4.2.1.2.2 Mouse 

Turbo C lacks mouse support but this can be implemented by DOS interrupts.[FeldmanJ None of the 

various parts of the transcription system require a mouse, but it is used as the main input device in the 

User Interface for the later system described in chapter 8. 

After developing routines for mouse support, an interesting diversion was the construction of a 

3-dimensional input device that I named a BiMouse. This is described in Appendix M. 

4.2.1.2.3 Gravis UltraSound 

The Gravis UltraSound (GUS) card, made by Advanced Gravis Computer Technology Ltd., was used to 

record and play sound.[GravisJ The original model, used in the 'Lab' machine, has a separate 16-bit 

recording daughterboard. It was installed in either the 'Wendy' or 'Lab' PCs. A later version, the 'Gus 

Max', was also used in 'Dan' or 'Wendy'. It is the same except that the recording daughterboard is 

built-in. · 

While nominally a 16-bit card, the actual resolution has been estimated at around 13/14 bits. The GUS is 

reckoned to be one of the best low-end soundcards. Two precautions should be taken, however; the 
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card should be situated away from other cards (particularly graphics cards) to minimise interference, and 

any DC offset should be removed. 

4.2.1.2.4 Speaker 

While PCs may have a variety of sound devices, they can all be relied upon to have the simple PC 

speaker. Although originally designed for bleeps, clever reprogramming of its timer chip allows it to play 

audio. It does so with an accuracy of approximately 6 bits, and has an extremely poor low-frequency 

response. 

4.2.1.2.5 CardD · 

This is a high-quality A-DID-A card, made by Digital Audio Laboratories, used occasionally in a PC in 

the Music Department. 

4.2.2 Texas Instruments TMS320C40 

4.2.2.1 Overview 

The TMS320C40, normally referred to as the C40, is a Texas Instruments38 chip designed specifically 

for digital signal processing. [Texas) It is a MIMD (multiple-instruction multiple-data) processor. It resides 

on a Transtech TD:MB410 board installed in a PC_[TranstechJ (A TD:MB409 board was used in earlier 

experiments.) The architecture of the C40 is shown in Figure 31. 

The raw theoretical computational power of the C40 is around 25 Mflops, but the overheads of 

input/output will reduce this. 

38 The addresses of all companies mentioned in this thesis are given in the references section. 
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Figure 31- C40 architecture. 

4.2.2.2 Parallel C 

l 
I 
! 

The code is written in 3L Parallel C. [ThreeL. CullochJ Over the course of this research, the laboratory acted . 

as a beta test site for this language, and used versions 1.0.0, 1.1.0, 1.1.1, 2.0.0, 2.0.1, and 2.0.2. Parallel 

C implements extensions to the TI compiler. These allow parallelism at the software level- a 'master' 

program actually time-slices between several tasks. Although this may not be ideal, it is acceptabie for 

our purposes since the processor itself is sufficiently fast. The language allows priorities to be specified 

for each task- versions 1.* allowed two priorities- urgent (0) and non-urgent (1). Versions 2* allow 

eight levels from 0 to 7, and also allow threads to dynamically change their own priority at run-time. 

4.2.2.3 Performance and parallelism 

The C40/Parallel C environment allows four flavours of parallelism. 

At the lowest level, there are several instructions that carry out two operations in parallel, for example 

allowing two numbers to be added while a third is stored. This is taken care of by the optimising 

compiler. 

Second, the compiler allows multiple threads within the same task. These are created dynamically at run

time (a feature exploited in the multirate spectral analysis described later). 
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Third, many tasks can be placed on a single processor through the use of configuration files. Both this 

and multiple threading require the processor to carry out "context switching" - saving all registers and 

loading a new set. 

Fourth, several C40s can be combined to form a network of greater computational power (the 

improvement will be less than proportionate). Many C40s can be connected in parallel, and this is 

supported by message-passing over high-bandwidth links. The current implementation, however, is a 

single C40, and our intention is to simulate a larger network in order to examine its feasibility. 

The second of these, the ability to create processes at run-time, is the most critical. Although the chip is 

inherently sequential, the programmer can treat it as being a flexible parallel system. This soft 

parallelism contrasts with the hard parallelism of other parallel computers, such as the 160-transputer 

network(Bailey, Hagaki 94• Hagaki ssa, Hagaki ssa) in which the hardware configuration necessarily plays a major 

role in defining the software setup. Instead, we can use the software to define the 'virtual hardware'. 

4.2.2.4 Computational power 

The high computational needs would appear to favour the C40 setup, as it is optimised with this in mind. 

There is also a need to provide large quantities of control information, and again the C40 is promising 

for its high-bandwidth interprocessor communication. It is difficult to calculate the number of operations 

required, as this depends entirely on the method of synthesis, but we can easily determine the maximum 

possible real-time performance as follows:-

=> 

Processor maths performance[Texas) 

Sample rate 

Calculations per sample period 

25 Mflops39 

44.100 kHz 

567 flops 

This makes the assumption that the bottleneck is in the arithmetic calculations rather than in the passing 

of control information. Whether this is true or not remains to be determined. 

4.2.2.5 ·control ofPC peripherals 

Although the computational power of the C40 platform is high, the throughput is limited by the speed of 

. the PC host and its disk and graphics subsystems. Comparing performance of the programs on several 

PCs showed that faster disk and graphics subsystems improved performance. 

It is rather awkward to control the PC graphics from the C40, as Parallel C does not implement any 

graphics primitives. Therefore, routines were developed to allow the use of VGA, and later SVGA, 

graphics. These were based on demonstration CGA programs provided by 3L, and entailed keeping a 

39 flops = floating-point operations per second, a measure of arithmetic computational power. 
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complete copy of the screen in C40 memory. A background task refreshes the PC screen at regular 

intervals. However, this solution is inelegant, rather slow, and wasteful ofthe C40 memory. 

Routines were also developed to allow the C40 to play sound files on the PC speaker. This was done by 

first loading a TSR called RESPLAY(CoxJ, then by calling a specific PC interrupt. 

The Gravis UltraSound soundcard was described earlier. It was in the same PC as the C40 host, so code 

was written to allow sound to be sent from the C40 to be played on the GUS. This used code supplied 

b Mi h I Ch 
[ChenM) 

y c ae en. 

4.2.2.6 Custom DAC 

Towards the end of this work, an output board for the C40 was designed and made by Milos Kolar in 

order to investigate the possibilities of real-time synthesis. The hardware is shown schematically in 

Figure 32. 
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Figure 32- C40 output system. 
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The DAC buffering is shown in Figure 35, and the DAC subsystem is shown in Figure 36. 
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Figure 35 - DAC buffiring. 
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Figure 36- DAC subsystem. 
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In software, the output system is addressed using the command link_out_word ( ... ). As 

resynthesis on the C40 had not been implemented, there was little opportunity to utilise this in the 

transcription system described in the next two chapters. However, it was used in the wavelet-based 

system described in the following chapter. 
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4.2.3 Transputer network 

A network of 160 Inrnos T800 transputers has been investigated in this research group. Nick Bailey 

presented a transputer implementation of Csound(Bailey 90
' Bailey 911, and Takebumi Itagaki has 

implemented additive synthesis[ltagaki 94' Hagaki 95a) and granular sampling(Hagaki 96a) on transputers. The 

programs can be written in the relatively low-level language Occam, which allows little control of PC 

peripherals and the DOS environrnent(OccamJ, or in 3L Parallel C. Transputers have also been used 

elsewhere for additive synthesis. (Parash) 

4.2.4 Unix workstation 

The fourth alternative was to use a Sun workstation. As UNIX is a multi-tasking operating system, it 

allows the possibility of parallel processing. However, the Sun lacks 16-bit sound capability. (Also, this 

author was less familiar with UNIX programming.) 

Another relatively cheap way to obtain a reasonable computational power is to use a network of Unix 

workstations, such as are typically available in universities. (Mellinger 91 b, Pachec~, Kashino esa) However, 

while this may offer high performance, the overheads of network communication, and the dependence of 

available processing power on the number of other users, make this approach unrealistic for real-time 

applications. 

4.2.5 Widget technology 

It is dangerous and unproductive to turn our larger task of understanding music into a search for faster, 

bigger, more powerful computing tools. Hence a couple of caveats are in order. 

Axiom 1 - Technology increases steadily 

Every computer meets one or more of the following requirements:-

- higher speed than its predecessor 

- more storage than its predecessor 

- more prograrnrnability than its predecessor 

It also meets one or more of the following:-

- lower speed than its successor 

- less storage than its successor 

- less prograrnrnability than its successor 

It is only recently that the power of commercially available hardware has become sufficient to handle the 

sheer mass of calculations required for analysis or synthesis of audio. The good news is that the level of 

technological development shows little sign of slowing down, and in ten years' time, it will probably 

seem laughable to use a machine as primitive as a 50-MHz 486DX. (At the start of this research, the 

highest specification available was a 100-MHz 486, and the Pentium, or 586, had not been released. At 
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the end, 200-MHz Pentiums are available and various 686 processors exist.) The practical viewpoint is 

therefore that, although there are benefits in optimising software to run 10% faster, this is only 

equivalent to, and much more complicated than, waiting for a processor that is 10% faster. 

Axiom 2 - Technology stays the same 

When the 10-GHz 100-Gbyte 986XX is released, users will still be able to complain that it's not 

powerful enough to handle more than twenty virtual orchestras without slowing down the raytracing of 

the reflections on the trombones. In other words, the more powerful a system is, the more 

computationally demanding the applications written for it are, and there will always be programs that 

run for days before giving a result. Again, there is much more to be gained in making an algorithm 

smarter than in making it faster. 

4.3 Discussion 

4.3.1 System comparison 

The four platforms described above are representative of the approaches to large computing problems. 

The ffiM PC offers several advantages over the other setups. First, being so commonplace, it allows the 

use of a massive range of commercial and public-domain software. Second, it offers the potential for 

widespread implementation of any software produced. Third, external hardware is likely to be designed 

for compatibility with the PC. However, being a general-purpose computer with a general-purpose 

operating system, its performance in specialised applications will not be the highest. 

The C40 and the transputers do not have the above advantages, but both offer much higher computation 

power. C40s can be connected in parallel in order to increase their power (the increase is usually less 

than proportionate), and they can also use time-slicing to permit greater parallelism in software than 

exists in hardware. · 

At present, only one C40 is used; this may later be extended to form a network of six to ten C40s, 

partially satisfYing (and no doubt stimulating) the hunger for more megaflops. 

Whereas the C40 network gives coarse-grained hardware parallelism, the transputer network offers fine

grained parallelism. The current setup has 160 transputers, and is ideally suited to computation that is on 

a massive scale but requires relatively simple programs in which the parallelism is fixed. 
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The theoretical computational power and other features of the four systems are as follows:-

TMS320C40 +PC PC Transputers + PC Sun 

Mj7opslprocessor 25 0.8 40 2 41 3.37 42 

Mj7ops (total) 25 0.8 < 320 3.37 

Memory 8MB 43 (+PC) 640 kB +4-16MB 640 kB 44 24MB 

Graphics via PC VGNSVGA none via Xwindows 

Sound CustomDAC Speaker, Soundcard CustomDAC 8-bit 11-law 

Language Parallel C c Occam!Parallel C c 
Parallelism Hardware/Software none Hardware UNIX OS 

Table I 5- Comparison of the four computing environments. 

The task we are undertaking - the analysis, transcription, transformation, and resynthesis of polyphonic 

sound - is a computationally large task. It requires a high processing power, abundant memory, and 

support for graphics and sound. None of the available systems meets all of the requirements fully. 

4.3.2 Operation in time 

We have insufficient processor power and memory for real-time operation. Each minute of music may 

require many hours of computation. Below I examine how processing takes place With respect to the 

time axis. 

4.3.2.1 Real Real Time 

This class contains processes that can be solved within an arbitrarily small time interval after the input 

has been presented. An example is a program that converts text to Morse code. We can guarantee to 

create the output after an arbitrarily small delay, given a sufficiently fast processor. 

4.3.2.2 Delayed Real Time 

A further class of procedures are those that are guaranteed to produce results after a finite and known 

delay. A typical case is where we use the STFT to transform data from the time domain to the frequency 

domain. Here, we cannot determine the frequency content of the wave from T 1 to T 2 until after T 2· In 

other words, we can never determine "there is a 123 Hz wave now"; we can only determine "there was a 

123 Hz wave a moment ago" (and the size of the moment increases for lower notes). Another example 

40 This value was determined by writing a short C program to time two loops, one consisting of 
fetch/write instructions on (single-precision) floating-point numbers, and the other consisting of 
fetch/multiply/write instructions. It was assumed that no inefficiency was added by the C compiler. 

41 These figures are for a 20-MHz processor. As noted earlier, the performance of N processors is 
usually less than N times the performance of one. Thus the figure is certainly an overestimate. 

42 This figure is derived using the Linpack benchmark. [Athena) 

43 For comparison, this figure is for an 8-bit byte. The C40 in fact has 2 megawords of32-bit words. 

44 This is the total. Each transputer only has 4 kB of memory. 
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is filtering - since the filter must be causal, there will inevitably be a fixed delay. Such processes can 

never run in real real time, regardless of the processor power. 

4.3.2.3 Slow Real Time 

In this category are processes where we have a finite but insufficient processor power. When the 

processing cannot keep up with the input data, it delays reading the input until the output has been 

calculated. However, the process still operates in monotically increasing time. Such processes can be 

made real real time or delayed real time by increasing the processing power. 

4.3.2.4 Unreal Time 

This category includes 'off-line' processes that do not operate with respect to a monotonically 

increasing time. For example, both perfect low-pass filtering and perfect Hilbert transformation require 

an infinitely long non-causal filter response, so there is a theoretically infinite delay from output to input, 

as we require all past and future values to calculate the output. Even on an arbitrarily fast processor, 

real-time performance is impossible. As Jaffe puts it, you cannot make something-laugh before you tickle 

it. [Jaffe) 

Another example, discussed later in more detail, is in transcription. Most notes have a rapidly-changing 

attack followed by a steady state and a decay portion. I would hypothesise that reversing the entire 

waveform would make it easier to detect the attacks, as we could determine the frequencies during the 

reversed decay and wait for them to disappear abruptly at the reversed attack. This technique is also 

suggested by Serra, who tracks audio by analysing reversed blocks. [Serra 
901 However, even if this were 

shown to give accurate transcription results, our own perception is in normal, continuously increasing, 

time. Thus, this cannot be said to be a valid model of our perception. 45 Another drawback in this case is 

that we can never use such methods for continuous input, or for a data stream of unknown length. 

4.3.2.5 Discussion 

One way to proceed is to use 'slow real time', analysing the music once very slowly. The second way is 

in 'unreal time', allowing many passes through the data, with each pass building on the knowledge from 

the previous pass. The first option is preferable. 

4.3.3 Summary 

I have outlined the specifications and features of the platforms available, and discussed design options 

for a non-real-time system. The transcription system will as far as possible be designed as a 'slow real 

time' system, in that the outputs are calculated in the same order as the input is presented. However, a 

few parts are in the 'unreal time' category, such as compensating for the filter lags by sorting. In total, 

45 However, it has some similarities with the process of manual transcnptton. Indeed, a human 
transcriber will replay short segments of a piece, many times, concentrating on whatever was not 
transcribed on the previous pass, as it is impossible to even write music in CPN in real time. 
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the processes from raw audio to MIDI takes around 800 times real time. Considerable optimisation 

could still be done, and the PC routines would run faster on the C40, but it is unlikely that we will reach 

real-time operation. 
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5. Previous research on transcription and source separation 

This chapter presents an overview of previous research on transcription and source separation. I first 

briefly outline the applications for such systems. I next review monophonic and polyphonic systems, and 

other closely-related research. Finally I compare the approaches. 

5.1 Motivation and applications 

The ability to convert a piece of polyphonic music into a score-like representation is something of a holy 

grail in computer music research. There are several applications for this. First, it would allow 

musicologists to study music that has never been notated, such as improvised jazz(HidakaJ, folk and ethnic 

music(TsujimotoJ, classical and contemporary music, speech prosody, and songs of birds and whales. It 

would also permit the "Intelligent Editor of Digital Audio" outlined by Chafe and Foster, in which the 

composer can deal with phrases, bars, and notes whilst remaining in the digital domain. (Chafe 82
• Foster) 

Second, even when the score is known, it is useful to be able to determine exactly how the score was 

interpreted. Specifically one wishes to extract the precise timing, and sometimes the amplitude, of each 

note. 46 This is done either for expressive performance analysis(Repp, Scheirer s&aJ outwith real time, or. for 

· . · (Vercoe 84, oannenberg 84) . a! . R I d hi . · a! auto-accompaniment systems m re time. e ate to t s ts a more gener 

artificial performer, where the computer interacts with multiple players. This is currently only possible 

with MIDI(Pennycook 931 or multiple monophonic systems. (Grubb) 

Both of these are lossy processes as timbres wquld not be recorded - 'transcription' only describes one 

part of the problem. An example discussed earlier and analysed later is the didgeridoo47, which sustains 

a single note48 for a long time. Clearly we could transcribe this into a single MIDI or CPN note, and 

equally clearly this would omit almost all of the important information. 

The third application entails encoding the timbres of each note, accurately or (in many cases) 

approximately. This provides a tool for analysis and resynthesis, or synthesis-by-analysis, and the 

intermediate format would allow musically interesting and useful transformations, in conjunction with 

46 Another application of expressive performance analysis is to music videos. Often the singer on a rock 
video is poorly synchronised with the music. To solve this, we would need to analyse two audio files
the actual music played (or, preferably, the vocal track alone), and the music as sung during the 
recording of the video. It would then be possible to match these two in order to determine when the 
singer was rushing or dragging, and to drop or repeat video frames to achieve audio-visual 
synchronisation to within 20 ms, which is unlikely to be noticed. Typical quoted figures for TV are 1 00-
150 ms, although this depends on the context; tennis coverage, for example, would require a lower 
figure. (A curious side-result is that the two performers need not be the same person, allowing anyone to 
mime perfectly to someone else singing.) Similar applications exist in other multimedia fields, especially 
teleconferencing, where video and audio are transmitted separately, but must be presented together. 

47 Alternatively spelled didjeridu. 

48 The third and fifth harmonics can also be played with some difficulty, but this is not normal playing 
practice. 
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the 'intelligent editor' mentioned above. Related applications include the removal of clicks and 
· (BergerJ 94b) h nmse , w ere we are not concerned with the separation of musical sources, merely the 

separation of 'all the music' from 'all the noise'. 

Fourth, there is a desire to objectively examine aspects of our own perception of music. Whilst single

note phenomena are generally understood, our innate understanding of music as a large structure of 

notes and timbres has only recently received attention. As most music is note-based, the ability to 

examine perception of chords, melodies, rhythms, and other structural entities depends on first being 

able to understand notes. Scheirer observes, "there is an implicit assumption that the musical score is a 

good approximation to the mid-level representation for cognitive processing of music in the 

brain". (Scheirer) Thus, we are m a sense trying to model the way we perceive sound. Some 

researchers[Leman, BrownG 94a) use physiologically accurate models of the human auditory system. 

However, in this work I would argue that implementing the imperfections of the human auditory system 

on a computer model may introduce unnecessary complications. The essential part of the problem would 
- -

remain unsolved - how does one decompose a single auditory stream into multiple parallel streams? 

5.2 Monophonic transcription systems 

When the signal is monophonic, the problem, while not trivial, is certainly much simpler, and is often 

termed pitch detection, pitch extraction, or fundamental frequency estimation. This is done to develop 

pitch-to-MIDI systems, usually in real time. Here the aim is to estimate the pitch and amplitude with as 

small a latency as possible. There is a wide range of techniques used, including the cepstrum method [Non, 

Pabon 94b) t l t' [Sondhl, BrownJ 91b) h . th d (Schroeder, Amuedo, Piszczalski 77, Piszczalski 79, , au ocorre a 1on , armoruc me o s 
Piszczalski 81, Terhardt 79, Terhardt 82a, Todoroff, Hermes, Femandez.Cid) th 'tud d'fti , e average magru e 1 erence 

function(Ross), fundamental period measurement(KuhnJ, tunable digital filters(LaneJ, the modal 

distribution[SterianJ, linear prediction(Maksym, Rabiner, Markell, least-squares[ChoiJ, neural networks(Taylor 94' 

Taylor 9s,sanoJ, and wavelets.(Kadambel In some cases; the timbre ofthe instrument is known in advance, or 

it is assumed to be harmonic. Often the output is quantised to the twelve-tone scale, making it unsuitable 

for continuous-pitch instruments such as the trombone and the human voice. 

The 1984 ICMC saw two monophonic systems applied to real-time auto-accompaniment, in which the 

score is usually also known in advance. Roger Dannenberg's system was developed at the 

Massachusetts Institute of TechnologyDannenberg 114. Block, Dannenberg 88' Dannenberg 911 and was used with 

trumpet and flute. Lorin Grubb developed a related system(GrubbJ that allows a computer to play as part 

of an ensemble. It tracks up to four acoustic instruments (monophonically) in order to estimate the 

'average' score position. Barry Vercoe, also at MIT, developed several systems using the 4X computer 

for tracking solo instruments. His first system(Vercoe 841 was designed for auto-accompaniment of a solo 

flute. With such systems the score is known in advance and the computer accompanist knows what 

details are supposed to be in the input sound. It used not only the acoustic information but also optical 
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sensing of the keys in order to derive pitch estimates. He notes that the pitch estimate depends on the 

presence of the fundamental - as a result, tracking of multiphonics49 is impossible. Vercoe and Miller 

Puckette later developed this into a system[Vercoe 861 for auto-accompaniment of solo violin. It was also 

able to learn from rehearsal with the soloist. Again, however, it worked well for purely monophonic 

sounds, but could not deal with double stops. Wake at Osaka has examined auto-accompaniment in the 

context of a real-time jazz system. (Wake 92
' Wake 941 

Analysis of song allows previous work on speech recognition to be reapplied. Research at Osaka 

University has examined transcription of a Japanese folk song_[Niihara] This uses a priori knowledge of 

the particular Japanese scale used. At Waseda, Inoue developed a karaoke system that allows the singer 

to modify the tempo.[lnoue 93
'

1noue 941 It is based on speech recognition, and uses both score information 

and lyrics data. It can also correct the singer's pitch errors. Auto-accompaniment systems have also been 

developed by Naoi at Waseda and Horiuchi at the Tokyo Institute ofTechnology_(Naoi, Horiuchi 92• Horiuchi 

931 Instead of precisely matching the tempo fluctuations of the performer, Horiuchi's system has an 

independence parameter that varies dynamically from 0 (where it follows the performer exactly) to 100 

(where it plays by its own rules). Peter Pabon also developed a real-time system for analysis and 

h . f h h . (Pabon94a] resynt ests o t e uman votce. 

Judith Brown at MIT developed a transcription system using "narrowed" autocorrelation. [BrownJ 87
' 

BrownJ 89• BrownJ 91a• BrownJ 91 b• BrownJ 921 She shows that narrowed autocorrelation, which incorporates 

higher harmonics into the pitch tracking, is more accurate than conventional autocorrelation. 

Xavier Serra reports on a sound transformation system using a 'deterministic plus stochastic' 

decomposition.(Serra 89
• Serra 90

• Serra 981 While timbres (both harmonic and inharmonic) are modelled by 

conventional spectral methods, noise components are modelled by filtered noise - the stochastic part -

such that phase information is deemed unnecessary. 

Perry Cook describes a transcription system(Cook 92
' Cook 931 for real-time use on valved brass 

instruments. It makes assumptions about the playing range, and is illustrated for the trumpet. It uses a 

Period Predictor Pitch Trackefcook 911
, another autocorrelation-based method. Like Vercoe, it uses 

optical sensing- in this case four-position optical sensors on each valve. 

As the monophonic field is now relatively mature, there are now several commercial products that carry 

· h MIDI · [Wildcat. Hohner, Emagic, Opcode, AudioWorks] out pttc -to- converswn. 

49 Multiphonics are two or more notes played (often with great difficulty) on a conventionally 
monophonic instrument. Flutes, saxophones, horns, and trombones are capable of playing multiphonics. 
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5.3 Polyphonic transcription systems 

We now tum to polyphonic transcription, a task acknowledged to be harder because of the overlapping 

and interfering of harmonics from different sources. As with the monophonic case, much depends on 

how much a priori knowledge is given. 

All of the systems below are monaural, corresponding to our ability to separate monaural sound - none 

attempts to utilise, or derive, spatial information. One might reasonably ask why potentially useful 

information is not used (except in the multiple-microphone systems described later); source separation 

of real stereo sounds is probably easier than in mono. Yet the assumption that the music was made in a 

real acoustic environment is not necessarily true; there is no bar to an electroacoustic composer 

presenting physically impossible situations such as different frequencies in the left and right ears, placing 

partials of a note at different spatial locations, or giving partials different vibratos. 

5.3.1 Tom Stockham, MIT, 1975 

Tom Stockham at MIT, and later at Soundstreagt, is regarded as one of the foun<Jers of digital audio. He 

developed a system for denoising and source separation. (Stockham 751 This was used to make the earliest 

digital recordings from very early analogue recordings. He used homomorphic deconvolution to remove 

noise and the voice of Enrico Caruso from orchestral accompaniment. 

5.3.2 Tom Parsons, New York, 1976 

Tom Parsons at the Polytechnic Institute ofNew York developed a system for separating two voices. 

He uses an STFT-based scheme_(Parsons) First, one fundamental frequency is estimated, and the spectral 

peaks corresponding to it are removed. This is then repeated for the second speaker. 

5.3.3 James Moorer, CCRMA, 1975-77 

Moorer ·at CCRMA50 was one of the first to develop a polyphonic system. (Moorer 75
• Moorer nb) He 

examined the transcription of two lines played on a guitar. The two pitches were not allowed to cross, 

and could. not be a fifth or an octave apart. His method uses heuristic processing of the outputs of a 

large filterbank. 

5.3.4 Chris Chafe, CCRMA, 1982-86 

Chris Chafe first examined the path from note list to printed score, such as recognition of the key, 

tempo, and time signature(Chate 821, in conjunction with Scott Foster's work on preliminary audio 

segmentation. (Foster) Later, Chafe developed a polyphonic system that uses a Bounded-Q FT in a 

. ~ . . . (Chafe 85 Chafe 86) I a1 li d ~ t' d ~ polyphoruc system 10r ptano transcnptton. ' t was so app e to trans1orma ton, an 10r 

source separation of a piano and a harpsichord. 

50 Center for Computer Research in Music and Acoustics at Stanford University. 
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5.3.5 Andrew Schloss, CCRMA, 1985 

Andrew Schloss developed a system for transcription of percussion. [Schloss) (The case of transcribing 

percussion from percussion plus other sounds is called 'beat-tracking' and is discussed later.) Schloss 

segments the data from two conga drums using amplitude thresholding, then analyses the type of stroke. 

Next, it parses the rhythms to determine the tempo, and produces a transcription. 

5.3.6 Mitch Weintraub, CCRMA, 1985 

Mitch Weintraub's system is for monaural sound separation, than recognition, of two voices, and works 

b . I . ak (Weintraub) Thi · I f · y groupmg autocorre atwn pe s. s IS an examp e o source separatiOn without subsequent 

transcription. A common application in telephony is cancellation of interfering speech. 

5.3.7 Bernard Mont-Reynaud, CCRMA, 1985-93 

Bernard Mont-Reynaud describes another polyphonic system, running on the Macintosh platform with a 

Dsp b d [Mont-Reynaud 86, Mont-Reynaud 88, Mont-Reynaud 90) Th · "t'al al · lik Chafi · b th oar . e tru 1 an ysts, e e, 1s y e 

Bounded-Q Frequency Transform (BQFT), a multirate approach in which Q varies within a ratio of 2. 

Image convolution and other image processing techniques are used to extract the pitches of a two-voice 

piano sonata. (A different system used frequency co-modulation to separate sources.(Mont-Reynaud 891) 

Mont-Reynaud later developed this into the SeeMusic system, which includes visualisation and achieves 

better-than-Heisenberg resolution through the use of a multiresolution approach, which combines 

several BQFTs with different Q ranges.[Mont-Reynaud 931 

Mellinger, also at CCRMA, took a similar approach in developing SoundExplorer, an NeXT 'interactive 

workbench' for source separation.[Mellinger 91a, Mellinger 91
bJ As the process can take up to 10 hours per 

second of input on a single machine, he spreads the computational load over a network of workstations. 

Several of the above CCRMA systems are also described in papers by Chowning. (Chowning 84, Chowning 

86b) 

5.3.8 Robert McAulay, MIT, 1986 
McAulay and Quatieri developed a system for analysing speech. [McAulay, Quatieri 86' Quatieri 901 Their system 

is notable as several other speech and music systems were based upon it. (Horner 95
• Depalle 93a, Depalle 93

bl 

MQ analysis, as their technique came to be known, initially uses the STFT, but then models sound as a 

number of sinusoidal components. This was applied to suppression of interfering speech. Julius Smith 

used a similar technique in P ARSHL, demonstrating its applicability to non-harmonic sounds. [SmithJ 87
' 

Serra 901 Kelly Fitz' s LEMUR system is also based on MQ analysis. [Fitz, Bargar 951 Whilst originally used for 

m~nophonic sounds, MQ analysis has also been demonstrated to be useful for polyphonic analysis. (Maher 

89• Maher 90• stainsby, Scallan] However, being a lossy process it is not well suited to exact resynthesis. 
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5.3.9 Haruhiro Katayose, Osaka, 1988-90 

A polyphonic transcription system ·was developed by Katayose et a!. [Katayose 88• Katayose 891 for 

transcription of piano, guitar, or shamisen. 51 It also uses the above peak frequency estimator. It assumes 

the music has a regular rhythm, without dramatic tempo deviations. It uses a priori knowledge of the 

timbre to aid in separating polyphony. The original system cannot separate different instruments, but a 

I . [Katayose 90a) dl · h fr · · 1 · d ater versiOn reporte y separates two mstruments c osen om ptano, guttar, c annet, an 

violin. This was developed into the Virtual Performer system. [Katayose 93' Takeuchi) Also developed at 

Osaka was a tool for transcription of polyphonic piano music for expressive performance analysis. [Takami, 

Katayose BOb) This system makes use of score information. Earlier research at Osaka produced an 

interactive tool for examining Southern Pacific ethnic music. [Tsujimoto) This uses a novel peak frequency 

estimation method using the magnitude of the inverse spectrum. 

5.3.10 Richard Kronland-Martinet, Marseilles, 1987-88 

Kronland-Martinet at LMA52 at Marseilles used wavelet transforms m his sound analysis 

system. [Kronland-Martinet 87• Kronland-Martinet 881 Wavelets, discussed more in a later chapter, allow a constant 

Q. As well as sonogram-type analysis, he illustrates wavelets designed for octave detection. He notes the 

usefulness of wavelet analysis for timescale modification. Guillemain also uses wavelets for analysis and 

resynthesis. [Guillemain) 

5.3.11 Andranick Tanguiane, ACROE-LIFIA, 1987-95 

Andranick Tanguiane at the USSR Academy of Sciences, and later at ACROE-LIFIA53, examined the 

recognition of chords.[Tanguiane 87
' Tanguiane 881 He proves that the optimal factorisation of the log-

spectrum of a chord is the log-spectrum of the timbre convolved with the log-spectrum of the pitches in 

the chord. [Tanguiane Blb, Tanguiane 9381 He also examines rhythm recognition, and again approaches the task 

by choosing the data representation that minimises its complexity_[Tanguianes11 This was demonstrated for 

monophonic key-tapping ofthe snare drum part ofRavel's Bolero. A later paper combines both of these 

ideas[Tanguiane 961, postulating that for audio perception, the following axioms hold:-

1) The frequency axis is logarithmically scaled. 

2) The ear is insensitive to phase. 

3) Data can be grouped with respect to structural identity. 

51 The shamisen is a Japanese instrument similar to a lute. 

52 Laboratoire de Mecanique et d' Acoustique - Mechanics and Acoustics Laboratory. 

53 ACROE stands for Association pour Ia Creation et Ia Recherche sur Ies Outils d'Expression 
(Association for Creation and Research on Tools for Expression, part of the Ministere de Ia Culture et 
da Ia Francophonie (Ministry of Culture and Language). LIFIA is the Laboratoire d'Informatique 
Fondamentale et d'Intelligence Artificielle (Pure Informatics and Artificial Intelligence Laboratory) at 
IMAG, the Institut d'Informatique et de Mathematiques Appliquees de Grenoble (Institute of 
Informatics and Applied Mathematics). 
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4) Data are represented in the least complex way in the sense of Kolmogorov (least memory 

storage required). 

This technique of data minimisation is a powerful one - understanding a signal is largely equivalent to 

compressing it. Tanguiane's approach is mathematical; he does not present an implementation. 

5.3.12 Barry Vercoe, MIT, 1988 

Barry Vercoe and David Cumming describe a method for tracking polyphonic audio. [Vercoe 881 It uses the 

Connection Machine (CM), a highly parallel SIMD computer with 65536 processors, and audio 

algorithms are carried out using an extension of the Universal Processing Element (UPE) of Carver 

Mead.(Wawrzynek 841 It first carries out the Short-Time Fourier Transfonn (STFT) and also produces the 

rate of amplitude change for each bin. These are then grouped into separate sources by noting 

similarities in onset time and in small fluctuations. Processing is then carried out using an artificial neural 

network. However, no results are given in this .. early paper. He concludes that ~he heavy use of pattern 

matching is only suitable for massively parallel processing resources. 

5.3.1~ Bob Maher, Illinois, 1989-90 

Bob Maher also examined signal separation. (Maher 
88

' Maher 901 He first compares the differences between 

speech-based and music-based separation systems, and then discusses the generalisation of the problem, 

observing that 'projects of this sort can rapidly fall into the trap of ad hoc, special-purpose techniques to 

solve a particular problem, only to find another problem created'. His system also makes several 

assumptions:- the polyphony is two, the timbres are nearly harmonic, the 'lower' voice may not go 

higher than the 'upper' voice, and the minimum note duration is known. 

His approach starts by using MQ analysis. It then estimates the two fundamental frequencies. He uses 

four test pieces - two synthesised and two real, and while his system generally gives a good 

transcription, he notes that it is more susceptible to errors when partials overlap and at onsets and 

offsets. 

5.3.14 AI Bregman, McGill, 1989-96 

Bregman defines the tenn Computational Auditory Scene Analysis (CASA), which is adopted by much 

of the later work. [Bregman 89' Bregman gsa, Bregman 9Sb) In particular he examines the factors influencing the 

fusion of partials, and lists these as onset and offset synchrony, frequency separation, regularity of 

spectral spacing, binaural frequency matches, harmonic relations, parallel amplitude modulation, and 

parallel gliding of components. These factors contribute to the primitive grouping of partials. In 

contrast, schema-driven grouping depends on our learned knowledge of instrumental sounds and 

musical practice. 
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5.3.15 Edward Pearson, Warwick, 1990-91 

Like Mont-Reynaud, Pearson uses a multiresolution system(Pearson 90' Pearson 911 to detect features in 

polyphonic audio. The Multiresolution Fourier Transform(Calway, Wilson 92a, Wilson 92bl (MFT) is an over

complete set of windowed Fourier transforms of size zN for several values ofN. Pearson uses a sample 

rate of24 kHz and (at least) eleven FFTs, up to an FFT size of2048. This allows all reasonable trade

offs between time resolution and frequency resolution to be investigated. He then applies differencing to 

the transform coefficients and applies a filter to enhance the onsets. Next, peak detection is used to form 

a set of candidate onsets. Then, the onsets over all scales are compared in order to remove spurious 

partials. Finally, onsets are chosen by combining the high frequency resolution of lower levels (i.e. with 

longer FFTs) with the high time resolution of higher levels, and the resultant partials are grouped to 

form notes. The technique works well on his simple ex~ple, the notes F#4 and C4 played on a piano54, 

and in later work it is applied to the woodwind trio of Bach's 1st Brandenburg Concerto.(Pearson 91• 

Wilson 92b) 

Tim Shuttleworth, also at Warwick, reports on preliminary work on polyphonic transcription of 

Schubert's "Trout" piano quintet and an unnamed piece by Tchaikovsky.(Shuttleworth) He also uses the 

MFT, but asserts that only three or four MFT scales are needed. He pinpoints a key disadvantage of the 

MFT, its very high data rate. The amount of original data is multiplied by the number ofMFT levels. 

5.3.16 Boris Doval, Paris, 1991 

Doval' s system on the IRCAM musical workstation uses harmonic methods. Although originally 

designed for monophonic sounds, it forms multiple hypotheses for the fundamental frequency, and can 

detect several fundamentals. He illustrates this for two clarinets. (DovaiJ 

5.3.17 Martin Cooke, Sheffield, 1991-96 

Martin Cooke at Sheffield developed a separation system. (Cooke 91' Cooke 93bl He illustrates with the 

separation of speech from various 'noise' sources - a pure tone, white noise, impulses, laboratory noise, 

rock music, a siren, a telephone, female speech, and male speech. (Cooke 93al 

Cooke questions the bottom-up, or data-driven approach of his and other earlier separation schemes, 

where the data flows from low-level to higher-level entities.1Cooke 96a1 He argues for speech 'schemas' to 

be more tightly integrated into the CASA process - i.e. for the process to incorporate top-down 

processing. This question is also discussed in detail by Slaney.ISianey 96b, Slaney 96aJ Cooke also lists many 

ofthe circumstances where we can perceive speech distorted in various ways (see (Cooke96bJ for a system 

to analyse 'occluded' speech) but conventional (bottom-up) recognisers cannot, and suggests alternative 

54 Presumably these pitches are chosen a tritone apart so that their lower harmonics do not overlap. The 
first potential overlap is between the fifth harmonic ofF#4 (5x370.0=1850Hz) and the seventh harmonic 
ofC4 (7x261.6=1831 Hz). 
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architectures. It should be noted that while speech perception has some similarities with music 

perception, not all speech schemas are applicable to music. 

5.3.18 Guy Brown, Sheffield, 1992-96 

Much of Cooke's work is in collaboration with Guy Brown, and vice versa. Brown's original system 

was designed for separating speech from the other sources described above. [BrownG 92a, BrownG 94bJ It is 

illustrated in Figure 3 7. This was later extended to analysis of synthesised musical sounds. [BrownG 94aJ 

Rep!ese!l/o!iofl Ou!pu! 

Figure 37- Overview of Guy Brown's analysis system. 

Brown first analyses the signal using a highly accurate model of the human auditory periphery. Spikes on 

the simulated auditory nerve are converted into five 'feature maps' representing offsets, onsets, 

frequency transitions, rates (essentially a spectrogram), and autocorrelation. Next, 'auditory elements', 

representing the amplitude and frequency movement of each partial, are extracted. Then, these elements 

are grouped into notes. Earlier work[BrownG 92aJ used offsets and onsets; later work[BrownG 92
bJ uses pitch 

contours. 

While many transcription systems stop at the stage of separating all the notes, Brown examines how all 

the notes from a particular instrnment can then be grouped together, by examining the Wessel 

sequence[Wesset 791 played on clarinet and brass timbres. (This does not contain simultaneous notes.) He 

successfully groups the resultant notes according to their brightness and onset asynchrony. He then 

examines the same timbres played as a duet, and while the separation results are less ideal, they appear 

promising. It transcribes 10 out of 17 notes. Brown's approach is bottom-up, but like Cooke he 

suggests that top-down processing is also important, and this is developed in Crawford's 'interactive' 

system. [Crawford) Later work turns to a neural oscillator model. [BrownG gsa, BrownG 95b, BrownG 961 
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5.3.19 Dan Ellis, MIT, 1991-96 

Dan Ellis of MIT, and later the International Computer Science Institute, describes a system for 

characterisation of sounds. [Ellis 91, Ellis 92a, Ellis 92b, Ellis 93, Ellis 94, Ellis 95a, Ellis 95b, Ellis 96a, Ellis 96b) 

He discusses several previous data-driven, or bottom-up, models(Weintraub, Cooke 91• BrownG na), and 

argues that this approach cannot deal with auditory illusions where 'the perceived content of the sound 

is in some sense incorrect or different from what was actually presented'. An example is the continuity 

illusion, described in the previous chapter. [Bregman 891 Ellis uses the continuity illusion to back up his case 

for top-down processing, where higher-level information is used in the interpretation of lower-level data. 

(see also (Bregman 96a, Bregman 96b) ) 

Represe!J/o/ioo 
Blackboard 

Fro!J/ md Oulpul 

Figure 38- Overview of Dan Ellis's prediction-driven sound analysis system. 

His system is shown in Figure 38. Compare it to Guy Brown's 1992 system shown above. 

In his system, the front-end analysis provides several outputs:- an overall signal intensity, a set of 

filterbank outputs, the autocorrelation, an onset map, and the correlogram (the autocorrelation within 

each frequency channel). 

He uses three sound elements to represent the sound - noise clouds with separate temporal and spectral 

contours, transient clicks, and wefts representing wideband periodic energy.!EIIis 96cJ The reconciliation 

engine uses a blackboard system based on IPUS(CarverJ and changes the information representations 

according to the match between it and the front-end output. 

He applies his system to a male speaker in a noisy environment (which forms two ~efts for the vowels in 

"bad dog", three clicks for the consonants, and a noise background) and 'construction-site ambience' 
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with noises, clicks, and bangs (which display the system's ability to characterise arbitrary and dense 

sound scenes). Resynthesis, he reports, is more problematic, and the reconstructed sounds are still 

distinguishable from the originaL 

5.3.20 Kunio Kashino, Tokyo, 1992-93 

Kunio Kashino describes a monaural sound source separation system. [Kashino 92• Kashino 931 He makes the 

useful distinction between a physical sound source and a perceptual sound source. A .piano note has 

three physical sources (each string) and one perceptual source, whereas recorded polyphony has one 

physical source (the loudspeaker) but many perceptual sources. I have discussed this elsewhere in 

relation to the sound of a violin section. 

He also discusses and dismisses methods based on spectral 'templates' as this requires a complete set of 

all musical sounds that might be present. Such a collection could never be completed as new (especially 

electronic) instruments are being developed daily. As a result of these considerations, their system 

assumes a monaural signal, and no a priori kno~ledge. 

The initial frequency analysis uses IIR filters (which cannot allow perfect reconstruction), at 

logarithmically spaces frequencies: It then uses a pinching plane method to track the times and 

frequencies, and clusters the onsets according to the degree of harmonic mistuning and onset 

asynchrony. 

They develop their system to examine three cases: one where no timbral information is known or used, 

one where timbral information is derived during processing, and one where timbral information is known 

in advance. The test signals are 2- or 3-note chords consisting of one flute note and one or two piano 

notes, played by wavetable synthesis. Their system appears to be able to correctly identifY most of the 

chords. 

Kashino ~ s later work[Kashlno 968
' Kashino B&bJ also adopts an approach that combines bottom-~p and top

down processing using Bayesian probability networks. Higher knowledge includes statistical analysis of 

chord transitions and joint chord-note probabilities, and instrument spectra. The grouping employs 

common harmonicity and common onsets, and separates two- and three-note mixtures of flute, clarinet, 

trumpet, violin, and piano with a 'recognition rate' of 50-90%. It is implemented on a combination of a 

Fujitsu APl 000 parallel computer and a network of other workstations. 

5.3.21 Jeff Pressing, LaTrobe, 1993 

Jeff Pressing at La Trobe University in Melbourne developed a transcription system for the 

Macintosh. [Pressing 9381 It is an interactive system, in that 'the user selects the musical and cognitive 

contexts appropriate to the interpretation of his or her ,actions'. This means that the user specifies the 

barlines, the time signature, and so on. These are connected to the onsets detected in the audio. 
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Information that is not specified by the user can be derived from the audio, although few details of this 

procedure are given. 

5.3.22 Alain de Cheveigne, Paris 7, 1993-96 

Much research in speech has gone into the separation of concurrent vowels[Assmann 89
• Assmann 901, and 

this is similar to the steady-state music decomposition problem. Alain de Cheveigne at Universite Paris 7 

examined this problem by minimising the output power of two comb filters. (de Cheveigne 93• de Cheveigne 95• 

de Cheveigne 961 Tomohiro Nakatani at NIT developed a technique named HBSS, or Harmonic-Based 

Stream Segregation(NakataniJ, and applied it to separating male and female speech. 

5.3.23 Masataka Goto, Waseda, 1994 

Goto at Waseda developed a system for separation of percussion instruments_!Goto 941 This uses an 

improved form of template matching. It separates a polyphonic mixture containing bass drum, snare 

drum, low/middle/high toms, open/closed hi-hat, ride cymbal, and crash cymbal, in the context of the 

near-simultaneous onsets that are common fo_!" percussion. There is a clear potential link with later 

MIDI-based work[Hidaka, Goto 961 on artificial jazz performance. 

5.3.24 Mamoru Ueda, Waseda, 1994 

Ueda examines decomposition of two concurrent sounds. [UedaJ If all the partials of each note have a 

scaled version of the same amplitude envelope, then his system can separate them. He shows good 

results from test data that met these requirements, but poorer results from actual instruments, and 

correctly deduces that the assumption may not be valid. 

5.3.25 Jonathan Berger, Yale, 1994-95 

At Yale University, Jonathan Berger and colleagues developed a polyphonic analysis system[BergerJ 94a, 

BergerJ 94c, Berger 951 using wavelets.[Coifrnan 90• Coifrnan 921 Their system has been applied to denoising old 

analogue recordings, including an 1889 recording ofJohannes Brahms playing his Hungarian Dance no. 

1 in G minor and Enrico Caruso singing an aria from Puccini's Tosca in 1903. (BergerJ 94bJ Their wavelet

based system seems to work well at removing noise, although they report that some 'clicks and whistles' 

remain. Later work by Popovic extends this system to source separation and polyphonic pitch tracking 

f al . h . . [Popovic 95a] d I . . h 5 I h (Popovic o a voc Wit p1ano accompaniment an a so o p1ano excerpt Wit -note po yp ony. 

95b) 

5.3.26 Avery Wang, Stanford, 1994 

Avery Wang designed a polyphonic system on the NeXT for source separation and related 

applications_(WangJ Wang's technique uses a Frequency-Locked Loop and frequency warping to 

implement tracking on the analytic signal. Four pieces are illustrated:- orchestra/baritone, 

orchestra/baritone/soprano, rock band/vocal, and harpsichord/trumpet/voca/, with the italicised voice 

being removed. His system implements resynthesis ofthe removed voice and of the accompaniment. 
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5.3.27 Douglas Nunn, Durham, 1994-96 

In 1994 this author published a paper describing early results of the polyphonic transcription system 

described in the next chapter. [Nunn 941 Graphical applications are described separately. [Nunn 95
1 This 

system was applied to polyphonic piano and organ, didgeridoo, brass trio, and string orchestra. A 

multirate approach called Octave Spectral Analysis is used - this is virtually identical to Mont

Reynaud's BQFT (Bounded-Q Frequency Transform).[Mont-Reynaud 901 

5.3.28 Robert Holdrich, Graz, 1994-95 
Robert Holdrich[Holdrlch 94a, Holdrich 94b, Holdrlch 94c, Holdrlch 95) uses the Modified Moving Window 

Method[Kodera 781
, based on the SIFT, to analyse and resynthesise a multi-component signal. 

5.3.29 Eric Scheirer, MIT, 1995-96 

The system developed by Eric Scheire~Scheirer 958
' Scheirer 95

bJ was designed for polyphonic transcription 

of piano music. In contrast to many of the transcription systems we have seen, but like Takami, this one 

uses the score of the music, and transcription is mainly directed at expressive performance extraction, 

determining the note onset times more accurately. It also estimates the offset times and the amplitude of 

each note. The onset times are extracted to an accuracy of better than 20 ms. He also extracts the offset 

and amplitude, although less accurately. 

Scheirer raises this criticism of his own work: "It seems on the surface that using the score to aid 

transcription is 'cheating', or worse, useless - what good is it to build a system which extracts 

information you already know?". He contends that score-based transcription is a useful restriction of the 

general transcription problem. It can certainly be a useful tool for modelling cases where we already 

know the score, such as in listening to a familiar piece, where our musical cognition is directing us to 

expect notes. This system can also make use of tim bra! knowledge of the piano - as the piano is a non

driven instrument, the only feature being 'controlled' by the player after the onset of a note is the time of 

its offset. It looks for single notes by looking for increases in high-frequency (above 4 kHz) energy or 

overall energy, or by using a comb filter based on the target pitch. It looks for multiple notes by using 

multiple filters at frequencies selected so as to be (hopefully) unique to one note of the cluster. 

Such a system is, one imagines, ideal when the score is known and the player plays it accurately. 

However, Scheirer notes that one potential example had wrong notes and unmusical phrasing and could 

not be considered. 

His comments on polyphonic transcription warrant quoting:-

A larger issue regarding the problem of general polyphonic transcription is the goal 
and motivations underlying them. Why is there so much interest in building transcription 
systems? 

We submit that it is for several reasons. Obviously, having a worl<ing transcription 
system would be a valuable tool to musicians of all sorts - from music psychologists to 
composers (who could use such a tool to produce "scores" for analysis of worl<s of which they 
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only had recordings) to architects of computer music systems (who could use it as the front
end to a more extensive music-intelligence or interactive music system). 

Another reason that so much effort has been invested in the construction of 
transcription systems is that on the surface, it seems as though it "should be" possible to build 
them, because the necessary information "must be" present in the acoustic signal. While this 
feeling seems to underlie much of the work in the area, it is so far drastically unjustified. 

This point relates to a final reason, which is based on a hypothesis of the human 
music cognition system - that human listeners are doing something like transcription internally 
as part of the listening process. Stated another way, there is an implicit assumption that the 
musical score is a good approximation to the mid-level representation for cognitive processing 
of music in the brain. 

It is not at all clear at this point that this hypothesis is, in fact, correct. It may well be 
the case that in certain contexts (for example, densely orchestrated harmonic structures), only 
a schematic representation is maintained by the listener, and the individual notes are not 
perceived at all. Since it is exactly this case that existing transcription systems have the most 
difficulty with, perhaps we should consider building transcription systems with other goals in 
mind than recreating the original score of the music. 

Scheirer concludes, rather modestly, that "certain limited aspects of polyphonic transcription can be 

accomplished through the method of 'guess and confirm' given enough a priori knowledge about the 

contents of a musical signal". Later work(Scheirer 961 turns to replacing the score with 'high-~evel musical 

inference', such as musical rules describing four-part chorales. 

5.3.30 RolfWobrmann, Hamburg-Harburg, 1995-96 

Wohrmann and Solbach present a system[Wohnnann, Solbach 968' Solbach 96bJ for tracking partials in white 

noise. They use a constant-Q wavelet analysis based on twelve gammatone filters per octave, and apply 

it to piano and mbira55 music. Harmonics are suppressed by a phase locking algorithm, and notes are 

detected by thresholding. Their examples seem to show potential for ASA. 

5.3.31 Thomas Stainsby, LaTrobe, 1996 

Stainsby concentrates specifically on polyphony, and works in non-real-time on a NeXT 

machine·. [StainsbyJ The aim is specifically source separation rather than transcription; no attempt to 

characterise the sounds are made. As with many other schemes, he uses a quasi-logarithmic frequency 

distribution, in this case from bounded-Q MQ (McAulay-Quatieri) analysis. As is also common, he then 

losstly compresses the data by fitting it to_ linear breakpoints. He then applies Bregman's grouping 

principles to form notes. His test piece has a polyphony of two, and appears to work effectively, but he 

notes that it is cannot yet assign all notes from one instrument into a single track. His system is monaural 

but may be expanded to stereo. The system is partly interactive, in that the user chooses many 

parameters before or during analysis. This is connected to earlier work by Scallan using MQ techniques 

in an analysis/synthesis package for the Macintosh. (Scallan) 

55 The mbira is an African thumb piano similar to a kalimba, with plucked metal tines attached to a 
resonator. 
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5.3.32 Keith Martin, MIT, 1996 

Martin outlines the preliminary stages of a blackboard-based system designed for transcription of four-

. . I d . [MartinK 98) Thi h d k . h al ( voice counterpomt p aye on a piano. . s uses a s are wor space Wit sever agents or 

knowledge sources) operating quasi-independently. 

5.3.33 Shawn Menninga, Calvin College, 1996 

Shawn Menninga, at Calvin College, Michigan, developed a transcription system using the GFT 

(Generalised Fourier Transform).[MenningaJ It has been tested for transcribing a mixture of oboe, flue, 

trombone, and double bass. In this system the instrument spectra are known in advance. 

5.3.34 Other research 

Other research not reviewed here includes work by Watson at SydneywatsonJ, Heinbach at 

M . h[Heinbach 87, Heinbach 88) d Mi h I Ha I t MIT [Hawley) umc , an c ae w ey a . 
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5.3.35 Comparison 

The table below summarises most of the polyphonic systems above. EPA stands for expressive 

performance analysis. In many cases the aims fall into several categories. 

Main author Input Poly. Known Known Aim 
score orch. 

Stockham voice + orchestra + noise n ? ? separation 

Parsons 2 x voice 2 n y separation 

Moorer 2 X guitar 2 n y transcription 

Chafe piano, piano + harpsichord n n y separation 

Schloss 2 x conga 2 n y transcription 

Weintraub 2 x speech 2 n n echo cancellation 

Mont-Reynaud piano 2 n n transcription 

Tsujimoto ethnic music n n ? transcription 

Katayose string, 2 of pno./gtr./clar./vln. 2 n y transcription 

Takarni piano n y y EPA 

Kronland-Martinet clarinet, trumpet, ? 2 n n resynthesis 

Vercoe ? n n n transcription 

Maher 2 x synth, clar.+bsn., tpt.+tuba .. 2 n n transcription 

Pearson piano, woodwind trio 2-3 n n transcription 

Do val 2 x clarinet 2 n n transcription 

Cooke speech + various l+n n y? separation 

Brown speech +noise i+n n y? separation 

Ellis environmental sounds n n n transcription 

Kashino flute/clar./tpt./vln./pno. 2-3 n n separation 

Pressing ? ? n n transcription 

Nakatani male speech + female speech · 2 n n separation 

Go to percussion n n y transcription 

Berger piano + noise n n? y denoising 

Wang voice + various I +n n ? separation 

Nunn various n n n transcription 

Holdrich synthetic 2 n n separation 

Scheirer piano n y y EPA 

Wohrrnann piano/mbira + noise n n n separation 

Stains by ? 2 n ? separation 

Martin piano 4 n y transcription 

Table 16- Summary of transcription systems. 

The design of a system depends largely on the intended application. A note transcription system can be 

designed for a particular instrument to achieve robust time performance, and for auto-accompaniment 

and expressive performance analysis, the score may also be known. In contrast, applications to 

documentation of electroacoustic music can assume nothing about the input. For auditory modelling and 

beat tracking, analysis is the primary concern, but for compositional use, transformation and synthesis 

are vitally important. For compression, source separation is unnecessary, but in psychoacoustics it is the 

central concern. Live performance systems require real-time performance, but complete 

analysis/resynthesis systems may take 36000 times longer. 
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5.4 Other systems 

Several other systems described below do not quite fall under the category of 'automatic music 

transcription machines'. 

5.4.1 ManuaVinteractive systems 
Several of the methods described above are partly interactive. [Mellinger 91a, Mellinger 91b, Tsujimoto, Crawford, 

Pressing 93a, Stainsby) Th · · h d h J ere are more mteract1ve met o s t at re y as much on computer tools than on 

computer analysis. At the extreme end, it is possible simply to examine each onset separately with a 

graphical waveform editor and/or a spectrogram. By zooming in on each note, and auditioning short 

segments, it is possible to determine the onset time to a reasonable degree of accuracy (although 

detecting near_-simultaneous onsets is still problematic). This technique was used by Bruno Repp in his 

analysis of 28 performances of Schumann's "Traumerei". (ReppJ His analysis and my attempts to repeat it 

are described in chapter 7 and Appendix K. 

5.4.2 Multiple-channel systems 

The difficulty of transcription might prompt the suggestion that if one wanted the sound of each 

instrument in a brass quintet, one should have recorded them using five microphones. However, unless 

each instrument has its own acoustically isolated room, each microphone will pick up sound from other 

instruments. Many similar situations arise in speech applications, and source separation is often referred 

to as blind separation or blind deconvolution. Mitchell discusses what is often termed the 'cocktail 

party effect', and presents a system for separating two voices using four microphones(Mitchell]' and Chan 

examines the process of separating N instruments recorded by N microphones. [Chan) Bell uses a neural

network approach to separate up to ten voices. [Belli Mansour shows that it is also possible to separate N 

sources convolved with each other. (Mansour) 

These methods of source separation make use of sound localisation. If several sources are fixed in 

position with respect to more than one chan:nel, it is possible to separate the sources. A simple example 

of this type of source separation is voice removal for karaoke features on some home stereo 

systems. (Technics) This assumes that the vocals are central in the sound stage, which is often true, and 

removes the component common to both channels. Filtering before and after ensures that this does not 

remove central low frequencies such as the bass drum and bass guitar. This process is crude but can be 

effective. A refinement of this process is found in the Thompson Vocal EliminatorTM, a commercially 

available device to remove vocals from music.[LTSoundJ The manufacturers report that vocals are virtually 

inaudible for 25% of examples, and barely audible for another 25%. However, if the voice moves in 

spatial position or is heavily processed then this method cannot be used. 
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5.4.3 Beat induction systems 

Beat induction, or beat tracking, or foot-tapping, systems are a special case of transcription where the 

only desired output is the temporal structure. The 1994 ICMC held a special session on such systems. 

An overview and an extensive bibliography is given by Desain and Honing_(Desain S4J Tait also argues for 

concentration on the large-scale time domain, and it seems reasonable to suggest that understanding the 

rhythmic structure will be of help to a transcription system, as it will allow more intelligent guesses 

about where notes might or should be. (Tail) Analysis of rhythm is also examined by Todd, who uses a 

wavelet-based approach to decompose the sound energy flux of polyphonic piano music into a grouping 

structure and a metrical structure. [Todd) 

5.4.4 Chord induction systems 

Bernice Laden describes a neural-network approach to classifYing chords as major, -minor, or 

diminished.(Laden 911 Neural networks entail the force-feeding of the net with lots of questions and 

answers, then testing how the same or similar questions can be answered by increasingly smaller nets. 
·- -

Her later work turns to neural network recognition of pitch, and her system is able to recognise 

polyphony of 2 and 3_!Laden 941 Such systems carry out a very lossy analysis as they do not represent 

timbre, and the approach could probably not be extended to polytimbral note transcription, as there 

would have to be output units for each timbre - for a hypothetical wave-to-General-MIDI system this 

means 128x128=16384 output units. This would be unwieldy, and would still omit amplitude and other 

timbral information. Moreover, the training data is not available for new sounds. 

5.4.5 Speech-based systems 

Work by Parsons, Weintraub, Cooke, Brown, de Cheveigne, and Nakatani has been described above. 

Several other systems(Hanson, Naylor, Childers, Amuedo, McAdams) designed purely for speech signals are 

described by Barry Vercoe. (Vercoe 881 

As with music, analysis of a single source, while not trivial, can be accomplished satisfactorily, but 

separation and analysis of several sources is much more problematic. A common application is speech 

enhancement, where one source is to be made more intelligible and other sources are to be removed or 

made less intelligible. 

Systems designed exclusively for speech may make so many assumptions about the input so as to be 

ineffective for music. Moreover, many speech applications only require intelligibility, and accept a lower 

fidelity than musical applications. Yet we cannot lay a boundary between speech and music; a system 

sufficiently general as to handle vocal music should also be able to apply the same principles to speech. 

5.4.6 MIDI-based systems 

If we are concerned with studying a keyboard performance, one obvious possibility is to record the 

performance using MIDI. Also, some auto-accompaniment and artificial performer systems assume that 
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the information is already in MIDI format. (Pennycook 93' Hidaka, Goto 98' Baird] Obviously this is only possible 

if the performer is still living and is willing to specially record a performance. It also requires a high

quality MIDI keyboard with a sufficiently similar mechanism to a concert grand piano (and an acceptable 

synthesis method), or a piano with MIDI output such as a Yamaha Disclaviefscheirer 95
bl, or a 

Bosendorfer optical recording piano.[PalmerJ 

5.5 Summary 

Many have attempted polyphonic transcription, and while each approach has demonstrated some 

success, none appears to be sufficiently general. A common feature of most systems is a hefty set of 

restrictions placed upon the input - few are at the stage where they can be plugged in between a radio 

and a printer. The issue of robustness is discussed by Dixon and Sterian. (Dixon, Sterian] As Dixon points 

out, "most approaches suffer from brittleness - a steep degradation in performance under non-ideal 

conditions". There is no standard corpus of test pieces for transcription, and there are difficulties in 

quantifying the accuracy, so it is in general not possible to directly compare performance. Also, the large 

amount of data in the original audio and in anything derived from it limits many examples to a few 

seconds. 

The next chapters present my attempt at polyphonic transcription. It is designed with the intention of 

being applicable to a variety of music. 
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6. Design of the transcription system 

In this chapter I introduce the design of my analysis and transcription system, and describe each of its 

· d ail (Nunn 94] components m et . 

6.1 Specification 

As discussed in previous chapters, the term 'transcription' has two meanings. It can refer to the process 

of analysis and classification that would be required to determine the (MIDI) score data. This is a 

worthwhile aim in itself However, it is a lossy process and does not permit resynthesis of timbre. When 

viewed in the context of the overall analysis-transformation-resynthesis paradigm, the output we desire 

is the complete set of control information needed for resynthesis by the complementary method. The 

system I will describe is intended primarily for this latter purpose. MIDI transcription is a useful by

product that also allows a method of evaluating the system performance. 

While some of the systems reviewed before use a physiologically accurate model of the human auditory 

system, the model here will not make an attempt to do so. As Wang points out, our physiology gives us 

a blind spot in our vision but we are normally unaware of it. [Wang) It would surely be counterproductive 

to implement this in a computer vision system. 

In the model I describe in this chapter, the basic sonic entities are sinusoids multiplied by a rectangular 

or other envelope. These sinusoids are to be grouped according to which partial of which note they 

belong to, although this is not strictly necessary for resynthesis. 

The system is designed for monaural audio, a reflection of the fact that separation can be carried out on 

a monaural signal. 

6.2 Overall design 

The transcription system(Nunn 941
. has several components, as shown in Figure 39. Neither the PC nor the 

C40 platform has sufficient resources to allow all of these stages to run concurrently. Instead these 

components are 'separate programs. The initial stage of analysis is carried out on the C40 and produces a 

large output file. The later stages are carried out on the PC alone, and in a similar way 'communicate' by 

passing large files to each other. 
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The original input files are either created 

digitally or recorded using the GoldWave(CraigJ 

or Cool(Syntrillium) Windows sound editors. 

6.3 The MEX script language 

There are many stages running as separate 

programs, as mentioned above. It is possible to 

partly automate the process using a DOS batch 

file. 56 However, a change in one of the 

programs would then mean that all such files 

had to updated. Thus, a script language called 

MEX (Music EXecutor) was developed to 

integrate the various components of the 

process. This also allowed experiments to b~_ 

scheduled to run unattended, often overnight. 

The script language implemented by the C 

program MEXEC is similar to a batch file but 

also allows variable assignment. Variables, 

which are all text strings, are assigned using 

Variable=Value and referenced by 

!Variable. Variables are generally 

concatenated with whitespace between, and 

can also be concatenated without whitespace 

using the operator ! &. Numeric variables are 

not implemented. 

Lines can be numbered, as in BASIC. There 

are currently only two program flow 

commands- GOTO and IF ... GOTO. 

IF !Machine=Dan GOTO 20 

20 CWDir=D:~ex'-

GOTO 29 

Other commands include:-

: semicolons start comments 

Deconvolution 

Filter lag 
compensation 

Reordering 

Note 
identification 

Conversion 
to MIDI 

Spectral 
display 

Display of 
spectral lines 

Display of 
tracks 

Display of 
notes 

Figure 39- Overview of transcription system. 

56 Batch files were still used on some occasions, such as when running one of the programs many times 
with different parameters, rather than each of them once. 
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ECHO Hi there, user. 

EXECUTE !DisplayProg !MonoFile !Flags 

DOS mode con lines=50 

PAUSE 

END 

Print a message to the user 

Run an executable file 

Do a DOS command 

Pause 

The complete syntax is formally presented in Appendix E and a listing of the script file used in the 

analyses is given in Appendix F. 

6.4 Multirate spectral analysis 

Audio input 

to lower 
octaves 

This process takes place 

on the TMS320C40, 

described in an earlier 

chapter. 

6.4.1 Octave 
Spectral Analysis 

The principle of Octave 

Spectral Analysis 

(OSA), shown in Figure 

40, is to treat each 

octave57 separately. 

There are several 

methods of doing this; 

the method described 

here is based on the 

method described by 

Elliott and Rao.(EIIiott) If 
Figure 40 - Octave Spectral Analysis. 

the sample rate is taken 

to be 44 kHz for simplicity, then we first use a high-pass58 filter to attenuate all but the highest octave 

(11-22 kHz). We then decimate by a ratio of 2:1 - i.e. every second output of the filter is discarded. 

This aliases the signal down to the range 0-11 kHz. This is then demodulated by multiplication with real 

and imaginary sinusoids at 16.5 kHz, which brings the region of interest down to ±5.5 kHz. A low-pass 

filter then further attenuates the frequencies outside this range, which only represent the complex 

conjugate of the desired band, allowing a further 2: 1 decimation, and then the FFT is carried out. The 

57 This technique can also be used to split the range into divisions other than octaves. However, the. 
octave is by far the most convenient for musical and other applications. 

58 Elliott and Rao used a band-pass filter, as tP,eir application was not concerned with the entire range of 
input frequencies. 
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octave below this is treated in the same way, but at half the sample rate. There is little point in staying at 

the 44 kHz sample rate in order to analyse lower frequencies. Thus, each octave requires only half the 

computation of the one above, leading to a total computational load equal to l+lh+lf.l+ ... = twice the 

computation of the highest octave. 

This gets us closer to the goal, but the frequency bins in each octave are still related by absolute 

frequency, and not truly logarithmic. A possible way to tum these into bins based at equal pitch intervals 

would be by interpolation. However, it is unlikely that the computation involved can be justified. 

Moreover, we would need to assume equal temperament and middle A = 440 Hz, neither of which is 

guaranteed. Furthermore, the harmonics (notably the seventh, which is around a third of a semitone flat) 

would still not fall precisely into keyboard-based bins. 

The Q is narrower at the low end of the octave, and varies within a factor of 2 - but the values are the 

same across octaves. The improved pitch resolution at the bass end is at the expense of poorer time 

resolution, and the FFT size and choice ofwindow determine where this trade-off is made. Initially, the 

analysis used an FFT length of 64, but later other sizes were implemented and compared. This is 

described in a later section. 

A fundamental decision must be taken at the outset - choosing a fixed sample rate. A high sample rate 

meilflS more memory is required, and does not necessarily mean better performance. A 440-Hz sine will 

end up in the 250-500 Hz octave, whether it was originally sampled at 16kHz or 32kHz. The sample 

rate must, as always, be higher than double the highest frequency in the signal. Inevitably, considerations 

of memory, speed, and mass storage space for both the input data and the various output files impose 

limits on the sampling rate and/or the length of the piece. 

The FFT generally uses a Hamming window. This gives cleaner spectra, but broadens the peaks. Other 

choices of window are possible, and are discussed later. 

The FIR filters are half-band filters, and the cutoff is at quarter of the sample rate. The high-pass output 

represents the top octave, 11-22kHz. We can now discard every second sample, which aliases the range 

down to 11-0kHz. The FFT is carried out on this (reversed) octave. The low-pass output, 0-11 kHz, is 

also calculated, and we again discard every second sample and use this as the input to the next branch. 

Each branch carries out the same procedure at half the sample rate of the one above. There are eleven 

octaves in all, which allows us to recognise frequencies down to 10.8 Hz at a sampling rate of 44100 Hz 

(or 11.7 Hz at 48 kHz). We note here that frequencies near the boundary between octaves could be 

represented in both octaves. 

Since the filters are non-ideal, there will be aliasing between octaves. Energy still remaining in the stop 

band at 10 kHz will be combined with the 12 kHz component. However, this is also true at the 

resynthesis stage. When certain conditions on the two sets of filters are met, these two errors will cancel 

out exactly. This is known as the perfect reconstrnction property. Quadrature Mirror Filters (QMFs) 
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and related filters can provide this. It was first proved for our case of two banks[SmithM 84• SmithM 86• 

Vetterti, Mintzer,) and has been generalised to N banks. (Chu, Vaidyanathan 87, Vaidyanathan 90) It also generalises to 

multiple dimensions. [Shah) 

6.4.2 C40 task arrangement 

Parallel C allows separate tasks, and the most effec;tive way to design a large and relatively complex 

program is a modular approach. In addition, a long-term aim has been to look at the feasibility of a 

larger network of C40s. Thus, the multirate analysis was split into two separate tasks connected by a 

channel. The driver task handles the connections to the host PC, such as file and console 1/0. The 

analyser task handles the computation - in this case the Octave Spectral Analysis which includes 

filtering and FFTs. Eventually, these may be on separate processors. 

This raises a practical 

problem if the 

second processor is 

not directly connected 

to the PC, how will it 

report debugging and 

other messages? The 

version of Parallel C 

in use at the start 

(1.0.0) did not permit 

1/0 from remote 

disk 

driver 

newsdesk screen 

analyser 

Figure 41 -Arrangement of tasks on the C40. 

processors. The simplest solution was to add a third task, newsdesk (), which is on the first 

processor, and is connected to all other tasks by channels. This task simply prints out everything it 

receives. Each task uses a standard protocol to send a string to the newsdesk. The command 

say ("hello") will send "hello" on the specified channel to newsdesk. To show which task sent the 

message, it is more useful to use the command isay ("hello"), which will output "Analyser: hello" 

to the screen. 59 Figure 41 shows the arrangement of the three tasks. 

Since there may be more tasks than processors, there is an overhead in switching between tasks, due to 

saving and loading registers. At one extreme, we could read bytes individually from disk and send them, 

and the analyser could read them individually. This actually means that the processor must switch 

between tasks every byte. It makes more sense to read from disk and to transfer data in larger packets. 

The other extreme also has problems, in that if the intermediate buffers are large, we will not be able to 

derive any analysis results until long after the input has been presented. To evaluate where the 

59 Later versions of Parallel C addressed this shortcoming, and allowed any task on any processor to 
print directly to the screen. The kernel automatically routes messages via the root. 
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compromise should be made, the performance was measured for varying sizes of disk buffer and channel 

buffer. These results are shown in the next chapter. 

6.4.3 OSA thread arrangement 

The analysis of each octave is handled by the same routine running eleven times, and the scheduling of 

these processes is very straightforward. The process is exactly the same in each octave; although the 

filters are at different frequencies, they are the same with respect to the frequency of the incoming data. 

Thus the same program can be used for all octaves. This is very efficient on a multi-threaded system; 

each of eleven threads runs the same program, so there is no duplication of program code. 

Figure 42 shows the threads in the task OSA.C. There are thirteen threads running concurrently; eleven 

for the eleven octaves, the main () task which reads the data from the driver task, and wornble (), 

which "picks up the pieces and makes them into something new" by collecting output buffers from all 

threads, carrying out the FFTs, and sending the results back to the driver. The driver and the newsdesk 

tasks, in the initial implementation, only have o11e thread each. 
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From driver.c 

------------ ----- j---------------------

Audio input 
main 

osa. c. 
22()5() Hz 

r---~~------:~· ~: --. 
11 

'' 0 0 

0' 
' ' '0 
'0 
0 0 

0 0 

0 0 

0' 
0' 
0 0 

level! : : 
0 0 

' 0 0 ------------------ -------------------------------------------------------------------'' 

to lower 
octaves 

Figure 42- Threads in OSA.C. 

6.4.4 Filter specification 

to driver.c 

The perfect reconstruction property implies that sharp filters are not an absolute necessity. However, it 

is still better·to use very sharp filters, as we want to recognise the frequencies without undue distortion 

or aliasing. Also, the errors can build up across octaves. The low-pass filter output is calculated by 

subtracting the high-pass output from the original. Thus, the passband ripple in one is the same as the 

stopband ripple in the other. For optimum use of filter taps, the ripple in the passband should equal the 

attenuation in the stopband. This is satisfied[SmithM 861 with a Kaiser window.[Kaiser 74
1 
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For applications not requiring resynthesis, IIR filters can be used. These give a shorter filter for 

equivalent performance, but distort the phase of the signal. For this reason it is not possible to achieve 

perfect reconstruction with an IIR filter unless costly all-pass phase-equalising filters are used, and filter 

stability is said to be problematic. (SmithM 85' Swaminathan, Jaw] 

The FIR filter (FIRK6.FL T) used has a length of 255. It was designed using DFDP, the Digital Filter 

Design Package.[Atlanta] Figure 43 shows the frequency response, and Figure 44 shows detail of the band 

from 10 to 20kHz. The filter impulse response is shown in Figure 45. 

LOG MAGNITUDE RESPONSE 
20-00 

0.00 

c;; -20-00 ... : ....... ! .... . 

...J 
w 
Ill --.0.00 - . . . . . . . . . . . . ....... . 
u 
w -60-00 
~ 

-80.00 

-100-00 
CR TO CONT 0· 

Figure 43 - Filter response. 

LOG MAGNITUDE RESPONSE 
20-00 

. . . 
0.00 1--.....-.· ........ ; ....... ; ....... ; ...... . 

: ; : . . . . 
c;; -20-00 

. . 
..... ! ....... ! ••••••• : • 

...J 
w 
Ill --.0.00 - ....................... . . 
u 
w -s0.00 
~ 

....... ; ....... ; ....... : ....... : ...... . 
: : 
: .: 

-a0.00 

-100-00 
CR TO COHT 10·000 

Figure 44- Detail ofhigh-end.filter response. 

0-30 

0·20 

0-10 

0.00 

-0.10 

-0-20 
CR TO COHT 0.000 

Figure 45- Filter impulse response. 
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Another filter was designed (FIRK5 .FL T), with a length of 511, and could be selected through the setup 

menu. However, this is probably an unnecessarily high computational cost for the sake of slightly more 

accuracy. 

6.4.5 Filter algorithm 

There are several simplifications that we can take advantage of The HPF and LPF need not both be 

computed:- we get the LPF by subtracting the HPF output from the delayed original. Also, every second 

filter coefficient, expect the middle one, is zero, which halves the computation. Third, the filters are 

symmetrical. Fourth, there is no point in calculating the samples that are to be discarded. All of these 

allow a factor-of-2 reduction in the computational requirements. The filters are implemented as 

polyphase filters(BellangerJ, as shown in Figure 46. 

y 7 =0.5tx 7 taO( x8+x6)+a 1 ( x 1 O+x4 )+a2( x 12+x2)+a0( x 14+x0) 

Figure 46- Schematic of filter implementation. 

6.4.6 Filter timing 

odd 
buffer 

high-pass 
output 

low-pass 
output 

The filter length of 255 means that there is a group delay of 128 samples. However, since the sample 

rate decreases for lower frequencies, the group delay gets progressively longer. One alternative is to 

stop decimation and leave a 'last' band from 0 to, say, 100Hz. This approach is advocated by Phillips, 

dd
. . h . . . d . d ~ al . (Phillips 94, Phillips 96) H . th t whose a 1t1ve synt es1s engine IS es1gne tOr re -time use. owever, e curren 

system does not adopt such a scheme. The eleventh octave holds the FFTs for 10.77 to 21.53 Hz 
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(assuming a sample rate of 44100 Hz), and the subsonic range from 0 to 10.77 Hz is written as a 

'residual block' into the file. This ensures that reconstruction would be possible, although in practice 

these blocks are ignored by later programs. 

6.4. 7 FFT size 

In the original implementation, the FFT buffers are of size 64. A length of 2N allows use of the FFT 

rather than the DFT. However, there is no reason to suggest that the sample will have any correlation 

with this size, or with any integral periodicity. The choice of FFT length determines the trade-off 

between time and frequency resolution, and is discussed in more detail below. 

The FFTs with lengths of 64 or more were implemented using highly optimised assembler source, 

supplied by Texas Instruments. This routine makes use of the C40's ability to address a memory block in 

bit-reversed order. However, it was unable to handle FFTs shorter than 64, so for this, public-domain C 

source code based on FOURI and REALFT in 'Numerical Recipes' was used.(Press) 

A further extension could be to apply more intelligent segmentation to the stream of each o~ave, and to 

allow any integral block size. This would of course lose the ability to use the FFT - DFTs are less 

efficient. 

6.4.8 FFT buffering 

Within each octave, the processing load fluctuates with time. When the FFT buffer is full, the FFT is 

'0 
m 
0 
rl 

l>-1 
0 
Cl) 
Cl) 

a..> 
u 
0 
l>-1 

I I I' I I I I I ~ 
!'... 

timev 

Figure 47- Processor load due to multi rate FFTs, as a jUnction of time. 

analogous to the divisions on a ruler, as shown in Figure 47. 

calculated and output. Thus 

there is a sudden demand for 

computational power every 64 

samples (if 64 is the chosen FFT 

size), i.e. when the time is 

divisible by 64. If we consider all 

the octaves, we see that there is 

a similar demand added when 

the time is divisible by 

128,256,512, ... , and the total 

demand follows a profile 

It is possible to spread the FFT computation evenly across the input block, so that instead of performing 

O(N x logN) calculations at the end of the block of N, we perform O(logN) calculations every sample. 

This is described in Appendix A. With this, the processor load is much smoother. The spectrum of one 

block is calculated and output, one bin at a time, while the next block is being input. The main 

disadvantages of this technique are that it returns the spectrum slowly, and that it requires temporary 

storage space for its partial results; an extra N-byte block of memory must be set aside for this. It 
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remains to be determined whether this technique solves more problems than it creates, so this has not 

been implemented. 

6.4.9 Summary of OSA 

Octave Spectral Analysis offers an approximately constant Q, and can be implemented efficiently on the 

C40. Despite the powerful environment, though, this analysis runs slower than real time. It could reach 

real-time performance with shorter filters or with more processors, but the overheads of reading and 

writing to a disk are ever-present. There is also a latency corresponding to the group delay of the filters, 

which is several seconds for the eleventh octave. (Most of the following processing is implemented on a 

stand-alone PC, and takes several hours, so this is not the most time-intensive stage oftranscription.) 

6.5 Spectral display 

The multirate analysis produces a large output file (*C40). It is twice the size of the original- there is 

the same number of data points, but whereas the original data was in 16-bit words, C40 words (whether 
.. -

char, int, float, or double) are 32 bits long. There are also a few bytes added at the start of each 

block, plus a global header, so the total size is around 2.08 times the original size. 

The next stage is to examine the file to ensure that the analysis is correct. This is done using graphical 

display. The graphical output described below and at later stages proved to be an essential part of the 

system, both for presenting the results and for debugging the system itself. 

6.5.1 Display techniques 

As the C40 has no support for graphics, the graphical displays are done by a standalone PC program 

called READSP (READ SPectrum) which graphically plots the analysis file. The resolution was limited 

to the standard VGA resolution of 640x480, partly due to the complexities of supporting SVGA 

graphics, and partly due to the lack of printer support for higher resolutions. Comparison of the 

performance on several PCs confirmed that fast graphics hardware is advantageous. 

The display is essentially a spectrogram, but for our multirate system we are plotting according to bins 

that are roughly equidistant in pitch. A typical spectrum is shown in Figure 48. Here, half a minute of 

sound is displayed on the screen, but a more typical use is to expand the time axis by scrolling the 

display. The horizontal axis is log-frequency; the vertical axis is time, from top to bottom. The eight 

boxes show the colour scheme, and the treble and bass staves are shown next to this. Throughout this 

chapter, I use the Mendelssohn to show examples. The analysis of this and all other pieces are described 

in more detail in the next chapter. 
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Figure 48- Logarithmic spectrogram of 30 seconds of Mendelssohn's Sonata 3 for Organ. 

Two axes are needed for time and log-frequency, so amplitude may be plotted using a third 'dimension'. 

This is roughly north-west, but has the appearance of pointing upwards. The height of each block is 

proportional to the amplitude of the transform bin. However, amplitude may vary over many orders of 

magnitude, so the colour of the block is also used to denote the logarithm of the amplitude. 

The example above plotted time from top to bottom and frequency from left to right, but it is mqre 

conventional for time to go from left to right and frequency from bottom to top. 
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The displays can be produced in a range of styles. In the 'skyscraper' display shown above, the 

magnification and angle of the blocks can be varied. The display also allows seven colour schemes -

mono, 8-colour, 16-colour, 8-grey, 16-grey, blue/yellow, and 'fire', and any of these can be reversed.60 

These displays are shown separately in Appendix N. 

6.5.2 Animation techniques 

Animations can be created as part of the compositional process. [Pringle) However, here there is an 

opportunity to derive them from the sound itself, based on the spectral displays described earlier. A 

screen-capture TSR is loaded first. Then, while the display program is running, screens are periodically 

captured, and afterwards these are compiled into a movie format. 

Two such screen capture programs were used:- VGACAP(Gozum) and PCXDUMP.'Frandsen) VGACAP 

must be operated manually, by pressing its hotkey, so provision was made to pause the display whenever 

the screen was about to scroll (usually rightwards, occasionally downwards). VGACAP saves the screen 

as a raw file plus a palette file. Since the former- is large, and the collection thus formed might otherwise 

fill the entire disk, the display program has the facility to call a shell file which uses PKZIP[PkwareJ to add 

them to a single compressed file. VGAFIL is used to form a *.GIF file from them. One annoying bug 

prevents it from saving the palette colours correctly. PCXDUMP can be installed so as to be triggered 

by calling a user-specified interrupt, thus removing the need for the user to press a hotkey hundreds of 

times. It compresses files into the PCX format immediately. Due to these factors, PCXDUMP was 

found to be more useful. 61 

To create the film format, there are again two possibilities:- DTA(MasonJ (Dave's Targa Animator) and 

VFD[WilliamsonJ (Video For Dos). DTA accepts PCX/TGA/BMP pictures, but not GIF, and produces 

FLIIFLC movies. The FLI format is the 320*240 format used by Autodesk Animator; FLC is an 

extension to 640*480; FLH and FLT formats are similar but have 16-bit colours and 24-bit ('true') 

colours respectively. VFD accepts TGA pictures, but not GIF or PCX, and produces A VI format 

movies. DTA was found to be the more useful ofthe two. 

The animations are displayed using either QVlHesseler) (QuickView) or DFviMason) (Dave's Flic Viewer). 

As the screen is scrolling, there is quite a large difference between successive frames, and the FLC 

format is inefficient. Both viewers (on a 66-MHz 486DX) were capable of a frame rate of around 3-4 

frames per second. While this is jerky, it is still effective. 

One command-line flag of DT A holds interesting possibilities. The flag I 3D causes DT A to read two 

sets of files, taking them to be the left and right pictures for making a 3-D film. The two sets of pictures 

60 The 'reverse' flag, in conjunction with a mono or grey-scale scheme, was used for many of the screen 
shots in this and the following chapter. 

61 Both programs were also used to capture many of the figures in this thesis. 
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are made in the same way, but with a slightly different slant angle (and a different magnification to 

compensate for this). The resulting animations, when viewed through a pair of3-D glasses62, convey the 

height as 'standing out' from the screen. 

6.6 Characterisation 

The next program, called DISTRIBx63, also reads the files produced by the Octave Spectral Analysis 

and plots a histogram of the energy separately for each octave. It also prints out a characterisation file, 

which consists solely of 

a single figure giving the 

'average' energy level. 

This is done to 

normalise the processing 

of pieces at different 

overall intensities. 

The display produced is 

shown below in Figure 

49. It shows the 

distributions for each of 

the eleven octaves. The 

actual output is m 

colour to distinguish the 

eleven plots. 

6. 7 Deconvolution 
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Figure 49 -Screen shot from DISTR!Bx. 

Once we have the spectra from each octave, we then try to determine the sinusoids contained in it. This 

procedure is either imprecise or computationally expensive, or somewhere in-between, in that there is no 

quick way to calculate it accurately, and se~eral ways of approximating the real spectrum, such as AR 

(AutoRegression)[Marple, Therrien, Foster), MA (Moving Average)[MarpleJ, and the hybrid ARMA. [Marple) 

62 Several pairs of red/blue anaglyphic 3-D glasses were kindly supplied by American Paper Optics of 
Memphis. 

63 Here 'x' is the version number, so the name of version 2 is DISTRIB2.EXE. 
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Figure 50 - sinc(x) versus x. 

6. 7.1 Theory of 
deconvolution 

A major difficulty in 

applying spectral analysis 

is that we have only 

determined the spectrum 

at a small discrete set of 

frequencies. However, the 

spectrum actually contains 

frequencies between the 

bins, and it is necessary to 

try to determine these. To 

simplify the following 

discussion, all frequencies in the following paragraph are normalised with respect to the analysis 

frequency. Ifthere is a frequency of30.9 (times the analysis frequency), then most of its energy will go 

into frequency bin 31, but some will 'spill' into bins 30, 29, 28, ... and 32, 33, 34, .... The worst case is 

when the frequency is halfway between bins, in which case 30.5 would be represented by equally strong 

peaks at 30 and 31, with considerable energy in 29/32 and 28/33. The actual amplitude response of any 

bin to any frequency is given by a sine-shaped curve, where sinc(x), illustrated in Figure 50, is defined as 

sin(1tX)/(1tX).64 In other words, if there is energy rna at fa (in units of bins), then it will appear in bin fb 

with an amplitude ofmaxsinc(fa-fb)· There is also a linear phase shift to take into account. 

6. 7.2 Implementation 

The deconvolution is carried out by a program called PICK OUT. The approach used here is to assume 

that the signal is close to a sum of sines, and to try to deconvolve the spectrum directly. The method 

used assumes the spectrum to be fairly well-behaved- i.e., that there are only a few clearly separated 

peaks. This may not be true, of course, so the following procedures will have to be fairly robust. 

We can define the 'fit' between the spectrum near t;, and the expected sine response by calculating the 

correlation between them over several nearby bins, as shown in Figure 51. We then iterate the frequency 

until this fit is maximised, and this gives an estimate of the amplitude and phase of the sinusoid. Other 

. I . hni "bl [SmithJ 87] mterpo at1on tee ques are poss1 e. 

64 sinc(O) is defined as 1.um sinc(e) as &--)>0, which is equal to 1. 
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Figure 51 -Deconvolution scheme. 

Note that the 'correlation' is actually between 

complex quantities; the 'sine' function is also 

twisted around the axis, and if a window was used 

in the FFT, we must use the transform of the 

window rather than the sine. Since we must 

calculate sin(x) at unknown values of x, the first 

value must be calculated the long way. After this, 

we can use recursion to calculate sin(x ± nT). The 

division by x cannot be avoided - there are 

apparently no other shortcuts to calculating this part 

of the sine function. The twist in phase ofthe 'sine' 

function is also derived recursively. 

When we have determined a sinusoid, we subtract 

its response from the spectrum. This is done until 

the residual power falls below the desired threshold, 

or until a given 'N' tries have failed to do so. 

The deconvolution is by far the most time

consuming part of the process. It also has no guaranteed execution time - transforms with lots of 

energy will take longer to process. 

First, a program was developed to test this deconvolution procedure. The test data was much simpler 

than would be likely in practice - three sharp peaks, with the lowest frequency corresponding to a 

position between bin 30 and bin 31 of the Fourier Transform, and two other peaks four and seven 

semitones higher. The data was weighted with a four-term Blackman-Harris weighting. (Harris, Nuttall 
81

' 

This has the effect of minimising the size of the sidelobes, at the expense of broadening the mainlobe. 

(Several other windows will be examined later to determine where the trade-off should be made.) The 

results are shown in Figure 52. In thes~ graphs, a circled point indicates a value deduced by 

deconvolution and removed from the residual spectrum. Each vertical subdivision represents 6 dB, or I 

bit in amplitude. Each horizontal subdivision shows one of the 64 bins in the FFT. 
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Figure 52- Stages of deconvolution. 

The first diagram above shows the effect of the Blackman-Harris weighting; the peaks are much 

broader, but the sidelobes have been suppressed by 92 dB. Each division on the vertical axis represents 6 
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dB or 1 bit in amplitude. 65 After the three peaks have been removed, the residual error is down by 19 

bits or 114 dB. This means that the three sinusoids will regenerate the data so accurately that we can 

ignore the residual. However, most typical cases will be much more complex than this (see the more 

typical spectrograms earlier in this section), and the peaks will be closer. Further experimentation is 

required before we can determine how useful this technique will be. 

As there is nothing to tell the test program that this is enough, it continues to look for peaks, and finds 

one very close to the second peak. It would be possible to merge these two peaks into a single peak, but 

if we stay in the frequency domain, it will be necessary to add the response of the two peaks, and then 

subtract the response of the corrected peak. As the response must be removed from the entire spectrum, 

this will be a very computationally expensive step. 

The program PICKOUT has many flags; flags for these and all other programs can be found m 

Appendix 0. Again, the output is in the form of a large file, *.SLA (Sine List A). 

6.7.3 Errors in deconvolution 

The next complication arises when there are several close frequencies. In this case, the sine responses 

interfere with each other. This situation is a classic test for spectral estimation techniques. There are two 

possible results; either the analyser will report a single strong frequency roughly halfway, or it will find 

the two peaks but may estimate their parameters inaccurately. When we have estimated one sinusoid, its 

sine response is removed from the spectrum. This will make it easier to identifY other peaks. 

Naturally, errors will accumulate in the residual spectrum, so care must be taken in assuming that a small 

peak is actually a component of the original sound. There is, however, a possible advantage to 

misidentifYing a spurious wriggle as a peak. For example, if the original sound contains two sinusoids, 

the peaks in the spectrum tend to move towards each other. If there are components at 30.3 and 31.8, 

then the first two frequencies to be reported might be 30.35 (higher) and 31.78 (lower). Next a small 

peak would be found at just below 30.3, and a fourth at just above 31.8. It would in principle be 

possible to spot these pairs afterwards and amalgamate them into a single component. The problem, 

however, is that it is not possible to represent two sinusoids of different frequencies by a single sinusoid. 

6.7.4 Application to multirate analysis 

The procedure described above was tested on a single FFT, but can be applied equally well to the 

multirate analysis system. Its effectiveness will depend on the number of sinusoids in each octave. 

6.8 Filter lag compensation 

The group delay of the filters in the spectral analysis was designed to be 128 samples. This is 3 ms for 

the top octave, but rises to 3 seconds for the eleventh. We correct for this by adjusting the times output 

65 An amplitude factor of2 means a power factor of 4, and log10(4) = 0.60206 Bels ~ 6 dB. 
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by the previous program (PICKOUT). As a result, the list of sinusoids output by the deconvolution 

becomes unsorted. This requires a separate sorting stage which is costly as the text output file is several 

megabytes in size. 

The first solution was an unwieldy combination of batch files, basic programs, Borland's GREP 

utilityBorlandJ (which does not handle large files properly), and a smaller sorting program. A better 

solution was to write a generic large-file-sorting program called MEGASORT, which uses the virtual 

memory routines described below to handle the sorting procedure, and converts the *.SLA (Sine List A) 

file into a *.SLB (Sine List B) file. 

6.9 Virtual memory 

Several stages of the PC-based analysis require several MB of memory, so a simple virtual memory 

driver was written. The core of the handler was based on the memory allocator described in Kernighan 

& Ritchie.(Kemighan) It implements a virtual space of 32-bit addresses, equivalent to a maximum of 4.3 

Gbytes, using, in order, near memory, far memory, extended memory66, RAM disks67, hard disks, 

compressed drives68, and network drives.69 The routines inform the user where each 64-kB page is 

being allocated, to allow him/her to monitor usage, unless vmhush () is called to suppress all 

messages. As expected, the overall speed falls as soon as the disk is required. The calling program will 

have its own requirements, particularly for near and far memory, so it can explicitly specifY which types 

of memory may be used for virtual memory. 

Naturally support of virtual memory adds overheads to processing, as it entails a separate function call 

to read and write each item in virtual memory. To alleviate this, the calling program should use 

buffering. 

Virtual memory is used in the filter lag compensation, reordering, sine tracking, harmonic matching, and 

note identification stages. 

66 Extended (XMS) memory support uses the shareware XMSIF routines_fBirdsaiiJ ExPAnded memory 
(EMS) was not present on any PC used and is not supported. 

67 The driver differentiates between RAM disks, which we would prefer to use first, and hard disks. 
However, RAM disks are a somewhat pointless form of virtual memory as this means using memory to 
simulate a disk and then using it to simulate memory. The user is notified if this situation is found. 

68 Drives compressed by DOS DBLSPACE are distinguished from conventional disks using routines 
supplied by Laurence DartoniDarton) It has not been possible to determine whether this also correctly 
detects drives compressed by other utilities such as Stacker. 

69 DOS calls are used to get most attributes of a drive - one particular bit determines whether a drive is 
a network drive or not. 
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Figure 53- Display of extracted sinusoids. 

6.10 Display of extracted 
sines 

A program called ShowSLBx was 

used to display the output list of 

sinusoids extracted. This was written 

in QBasic, as were several other 

programs where speed was not 

critical. A screen shot is shown in 

Figure 53. 

6.11 Sine tracking 

The sinusoids only last for between 32 

and 64 periods, so we next join them 

by time using a program called TRAKSINx to give longer entities called chains.- These are similar to the 

'auditory elements' of Brown_[BrownG 94aJ This is done by linking sines in neighbouring bl~cks using a 

simple birth-death model as shown in Figure 54. Note that sinusoids are only linked at their ends, so 

lower octaves are matched less 

frequently. It is possible for a sinusoid 

in one octave to be linked to a sinusoid 

in an adjacent octave. 

birth
I 

~----------------; 

~-···············'-__________________ 
--'deoth 1 

~-·············--~ 

===-d~-th········---~ 
~deoth 1 

----~· ... ---············-birth '-----
===~deoth '!----

====~death 
I 

birth .!""· --------

Figure 54 - Birth-death model. 
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Frequency fit 

Figure 55- Frequency fit JUnction. 
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Figure 56- Amplitude fit JUnction. 

The fit between two consecutive sines is the 

product of the frequency fit and the amplitude 

fit. The frequency fit is a triangular function of 

the pitch interval, falling to zero at (arbitrarily) 

one sernitone, as shown in Figure 55. Note that 

this is a constant pitch interval rather than a 

constant frequency interval. 

The amplitude fit function, shown in Figure 56, 

depends only on the ratio of the two 

amplitudes, and is defined as :-

2 

We choose as many links from death to birth. as 

possible, as long as the fit exceeds yet another 

threshold. The resultant sets of linked sines are 

referred to as chains. The list of connections between sines is written to a text file called a chain file, 

*CIIN. 

correct tracking incorrect tracking 

Figure 57- Correct and incorrect partial tracking. 
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The birth-death model is a common choice at this stage of an analysis system. [BrownG 94a, Ellis 
911 Figure 

57 illustrates a problem with simple frequency tracking- when two tracks cross, there are two possible 

interpretations. Methods tried for solving this include Hidden Markov Models. (Depalle S3a, Depafle 
93bl 

6.12 Reordering 

The frequency tracking outputs the chains when they are complete, i.e. when a death cannot be linked to 

a birth. This means that the threads are sorted in order of their end time. We wish to match harmonics 

from the start of the note, so it is again necessary to re-sort the data for the next process. 

This program is called VREORDER. It uses the virtual memory routines described earlier. It first reads 

the sines into virtual memory. It then reads the chain file and outputs the tracks of linked sines (as 

*.REO- REOrdered list). 

6.13 Track display 

A QBASIC program called 

SHOWTRXx is used to display the 

output · tracks. A screen shot (for 

MTest2) is shown in Figure 58. 

6.14 Harmonic matching 

The next stage is to match the partials 

according to the notes they belong to. 

This is carried out by a program called 

FTxxx (currently FT105). 

·-·-~--~·· -----.---·--.. ---- .. -·~·---·-··· -·-··· _,_ .. _ ··-···· -·-----~ -- ··-----~- -·-· --- --- --------- -- -- ---. --·- -- . --··-- -- . ·- - -- - - . -- - - - - -- - - --

-------~-~--------~-~-------- ---------~-~--------~- ·-~ 

Figure 58- Display using SHOWTRX. 

We treat every chain as a possible fundamental of a note, and look for its harmonics, as shown in Figure 

59. Since music relies on near-integer frequency ratios, we expect the harmonics of different notes to 

overlap. Thus, chains can be claimed several times, in which case the total amplitude is shared between 

all the claimants. The resultant 'note' typically contains several chains for each harmonic, overlapping in 

time. This technique corresponds to grouping by harmonic relations according to the 'principle of shared 

allocation' rather than the 'principle of exclusive allocation'. [Bregman 
891 
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fit 

Figure 59 -Harmonic matching. 

frequency 
ratio 

We have assumed that the 

fundamental is always present 

during the note. This, sadly, is not 

true, but the assumption makes 

processing easier. This limitation 

can possibly be addressed within the 

existing framework. We have also 

assumed that the note's partials are 

nearly harmonic. This assumption is 

questionable for many instruments. 

First, all of the data is read into 

virtual memory. We then carry out an exhaustive search, looking for simultaneous frequencies that are 

close to being harmonically related. A partial at (n'xf0) is taken to be the n!l! partial offo ifjn'/nl is less 

than an n!l! of a semitone - the absolute frequency tolerance is proportional to· fo. This was chosen so 

that the bands do not overlap, but will not be suitable if there is considerable frequency stretching. 70 

We match up to the 16!1! harmonic, and the resultant note groups are as shown in Figure 60. The reason 

that more harmonics are not sought is mainly due to memory restrictions. 

5 
4 

3 

2 

1 
Figure 60- Partial chains. 

In the ideal case of monophonic and noise-free music, we would hope that there would be a single chain 

for each harmonic. However, as shown above, each harmonic typically has several chains, possibly at 

70 This contrasts with Piszczalski's matcher, where the permitted frequency error increases with the 
'a) b (Piszczalski 79) • a1 h 1 'gh · h · · 1 parti num er. His system so uses muc more comp ex wei tmg, w ereas our Is simp y a 

pass/fail output. 
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two sample rates, and can have holes. We note how many times each segment of each chain is claimed 

and proceed to the next stage. (In practice, we dump all the virtual memory to large files on disk and the 

next program reloads them. As mentioned earlier, the limitations on the PC's memory prevents the 

whole system from being integrated seamlessly.) 

6.15 Note identification 

At this stage, there are far too many 'possible notes', so we must remove most of them. First, we apply 

several thresholds- ifthe note is too short or too quiet, or ifwe can't find many of its low harmonics, 

then it is killed. When we kill a note, all the sinusoids it had claimed are returned to the 'pool' for use by 

other notes. These rules reduce the population to a much more manageable size (typically from 14000 to 

400). 

We also remove notes with insufficient harmonics, and the rule stipulates that if three consecutive 

harmonics from the first eight are missing, the group probably arose by coincidence. This is illustrated in 

the table below. This 'rule' was admittedly designed with the organ spectrum in· mind. Little can be said 

about 'typical' instrument spectra. 

I 2 3 4 5 6 7 8 Suitable? 

Table 17- Suitability of harmonic patterns. 

After this, we try to smooth the amplitude envelopes of each harmonic by adjusting the strengths of the 

claims. In doing this, some more notes become too weak and are killed. The processing of notes in this 

way is termed a 'battle', as all the potential notes are fighting each other for a share of the sinusoids 

found. The rules by which a note is altered or killed are under investigation; simple thresholding appears 

to work reasonably well for some cases such as the Mendelssohn, which has little variation in dynamics. 

However, it would be much more effective to adapt these thresholds to suit the incoming data. 

The source signal for the Mendelssohn is played entirely on a (synthesised) organ, and many notes show 

the characteristic organ envelope. However, the rules still have to be extended so that we can use 

common characteristics of notes to derive the global instrument timbres. 
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As each segment may 

be shared by many 

groups, the amplitude 

IS at first shared 

equally between all 

claimants. When an 

unfeasible note is 

killed, its claims are 

unmade, allowing 

other notes to increase 

~.f-.··-'·~··'·~ 

their claim. In order to 

adjust the partials to 

smoother envelopes, 

Figure 61 -Individual notes extracted from the Mendelssohn. 

· we filter t_he amplitude 

envelopes of each 

harmonic· to get . a 

'better' envelope, and 

use the ratio to adjust 

the size of the claim, if 

possible. However, this 

is exceedingly complex because each partial is represented by many tracks at different frequencies. 

Another rule discourages very short claims, and a third discourages frequencies further from the central 

frequency. We do this several (typically three) times to the remaining population, and in doing this, more 

notes disappear, leaving (around 220) feasible notes. This is then output as an ASCII file, which is 

converted using ASC2WRK and WRK2:MID to a :MIDI file and a Cakewalk work file, then using 

Cakewalk for· Windows to form a common practice notation score. The graphical display given by the 

battle is shown in Figure 61. It shows the notes at their fundamental frequency, with the 16 envelopes 

derived. 

6.16 Summary 

I have outlined the construction of each part of the transcription system. The next chapter presents 

results from applying it to a variety of musical examples .. 
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7. Transcription results 

In this chapter I first outline the choices of source material to be examined. I then present results from 

testing the transcription system. I finish with an evaluation of the system and suggestions for future 

developments. 

7.1 Test pieces 

Many of the transcription systems described before made many assumptions about the input pieces in 

order to achieve robustness for a particular instrument, or for real-time performance. However, for an 

analysis/transformation/resynthesis system, we must design a system that can understand arbitrary 

musical input, at least within the framework of the definitions of music given in chapter two. It is of 

course practical to initially test the system using music that is reasonably 'well-behaved'. 

Many of the test pieces and results are available as audio files. These are listed in Appendix Q. 

7.1.1 Polyphony 

Nothing has been assumed about polyphony. Defining the polyphony is difficult if several instruments 

play in unison. A first violin section might be described in terms of its 'source polyphony' of sixteen, or 

its 'note polyphony' of one. 

7.1.2 Mono v stereo 

The separation of sources may be easier if we can use the stereo image of the sound, particularly when 

the spatial locations of the instruments are fixed. Yet if we are to maintain generality, we must recognise 

that this is not a justifiable assumption - notes are often panned dynamically. Moreover, we still can 

carry out source separation on a monaural signal. Accordingly, the system is designed for a monaural 

signal. 

7.1.3 Noise 

We can use Csound(Vercoe 931 to generate a noise-free file, but a small amount ofnoise should not disrupt 

the processing. Potentially more worrying than broadband noise is the possibility of high-level transient 

clicks. 

7.1.4 Length 

The Mendelssohn test piece with which the programs were initially developed lasts for 34 seconds, and 

even this stretched the memory of the PC. Although a virtual memory driver was developed to allow the 

use of extended memory and disk-based memory, this adds an overhead. There is still a need to use 

st~dard memory for workspace, such as the pointers to whatever is being stored in virtual memory, and 

this was typically close to being full. Thus, the longest piece that can be handled is probably around 40 

seconds, although this also depends on the number of sinusoids extracted and thus on the polyphony and 

timbres. 
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7.1.5 Timbre 

Several assumptions are made about the timbres of the source material. 

7.1.5.1 Acoustic v synthetic 

We can use Csound to create mathematically precise waveforms, but real instruments will have much 

more complex waveforms and cannot play the same note twice. 

7.1.5.2 Percussion 

Most percussion instruments are unpitched broadband noise (e.g. cymbals) or have non-integral 
-

harmonics (timpani, bells, triangle). I have chosen to assume there are no such instruments in the input. 

7.1.5.3 Vocals 

Vowels should be handled easily, but consonants cannot yet be handled for the same reason as for 

percussion. 

7.1.5.4 Missing fundamentals 

We can clearly perceive the fundamental frequency even when there is no power at that frequency. 

However, this makes it difficult for the harmonic matcher to deduce which harnionics are related. 

(Vercoe noted problems with this case too.(Vercoe 841) Accordingly, I have assumed that the fundamental 

is present throughout the note. 

7.1.5.5 Inharmonicity 

The algorithm allows a certain amount of deviation from exactly harmonic overtones. However, it 

cannot handle very inharmonic partials such as in bells and timpani. 

7.1.6 Effects 

Reverberation will cause notes to smear into each other, and may cause phase distortion during the note. 

However, reverb is a natural phenomenon that we should be able to handle robustly. Flanging and 

related effects also distort the waveform. In this section I assume there are no or little effects applied to 

the input signal. 

7.1.7 Temperament 

Currently, no assumptions are made about temperament and tuning. Absolute frequencies are used 

throughout, except for MIDI output. 

7.1.8 Rhythm 

The current system does not try to infer beats or bars. In some cases, particularly the Mendelssohn, the 

timing is artificially precise. These files are made using Csound, and as the note onsets are precisely 

aligned, note identification may be harder. 
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7.2 Results 

7.2.1 Buffering experiments 

The effectiveness of three tasks running on a single processor depends on how often the kernel must 

carry out time-slicing between the tasks. This depends on how often the buffers fill up. Thus, preliminary 

experiments were carried out to determine reasonable buffer sizes. 

In the results given below, disk:N stands for the size in words of the disk buffer. Recall that the input is 

16 bits wide, so the number of samples is half of this. The bytes are sent in blocks of chanN words.71 

(There is some wastage here, as each 32-bit word is used to hold only one 8-bit byte; this is addressed 

later.) The analyser reads each block, converts each pair into a 16-bit integer and then to floating point, 

and performs the FFT. 

The program was designed to allow disk:N and chanN to be varied independently, subject to the proviso 

that one must be a power of two times the other. The input was a dummy file with a length of 1764000 

or 10584000 bytes, equivalent to 10 or 60 seconds. The performance figure to be measured was the 

relative time, defined as the time for all the computation divided by the actual time represented by the 

data. For a real-time system, this figure must be below 1. 

Below are the results 72, showing how the relative time depends on the sizes of these two buffers. In this 

experiment, the FFT was not carried out, allowing us to see the effect of the main inter-task 

communication. Darker shading represents a longer processing time. 

Disk buffer (words) 

chanN 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 
(words) 

I :~2ii5{;: :I?;8t; :it'?.):4:\ ~:c"I9:;ffr~% ;JS::~?::~ :;:.;(8,{~4;: ;j8,9,Q~. ~18;~', M~,?O;: ;'1~;99;' :.1"8~90. f8.8s: 18.88:" 18.87" 

2 ")2.03i· i fo:88~. il(6,:;5f [IOJ32:£ ::td .. 2it~ :tt0':1s1~ :;\o?13:~ ;:16::1:3:: ti<f}3. 10-:13.; Id.Ii 10.09 10.Q9· 10.09 

4 7:528'> ;: 6.s1.1': 6:006~ ':5:.815:' /5:710" t5:'645 :t5.~o4 : s:6o5'' .·.·s:60J't: 5.603 . 5:605 5.583 5.585 5.576 

8 .· s:245:'· 4.2940: 3.829'·. 3:53i .·.·3.4.49 (3,·383< D6:t :· 3:363. 3.36\ /3.363. 3:341" 3.332 3.321 3.322 

16 . :~FII3:• 3166 2.688. 2:433\ •::·· 2:306 >2:245 2:2ii .i22l 2:2i9 2:222 •· .. 2.222. 2.200 2.200 2.200 

32 .3:554 2.581 i.b95 1.861 1.757 1.690 1.652 1.650 1.651 1.652 1.649 1.630 1.630 1.634 

64 .3257" .·'·2:306 1.820 1.586 1.462 1.399 1.374 1.376 1.374 1.376 1.355 1.354 1.355 1.353 

128 3:•129 >2.158 1.692 1.461 1.332 1.271 1.229 1.226 1.228 1.226 1.227 1.212 1.208 1.210 

256 ):Q45 ••.. 2.095. 1.630 1.397 1.269 1.207 1.164 1.152 1.142 1.145 1.142 1.144 l.l42 I.I39 

512 J024 2.052 1.607 1.355 1.229 1.164 1.144 1.121 l.l23 1.121 I.I02 I.I02 1.100 1.112 

1024 <3,oo:f ; 2.032 1.588 1.332 1.209 1.142 1.123 1.100 1.102 1.099 I.IOI 1.099 1.095 1.089 

2048 •:j.OOI . 2·031 1.567 1.332 1.207 l.l42 I.I23 1.100 l.IOO 1.079 1.081 1.079 1.081 1.079 

4096 .. 2.982 .2:0H. 1.567 1.334 1.205 1.144 I.I03 1.099 1.081 1.079 1.081 1.079 1.081 1.079 

8192 .2:984 2.029 1.566 1.327 1.205 l.l44 I.IOI 1.092 1.079 1.079 1.081 1.079 1.081 1.079 

Table 18- Dependence ofOSA timing on disk and FFT buffir sizes. 

71 On the C40, the smallest addressable unit of memory is a word, which is 32 bits wide. 

72 These results are from version 1.101 of the OSA routines. As the software is constantly being 
improved, it will be oflittle use to directly compare these figures with later results. 

136 



This data can be more easily interpreted as the graph in Figure 62. Intuitively, increasing the sizes of 

buffers increases the performance, but the performance approaches a constant fairly quickly. It is also 

clear that it is more important to increase the size of the channel buffer than the disk buffer. Note also 

that real-time performance marginally not possible, but could possibly be achieved using shorter filters. 

D is:k.N 

Figure 62- Timing of inter-task communication. 

7.2.2 MTestl and MTest2 

=ChanN 

Two monophonic test pieces, with the same score but different timbres, were written to confirm the 

workings of the analysis system. These form { ((audio examples 1 and 2))) The pieces were around half a 

minute long and were made at 16000 Hz by Csound. [Vercoe 
90

' Vercoe 
931 The Csound control rate is often 

set to a figure of around 20 ms, but this can cause distortion. To prevent this, the control rate was set 

equal to the sample rate. The resultant synthesis may be 7 times slower. (Dannenberg 
921 

7.2.2.1 MTest score 

The pieces have several groups of notes ofvarying length, volume, and frequency, in order to highlight 

any deficiencies in the method. The score is listed in the table below and illustrated in Figure 63. 
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duration (s) periods amplitude Csound note frequency MIDI note 

0 0.8 352 8192 8.09 440 A4 

I 0.5 220 " . " . 
2 0.2 88 " . " . 
3 O.I 44 " " . . 
4 0.05 22 " . . . 
5 0.5 220 8192 8.09 440 A4 

6 " " 4096 . " . 
7 . " 2048 . " . 
8 " " 1024 " " " 

9 " " 512 . " . 
10 " " 256 . " . 
II " " I28 . . . 
12 " " 64 . . . 
13 0.5 220 8192 8.09 440 A4 

14 " 311.1 " 9.03 622.2 Eb5 .. 
I5 " 440 " 9.09 880 A5 

16 " 622.2 " 10.03 1244.5 Eb6 

I7 " 880 " 10.09 1760 A6 

18 0.5 220 8192 8.09 440 A4 

19 " 155.6 " 8.03 311.1 Eb4 

20 " IIO " 7.09 220 A3 

21 " 77.8 " 7.03 I55.6 Eb3 

22 " 55 " 6.09 IIO A2 

23 " 38.9 " 6.03 77.8 Eb2 

24 " 27.5 " 5.09 55 AI 

25 . 19.4 . 5.03 38.9 Eb I 

26 " 13.8 " 4.09 27.5 AO 

Table 19- Score ofMTestl andMTest2. 

• • • • 
~ ...... ~1.-~-+--•.•~•.r~•--~ema-~-.. ~----------~.•------------------------

• • • • • • • • 
Figure 63- Schematic of score ofMTestl andMTest2. 
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7.2.2.2 Test timbres 

Two timbres were investigated. MTest1 uses a sine wave, and MTest2 uses a band-limited square wave, 

shown in Figure 64. The latter had odd harmonics 1-15,73 and caused aliasing for notes 14-17. This can 

be seen in Figure 65 below and heard in the audio example. 

Figure 64- Waveform ofMTest2. 

Ot23-t5S:78 

I I I I I I I I I 

.. J tS. J i". 
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..-a.i • I . . : 
-~s-~- #· ~ 

' .. 

. illilll I ' i 
j . : j ~ i 
-.-11 :1 ~ 
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~" \. r 
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Figure 65- Spectrum ofMTest2. 

7.2.2.3 FFT size 

~ ~- -~tt .. ""m ,;cy, .. 

10 1t 12 13 1.f fS i~ t:? 't8 f9 :20 21 2..2 2): 2'4 25 ZC 27 2S 29 

I II I I I 1. I I I I I I I I I I I I I 

Another early choice is that of the FFT size. This must be a power of 2, and determines the trade-off 

between time resolution and frequency resolution, as illustrated in the table below. 

73 MTest2.Sco defines the timbre using the line:-
f1 0 4096 10 1 0 0.333333 0 0.2 0 0.142857 0 0.111111 0 0.090909 0 0.0769231 0 0.0666666 
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FFT size av. Af At (s) At (s) At (s) At (s) At (s) 
N (semitones) f=7040 Hz f=1760 Hz f=440 Hz f=llO Hz f=27Yz Hz 

(a9) (a7) (aS) (a3) (a1) 

256 0.09 .032 .128 .512 2.048 8.192 

128 0.19 .016 .064 .256 1.024. 4.096 

64 (default) 0;38 .008 .032· .128 - .512 2.048 

32 0.75 .004 .016 .064 .256 1.024 

16 1.5 .002 .008 .032 .128 .512 

Table 20- Dependence of bandwidths on FFT size. 

Earlier tests had examined FFT sizes of 64, 128, and 256, and had suggested that N=64 gave the best 

trade-off between time and frequency resolution. This was done by visually comparing the Mendelssohn 

spectra, which had no very short notes. However, the lowest quavers in the bass line had 13 periods, and 

thus were still too small for the time resolution. It appears that 64 may still be too large, as the mid

range resolution (440Hz) is 15.6 blocks per second. Most of the analyses use either 64 or 32. For this 

piece, we will continue assuming an FFT size of64. 
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Figure 68- Spectrnm ofMTestl with FFT size of 16 

show the spectra ofMTest1 with FFT 

sizes of 64, 32, and 16 respectively. 

(The picture with an FFT size of 32 

shows a dead spot in the spectrum at 

each frequency where two octaves 

meet - this is the result of an earlier 

bug in the multirate analysis_) In these 

figures, the amplitudes are only 

plotted using the greyscale, rather 

than the 'skyscraper' effect shown 

earlier_ With an FFT of size 64, the 

frequency resolution is better (an 

average of 3/8 of a sernitone or 37Y2 

cents), but the time resolution is 

poorer. This can be seen most clearly 

for the last few low notes. With 

smaller FFT sizes, the time resolution 

is better but the frequency resolution 

is worse (% of a sernitone for N=32 

and 1 Y2 sernitones for N=16). 

7.2.2.4 Characterisation 

Distrib2 showed that MTestl has an 

average level of -16.94 dB and 

MTest2 has an average level of 

-16.49 dB. 

7.2.2.5 Windowing 

The notes have rectangular 

envelopes. The rapid onsets and 

offsets cause a significant amount of 

energy in the sidelobes, regardless of 

the FFT size. This gives many notes a 

characteristic 'H' shape unless the 

start happens to coincide with the 

start of a block. This would appear to 

be an error but it is correct - given 
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that we have asked the FFT to describe what is found in this block, it has 'correctly' told us that the 

block contains high frequencies. This is due to the fundamental assumption of the FFT that the block it 

analyses is periodic, as illustrated in Figure 69 . 

Sound in 
one block 

• • • 

Figure 69- Spectral distortion caused by blocks. ·-

Sound os 
interpreted 

• • • 

This problem can be alleviated by the use of windows. Several windows were available, and are shown 

for MTest1 in Figure 70 to Figure 73 below.(Nuttaua11 Although they are shown using a greyscale, these 

figures were originally made using the 8-colour colour scheme, as shown by the key at the left. The 

windows, apart from the triangular window, are of the form:-

w(i)=ao-ai *cos(27t*i/N)+a2 *cos(2*27t*i/N)-a3 *cos(3 *27t*i/N) 

and the values are given in the following table . 

Window . Type ao a I az aJ 

0 none 1 

I Hamming 0.54 0.46 

2 Hann 0.5 0.5 

3 Triangular n/a n/a n/a n/a 

4 Blackman 2-term 0.42 0.5 0.08 

5 Blackman exact 2-term 
.. 7938/18608 9240/18608 1430/18608 

6 Blackman 3-term 0.44959 0.49364 0.05677 

7 Blackman minimum 3-term 0.42323 0.49755 0.07922 

8 Blackman 4-term 0.40217 0.49703 0.09892 0.00188 

9 Blackman minimum 4-term 0.35875 0.48829 0.14128 0.01168 

Table 21- Parameters of windows used in analysis. 
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Figure 70- No window. 
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Figure 71 -Hamming window. 

OJ[]QlliiJCilll~ll 

Figure 72 -Blackman 2-term window. 

Figure 73- Blackman minimum 4-term window. 
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It can be seen that any window is better than no window. However, more complex windows mean a 

more complex deconvolution process. For this reason, all of the following analyses used the Hamming 

window. 

7.2.2.6 Duration and time resolution 

The first five notes examined the effect of changing the duration of the note while the frequency and 

lliRIIIIIIIJIIIIIIBIIIIDI 

. ;, .. 

Figure 7 4 - Weakening of short notes. 

amplitude are fixed. The critical figure is the 

time resolution, which was earlier determined 

to be 64 ms in this octave. For a 440-Hz note, 

the period is 2.2727 ms. This represents 

400/11 36.3636 samples. The total 

durations of the notes are shown below. 

duration samples periods 
0.8 12800 352 

0.5 8000 220 

0.2 3200 88 

0.1 1600 44 

0.05 800 22 

Table 22- Samples and periods in the first 5 notes 
ofMTest 1 and MTest2. 

We can anticipate problems in detecting the 

shortest of these notes. In the spectral 

analysis, the FFT size normally used was 64. 

This means that the block would represent 

between 32 and 64 periods of a frequency 

(depending on its position within that octave). 

The shortest note would only be present for a 

part of one or two blocks, and would appear 

to be a proportionately weaker component. We could expect this to affect the third, fourth, and fifth 

notes. The spectra, shown in Figure 74, show that this is indeed the case. The first two notes are long 

enough for their maximum amplitudes to be correct. The third is very slightly lower, showing the onset 

of the weakening effect. It has 88 periods, and thus falls into either two or three blocks. A close 

examination of the spectrum shows that the former is the case, as illustrated in Figure 75. The fourth and 

fifth notes show the weakening effect more clearly. Their amplitudes are around 77% and 59% of the 

actual amplitude. 
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Figure 75- Weakening effect of partially-filled blocks. 

This effect can also be observed in the last nine notes as the frequency falls in steps of half an octave, as 

shown in the table below. All of these have a duration of 0.5 s. Again, even the shortest sine may be 

included in 2 blocks if it falls over a boundary. 

frequency note period." approx. blocks 

440 aS 220 5 

311.1 eb5 155.6 4 

220 a4 110 2 

155.6" eb4 77.8 2 

110 a3 55 1-2 

77.8 eb2 38.9 1-2 

55 a2 27.5 1-2 

38.9 eb1 19.4 1-2 

27.5 a1 13.8 1-2 

Table 23- Periods and blocks in lowest notes ofMTestl and MTest2. 

At this stage, it is informative to consider what are the shortest and lowest notes that are likely to occur. 

The normal range of bass instruments ends at around 40 Hz. The lowest pjtches on several contrabass 

instruments were discussed in an earlier chapter, with the conclusion that the lower end of the bass 

range was normally at 30Hz and exceptionally at 15Hz. A typical 'very short' note would be a 40-Hz 

serniquaver at 120 bpm. This would be equivalent to 118 s, so there would only be 5 periods of the 

wave. However, this only applies to the fundamental; most bass instruments have little energy at such 

low levels. 

7.2.2. 7 Deconvolution and sine tracking 

The deconvolution sets a threshold for the allowable amount of power left in the spectrum. This is 

denoted in decibels below the average level - which is calculated in an earlier stage. To show how 

varying this threshold affects the performance of the deconvolution program PICKOUT, eight values 

were examined:- -6, -12, -18, -24, -30, -36, -42, and -48 dB. 



MTestl should have around 137 sine waves, according to ExpNoSin.Bas, and 27 partials. The table 

below shows how many were picked out, and how many partial tracks were formed; the data is 

illustrated in Figure 76. 

Threshold Sines extracted Partial tracks 

-6 97 26 

-12 151 75 

-18 355 273 

-24 669 519 

-30 1114 908 

-36 2039 1730 

-42 4404 2990 

-48 5914 3987 ~ Si,... * ,,.ac:k. 

Table 24- Summary of analysis ofMTestl. Figure 76- Sines and partials for MTest 1. 

The results of the deconvolution for MTest2, the square-wave piece, are plotted using ShowSLBx.Bas, 

and are shown in the eight pictures in Figure 77. Mention was made in the previous chapter of the 

programs used to animate the output of the spectral display program. This can also be applied to other 

sets of images such as those below. This proouces an animation of 'the effect of altering the 

deconvolution threshold on the sines extracted'. 
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Figure 77- Results of deconvolution for eight thresholds. 
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It can be seen that many spurious sinusoids are being picked out as the threshold decreases. The 

numbers of sines removed from MTest2 is shown in a later table. The actual number of sines that should 

be removed is determined by another QBasic program (ExpNoSi2.Bas), and the 'correct' number for 

MTest2 is 7618. This would seem to indicate that -30 dB is an appropriate threshold. The sinusoids are 

then tracked using the procedure described in the previous chapter. Below are the outputs plotted by 

SHOWTRX for MTest2 for the eight deconvolution thresholds. 
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Figure 78 - Tracked partials for eight thresholds. 
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The number of partial tracks is shown in the table below and in Figure 79. The correct numbers are 7618 

sines and 405 tracks. 

Threshold Sines extracted Partial track!t 

-6 99 26 25000.0 

-12 894 163 
20000.0 

-18 2435 418 

-24 5138 1078 
•••••••••••••• j ••••••••••• 

i 
15000.0 

-30 7624 2684 10000.0 

-36 11678 4735 

-42 18168 6802 

-48 27585 9642 -a- s ln.s 

Table 25- Summary of analysis ofMTest2. Figure 79- Sines and partials for MTest2. 

7.2.2.8 Recognition of quiet notes 

After the first five notes, the next eight have different amplitudes. The amplitudes are 8192, 4096, 2048, 

1024, 512, 256, 128, and 64. The table below shows which of the harmonics of the wave were 

recognised. The values of the threshold are shown along the top, and the values at the side show the 

amplitude of the fundamental. The results are well organised, due to the fact that a change in threshold 

of 6 bits is equivalent to a halving of amplitude. 

-6 -12 -18 -24 -30 -36 -42 -48 

8192 I 1-5 I-ll * 1-15 1-15 1-15 1-15 1-15 

4096 I I 1-5 I-ll * 1-15 1-15 1-15 1-15 

2048 - 1 I 1-5 I-ll * 1-15 1-15 1-15 

1024 - - I I 1-5 1-ll * l-15 1-15 

512 - - - I I 1-5 I-ll * 1-15 

256 - - - - I I 1-5 I-ll * 
128 - - - - - I I 1-5 

64 - - - - - - I I 

* 9th harmonic missing 

Table 26- Harmonics of quiet notes recognised. 

The deconvolution threshold has a predictable effect - lowering the threshold allows us to extract more 

sinusoids. Curiously, in the cases marked * above, the 9th harmonic is not recognised even when the 

weaker lith is. This can be explained by noting that the 9th harmonic is at 3960 Hz. This would be at 

the edge of the 2-4 kHz octave and would be attenuated due to the non-ideality of the half-band filter. 

Although the attenuation is small, it is clearly enough to drop the sine below the recognition threshold. 
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7.2.2.9 Harmonic matching and MIDI output 

Next we tum to the harmonic matching stage. MTest1, having a sine timbre, should not be transcribed at 

all. We will therefore examine MTest2. 

It is analysed by Battle (v0.28) with a minimum time for notes of0.05 seconds (and MINPOWER=200). 

The table below shows the results. The column 'trivial' shows potential notes that were found to only 

have ONE partial- i.e. the fundamental. 

deconvolution potential notes trivial too short bad harmonics too quiet notes left 
threshold (dB) 

-6 26 19 0 7 - 0 

-12 162 98 13 52 - 0 

-18 418 108 87 210 5 8 

-24 1078 206 364 455 31 22 

-30 2684 277 1454 787 127 39 

-36 4735 262 
.. 

3028 1062 323 60 

-42 6802 223 4309 1635 572 63 

-48 9642 412 6204 2124 833 69 

Table 27- Notes removed and remaining after battle. 

The original score and the derived scores are shown in Figure 80. This diagram (for the -24 dB 

threshold) was produced by a program called READASC, which plots two scores in 'piano-roll' 

notation. Notes in the original are shown in light grey, notes derived are shown in mid grey, and where 

these coincide, corresponding to 'correct' transcription, is shown in dark grey- this corresponds to the 

holes we would see if we held two piano rolls together. It is noted that this assumes a quantisation of 

frequency to a twelve-tone set and would be unsuitable for comparing notes with glissandi. 

-
..... :,:..:: __ . 

-

- ,:,.• 

Figure 80- Display for score comparison. 

Figure 81 shows the outputs for all eight thresholds- -6, -12, -18, -24, -30, -36, -42, and -48 dB. It is 

clear that with a lower threshold more possible notes are removed, but many are still removed for being 
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unfeasible. The most obvious error for lower thresholds is the presence of many long low notes, where a 

single block is enough for low notes to exceed the minimum time threshold. If some energy above falls 

close to some harmonics, then it gives the spurious low note sufficient harmonics to appear reasonable. 

We might think that the 'bad harmonics' criterion should apply. However, a note is taken to possess a 

harmonic if the harmonic is present at any time for any length during the fundamental. This means that a 

long fundamental can claim any short frequencies, and the fleeting presence of partials I, 3, and 6 is 

sufficient to suggest a valid note. 
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Figure 81 - Comparison of original and derived scores for MTest2. 

In order to be able to quantitatively judge the accuracy, a scheme based on the above diagrams was 

devised. At each point in time, there are two sets of notes - those in the correct score, and those in the 
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output score. Thus we 'flatten' the above display by summing areas in the above figure to get the 

diagram shown in Figure 82. This is also produced by ReadAsc . 

•• , p ••• ~ ..... 
Figure 82- Global comparison of scores for MJ'est2. 

This is interpreted in the same way- light grey means missed notes (false negatives), mid grey means 

added notes (false positives), and dark grey means a correct identification. 

It is useful to have a single figure to represent the accuracy, and this relates to how strongly the sets of 

notes overlap. We wish to punish both notes that have been missed and extraneous notes. Thus we 

define our accuracy as the area of overlap divided by the total shaded area, or (correct 

polyphony)/( correct+ missed+ added). Note that by using the area in this way, we do not place undue 

penalty on getting the start or end time of a note wrong; this simply counts as a slightly reduced area of 

overlap. There is also little penalty in transcribing a semibreve as four legato crotchets; the score 

depends on the total duration of overlap alone, and the comparison does not try to ascribe one note in 

the transcription to one note in the real score. The 'overlap' and 'total' columns in the table can be 

misleading, as will be seen later. 

The outputs for MTest2 can be summarised in the following table. It shows the total number of notes in 

the transcription, in the ideal score, in the overlap, and the total. It also gives the average polyphony in 

these categories74, and these are used to calculate the final 'accuracy' figure. 

NOTES POLYPHONY 

threshold guessed ideal overlap total guessed ideal overlap total accuracy 

-6 0 27 0 27 0 0.385 0 0.385 0 

-12 0 27 0 27 0 0.385 0 0.385 0 

-18 8 27 7 48 0.113 0.385 0.076 0.422 0.181 

-24 22 27 18 31 0.436 0.383 0.184 0.634 0.291 

-30 39 27 19 47 1.588 0.383 0.216 1.755 0.123 

-36 60 27 24 63 2.630 0.355 0.213 2.773 0.077 

-42 63 27 29 61 2.774 0.355 . 0.214 2.915 0.074 

-48 69 27 28 68 2.227 0.355 0.214 2.368 0.091 

Table 28- Quantitative scores for MJ'est2 recognition. 

74 The average polyphony ofthe ideal score varies because it is calculated up to the end of the last note. 
For lower thresholds some guessed notes overrun the end, making the piece appear longer. 
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The maximum score is for a threshold of -24 dB. The original file can be heard in (((audio example 2))) 

and the MIDI resynthesis (for -24 dB), using a piano patch on a Yamaha SY77[YamahaJ is (((audio 

example 3))). All audio examples are listed in Appendix Q. It will be noted that the current system does 

J J F H H
JrJ J;J J J J t 
-rr . p r;r--r-~ 

not yet assign velocity data. 

Figure 83 shows the transcription for the 

threshold of -24 dB m common practice 

notation. The black notes are the derived notes. 

Small black notes are short notes added due to 

the rapid onsets and offsets. Grey notes are 

those missed by the transcription. The last two 

low notes are inaccurate in both time and 

frequency. 

The monophonic test pieces have highlighted 

several potential problems in the analysis. First, 

the rapid onset transitions cause spurious sines 

to be extracted. Second, low or short notes are 

hard to recognise accurately. 

~ _____ J 7.2.3 Mendelssohn 

One piece examined had long been used in the 
Figure 83 - CPN comparison of original and derived 
scores for MTest2. research group as a test piece for the transputer 

version of Csound(Bailey 90' Bailey 911 - around 30 

seconds ofthe Sonata ill for organ written by Felix Mendelssohn between August 1844 and January 

1845_(MendetssohnJ The audio was created in mono 16-bit linear format at 32 kHz using Csound files 

written by Peter Manning. The score and orchestra files are given in Appendix L, and the piece can be 

heard in (((audio example 4))). Figure 85 shows its logarithmic spectrum. It should thus be noise-free, 

but has the suspected disadvantage of having no note asynchrony. (Rasch showed that this is an 

important feature of our ability to perceive simultaneous notes. [Rasch 781
) There are 194 notes on two 

organ voices, and the maximum polyphony is eight. Note the effect of near-overlapping harmonics - the 

combination appears to be amplitude-modulated. 
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Figure 85- Logarithmic spectrum of Mendelssohn. 

An FFT size of 64 was used. This seems to be suitable, 

except towards the end, where the quavers in the organ 

pedal line (doubled an octave below) last for V4 second 

at down to 52 Hz, and thus have only 13 cycles. The 

score of the last three bars is shown in Figure 84, using 

the bass and sub-bass(Rossing) clefs. 

. . . .. _ ........ _ ..... , .. __ .....,_ 
.;_-~:~: ~~ -~ -· 

fl= 'Zk44iWe.DI<Jj@ 
~lj trn:crt me ~~~ 
Figure 84- Doubled bass line of Mendelssohn. 

Note also that the spectrum becomes much more complex at the transitions between notes, as it is 

attempting to model a discontinuity by sinusoids. Due to the scale, it is easiest to see this for the lower 

notes, but the same effect also occurs at higher frequencies. The analysis uses a Hamming window. The 

input has an average power of -21.66 dB. 

51246 sinusoids were extracted from the spectrum (with flags -m6 -z48 meaning a threshold of -48 

dB and a maximum of6 sines per block). These were linked into the 6471 partial tracks shown in Figure 

86. 
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Figure 86- Partial tracks extracted from the Mendelssohn. 

i i 

Figure 87- Battle output for Mendelssohn. 
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Figure 87 shows the amplitude envelopes of each harmonic of the notes remaining on the battlefield 

after three iterations. In this figure, time runs from top to bottom and frequency runs from left to right. 

The scores are compared using READASC, as shown in Figure 88. As before, light grey is expected (or 

hoped-for) notes, dark grey is predicted notes, and the overlap is in black. 
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Figure 88 -Score comparison for Mendelssohn. 
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Next we judge the results using the diagram shown in Figure 89. This shows the overall amount of false 

positives (extra notes), correct identifications, and false negatives (missed notes). 

Figure 89- Evaluation of accuracy for Mendelssohn. 

The qualitative scores for the identification are as follows. The polyphony figure is used to give the final 

score of 39.8%. The 'notes' columns, shown for the test piece, have been dropped as they give 

misleading information. 

POLYPHONY 

threshold guessed ideal overlap total accuracy-

-48 9.443 4.998 4.114 10.328 0.398 

Table 29- Quantitative scores for Mendelssohn recognition. 
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This analysis was repeated for other deconvolution thresholds. Thresholds of -6, -12, and -18 dB gave 

no output- below are the compared scores for -24, -30, -36, and -42 dB. 
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Figure 90- Comparison of scores for thresholds of -24130136142 dB. 

The 'flattened' scores are shown below. 

Figure 91 -Comparison of accuracy fo~ thresholds of -24/30136/42 dB. 

-

The quantitative accuracy is shown in the following table. This also shows the total number of notes, 

which should be compared to the actual total of 194. 
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POLYPHONY 

threshold notes guessed ideal overlap total accuracy 

-6 0 0 5.597 0 5.597 0 

-12 0 0 5.597 0 5.597 0 

-18 0 0 5.597 0 5.597 0 

-24 40 1.793 5.597 1.317 6.072 0.217 

-30 216 8.078 4.998 4.300 8.776 0.490 

-36 169 9.546 5.597 4.264 10.789 0.395 

-42 264 10.869 4.931 3.430 12.370 0.277 

-48 220 9.443 4.998 4.114 10.328 0.398 

Table 30- Quantitative scores for Mendelssohn recognition. 

The -48-dB line used different analysis parameters to the others, as it was otherwise too big to be 

processed: The original deconvolution by PICKOUT used the flag -m6 rather than -m20. This sets the 

maximum number of sinusoids to be removed from each spectrum. This has the effect of red.ucing the 

number of sines removed when noise or a discontinuity is present in that block. However, the fact that it 

appears to improve the accuracy may suggest that it is a powerful parameter in the analysis. 

Another way to judge the effectiveness of the transcription is of course to listen to the results. The 

original is (((audio example 4))), and (((audio example 5))) is the score transcribed using a threshold of 

-30 dB and played on the SY77. This figure gave the highest 'accuracy', and is also the most audibly 

similar to the original. 

It is also possible to compare the scores visually, although the erratic nature of the transcription into 

common practice notation may prevent a clear comparison for such a complex example. The scores are 

compared in the figure below, for the threshold of -30 dB. The CPN 'rendering' is done by Cakewalk 

Professional for Windows, and has been quantised to quavers and put into the correct key. 
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Figure 92- Comparison ofCPN scores for the Mendelssohn. 
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It is worth comparing the comparison methods. It is important to note that in all cases, timbres are 

neither evaluated or conveyed. 

Comparison Method Advantages Disadvantages 

Note count Simple Simplistic 

Piano-roll comparison Intuitive Needs score 

Quantitative overlap Gives single figure Needs score 

Common Practice Notation Familiar Needs timing information 

MIDI Resynthesis Intuitive 

Table 31- Comparison of comparison methods. 

There are many different types of error. 

Notes added from harmonics 

One common error is to have extra notes corresponding to harmonics of a corre~t note. This is because 

each track is viewed as potentially a note, and notes may share partials. 

Notes connected · 

Another problem is for legato notes to become connected. Even if there is no actual overlap, notes that 

are separated by less than two block sizes may be seen as connected. This would be exacerbated by 

reverberation. 

Tracking at octaves 

There are also problems in tracking sinusoids near the boundaries between octaves, which give rise to 

-e 
I 

18va 

spurious or missing B's. 

Harmonics wrongly connected 

In the case shown in Figure 93, the third, sixth, ninth, 

harmonics of the low E were recognised as a continuation of the 

upper B, rather than belonging to the low E. 

Splashed notes 

Figure 93 - Bars 2-3 of the 
Mendelssohn. There is often a 'splash' of notes up to a few semitones from the 

correct note, and this is most noticeable for very low notes. A 

rapid onset causes a spread of spectral energy not only around the fundamental, but also around other 

harmonics. These can be combined into seemingly viable notes. Sudden changes in the spectrum cause 

problems over a block; at higher frequencies, these are eliminated by the minimum note length, but at 

very low frequencies these are extended to the block size, which is larger. 
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Bass too early 

The bass line audibly 'anticipates' the times. This is because when a sinusoid starts part-way through a 

block, the time output is the start of the block. This on average shifts the times back by half the block 

size, and this is significant at the low sample rates of the lower octaves. 

7.2.3.1 Summary 

The principal advantage of the multirate approach is the fact that much of the bass line has been 

recognised accurately, even though the semitones are only a few Hertz apart. The MIDI rendition 

captures many of the details are recognisable, even for the relatively high polyphony. 

7.2.4 Poulenc Sonata for Horn, 
Trumpet, and Trombone 

This piece was composed in 1922 by 

Francis Poulenc (1899-1963).1Poulenc) 

The last section of the first movement 

was used - it lasts around a minute, and 

the start forms (((audio example 6))). 

The original source was a record by the 

Philip Jones Brass Ensemble. The record 

had been copied to cassette tape about 

ten years ago. A further cassette copy 

was played on a personal cassette 

recorder and sampled at 16000 Hz by 

the Gravis l.JltraSound card. Due to the 

multiple generations, and to poor 

equipment fidelity, the resultant input 

had a high level of noise. The average 

signal level was -15.28 dB. 

The spectrum of the piece is shown in 

Figure 94. Since the total time is around 

a minute, it is impossible to derive much 

detailed information from this picture. 

One obvious feature is the presence of 

some rather severe mains hum. In fact, 

~ I l). J C 1. tfOf!f;d)l4l!IIC!,IIl.:tQI:I:r.;:!:ll.~ltD:.ofJ.OC;"1:13111<1of•~,.._,.. ... ~ .... '15'11~·-C2 
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the mains hum appears to have some Figure 95- Spectrum of start of Pou/enc. 

2nd-harmonic power too. 
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Figure 95 shows an excerpt from the start in more detail. This eight seconds contains 33 trumpet notes, 

31 hom notes, and 18 trombone notes, a total of 82. 

The issue of the number of periods in a note has been discussed before. The Poulenc piece is played at a 

lively tempo, and has many short notes. It would be reasonable to suggest that many notes are no longer 

than 0.1 seconds. If a 1 00-ms note is at a frequency of 200 Hz, then there will only be 20 cycles of the 

wave. An approximate count of the number of notes in the Poulenc is:- trumpet 220, hom 173, 

trombone 118, for a total of 511. The score (in C) of the short extract above is shown in Figure 96. 

Figure 96- Score of start of Poulenc. 

Deconvolution was tried at various thresholds, but none of them was able to even remotely identify the 

notes. Audition of the resultant transcription could also not be identified with the original. As the precise 

score was not available, it was not possible to quantify the accuracy. 

Several problems are highlighted by this piece. The very short notes have been discussed earlier. The 

strong mains hum claims harmonics belonging to the real instruments and appears to be a stubborn pedal 

point (in fact it is transcribed as several overlapping notes at neighbouring frequencies). In addition, no 

trombone notes were identified. This may be because fundamentals of low trombone (and hom) notes 

can be very weak. 

Even if these problems could be solved, one final question relates to the source separation process. Our 

analysis system has tried to break the input into individual notes. How could we then categorise these 

notes as belonging to one of the three instruments, particularly in this case when the timbres are fairly 

similar? 

7.2.5 Schumann Traumerei 

Traumerei ('reverie' or 'dreaming') was written in 1838 by Robert Schumann (1810-1856). A score of 

the extract is shown in Figure 97, and the example can be heard in (((audio example 7))). The written 

polyphony is six, although for the piano, the effects of the sustain pedal and legato phrasing can mean 

that the polyphony is higher than written. There is a total of 52 notes. 
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Figure 97- Score ofTrtiumerei. 

It was sampled from CD and converted to mono with a sample rate of32000 Hz. The test for this piece 

was that the pianist was known to be one of the 28 mentioned in a previous study on expressive 

timing.(ReppJ The aim was to determine which of the pianists it was. The spectrum is shown in Figure 98. 

As the aim was deduction of timing information, a smaller FFT, of size 32, was used. 

0 2 3 s 6 7 . 9 9 10 1 t" 12 13 ,.. 15 11i 17 18 
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-
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...... ;_ ·. -·. ~ . -· .·- . - . - . - . - . - . .. .. :- ~· . ~ . - . .. - .... 

Figure 98 - Spectrum ofTrtiumerei. 

As with the MTest examples, eight different thresholds were used. The average level was -19.64 dB. 

Pickout (v0.24) used the flags -m20 (up to 20 sines removed from each FFT) -n32 (FFT size) -a 

(automatic mode - don't ask the user to press keys). The battle (v0.27) used the flags -to. 2 

(minimum note length 0.2 s) -nk (no keypresses, same as the auto mode in pickout). 
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threshold sines partials trivial short bad harm. quiet left 

-6 32 13 7 6 0 0 0 

-12 109 37 20 15 2 0 0 

-18 352 113 55 43 15 0 0 

-24 1039 339 110 173 52 0 4 

-30 2834 947 205 597 138 0 7 

-36 6170 2039 330 1428 250 1 30 

-42 11892 4030 507 2955 431 24 113 

-48 20140 6781 740 5012 655 80 294 

Table 32- Summary of analysis ofTraumerei. 

The above table summarises the Traumerei analysis. 

In order to quantitatively judge the analysis, we need the 'correct' score, i.e., the correct timings, which 

is not available. This was derived approximately, using an interactive method described below. The first 

three threshold values gave no output. 

Figure 99 shows the comparisons of the files, for thresholds -18, -24, -30, -36; -42, and -48 dB. One 

problem arises with the display: the colours are exclusive-or' ed on screen. This means that two identical 

notes will rub each other out. 

"" ,., .. ~··--.-,. · .... - ,.. _ _,.~ .. ·--~•'·-··-~ '"'~-cr-

,. ,.,, _, -- ·~'" . -··~ ·-

Figure 99 - Comparison of scores for Traumerei. 
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Figure 100 is the 'flattened' diagram showing the polyphony matched. The overlap can be seen to be 

minimal. 

Figure I 00 - Comparison of polyphony for Trtiumerei. 

Below is a table of the accuracy. 

POLYPHONY 

threshold · nofes guessed ideal overlap 

-6 0 0 3.918 0 

-12 0 0 3.918 0 

-18 0 0 3.918 0 

-24 4 0.232 3.918 0.134 

-30 7 0.411 3.918 0.236 

-36 30 2.691 3.918 1.059 

-42 113 6.926 3.918 1.586 

-48 294 16.05 3.918 2.171 

Table 33- Quantitative scores for Trtiumerei recognition. 

• 

total accuracy 

3.918 0 

3.918 0 

3.918 0 

4.016 0.033 

4.093 0.058 

5.550 0.191 

9.261 0.171 

17.796 0.122 

The scores are much poorer for this example than for the synthetic organ. The resultant MIDI rendering 

can be heard in (((audio example 8))). The transcription was not good enough for the identity of the 

pianist to be decided, so an approach similar to that used by Repp was taken. It is unfortunate to note 

that the automatic analysis method failed the task whereas the interactive method worked with sufficient 

accuracy. 

7.2.5.1 Interactive analysis 

Using Windows sound file editors, I calculated the times both by auditioning short samples and by 

examining the spectrogram. The main difficulty with this method is that it is very difficult to distinguish 

near-simultaneous onsets, as noted by Repp. In addition, it is much more difficult to determine the 

durations. However, this was enough to be able to distinguish the times sufficiently accurately to 

determine the pianist. The full analysis is given in Appendix K. 
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The times and pitches were made into a Cakewalk ASC file and !hen a Cakewalk work file. This was 

then edited to give the notes a 'reasonable' duration to allow the score comparison above. 

7.2.6 Grieg Piano Concerto 

The opening of this well-known concerto(Grieg 681 was copied from CD to tape, then sampled at 16000 

Hz by the GUS card. The score is shown in Figure 101 and the spectrum is shown in Figure 102. The 

example forms (((audio example 9))). 

There are 166 notes in this excerpt, not including the initial timpani roll and orchestra hit. The written 

piano polyphony is often 8, and has a maximum of 17 during the arpeggio in bar 4 played with the 

sustain pedal down. 

Figure I 01 - Score of start of Grieg Piano Concerto. 
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Figure 102- Spectrum of start ofGrieg Piano Concerto. 
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The initial timpani roll raises two questions. First, although the timpani has inharmonic modes, some of 

them do form a very roughly harmonic sequence - is this enough to derive a pitch? Second, given the 

effect of natural reverberation and the poorer time resolution, will the notes be distinct? The orchestra 

hit raises one more difficulty - we are unable to distinguish each note, so what is the correct 

transcription? 

The extract has an average power of -18.70 dB. The sines were extracted using the -m6 flag, which 

limits the number picked per octave to 6. The battle used the flag -tO. OS to set the minimum length of 

a note to 50 milliseconds. The results for several thresholds are shown below. 

threshold sines partials trivial short bad harm. quiet left 

-6 46 31 28 0 3 0 0 

-12 440 202 t 
-18 1911 744 354 120 225 3 42 

-24 5443 1772 733 398 533 23 85 

-30 10476 3155 ·- t 
-36 16901 5003 1814 1828 1037 125 199 

.. t- Bugs unresolved at the tune ofwntmg prevented the battle runrung for these thresholds. 

Table 34- Summary of analysis o[Grieg Piano Concerto. 

On auditioning the output, there were few points where the transcription was accurate. The MIDI 

resynthesis for -18 dB can be heard as (((audio example 10))). The CPN for this output is shown in 

Figure I 03. As the timing information is not available, no attempt has been made to set suitable barlines. 

Some of the descending line, and some later chords, have been captured, but most of the details have 

not been recognised. 
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Figure 103- Transcribed score o[Grieg Piano Concerto. 

7.2.7 Death of Aase 

The first four bars of this piece, from "Peer Gynt", were copied from the same CD as the Grieg Piano 

Concerto described above, and sampled at 16000 Hz.IGrieg 
761 It forms (((audio example 11))). Since the 

signal level is so low, the effective SNR of the source is poorer. The score is shown in Figure 104, and 

168 



the spectrum, which uses an FFT of size 64, is shown in Figure 105. It has an average level of -16.61 

dB. There are 64 notes in total, counting sections as notes. 
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Figure I 04 -&ore of 'Death of Aase '. 
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Figure I 05 - Spectrum of 'Death of Aase '. 

169 

i 
I 
I 
' 
1 



This was analysed using eight thresholds in Pickout (v0.23), with a maximum of 20 sines per FFT. As 

we know that this has relatively long notes, we give the analysis a helping hand by specifying -t0.7 to 

eliminate notes shorter than 700 ms. 

The results are shown in the table below. Experiments with lower thresholds could not be completed 

due to memory problems. 

For each part there are up to 16 players. We can assume that their vibratos and other parameters are 

independent of each other. This results in a complex envelope for each partial. 75 Although we know 

from experience that there are sixteen first violins, we cannot separate them. This example illustrates a 

difficulty in the definition of the transcription task - is the correct transcription that which models our 

perception of 'the sound of a violin section', or is it that which separates this into 'the sounds of sixteen 

individual violins'? If the former, we can ask how violins and other instruments fuse together; if the 

latter, we can ask how a computer model could be constructed so as to far exceed the capabilities of our 

processing. 

threshold sines partials trivial short bad harm. quiet left 

-6 125 86 53 33 0 0 0 

-12 741 331 197 130 2 0 2 

-18 2277 734 355 349 23 0 7 

-24 6992 2426 895 1449 31 2 49 

-30 27014 11628 5778 5644 9 46 151 

-36 70072 22622 

-42 123067 - - - - - -
-48 137961 - - - - - -

Table 35- Summary of analysis of Aase. 

The best appears to be for -24 dB. This is shown in CPN in Figure 106 and can be heard in (((audio 

example 12))). 

Again, the transcription is poor. As the 'correct' score is not known, it is not possible to quantify the 

accuracy. 

75 See also Dubnov's work comparing the bicoherence ofviola sections and violas.(DubnovJ 
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Figure 106- Transcribed score of Death of Aase. 

7 .2.8 Didgeridoo 

The original perfonner is a fonner flatmate, Martin Perlbach. His perfonnance, consisting of a loud deep 

breath in fQilowed by a 12-second note, was recorded on cassette, and a copy ofthis was .sampled by the 

GUS at 16000 Hz. The spectrum is shown in Figure 107, and the input is (((audio example 13))). 

o, -~--~2T-~~---T·--~5~~·--~7r-~*---'~~10--~1+1--~12~~~~~--~1t~~~~5--~1·~ 1- I I I I I I I I I I I I I I I 

Figure 107- Spectrum of Didgeridoo. 
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The average level is -I5.5I dB. The analysis was done using Pickout (v0.24) with a threshold of -24 dB 

and a maximum of 6 sines per FFT, TrakSin (v0.08), and FT (vi.05). The battle (v0.29) used a 

minimum note length of0.5 seconds. 

threshold sines partials trivial short bad harm. quiet left 

-6 235 I5I 78 70 3 0 0 

-I2 I487 595 I79 378 27 0 II 

-I8 4676 I893 484 I335 30 4 40 

-24 9948 3964 935 2950 23 4 52 

-30 13964 5779 1323 4362 3I 4 59 

Table 36- Summary of analysis of Didgeridoo. 

The score comparisons in Figure I08 are for thresholds of -I2, -I8, -24, and -30 dB, and Figure I09 

shows the flattened comparison. 

~---~· --· -------
-==i!!f!,---<.·_.-·-

Figure 108 - Score comparison for Didgeridoo. 

Figure 109 - Flattened score comparison for Didgeridoo. 

=~=-

The ideal transcription is a single note, on C#2 (69 Hz). There are long notes similar to this, although 

there are actually several overlapping notes, including some at C2 and D2. Many of the added notes are 

at G#3, E#4, etc., corresponding to the third, fifth, etc. harmonics of the fundamental. As can be seen 

from the spectrum, the odd harmonics are considerably stronger than the even harmonics. This is to be 

expected because while the didgeridoo is a lip-reed instrument, it has a cylindrical bore and should thus 

have comparable modes to a clarinet. 

It is very simple to form the ideal score. The quantitative evaluation is as follows:-

POLYPHONY 

threshold notes guessed ideal overlap total accuracy 

-6 0 0 0.836 0 0.836 0 

-I2 II 3.726 0.836 0.696 3.866 O.I80 

-I8 40 9.39I 0.836 0.828 9.398 0.088 

-24 52 11.432 0.836 0.828 11.440 0.072 

-30 59 12.043 0.836 0.828 12.051 0.069 

Table 37- Quantitative scores for Traumerei recognition. 
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This example highlights the large amount of control information that can be present in a note. The 3-Hz 

fluctuations in all of the harmonics (corresponding to the simple physical control of tongue-palette 

distance) cannot be encoded efficiently. The desire to summarise information about several harmonics is 

part of the reasoning behind group additive synthesis, which uses a reduced number of envelopes. 

7 .2.9 Ringdown 

Another piece examined was the ringdown of Durham Cathedral bells. The ringdown refers to the 

process of returning the bells from their inverted normal striking position to hanging vertically. This is 

not considered part of the 'performance', but still requires skill, especially for the players of the larger 

bells. The score would consist of a ten-note descending major scale played repeatedly, but with 

decreasing inter-note and inter-scale times. This is shown very schematically in Figure 110. The intention 

in transcription was stimulated by discussion with Ian Breakwell, the artist-in-residence at Durham 

Cathedral, who wished to develop an animation or graphic based on the sound of the ring down. 

... ......... ..... ..... s . .. •• •• 
Figure II 0- Pseudo-score of ringdown. 

This was originally recorded on DAT at 48000 Hz by Ron Geesin and resampled by the CardD. The 

spectrum of a short extract is shown in Figure 111. The sound forms (((audio example 14))). 

Figure Ill -Spectrum of start of ringdown. 
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One fact prevented a complete analysis - the size of the input file was around 8 minutes in all. Although 

virtual memory was used in several subsystems, the requirements for data that must remain in real 

memory were still too high. Even when data is in virtual memory, the pointers to that data would 

typically be in real memory. Of course these pointers could be put into virtual memory but only with a 

great degradation of speed. 

The harmonic matcher only looks for harmonics at near-harmonic multiples of the fundamental 

frequency. However, the bell has inharmonic modes of vibration that have combinations of radial and 

longitudinal nodes. 76 The approximate relative frequencies of its vibration modes are 0.5, 1, 1.2, 1.5, 2, 

2.5, 3, and 4. Rossing uses the names hum, prime, minor third, fifth, octave, upper third, twelfth, and 

upper octave; Sundberg uses the names hum, strike, tierce, quint, nominal, deciem, duodeciem, and 

double octave. [Rossing, Sundberg 91) 

However, some of the modes are nearly harmonic, so it is informative to see if these are sufficient, by 

analysis of the above short segment. The results.are shown below. 

threshold sines partials trivial short bad harm. quiet left. 

-6 37 25 25 0 0 0 0 

-12 547 250 250 195 46 9 0 

-18 2730 1064 t 
-24 7136 2357 1043 1130 121 0 63 

-30 11493 3464 1143 2093 122 6 100 

t The reordenng stage failed for this threshold. 

Table 38- Summary of analysis of ringdown. 

The output score for a threshold of -24 dB is shown in Figure 112. It shows that the descending scale 

has been p~~;rtly recognised but that many notes have been added corresponding to other partials . 

. ._ . 
. ·~ 

Figure 112 -Score output for ringdown. 

f&i!f i 

76 A bell is topologically similar to a circular membrane, and the modes of vibration form similar 
'dartboard' patterns. However, the density profile is much more complex and the bell is clamped at the 
centre rather than the edge. 
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7.3 Limitations of the current model 

Many transcription errors have been highlighted above. MTest suffered from rapid onsets/offsets, the 

Mendelssohn has high polyphony and no onset asynchrony, the Poulenc has missing fundamentals, short 

notes, and noise, the Schumann is quiet, the piano concerto is too polyphonic, Aase is quiet and has 

combined strings. The didgeridoo has complex control information, and the ringdown is inharmonic. The 

performance is arguably the best for the input it was originally designed using, the Mendelssohn. 

Each stage of the process is implemented as a separate program, and data is passed via temporary disk 

files. This is a practical measure on the PC architecture, due to the large ,amount of memory required 

during each stage for the input and output data and the program itself. 

However, it also means that the various parts of the model cannot interact. Initially, all the data is in the 

form of a waveform. The C40 analysis converts this to spectra without knowledge of the onset times. 

The deconvolution converts spectra to sinusoids without knowledge of the sinusoids in consecutive 

blocks. The frequency tracker links sinusoids without knowledge of what note they might belong to. The 

battle process simplistically removes everything that doesn 't look like a note. The data flow is wholly 

bottom-up. Criticisms ofthis approach have been raised in previous research reviewed earlier.[BrownG94a. 

Slaney 95b, Cooke 95a) 

A more effective approach may demand an architecture where all the processes can interact, so that the 

subsystem that determines that a partial is present can ensure that the deconvolver looks specifically for 

that frequency. However, a single PC is not currently sophisticated enough to supply limitless memory 

and seamless multitasking. 

Features that are smaller than the block size cannot be recognised easily, and features much longer 

cannot be coded more efficiently. The frequency/time resolution is poor for short low notes - this was 

found in the Poulenc, the Mendelssohn, and the test pieces MTestl/2. The choice of a fixed Q also 

means that in periods of relative spectral inactivity, we cannot capitalise on this. 

As a result, the hoped-for compression did not materialise -the derived additive-synthesis envelopes are 

more cumbersome than the original data, and at several stages data is discarded to alleviate the high 

memory requirements. As well as being bulky, the eventual representation becomes more complex and 

less intuitive. What we turn audio into is a set of notes consisting of a set of braids consisting of a set of 

partials consisting of a sequence of multirate additive synthesis control structures. It would takes a large 

amount of computation to turn it back into a wave, and the advantages of the multirate FFT would no 

longer be available since we have interpolated frequencies other than those that can be computed by the 

rever'se process. Resynthesis was never implemented. 

Throughout the processing, there are many thresholds that can only be set by trial and error. Many of 

the thresholds were set to whatever appeared to work on the Mendelssohn. 
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The transcription process clearly has problems separating the sources. It is also not possible to compare 

the apparent timbres of several notes. 

The system is ill-suited to inharmonic timbres, noise, and missing fundamentals. In the case of the 

cathedral bells, it is the synchronisation of simultaneous onsets that fuses the partials into a single tone, 

yet this cannot be examined, as the current model only groups partials by harmonicity. The problem of 

the missing fundamental has also not been solved. We cannot perform analysis on stereo files. While we 

could of course process two files separately, this does not allow us to easily combine information from 

the two channels. 

The importance of graphical output has led to most stages being implemented on the PC, and this has 

meant that the high processing power of the C40 could not be utilised. The processing is thus very slow. 

7.4 Summary 

The transcription system has made a reasonable attempt at transcription of a wide (but still restricted) 

variety of pieces. Each piece has highlighted different problems in the transcription process. It has thus 

demonstrated brittl~ness, a poor ability to be generalised to other inputs. The suitability of the system for 

resynthesis is also questionable, as the eventual data format of the timbral and control information is 

unwieldy, and would not be efficient to synthesise. 

There are two main drawbacks in the original design. The first is the fact that whatever our choice of Q, 

it is static. We cannot adapt the encoding to short or long entities. The second is the fact that the system 

is very block-based, in that the time and frequency must be chosen from a discrete set. We cannot 

represent things at other times or frequencies. Blocks, even windowed blocks, are inherently 

discontinuous and create spurious information. 

In the next chapter I start redesigning the system, using a smooth and simple wavelet-based 

representation that does not suffer from either of the above drawbacks. 
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8. Acoustic Quanta 

The previous chapters outlined an analysis/resynthesis scheme based on block-based additive synthesis. 

In this chapter I examine the hypothesis that Gabor wavelets would be more suitable fundamental 

building blocks for analysis and resynthesis than the previous multirate STFT blocks. These wavelets are 

mathematically simple and computationally modest, and appear to be well suited to musical 

applications. (Nunn 961 I first outline the principles and equations behind quanta. I then give examples of 

their applications in analysis, transformation, and synthesis, . and present preliminary results from 

implementation on the PC and the C40 platforms. I conclude by 

comparing the two systems and outlining proposals for future research. 

8.1 Introduction 

A landmark paper by Dennis Gabor in 1947 discussed how quantum 

theory could be applied to acoustic signals. (Gabor 47' Gabor 461 It explained 

how any signal may be built up from elementary entities that are 

characterised by a few parameters. These signals are wavelets consisting 

of a complex sinusoid multiplied by a Gaussian envelope. Gabor called 

these wavelets quanta, and claimed, "All sound is an integration of grains, 

of elementary sonic particles, of sonic quanta". Figure I I 3- Dennis Gabor. 

Gabor suggested that a signal could be decomposed into Gabor wavelets at regularly spaced times and 

frequencies. However, these wavelets are not orthogonal, so an integral transform could not be derived 

easily. Later, Bastiaans showed that this can indeed be done.[Bastiaans 80· Bastiaans 851 This involves a 

process similar to the STFT but with Gaussian windows, and is known as the Gabor 
tran:,form. (Daubechies.88b, Daubechies 90, Redding] 

Th · J fi Jd k 1 h · 1· d · I (Daubechies 88a Kronland-e comparattve y new te nown as wave et t eory ts out me m severa papers. ' 
Martinet 88, Daubechies 92, Delprat 92, Jawerth, Wilson 92a, Rioul 91, Sweldens 93, Sweldens 96, Graps, Weiss, Edwards, Mallat 89] 

It absorbs some of Gabor's ideas, and also adopts some of the multi rate techniques described in earlier 

chapters. Wavelet theory largely uses. the wavelet transform (WT), which allows an efficient 

implementation of a scheme that analyses signals in terms of shifts and dilations of a constant-Q mother 

wavelet. The choices(Jawerth] include the Haar wavelet, the Coiflet, the Meyer wavelet(MeyerJ, 

Daubechies' wavelets(Daubechies 88a1, and others. The mother wavelet generally has .finite support in the 

time domain in orde~ to allow a fast integral transform. In most cases, the wavelet must be shifted by 

· d d'l d b c. f · h · k . . [Rioul 92 Weiss] I . I mtegers an 1 ate y 1actors o two, usmg a tee mque nown as v01cmg. ' t IS a so 

possible to use wavelets that are bounded in the frequency domain (and hence infinite in the time 

domain) -these are called 'harmonic' or 'musical' wavelets(Newland 93' Newland 941, and wavelets with a 

I. h' . fi [Baraniuk] mear c rrp m requency. 
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There is no reason to use a single wavelet - some methods choose wavelets from several dictionaries. 

Analysis may try to extract the best representation by Matching Pursuit[Mallat 931, Best Orthogonal 

B . [Coifman 92) B . Pu . [ChenS 94) d As · a! b b ·1 fr · as1s , or as1s rsUJt proce ures. a s1gn can e UJ t om wavelets m an 

infinite number of ways, criteria for determining which set is best must be defined. Possibilities include 

the information cos~Coifman 921
, i.e. the number of bits it takes to model a given function to a given 

accuracy. Other possibilities including entropy and log-energy are discussed by Graps_!GrapsJ 

8.2 Comparison of quanta and wavelets 

The wavelets derived by the Gabor transform are defined by shifts and modulations, and are hence 

characterised by time and frequency. Those derived by the wavelet transform are defined by shifts and 

dilations, and are characterised by time and scale.~7 All derivatives of Gaussians are continuous, 

whereas the wavelet transform often uses less smooth, or even discontinuous, functions. Non-smooth 

wavelets, such as Haar wavelets, are well suited to coding discontinuous data such as images but poor 

for continuous signals. 

A signal that is finite in one domain must be infinite in the other, so time-limited wavelets give poor 

fr I al. . [Daubechies BBa) G b 1 inti · · b h d · b · equency oc 1sat10n. a or wave ets are rute m ot omams, ut m one sense are 

the most compact- they have a time-bandwidth product of unity. This property gives the advantages of 

mathematical simplicity and symmetry, but the disadvantage that in principle a wavelet covers the entire 

time-frequency plane. In addition, the wavelets overlap and thus are not orthogonal. 

The Gabor transform is in practice similar to the windowed Fourier Transform, and gives a constant M 

but a widely varying Q. A similar analysis can be done using the multirate techniques described in the 

previous chapter, allowing a more-or-less-constant Q. The wavelet transform gives a constant Q, in very 

much the same way as the multirate SIFT. In all these cases, Q is static. Yet if we are to model music 

efficiently, it is preferable to allow Q to be chosen to allow longer or shorter basic units, as appropriate, 

to construct the signal. This would allow the efficient coding of music that contains short spectral lines 

(xylophone, hi-hat18) and long spectral lines (didgeridoo, bagpipe drone). Within a single note, it allows 

accurate coding of the high detail in the attack and compact coding of the slowly changing decay. 

Dynamically varying Q means that our elemental entities now have three parameters; the length is 

analogous to the scale parameter of the WT. 

77 The ~overcomplete) MFT has all three - time, frequency, and scale, as do some wavelet 
variants. [ oifman 92) 

78 While percussion instruments are often modelled by noise, it must be borne in mind that many do 
have distinct frequencies of vibration, even when they are not long enough to convey a pitch. 
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The table below compares many of the representations according to their bandwidth and parameters. 

constant iJf pseudo-constant Q several constant Q dynamicQ 

time PCM 

frequency FT 

time/frequency Short-Time FT Multirate FT Multirate (enveloped ASWS) 

Gabor Transform BQFT Multiresolution 
FT79 

time/scale Wavelet Transform 

time/frequency/scale Multiresolution FT IDEAL 
TRANSFORM 

Table 39- Comparison of various transforms. 

With integral transforms, the parameters are restricted to those falling on a predefined rectangular grid, 

a finite and fixed set oftimes, widths and frequencies. However, a constant 440-Hz tone should ideally 

be represented as a constant 440-Hz entity, rather than by time-varying tones at 430.664 and 452.197 

Hz plus other sidelobes at even more wrong frequencies. 80 It is thus preferable to use an unrestricted set 

of parameters in order that we can minimise the number of entities required. A simple cost function 

would be the number of quanta required for 16-bit accuracy. 

8.3 Applications 
Kronland-Martinet discusses several applications of the wavelet transform to music. (Kronland-Martinet 87

• 

Kronland-Martinet 881 Victor Wickerhauser also discusses sound synthesis and compression. (Wickerflauser) 

Daniel Arfib successfully used Gabor wavelets for time-stretching with 'not too many artefacts' _IArfib 90
' 

Arfib 911 He used a sliding-window SIFT for the analysis, but used a Hanning window rather than a 

Gaussian. Boyer implemented transformation using the wavelet transform(BoyerJ, and Ellis discusses 

time-stretching.[EIIis 92bJ Wavelets have also been applied to source separation and denoising(Popovic, 

~~~-~-~~~-~~~-~~~~~~ 

I fi a! · f · · M hi Pu · (Mallat 93) hi . di d I (Gribonval, wave ets or an ysts o ptano tones, usmg ate ng rsutt ; t s ts scusse ater. 

Chens 94• Chens 96• Chens 9SJ Kussmaul describes applications to the pitch contouriKussmauiJ, and several 

researchers have examined applications to th~ rhythm. [Todd, Tait) 

8.4 Definitions 
In Gabor's paperlGabor 471

, the elementary signals, or quanta, are defined as:-

79 This corresponds to our previous Multirate FFT but using sizes of8, 16, 32, 64, ... simultaneously. 

80 This calculation is for a 44100-Hz sample rate and an FFT of size 2048. 
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Figure 114 shows a typical quantum. Here, to and fo (real) are the positions in time and frequency, and m 

is the complex magnitude. 

Where dt5 and df. are the 'inertial' width, the 

Heisenberg inequality means that dt.xM. ;?: 11( 47t ), 

as derived in Appendix G. (Solbach 96b, Papoulis) With 

Gabor's definitions, dt and Mare 2~7t times dt. 

and df. respectively. (Gabor 471 The width in time, 

M, is given by (~1t)/a., !llld the width in frequency, 

df, by a./(~1t). For Gabor wavelets dtx.M=1, 

representing the most compact encoding in time-

frequency space. 81 This parameter a. has the Figure 114- Waveform of a quantum. 

dimensions of Hz. 

·- -
In this work, I will use 'a' to represent a.2; thus, a has the dimensions of s -z or Hz2

. This parameter will 

be referred to either as alfa (reducing confusion with Gabor's correctly spelled alpha), or the density of 

the quantum. A high alfa represents a short broadband signal; a low alfa represents a long pure signal. 

With this convention, dt=~(1t/a) and .M=~(a/1t); thus, a=1t/dt2=1tAf. For the signal to have finite power, 

alfa must be positive. If alfa is zero, then the signal has constant magnitude and infinite power. A 

negative alfa could potentially cause overflow, underflow, divide-by-zero, log-domain, sqrt-domain or 

malloc failure. In software this situation is trapped by crash ("-ve alfa"), which starts the 

shutdown routine of alerting the user, freeing memory, releasing XMS memory, deleting temporary files, 

de-installing the mouse, switching to text mode, and returning to the start-up directories. 

The quanta are in the complex domain - to deal with real signals, we assume either that each quantum of 

positive frequency is accompanied by one of negative frequency, or that we are dealing with the analytic 

signal_82 

8.4.1 Notation 

Each quantum has a time, a frequency, an alfa, and a complex magnitude. The notation Q(t,f,a,m) will be 

used for a quantum. 

81 For comparison, the best value for gammatone filters(PattersonRJ is dtx.M=~C/2)~1.581. 1Solbach 9&b, 
Wohnnann] . . 

82 The analytic signal corresponding to x(t) is x(t)+i.H(x(t)), where H(x(t)) is the Hilbert transform of 
x(t). The Hilbert transform is equivalent to convolution with 1t/t. 
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8.4.2 Typical parameters 

Let us attempt to form some typical 

values for the parameters 

corresponding to musical notes at 

various pitches, as shown in Figure 

115. 

The table below gives the expected 

0 

-e-

length in seconds of a note that Figure 115 - Very low, low, average, high, and very high frequencies. 

would be labelled 'short', 'very long', etc., at that pitch. (The notes in this table only correspond to the 

convenient but inaccurate 'scientific tuning' where middle C has a frequency of256 Hz rather than 261-

ish.) 

Pitch Note f(Hz) Very Long Long Average Short Very Short 

Very High C7 2048 10 3 0.3 0.04 0.02 

High G5 768 
.. 

15 4 0.4 0.05 0.02 

Average C4 256 20 5 0.5 0.1 0.02 

Low G2 96 30 8 I 0.2 0.05. 

Very Low Cl 32 30 10 2 0.5 0.2 

Table 40- Length of long and short, and high and low, notes. 

Let us suppose that the envelope of a partial is formed using a quantum of this length. For the 'longest' 

duration of30 seconds, alfa=0.0035. For the shortest, 20 ms, alfa=7854. 

Alfa must conceptually span the range from 0 to oo; alfa=oo is quite a common case. In certain situations, 

such as widening a quantum, alfa may also be negative if numerical stability can be maintained, 

although the corresponding function has infinite power. (Aifa=-oo is infinitely infinite, meaning exp(oo.x2
) 

or cS"1(x), and has no obvious use.) 

In practice, it is necessary to guard for divide-by-zero errors, and possibly overflow, underflow, or 

precision loss. Thus, alfa is restricted to the range AFOREVER to ACLICK, where ACLICK is extremely 

large (1txl018
), and AFOREVER is ACLICK1

. These are set just within the maximum and minimum 

values of a 32-bit float in Turbo C. Alfa may also be zero, but these quanta cannot be synthesised. 
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Thus, the parameters are in these ranges:-

variable name units theoretical limits actual limits 

t time s unrestricted ± 1t X 1018 

f frequency s:T or Hz -oo- +oo 0 - Nyquist Rate 

a density s·2 or Hz2 0, ~- +oo 0, AFOREVER- ACLICK 

m magnitude none, V, m, Pa -oo- +oo -32767- +32767 

Table 41 -Parameters of a quantum. 

8.4.3 Computation 

The quanta must ultimately be converted to equally-spaced samples, and this can be done recursively. 

Nuttall proves that the exponential of a k!l! order polynomial at equally spaced points requires k complex 

multiplications.1Nuttall 
8

7] For a second-order polynomial, x=e'"'(eo+c1.n+~.n\ with eo, c~, and ~ 

complex, we need two complex multiplications per sample, which is equivalent to eight real multiplies 

and four real additions. (Jones 
8

7] This case corresponds to a generalisation of our quant~ to include a 

linear chirp in frequency. Since we are (for the time being) assuming no chirp, ~is real, and we need six 

real multiplications and two real additions. If only the real part of the output is required, only four real 

multiplications and one real addition need be performed for each sample. The round-off error in the 

recursive computation was shown to be minimal. (Kaiser) 

On both the PC and the C40, all parameters are stored as 32-bit floats, so one quantum requires 160 

bits of memory. 

8.5 Basic operations 
The simplicity of the mathematical form of the Gabor wavelet allows many straightforward mathematical 

transformations. Here I outline the basic mathematics used in manipulating quanta. 

8.5.1 Identity elements 

identity for addition:- Q(any, any, any, 0) 

identity for multiplication:-Q(any, 0, 0, I) 

identity for convolution:- Q(O, any, oo, 1) 

The existence of these "don't care" values should be noted; it is meaningless to ask the 'time' of a 

constant value or the frequency of an impulse. 

Note that impulses are a special case- m.o(t) is equivalent to Q(t,O,oo,m.oo) but is actually denoted by 

Q(t,O,oo,m). Impulses are commonly used and must be handled robustly by the low-level routines. 

Another common case is where a=O, i.e. the quantum is infinitely long. Dannenberg highlights this case 

as potentially problematic. (Dannenberg 921 However, when used for a finite sound, they will at some stage 

be multiplied by an envelope that is finite in time. 
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8.5.2 Negation and inversion 

The additive inverse of Q(t,f,a,m) is Q(t,f,a,-m), summing to Q(t,f,a,O). The multiplicative inverse of 

Q(t,f,a,m) is Q(t, -f, -a, 1/m). Forms with a negative density are not strictly 'quanta', and must be used 

cautiously as they have infinite energy. The product is Q(undefined, 0, 0, I). 

8.5.3 Fourier Transform 

The Fourier transform of Q(t,f,a,m) is Q(f,t,1t2/a,m). Note the factor 1t2 here - it might be tempting to 

adopt a redefinition where a' replaced 1ta, such that the transform ofQ'(t,f,a',m) is Q'(f,t,I/a',m), but 

this has not been used. 

8.5.4 Multiplication 

IfQo=Q(to, tO, ao, rno) and Q,=Q(t~, f,, a,, m,) then Qo*Q,=Q,*Qo=Q(tk, fk. llf<, ffik), where:-

rno*m,*e·Z 

-(ao *a,/llf<)*(to-ti)2 

ao+a, 

tQ+f, 

tk (ao*to+a,*t,)/llf< 

The frequencies and the densities add, but the time is intermediate, weighted by the densities, and the 

magnitude is reduced according to the time difference. In general, the product will have a larger density, 

but if -ao<a1<0, then the product can be wider. 

It is possible to approximately move a quantum to a different position by multiplying it by another 

quantum. It is not strictly possible to do a pure time shift from Q(to,?,ao,?) to Q(tk,?,ao,?) as keeping alfa 

the same requires t,=oo. An approximate shift from Q(to,?,ao,rno) to Q(tk,?,ao+e,ffik) requires ti~ao(tk

to)/e~oo and z~-(ao 2/e)(to-td, and we thus risk losing precision. Of course, if we can handle pseudo

infinity robustly, it is possible to perform the time shift this way, but the simpler way is to directly 

change the times, as discussed in 'Direct operations' later. 

8.5.4.1 Exponentiation 

If A=Q(t, f, a, m) then A2=Q(t, 2f, 2a, m2
). More generally, A"=Q(t, n*f, n*a, m"), because:-

( 
-a·t2 -lift )n -a·n·t2 -2i-f·n·t m·e ·e = m·e ·e 

This allows the creation of strictly harmonic tones with a=O. If q=Q(?, 261, 0, I), then an infinite square 

wave can be defined as q+q3/3+q5/5+q7/7+ .... Note that if q had a>O, the duration of A" would be 

shorter, so the timbre would be time-dependent. 
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8.5.5 Convolution 

The time convolution of two quanta, denoted Q1®Q2, can be determined easily since it corresponds to 

multiplication in the spectral domain. In fact, we can consider multiplication and convolution to be a 

single operation with the focus either on the time or the frequency axis. 

z 

to+tl 

(£0 *a1 +f1 *ao)/(ao+ai) 

ao*a1/(ao+ai) 
lllo *mi *e-z 

( -7t
2*(fo-fi)2)/(ao+ai) 

As before, a pure time shift is impossible - convolution would have to be carried out with a1=oo. 

However, an approximate shift is of course possible with a1 very large. 

Convolution and multiplication are in practice carried out by the same function - for convolution, we 

first perform the 'instant Fourier transform' by 'turning the arguments inside-ou{(by swapping their time 

and frequency arrays and replacing each alfa by 1t
2/alfa), then use the multiply function, and similarly 

tum the result inside-out. 

Musical applications of convolution, including delays, filtering, cross-synthesis, and rhythm, have been 

discussed by Roads and others. (Roads 
92

' Roads 
93

' Roads 941 Roads primarily discusses convolution of the 

waveform - this is a computationally expensive step and in most cases convolution is instead carried out 

by fast convolution, based on multiplication of FFTs. (Stockham 
691 We are convolving the tokenised 

quanta symbolically rather than convolving the waveforms themselves, but the results are identical. 

The counterpart of exponentiation for convolution will be termed convolentiation until a better or 

accepted term is found. If A=Q(t,f,a,m) then A <n>=Q(nt,f,a/n,mn) where A <S>=A®A®A®A®A. 

8.5.6 Addition 

The sum of two quanta cannot in general be expressed as a single quantum, unless they share the same 

time, frequency, and density. 

8.5.7 Sequences 

If we form a sum of quanta Q({ ... ,-2,-1,0,1,2,3, ... },0,a,m), and the quanta are sufficiently broad and 

close, the sum will be close to constant. If the quanta are broad and alternate in sign, i.e. Q({ ... ,-2,-

1,0,1,2,3, ... }, 0, a,{ ... ,rn,-rn,rn,-rn,rn,-rn, ... }), then we can form a good approximation to a sinusoid. The 

fact that this is an approximation does not necessitate lossiness, as the error term can be computed as 

quanta too. If the quanta are regularly spaced but do not overlap sufficiently, then we can form an 

expression relating the periodic DC quanta to a set of quanta with frequencies at multiples of the 

repetition frequency. 
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Since we can form a set of DC quanta sum to (approximately) unity, we can argue that another quantum 

equals itself times unity, which equals itself multiplied by the set of quanta. This gives an expression 

allowing us to break any quantum into overlapping entities, and more importantly, a method of 

combining quanta into longer and fewer quanta. 

8.5.8 Stereo 

So far we have ignored the issue of stereo. There are two possible ways to extend the above to stereo 

samples. We could assign all quanta to either left or right, or give the quanta themselves another 

parameter corresponding to spatial position. With the second method, the parameter p of a quantum 

means that the quantum becomes:-

RIGHT= Re(exp(-a*e + 21tit)) * P(p) 

LEFT= Re(exp(-a*t2 + 21tit)) * P(-p) 

We still have to define P(p) such that quantum operations are mathematically regular. Left to right could 

be mapped onto -1 to +1 or -oo to +oo. In the former case, P(p) = O.S*(I+p) gives a linear slope, which 

results in an uneven pan. Better would be P(p) = 0.5*(1+sin(1t*p/2)). In the latter case, P(p)=exp(

ap*(p±0.5)2) gives Gaussians centred at the left and right speakers. In Roads's paper on convolution, he 

points out that stereo placement is essentially the same as convolving the sound with the impulse 

responses at the two speakers. (Roads 931 These responses, known as head-related transfer functions 

(HRTF), are detailed by Kendall.(Kendall) 

Adding a parameter such as position means extending the model to 32 species, but with the compact 

representations, this is a relatively small increase. Very often we would design an instrument in mono as 

a species-15 molecule, then place it in a fixed position by what would be species-16. This extension to 

stereo placement has not yet been implemented, but it appears that this is a relatively simple process. 

Quadraphonic sound is also feasible. 

8.6 Higher-level structures 

In most cases it is expected that quanta will be grouped together into higher-level entities. In forming 

groups of quanta, we anticipate that they might have one or more parameters in common. For example, 

we might wish to specifY a rhythm by a group of quanta that have different times but the same 

frequency, density, and magnitude. A chord would be a group of quanta with the same times and 

densities but different frequencies and magnitudes. In order to minimise memory usage, this was made a 

fundamental consideration in designing higher-level structures for quanta. 

The entities are not as complex as the events used in granular synthesis by Roads(Roads 881
, which are 

characterised by not only time and duration, but also by waveform, frequency, bandwidth, grain 
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density83 , and amplitude and the slopes of these five quantities. Truax's tendency masks are similar 

entities. (Truax 
881 However, these would be a relatively straightforward extension to implement. 

8.6.1 Atoms 

The second-lowest unit is called an atom. It represents an arbitrary number of quanta, and its species 

determines the topology of the arrays. There are sixteen species, corresponding to whether there are 

multiple times, frequencies, densities, and/or magnitudes. A species-0 atom is a single quantum. Species 

8 has multiple times but only one frequency, density, and magnitude, and could describe a rhythm. A 

chord could be a group of quanta with the same times and densities but different frequencies and 

magnitudes; which is species 5. 

A word on terminology is in order. While there may well be interesting analogies between acoustic 

quanta and quantUm physics, the term 'atom' is chosen purely out of the need for a term, rather than any 

direct physical analogy. Note also that some authors, including Gabor, use the term 'atom' for the 

quanta themselves. 

The notation for quanta is extended using braces such that, for example, Q({to,t~.t2 ,t3 },f,a,m) represents 

an atom offour quanta with different times but the same f, a, and m. 

Species Times Freqs Alfas Mags Examples 

0 I I I I single quantum, crude filter, delay 

(I) I I I N (sum to species 0) 

2 I I N I ? 

3 I I N N symmetrical shape 

4 I N I I temperament, chord, scale, vowel 

5 I N I N steady-state timbre, tremolo, general filter 

6 I N N I ? 

7 I N N N symmetrical tone 

8 N I I I spikes, barlines, martellato 

9 N I I N simple control, reverb, resonance 

IO N I N I rhythm, envelope, partial 

11 N 1 N N weighted rhythms 

I2 N N I I melody profile 

13 N N I N weighted melody profile 

I4 N N N 1 melody 

I5 N N N N tune, MIDI, note 

Table 42- Species of atoms. 

83 Grain density is the number of grains to be generated over the duration, and is not connected to the 
density of a quantum as I have defined it. 
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The advantage of these types is clear - species 2-14 are more compact than 0 or 15, and can be 

manipulated and synthesised faster. I will refer to these species as compact. 

Note that when N=l (or N=O), the species is irrelevant and the atom can be validly viewed as any 

species. Figure 116 schematically shows the sixteen types arranged in a Karnaugh map84 

4/u//;i;/e 
lrequeflaes 

;/lu//;i;/e moqfl;/udes 

Figure 116- Kamaugh map illustrating the sixteen species. 

8.6.2 Atom operations 

8.6.2.1 Direct array operations 

Alu//;i;/e 
defls!l!es 

Many operations can be carried out by manipulating the four arrays separately. These operations are 

referred to as direct operations, and may be non-linear. A simple example is time displacement, which, 

as we saw earlier, required the use of pseudo-infinity when calculated by either multiplication or 

convolution. It is much simpler to add the delay time to the time array and leave the other three alone. 

This is implemented by Dadd ( d t 1 0 1 0 1 0 1 0) - Directly ADD to the four arrays dt, 0, 0, and (0,0) -

the operations +0 and * 1 are trapped and not carried out. 

8.6.2.2 Addition 

Atoms can be added by concatenating the arrays, as long as both are first promoted to a compatible 

species. For example, adding an a tom of species 3 to one of species 9 means converting both to species 

(species! OR species2) = 11. The sum may be another species still- in this case adding Q({N1 times}, 

f~, {N1 alfas}, {N1 mags}) to Q({N2 times}, f2, {N2 alfas}, {N2 mags}) must be converted to species 15 

unless f1=f2. (Alternatively, atoms of different species can be joined into a molecule - see later for 

details.) 

84 A Karnaugh map is an arrangement of 2N values according to the bits in their index. A change in one 
bit moves to an adjacent cell. It is typically used for designing logic circuits. 
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8.6.2.3 Multiplication and convolution 

When two atoms are multiplied, the resultant species is given by the following table. 

0 2 3 4 s 6 7 8 9 I 0 II I2 l3 I4 IS 
0 0 0 II I I 4 15( _15,.":. 9 9 II II 13 13' JS, 15. 

•, 

0 II I I 4 J5c JS; .. · 9 9 II II 13 13 15· ,JS·. 

2 II II ;:}5:, .. lSi., <15~1·· ']5.!::•· II I I II II 15·· 15 15:. 15·· 

3 I I 15::·;~ ·.15;,f.:' .. ·J5?· ':15;:,'. II I I II II 15: .15' 15:' 15: 
4 4 5 lSi<·' ···is{;' 13 13 13 13 15' 15 
5 )5.;' ;Ur 13 13 13 13 1S 15· 

6 1~:: 1f 15· .15 
7 )5\;.' 1$. .. u 15 

8 9 9 II II 13 13 15 15' 

9 9 II II 13 13 ,'15 :_ -15:-. 

IO 

11 

I2 

I3 

I4 

IS 

Table 43- Species of A *B. 

An easier way to express this is:-

many times => many times, many mags 
many freqs =>many freqs 
many alfas => many times, many alfas, many mags 
many mags => many mags 

II II 

II 

When two atoms are convolved, the rules for time and frequency are reversed:-

many times => many times 
many freqs =>many freqs, many mags 
many alfas => many freqs, many alfas, many mags 
many mags => many mags 

13 13 15.: <}5: 
13 15, :·.: 15> 

If there are N0 and N 1 quanta in the arguments of multiplication or convolution then the result will have 

N0 *N 1 quanta. 

Note that the combination of atoms of compact species is not necessarily compact. For instance, species 

0 * species 6 is the product of a single quantum with an atom that has I time, N frequencies, N alfas, 

and I magnitude. However the product also has many times and many magnitudes and thus has species 

IS. The rules above show that the most problems arise when the quanta have different alfas. However, 

in many other cases the combination does lead to a case where only the required arrays are computed, 

benefiting from the adoption of compact representations. 
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8.6.3 Transformations 

Many common audio transformations can be expressed compactly as simple linear operations between 

groups of quanta. The range of musical transformations that can be implemented easily is best illustrated 

by some examples. 

If one atom holds a weighted set of frequencies Q(O, { fO,f~.f2 , ... }, 0, { mo,m~.m2 , ... } ), we can apply a 

control envelope to them simple by multiplying the atom by another corresponding to the control 

envelope. 

Since these operations are carried out with the 'tokenised' quanta rather than the actual audio, complex 

effects can be specified simply, although the resultant number of quanta may be large. It is worth noting, 

though, that a large number of quanta is not as inefficient as it may seems - short and weak quanta are 

less costly to compute. 

The synthesis technique, which has been compared closely to granular synthesis, seems to incorporate 

many other techniques. It allows the analog-inspired technique of filtering· a fixed waveshape. It 

improves upon traditional additive synthesis by removing the need for line-segment approximation. It 

allows subtractive synthesis as a random collection of quanta can approximate noise. AM and hence 

tremolo can be computed easily by multiplication. It should also allow FM timbres and vibrato as Bessel 

functions can also be modelled as sums of quanta. It might even be possible to rewrite physical 

modelling equations in terms of operations between quanta. 

8.6.4 Time shifting 

Gabor wavelets also allow non-linear editing operations. Arfib used Gabor wavelets to successfully carry 

out time-stretching, a seemingly simple task but difficult in practice[Arfib 90
' Arfib 911 To time-shift a set of 

quanta, we multiply the times by a ratio, multiply the phases by the same ratio, then reduce the densities 

by the square of this factor. 

8.6.5 Examples 

Below I give examples of the sixteen species and discuss which musical concepts they might be suited 

to. 

8.6.5.1 Species 0- 1111 

The notation '1111' above refers to the number of Times, Frequencies, Alfas, and Magnitudes. (Note 

that magnitudes are complex, and it is not currently possible to have N real values but only 1 imaginary 

value, or vice versa.) 

189 



8.6.5.1.1 Single quantum 

Figure 117 shows a feasible representation of a quantum. The 

axes are time and frequency (conventionally left-to-right and 

up=high). The magnitude could be shown by colour or shading 

density. Phase could be shown by an arrow. 

10 I ~~---1 -o'l-lj 

-+-1 _.:.._m_·_t 
(Quanta are often alternatively represented by a rectangle in the 

t-fplane.) 

8.6.5.1.2 Simplest low-pass filter 

Figure I I 7- Single quantum. 

A crude filter can be made with a single quantum- Q(O, 0, massive, I)- with t=O, f=O, df-=40000 Hz 

and thus alfa=1t* 1600000000 ~ 5 *I 09 and dt=25 l.lS. If the input is expressed as a series of quanta, then 

its convolution with this brief spike will be a series of very slightly broader quanta representing the low

pass filtered version. Note that the frequencies are very slightly distorted by this operation, as indicated 

by the equations above; since the 'flat' side off is amplified by more than the 'sharp' side, the centre 
.. -

frequency is effectively lowered. 85 Roads also discusses FIR filtering by convolution. [Roads 
931 

8.6.5.1.3 Pure delay 

If we have formed a set of quanta corresponding to a 

note, then the convolution with Q(IO, 0, oo, I) gives the 

same note delayed by I 0 seconds. 

8.6.5.2 Species 1 - lllN 

8.6.5.2.1 Degenerates to single quantum Figure 1 I 8 - Species 1 degenerates to species 0. 

As shown in Figure II8, this has I time, I frequency, I 

alfa, and N magnitudes. An atom of species I can be 

converted to one of species 0 by summing the 

magnitudes. Note that this is the only degenerate 

species of the I6. 

8.6.5.3 Species 2- llNl 

This species seems useless - many widths but at the 

same frequency, time, and magnitude, as shown in 

Figure II9. 

Figure 119- Species 2. 

85 The corollary of this effect in the time domain is also interesting. If a set of equally spaced quanta 
(with identical densities) is multiplied by a control envelope that is increasing in volume, the new quanta 
will have centres that are later. If the control envelope is a single quantum, then the interval between the 
new quanta will be a shorter constant. This result can be stated in a somewhat surprising manner: 
perceptual time (as defined by this interval) appears to go slightly faster while we move a volume slider 
up and down in a parabolic path. 
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8.6.5.4 Species 3- liNN 

Species 3 atoms, shown in Figure 120, have multiple densities and magnitudes but only one time and 

frequency. 

8.6.5.4.1 Symmetrical shape 

A species 3 atom is a weighted group of widths and thus can denote a shape symmetrical about the only 

time, as shown in Figure 121. 

Figure 120 - Species 3. Figure 121 -Symmetrical shape. 

8.6.5.5 Species 4- lNll 

A species 4 atom has many frequencies. 

8.6.5.5.1 Temperament/chord/scale 

A temperament, chord, or scale could be specified as Q(O, 

{set}, 0, 1) - a time/duration/amp-independent set of 

frequencies, as in Figure 122. 

8.6.5.5.2 Crude vowel sound 

A simplistic definition of the two formant frequencies in the 

sound '00' could be an atom Q(any, {f1.f2}, 0, m). 

However, species 5 is preferable as it allows weighting of 

the formants. 

8.6.5.5.3 Shephard tones 

Figure 122- Chord shape. 

The paradoxical phenomenon of Shephard tones[Shephard, Risset 
911 can be formed by multiplying impulses 

regularly spaced in the log-frequency domain by the spectral envelope desired. While a non-linear 

operation, it is straightforward to carry out logarithms and exponentials. 
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8.6.5.6 Species 5- lNlN 

8.6.5.6.1 Frequency-independent 
waveforms 

The timbre of a square wave can be 

represented by an atom with I time, N 

frequencies, I alfa, and N magnitudes -

species 5. In theory we need an infinite 

number of terms. This is shown in Figure 

I23, except that alfa in practice would be 

zero. 

8.6.5.6.2 Amplitude modulation 

Figure 123 -First five harmonics of a square wave (truncated). 

Conventional amplitude modulation of a signal can be expressed as multiplication of the input quanta by 

a steady-state gain and modulation parameters. This corresponds to multiplying the input quanta by a 

species 5 atom Q(O, { 0, I 00}, 0, {I, fraction}).·-

8.6.5.6.3 Tremolo 

A 6-Hz tremolo is a simple case of amplitude modulation - it can be represented as the sum of two 

quanta- Q(O, {0,6}, 0, {1, O.I }). This is illustrated schematicalry in Figure I24- note that in fact dt=oo 

Figure 124- Tremolo (truncated). 

Figure 125- Global filter. 

and df=O. Multiplying a note by this atom gives 

the tremolo-ed wave. 

8.6.5.6.4 General global falter 

Global equalisation can be achieved as with 

species 0 above, by convolving the input with a 

species 5 atom with a very large alfa., as shown in 

Figure 125 _ Here the bandwidths of each 'pass

band' are constant. 
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8.6.5.7 Species 6- INNI 

I have not yet found a use for this 

species, shown in Figure 126. It is 

similar to species 2. 

8.6.5.8 Species 7- INNN 

8.6.5.8.1 Symmetrical tone 

This is as species 3 but each quantum 

has its own frequency. It is shown in 

Figure 127. 

Figure 126- Species 6. 

8.6.5.9 Species 8- Nlll 

8.6.5.9.1 Basic rhythm 

An unaccented rhythm can be represented by an atom 

of species 8 with a=oo, i.e. Q({set}, 0, oo, 1), shown in 

Figure 128. In this case fis usually zero. 

Figure 127- Symmetrical tone. 8.6.5.9.2 Metrical structures 

The example above can be built 

up from smaller atoms, also of 

species 8, as shown below.86 

(This example was also used by 

1 m1 m1 1 1 m1 mm m 
Figure 128 -Rhythm from Ravel's Bolero. 

T . (Tanguiane 91) angu1ane who 

derived a system to derive the rhythm from the raw onset times by minimising the data requirements.) 

crotchet= MakeFillAtom(1.1.1.1. O.O.oo.1) 

triplets= MFA(3.1.1.1. 0 .. 33 .. 66. O,oo,1) /* abbreviation of MakeFillAtom */ 

repeatlbeatlater = MFA( 2 .1.1.1. 0 .1. 0 .oo.1) 

repeat2beatslater = MFA(2.1.1.1. 0.2. O.oo.l) 

repeat6beatslater = MFA(2.1.1.1. 0,6, O.oo.1) 

repeat200 = MFA(200.1.1.1. 0.12.24.3.6.48 .... 2400. O,oo.1) 

crotcrot Convolve(crotchet.repeat1beatlater) 

crottrip = Join(crotchet.Delay(triplets.1)) 

triptrip = Convolve(triplets.repeat1beatlater) 

mostofbolero = Convolve(Convolve(crottrip.repeat2beatslater).repeat6beatslater) 

bolerosidedrumpattern = Join(mostofbolero.Delay(crotcrot.4).Delay(triptrip.10)) 

bolerosidedrurnscore = Join(Convolve(repeat200. bolerosidedrurnpattern). sidedrurnending) 

sidedrurnoutput = Convolve(bolerosidedrurnscore.userdefinedsidedrurnpatch) 

86 As the MakeFiliAtom function takes a variable number of arguments, a decimal point must be put 
after integral arguments to ensure they are passed correctly. This is not shown above for simplicity. 
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8.6.5.9.3 Repetition structure 

For a set with larger spacing in time, a species 8 atom with f=O and a=oo can mean a structural unit such 

as the times of bars, verses, sections, and so on. 

8.6.5.9.4 Repeated pitch - martellato 

f need not be zero, and a species 8 atom could use this. Such an atom could mean '4 semi quavers on 

high F#'. They would necessarily have the same amplitude. 

8.6.5.9.5 Shephard rhythms 

Whereas Shephard tones have an incessantly rising time but a constant pitch height, Risset demonstrates 

what we might call a Shephard rhythm, which incessantly slows down while adding faster beats. [Risset 
911 

These too can be made using a set of impulses regularly spaced in the log-time domain. 

8.6.5.10 Species 9- NllN 

In species 9 atoms, there are N 

times and N magnitudes. 

8.6.5.10.1 Accented rhythm 

Here, a=oo and f=O, as shown in 

Figure 129. This is similar to the 

above but each atom has a 

magnitude. 

Figure 129 -Accented rhythm. 

8.6.5.10.2 Simple control envelope 

For a smaller a, we can form a simple 

continuous envelope, but since a is fixed, it 

cannot be arbitrarily complex, i.e. it is band

limited by a, as shown in Figure 130. Typically 

f=O. 

8.6.5.10.3 Echoes and reverberation 

Echoes and reverberation can be applied to the 
Figure 130- Band-limited control envelope. 

quanta representing a signal by convolving them with the impulse response. Convolution with 

Q({0,0.1,0.2,0.3},0,oo,(l,0.3,0.1,0.03}) gives a simple echo. The sharpness ofthe echo is determined by 

the density, which should be infinite to avoid frequency distortion, as shown in Figure 131. 

I I I 11, 

Figure 131 -Echo impulse response. 

Reverberation is the same as echoes except the sound 

is diffuse. This can be modelled as above using a large · 

butfinite density, i.e. Q({set}, 0, large, {set}). This 

reverb will be softer, but there will also be frequency 

colouration. 
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8.6.5.10.4 Coloured Reverb/Resonance 

If the frequency is also non-zero - Q( {set}, f, large, {set}) - then we can express a single resonance as a 

set of quanta with different times and magnitudes. 

8.6.5.10.5 Reverse echo and negative delay 

In non-real-time situations, it is just as easy to create non-causal effects, achieved by convolution with a 

quantum at t<O. 'Negative delay' units can also be 

designed. 

8.6.5.11 Species 10- N1N1 

A species IO atom, shown in Figure 132, has N times, 

one frequency, N densities, and one magnitude. 

8.6.5.11.1 Basic rhythms 
Figure I32- Species IO. 

This differs from species 8 in that each quantum has a 

different density, as shown in Figure I33. This could be 

interpreted as a rhythm, allowing for the fact that we 

are reinterpreting {centre time, width} as {start time, 

duration}. Such a transformation is easy to implement 

but is non-linear. 

Figure I33- Basic rhythm of "Jingle Bells". 

8.6.5.12 Species 11 - N1NN 

Species II has many quanta with the same frequency, as in Figure 134. 

8.6.5.12.1 Accented rhythm 

This could represent an accented rhythm at a certain pitch. as shown in Figure I35. 

__ JlJ. J'J J J 00 JJJ 
> 

Figure I35 - Accented rhythm, taken from the bass line of the 
Mendelssohn. 

Figure I34- Species II. 
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Figure 136- Control envelope. 

8.6.5.12.2 Control envelope 

This is a smooth envelope at a fixed frequency, as shown 

in Figure 136. At f=O we have a master volume control. 

8.6.5.12.3 Single harmonic 

Species 11 , Q({ set}, f, {set}, {set}), is ideal for a single 

partial of a constant frequency. 

8.6.5.12.4 Waveform 

During the steady-state portion of a note, the timbre can be described by a single period. In much earlier 

research by this autho~Nunn 1141, the steady-state spectra of brass notes were studied. Waveforms and 

spectra of a tenor trombone at Bbl, Bb2, Bb3, and Bb4 are shown in Figure 137. 

Figure 137- Waveforms and spectra of trombone notes. 

A single period can be converted to a quantum representation by matching Gaussians to the waveform. 

The sequences of Gaussians can be converted to a spectrum very easily using the sequence relations 

described earlier. Each 'bump' will repeat at the pitch period, and we can convert these sequences of 

bumps into the corresponding steady-state spectrum. 
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If one waveform of the trombone pedal note87 (58 Hz) were very simply modelled as a species-!! atom 

oftwo quanta, 

Q( { -0.0005, +0.0005} ,0; { Adur(O.OOI ), Adur(0.0012), {0.3,0.25} )88 

we convolve this with impulses corresponding to the pitch, 

and get a species-5 atom representing its timbre. 

Q(a~y, {0,58,2x58,3x58,4x58, ... } ,0, {?, 1,3. 7, 7.6, 13.7, ... }) 

It will be convenient to implement the Shah function, which is an infinite sum of impulses. 

The quantum representation thus permits, and even simplifies, pitch-synchronous granular synthesis - to 

form a note, we simply repeat this waveform at the pitch period. (As with PSGS, the waveform is pitch

dependent unless it is suitably scaled.) 

8.6.5.12.5 Quantum-to-on/otT 

To convert a quantum with a time ofto to a 'note' with a start time of to and an end time oftO+dur, we 

replace it by a set of quanta summing to a rectangular pulse. 

8.6.5.13 Species 12- NNll 

In species 12, shown in Figure 138, all the quanta share a magnitude and an alfa. 

8.6.5.13.1 Melody shape 

An example is shown in Figure 139; it represents a basic melody with no variation in magnitude. 

Figure 138 - Species 12. 

111 1 1 l 
Figure 139 - Melody shape for "Happy 
Birthday to You". 

87 A pedal note is one played using the lowest mode ofvibration of a brass instrument. 

88 These values are very approximate. 
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8.6.5.14 Species 13- NNIN 

Species 13 has only one density, and is illustrated in Figure 140. 

8.6.5.14.1 Weighted melody profile 

Figure 140 - Species 13. Figure 141- Weighted melody. 

l :X 
> 

This species can represent a melodic line, as in Figure 141, although the quanta have the same density. 

·-

- II:>=~~ rrr-pl J JJI~IaiJ J F I 
Figure 142- Species 14. Figure 143- Bass line from Mendelssohn. 

8.6.5.15 Species 14- NNN1 

Figure 142 shows species 14, in which there is l,~;lliliiiiiiiii;--;ijijjijiiii!i~ 
only one magnitude. 

8.6.5.15.1 Unweighted melody 

This is general except there is no amplitude 

modulation, as shown in Figure 143. It can be 

thought of as melodies played on a non-velocity

sensitive MIDI keyboard. 

8.6.5.16 Species 15- NNNN 

Figure 144 -Species 15. 

Species 15 represents an atom with a full complement of times, frequencies, densities, and magnitudes, 

as shown in Figure 144. 

8.6.5.16.1 MIDI atoms 

The notes in a MIDI file can easily be 'converted to' an atom of species 15. 
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A note with time MT, pitch MP, duration 

l\1D, and velocity MM can be represented 

by Q(MT+l'viD/2, freq2pitch(MP), 1t/l\1D2
, 

MM). Note that as the Gaussian is 

symmetrical, the time must fall in the 

centre of the note. 

8.6.5.16.2 Timbre 

Species 15 can represent an entire timbre. 

The example in Figure 146 could be a 

brass-like timbre where the upper 

harmonics start later and die down 

sooner. (BenadeJ As most notes have a 

complex attack and a simpler delay, the 

attack has shorter quanta (with .M larger), 

'> 
Figure 145 - Weighted notes, as in Mendelssohn bass. 

-~~~!iml!mll' P!ili!llllml' illlii> 

.... ~!!lm!mlllml!i'i~~--

Figure 146- Simple approximation to brass timbre. 

and is followed by progressively longer quanta. However for an instrument with a rapid cutoff or offset 

noise, such as the organ or the harpsichord, the end would also need several short quanta to create the 

final click. 

This timbre could not be transposed without causing timbral alteration. In the earlier study(Nunn S4J brass 

instruments were found to display formant-like behaviour. (Although Moorer claims they do not. (Moorer 

76
• Moorer na)) Slawson cites research showing fixed formant for violins and double-reed woodwind 

instruments. (Slawson) 

A fixed formant, or a set of formants, can be created easily as shown above, and applied after forming 

and transposing the timbre. Thus, we can at least partly model the dependence of timbre on pitch for 

many instruments by this approach of combining a fixed waveshape with a fixed filter. This 'excitation & 

resonator' approach is also widely used for strings, brass(BackusJ, and the human voice.(Moorer na, MooreF 

90) 

Earlier I described how timbres could be formed from waveforms. Given a note played in several ranges, 

it may be possible to determine how these could be expressed as fixed-waveshape and fixed-filter 

components. 89 Alternatively, we could simply interpolate between the sets of quanta. 

We can· thus derive much of the spectral variation of an instrument by examining the spectra at several 

times, frequencies, and loudnesses. 

89 Other approaches to timbral interpolation include interpolating amplitude envelopes(Homer s&bJ and 

bl [tfomer 95b) b · I · h waveta es y genetic a gont ms. 

199 



8.6.5.16.3 Attack noise 

Inharmonic noise during an attack, such as created by a hammer, a plectrum, or the throat of a 

mouthpiece can be modelled by a set of quanta with short durations at t slightly larger than 0. These 

must be added - there is no linear operation for this. 

8.6.6 Molecules 

The third-lowest unit is a molecule, which is a group of atoms, possibly of different species. The 

addition, multiplication, and convolution of molecules is simply defined as the sum of the result of the 

operations on their atoms. 

8.6.7 Note on the Fourier Transforms 

Earlier I discussed the 'inside-out' operation, which is in fact the Fourier Transform. Since the times and 

frequencies are interchanged, species 4-7 become· species 8-11 and vice versa. The effect of this is that 

multiplication by a species-4 atom is equivalent to convolution with a species-8 atom and so on. Species 

0-3 and 12-15 stay the same species when Fourier Transformed. 

Species 4 is a group of frequencies, such as a temperament, a chord, or a scale. Species 8 is a set. of 

times, as in rhythm, repetition structure, or martellato. Thus, the Fourier Transform of a chord is a 

rhythm. Likewise, species 5 is a waveform shape, AM, tremolo, or filtering. - species 9 is a rhythm, a 

simple envelope, reverb, or resonance. Species 6 seems useless- species 10 is a type of rhythm. Species 

7 is a symmetrical tone - species 11 is a rhythm, a control envelope, or a harmonic. 

8.7 Implementation- PC 

8.7.1 Synthesis 

Synthesis based on these control structures was implemented in Turbo C on the PC. The creation of 

music from an aggregate of shorter acoustic events would generally fall into the category of granular 

synthesis. The approach outlined here differs from conventional granular synthesis in that quanta do not 

have a start or end, are (conceptually) infinitely long, and only contain a single frequency. 

As memory is crucial in the context of music preparation, the previously written virtual memory drivers 

were used for the sample buffer. On 'Dan', my PC, this allowed the use of 8 MB of extended memory 

followed by disk space. The memory requirement naturally also depends on the sample rate, and any 

sample rate can be supported. A 6-kHz sample rate may not be high fidelity, but it shortens testing time 

significantly. Far memory is reserved for storage space for the parameters of the quanta. 

Quanta are converted to samples using the recursive method described earlier, which needs 4 real 

multiplies and one real add per sample. This leads to fast synthesis, even on standard PC hardware. 

The wavelet need only be calculated to the desired precision. In the earliest implementation, the only 

output device supported was the PC speaker, so 8-bit char accuracy is excessively high-fidelity! 16-bit 
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integer-coding is both commonplace and readily supported, so it is most convenient to operate with 16-

bit integers. 24 bits may be preferable but are less easily supported - 32-bit words are supported as 

doubles, but this is of course costlier in memory. 

We synthesise each sample from when it becomes significant (i.e. greater than 2"16
) to when it becomes 

insignificant again. This means that for a given alfa, a quantum that has a lower magnitude is calculated 

over fewer samples than one at a larger magnitude. This allows savings in execution time since many 

quanta will indeed have magnitudes well below the maximum. The relative freedom from resolution also 

permits the user to operate in 'draft mode' (8-bit or I2-bit) to allow faster working on a piece, but 

render the final output in I6 bits. It is also convenient to operate at a lower sample rate while working, 

as processing time is directly proportional to sample rate. 

In the current implementation, each atom is broken into quanta, which are then calculated individually. 

This could be made more efficient by implementing synthesis routines designed for each species. For 

example, a species-4 atom could be made IJSing N frequency calculations _but only one Gaussian 

calculation per sample. 

Since the start time and end time can be calculated from the time, density, and magnitude, the scheduling 

of synthesis is relatively straightforward. 

8.7.2 C-hased composition interface 

The first available composition interface is to use the same language as the synthesis engine, in this case 

C. This means we can script a composition using the full range of C control structures and algorithms. 

However, this method also has the drawbacks that it is less intuitive and that compilation ·causes a 

sizeable delay between conceiving a musical concept and hearing it. 

The central call is MakeFillAtom. This is illustrated best by example. The function call 

MakeFillAtom(4,4,1,1, 0,1,2,3, 800,900,1000,800, Adur(1), 0.3) means 

'make an atom with 4 times, 4 frequencies, one alfa, and one magnitude, and fill it with the following 

values', and is equivalent to Q({O,I,2,3},{800,900,I000,800},Adur(I),0.3). This example gives the first 

four notes of'Frere Jacques', and Adur (dt) is shorthand for 1t/dt2
. It is redundant but simpler to use 

the '4, 4, I, 1 ' notation than 'species 12 of size 4 ', although it is the latter form that is used internally. 

Only a few simple functions need be implemented - multiplication and addition of atoms, as discussed 

earlier, and 'direct' multiplication and addition to their four arrays. For example, Dmult (a tom, 1, 

1 , . 1 , 4 ) means 'multiply the times, frequencies, alfas, and magnitudes by I, I, I ,and 4 respectively' -

i.e. 'amplify by 4'. 

Higher-level operations are generally straightforward. The following pseudo-code illustrates note-level 

composition, and is relatively close to the actual syntax. 

201 



FrereTune= ... 

FrereTemp=Add(Frere.Dormez.Sonnez.Ding) 

FrereJacques=Add(FrereTemp.DelayedCopy(FrereTemp.4)) 
Round=Convolve(FrereJacques. FourTimes) 
Sound=MyFunction(Round) 

Out=Convolve(Sound, RoomResponse) 

Stretch(Out.44100) 

Ampli fy(Out, 32767) 

Synthesise(Out) 

With the structural 

e~pressiveness afforded by a 

general-purpose computing 

language, and the wide range 

of musical structures that can 

be represented simply as 

atoms, one can easily 

imagine many applications to 

composition. 

It is necessary to carry out 

these operations in both the 

frequency and the log-

frequency domain; this 

MODEL TIMBRE • • • 

-

allows us to apply timbre, in 

a manner similar to that 
F=>P 

suggested by Mont-Reynaud 

and T anguiane. [Mont -Reynaud 

90, Tanguiane 95] The 

procedure for applying 

timbres is illustrated m 

Figure 147. The timbre, in 

the frequency domain, is 

OUTPUT 

• • • • 
• a 

• a 

• • 0 

a 

Figure 147- Forming timbres using quanta. 

PITCHMA// 
I 

converted into the pitch domain using the operation 'P~F'. The pitches are probably originally specified 

in the pitch domain. These are used to offset the timbres, giving the 'log-audio'. Then the 'F~P' 

operator converts these into frequencies. 

The. construction of larger musical structures is illustrated below. I show the musical intention and the 

atom that realises it. The figure in brackets is the species of the atom. 
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We could take a 12-bar bass line, 

convolve it with major chords, 

that have short upbeat notes, 

add a bass figure, 

and put the lot into G, 

emphasising phrases, 

then form a guitar envelope, 

make a timbre from an odd component, 

and an even component, 

scaling the amplitudes sensibly, 

then applying a couple offormants, 

and a little tremolo, 

before adding reverberation, 

and playing it to the left channel, 

and the right channel one lTD later. 

Q( {0, 1,2,3,4,5,6, 7,8,9, 10,11} ,pitch{0,5,0,0,5,5,0,0, 7,5,0,0} ,oo, 1) (1 2) 

Q(O,pitch{0,4, 7},oo, 1) (4) 

Q({-0.125,0},0,oo,{0.1,1}) (9) 

Q( {0,0.5 },pitch{ -24,-12 },oo, {1,0.8}) (1 3) 

Q(O,l96,0,1) (0) 

Q(0,{0,0.25},0,{0.8,0.2}) (5) 

Q(O,O, {10000, 1000, 100}, {0.1,0.5,2}) (3) 

Q(O, { 1,3,5, 7,9, 11,13 },0, {20,20, 15, 10,3, 1,1}) (5) 

Q(0,{2,4,6,8, 10, 12},0,{7, 12,6,3,4,2}) (5) 

Q(0,0,1,0.01) (0) 

Q(O, {2000,5000}, 1000000,{6,2}) (5) 

Q(0,{0,6},0,{0.95,0.05}) (5) 

Q({0,0.1,0.3},0,oo,{l,.2,.1}) (9) 

Q(0,0,1000000,0.9) (0) 

Q(0.0007,0,500000,0.4) (0) 

The entire example could be described in around 480 bytes as follows. 

pitch ( Q ( ( 01 11 21 31 41 51 61 71 81 91 101 11} 1 pitch ( 0 I 5 1 01 0 I 5 1 5 1 0 I 0 I 7 I 5 1 0 I 0} I 00 I 

1) 0 ( ( Q ( 01 pitch ( 01 41 7} 1 001 1) 0Q ( ( 0 • 12 51 0} 1 01 001 ( 0 • 11 1}) ) +Q ( ( 01 0 • 5} 1 pitch 
{- 2 4 1 -12 J 1 001 { 11 0 • 8 } ) ) 0Q ( 0 1 19 61 0 1 1) ) 0Q ( 01 { 0 1 0 • 2 5} 1 0 1 (,0 • 8 1 0 • 2 } ) 0 ( Q ( 01 0 

1 { 10 0 0 0 I 10 0 0 I 10 0} I { 0 • 1 1 0 • 5 1 2} ) 0P itch ( Q ( 0 I {1 1 3 1 5 1 7 I 9 I 11 1 13} I 0 1 { 2 0 I 2 0 I 

151 101 31 11 1} ) +Q ( 01 ( 21 41 61 81 101 12} 1 01 { 71 121 61 31 41 2} ) *Q ( 01 01 01 0 • 01) ) 0Q 
( 0 1 ( 2 0 0 0 1 50 0 0 } 1 1 0 0 0 0 0 0 1 { 6 1 2 } ) 0Q ( 0 1 { 0 1 6 } 1 0 1 { 0 • 9 5 1 0 • 0 5 } ) 0Q ( ( 0 1 0 • 11 0 • 3 } 

10 1oo1 {1 1 .2 1 .1})0pan(Q({0 1 0.0007} 1.0 1 {100000000 150000000} 1 {0.9 10.4})) 

As an alternative to C, it may be worth examining the possibilities of implementing a formal grammar to 

expand expressions such as the one above. 

8.7.3 Graphical User Interface 

An attractive alternative to typed input is to use graphical output and mouse input. To this end, a 

graphical front-end with menuing and ~ouse support was designed. Figure 148 is a screen shot. The 

mouse is used both to operate the menuing system and to 'draw' quanta on the screen. For each 

quantum, four parameters must be specified (ignoring the imaginary part of magnitude). The time and 

frequency depend on the (x,y) position when the mouse is clicked, and the density and magnitude 

depend on where it is released. 
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Figure 148- Screen shot from the User Interface. 
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The figure above also illustrates the menu system. The menu edge points out when there is a submenu, 

and if the cursor is over such an item, the submenu text is displayed. When the menu item is a command, 

there is a separated triangle, as with 'Inside Out' and 'Tidy Up'. If the item has no action, not shown 

above, the right-hand edge is vertical. Characters are draw using a 5x4 font, the minimum for legibility. 

The time resolution that can be drawn depends ultimately on the mouse resolution but also depends on 

the graphics resolution. The standard VGA resolution of 640*480 is adequate but not luxurious, so 

provision was made for supporting SVGA graphics drivers by using add-in BGI (Borland Graphics 

Interface) files. This allowed software support for resolutions up to 1280x1024, although the monitor 

specifications limited this to 1024x768. 

As mentioned earlier, the parameters for the quanta are stored as 32-bit floating-point numbers. This 

means that a species 15 atom will take up 5x32/8 = 20 bytes of memory per quantum, plus a few bytes 

for the atom itself The maximum number that could be loaded was around 7700, using 154000 bytes of 

far memory. 

The system allows (arbitrarily) 21 molecules (only of species 15) to be manipulated; both linear 

operations (e.g. multiplication and convolution) and non-linear operations (e.g. time-stretching and 

transposition) are selected from the menu. 
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The graphical approach provides an intuitive way to compose sounds but lacks the structural generality 

of a procedural language at the higher levels required for composition. The ideal may lie between these 

two forms, incorporating links between entities such as in the Max(Puckette 90• Puckette 91 bl or 

Nyquist[Dannenberg 93
bJ interfaces, or those illustrated by Desain's Domino system_(Oesain 931 The 

underlying structures are identical, but we may wish to specifY them by graphical drawing or by menu 

selection or by text input. 

8.8 Implementation - C40 

Synthesis of quanta, but not their control structures, has also been implemented on the C40 system with 

the DAC board developed by Milos Kolar, in a preliminary investigation of the feasibility of a real-time 

system. In principle, four multiplies and one addition need be performed for every output sample. We 

have previously shown that the maximum possible operations is 567 per sample (at 44100 Hz), but the 

C40 can carry out some operations in parallel. This suggests that we can calculate several hundred 

overlapping quanta in real time, although other-overheads will reduce this. 

A simple program was written to test the timing. The results given in Figure 149 show the running time 

as a proportion of real time for a given number of quanta, for a sample rate of 44100 Hz. It shows that 

we can calculate 220 quanta in real time if they are then ignored, but to calculate and send the samples 

individually to the DAC, we can only manage 87 in real time. Thus, if buffering is implemented we can 

expect a figure between 87 and 220. While this figure is not extravagant, this is sufficient for useful 

experiments with real-time synthesis. 

4 

3.5 IJ Calculate + Output 

3 •calculate 
Gl 
E 2.5 +I 

g! 2 
+I 
1"11 1.5 4i a:: 

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 

Number of quanta 

Figure 149 -Relative time for calculating N quanta on the C40. 

8.9 Analysis using quanta 
In discussing quanta above, I have concentrated on their applications to synthesis. However, they are 

also well suited to analysis, where we wish to form quanta from a given waveform. There is an infinite 

range of sets of quanta that sum to the input signal, and several methods of picking sub-optimal sets. 
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Below I outline several methods of analysis using quanta. Preliminary investigations have involved the 

implementation of both the Gabor transform and DC analysis. Further work is necessary to evaluate the 

effectiveness of these analysis schemes. 

8.9.1 Gabor transform 

The Gabor transform is essentially the same as the SIFT with a Gaussian windowing function. This lets 

us represent a signal as quanta with times corresponding to the centre of each block and frequencies 

corresponding to the SIFT bins. Another possibility is to combine this approach with the multirate 

techniques used in the previous system. 

8.9.2 Sine modelling 

In this method, each sample is treated individually. Given a single sample and the knowledge of the 

sampling rate, we wish to convert it to the continuous form. This means convolving the input with a set 

of quanta that sum to sinc(x). Since sinc(x)=sin(1t.x)/(1t.x) and sin(1t.x) is straightforward to express 

using quanta, we thus try to form I/(1t.x). 

A good approximation to I/(1t.x) is given by summing 

from n=-co to +co and with sign taking values -1 and +I. Kappa is a constant, K"" 0.07386. Although 

this is a good approximation, it is not an equality. (The error is below the 14-bit level. In fact ~2 was a 

lucky first guess and is not the best factor.) 

When this is multiplied by sin(1t.x), represented by two quanta, we get a sine. For large positive n, these 

terms add distant broad small quanta, and the largest n worth using is the last with an amplitude greater 

than the precision desired- for 16-bit accuracy this would be around 32. For large negative n, they add 

narrow high quanta near x=O. There are inevitably problems at x::.:O, where 1/x swings from -co to +co. In 

fact a truncated sum tends towards the sine function except at x=O, where it remains stubbornly at zero 

since our approximation to 1/x is zero at x=O. (It is somewhat ironic that a sample at t=to can be 

translated to its continuous representation at all times except to.) The resultant sine approximation thus 

has a notch at x=O whose width can be made arbitrarily small. To compensate for this notch, another 

term can be added at x=O. 

The problem with such accurate modelling is that it takes a large number (::.:100) of quanta to model a 

sine. A possible alternative route is by noting that sinc(x)=cos(x)cos(l:hx)cos('14x) .... 

8.9.3 Iterative refinement 

In the two methods above, we get a description in terms of a large nuinber of wavelets with parameters 

chosen from a finite and discrete set. However, while they sum to the original signal, they do not 

necessarily correspond to the most compact description. If the Gabor transform is used initially, we 
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essentially inherit the same problems as the STFT and multirate STFT. One of these is that the time 

resolution is unable to capitalise on long periods of steady-state or very slow activity. The converse of 

this problem is that the time resolution may not be small enough to capture short details in the signal. 

One possible solution to both these problems is to try to get this set to evolve into a better (i.e. smaller) 

set. I have described above how a quantum can be broken into several shorter quanta, and conversely 

how we can combine quanta into longer entities. Here the perfect symmetry in time and frequency of the 

Gabor wavelet is clearly better than time-limited and band-limited wavelets. 

The STFT offers a static non-constant Q. The multirate system allows a static near-constant Q. The 

Multiresolution FT gives a discrete set of Q's to choose from. The Gabor transform combined with 

iterative refinement can allow a dynamic arbitrary Q, suited to exactly what is in the waveform. 

Likewise, the STFT, multirate STFT, and MFT offer a fixed set of times and frequencies, but the 

method I have described offers an arbitrary range of parameter values. 

The optimisation could be implemented as an iterative system wherein a large pool of quanta interact by 

breaking up and combining with others. This suggests an 'artificial life' type genetic algorithm 

implementation in which the over-riding principle is to minimise the population. This has, however, not 

been implemented yet. 

8.9.4 Basis pursuit 

Another approach is to look for a more optimal set to begin with. Scott Chen outlines a technique 

known as Basis Pursuit. [Chens 94
• Chens 96

' ChenS 961 Chen stresses that each representation is non-unique, 

adding "It gives us the possibility of adaptation, i.e. of choosing among many representations one which 

is most suited to our purposes." He builds on Mallat's approach called 'Matching Pursuit', which 

iteratively removes elements from a signal.(Mallat 931 Gribonval's work based on this allows the 

decomposition of piano notes into a highly efficient representation. [Gribonval) 

8.9.5 DC analysis 

A similar approach involves solely time-domain analysis to begin with. It is clear that as the waveform is 

being read in, it would be relatively straightforward to iteratively look for and remove 'DC' Gaussians, 

i.e. quanta with f=O. We would then use the iterative principles discussed to evolve towards the 

frequencies. To illustrate, imagine the waveforms of the trombone notes shown earlier being input to an 

analysis system. Rather than carry out spectral analysis, we remove peaks from the waveform. The 

roughly periodic nature of the tone means that we would spot roughly the same Gaussian at roughly 

equally spaced times, with magnitudes roughly according to another Gaussian. We then replace each 

with a Gaussian with more accurate parameters (plus several error Gaussians) and convert this set into a 

set of harmonically related quanta over a longer period. Each set of Gaussians extracted similarly forms 

sets of quanta. We would then have several quanta over each partial, and these would then be combined 

into fewer quanta at the same frequency. The small errors arising from these operations would be put 
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back into the general 'pool' of things to be considered and recombined - they may cancel out errors 

from other operations. 

8.10 Advantages for analysis and resynthesis 

Many parts of the previous transcription system developed with the multirate STFT could be reused for 

quanta. 

The second approach has a key advantage over the first, in that envelopes can be represented more 

compactly than a block-based approach, but without the inaccuracies introduce by straight-line 

approximations. This points to good potential for compression, although this has not been the main 

focus. Partial tracking could be much more efficient than with the multirate STFT using the iterative 

process described above. In a sense, the grouping principle of temporal continuity can be implemented 

by the model trying to reduce the size of a data set. Recall the continuity illusion, in which a quiet 

sinusoid was assumed to be present during loud noise, even if it is not. The smallest representation 

would be one in which the sine was coded as continuous. Even if it is not actUally present, this would 

still apply. 

Another problem in the original analysis has been solved. The eventual entities for a single partial were 

often combinations of different overlapping sets of blocks at different sets of frequencies, and it was not 

possible to merge these into a single entity. However, with quanta it is possible to change a quantum at 

t=5.997 seconds and f=882 Hz into one at t=6 and f=880 if higher-level knowledge (such as from other 

partials) suggests that this is more accurate, since we can derive the error precisely in terms of other 

quanta. 

The distinction between bottom-up and top-down processing has been discussed before. Here the 

iteration allows both bottom-up and top-down processing of data. Yet whereas many . top-down 

approaches go outside the top of the computer, and require a user to help the process, the principle of 

data minimisation permits an automatic system. 

It is hoped that the results of such a system would be at least as good as those for the previous system. 

Indeed, the facts that the representation is more well behaved and that transformation is compactly 

encoded suggest that Gabor wavelets would outperform the earlier system. 

The final benefit is that the synthesis is more efficient than before. With the block-based system, 

resynthesis would not have been practicable. As we have interpolated the times and frequencies, the 

advantages of the multirate STFT are no longer available. 
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8.11 Summary 

Gabor wavelets, or quanta, offer much potential for synthesis. As well as being conceptually simple and 

computationally inexpensive, they lend themselves to an attractive interpretation as elemental sonic 

entities. 

Another key advantage from the synthesists' viewpoint is that higher-level entities, such as melodies, 

timbres, scales, envelopes, filters, and reverberation, can also be expressed using the same paradigm. 

This contrasts with many synthesis methods where the 'score' and 'orchestra' are specified in 

completely different ways. The convenience of the quanta-based approach for specifying musical mid

level and high-level entities has been demonstrated. 

However, the greatest promise in a quanta-based approach is that it appears to be as well suited to 

analysis as synthesis. Quanta can be used throughout the analysis scheme; they are applicable to both 

short and long spectral details. Although the complete analysis/resynthesis system has not yet been fully 

implemented, it seems that Gabor wavelets are well suited to this task. 
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9. Conclusions 

In this research I have examined the analysis and resynthesis of polyphonic music, with the aim of 

developing a computer system for the characterisation and transcription of both notes and timbres. I 

have designed, implemented, and tested such a system. 

The first stage of this research was an examination of the human auditory system and our perception of 

sound in general. This was followed by a discussion of our perception of musical sound. As some type 

of source separation is an essential part of polyphonic analysis, special attention was paid to our ability 

to interpret a complex waveform as the sum of its parts. The complex relationships between the 

parameters by which we characterise individual notes and the measurable physical parameters were 

explored. 

This was followed by an investigation ofvarious analysis and synthesis schemes, and the definition of the 

computational task to be addressed. It was noted that many audio processing applications are designed 

entirely for synthesis and have no corresponding analysis scheme, while others are designed entirely for 

analysis but do not permit resynthesis. The system under development is not intended as an analysis 

engine or as a synthesis engine but as a tool for analysis, transformation, and resynthesis. It has been 

designed to be applicable to complex musical situations without any prior knowledge of the input. 

Furthermore, it should be able to accurately resynthesise the original data. 

The· primary objective is the recognition and transcription of musical audio. This has applications in 

intelligent tools for auditory scene analysis and electroacoustic composition. An artificial listener can 

also be used in interactive performance applications such as auto-accompaniment, and in expressive 

performance analysis where the interpretation of a score is to be studied. Other related applications 

include source separation, noise removal, and data compression. Furthermore, while the system is not 

intended to be a physiologically accurate model of our auditory system, it does permit the emulation of 

human perception of music. 

Both analysis and synthesis can be viewe~ as the conversion of one representation into another. 

Consequently, the characteristics of various existing representations of musical audio were compared. 

The most desirable attributes of a representation are that it is general, compact, parallel, and intuitive. 

Using these guidelines, many common synthesis techniques were found to be unsuitable for synthesis

by-analysis. Two possible approaches to the goal of analysis and resynthesis emerged; one is based on a 

multirate implementation of classical additive sine-wave synthesis, and the other is based on the newer 

field of wavelets. 

Next I outlined the computational requirements of the task. This was followed by an examination of the 

capabilities of the computing platforms available; the IBM PC, the Texas Instruments' TMS320C40 

digital signal processor, a network of Inmos transputers, and a Unix machine. The high computational 
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demands suggested that real-time operation would be unfeasible on any of these platforms. Accordingly, 

the overall design strategy was to adopt a modular pipelined configuration with a view to possible future 

implementation in real time on more powerful hardware. Each platform offered different benefits and 

drawbacks, and the route adopted was to develop a hybrid system. This used the C40 for the most 

computationally intensive stage and the PC for other stages where either graphical display or sound 

output was of greater importance. 

This was followed by a detailed review of previous research in transcription and source separation. 

Distinctions between lines of research were made on the basis of the source polyphony, on whe.ther they 

were designed for real-time applications, and most importantly on how much score and timbral 

information is known to the system in advance. Many of these had achieved some degree of success at 

transcribing a limited range of examples. It was noted that the lack of a standard set of test pieces makes 

it difficult to quantify the performance of a particular system, and harder still to compare the 

performance of different systems. 

After this the various parts of the transcription system implemented were described in detail. For the 

initial stage ofthe analysis, a multirate Short-Time Fourier Transform was adopted. This permits a much 

more equitable allocation of the time-frequency bandwidth than the standard SIFT. This stage of 

processing is carried out on the C40. This is followed by several further stages of processing on a 

standalone PC. First, prominent frequencies are extracted from the multirate SIFTs. Next, these are 

tracked in time to form partials. The final process simulates the fusion of sets of harmonically related 

partials into notes. 

Throughout the analysis, it was found to be extremely useful to be able to graphically display the data in 

its various representations. Techniques were developed for generating animations depicting the 

evolution in time of the multirate spectrum or the dependence of the processing on particular 

parameters. 

The whole analysis is controlled using a specially designed interpreter for script files. The potential 

obstacle of the limited memory of the PC was addressed by implementing a virtual memory driver that 

allocates space from conventional memory, extended memory and hard disks. Each stage of the analysis 

is run as a separate program, also for reasons of memory. The undesirable side-effect of this design 

means that the stages cannot interact and hence the data flow is entirely bottom-up, so knowledge 

gained at later stages cannot be applied to earlier measurements. 

The completed analysis system was then subjected to extensive testing. In order to identify the 

limitations of the system, a wide variety of sources was chosen. There were up to four methods of 

assessing its performance. The first was to listen to the MIDI resynthesis. In cases where the correct 

score was available, it was possible to compare scores in common practice notation. Where the correct 
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timing information was also available, it was possible to compare 'piano roll' scores. The last of these 

methods permitted quantification of the accuracy based on the proportion of overlap between two such 

piano rolls. 

The system achieved a reasonable degree of success at transcribing polyphonic music. In particular, its 

success at unscrambling nine-note organ polyphony was greatly encouraging. However, application to 

other examples, including a brass trio, polyphonic piano, orchestral strings, solo didgeridoo, and 

cathedral bells, revealed that the system was not as robust or as general as had been hoped. The 

presence of noise, weak fundamentals, inharmonic tones, rapidly varying envelopes, and short low notes 

raised new complications. 

These issues were addressed by redesigning the analysis system using a different fundamental building 

block, the Gabor wavelet. This is much more mathematically well behaved, in the sense that the wavelet 

and all its derivatives are continuous. In addition, it possesses the minimum time-bandWidth product 

permitted by the uncertainty relation. These·· wavelets can be synthesised through a very efficient 

recursive process. A technique was devised that allowed the compact storage and manipulation of 

multiple wavelets. 

It was established at the outset that this scheme is practical for synthesis. This was demonstrated by the 

implementation of a text-based acoustic compiler and a graphical composition interface. Both of these 

programs highlighted an important advantage for composers of electroacoustic music - higher-level 

musical structures such as melodies, chords, and rhythms can be specified compactly using the same 

paradigm as that used to form timbres. In addition, transformative operations, such as filtering, 

reverberation, and timescale modification, can be carried out in the symbolic domain rather than on the 

waveform itself 

The various stages of the wavelet analysis have been examined, and seem to be practicable. Gabor 

wavelets can be merged and adjusted in a way not possible With the previous block-based approach, and 

this is expected to greatly improve the performance of partial tracking. Whereas the first system used an 

essentially static Q, wavelets permit Q to be changed dynamically to allow the efficient coding of both 

long and short musical entities. The remaining stages of analysis, such as harmonic matching, are equally 

feasible With a quanta-based system. Finally, the resynthesis stage is more efficient than With the 

previous system. 

It is anticipated that these modifications Will significantly improve the characterisation performance. 

Ho~ever, further research is required to fully implement and evaluate this method of analysis, 

· transformation, and resynthesis. 

The main finding of this research is that it is possible for a computer to emulate the perception of 

polyphonic music. A more effective analysis Will require a combination of bottom-up and top-down 
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processing. For robustness, it is also important for the analysis to be able to automatically adapt itself to 

the nature of the data. Graphical output is of vital importance for interpreting the large amounts of 

intermediate data. The wavelet approach outlined seems to have several clear advantages over block

based methods. 

Polyphonic transcription is widely recognised as being one of the most elusive goals in computer music 

research, and I would not claim to have yet reached this goal. The key contributions I have made 

through this work are a thorough examination of the task, the complete implementation of a system for 

this purpose, and the presentation of results from testing its performance on a wide range of musical 

examples. I have also identified many common musical situations that require special attention, and 

highlighted methods through which this work may be taken forward by enhancements to the original 

design. 
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10. Appendices 

10.1 Appendix A- Smooth FFTs and twisted butterflies 

The general flow diagram for the radix-2 decimation-in-time FFT[EIIiott) is shown in Figure 150 for N=8. 

(The diagram for decimation-in-frequency is the mirror image of this.) Xa is the input sample, Xb and 

Xc are intermediate results, and Xs is the spectrum data. 

Os 

1 s 

2s 

3s 

4s 

Ss 

6s 

7s 

Figure 150 -Standard butterfly diagram. 

The basic operation involves replacing x and y with x+y and x-y, and is known, from its shape, as a 

butterfly. The standard FFT requires O(N.IogzN) calculations to be done at the end of the block. In 

order that this can be calculated with O(log2N) operations each sample, we must distort each of the 

butterflies as shown in Figure 151, which illustrates three consecutive FFTs. This rearrangement is 

similar to the pipeline FFT. [Rabiner 751 
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Figure 151 - Twisted butterfly diagram. 

Note that the intermediate results must be stored, as shown by the dotted lines, because we require the 

value of '2a' after we have calculated '2b'. To see how much extra memory we require, note that at any 

time, there is one 'a' value in storage, two 'b' -values, and four 'c' values. By extension, we can show 

that the total extra storage is equal to N-1. 

Although the computation is relatively smooth with respect to time, the overhead in swapping values to 

and from these temporary locations fluctuates slightly. At stage s, the number of these memory accesses 

is given by the number ofbits set in the binary representation of(s+l), up to a maximum oflog2N (3 in 

this example). 

The algorithm for N=8 is as follows:-

Stage Data input Fetch Calculate Calculate Spectrum output Store 

Oa 6a 7b = 7a-6a Sc = Sb+7b Is= lc+Sc Oa 

la 4b Ob = Oa+la 6c =.6b-4b 2s = 2s+6c Ob 

2a Oa, Sb lb = Oa-la 7c = 7b-Sb 3s = 3c+7c lb, 2a 

3a Oc 2b = 2a+3a Oc = Ob+2b 4s = Oc-4c Oc 

4a 2a, lc 3b = 2a-3a lc = lb+3b Ss = le-Se 4a, lc 

Sa Ob,2c 4b.=4a+Sa 2c = Ob-2b 6s = 2c-6c 4b,2c 

6a 4a, lb, 3c Sb = 4a-Sa 3c = lb-3b 7s = 3c-7c 6a, Sb, 3c 

7a - 6b = 6a+7a 4c = 4b+6b Os = Oc+4c -
Table 44- Algorithm for smoothed FFT 
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10.2 Appendix B- Derivation of OFT as filter 

The DFT can be reinterpreted as a set of filters in two ways:-

Periodic DFf filter:-
A periodic frequency response of [ 

. ( 1 )] sin(Jt·f) 

exp -p f· I -N N<;•(:f) 
convolved with a nonperiodic input spectrum. 

Nonperiodic DFf filter:-
A nonperiodic frequency response of [ . ( 1)] sin(Jt·f) 

exp - J ·Jt ·f. 1 - N · 7t. f 

convolved with a periodic input spectrum. 

These are equivalent; the former is used below. 

If the input is x(t), then we sample it by multiplication with N delta functions at a spacing ofT. 
The DFT is thus given by 

X(k)·~r -j·211·k·_!_ L o(t- n·T)·x(t)·e p dt 

( n=O .. N- 1) 

We can change the limits of integration to give 

X(k)• [ 
-j 211 k·_!_ 

p 
d(t)·x(t)·e dt 

where d(t)=~· L o(t- n·T) 

( n=O .. N- 1) 

Since the transform of a product is a convolution, X( k)=F( x( t )·d( t) )=n(f;) x Xa({;) 

where Xa is the Fourier transform of the original analogue function. Thus, 

x(k)= [ n(~) x.(k; f) d~ 

D(f!P) defines the filter response, and is the Fourier transform of d(t). Using P=NT, we get:-

-j-2·11·f_!_ 2:: o(t- n·T)·e p dt=~· L: 
( n=O .. N- I) ( n=O .. N- I) 

Using the formula for the sum of a geometric sequence, 

(f) I I - e- 2j- 11.f 
D- =-·----

p N -2-j-11·_! 
1 - e N 

- j-2.11-f._l!_ 

e N 

As this is independent of the period P, we will normalise it using P=ls. This gives the final result:

D( f)=e-j·11·f (I-~). sin( Jt·f) 

N·sin( Jt·h) 



The first term here indicates the linear phase shift, and the second is the amplitude response, 
showing how each frequency leaks into neighbouring bins in the DFT. 

The graph below shows how the magnitude ofD(f) varies with f-
ind 
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z 

sin ( x ·find) 
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Note that the response shown above at f-=128 is -1, but the phase shift turns this back to approximately 
+I. The first section of this is approximately equal to the sine response of the nonperiodic filter, and is 
shown in more detail below:-

N = 128 Z = 50 ind2 : = 0 .. 25 · Z 

0.5 

M2ind2 

0 

find2 = - 5 + ind2 M2ind2 
z 

M2 :=I 
5·Z 
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10.3 Appendix C- Derivation of OFT deconvolution 
In Appendix B, we showed that the DFT can be expressed as:-

X(k)• [ 
- j-2·11 k·_!_ 

d(t)·x(t)·e P dt where d(t)=~· L &(t- n·T) 

(n=O .. N- 1.) 

If we apply a weighting w(t) to the data (the term window is best kept for use in the spectral domain- i.e. 
a window is the transform of a weighting), then we must modify this to:-

X(k)= [ 
-j 2·1l·k·_!_ 

p 
d ( t) · w( t) · x( t) · e dt 

X( k)=F( d( t )·w( t) ·x( t) )=D' (i) x Xa(i) 
where Xa is the Fourier transform of the original analogue function as before, and 

n·(;)~F( d( t) ·w( t)) 

There are many possible weightings, derived for different purposes, making a compromise between 
numerical simplicity, mainlobe sharpness, maximum sidelobe level, and sidelobe fall-off A large and 
useful category, including the Hamming and Hanning weightings, is defined by:-

The weighting adopted was the 4-term Blackman-Harris weighting, which reduces sidelobes to -92 dB, 
at the expense of a relatively broad mainlobe. This is given by:- · 

a
0
=0.35875, a

1 
=0.48829, a

2
=0.14128, a

3
=0.01168 

The transform of the weighting function is thus:-

I 1 I I 
W(f)=a ·&(f)+ -·a ·8(f +I)+ -·a ·8(f- 1) +-·a ·8(f + 2) +-·a ·8(f- 2) + ... o 2 1 2 1 2 2 2 2 



WecannowderiveD'(t)as D'(f)=D(f) x W(f)= ... 

~. s.in((::;)) -exp[- j ·x·f. ( 1 _ ~) J ... 
Stn-

N 

+ 2a~_sm[(::~;: ;~)]·exp[-j·x·(f+ 1)·(1 _ ~) J + 2a~_sm[(:·~;~ ;~)l·exp[-j·x·(f- I)·(I- ~)] ... 
Stn Sin -'-----'-

N N 

+~-sin( x·(f + 2)) ·exp[- j·x·( f + 2 )· (1 - _!_) J +~-sin( x·( f- 2)) ·exp[- j·x·(f- 2)· (I - _!_)] ... 
Stn Stn -'-----'-2·N. [x·(f+2)] N 2·N. [x·(f-2)] N 

N N 
+ 

If we limit the series to four sinusoidal terms, and use the abbreviation . (f) sin(x·f) 

zmc = (x·f) 

then we finally have Stn N 

exp[- j ·x·f. (1 - _!_)] 
D'(f)= N 

N 
a

0 
·zinc( f) ... 

+ a1-exp(j·x)·zinc(f+ 1) + a1-exp(-j·x)·zinc(f- I) ... 
2 N · 2 N 

+ ;-exp(2 ~·x)·zinc(f + 2) + ;-exp(- 2~·x)·zinc(f- 2) ... 

+ ;-expe·~x)·zinc(f+ 3) + ;-exp(- 3~-x)·zinc(f- 3) 

The numerator of the zinc function need only be calculated once, as the sin function repeats. 
Note also that care must be taken when the denominator is equal to zero; here, zinc(t) = +/- N. 

(Some analyses ignore the exponential terms in this sum, giving 

D'( f)= exp[ j • f ( 

1 

- ~) l (a
0

-zinc( f) ~~-zinc( f + 1) + a1 -zinc( f- 1) ... I 
N 2 2 

~ ~ . ~ ~ 
+ -·zinc( f + 2) + - · zinc(f - 2) + -·zinc( f + 3 ) + - · zinc(f- 3) 

. 2 2 2 2 

However, this will lead to small but significant inaccuracies. There is little overhead in calculating 
this phase correction, as the later terms can be derived recursively.) 

To deconvolve the spectrum, we use the above equation to evaluate the spectrum that would result 
from a sinusoid at a specified frequency, and calculate the correlation between it and the actual 
spectrum at seven neighbouring points. The procedure gives both a spectral estimate and a 'goodness 
of fit' coefficient. We then iterate until this fit is maximised. 



10.4 Appendix D- Derivation of errors in resynthesis 

Here we determine the time-domain errors caused by resynthesising data based on an estimate in the 
spectral domain. 

If the original signal is given by 

and the estimated signal is 

y= ( A + a ) · cos (( ro + &> ) · t + ( ci> + t.ci>)) 

y'= ( A - a ) · cos (( ro - &> ) · t + ( ci> - t.ci>)) 

then the error is 

e=y- y'=(A + a)·cos((ro + t.O>)·t + (ci> + t.ci>))- (A- a)·cos((ro- t.co)·t + (ci>- t.ci>)) 

Note that, for numerical simplicity, 

a is half the amplitude error 
t.ro is half the frequency error 
t.ci> is half the phase error 

We rearrange this as 

e=(A + a)·cos((ro·t + ci>) + (&l·t + t.ci>))- (A- a)·cos((ro·t + ci>)- (&l·t + t.ci>)) 

For brevity, define p=ro·t + ci> and t.p=t.ro·t + t.ci> 

e=(A + a)·cos(p + t.p)- (A- a)·cos(p- t.p) 

e=(A + a)·(cos(p)·cos(t.p)- sin(p)·sin(t.p))- (A- a)·(cos(p)·cos(t.p) + sin(p)·sin(t.p)) 

e=A·cos(p)·cos(t.p)- A-sin(p)·sin(t.p) + a·cos(p)·cos(t.p)- a·sin(p)·sin(t.p) ... 
+ -A·cos(p)·cos(t.p)- A-sin(p)·sin(t.p) + a·cos(p)·cos(t.p) + a-sin(p)·sin(t.p) 

e=-2·A·sin( p)·sin(t.p) + 2·a·cos(p)·cos(t.p) 

e=-2·A·sin(ro·t + ci>)·sin(t.O>·t + t.ci>) + 2·a·cos(ro·t + ci>)·cos(&l·t + t.ci>) 

This is the main result; the first term corresponds to the errors in frequency and phase, and the second 
corresponds to the error in amplitude. Note that the terms are out of phase; one leads the other by a 
quarter of a cycle. Thus, the total error is less than the sum of the two errors. If we expand the first term 
again, we get the following expression fore:-

-2 · A·sin( t.O>·t) ·cos( t.ci>) ·sin( rot + ci>) - 2· A-cos( t.O>·t) ·sin( t.ci>) ·sin( rot + ci>) + 2 ·a· cos( &l·t + t.ci>) -cos( rot + ci>) 

frequency error phase error amplitude error 

If the errors are small, then we can use the approximations sin( e )=e and cos( e)= 1 to give 

e'=- 2 ·A· t.O>·t·sin( rot + ci>) - 2 · A-t.ci>· sin( rot + ci>) + 2 ·a· cos( rot + ci>) 

--



10.5 Appendix E- Syntax of MEX script language 

Below I formally define the syntax used by the script language interpreter MEXEC v0.27. Brackets ( ) 

indicate optional terms. Terms in BOLD are literals. The '!' character is signified by '!!'. 

program 

command/ines 

commandline 

command 

assignment 

stringexpr · 

executestatement 

dosstatement 

ifstatement 

gotostatement 

echostatement 

pausestatement 

beepstatement 

endstatement 

commentstatement 

endcommentstatement 

commandlines 

commandline 
commandline command/ines 

[linenumber] [command] [;[comment]] 

assignment 
executestatement 
dosstatement 
ifstatement 
gotostatement 
echostatement 
pausestatement 
beepstatement 
endstatement 
commentstatement 
endcommentstatement 

variablename = stringexpr 

string 
! variablename 

string stringexpr 
stringexpr ! & stringexpr 

EXECUTE stringexpr 

DOS stringexpr 

IF stringexpr = stringexpr GOTO linenumber 

GOTO linenumber 

ECHO stringexpr 

PAUSE 

BEEP 

END 

COMMENT 

END COMMENT 
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10.6 Appendix F- Listing of transcription script file 

Below is the script file ALL.MEX, used to control the transcription process. 

All.Mex - Music EXecutable 
version 9, 19 June 1995 

;DOS mode con lines=50 
ECHO All.Mex 

douglas nunn - started 23/6/94 

v8 - use megasort.exe 
9 - add gpc, change default mex dir 

;ECHO one two three !& four !& five 
now implemented with mexec v0.27 
!& concatenates and removes whitespace 

;-- host hardware etc ---------------------
;Machine=Wendy 
Machine= Dan 
;Machine=TLab 

C40HostMachine=TLab 

IF !Machine=Dan GOTO 20 
IF !Machine=Wendy GOTO 25 
IF !Machine=TLab GOTO 27 
ECHO Error - what machine are you on? 
END 
20 ECHO setup for DAN 

!& six !& 

CDir=c:\c\ C directory NB use trailing slash 
WDir=D:\mex\ ; MEX dir 
ParCDir=c:\ticlvl\ 
CakewalkDir=c:\cakewalk\ 
24 GOTO 29 

25 ECHO setup for WENDY 
CDir=i:\c\ 
WDir=m:\mex\ 
ParCDir=c:\ticlvl\ 
CakewalkDir=i:\cakewalk\ 
26 GOTO 29 

27 ECHO setup for TLAB 
CDir=i:\c\ 
WDir=m:\mex\ 
ParCDir=c:\ticlvl\ 
CakewalkDir=i:\cakewalk\ 
GOTO 29 

29 ; 

;--------------------------------------------

DefaultTask 
Task 

minimendel 
!DefaultTask 

;Task=ppanther; FULL VERSION ON WENDY 
;Task=minimendel ; re-do with fixed(?) pickout 

Task=wmendel 
Task=mendel 

Task=poulenc 
Task=aase 

;Task=mtestl 
;Task=mtest2 

Task=bells 
Task=gpc 

seven 
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Task=schurn 

doConvert no 

doOsa no 
;IF !Machine=C40HostMachine doOsa yes 

no; yes 
no;yes 
no; yes 
yes 
yes 
yes ; return error=junk? 21 
yes; NOW WORKING - vmem018 
no; yes 

doDispSpec 
doCharacter 
doPickout 
doA2B 
doShowSlb 
doT rack 
doReorder 
doShowReo 
doFT 
doBattle 
doMakeWork 
doMakeMidi 
doCakewalk 

no;yes; ok for >13148, >68239 for minimend 
no; yes 
no; yes 
no;yes 
no; yes 

SampleRate = 32000 DEFAULT 

;--------

ECHO Setting up task ' !Task ' 

IF !Task=minimendel GOTO 45 
IF !Task=mendel GOTO 50 
IF !Task=ppanther GOTO 55 
IF !Task=tooshort GOTO 60 
IF !Task=poulenc GOTO 65 
IF !Task=wmendel GOTO 67 
IF !Task=aase GOTO 68 
IF !Task=mtestl GOTO 690 
IF !Task=mtest2 GOTO 691 
IF !Task=bells GOTO 692 
IF !Task=gpc GOTO 693 
IF !Task=schurn GOTO 694 

ECHO error - what task? 
END 

;------------
45 ECHO Setting up 'MINIMENDEL' task ... 

SampleRate=l6000 ; for battle and others before (?) 

MonoFile ='!WDir !& minimend\minimend.snd 
doConvert = no ; start with *.c40 
;;;;;;;;;;;doOsa=no 
SpectrurnFile = !WDir !& minimend\minimend.c40 

49 GOTO 70 

;------------

50 ECHO Setting up 'MENDEL' task ... 

Mono File 
doConvert 

= m:\mendel\mendel4.mon 
= no 

;;;;;;;;;;;doOsa=no 
; start with *.c40 

SpectrurnFile = !WDir !& mendfull\spectra.c40 

51 GOTO 70 

;--------------
55 ECHO Setting up 'PPANTHER' task ... 

SampleRate=8000 

SourceFile = m:\au\ppanther.au 
Amplify= -v2.10 
doConvert=no 

SpectrumFile = !WDir !& ppanther\pp.c40 
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56 GOTO 70 

60 ECHO Setting up 'TOOSHORT' task ... 

SarnpleRate=44100 

SourceFile=!WDir !& ts\tsrnono.snd ??? 
doConvert=no 
doOsa=no 
SpectrurnFile !WDir !& ts\tsrnono.c40 

GOTO 70 

;---------------
65 ECHO Setting up 'POULENC' task ... 

SarnpleRate=16000 

;;;;;;;;;SourceFile=!WDir !& ts\tsrnono.snd ??? 
cioconvert=no 
;doOsa=no 
SpectrurnFile 

GOTO 70 

!WDir !& poulenc\poulenc.c40 

·---------------' 
67 ECHO Setting up 'WMENDEL' task ... 
; this one was done with a window 

SarnpleRate=32000 

;;;;;;;;;SourceFile=!WDir !& ts\tsrnono.snd ??? 
doConvert=no 
doOsa=no 
SpectrurnFile 

GOTO 70 
;--------------

rn:\spec\harnrning.c40 

68 SarnpleRate=16000 
;;;;SourceFile=!WDir !& aase\aase.snd 
doConvert=no 
doOsa=no 
SpectrurnFile=!WDir !& aase\aase.c40 
GOTO 70 

690 ; numbers don't have to be in order 
SourceFile=!WDir !& rntestl\rntestl 
SarnpleRate=16000 
doOsa=no 
;SpectrurnFile=i:\rnex\rntestl\rntestl.c40 ;wendy 
SpectrurnFile=!WDir !& rntestl\rntestl.c40 

GOTO 70 

;-------------
691 ; numbers don't have to be in order 
SourceFile=!WDir !& rntest2\rntest2.snd 
SarnpleRate=16000 
doOsa=no 
SpectrurnFile=!WDir !& rntest2\rntest2.c40 

GOTO 70 

692 
;;; SourceFile=!WDir !& bells\bells2.snd 
SarnpleRate=16000 
doOsa=no 
SpectrurnFile=!WDir !& bells\bells2.c40 
GOTO 70 

;-----

693 
;;; SourceFile=!WDir !& gpc\gpc.snd 
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SampleRate=16000 
doOsa=no 
SpectrumFile=!WDir !& gpc\gpc.c40 
GOTO 70 

694 
;;; SourceFile=!WDir !& gpc\gpc.snd 
SampleRate=32000 
doOsa=no 
SpectrumFile=!WDir !& schum\schum.c40 
GOTO 70 

70 

global default settings 

; <<input sound file of any format>> 

ConvertProg 
GenFlags 
Amplify 
SourceFlags 
DestFlags 
Mono File 

m:\music\sox\sox.exe 
-v 
; no amplification 

; nothing needed - SOX can work it out 
-w ; write as 16-bit words 
c: \waves\mex. wav 

; for screen capturing, add the flag -m 
UseMono = no 
DispSpecFlags= ; nothing 
if !UseMono=yes DispSpecFlags= -m 
; display spectra 
DispSpecProg = !CDir !& readsp.exe !DispSpecFlags new 

; characterise 

CharacterProg 
Character File 

!CDir !& distrib2.exe 
!WDir !& charactr.mex 

; <<mono 16-bit *.snd file>> 

C40LoaderProg 
C40Flags 
AnalysisProg 

!ParCDir !&tis.exe 

i:\parallel\osa.app 

; <<C40 spectra>> 

PostProcMethod 
PickoutProg 
SineListA 

old 
!CDir !&pickout.exe 
!WDir !& mex.sla 

; <<Sine List - format A - unsorted>> 

;;;;old;;;;;;;;;A2BProg 

A2BProg 
A2BFlags 
SineListB 

Megasort.Exe 
-d 
!WDir !& mex.slb 

A to BS.Bat 

<<Sine List - format B - sorted>> 

display list b 
RunBasic = c:\dos\qbasic /h /run 
ShowSlbProg = !RunBasic !CDir !&showslb3.bas 
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ChainFile 
;;;TrackProg 
TrackProg 

!WDir !& mex.chn ; link file 
= !CDir !&TrakSinS.Exe 

!CDir !&TrakSin6.Exe ; all.mex v8 

; <<Chain File AND Sine List B>> 

;;;ReorderProg = !CDir !&reorder.exe ; old- thrashes disk 
ReorderProg !CDir !&VReorder.Exe NEW- uses virtual memory 
; nb new one still buggy near end of file 

ReorderedList 1WDir !&. mex.reo reorder.52 

<<Reordered list of sines>> 

; display reordered list 
ShowReoProg = !RunBasic !CDir !&showtrx7.bas ;was 5 before 

FTProg 
TempDtunpName 

!CDir !&ft.exe 
!WDir !& mex_dtunp 

; <<chain, own, and seg files>> 

BattleProg !CDir !&batl.exe 
AsciiFile !WDir !& mex.asc 

; <<ASCii format MIDI file>> 

WorkFile 
WorkEditFile 
Asc2WrkProg 

!WDir !& mex.wrk 
!WDir !& mexedit.wrk 
!CDir !&makewrk6.bat 

; <<Cakewalk work file>> 

no extension 

v6 now 

Midi File 
Cake2MidProg 

!WDir !& mex.mid 
!CakewalkDir !& Cake2Mid.Exe 

; <<standard MIDI file>> 

Cakewalk· 
CakeFlags 

!CakewalkDir !& CakePro.Exe 
-50 ; 50-line screen 

## # # # # ### ## ### 
# # # ### # # ## ## # 

## # # # ### # # # 

convert source file to the desired format 
we don't need monolyse.exe - sox can cope with more formats 

IF !doConvert=no ECHO Skipping conversion to mono 16-bit file ... 
IF !doConvert=no GOTO 99 

convertcommand= !ConvertProg !GenFlags !Amplify !SourceFlags !SourceFile !DestFlags 
!MonoFile 
EXECUTE !Convertcommand 
PAUSE 

99 

;------------

## ### ## ### # # # # 
# # # # ### # ### # 
## ### ## # ### # # # 
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100 

FixedDisplayProg=no ; doesn't take command-line parameters yet 

IF !FixedDisplayProg=no GOTO 199 

ECHO display as pretty pictures 
DisplayProg=!CDir !&sound.exe 
ECHO The next program should display the waves ... 
EXECUTE !DisplayProg !MonoFile 
199 

;-------

# # # # 
### ### ### # 
# # # # # ### 

#. # ## ### ## 
# # # # 
# ## ### ## 

200 ECHO C40 Octave Spectra Analysis 

IF !doOsa=no ECHO skipping.OSA ... 
IF !doOsa=no GOTO 259 

IF !Machine=Wendy GOTO 210 
201 ECHO This ONLY works on Wendy, the PC with the C40s attached. 
END 

210 
PAUSE 
EXECUTE !C40LoaderProg !C40Flags !AnalysisProg -i!MonoFile -o!SpectrumFile -m 
PAUSE 
259 

;---------

IF !doDispSpec=no ECHO skipping spectrum display ... 
IF !doDispSpec=no GOTO 270 

ECHO Now we'll try to display the spectra. The default parameters are for 
ECHO Mendelssohn - tweak them for other tasks. 
ECHO Press a key after the beep. 
PAUSE 
EXECUTE !DispSpecProg !SpectrumFile 
PAUSE 
270 

·---------' 

IF !doCharacter=no ECHO skipping spectrum characterisation ... 
IF !doCharacter=no GOTO 280 

ECHO The next program will look at this file to determine its average 
ECHO power level. This will help later programs pick appropriate 
ECHO thresholds. 

ECHO Press a key after the beep. 
PAUSE 
EXECUTE !CharacterProg !SpectrumFile !CharacterFile 
PAU~E 
280 

·---------' 

304 There's no special reason line numbers have to be in order 
303 but it would seem to be a good idea on the whole. 
302 Duplicate line numbers ARE trapped before the file is run, 
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301 but GOTO a nonexistent line number is only trapped at 'run-time'. 

### # 
### # II 
II II 

1111 1111# 
# # 

II# # 

111111 1111 
### 11#11 #II 

II II II 

300 ECHO post-processing 

# II# ### II# 
II # II ## # 

# 1111 ### #II 

IF !PostProcMethod=old GOTO 350 

II# ### # ## 
# II ### II # 

1111 1111 # # 111111 

ECHO using NEW post-processing method - writing packed file 
; remove sines 
PickoutProg = !CDir !&pickout.exe 
SinePackedListA = !WDir !& mex.spa 
TestFlags = -olO -m20 
PickoutFlags = !SpectrumFile -g -p!SinePackedListA -s!SampleRate !TestFlags 
ECHO RUNNING THIS MAY BE RATHER POINTLESS :) 
PAUSE 
EXECUTE !PickoutProg !PickoutFlags 
345 
ECHO haven't rewritten anything for further processing of PackedSineListA 
END 

350 

IF !doPickout=no ECHO Skipping pickout ... 
IF !doPickout=no GOTO 359 

ECHO using OLD method - writing text file 

TestFlags 
TestFlags 

-ol -m6 ;;; this was used until 17 august 94 
-m6 -z24; more chance to extract all 

TestFlags ~ -m6 -z48;;;;;;; try with wmendel 

; 48 is too high 
TestFlags = -m6 -z24 ;bells 

PickoutFlags = !SpectrumFile -g -s!SampleRate !TestFlags -k!CharacterFile 

; FILES WITH FFT <> 64 ? 
IF !Task=schum PickoutFlags = !PickoutFlags -n32 

ECHO !PickoutProg !PickoutFlags -t!SineListA 
PAUSE 

EXECUTE !PickoutProg !PickoutFlags -t!SineListA 
PAUSE 

359 

;------

; The next bit won't work with packed lists. 

400 

IF !doA2B=no ECHO Skipping A-> B ... 
IF !doA2B=no GOTO 499 

ECHO A to B 
ECHO The next step is to sort the list of sines according to start time 
ECHO This now uses MegaSort, which uses virtual memory. 

PAUSE 

DOS !A2BProg !SineListA !SineListB !A2BFlags 
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ECHO If this ran ok, we shouldn't need the file !SineListA 
DOS DEL !SineListA /p 
DOS CD .. 

499 

;------
500 

IF !doShowSlb=no ECHO Skipping ShowSlb ... 
IF !doShowSlb=no GOTO 509 

ECHO Now let's plot mex.slb to show how feasible it is ... 
ECHO After the beep, optionally capture the screen, then press a key. 

ECHO !ShowSlbProg 
PAUSE 

EXECUTE !ShowSlbProg 
PAUSE 

509 

650 
IF !doTrack=no ECHO Skipping tracking ... 
IF !doTrack=no GOTO 699 

ECHO Track Sines ( !TrackProg !SineListB !ChainFile ) 
PAUSE 
EXECUTE !TrackProg !SineListB !ChainFile 
PAUSE 
699 

700 
IF !doReorder=no ECHO Skipping reordering ... 
IF !doReorder=no GOTO 759 

ECHO Reorder 
ECHO 
ECHO This needs as much memory as possible. 
ECHO Let's see how much you have here ... 
DOS mem 
DOS mem > before.cz 
PAUSE 
EXECUTE !ReorderProg !SineListB !ChainFile !ReorderedList 
PAUSE 
ECHO The amount of XMS memory should be the same as before 
DOS mem 
DOS mem > after.cz 
ECHO 
ECHO If these files are different, then something went wrong. 
DOS FC before.cz after.cz 
PAUSE 

759 

760 

IF !doShowReo=no ECHO Skipping ShowReo ... 
IF !doShowReo=no GOTO 769 

ECHO Now let's plot mex.Reo ... 
ECHO mex.reo is the reordered list 
ECHO After the beep, optionally capture the screen, then press a key. 

ECHO !ShowReoProg 
PAUSE 

EXECUTE !ShowReoProg 
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ECHO nice colours eh? 
PAUSE 

769 

. ------
' 

800 
IF !doFT=no ECHO Skipping frequency tracking ... 
IF !doFT=no GOTO 899 

ECHO Frequency tracking 
PAUSE 
EXECUTE !FTProg !ReorderedList !TempDumpName 
ECHO If this ran ok, you won't need the following file any more. 
DOS DEL !ReorderedList /p 
PAUSE 

899 

900 
IF !doBattle=no ECHO Skipping battle ... 
IF !doBattle=no GOTO 999 

DOS mem 

PAUSE 
ECHO Battle 

EXECUTE !BattleProg !TempDumpName !AsciiFile -s!SampleRate -q 
DOS DEL !TempDumpName !& .* /p 

PAUSE 

999 

·-----------' 

llOO 

IF !doMakeWork=no GOTO 1150 

ECHO Convert ASCII file to Cakewalk work file 
DOS !Asc2WrkProg !AsciiFile !WorkFile 
DOS COPY !WorkFile !WorkEditFile 
PAUSE 

ll50 

IF !doMakeMidi=no GOTO 1199 

ECHO Convert Cakewalk work file to MIDI file 
EXECUTE !Cake2MidProg !WorkFile !MidiFile 

PAUSE 

ll99 

·------
' 

1200 
IF !doCakewalk=no GOTO 1299 

ECHO Start Cakewalk 
DOS CD c:\Cakewalk 
EXECUTE !Cakewalk !CakeFlags !WorkEditFile 
DOS CD c:\c 

PAUSE 
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1299 

;-----

1300 

ECHO that's all folks 

note- don't use an exclamation mark in a comment or ECHO 
cause the preprocessor thinks it's a variable name 

END 
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10.7 Appendix G- Heisenberg's principle 

This derivation is largely taken from Sol bach. [Solbach) 

Let s( t) be a band-limited signal satisfying 
lim s(t)·.·ft =0 

Jtj-»oo 

Given the energy of the signal E= I ( I •< t) I )2 dt= I ( IS(f)l )2 df 

we define the time centre as t,=~J q Is< t >I >2 
dt 

·-
and the frequency centre as 

r='-J f.( I S(f) I )
2 

df o E 

The time width is defined as M,= ~J (t-t0t<l•(t)l)2 dt 

and the frequency width is 

Heisenberg's uncertainty!Papoulis) is then tlt ·M 2-
1
-

s s 4·Jt 



10.8 Appendix H- Glossary of musical terms 

additive synthesis 1) A synthesis technique where many components are added. Compare subtractive 
synthesis. 

2) A synthesis technique based on generating a large number of sinusoids. Also called 
Additive Sine Wave Synthesis. 

t-------------1································································································································································· 
ADSR Attack-Decay-Sustain-Release - a four-segment approximation to an amplitude 

envelope, commonly used on synthesisers. 
t------------1································································································································································· 

aerophone An instrument using a vibrating air column, including wind and brass instruments. 
t-------=-------1································································································································································· 

aftertouch A feature of many synthesisers, where MIDI control messages are generated by pressing 
the key while holding it down. Aftertouch is implemented as either 'key aftertouch' for 
each note, or 'channel aftertouch', which is generated by any key and applies to the 
whole MIDI channel. 

1-------------f································································································································································· 
aliasing A usually undesirable phenomenon in digital sampling, when a frequency above the 

Nyquist rate is reflected below it. 
t------------1································································································································································· 

altissimo The highest register of the clarinet, from Bb5 upwards, using the third mode of 
vibration, which is five times the fundamental frequency of the pipe. 

t------------1································································································································································· 
alto 1) The (vocal) register below soprano, from A3 to D5. Alto is a contraction of contralto. 

2) An alto instrument, such as the G alto flute, Eb alto clarinet. Eb alto saxophone, and 
Eb alto trombone. ·· · 

t-------------1································································································································································· 
The size of an oscillation. amplitude 

t------=--------1································································································································································· 
amplitude modulation A simple synthesis technique that allows three partials to be computed for the 

computation cost of two. 
t-------------1································································································································································· 

anechoic Listening conditions without echoes. 
t------------1································································································································································· 

anharmonic Same as inharmonic (2). (q.v.) 
1-------------f································································································································································· 

arpeggio A chord played with a distinct gap between successive notes. Typically the lowest notes 
are played earliest. 

t-------------1································································································································································· 
artefact An unwanted sound or distortion, often caused by non-linear editing operations. 

t-------=:..__------1································································································································································· 
attack The starting transient of a note, often distinguished by high-frequency energy and 

instrument noise. Also see ADSR 
t------------1································································································································································· 

augmented I) An interval one semitone larger than a perfect unison, fourth, fifth, or octave. 

2) A chord containing a major third and an augmented fifth. 
t------------1································································································································································· 

A harmonic cause by non-linear tranSmission in the ear. aural harmonic 
1-----------t································································································································································· 

bar 1) A regular grouping of several beats. (U.S. meter) 

2) The wood/metal bar of a percussion instrument. The bar has inharmonic modes of 
vibration. 

t-------------1································································································································································· 
baritone 1) The (vocal) register between tenor and bass. 

2) A baritone instrument such as the Eb baritone saxophone. 

3) A brass instrument similar to a euphonium but with a narrower bore. (U.S. baritone 
horn) 

t-------------1································································································································································· 
A unit of subjective pitch defined as the critical bandwidth. One bark is approximately bark 
equal to 100 mels. 

t-------------1································································································································································· 
1) The (vocal) register below baritone, from F2 to D4. bass 
2) A bass instrument such as the D bass flute, Bb/A bass clarinet, Bb bass trumpet, Bb 
bass saxophone, and Eb/F bass tuba. 

2) Common term for bass guitar, double bass, or tuba. 
t-------------t································································································································································· 

'Double B (flat)' is a colloquial term referring to the pitch of a contrabass tuba. It is also BBb 
occasionally applied to the bass saxophone, or contrabass clarinet. 

1-------------t································································································································································· 
beat The fundamental short unit of time, typically equivalent to a quaver, a crotchet, or a 

minim. 
L-------------"································································································································································· 
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bel 

bell 

binaural 

bore 

bpm 

brass 

breve 

CD-quality 

cent 

chalumeau 

channel 

chord 

chordophone 

chromatic 

circ/eoj(;r~hs 

clarion 

clej( 

clipping 

cocktail party effect 

combination tone 

common practice notation 

(CPN) 

compensation 

compression 

consonance 

contrabass 

contralto 

critical bandwidth 

crotchet 

Darth Vaderisation 

Ten decibels; the unit Bel is rarely seen on its own. 

1) A church bell, hand bell, or tubular bell. 

2) The expansion in bore at the end of a brass or wind instrument. 

Sound presented to both ears. This is usually stereo, but may also be mono. 

The width profile, or the width in a cylindrical section, of a brass or wind instrument. 

Abbreviation for beats per minute. See tempo. 
.. ······························································································································································· 
A subcategory of aerophone based on vibrating lips, also known as lip reed instruments. 
(U.S. brasswind) Not all brass instruments are made of brass, as exemplified by the 
fibreglass sousaphone, didgeridoo, conch shell, and serpent. .. ···································-··············-············································································································ 
A note length of two semi breves or eight crotchets. Breves are rarely used now, yet they 
represented the shortest note in medieval times . .. 
Loose term for recording or playback with 16-bit linear encoding, a 44100-Hz sample 
rate, and two channels . .. 
A frequency ratio of 1200'./2. A hundred cents make one semitone. 

.. ····································-···-······················································································································· 
The lowest register of the clarinet, from D3 to E4, using the fundamental mode of 
vibration of the pipe . 

.. ............................................................................................................................................................... 
The MIDI standard allows 16 channels to represent 16 instruments. 

.. 
Several notes playcil nearly simultaneously. ln practice· unintentional asynchrony is on 
the order of 10-20 ms. · ... 
An instrument based on a vibrating string, whether bowed (violin), plucked (harp), or 
struck (piano) . 

... 
A sequence of semitone steps. 

... 
The chromatic scale reordered modulo 7; C-G-0-A-E-B-Gb-Db-Ab-Eb-Bb-F-C. 

... 
The middle register of the clarinet, from A4 to B5, using the second mode of vibration, 
which is three times the fundamental frequency of the pipe . ... 
The CPN symbol indicating the pitch range of a staff. Treble and bass clefs are 
common; alto is used for violas and tenor is used for trombones and bassoons. The 
soprano, mezzo-soprano, and baritone clefs have fallen into disuse . 

... .............................................................................................................................................................. 
Distorting a signal by peak-limiting. 

... 
Our ability to distinguish one auditory stream (especially speech) out of many. 

... 
A tone heard at the sum of two frequencies. 

... 
The conventional method of notating music by drawing notes and other symbols on 
taves. s 

... 
A system for correcting mistuning on (low) valved brass instruments. 

... ·················································································--···-······································································· 
1 ) Reducing the size of a digital file by recoding and possibly simplifying. 

2) A method of limiting the amplitude range by boosting quiet sounds and attenuating 
oud sounds. 1 .... 

The perceptual pleasantness of two or more simultaneous tones. 
.... ······················-····························-··-····-········-··········-············································································· 

1 ) The register below bass. 

2 ) A double bass, also known as a string bass. 

3 ) A contrabass instrument such as the Bb contrabass clarinet or saxophone, or the 
BBb/CC contrabass tuba. 

··--
s ee alto. 

.... 
The 'interval' below which two pure tones will interfere. See masking. 

.... 
The 'basic' unit of musical time. (U.S. quarter-note) 

--·· 
Colloquial term for the perceptual change in timbre when a wave is played back slower 
than intended. Opposite of the Mickey Mouse effect. .... 
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decay 

delay 

difference tone 

diminished 

dissonance 

distortion 

Dolby noise reduction 

double stop 

driven 

duration 

dynamic range 

effect 

enharmonic 

envelope 

equal temperament (E1) 

equalisation 

flanging 

flutter 

flutter tonguing 

formant 

frequency modulation 

frequency shifting 

frequency stretching 

l) seeADSR 

2) The reverberation time of a real acoustic environment ................................................................................................................................................................ 
l) Computational delay in processing. 

2) A common analogue and digital effect, where a delayed copy of a signal is added to 
the originaL 

A tone heard at the difference between two frequencies. 
-······························································································································································· 
I) An interval one semi tone smaller than a perfect unison, fourth, fifth, or octave. 

2) A chord containing a minor third and a diminished fifth . 
.. 
Opposite of consonance . 

.. 
l) Undesired noise or deviations in a signal. 

2) An intentional processing effect, popular with electric guitars . .. ····················-·····-···································································································································· 
A proprietary system for reducing tape hiss by boosting high frequencies recorded and 
attenuating them on playback .. 
Two notes played on neighbouring strings of a bowed string instrument 

.. 
In instrument hierarchies, driven instruments are those that are excited continuously, 
such as brass/wind instruments and bowed strings. Non-driven instruments are excited 
by a short high-energy impulse, and include plucked strings, pianos, and most 
percussion instrumc::nts. _ 

.. ............................................................................................................................................................... 
l) The actual length of a note (when the start and end can be defined). 

2) The length in ticks of a MIDI note. 

3) The written duration of a note in CPN, e.g. dotted minim . 
... 

The difference between the loudest sounds and the quietest, on an audio system or 
musical instrument 

... 

Any analogue or digital processing of a signal, including reverberation, phasing, 
flanging, equalisation, and compression. ... 
·························-~---································································································································ 

Two different names for a single note in equal temperament, e.g. F# and Gb. (Not the 
same as inharmonic.) 

... .............................................................................................................................................................. 
This term usually refers to the amplitude of a harmonic as a function of time - typically 
approximated by line segments. It can also refer to frequency proflles or any other 
continuous control parameter . ... ······························································································································································ 
A type of temperament (q.v.) in which (usually) 12 notes per octave are spaced equally. 

... 
Adjusting the sound by flltering to give better overall spectral balance. 

... 
A distortive effect using modulation of the delay time in a delay unit 

... .............................................................................................................................................................. 
An undesirable effect on record and tape decks caused by a varying playback rate. 

... 
An effect on brass instruments played using a strongly rolled 'r'. 

... 
A strong frequency band that is independent of pitch on an instrument, particularly the 
human voice. 

---· 
l ) For carrier frequencies around 5-10Hz, a method of simulating vibrato. 

2) For higher carrier frequencies, a common and computationally modest way to achieve 
rich spectrum. See also phase modulation. a .... 

l ) Literally, the operation of moving frequencies up or down by a constant frequency, as 
chieved by single-sideband modulation. Musically, this is undesirable. a 

2 ) Common but strictly inaccurate term for pitch shifting. (q.v.) .... 
l 
£ 
p 

) An effect of instrument non-linearity wherein the frequencies of the partials increase 
aster than the partial number. This often reflects non-ideal behaviour of strings (bass 
iano strings), bars, or pipes (organ, bell-less brass). 

2 ) Loose term for Railsback stretch (q.v.) .... 
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fundamental 

General MIDI (GM) 

glissando 

grace note 

half-valve 

hard left/right 

harmonic 

harmony 

horn 

hypersonic 

idiophone 

liD 

inflection 

infr~onic . 

in harmonic 

interval 

inversion 

101 

lTD 

just noticeable difference 
(JND) 

just temperament 
Oust intonation) 

karaoke 

key 

legato 

lip trill 

loudness 
(S) 

loudness level 
(LJ) 

····-············································································-········-····································································· 
The frequency implied by the spectrum of a note, generally the lowest frequency. When 
the note has a harmonic spectrum, this frequency corresponds to the repetition period of 
the waveform. 

A superset of MIDI that also defmes a set of standard" instruments. 

A smooth transition in pitch. Examples include voice, trombone, and fretless strings. 

A short note preceding a main note, possibly a few semitones away. 

To play a brass instrument with one or more valves partially depressed. 

The extremes of pan position. 
--
Th~-~ih--h~~;ti~-;-~-~~~~iy"th~-~~p~~~~t-~t-~-t~~;-th~-~d~~~tcl--fr~q~~~cy:··---------

-- ··········································································-···················································································· 
The spectral context formed by chords and notes. 

--
I) Loose term for the French horn, or sometimes the Eb tenor horn (US. alto horn). 

2) US. slang term for all brass instruments and saxophones. 
--·······-··························································································-···························································· 
A frequency above 20 kHz. 

--
An instrument based on a solid resonator, such as a xylophone, cymbal, or cowbell. 

--
lnteraural intensity difference, the ratio of the sound reaching both ears. 

--
Any acoustic information not represented by the musical score. This includes time 
inflections (rush/drag), note inflections (ornamentS), pitch inflections (vibrato, 
sharpness/flatness), amplitude inflections (tremolo) and timbral inflections (filtering). 

-- ·······--···········-······································-··································-································································ 

--
A frequency below the normal hearing range, i.e. below 20 Hz. 

I) An interval not corresponding closely to a simple frequency ratio. 

2) A spectrum where the frequency peaks are not integrally related. 
---
I) Pitch/frequency interval - The logarithm of the ratio between two frequencies or 
pitches. This can be expressed in semitones or by a mode-specific term (major/minor 
second/third/sixth/seventh, diminished/perfect/augmented unison/fourth/fifth/octave). 

2) Time interval- see 101. 
---
The position of the bass with respect to the root of a chord. 

---··········································-··························································· .. ······················································ 
Inter-Onset Interval, the length of time between the onsets of consecutive notes. 

---
lnteraural time difference, the time between a sound reaching the closer ear and the 
further. 

---
The resolution, or smallest perceptible variation, of a quantity such as frequency or 
amplitude. 

---
A temperament where simpler intervals are adjusted to integral ratios at the expense of 
making other interval~ Jess in-tune. 

---
J apanese term fQr 'empty orchestra', referring to a "Music Minus One" system for real
ime accompaniment of a singer. t 

.... ······································-···························································· .. ·······--················-----················----······ 
I ) The long-term 'centre' of the harmony- often expressed as a pitch class and a mode 
- e.g. C major. 

2 ) The key covering a hole on a woodwind or brass instrument. .... 
A style of note articulation where notes are connected. 

.... ............................................................................................................................................................. 
A type of trill on brass instruments played by rapid oscillation between two modes of 
ibration without using the valves. v .... ............................................................................................................................................................. 

A pure tone with loudness level LL has a loudness S in sones, given by 
= 21'((LL-40)/10). s 

.... 
The loudness level of a tone is the sound pressure level of a I 000-Hz tone that is equally 
oud. I 

.... 
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major 

masking 

McGurk effect 

mel 

membrane 

membranophone 

Mickey Mouse effect 

micropascal (JlPa) 

MIDI 

minim 

minor 

missing fundamental 

mode 

modulation 

mono (monaural) 

monophonic 

monotimbra/ 

mordent 

multiphonic 

munchinization 

music minus one 

mute 

noise 

note 

Nyquist frequency 
Nyquist rate 

octave 

offset 

onset 

.. 

.. 

I) A scale in the Ionian mode, such as the white notes from C to C. 

2) A chord containing a major third and a perfect fifth. 

3) An interval such as a major second, third, sixth, or seventh, consisting of 2, 4, 9, or 
1I semi tones respectively. 

An auditory phenomenon by which one frequency 'drowns out' other close frequencies . 

The dependence of auditory perception on simultaneous visual cues . 
······························································································································································· 
A little-used unit of subjective pitch that takes into account poor low-frequency 
discrimination . .. 
The circular head of a dnnn. Membranes have inharmonic modes of vibration. 

.. 

An instrument based on a vibrating membrane - i.e. a dnnn. 
.. ............................................................................................................................................................... 
Colloquial term for the perceptual change in timbre when a wave (especially a voice) is 
played faster than the correct speed . .. 
A small unit of pressure, one millionth of a Pascal. 

.. ··········-··················-································································································································· 
Musical Instrument Digital Interface, the current standard communication protocol for 
synthesisers and computers . .. ······························································································································································· 
Equal to two crotchets. (U.S. half-note) 

... 
1) A scale in the Aeolian mode, such as the white notes from A to A. 

2) A chord containing a minor third and a perfect fifth. 

3) An interval such as a minor second, third, sixth, or seventh, consisting of I, 3, 8, or 
10 semitones respectively. · · 

... 
See residue tone. 

... 
I) An attribute showing which note of a 7-note scale (q.v.) is the root note. There are 
thus 7 modes, and their classical names are Ionian (major), Dorian,· Phrygian, Lydian, 
Mixolydian, Aeolian (minor), and Locrian. 

2) A mode of vibration of an instrument. 
... 

1) Varying one signal using another, as in amplitude, frequency, or phase modulation 
q.v.) ( 

2) A change of key, often to a closely related key . 
... 

Sound from a single audio output channel. 
.... 
A musical sound consisting of at most one note. See polyphony. 

.... ·······································-····················································································································· 
Sound with a single timbre, possibly polyphonic. 

---· 
A motif of 2 or 3 grace notes. 

.... 
Two or more notes played simultaneously on a normally monophonic instrument. Flutes, 
axophones, horns, and trombones are capable of playing multiphonics. s .... 

Another term for the Mickey Mouse effect. 
.... 
Term by Irv Kratka for accompaniment without the soloist. MMO systems include 
araoke systems. k 

---· 
A device added to a string or brass instrument to vary the timbre. 

.... 
Any unwanted component in the sound. 

.... ····························································································································································· 
The musical equivalent of a syllable. 

.... ............................................................................................................................................................. 
Half the sample rate of a digitally encoded signal, e.g. 22050 Hz (CD), 24000 Hz 
DAT). ( 

---· 
p hysically, a frequency ratio of2. The ratio that is judged to be perceptually an octave is 
ery slightly larger. v 

····-
The 'end time' of a note, as in the time of key release. 

..... 
The start of a note, where one can be defmed. ..... 
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open 

Open Window Unit 

ornament 

overblowing 

overtone 

pan (position) 

partial 

Pascal 

patch 

pentatonic 

percussion 

perfect 

phase modulation 

phasing 

phon 

pitch 

pitch bend 

pitch chroma 
pitch class 

pitch height 

pitch modulation 

pitch shifting 

plate 

polyphony 

polytimbrality 

portamento 

quadraphonic 

quaver 

Railsback stretch 

range 

reed 

··········································-----·····················-··························································································· 
A note played on a brass instrument with no valves down, or on a string instrument 
without left-hand fmgering. 
··································-·································-···············································---------··················-················ 
A measure of sound absorption. One person in a concert hall absorbs the amount of 
energy that would be lost through an open window 0.44 m2 in size, so one person has an 
absorption of0.44 Open Window Units . .. 
Any type of note modulation, including grace notes, mordents, and trills. .. 
Moving between modes of vibration where the instrument's acoustic length does not 
change, as on a wind or brass instrument. 

.. 
Th~--~ih--~~~rt~~~-~r·~--~~t~···i·~--ili~--c~+l)ih··p;;t;~i>riti·~--t~~··;-~--~~~g-··~d··;~--ili~·· 
usually avoided . .. 
The perceptual position of a sound on the left-right axis. 

.. 
A component frequency above the fundamental. When the nth partial is at or very near n 
times the fundamental frequency, the term 'harmonic' is used . 

.. 
:.\·~t-~ij;~;~-~~~:-·i-.i>~·:::·I·N/~2·~·-i·o·~~~~~~i·:,;;·lo··~~~~b~·-·········································· 

.. 
On synthesisers, the parameter settings that map a MIDI note to the actual sound. 

.. 
A five-note scale, a transposed version of C-D-E-G-A. 

... ···················-····················-····················································································································· 
I) An instrument excited by striking, sometimes taken to include pianos. 

2) Any instrument not played by the rest of the orchestra. This includes most unpitched 
mstruments and some pitched instruments including bells, timpani, and whistles . ... 
An interval such as a perfect unison, fourth, fifth, or octave consisting ofO, 5, 7, or 12 
sernitones . ... 
A very similar technique to frequency modulation, with similar results. Many "FM'' 
synthesisers and soundcards actually implement the phase modulation algorithm . 

... ··········-··································································--------········································································· 
A similar effect to flanging (q.v.) but at higher modulation frequencies. 

... 
A little-used and somewhat arbitrary unit of perceptual loudness. 

... 

I 
s 

The term 'pitch' may refer to physical pitch or perceptual pitch. Physical pitch is the 
ogarithm of the fundamental frequency, usually expressed in semitones from a fixed 
tandard. The prevailing standard defmes the A above middle C to be 440 Hz. ... 

Pitch modulation, or a controller for it. 
.... ·····················------------···························································································································· 
The twelve pitch classes, or chroma,- C, C#, D, ... ,A#, B- represent the perceptually 
s imilar notes across octaves. 

----
The dimension defining high notes and low notes, as distinguished from pitch class. 

.... 
Any variation in the pitch of a note from the notated pitch. Periodic variation includes 
ibrato. v 

----
Processing a signal so as to change its pitch profile while retaining the same time profile. 
This is essentially the same procedure as time stretching followed by resampling . .... ........................... : ................................................................................................................................ . 
A metal percussion instrument that is essentially flat, such as a cymbal or a gong. It 
sually excludes bar instruments (q.v.). u .... 

The number of simultaneous notes. 
.... 
The number of simultaneous instruments. 

.... 
A short glissando (q.v.) played between notes. 

.... 

s ound presented through four channels. 
.... ··--···················································-·······················································-······--····································· 
Half a crotchet. (U.S. eighth-note) 

.... 
A phenomenon where the tuning of an instrument is sharper for higher frequencies, as in 

piano. This is related both to frequency stretching and to other non-Iinearities. a ..... ·········································--·---·---·--··········-----------------··············-···························································· 
The range of pitches that can be played by a given instrument. 

..... 
The reed of wind instrument, either a single reed, as in a clarinet or saxophone, or a 
ouble reed, as in the oboe/bassoon family. d 

..... 
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register 

release 

resampling 

residue tone 

reverberation 

rhythm 

ring modulation 

rip 

roll 

root 

rubato 

rumble 

sample 

savart 

saxhorn 

scale 

scientific pitch 

semibreve 

semiquaver 

semitone 

slur 

stereo 

Stevens's Rule 

so/fa I solfeggio 

sone 

sopranino 

1) A range of pitches spanning around 1 Y:z octaves (corresponding to the range of hwnan 
voices). From highest to lowest, the overlapping ranges are (sopranino), soprano, alto, 
tenor, (baritone), bass, (sub-bass), contrabass, (sub-contrabass), the terms in 
parentheses being less common. These terms also distinguish different instruments in 
the same family. 

2) A specific mode of vibration on a woodwind instrument. 
································································································································································ 
seeADSR 

.. 
Converting a wavefonn from one sample rate to another. 

.. 

A harmonic note with no energy at the fundamental frequency. The perceived pitch is 
that of the missing fundamental . .. 
Natural or artificial repetitions of the source signal. 

.. 
A repetitive motif in time . 

.. 
A relative of amplitude modulation in which the carrier frequency is not present, also 
called balanced modulation and double-sideband suppressed carrier modulation . .. ······························································································································································· 
A similar effect to portamento on a brass instrument where the player moves rapidly up 
through the harmonic series . .. 
A fairly even series of strikes on a membrane, plate, or bar. Typically these are not 
written individually . .. 
The pitch class of a~ chord. 

... 
Italian for "robbed time", i.e. playing with flexible and expressive musical timing. 

... 
Low-frequency noise, especially on a record deck. 

... 

l) A digital recording of a wave lasting typically 1-30 seconds. 

2) A recording of a single note. 

3) A single point in a digitised wave . ... 
A little-used pitch unit of a three-hundredth of an octave, or four cents. 

... 
The family of conical-bore brass instruments invented by Adolphe Sax, including flugel 
horns, tenor horns, baritones, euphoniums, and tubas . ... .............................................................................................................................................................. 
The set of notes choseri from the twelve pitch classes. Commonly there are 7, and the 
pacings are 2-2-1-2-2-2-l. See also mode. s ... 

A computationally convenient but rather flat tuning scheme based on middle C=256 Hz 
and possibly a sample rate of a power of two). fu any case, the semi tone is irrational. ( 

... ······························································································································································ 
Equal to four crotchets. (U.S. whole note) 

.... 
A quarter of a crotchet. An eighth and a sixteenth of a crotchet are called a 
demisemiquaver and a hemidemisemiquaver. (U.S. sixteenth-note, 32nd-note, 64th
note) .... 
A twelfth of an octave- thus a frequency ratio of 12..J2 ~ 1.05946. A calculator-friendly 
pproximation is 4..J(I.26). Occasionally called sernit. a .... 

A line drawn connecting notes to be played legato, or notes thus played. 
.... 
s ound presented through two channels. 

.... 
The phenomenon whereby tones below 2 kHz are heard as flatter, and tones above as 
harper, as intensity increases. S. S. Stevens described this in 1935. s .... 

The little-used scale of do-re-mi-fa-so-la-te-do. There are other syllables to form the 
complete twelve-note scale . .... ............................................................................................................................................................. 
A unit of loudness. The number of sones is given by 2"((LL-40)/l0) where LL is the 
oudness level. I 

.... 
l ) The register above soprano. 

2 ) A sopranino instrument such as the Eb sopranino saxophone. .... ............................................................................................................................................................. 
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soprano 

sound intensity level 
(IL, L1) 

sound power level 
(PWL, Lw) 

sound pressure level 
(SPL, Lp) 

speed of sound 

staccato 

staff 
stave 

sub-bass 

subcontrabass 

subtractive synthesis 

summation tone 

super-treble 

supra-super-treble 

surround sound 

sustain 

system 

temperament 

tempo 

tenor 

threshold of audibility 

tick 

tie 

timbre 

time 

time shifting 
time stretching 

timescale modification 

·····················-············--------······················································································································ 
l) A high (vocal) register, above alto, from C4 to G5. 

2) A soprano instrument such as an Eb soprano comet, Eb soprano clarinet, and Bb 
soprano saxophone. 
·ih~-~~-i~-~r·~~~~g;·fi~~-J;~-~1-~~~:·~~i-~ti~~-t~·io:·ii·-~~ttl~i·_················································· 

The pressure of a sound, relative to 20 micropascals. 

.. 
The rate of sound propagation. In air, this is approximately 331.3 + 0.6xT mls, where T 
is the temperature . .. ······------····································································-·······-······································································ 
A style of playing where notes are very short, or a CPN marking to indicate this. 

.. 
The set of five lines in Common Practice Notation (q.v.). 

.. 
A clef one octave below the bass clef, proposed by Rossing, for the contrabass register. 
It is indicated by two bass clefs . 

.. 

The ultra-low register below contrabass, or an instrument in this range. Such 
instruments are rru:e; the least rare being the subcontrabass clarinet. Other terms are 
octo-contrabass and octobass . .. 
A synthesis technique wherein a high-bandwidth signal, such as noise or impulses, is 
filtered into the desired sound. · ... 
Same as a combination tone. 

.. 
A clef one octave above the treble clef, proposed by Rossing and shown by two treble 
clefs . ... 
A clef two octaves above the treble clef, proposed by Rossing and shown by three treble 
clefs . ... 
A type of quadraphonic sound system. 

... ··································································································---··-··-··················································· 
seeADSR 

... 
In printed music, a set of simultaneous staves. 

... 
The precise tuning of the twelve pitch classes. This tuning usually repeats every octave. 
See equal temperament and just temperament. ... 
The perceived speed of the piece, typically expressed in crotchets per minute or beats 
per minute. Tempi implemented by a metronome range from 30 to 240 bpm., 
corresponding to frequencies from 'l2 to 4 Hz . ... ·-···-·················-················································-··········································-····································-····· 
l) The (vocal) register between alto and baritone, from C3 to G4. 

2) A tenor inst:npnent, such as the Eb tenor horn, Bb tenor trombone, and the Bb tenor 
axophone. s .... 

The minimum pressure fluctuation that can be heard. Typically this is 20 J!Pa at 1000 
Hz. .... 
ih~-~i~k:·&~q~~-cy··~r-Milli·~~;;~~~-·t;;;i~~-9·6·~~--i.2o .. ppq~-{P~~;;;-~·q-;;~~--
note) 

.... 
A line connecting separately notated parts of a single note. 

···-
The complex attribute that distinguishes notes with the same fundamental frequencies, 
oudnesses, and spatial locations. I .... ··········································································-·······························································--················· 
I ) Physical time, in milliseconds or hours. 

2 ) Musical time in terms of bars and beats. .... 
Processing a wave with the intention of changing its time profJ.le while leaving its 
frequency profile unaltered. 

.... 
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r-------------..································································································································································· 
tone I) A near-harmonic note, usu_ally with several components. 

2) "Twelve-tone" music refers to 12 pitch classes (q.v.) 

3) Two semitones, equal to a ratio of 6..J2 in equal temperament. 

4) Loose term for timbre, or specific attributes of timbre. 
1------------t································································································································································· 

tongue To clearly articulate the start of a note on a brass or woodwind instrument. 
1--------;:_-----1································································································································································· 

transcribe l) To write down music in CPN. 

2) To rearrange music for different instrumentation. 
1--------------t································································································································································· 

transient I) Inharmonic components at the start of a note, often associated with the excitation 
mechanism. 

2) Unusual sounds produced between notes. These may be due to the instrument 
changing shape (moving a key/valvelfmger), changing mode of vibration (overblowing), 
or noise from mechanical parts. · 

1--------------1································································································································································· 
transpose To change the key of a piece of music. 

1------.::...._-----1································································································································································· 
treble I) The higher of the two standard clefs in CPN. 

2) Loose term for high-frequency content. 
1--------------1································································································································································· 

tremolo An oscillation in amplitude, usually of 2-10 Hz. 
1------------t································································································································································· 

trill A rapid alternation between two notes. 
1------------t································································································································································· 

tritone Half an octave, i.e, six semitones. In equal temperament, equivalent to an augmented 
fourth or a diminished fifth. 

t----------1································································································································································· 
vibrato An oscillation in frequency, usually of 2-10 Hz. 

1---------'-----1················'················································································································································ 
virtual pitch The pitch of a residue tone (q.v.). Also known as residue pitch, low pitch, periodicity 

pitch, time-separation pitch, and repetition pitch. 
1-----------:----t································································································································································· 

I) The amplification setting of a music playback device. volume 
2) Loose term for loudness. 

t----------1································································································································································· 

wind An aerophone. The broadest definition is woodwind, voice, and brass; a narrower 
definition is woodwind and voic.e only. 

1--------------t································································································································································· 
woodwind An aerophone not including brass instruments or the voice. Non-wooden woodwind 

include flutes, saxophones, and contrabassoons. 
1------------t································································································································································· 

An undesirable effect in record and tape decks, similar to flutter (q.v.), but at lower WOW 

frequencies. 
t---------t································································································································································· 

A communications standard designed to supersede MIDI (q.v.). ZIP/ 

Table 45- Glossary of musical terms. 
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10.9 Appendix 1- Acronyms 

ADPCM Adaptive Differential Pulse Code Modulation 
ADSR Attack-Decay-Sustain-Release 
AM Amplitude Modulation 
ASIC Application-Specific Integrated Circuit 
ASWS Additive Sine Wave Synthesis 
BGI Borland Graphics Interface 
CASA Computational Auditory Scene Analysis 
CPN Common Practice Notation 
OFT Discrete Fourier Transform 
DOS Disk Operating System 
DPCM Differential Pulse Code Modulation 
DSP Digital Signal Processing 
DWT Discrete Wavelet Transform 
ET Equal Temperament 
FFT Fast Fourier Transform 
FIR Finite Impulse Response 
FM Frequency Modulation 
FT Fourier Transform ·-

GAS Group Additive Synthesis 
GFT Generalised Fourier Transform 
GIF Graphics Interchange Format 
GM General Midi 
GUI Graphical User Interface 
GUS Gravis UltraSound 
HRTF Head-Related Transfer Function 
liD Interaural Intensity Difference 
IIR Infinite Impulse Response 
101 Inter-Onset Interval 
lTD Interaural Time Difference 

JND Just-Noticeable Difference 
JPEG Joint Photographic Experts Group 
MFT Multiresolution Fourier Transform 
MIDI Musical Instrument Digital Interface 
MIMD Multiple-Instruction Multiple-Data 
MPEG Motion Pictures Experts Group 
PCM Pulse Code Modulation 
PLA Piecewise-Linear Approximation 

PM Phase Modulation or Physical Modellin_g_ 
QMF Quadrature Mirror Filter 
RM Ring Modulation 
SIMD Single-Instruction Multiple-Data 
SNR Signal-to-Noise Ratio 
STFT Short-Time Fourier Transform 
SVGA SuperVGA 
TSR Terminate and Stay Resident 
VESA Video Electronics Standards Association 
VGA Video Graphics Adapter 

·VLSI Very Large-Scale Integration 

WT Wavelet Transform 

Table 46- Acronyms and abbreviations. 
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10.10 Appendix J- Terms I define 

atom A representation of an array of quanta. 

compact (species) A species of atom other than species 15. 

convolentiation Convolentiation is to convolution as exponentiation is to multiplication. 

density (of a quantum) The factor ex. in the Gaussian e"-cx.e. 

inside-out The Fourier Transform of an atom. 

molecule An array of atoms. 

quantum A Gabor wavelet. 

species A number (0-15) describing the data format of the four arrays in an atom. 

Table 47- Terms I define in this thesis. 
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10.11 Appendix K- Analysis of Traumerei 

This experiment was carried out to repeat some of 

the analyses carried out by Repp.(Repp, Widmer) The 

first stage is to determine the input times using a 

Windows sound file editor. Some times can be 

determined to a high accuracy, but others in note 

clusters have more variance. From the raw times, 

we can derive the inter-onset intervals (lOis), and 

from there the variation in tempo with time. Only 

the first four bars were used. 

J) 

fl .. , v 
\: 'I 

' -.. ~l .. 

./ v 
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0 
Repp further classifies the · performances by 

examining 'melodic gestures'. The first, MG1, uses 
Figure 152 -Melodic gesture MG1. 

1'- -~ ,, 
I -

the first three lOis - C-F, F-chord, and chord-E - and labels these times A, B, and C, as shown in 
·- -

Figure 152. 

He calculates the values of N(B+C) and B/C for 24 of the 28 pianists, normalised using the 'literal' 

values. The performance analysed gave 1.03 and 1.46 for these values respectively, showing that the 

performer played the upbeat literally but delayed the chord. By comparing this to the first panel of 

Figure 5 ofRepp's paper, this value is closest to the 

perform!illce by ARR (Claudio Arrau) or possibly 

DEM (Jorg Demus). 

The next gesture to be analysed is the run of five 

quavers shown in Figure 153. As illustrated, the 

lOis tend to follow a parabolic function, with the 

quaver length decreasing then increasing over the 

phrase. The curvature was derived by fitting a curve 

using MathCad, giving a value of Q=I00.9° From 

Figure 9 ofRepp's paper, this value corresponds to 

Arrau or a few others, but not to Demus, whose 

'expression' parabola is even more curved. 

' ' 

~f----o~~?-:' ---'>! 
' ' ,, 1', ' 

: : : : 
: ~ ~ ; 

' ' : : 

brT1 
Figure 153 -Melodic gesture MG2. 

90 The units of this curvature are milliseconds per cubic quaver, dimensions even sillier than those for 
'Stevens's constant' of3.362x 104 ¢.dB"1 Hz"1 in Chapter 2. 
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Repp next analyses the remaining 

quavers. The input stops on the G 

minim in bar 4, so this analysis could 

only evaluate gestures MG3a/ 

MG4a/MG5a (notated in Figure 154 

differently to the score), but not the 

Figure !54- Melodic gestures MGJa. MG4a. and MG5a. 

quavers in the bass line (MG6a). Repp uses principal components analysis to derive six timing patterns. 

The 101 graph derived for the unknown pianist is closest to that for Factor I, with which Arrau has a 

high correlation. It was thus deduced, correctly, that the pianist was Claudio Arrau. 
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10.12 Appendix L- Mendelssohn Csound files 

The score file for creating the Mendelssohn example is shown below . 

.. 0 68 

0 0 512 512 10 15 10 6 9 4 5 2 8 3 2 1 3 

0 0 513 513 5 0.001 512 1 

0 512 512 10 15 12 8 9 4 5 

0 . 882353 

s 
.. 0 60 

i 1 0 

i 2 0 

i 3 0 

i 4 0 

i 5 

i 7 0 

0 

0 

0 

0.5 0.5 9.04 3400 0.02 0.03 

0.5 0.5 9.01 3400 0.02 0.03 

1 8.09 3400 0.02 0.03 

0.5 0.5 8.01 3400 0.02 0.03 

0.5 0.5 7.09 3400 0.02 0.03 

7. 09 3400 0. 02 0. 03 

i 8 6.09 3800 0.02 0.03 

i g 0 -1 -1 

i 1 0.5 0.5 0.5 0.5 9.02 3400 0.02 0.03 

i 2 0.5 0.5 0.5 0.5 a.11 3400 0.02 0.03 

i 4 0.5 0.5 0.5 0.5 a.02 3400 0.02 0.03 

i 5 0.5 0.5 0.5 0.5 7.11 3400 0.02 0.03 

i 1 

i 2 

i 4 

i 5 

i 7 

i 8 

1 

·1 

0.5 0.5 9.01 3400 0.02 0.03 

0.5 0.5 a.09 3400 0.02 0.03 

1 8. 04 3400 0. 02 0. 03 

0.5 0.5 8.01 3400 0.02 0.03 

7.04 3400 0.02 0.03 
. 1 6.04 3aoo 0.02 0.03 

i 1 1.5 1.5 0.5 0.5 8.11 3400 0.02 0.03 

i 2 1.5 1.5 0.5 0.5 8.08 3400 0.02 0.03 

i 5 1.5 1.5 0.5 0.5 8.02 3400 0.02 0.03 

i 1 2 2 1.5 1.5 a.o9 3400 0.02 0.03 

i 2 

i 4 

i 5 

i 7 2 

i a 2 

1.5 1.5 8.06 3400 0.02 0.03 

1.5 1.5 7.09 3400 0.02 0.03 

1.5 1.5 8.01 3400 0.02 0.03 

1.5 1.5 7.06 3400 0.02 0.03 

1.5 1.5 6.06 3aoo 0.02 0.03 

i 1 3.5 3.5 0.5 0.5 8.09 3400 0.02 0.03 

i 2 3.5 3.5 o.5 o.5 a.oa 3400 o.o2 o.o3 

i 4 3.5 3.5 0.5 0.5 a.01 3400 0.02 0.03 

i 5 3.5 3.5 0.5 0.5 7.09 3400 0.02 0.03 

i 7 3.5 3.5 o.5 o.5 7.04 3400 o.o2 o,o3 

i 8 3.5 3.5 0.5 0.5 6.04 3aoo 0.02 0.03 

i 1 9.06 3400 0.02 0.03 

i 2 9. 02 3400 0. 02 0. 03 

i 3 8.09 3400 0.02 0.03 

i 4 

i 5 

i 6 

i 7 

i 8 

i 1 5 

i 2 5 
i 3 

i 7 5 

i 8 

5 

5 

a.06 3400 0.02 0.03 

a.06 3400 0.02 0.03 

a.02 3400 0.02 0.03 

7.02 3400 0.02 0.03 

1 6.02 3aOO 0.02 0.03 

0.75 0.75 9.04 3400 0.02 0.03 

0.75 0.75 9.01 3400 0.02 0.03 

1.5 1.5 8.09 3400 0.02 0.03 

1 1 6.09 3400 0.02 0.03 

5.09 3aOO 0.02 0.03 

i 1 5.75 5.75 0.25 0.25 9.06 3400 0.02 0.03 

i 2 5.75 5.75 0.25 0.25 9.02 3400 0.02 0.03 

i 1 6 6 9.04 3400 0.02 0.03 

i 2 6 6 9.01 3400 0.02 0.03 

i 7 6 6 6.11 3400 0.02 0.03 

i 8 2 5.11 3aOO 0.02 0.03 

i 3 6.5 6.5 0.5 0.5 8.06 3400 0.02 0.03 

i 1 

i 2 

i 1 

7 

7. 5 7. 5 

0.5 0.5 9.02 3400 0.02 0.03 

0.5 0.5 8.11 3400 0.02 0.03 

a. 11 3400 o. 02 o. 03 

i 2 7.5 7.5 0.5 0.5 9.02 3400 0.02 0.03 

i 3 7.5 7.5 0.5 0.5 8.09 3400 0.02 0.03 

i 2 8 8 0. 75 0. 75 9. oa 3400 0. 02 0. 03 

i 3 8 

i 4 8 

i 7 

i 8 

8 

8 2 

2 

8.08 3400 0.02 0.03 

9.04 3400 0 .. 02 0.03 

6.04 3400 0.02 0.03 

5.04 3800 0.02 0.03 

i 2 8.75 8.75 0.12 0.12 9.06 3400 0.02 0.03 

i 2 8.87 8.87 0.13 0.13 9.08 3400 0.02 0.03 

i 2 0.5 0.5 9.09 3400 0.02 0.03 

i 3 9 0.5 0.5 8.09 3400 0.02 0.03 

i 4 9 0.5 0.5 8.06 3400 0.02 0.03 

i 2 9.5 9.5 0.5 0.5 9.11 3400 0.02 0.03 

i 3 9.5 9.5 1.5 1.5 8.08 3400 0.02 0.03 

i 4 9.5 9.5 2.5 2.5 8.04 3400 0.02 0.03 

i 2 10 10 2.5 2.5 9.04 3400 0.02 0.03 

i 7 10 10 7.01 3400 0.02 0.03 

i 8 10 10 2 6.01 3800 0.02 0.03 

i 1 10.5 10.5 0.5 0.5 9.02 3400 0.02 0.03 

i 1 11 11 1.5 1.5 9.01 3400 0.02 0.03 

i 3 11 11 0.5 0.5 8.09 3400 0.02 0.03 

i 3 11.5 11.5 0.5 0.5 8.oa 3400 0.02' 0.03 

i 3 12 12 2 2 8.06 3400 0.02 0.03 

i 7 12 12 _7 .02 3400 0.02 0.03 

i a 12 12 1 6.02 3aoo o.o2 o.o3 

i 1 12.5 12.5 0.5 0.5 8.09 3400 0.02 0.03 

i 1 13 13 0.5 0.5 9.04 3400 0.02 0.03 

i 2 13 13 0.5 0.5 9.01 3400 0.02 0.03 

i 7 13 13 6.11 3400 0.02 0.03 

i 8 13 13 5.11 3800 0.02 0.03 

i 1 13.5 13.5 0.5 0.5 9.02 3400 0.02 0.03 

i 2 13.5 13.5 0.5 0.5 8.11 3400 0.02 0.03 

i 1 14 14 9.01 3400 0.02 0.03 

i 2 14 14 a.09 3400 0.02 0.03 

i 3 14 14 1.5 1.5 8.04 3400 0.02 0.03 

i 7 14 14 7 7.04 3400 0.02 0.03 

i a 14 14 6.04 3aoo o.o2 o.o3 

i 1 15 15 0.5 0.5 a.11 3400 0.02 0.03 

i 2 15 15 0.5 0.5 a.oa 3400 0.02 0.03 

i 1 15.5 15.5 0.5 0.5 a.09 3400 0.02 0.03 

i 2 15.5 15.5 0.5 0.5 8.06 3400 0.02 0.03 

i 3 15.5 15.5 1.5 1.5 7.11 3400 0.02 0.03 

i 1 16 16 0.5 0.5 a.11 3400 0.02 0.03 

i 2 16 16 0.5 0.5 8.08 3400 0.02 0.03 

i 1 16.5 16.5 0.5 0.5 a.09 3400 0.02 0.03 

i 2 16.5 16.5 0.5 0.5 8.06 3400 0.02 0.03 

i 1 17 17 0.5 0.5 8.08 3400 0.02 0.03 

i 2 17 17 0.5 0.5 8.04 3400 0.02 0.03 

i 4 17 17 0.5 0.5 7.11 3400 0.02 0.03 

i 5 17 17 6.11 3400 0.02 0.03 

i 1 17.5 17.5 0.5 0.5 8.06 3400 0.02 0.03 

i 2 17.5 17.5 0.5 0.5 8.03 3400 0.02 0.03 

i 4 17.5 17.5 0.5 0.5 7.09 3400 0.02 0.03 

i 1 1a 1a 1 1 8. 04 3400 0. 02 0. 03 

i 4 18 18 0.5 0.5 7.0a 3400 0.02 0.03 

i 5 18 18 0.5 0.5 7.11 3400 0.02 0.03 

i 4 18.5 18.5 0.5 0.5 7.09 3400 0.02 0.03 

i 1 19 19 2.5 2.5 8.11 3400 0.02 0.03 

i 4 19 19 7.11 3400 0.02 0.03 

i 5 19 19 0.5 0.5 7.08 3400 0.02 0.03 

i 5 19.5 19.5 0.5 0.5 7.09 3400 0.02 0.03 

i 6 19.5 19.5 0.5 0.5 7.06 3400 0.02 0.03 

i 2 20 20 0.5 0.5 9.11 3400 0.02 0.03 

i 3 20 20 0.5 0.5 9.0a 3400 0.02 0.03 

i 5 20 20 0.5 0.5 7.0a 3400 0.02 0.03 

i 6 20 20 0.5 0.5 7.04 3400 0.02 0.03 

i 2 20.5 20.5 0.5 0.5 9,09 3400 0.02 0.03 

i 3 20.5 20.5 0.5 0.5 9.06 3400 0.02 0.03 
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i 5 20.5 20.5 0.5 0.5 7.09 3400 0.02 0.03 

i 6 20.5 20.5 1 0.00 0 0.02 0.03 

i 2 21 21 0.5 0.5 9.08 3400 0.02 0.03 

i 3 21 21 0. 5 0. 5 9. 04 3400 0. 02 0. 03 

i 5 21 21 1 7.11 3400 0.02 0.03 

6.11 3400 0.02 0.03 

5.11 3800 0.02 0.03 

i 7 21 21 

1 8 21 21 

i 1 

i 2 

i 3 

i 1 

i 2 

i 4 

i 5 

i 7 

i 8 

21.5 21.5 0.5 0.5 

21.5 21.5 0.5 0.5 

21.5 21.5 0.5 0.5 

22 22 0.5 0.5 

22 22 1.5 1.5 

22 22 1 1 

22 22 0.5 0.5 

22 22 

22 22 

0.5 0.5 

0.5 0.5 

8. 09 3400 0. 02 0. 03 

9. 06 3400 0. 02 0. 03 

9.03 3400 0.02 0.03 

8. 08 3400 0. 02 0. 03 

9.04 3400 0.02 0.03 

0.00 0 0.02 0.03 

8. 04 3400 0. 02 0. 03 

7.01 3400 0.02 0.03 

6.01 3800 0.02 0.03 

i 1 22.5 22.5 0.5 0.5 8.04 3400 0.02 0.03 

i 5 22.5 22.5 0.5 0.5 8.03 3400 0.02 0.03 

i 7 22.5 22.5 0.5 0.5 6.11 3400 0.02 0.03 

i 8 22.5 22.5 0.5 0.5 5.11 3800 0.02 0.03 

i 1 23 23 

i 5 23 23 

i 7 23 23 

0. 5 0. 5 8. 06 3400 0. 02 0. 03 

0.5 0.5 8.01 3400 0.02 0.03 

0.5 0.5 6.09 3400 0.02 0.03 

i 8 23 23 0.5 0.5 5.09 3800 0.02 0.03 

i 1 23.5 23.5 0.5 0.5 8.08 3400 0.02 0.03 

i 3 23.5 23.5 1 9.04 3400 0.02 0.03 

7. 11 3400 0. 02 0. 03 i 5 23.5 23.5 0.5 0.5 

i 7 23.5 23.5 0.5 0.5 6.08 3400 0.02 0.03 

i 8 

i 1 

i 2 

i 5 

i 7 

i 8 

23.5 23.5 0.5 0.5 5.08 3800 0.02 0.03 

24 24 0.5 0.5 8.09 3400 0.02 0.03 

24 24 0.5 0.5 9.09 3400 0.02 0.03 

24 24 

24 24 

24 24 

7. 09 3400 0. 02 0. 03 

6.06 3400 0.02 0.03 

5. 06 3800 0. 02 0. 03 

i 1 24.5 24.5 0.5 0.5 8.11 3400 0.02 0.03 

i 2 24.5 24.5 0.5 0.5 9.08 3400 0.02 0.03 

i 3 24.5 24.5 0.5 0.5 9.03 3400 0.02 0.03 

i 1 25 25 0.5 0.5 8.09 3400 0.02 0.03 

0.5 0.5 9.06 3400 0.02 0.03 i 2 25 25 

i 3 25 25 9.01 3400 0.02 0.03 

i 1 25.5 25.5 0.5 0.5 8.08 3400 0.02 0.03 

i 2 25.5 25.5 0.5 0.5 9.04 3400 0.02 0.03 

i 1 26 26 0.5 0.5 8.06 3400 0.02 0.03 

i 2 26 26 0.5 0.5 9.03 3400 0.02 0.03 

i 3 26 26 1 8.09 3400 0.02 0.03 

i 1 26.5 26.5 0.5 0.5 8.03 3400 0.02 0.03 

i 2 

i 1 

i 2 

i 3 

i 5 

i 7 

i 8 

i 2 

i 5 

26.5 26.5 0.5 0.5 9.01 3400 0.02 0.03 

27 27 2 2 8. 04 3400 0. 02 0. 03 

27 27 0.5 0.5 8.11 3400 0.02 0.03 

27 27 0.5 0.5 8.08 3400 0.02 0.03 

27 27 0.5 0.5 7.11 3400 0.02 0.03 

27 27 0.5 0.5 6.08 3400 0.02 0.03 

27 27 0.5 0.5 5.08 3800 0.02 0.03 

27.5 27.5 0.5 0.5 9.01 3400 0.02 0.03 

27.5 27.5 0.5 0.5 8.06 3400 0.02 0.03 

i 7 27.5 27.5 0.5 0.5 6.09 3400 0.02 0.03 

i 8 27.5 27.5 0.5 0.5 5.09 3800 0.02 0.03 

i 2 28 28 8. 11 3400 0. 02 0. 03 

i 3 28 28 8.08 3400 0.02 0.03 

i 5 28 28 7.11 3400 0.02 0.1 

i 7 28 28 6.11 3400 0.02 0.03 

i 8 28 28 5.11 3800 0.02 0.03 

i 1 29 29 1 8.03 3400 0.02 0.03 

i 2 29 29 0.75 0.75 8.09 3400 0.02 0.03 

i 3 29 29 1 1 _8.06 3400 0.02 0.03 

i 2 29.75 29.75 0.25 0.25 8.08 3400 0.02 0.03 

i 1 30 30 

i 2 30 

i 3 30 

i 7 30 

i 8 30 

i 1 32 

i 2 32 

30 

30 

30 

30 

32 

32 

i 5 32 32 

i 7 32 32 

i832 32 

35.5 35.5 

9 

8.04 3400 0.02 0.1 

2 2 8.08 3400 0.02 0.1 

4.5 4.5 0.00 0 0.02 0.03 

2 6.04 3400 0.02 0.1 

5.04 3800 0.02 0.1 

2.5 2.5 0.00 0 0.02 0.1 

2.5 2.5 0.00 

2. 5 2. 5 0. 00 

2.5 2.5 0.00 

2. 5 2. 5 0. 00 

0 0.02 0.1 

0 0.02 0.1 

0 0. 02 0. 1 

0 0. 02 0. 1 
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The orchestra file for the Mendelssohn is below. The original file had reverberation; this was removed 

for making the test piece. 

;orchestra6 

sr=32000 

kr=2000 

ksmps=l6 

nchnls=l 

instr 1 

al envlpx pS ,p6 ,p3 ,p7 ,2 ,1 ,0.01 

gal oscili al ,cpspch(p4) ,1 

en din 

instr 2 

al envlpx pS ,p6 ,p3 ,p7 ,2 ,1 ,0.01 

ga2 oscili al ,cpspch(p4) ,1 

endin 

instr 3 

a1 envlpx pS , p6 , p3 , p7 , 2 , 1 , 0. 01 

ga3 oscili al ,cpspch(p4) ,1 

endin 

instr 4 

al envlpx pS ,p6 ,p3 ,p7 ,2 ,1 ,0.01 

ga4 oscili al ,cpspch(p4) ,1 

endin 

instr 5 

al envlpx pS ,p6 ,p3 ,p7 ,2 ,1 ,0.01 

gaS oscili al ,cpspch(p4) ,1 

endin 

instr 6 

al envlpx pS ,p6 ,p3 ,p7 ,2 ,1 ,0.01 

ga6 oscili al ,cpspch(p4) ,1 

en din 

instr 7 

al envlpx pS ,p6 ,p3 ,p7 ,2 ,1 ,0.01 

ga7 oscili al ,cpspch(p4) ,1 

en din 

instr 8 

al envlpx pS ,p6 ,p3 ,p7 ,2 ,1 ,0.01 

gaB oscili al ,cpspch(p4) ,3 

en din 

instr 9 

out gal+ga2+ga3+ga4+ga5+ga6+ga7+ga8 

endin 
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10.13 Appendix M- The BiMouse three-dimensional controller 

Here I outline a simple method of making a three-dimensional controller for the PC. The BiMouse is 

formed from two standard serial mice, and detects the angle of rotation as well as the x and y axes. 

(Other alternative controllers exist, all with different benefits and drawbacks.[Sawada, Lopez-t..ezcano)) 

It was originally conceived as a more powerful mouse for the User Interface. However, it also has 

potential for real-time control of three synthesis parameters. The Theremin is played using two control 

parameters, frequency and amplitude, so a 'soft Theremin' could be controlled using the x~y position of 

a mouse. The third dimension available with the BiMouse could control another parameter such as 

vibrato. In fact, on PCs with all four91 serial ports, a user could control six continuous dimensions 

independently (such as pitch, amplitude, attack rate, attack synchrony, and two formant frequencies) 

with a BiMouse in each hand.92 To extend this, we could use the mouse buttons to control the mapping 

from these six dimensions onto many more synthesis parameters, although we would wish to reserve at 

least one button for specifying note onsets. 

10.13.1 BiMouse hardware 

The BiMouse is made using two standard and ideally identical mice, as shown in Figure 155. While 

more elegant attachment ts 

undoubtedly possible, a practical 

method of joining the mice is to use 

a thick slice of Blu-Tak. Ideally, 

the horizontal and vertical axes of 

the mice should be aligned. The 

cables of the mice are joined by 

twist-ties. A more refined system 

could use optical mice to free the 

performer from the cables, and a 

larger mouse mat. 

10.13.2 BiMouse software 

Since the hardware configuration is 

unusual and a serial port is more Figure 155 - The hardware of the BiMouse. 

91 Four serial ports is normally the maximum on a PC- most systems have only two ports. However, an 
interesting installation by Okamoto at the 1996 ICMC used specially-designed hardware to allow sixteen 
mice to control real-time polyphonic synthesis.[OkamotoJ 

92 Another experimental device along similar lines to the· BiMouse was the BiJoy - two joysticks 
connected at the base. This allows four continuous controllers. It also has four switches, the maximum 
permitted by the joystick port. 



frequently required for a MIDI interface, it is most practical to use an AUTOEXEC.BAT with multiple 

configurations. 

It is necessary for CONFIG.SYS to load two mouse drivers. The Microsoft driver, MOUSE.SYS, 

checks for itself in memory, so we must circumvent this feature. This is done by copying MOUSE.SYS 

to MOUSETWO.SYS and loading the latter first. Both drivers should use a linear mapping from mouse 

movement to cursor position, i.e. dynamic tracking must be disabled. 

rem load COMl handler - mousetwo.sys is a direct copy of mouse.sys 

DEVICE = m:\hardware\mouse\mousetwo.sys /1 /RO 

rem load COM2 handler 

DEVICEHIGH = m:\hardware\mouse\mouse.sys /2 /RO 

(Extract from CONFIG.SYS) 

10.13.3 Using the BiMouse 

User programs must set up their own routines to handle both mouse interrupts. If the mice track at 

different speeds, then it will be necessary to first compensate for this. The position of the BiMouse is 

taken from one mouse, and the change in angle is calculated from the difference in lly between the two 

mice. The 'fourth' degree of freedom, that we have lost, is the distance between the two balls, which 

should remain constant as long as both are in contact with the mat. 

If the left mouse moves by llxL,llYL, and the right mouse moves by llx~t,!lyR, and the BiMouse is at 

Oposition x8 ,y8 pointing at an angle a, then:-

llx8 = 1lxL.cos(a) + 1lyL.sin(a) 

llyB = 1lxL.sin(a) -1lyL.cos(a) 

lla = k.(/lyL-llYR) 

A program was written to test this system for two mice. Further developments will be to implement four 

mice, to develop real-time synthesis routines, and to develop a system to map the gestural control onto 

synthesis control. 
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10.14 Appendix N - Colour figures 

Below are some of the colour schemes available with READSPEC - 16-colour, l~grey, blue/yellow, 

'fire', and reversed 1 ~grey. The printed colours only correspond approximately to the screen colours. 

~. ~ -l- --~ - ... ~ - - '·'·" 
~· ~~- -no••• 
-,...c-.. ' .....J- --·;..; ......... ,-... -~ 

-~~ "i~.,- ... ~---
~'1"'4:~ ... -- -

. -·- . ... ~- -- 1.r.!. - : . -· ... ·-·-

; j 

' 

Figure 156 - Colour schemes available with READSP EC. 



10.15 Appendix 0- Program flags 

This appendix gives the usage screens for the main programs developed. 

10.15.1 OSA 

The C40 program OSA does not take command-line flags; instead it offers the user a menu of options, 

as shown below. Items without a number depend on other choices and cannot be altered directly by the 

user. 

\ \ \ \ \ \ \ \ \ \ \ \ \ 
Octave Spectral Analysis \ \ \ \ \ \ \ \ \ \ \ \ \ 

Current configuration is as follows:-

1> Size of disk buffer (words) 
2> Size of channel buffer (words) 
3> Filter number 

- Length of filter 
5> Length of FFT 
6> Input file 
7> Input file centred on 0 

- Input file length (seconds) 
9> Calculate spectra 

10> Write spectra 
11> Spectrum format 
12> Output file 
13> Sample rate (Hz) 
14> FFT enabled 
15> Window type 
16> *.WAV format 

- Configuration version 
18> Task (O=osa, 1=extended) 
19> Graphics enabled 
20> Graphics mode 

- X resolution 
- Y resolution 

10.15.2 ReadSpectrum 

~-- I 
I~-- ( ( 

\ \ \ \ \ \ \_\_ 

4096 
128 
6 
128 
64 
i:\mex\poulenc\poulenc.snd 
yes 
123456 
yes 
yes 
IEEE 
i:\mex\poulenc\poulenc.c40 
16000 
yes 
Hamming 
no 
0.08 
0 
no 
0 
0 
0 

I I 1- If I l _\-=-\ I l 1- 1- T 1-) I I Ill 
(_/ ( I 7 I _I ( __ I I ( --: ( I I \ (_I I I 

(c) Douglas Nunn 
Program Version 0.35 Oct 23 1995 

This program displays the spectra created by the C40. 
To abort early, press escape. Press a key after the beep. 

Usage: ReadSp specfile[.c40) [flags) 

Flags (not case-sensitive) 

-h Horizontal 
-t . show Time axis 
-c# Colours 0:8-col 1:mono 2:8-gy [3:16-col] 4:16-gy 5:bly 6:fire 
-m use Mono colour scheme (same as. -c1) 
-r Reverse colours 
-k Kolour by semitones 
-s# Style number (0-12, default 10) 
-sl# SLant angle (0-90, default 40.00) 
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-p 
-pp 
-ps 
-sc# 
-qx 
-n 
-1 
-ename 
-d 
-? 

Photo mode - pause after each scroll (for VGACAP) 
Photo Pcx - use PCXDUMP to capture screen 
Photo Shell (with -p or -pp) - run RS Shell.Bat after snap 
scroll every n pixels (default 16) (only with -h) 
Quick eXit - run once, donEt pause at end 
No scrolling 
show Loudness instead of amplitude (?) 
write Edge file 
Draw edges 
this help 

10.15.3 Characterisation- Distrib2.Exe 
Syntax: Distrib2.Exe SpectrumFile [OutputFile] 
This graphically displays the power distribution and determines the 
average power. 

SpectrumFile is a *.c40 file. 
OutputFile is an optional file for the resultant power calculation. 

10.15.4 Pickout 

Options marked with an asterisk are the 'normal' options. 

Version 
0.24 

Syntax: PickOut specfile [flags] 

* 
* 
* 

* 

* 

* 
* 
* 

spec file 

Flags: 
-? 
-m int 
-s float 
-g 
-G path 
-t fname 
-p fname 
-b 
-w 
-o int 
-1 
-n int 
-q float 
-k fname 
-z float 
-a 

spectra output from C40 

Default 
print this help 
Maximum number of tries 40 
Sample rate in Hz 44100.000000 
display Graphics 
path to graphics driver 
write Text file (large!) 
write Packed.file (useless) 
write Blurb file 
write Waffle file 
read 1 in n spectra (debug) 1 
Loud - report during run 
size of fft 64 
Quietness of original in dB 0 
Read character from file *.kar 
Target power drop in dB 48 
Automatic - no user prompts 

Example: PickOut bach.c40 -tbach.sla -kcharactr.mex -z24 -m20 
Don't use both -q and -k. -p is pointless. Don't use -j either. 
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10.15.5 Megasort 

ttEGAIOAT 
Version 0.05 

Usage: MegaSort input-file output-file [flags] 
Flags: -d Disqualify lines not starting with a number 

10.15.6 Virtual Memory 

Below is the header file for the virtual memory routines. 

/* vmern.h --- definitions for Virtual MEMory */ 

#ifndef VMEM H 
#define VMEM H 

typedef unsigned long VMEM; 
#define ulongunsigned long 
#define uint unsigned int 
#define NULL VMEM (ulong) (-1) 
VMEM vmalloc(ulong nbytes); 
void vfree(VMEM ap); 
void vwrite(void *ph, VMEM st, ulong off, ulong n); 
void vread(void *ph, VMEM st, ulong off, ulong n); 
void vcopy(VMEM src, VMEM dest, ulong dest off, ulong n); 
void vmdie(void); -
void vmrernove(void); 
void vmhush(void); 
void vmloud(void); 
void vmforce(int neer,int farr,int zz,int extend,int zzz,int disk); 
void disallow overrun(void); 
void allow_overrun(void); 

extern char VMdlist[33]; 
extern int VMdlistn; 

#end if 

10.15.7 Sine Display 

This is a QBasic program, and QBasic programs cannot be given flags. If flags must be passed, they 

must be read from a particular file. Instead, this program assumes that the input file is found in 

0:\MEX\MEX.SLB. 

10.15.8 Vreorder 

Version 0.07 
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VReorder sorts a sine list according to a chain list. 

Usage: VReorder list-file chain-file output-file 
list-file is a sorted list of sinusoids 

chain-file is the list of chain connections 
output-file is the reordered output 

10.15.9 Track display 

This is also a QBasic program, so has no flags. 

10.15.10 Sine Tracking 

(*.slb) 
(* .chn) 
(*.reo) 

### ## ### ## # # ### # ## # # 
## ## ## ## # # ## ### # # 
# # # ### # ### ### # ## # 

### ## # ## # # ### ## 
# ## ### # ## ## ## 
# # # # # ## # # ### # # 

Program version 1.05 
FT.Exe matches harmonically related sines into note groups. 

Usage: FT input-file [[dumpfilename] (-dt#] 
input-file (*.reo) -Grouped sine format 
dumpfilename (NO extension!) -name for vmem dump files 
-dt# (#=16,32,64) - DivideTime factor (=FFTsize) 
-nk - No Keypresses or prompts 

10.15.11 Battle 

Version 
0.28 

Syntax: Batl TempDumpName AsciiFile [flags] 

TempDumpName (with NO extension) refers to .own/.clm/.seg files. 
AsciiFile is the ASCII note list produced. 

Flags:
-snumber 
-q 
-tnumber 
-b 
-nk 
-rfname 

Sample rate 
Quiet - no other screen info 
Minimum time for a note in seconds 
Bleep at end of each generation 
No Keypresses (auto mode for batch files) 
Report File 

10.15.12 User Interface 

Most of the VI parameters are controlled via the menu system, but there are several startup flags. 

ntErf ac B 

UI - User Interface version 0.26 (c) Douglas Nunn, 4 August 1996 

Usage: UI [flags] 
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-ml 
-m2 

Mouse on COMl 
Mouse on COM2 

-gd# 
-gm# 

Graphics Driver (-l:VGA O:SVGA16 1:SVGA256 5:S3 6:Twk1.6 7:Twk256) 
Graphics Mode 

-gpPATH 
-ps 
-? 

Path to graphics drivers 
Pause at Start 
This help 

Default mouse port is COM2. 

10.15.13 ReadAsc 
ReadAsc version 0.02 

ReadAsc plots Cakewalk ASC files. 

Syntax: ReadAsc [options] [flags] infile1 [flags] [infile2 ... ]. 

Options: -cp 
-sh 

Flags: -c# 
-bg# 
-xs# 
-nw# 
-ln# 

- ComPare infile1 (guessed) to infile2 ·(ideal) 
- SHow comparison graphically 

- Colour 
- BackGround 
- X Scale 
- Note Width 
- Lowest Note 

colour 
default 
default 
default 

5.000000 
5.000000 
20 

0-black· 1-blue 2-green 3-cyan 4-red 5-magenta 6-browh 7-Lgrey 
8-darkgrey 9-Lblue 10-Lgreen 11-Lcyan 12-Lred 13-Lmagenta 14-yellow 15-white 

Example: readasc -c1 origscor.asc -c4 newscor.asc 
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10.16 Appendix P- Converting the sine function to Gabor wavelets 

Here I derive sinc(x) in terms of Gabor wavelets. 

First we try to form 

If we sum terms from negative 
to positive 

so the number of terms is 
andtheindexrangeis 

we also sum over positive and negative times 

The ratio for spacing is 

We form quanta at times 

with a frequency of zero 

with densities 

and magnitudes 

The last term is numbered 

Aim(x) --

minJ •= 20 
maxJ ·= 29 

1t·X 

. J • = minJ + maxJ + 1 
j = -minL maxJ 

Q •= J 

q = 0 .. 1 sign(q) = 1- 2·q 

R •= 1.371 

t. minJ Q = ~-sign(q) J+ +q· 

f•= 0 

( 2)-j 
a. minJ Q •= R J+ +q· 

-j . 
mj+minJ+q·Q =R ·stgn(q) 

lastJ = 1·2 - 1 lastJ = 99 
and the total of these terms summed over JJ = o .. lastJ 

Aim(tt) 

Est( tt) 

is given by 

Now determine the constant factor 

and apply it to give the final estimate 

plot for time index 

Aim( tt)- Est( tt) 

1•10 -s ----:::-

2-16 I _.... 
/ 

I; / 

1"10-6 t-

0 5000 

estO( tt) 

jj = 0 

Kappa _ Aim( 10.7) 

estO( 10.7) 
Kappa = 0.067244 

Est( tt) • = estO( tt) ·Kappa 

tt = 0.01, 1000 .. 35000 

tt 

This shows that the absolute error does not exceed 2-16 when we truncate the end of the series 



The individual terms are 
Plot this for times 

tt = 0.001 , .01 .. 1 

Aim(tt) 

Est( tt) 

trn( 13,lt) 

trn(l4,tt) 

trn(IS,tt) 

trn(16,tt) 

trn( 17,tt) 

trn(l8, tt) 

trn( 19,tt) 

trn(20,tt) 

trn(21 ,tt) 

trn( 22, tt) 

trn(23,tt) 

trn(24, tt) 

2-16 

2-12 

lOr-e-------,----------.---------.---------,.---------, 

0.01 

0.001 

J•IQ -4 

J•w -s 

I•I0-6 
0 

-----------------------------------\-----
\ 
\ 
\ 
\ 
\ 
\ 
\ I 

---------------------r·-----·~--------- --·---·---· 

\ . 
\ 
\ 
\ 

-----------~----~-----

0.2 0.4 

\ I 

\ 
\ 
\ 

. \ 

tt 

0.6 0.8 

The relative error is also below z-16 

1.10-4 

I Est(tt)- Aim( tt)l 
Aim(tt) 

2-16 
I•IO -s 

2-17 

2-18 

J•IQ -6 
0 0.2 0.4 0.6 0.8 1.2 

tt 



10.17 Appendix Q- Audio examples 

These audio examples can be found on the enclosed cassette tape and on the World-Wide Web at the 

URL http:/ I capella. dur. ac. uk/ doug/thesis/. 

Name File Threshold (dB) 

. 1 MTest1 original d: \mex\mtest 1 \mtest 1 

2 MTest2 original d: \mex\mtest2\mtest2. snd 

3 " derived d :\mex\mtest2\mex. wrk -24 

4 Mendel original d:\mex\minimend\minimend. snd 

5 " derived d:\mex\mendhamm\mex\redo 96\batl30. wrk -30 -

6 Poulenc original d:\mex\poulenc\poulenc.snd 

7 Traumerei original d:\mex\schum\schum. snd 

8 " derived d: \mex\schum \redo96\batl4 2. wrk -42 

9 Piano Concerto original d:\mex\gpc\gpc.snd 

10 " derived d: \mex\gpc\batl18. wrk -18 

11 Death of Aase original d: \mex\aase\aase. snd 

12 " derived d: \mex\aase\batl24. wrk -24 

13 Didgeridoo original d: \mex\didge\didge. snd 

14 Ring down original d: \mex\bells3\bellmon. snd 

Table 48 -List of audio examples. 

259 



11. References 

11.1 References 

Amuedo J. Amuedo, Periodicity estimation by hypothesis-directed search, Proc. 

ICASSP, Tampa, Florida, 395-398, 1985 

Analog 

ANSI 

Arfib 90 

Arfib 91 

Arm ani 

Assmann 89 

Assmann 90 

Athena 

Atlanta 

Audio Works 

Auger 

Backus 

Bailey 90 

Baines 

Analog Devices, ADSP-21 020 User's Manual, 1991 

American National Standards Institute, American Standard Acoustical 
Terminology, S I. 1-1960, 1960 

D. Arfib, In the intimacy of a sound, Proc. ICMC, Glasgow, 43-45, 1990 

D. Arfib, Analysis, transformation, and resynthesis of musical sounds with the 
help of a time-frequency representation, in G. De Poli, A Piccialli, and C. 
Roads, eds., Representations of Musical Signals, Cambridge, Massachusetts: 
MIT Press, 1991 

.. . 

F. Armani, A. Paladin, and C. Rosati, MARS Applications Using APPL120 
Development Tools: a Case Study, Proc. ICMC, Aarhus, 230-236, 1994 

P.F. Assmann and Q. Summerfield, Modeling the perception of concu"ent 
vowels: Vowels with the same fundamental frequency, JASA, 85, 327-338, 
1989 

P.F. Assmann and Q. Summerfield, Modeling the perception of concu"ent 
vowels: Vowels with different fundamental frequencies, JASA, 88, 680-697, 
1990 

Athena Consulting, Athena Consulting Stock Answers: How FAST are 
Athena workstations?, <http:// mufasa.mit.edu/ stock_answers/ workstations/ 
ws_speeds.html>, 27 September 1996 

Atlanta Signal Processors Inc., Digital Filter Design Package, 
<http:/ /www.aspi.com/techsprt/dfdp.htm>, November 1996 

AudioWorks Ltd., Sound2Midi Info (sales literature), <http:// 
www.audioworks.com/s2m.htm>, 23 June 96 

F. Auger and G. Flandrin, La reallocation: une methode generate 
d'ame/ioration de Ia /isibi/ite des representation temps-frequence bilineaires, 
Proc. Colloque Temps-Frequence, Ondelettes et Multiresolution: Theorie, 
Modeles et Applications, Lyon, France, 15.1-15.7, 1994 [in French] 

J. Backus, Input impedance curves for the brass instruments, JASA, 60(2), 

470-480, August 1976 

N. Bailey, A. Purvis, I. Bowler, and P.D. Manning, An highly parallel 
architecture for real-time music synthesis and digital signal processing 
applications, Proc. ICMC, Glasgow, 167-171, 1990 

N. Bailey, On the synthesis and processing of high-quality audio signals by 
parallel computers, PhD thesis, Durham Univ., 1991 

A. Baines, Brass Instruments, London: Faber & Faber, 1976 

260 



Baird 

Balzano 

Baraniuk 

Bargar 92 

Bargar 95 

Bartoo 

Bastiaans 80 

Bastiaans 85 

Beauchamp 

Bell 

Bellanger 

Benade 65 

Benade 73 

BergerJ 94a 

BergerJ 94b 

BergerJ 94c 

BergerJ 95 

BergerK 

B. Baird, D. Blevins, and N. Zahler, Artificial intelligence and music: 
implementing an interactive computer performer, CMJ, 17(2), 73-79, Summer 
1993 

G.J. Balzano, The Group-theoretic Description of 12-Fold and Microtonal 
Pitch Systems, CMJ, 4(4), 66-84, Winter 1980 

R.G. Baraniuk and D.L. Jones, Shear Madness: new orthonormal bases and 
frames using chirp functions, IEEE Trans. Signal Processing, 41(12), 3543-
3548, December 1993, and <http://www-dsp.rice.edu/publicationslpub/ 
shear_ madness. ps.Z> 

R. Bargar, Correlated sound and image in a digital medium, Proc. ICMC, 
San Jose, 194-197, 1992 

R. Bargar, B. Holloway, X. Rodet, and C. Hartman, Defining Spectral 
Surfaces, Proc. ICMC, Banff, 373-376, 1995 

T. Bartoo and B. Truax, Electro-Acoustic Composer's Workstation Project, 
Proc. ICMC, San Jose, 446, 1992 

M.J. Bastiaans, Gabor's Expansion of a Signal into Gaussian Elementary 
Signals, Proc. IEEE, 68(4), 538-539, April1980 

M.J. Bastiaans, On the sliding-window representation in digital signal 
processing, IEEE Trans. ASSP, 33(4), 1985 

J. Beauchamp, A Computer System for Time-Variant Harmonic Analysis and 
Synthesis of Musical Tones, in Music By Computers, H. von Foerster and J. 
Beauchamp, eds., New York: John Wiley & Sons, 1969 

A.J. Bell and T.J Sejnowski, An information-maximisation approach to blind 
separation and blind deconvolution, Neural Computation, 7, 1129-1159, 1995, 
and <ftp://ftp. cnl. salk.edu/pub/tony/bell. blind. ps.Z> 

M. Bellanger, J. Daguet, and G. Lepagnol, Interpolation extrapolation and 
reduction of computation speed in digital filters, IEEE Trans. ASSP, 22, 231-
235, August 1974 

A.H. Benade and J.W. French, Analysis of the Flute Head Joint, JASA, 37, 
679-691, 1965 

A.H. Benade, The Physics of Brasses, Scientific American, 229(1), 24-35, July 
1973, reprinted in Musical Acoustics- Piano and Wind Instruments, E.L. Kent, 
ed., Stroudsburg, Pennsylvania: Dowden, Hutchinson and Ross, 1977 

J. Berger, R.R. Coifman, and M.J. Goldberg, A Method of Denoising and 
Reconstructing Audio Signals, Proc. ICMC, Aarhus, 344-347, 1994 

J. Berger and C. Nichols, Using Wavelet Based Analysis and Resynthesis to 
Uncover the Past, Proc. ICMC, Aarhus, 352-355, 1994 

J. Berger, R.R. Coifman, and M.J. Goldberg, Removing Noise from Music 
Using Local Trigonometric Bases and Wavelet Packets, J. AES, 42(10), 808-
818, 1994 

J. Berger, R.R. Coifman, and M.J. Goldberg, A two-stage automatic 
adaptive process to remove noise from an audio signal, Proc. ICMC, Banff, 
288-291, 1995, and <http://www.music.yale.edu/research/denoise/ 
denoise2.html> 

K.W. Berger, Some Factors in the Recognition of Timbre, JASA, 36, 1888, 
1963 

261 



Bevan 

Birdsall 

Blackham 

Bloch 

Boatin 

Borland 

Bosi 

Boyer 

Bracewell 

Bregman 89 

Bregman 96a 

Bregman 96b 

BrownG92a 

BrownG92b 

BrownG94a 

BrownG94b 

BrownG95a 

BrownG95b 

BrownG96 

C. Bevan, The Tuba Family, London: Faber & Faber, 1978 

J.W. Birdsall <support@picarefy.com>, XMSIF, <ftp://sunsite.doc.ic.ac.uk/ 
packages/simtelnet/msdos/c/xmsifl5.zip>, 1994 

E.D. Blackham, The Physics of the Piano, in Musical Acoustics - Piano and 
Wind Instruments, E.L. Kent, ed., Stroudsburg, Pennsylvania: Dowden, 
Hutchinson and Ross, 1977 

J.J. Bloch and R.B. Dannenberg, Real-Time Computer Accompaniment of 
Keyboard Performances, Proc. ICMC, ?, 279-290, 1985 

N. Boatin, G. De Poli, and P. Prandoni, Timbre Characterization with Mei
Cepstrum: a Multivariate Analysis, Proc. XI Colloquium on Musical 
Informatics, Bologna, 145-148, 1995 

Borland Inc., Turbo C Reference Guide, Scotts Valley: Borland, 1988 

M. Bosi, The Sound Accelerator as a Real-Time DSP Environment: 
Encoding/Decoding Audio Signals, Proc. ICMC, Glasgow, 175-177, 1990 

F. Boyer and R. Kronland-Martinet, Granular Resynthesis and 
Transformation of Sounds Through Wavelet Transform Analysis; Proc. ICMC, 
Ohio State U., 51-54, ·1989 

R.N. Bracewell, The Fourier Transform and its Applications, New York: 
McGraw-Hill, 1986 

A.S. Bregman, Auditory Scene Analysis: The Perceptual Organization of 
Sound, London: MIT Press, 1989 

A.S. Bregman, Psychological data and computational ASA, in H. Okuno and 
D.F. Rosenthal, eds., Readings in Computational Auditory Scene Analysis, 
Hillsdale: Erlbaurn, 1996 

A.S. Bregman, Introduction to Auditory Scene Analysis, <http:// 
www. psych.mcgill.callabslauditory/introASA.html>, April 1996 

G.J. Brown, Computational Auditory Scene Analysis: A Representational 
Approach, PhD thesis CS-92-22, Dept. ofComp. Sci., Univ. of Sheffield, 1992 

G.J. Brown and M.P. Cooke, Computational Auditory Scene Analysis: 
Grouping sound sources using common pitch contours, Proc. lnst. Acoustics, 
Windermere, 439-446, November 1992 

G.J. Brown and M.P. Cooke, Perceptual Grouping of Musical Sounds, 
JNMR, 23 (2), 107-_132, 1994 

G.J. Brown and M.P. Cooke, Computational Auditory Scene Analysis, 
Computer Speech and Language, 8, 297-336, 1994 

G.J. Brown and M.P. Cooke, A neural oscillator model of primitive auditory 
grouping, Proc. IEEE Sig. Proc. Society Workshop on Applications of Sig. 
Proc. to Audio and Acoustics, New York, 53-56, October 1995 

G.J. Brown and M.P. Cooke, Temporal synchronisation in a neural 
oscillator model of primitive auditory stream segregation, IJCAI Workshop on 
Computational Auditory Scene Analysis, Montreal, August 1995 

G.J. Brown, M.P. Cooke, and E. Mousset, Are neural oscillations the 
substrate of auditory grouping?, ESCA Tutorial and Workshop on the 
Auditory Basis of Speech Perception, Keele, July 1996, and 
<ftp ://ftp. des. shef ac. uk/ share/spandh/pubslbrownlbcm-keele96. ps.Z> 

262 



BrownJ 87 

BrownJ 89 

BrownJ 91a 

BrownJ 91b 

BrownJ 92 

Burck 

Bums 

Butler 

Calway 

Carver 

Chafe 82 

Chafe 85 

Chafe 86 

Chafe 91 

Chan 

Chapman 

ChenM 

J.C. Brown and M.S. Puckette, Musical Information from a Narrowed 
Autoco"elation Function, Proc. ICMC, Urbana, 84-88, 1987 

J.C. Brown and M.S. Puckette, Calculation of a "na"owed" 
autoco"elationfunction, JASA., 85(4), 1595-1601, 1989 

J.C. Brown, Calculation of a Constant Q Spectral Transform, JASA., 89, 425-
434, 1991 

J.C. Brown and B. Zhang, Musical pitch tracking using the methods of 
conventional and "narrowed" autoco"elation, JASA., 89(5), 2346-2354, 
1991, and <http:/ I sound. media. mit. edu/-brown/try/try. html> 

J.C. Brown, Musical fundamental frequency tracking using a pattern 
recognition method, JASA., 92(3), 1394-1402, 1992 

W. Biirck, P. Kotowski, and H. Lichte, Die Horbarkeit von 
Laufzeitdif.ferenzen, E1ektrotechn. Nachr.-Techn., 12, 355, 1935 [in German] 

E.M. Burns and W.D. Ward, Intervals, scales, and tuning, in The 
Psychology of Music, D. Deutsch, ed., 241-269, New York: Academic Press, 
1982 

D. Butler, A further study of melodic channeling, Perception and 
Psychophysics, 25, 264-268, 1979 

A. Calway, The Multiresolution Fourier Transform: A general Purpose Tool 

for Image Analysis, PhD thesis, Dept. of Comp. Sci., Univ. of Warwick, UK, 
September 1989 

N. Carver and V. Lesser, Blackboard systems for knowledge-based signal 
understanding, in A. Oppenheim and S. Nawab, eds., Symbolic and 
Knowledge-based Signal Processing, London: Prentice Hall, 1992 

C. Chafe, B. Mont-Reynaud, and L. Rush, Toward an intelligent editor of 
digital audio: Recognition of musical constructs, CMJ, 6(1), 30-41, Spring 
1982 

C. Chafe, D. Jaffe, K. Kashima, B. Mont-Reynaud, and J. Smith, 
Techniques for Note Identification· in Polyphonic Music, Proc. ICMC, 
Vancouver, 399-405, 1985, and Stanford Music Dept. Technical Report 
STAN-M-29 

C. Chafe and D. Jaffe, Source Separation and Note Identification in 
Polyphonic Music, Proc. ICASSP, vol. 2, 1289-1292, Tokyo, 1986 

C. Chafe, Simulating Performance on a Bowed Instrument, in Current 
Directions in Computer Music Research, M.V. Mathews and J.R. Pierce, eds., 
185-198, Cambridge, Massachusetts: MIT Press, 1991 

D.C.B. Chan, P.J.W. Rayner, and S.J. Godsill, Multi-channel Blind Source 
Separation By Deco"elation, IEEE WASP AA, Mohonk, 1995 

D. Chapman, M. Clarke, M. Smith, and P. Archbold, Self-Similar Grain 
Distribution: A Fractal Approach to Granular Synthesis, Proc. ICMC, Hong 
Kong,212-213, 1996 

M. Chen <mchen@cse.psu.edu>, Gus Tester, <ftp://ftp.cdrorn.com/pub/ 
gus/utili dos/ gust est. zip>, April 1993 

263 



ChenS 94 

ChenS 95 

ChenS 96 

Childers 

Choi 

Chowning 73 

Chowning 84 

Chowning 86a 

Chowning 86b 

Chowning 93 

Chu 

Churchland 

Cohen 

Coifinan 90 

Coifinan 92 

Cook 88 

Cook 91 

Cook 92 

S.S. Chen, Basis Pursuit, Proc. 28th Asilomar Conference on Signals, 
Systems, and Computers, vol. 1, 41-44, 1994, and <http:// 
playfair. stanford. edu/reports/chen _sf asilomar. ps.Z> 

S.S. Chen, Basis Pursuit, PhD thesis, Dept. of Statistics, Stanford Univ., 
November 1995, and <http:/ /playfair. stanford. edu/reports/chen _ s/thesis. ps.Z> 

S.S. Chen, D.L. Donoho, and M.A. Saunders, Atomic Decomposition by 
Basis Pursuit, <http://playfair. stanford. edu/reports/chen _ s/BasisPursuit. ps.Z> 
and Stanford Statistics Dept. Technical Report, 1996 

D.G. Childers and C.K. Lee, Co-Channel Speech Separation, Proc. ICASSP, 
6.4.1-6.4.4, 1987 

A. Choi, A Least-Square Algorithm for Fundamental Frequency Estimation, 
Proc. ICMC, Banff, 284-287, 1995 

J.M. Chowning, The Synthesis of Complex Audio Spectra by Means of 
Frequency Modulation, J. AES, 21(7), 526-534, 1973 (reprinted in CMJ, 1(2), 
46-54, Summer 1977) 

J.M. Chowning, L. Rush, B. Mont-Reynaud, C. Chafe, A. Schloss, and 
J.O. Smith, Intelligent Systems for the Analysis of Digitized Acoustic Signals, 
Final Report, Stanford Music Dept. Technical Report ST AN-M-15, 1984 

J.M. Chowning and D. Bristow, FM Theory and Applications, Yamaha 
Music Foundation, Tokyo, 1986 · 

J.M. Chowning and B. Mont-Reynaud, Intelligent Analysis of Composite 
Acoustic Signals, Stanford Music Dept. Technical Report ST AN-M-36, 1986 

J.M. Chowning, Computer Music: A Grand Adventure and Some Thoughts 
About Loudness, Proc. ICMC, Tokyo, 2-8, 1993 

P.L. Chu, Quadrature Mirror Filter Design for an Arbitrary Number of Equal 
Bandwidth Channels, IEEE Trans. ASSP, 33(1), 203-218, February 1985 

P. Churchland, V.S. Ramachandran, and T. Sejnowski, A Critique of Pure 
Vision, in Large-Scale Theories of the Brain, C. Koch and J. Davis, eds., 
Cambridge, Massachusetts: MIT Press, 1994 

M.M. Cohen and D. Massaro, Synthesis of visible speech, Behaviour 
Research Methods, Instruments, and Computers, 22(2), 260-263, April1990 

R.R. Coifman, Y. Meyer, S. Quake, and M.V. Wickerhauser, Signal 
Processing and Compression with wave packets, Technical Report, Yale 
University, Maths Qept., April1990 

R.R. Coifman and M.V. Wickerhauser, Entropy-Based Algorithms for Best 
Basis Selection, Proc. Int. Conf on Wavelets and Applications, Toulouse, 
1992 

P.R. Cook, Implementation of Single Reed Instruments with Arbitrary Bore 
Shapes Using Digital Waveguide Filters, Stanford Music Dept. Technical 
Report STAN-M-50, 1988 

P.R. Cook, Identification and Control of Parameters in an Articulatory Vocal 
Tract Model, With Applications to the Synthesis of Singing, PhD thesis, Dept. 
ofElec. Eng., Stanford Univ., 1991 

P.R. Cook, D. Morrill, and J.O. Smith, An Automatic Pitch Detection and 
MIDI Control System for Brass Instruments, ASA conference, New Orleans, 

264 



Cook 93 

Cook 96 

Cooke 91 

Cooke 93a 

Cooke 93b 

Cooke 96a 

Cooke 96b 

Cover 

Cox 

Craig 

Crandall 

Crawford 

Culloch 

Dannenberg 84 

Dannenberg 87 

Dannenberg 88 

Dannenberg 91 

November 1992, and <ftp://ccrma-ftp.stanford.edu/pub!Publications/ 
MIDITrumpetPaper. ps.Z> 

P.R. Cook, D. Morrill, and J.O. Smith, A MIDI Control and Performance 
System for Brass Instruments, Proc. ICMC, Tokyo, 130-133, 1993 

P.R. Cook, Physically Informed Sonic Modeling (PhiSM): Percussive 
Synthesis, Proc. ICMC, Hong Kong, 228-231, 1996 

M.P. Cooke, Modelling auditory processing and organisation, PhD thesis, 
Dept. ofComp. Sci., Univ. ofSheffield, 1991 

M.P. Cooke and G. Brown, Computational auditory scene analysis: 
Exploiting principles of perceived continuity, Speech Communication, 13, 
391-399, 1993 

M.P. Cooke, Modelling auditory processing and organisation, Cambridge: 
Cambridge University Press, 1993 

M.P. Cooke, Auditory Organisation and Speech Perception: Arguments for 
an Integrated Computational Theory, ESCA Tutorial and Workshop on the 
Auditory Basis of Speech Perception, Keele, July 1996, and <http:!/ 
www.dcs.shef.ac.uk/ research/ groups/ spandh/ martin/ Keele96/ 
KeelePaper96.html> · 

M.P. Cooke, A. Morris, and P.D. Green, Recognising occluded speech, 
ESCA Tutorial and Workshop on the Auditory Basis of Speech Perception, 
Keele, July 1996, and <ftp:// ftp.dcs.shef.ac.uk/ share/ spandh/ pubs/ cooke/ 
KeeleROOS96. ps.Z> 

T.M. Cover and R.C. King, A convergent gambling estimate of the entropy 
ofEnglish, IEEE Trans. on Information Theory, IT-24(4), 413-421, July 1978 

M.J. Cox <mjhc8@eeng.bradford.ac.uk>, Resplay, <http://www.ukweb.com/ 
-mark/software.html#ResPiay>, May 1996 

C. Craig, GoldWave (documentation), <http://www.goldwave.com/>, May 
1997 

R. Crandall and M. Minnick, Parallel Transform Method for Loss/ess 
Compression of Analog Data, Proc. ICMC, Montreal, 525-528, 1991 

M.D. Crawford, M.P. Cooke, and G. Brown, Interactive computational 
auditory scene analysis: An environment for exploring auditory 
representations and groups, JASA, 93, 2308, 1993 

A.D. Culloch, Porting the 3L Parallel C environment to the Texas Instruments 
1MS320C40, Transputer Research and Applications 5, in Transputer Research 
and Applications, A Veronis andY. Paker, eds., Amsterdam: lOS Press, 1992 

R.B. Dannenberg, An on-line algorithm for real-time accompaniment, Proc. 

ICMC, Paris, 193-198, 1984 

R.B. Dannenberg and B. Mont-Reynaud, Following an Improvisation in 
Real-Time, Proc. ICMC, lllinois, 241-248, 1987 

R.B. Dannenberg and H. Mukaino, New Techniques for Enhanced Quality 
of Computer Accompaniment, Proc. ICMC, Cologne, 243-249, 1988 

R.B. Dannenberg, Real-time Scheduling and Computer Accompaniment, in 
Current Directions in Computer Music Research, M.V. Mathews and J.R. 
Pierce, eds., 225-261, Cambridge, Massachusetts: MIT Press, 1991 

265 



Dannenberg 92 

Dannenberg 93a 

Dannenberg 93b 

Darton 

Daubechies 88a 

Daubechies 88b 

Daubechies 90 

Daubechies 92 

Davidson 

de Cheveigne 93 

de Cheveigne 95 

de Cheveigne 96 

Degazio 

Delprat 90 

Delprat 92 

Depalle 90 

Depalle 93a 

Depalle 93b 

R.B. Dannenberg and C.W. Mercer, Real-time Software Synthesis on 
Superscalar Architectures, Proc. ICMC, San Jose, 174-177, 1992 

R.B. Dannenberg, Music representation issues, _techniques, and systems, 
CMJ, 17(3), 20-30, Fall 1993 

R.B. Dannenberg, The Implementation of Nyquist, A Sound Synthesis 
Language, Proc. ICMC, Tokyo, 168-171, 1993 

L. Darton, <darton@macon.wb.slb.com>, "how to detect COMPRESSED 
drive?" <news:comp.sys.ibm.programmer and private email>, 31 October 
1995 

I. Daubechies, Orthonormal bases of compactly supported wavelets, 
Communications in Pure and Applied Mathematics, 41, 1988 

I. Daubechies, Time-frequency localization operators: a geometric phase 
space approach, IEEE Trans. on Information Theory, 34, 605-612, 1988 

I. Daubechies, The Wavelet Transform, time-frequency localization and 
signal analysis, IEEE Trans. Information Theory, 36, 961-1005, 1990 

I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992 

G. Davidson, L. Fielder, and M. Antill, High Quality Transform Coding at 
128 kbitsls, Proc. ICASSP, Albuquerque, 1990 

A. de Cheveigne, Separation of concu"ent harmonic sounds: Fundamental 
frequency estimation and a time-domain cancellation model of auditory 
processing, JASA, 93, 3271-3290, 1993 

A. de Cheveigne, S. McAdams, J. Laroche, and M. Rosenborg, 
Identification of concu"ent harmonic and inharmonic vowels: A test of the 
theory of harmonic cancellation and enhancement, JASA, 97, 3736-3749, 
1995 

A. de Cheveigne, A neural cancellation model ofF rrguided sound separation, 
Proc. ESCA workshop on the Auditory Basis of Speech Perception, Keele, 
1996, and <ftp:/ /ftp.linguist.jussieu.fr/people/alain/papers/keele. ps.Z> 

B. Degazio, Towards a Chaotic Musical Instrument, Proc. ICMC, Tokyo, 
393-395, 1993 

N. Delprat, Ph. Guillemain, and R. Kronland-Martinet, Parameters 
estimation for non-linear resynthesis methods with the help of a time
frequency analysis of natural sounds, Proc. ICMC, Glasgow, 88-90, 1990 

N. Delprat, B. Escudie, Ph. Guillemain, R. Kronland-Martinet, P. 
Tchamitchian, and B. Torresani, Asymptotic Wavelet and Gabor Analysis: 
Extraction of Instantaneous Frequencies, IEEE Trans. Information Theory, 
38(2), 644-664, March 1992 

Ph. Depalle and X. Rodet, Synthese additive par FFT inverse, Rapport 
Interne IRCAM, Paris, 1990 

Ph. Depalle, G. Garcia, and X. Rodet, Analysis of Sound for Additive 
Synthesis: Tracking of Partials Using Hidden Markov Models, Proc. ICMC, 
Tokyo, 94-97, 1993 

ph. Depalle, G. Garcia, and X. Rodet, Tracking of partials for additive 
sound synthesis using hidden Markov models, Proc. ICASSP, Minneapolis, 
April1993 

266 



De Poli 83 

De Poli 93 

Desain 86 

Desain 93 

Desain 94 

de Tintis 

Deutsch 

Di Giugno 

Di Scipio 

Dixon 

Dolson 86 

Dolson 91 

Dorfman 

Do val 

Dowling 

Dub nov 

Duessenberry 

Eaglestone 

Edwards 

Elliott 

G. De Poli, A Tutorial on Digital Sound Synthesis Techniques, CMJ, 7(4), 
Winter 1983, also in The Music Machine- Selected Readings from Computer 
Music Journal, C. Roads, ed., Cambridge, Massachusetts: MIT Press, 1989 

G. De Poli and P. To nella, Self-organizing Neural Network and Grey's 
Timbre Space, Proc. ICMC, Tokyo, 260-263, 1993 

P. Desain, Graphical Programming in Computer Music, a Proposal, Proc. 
ICMC, The Hague, 161-166, 1986 

P. Desain and T. Brus, What Ever Happened To Our Beautiful Schematics, 
Proc. ICMC, Tokyo, 366-368, 1993 

P. Desain and H. Honing, Foot-tapping: a brief introduction to beat 
induction, Proc. ICMC, Aarhus, 78-79, 1994 

R. de Tintis, Grains: a software for real-time granular synthesis and 
sampling running on the IRIS-MARS workstation, Proc. XI Colloquium on 
Musical Informatics, Bologna, 221-224, 1995 

D. Deutsch, Grouping Mechanisms in Music, in The Psychology of Music, D. 
Deutsch, ed., 99-130, New York: Academic Press, 1982 

G. Di Giugno, A 256 Digital Oscillator Bank, Proc: ICMC, Massachusetts, 
1976 

A. Di Scipio, Real-time Polyphonic Time-shifting of Sound with Interactive 
Systems, Proc. XI Colloquium on Musical Informatics, Bologna, 19-22, 1995 

S. Dixon, A Dynamic Modelling Approach to Music Recognition, Proc. 
ICMC, Hong Kong, 83-86, 1996 

M. Dolson, The phase vocoder: a tutorial, CMJ, 10(4), 14-27, Winter 1986 

M. Dolson, Fourier-Transform-Based Timbral Manipulations, in Current 
Directions in Computer Music Research, M.V. Mathews and J.R. Pierce, eds., 
185-198, Cambridge, Massachusetts: MIT Press, 1991 

L. Dorfman and D. Young, Atari ST: Introduction to MIDI Programming, 
New York: Bantam · 

B. Doval and X.O. Rodet, Fundamental Frequency Estimation using a New 
Harmonic Matching Method, Proc. ICMC, Montreal, 555-558, 1991 

W.J. Dowling, Melodic Information Processing and its Development, in The 
Psychology of Music, D. Deutsch, ed., 413-429, New York: Academic Press, 
1982 

S. Dubnov, N. Tishby, and D. Cohen, Hearing Beyond the Spectrum, JNMR., 
24, 342-368, 1995 

J. Duessenberry, Understanding Amplitude Modulation, Electronic Musician, 
November 1990 

B. Eaglestone and S. Oates, Analytical Tools for Group Additive Synthesis, 

Proc. ICMC, Glasgow, 66-68, 1990 

T. Edwards, Discrete Wavelet Transforms: Theory and Implementation, 
<ftp:// isl.stanford.edu/ pub/ godfrey/ reports/ wavelets/ tim_edwards/ 
wave _paper/ wave_paper.ps>, 9 July 1992 

D.F. Elliott and K.R. Rao, Fast transforms - algorithms, analyses, 
applications, Academic Press, Orlando, Florida, 1982 

267 



Ellis 91 

Ellis 92a 

Ellis 92b 

Ellis 92c 

Ellis 93 

Ellis 94 

Ellis 95a 

Ellis 95b 

Ellis 96a 

Ellis 96b 

Ellis 96c 

Emagic 

Erbe 

Ethington 

Feiten 90 

Feiten 91 

Feldman 

Femandez-Cid 

D.P.W. Ellis and B.L. Vercoe,A wavelet-based sinusoid model of sound for 
auditory signal separation, Proc. ICMC, Montreal, 86-89, 1991 

D.P.W. Ellis and B.L. Vercoe, A Perceptual Representation of Sound for 
Auditory Signal Separation, Proc. 123rd meeting of ASA, Salt Lake City, May 
1992, and <ftp://sound.media.mit.edu/pub/Papers/dpwe-asa92slc.ps.gz> 

D.P.W. Ellis, Timescale modifications and wavelet representations, Proc. 
ICMC, San Jose, 6-9, 1992 

D.P.W. Ellis, A Perceptual Representation of Audio, MSc dissertation, Dept. 
ofElec. Engg. and Comp. Sci., MIT, 1992 

D.P.W. Ellis, Hierarchical models of hearing for sound separation and 
reconstruction, Proc. IEEE WASP AA, Mohonk, October 1993, and MIT 
Media Lab Perceptual Computing Group Tech. Report #219 

D.P.W. Ellis, A Computer Implementation of Psychoacoustic Grouping Rules, 
Proc. 12th Int. Conf on Pattern Recognition, Jerusalem, October 1994, and 
MIT Media Lab Perceptual Computing Group Tech. Report #224 (rev. 2), and 
<ftp ://sound. media. mit. edu/pub/Papers/ dpwe-ICPR94. ps. gz> 

D.P.W. Ellis and D. Rosenthal, Mid-level representations for Computational 
Auditory Scene Analysis, Proc. Computational Auditory Scene Analysis 
Workshop, Int. Joint Conf on Artificial Intelligence, Montreal, August 1995 

D.P.W. Ellis, Underconstrained stochastic representations for top-dawn 
computational auditory scene analysis, IEEE Workshop on Applications of 
Signal Processing to Audio and Acoustics, 1995 

D.P.W. EUis, Prediction-driven Computational Auditory Scene Analysis, PhD 
thesis, Dept. ofElec. Eng. and Comp. Sci., MIT, 1996 

D.P.W. Ellis, Prediction-driven Computational Auditory Scene Analysis for 
Dense Sound Mixtures, to be presented at the ESCA workshop on the 
Auditory Basis of Speech Perception, Keele, UK, July 1996 

D.P.W. Ellis, Hard Problems in Computational Auditory Scene Analysis for 
Dense Sound Mixtures, <http://sound.media.mit.edu/-dpwe/writinglhard-
probs.htrnl>, 1996 · 

Emagic Inc., Logic Audio (sales literature), <http://www.emagic.de/english/ 
products/windows/LOGICAUDIO.htrnl>, 1997 

T. Erbe, SoundHack User's Manual, Mills College, Oakland, May 1992 

R. Ethington ancJ B. Punch, SeaWave: A System for Musical Timbre 
Description, CMJ, 18(1), 30-39, Spring 1994 

B. Feiten and T. Ungvary, Sound data base using spectral analysis reduction 

and an additive synthesis model, Proc. ICMC, Glasgow, 72-74, 1990 

B. Feiten, R. Frank, and T. Ungvary, Organizations of sounds with neural 
nets, Proc. ICMC, Montreal, 441-444, 1991 

M. Feldman <myndale@cairo.anu.edu.au>, PC Games Programmer's 
Encyclopaedia, <http://www.qzx.com/pc-gpe/>, May 1994 

P. Femandez-Cid and F.J. Casajtis-Quiros, DSP based reliable pitch-to
MIDI converter by harmonic matching, Proc. ICMC, Aarhus, 307-310, 1994 

268 



Fitz 

Fletcher 62 

Fletcher 63 

Fletcher 77a 

Fletcher 77b 

Fontana 

Foster 

Frandsen 

Freed 93a 

Freed 93b 

Gabor46 

Gabor47 · 

Goldstein 67 

Goldstein 73 

Goodwin 

Goto 94 

Goto 96 

Gozum 

Graps 

K. Fitz, W. Walker, and L. Haken, Extending the McAulay-Quatieri 
Analysis for Synthesis with a Limited Number of Oscillators, Proc. ICMC, 
Banff, 381-382, 1995 . 

H. Fletcher, E.D. Blackham, and R. Stratton, Quality of piano tones, JASA, 
34, 749-761, 1962 

H. Fletcher, E.D. Blackham, and D.A. Christensen, Quality of organ tones, 
JASA, 35,314-325, 1963 

H. Fletcher, Normal Vibration Frequencies of a Stiff Piano String, in Musical 
Acoustics - Piano and Wind Instruments, E.L. Kent, ed., Stroudsburg: 
Dowden, Hutchinson and Ross, 1977 

H. Fletcher, Quality of Piano Tones, in Musical Acoustics - Piano and Wind 
Instruments, E.L. Kent, ed., Stroudsburg: Dowden, Hutchinson and Ross, 
1977 

F. Fontana and D. Rochesso, A New Formulation of the 2D-Waveguide Mesh 
for Percussion Instruments, Proc. XI Colloquium on Musical Informatics, 
Bologna, 27-30, 1995 

S. Foster, W.A. Schloss, and A.J. Rockmore, Toward an Intelligent Editor 
of Digital Audio: Siglial Processing Methods, CMJ, 6(1), 42-51, Spring 1982 

J. Frandsen <jesperf@daimi.aau.dk>, PCXDUMP, <http:// 
www. daimi.aau.dk/-jesperf7Pcxdump/pcxdump.html>, February 1994 

A. Freed, X. Rodet, and Ph. DepaUe, Synthesis and Control of Hundreds of 
Sinusoidal Partials on a Desktop Computer without Custom Hardware, Proc. 
ICMC, Tokyo, 98-101, 1993 

A. Freed, X. Rodet, and Ph. DepaUe, Synthesis and Control of Hundreds of 
Sinusoidal Partials on a Desktop Computer without Custom Hardware, Proc. 
ICSPAT, 1993 

D. Gabor, Theory of communication, J. Inst. Elec. Engg., 93(1II), 429-457, 

1946 

D. Gabor, Acoustical quanta and the theory of hearing, Nature, 159(4044), 
1947 

J.L. Goldstein, Auditory Nonlinearity, JASA, 41, 676-689, 1967 

J.L. Goldstein, An optimum processor for the central formation of pitch of 
complex tones, JASA, 54(6), 1496-1516, 1973 

M. Goodwin and A. Kogon, Overlap-add synthesis of nonstationary 
sinusoids, Proc. ICMC, Banff, 355-356, 1995 

M. Goto and Y. Muraoka, A Sound Source Separation System for 
Percussion Instruments, Trans. Institute of Electronics, Information and 
Communication Engineers, 177-D-11(5), 901-911, May 94 [in Japanese] 

M. Goto, I. Hidaka, H. Matsumoto, Y. Kuroda, andY. Muraoka, A Jazz 
Session System for Interplay among All Players, Proc. ICMC, Hong Kong, 
346-349, 1996 

L. Gozum and M. Gozum, VGACAP and VGAFIL (documentation), <ftp:// 
sunsite.doc.ic.ac. uk/packageslsimtelnet/msdoslvgalvgacap81.zip>, 1991 

A. Graps, An Introduction to Wavelets, IEEE Computational Science and 
Engineering, 2(2), 50-61, Summer 1995 

269 



Gravis 

Gray 

GreenD 

GreenG 

Grey 75 

Grey 77a 

Grey 77b 

Gribonval 

Grieg 68 

Grieg 76 

Grubb 

Guillemain 

Haken89 

Haken 92 

Hall 

Handel 

Hanson 

Harris 

Hawley 

Heinbach 87 

Advanced Gravis Computer Technology Ltd., UltraSound User's Guide, 
1994 

J.M. Gray, Phonemic microtomy: The minimum duration of perceptible 
· speech sounds, Speech Monographs, 9, 75-90, 1942 

D.M. Green, Temporal Auditory Acuity, Psychological Review, 78(6), 540-
551, 1971 

G.D. Green, <greeng@crl.com>, "Contrabass saxes", private email, July 
1996, and CONTRABASS-L mailing list, 1 ( 45), <http://www.contrabass.com/ 
pages!listhtml>, 4 October 1996 

J.M. Grey, An Exploration of Musical Timbre: using Computer-based 
Techniques for Analysis, Synthesis and Perceptual Scaling, PhD thesis, 
Stanford Univ., and Stanford Music Dept Technical Report STAN-M-2, 1975 

J.M. Grey, Multidimensional Perceptual Scaling of Musical Timbres, JASA, 
61(5), 1270-1277, May 1977 

J.M. Grey and J.A. Moorer, Perceptual Evaluation of Synthesized Musical 
Instrument Tones, JASA, 62(2), 454-462, August 1977 

R. Gribonval, Ph. Depalle, X. Rodet, E. Bacry, ·and S. Mallat, Sound 
Signals Decomposition Using a High Resolution Matching Pursuit, Proc. 
ICMC, Hong Kong, 293-296, 1996 

E. Grieg, Piano Concerto in A minor, Op. 16, 1868 (audio: Compact Disc 
CLS4013, Dusseldorf: Mediaphon) (score: Leipzig: C.F. Peters) 

E. Grieg, Death of Aase, Peer Gynt Suite No. 1, Op. 46, 1876 (audio: 
Compact Disc CLS40l3, DUsseldorf: Mediaphon) (score: London: Eulenburg) 

L. Grubb and R.B. Dannenberg, Automating Ensemble Performance, Proc. 
ICMC, Aarhus, 63-69, 1994 

Ph. Guillemain and R. Kronland-Martinet, Additive resynthesis of sounds 
using continuous time-frequency representations, Proc. ICMC, San Jose, 10-
13, 1992 

L. Haken, Real-Time Fourier Synthesis of Ensembles with Timbral 

Interpolation, PhD thesis, Dept of Electrical and Computer Engineering, Univ. 
of Illinois, 1989 

L. Haken, Computational Methods for Real-Time Fourier Synthesis, IEEE 
Trans. ASSP, 40(9), 2327-2329, 1992 

G. Hall, The Dimensions of Delay, Electronic Musician, September 1990 

S. Handel, Listening, Cambridge, Massachusetts: MIT Press, 1989 

B.A. Hanson and D.Y. Wong, The Harmonic Magnitude Suppression 
Technique for Intelligibility Enhancement in the Presence of Interfering 
Speech, Proc. ICASSP, 18A.5.1-18A.5.4, 1984 

F. J. Harris, On the use of windows for harmonic analysis with the DFT, 
Proc. IEEE 66, 51-83, 1978 

M. Hawley, Structure out of Sound, PhD thesis, MIT Media Lab., 1993 

W. Heinbach, Geh6rgerecht Repriisentation von Audiosignalen durch das 
Teiltonzeitmuster, PhD thesis, Technical University ofMunich, 1987 

270 



Heinbach 88 

Helmholtz 

Helmuth 93 

Helmuth 96 

Hermes 

Hesseler 

Hidaka 

Hirsh 

Hohner 

Holdrich 94a 

Holdrich 94b 

Holdrich 94c 

Holdrich 95 

Horiuchi 92 

Horiuchi 93 

Homer93 

Homer 95a 

Homer95b 

Homer96 

W. Heinbach, Aurally adequate signal representation: The part-time-tone
pattern, Acustica, 67, I 13-121, 1988 

H.L.F. von Helmholtz, On the Sensations of Tome as a Physiological Basis 
for the Theory of Music, 1863, 4th ed., trans. A.J." Ellis, New York: Dover, 
1954 

M. Helmuth, Granular Synthesis with Cmix and MAX, Proc. ICMC, Tokyo, 
449-452, 1993 

M. Helmuth, Multidimensional Representation of Electroacoustic Music, 
JNMR, 25, 77-103, 1996 

D.J. Hermes, Measurement of pitch by harmonic summation, JASA, 83(1), 
257-264, 1988 

W. Hesseler <hesseler@athene.informatik.uni-bonn.de>, QuickView, <ft.p:/1 
ft.p.rhrz.uni-bonn.de/pub/institutelhesseler/qv I 03a.zip>, 1995 

I. Hidaka, M. Goto, andY. Muraoka, An Automatic Jazz Accompaniment 
System Reacting to Solo, Proc. ICMC, Banff, 167-170, 1995 

I.J. Hirsh, Auditory Perception of Order, JASA, 39, 759, 1959 

Hohner Midia, Siiundscore (program), <http://www.hohnermidia.com/ 
basic.html>, September 1996 

R.R. HOidrich, Zur Analyse und Resynthese von Klangsignale!J unter 
Verwendung von Zeit-Frequenze-Repriisentationen mit Verbesserter 
Lokalisation der Signalenergie, PhD thesis, Technical Univ. Graz, Austria, 
1994 [in German] 

R.R. Holdrich, The Improved Spectrogram - How to Obtain an Accurate 
Signal Representation for Sound Resynthesis?, Proc. Int. Simposio Brasiliera 
de Computacao e Musica, 1994 

R.R. Holdrich, Frequency Analysis of Non-Stationary Signals Using a Time
Frequency Mapping of the DFT Magnitude, Proc. ICSPAT, Dallas, 1994 

R.R. Holdrich, An Accurate Signal Representation for Sound Resynthesis 
Utilizing a Time-Frequency Mapping of the DFT-Magnitude, Proc. ICMC, 
Banff, 592-594, 1995 

Y. Horiuchi, A. Fujii, and H. Tanaka, A Computer Accompaniment System 
Considering Independence of Accompanist, Japan Music and Computer 
Science Society, Proc. of Summer Symposium, 1992 [in Japanese] 

Y. Horiuchi and H. Tanaka, A Computer Accompaniment .System With 
Independence, Proc. ICMC, Tokyo, 418-420, 1993 

A. Homer, J. Beauchamp, and N. Packard, Timbre Breeding, Proc. ICMC, 
Tokyo,396-398, 1993 

A. Homer, Envelope Matching with Genetic Algorithms, JNMR, 24, 318-341, 
1995 

A. Homer, Wavetable Matching Sjmthesis of Dynamic Instruments with 
Genetic Algorithms, J. AES, 43( 11 ), 916-931, 1995 

A. Homer and J. Beauchamp, Piecewise-Linear Approximation of Additive 
Synthesis Envelopes: A Comparison of Various Methods, CMJ, 20(2), 72-95, 
Summer 1996 

271 



Horry 

Houghton 

Hu 

Hughes 

Hung 

Hyun 

Inoue 93 

Inoue 94 

ISO 

ltagaki 94 

Itagaki 95a 

Itagaki 95b 

Itagaki 96a 

Itagaki 96b 

Jaffe 

Jain 

Jimosy 

Y. Horry, A Graphical User Interface for MIDI Signal Generation and Sound 
Synthesis, Proc. ICMC, Aarhus, 276-279, 1994 

A.D. Houghton, A.J. Fisher, and T.F. Malet, An ASIC for Digital Additive 
Sine-wave Synthesis, CMJ, 19(3), 26-31, Fall1995 

Y.H. Hu, CORDIC-Based VLSI Architectures for Digital Sound Processi~g. 
IEEE Signal Processing Magazine, July 1992 

RD. Hughes and M.L. Heron, Approximate Fourier transform using square 
waves, Proc. lEE, 136(A4), 223-227, July 1989 

R Hung, N.H.C. Yung, and P.Y.S. Cheung, The Analysis and Resynthesis 
of Sustained Musical Signals in the Time Domain, Proc. ICMC, Hong Kong, 
206-209, 1996 

K.R Hyun, R Banerjea, M. Kim, H. Latchman, and S.I. Sudharsanan, A 
Real-Time Implementation of MPEG Audio Layer I Decoding on a Fixed
Point DSP Platform, Proc. ICMC, Tokyo, 412-414, 1993 

W. Inoue, S. Hashimoto, and S. Ohteru, A Computer Music System for 

Human Singing, Proc .. JCMC, Tokyo, 150-153, 1993 _ 

W. Inoue, S. Hashimoto, and S. Ohteru, Adaptive Karaoke System- Human 
Singing Accompaniment Based on Speech Recognition, Proc. ICMC, Aarhus, 
70-77, 1994 

ISO/IECJTC1/SC2/WG11 MPEG 91 Committee Draft, Coding of moving 
pictures and Associated audio for digital storage media at up to 1.5 Mbitls, 
November 1991 

T. Itagaki, A. Purvis, and P.D. Manning, Real-time Synthesis on a Multi
processor network, Proc. ICMC, Aarhus, 382-385, 1994 

T. ltagaki, D.K. Phillips, P.D. Manning, and A. Purvis, An Implementation 
of Optimised Methods for Real-time Sound Synthesis on a Multi-processor 
Network, Book of Abstracts on Parallel Computing, Gent, 1995 

T. ltagaki, D.J.E. Nunn, D.K. PhiUips, D. Batjakis, A. Purvis, and P.D. 
Manning, Activity Report, XI Colloquium on Musical Informatics, Bologna, 
51-54, 1995 

T. Itagaki, P.D. Manning, and A. Purvis, Real-time Granular Synthesis on a 
Distributed Multi-processor Platform, Proc. ICMC, Hong Kong, 287-288, 
1996 

T. ltagak.i, S. Johnson, P.D. Manning, D.J.E. Nunn, D.K. PhiUips, A. 
Purvis, and J. Spanier, Durham Music Technology: Activity Report, Proc. 
ICMC, Hong Kong, 126-128, 1996 

D.A. Jaffe, Ten Criteria for Evaluating Synthesis Techniques, CMJ, 19(1), 

76-87, Spring 1995 

A.K. Jain, A fast Karhunen-Loeve transform for a class of random processes, 
IEEE Trans. Commun., COM-24, 1023-1029, 1976 

z. Janosy, M. Karjalainen, and V. Viilimiik.i, Intelligent Synthesis Control 
with Applications to a Physical Model of the Acoustic Guitar, Proc. ICMC, 
Aarhus, 402-406, 1994 

272 



Jansen 91 

Jansen 92 

Jaw 

Jawerth 

Jones 87 

Jones 88 

Jordan 

Justice 

Kadarnbe 

Kaiser 74 

Kaiser 87 

Krujalainen 93 

Krujalainen 96 

Kashino 92 

Kashino 93 

Kashino 95a 

Kashino 95b 

C. Jansen, Sine Circuitu- 10,000 high quality sine waves without detours, 
Proc. ICMC, Montreal, 222-225, 1991 

C. Jansen, Sine Circuitu - Real-time analysis, manipulation and 
(re)synthesis, Proc. ICMC, San Jose, 451-452, 1992 

S.-B. Jaw and S.-C. Pei, Two-band IIR quadrature mirror filter design, 
Electronics Letters, 26(20), 1687-1689, September 1990 

B. Jawerth and W. Sweldens, An overview of wavelet based multireso/ution 
analysis, SIAM Rev., 36(3), 377-412, 1994, and <http://cm.bell-labs.com/ 
who/wim/papers/overview. ps.gz> 

D.L. Jones and T.W. Parks, On computing equally spaced samples of a 
complex Gaussian function, IEEE Trans. ASSP, 35(10), 1987 

D.L. Jones and T.W. Parks, Generation and combination of grains for music 
synthesis, CMJ, 12(2), 27-34, Summer 1988 

Jordan Hargraphics Software Inc., SVGABGI, <gopher:// 
micros. hensa. ac. uk: 70111/rnicros/ibmpc/ dos/ gl g770/>, January 1995 

J.H. Justice, Analytic Signal Processing in Music Computation, IEEE Trans. 
ASSP, 27(6), 670-684; 1979 

S. Kadambe and G.F. Boudreaux-Bartels, Application of the Wavelet 

Transform for Pitch Detection of Speech Signals, IEEE Trans. Information 
Theory, 38(2), 917-924, 1992 

J.F. Kaiser, Nonrecursive digital filter design using the IO-sinh window 
function, Proc. IEEE Int. Symposium on Circuits and Systems, 20-23, San 
Francisco, 1974 

J.F. Kaiser, On the fast generation of equally spaced values of the Gaussian 
function A exp(-at*t), IEEE Trans. ASSP, 35(10), 1987 

M. Karjalainen, V. Valimaki, and Z. Janosy, Towards High-Quality Sound 
Synthesis of the Guitar and String Instruments, Proc. ICMC, Tokyo, 56-63, 
1993 

M. Karjalainen and J. Smith, Body Modeling Techniques for String 
Instrument Synthesis, Proc. ICMC, Hong Kong, 232-239, 1996 

K. Kashino and H. Tanaka, A sound source separation system using spectral 
features integrated by [the] Dempster's law of combination, In Annual Report 
of the Engineering. Research Institute, Faculty of Engineering, University of 
Tokyo,67-72, 1992 

K. Kashino and H. Tanaka, A Sound Source Separation System with the 
Ability of Automatic Tone Modelling, Proc. ICMC, Tokyo, 24&-255, 1993 

K. Kashino, K. Nakadai, T. Kinoshita, and H. Tanaka, Organization of 
Hierarchical Perceptual Sounds: Music Scene Analysis with Autonomous 
Processing Modules and a Quantitative Information Integration Mechanism, 
Proc. Int. Joint Con£ on Artificial Intelligence, Workshop on Computational 
Auditory Scene Analysis, Montreal, August 1995, and <http://www. 
mtl. t.u-tokyo.ac.jp/Researchlpaper/1995/E95-conference-kashino-1. ps.gz> 

K. Kashino, K. Nakadai, T. Kinoshita, and H. Tanaka, Application of 
Bayesian Probability Network to Music Scene Analysis, Proc. Int. Joint Con£ 
on Artificial Intelligence, Workshop on Computational Auditory Scene 

273 



Analysis, Montreal, August 1995, and <http://www.mtl.t.u-tokyo.ac.jp/ 
Research/paper/ 199 5/E95-conference-kashino-2. ps. gz> 

Katayose 88 H. Katayose, M. Imai, and S. Inokuchi, Sentiment Extraction in Music, 
Proc. 9th Int. Conf. on Pattern Recognition, 1083-1087, Washington, 1988 

Katayose 89 H. Katayose and S. Inokuchi, The Kansei Music System, CMJ, 13(4), 72-77, 
Winter 1989 

Katayose 90a H. Katayose and S. Inokuchi, The Kansei Music System '90, Proc. ICMC, 
Glasgow, 308-310, 1990 

Katayose 90b H. Katayose, T. Fukuoka, K. Takami, and S. Inokuchi, Expression 
extraction in virtuoso music performances, Proc. 1Oth Int. Conf on Pattern 
Recognition, New Jersey, 780-784, June 1990 

Katayose 93 H. Katayose, T. Kanamori, K. Kamei, Y. Nagashima, K. Sato, S. 
lnokuchi, and S. Simura, Virtual Performer, Proc. ICMC, Tokyo, 138-145, 
1993 

Kendall91 G.S Kendall, W.L. Martens, and S.L. Decker, Spatial Reverberation: 
Discussion and Demonstration, in Current Directions in Computer Music 
Research, M.V. Mathews and JR. Pierce, eds., 65-87, Cambridge, 
Massachusetts: MIT Press, 1991 · 

Kendall 95 G.S. Kendall, A 3-D Sound Primer: Directional Hearing and Stereo 
Reproduction, CMJ, 19(4), 23-46, Winter 1995 

Kernighan B.W. Kernighan and D.M. Ritchie, The C Programming Language, 
London: Prentice-Hall, 1988 

Kiang N.Y.S. Kiang and E.C. Moxon, Tails of tuning curves of auditory-nerve 
fibers, JASA, 55(3), 620-630, 1974 

Kleczkowski P. Kleczkowski, Group Additive Synthesis, CMJ, 13(1), 12-20, Spring 1989 

Kodera 76 K. Kodera, Analyse numerique de signeaux geophysiques nonstationaires, 
PhD thesis, Univ. ofParis, 1976 [in French] 

Kodera 78 K. Kodera, R. Gendrin, and C. Villedary, Analysis of Time-Varying Signals 
with Small BT Values, IEEE Trans. ASSP, 26(1), 64-76, 1978 

Kohonen T. Kohoilen, The Self-Organizing Map, Proc. IEEE, 78(9), 1464-1480, 1990 

Kottick E.L. Kottick, K.D. Marshall, and T.J. Hendrickson, The Acoustics of the 
Harpsichord, Scientific American, 94-99, February 1991 

Kriese C. Kriese and S. Tipei, A compositional approach to additive synthesis on 
supercomputers, Proc. ICMC, San Jose, 394-395, 1992 

Kronland-Martinet 87 R. Kronland-Martinet, J. Morlet, and A. Grossmann, Analysis of sound 
patterns through wavelet transforms, Int. J. of Pattern Recognition and 
Artificial Intelligence, 2, 97-126, 1987 · 

Kronland-Martinet 88 R. Kronland-Martinet, The Wavelet Transform for Analysis, Synthesis, and 
Processing of Speech and Music Sounds, CMJ, 12(4), ll-20, Winter 1988 

Kronland-Martinet 93 R. Kronland-Martinet and Ph. Guillemain, Towards non-linear resynthesis 
of instrumental sounds, Proc. ICMC, Tokyo, 86-93, 1993 

Kuhn W.B. Kuhn, A Real-Time Pitch Recognition Algorithm for Music 
Applications, CMJ, 14(3), 60-71, Fall1990 

Kurz M. Kurz and B. Feiten, Physical modelling of a stiff string by numeric 
integration, Proc. ICMC, Hong Kong, 361-364, 1996 

274 



Kussmaul 

Laden 91 

Laden 94 

Lane 

Leman 

Licklider 

Lindemann 90 

Lindemann 91 

Lippe 91 

Lippe 93a 

Lippe 93b 

Lo 

Lopez-Lezcano 

Loy 

LTSound 

Maggi 

Maher 89 

Maher90 

Majernik 

C. Kussmaul, Applications of the Wavelet Transform at the Level of Pitch 
Contour, Proc. ICMC, Glasgow, 483-486, 1990 

B. Laden and D.H. Keefe, The Representation of Pitch in a Neural Net 

Model of Chord Classification, in Music and Connectionism, P.M. Todd and 
D.G. Loy, eds., Cambridge, Massachusetts: MIT Press, 1991 

B. Laden, A Parallel Learning Model of Musical Pitch Perception, JNMR, 
23, 133-144, June 1994 

J.E. Lane, Pitch Detection Using a Tunable IIR Filter, CMJ, 14(3), 46-59, 
Fal11990 

M. Leman, Schema-Based Tone Center Recognition of Musical Signals, 
JNMR, 23(2), 169-204, 1994 

J.C.R. Licklider, Three Auditory Theories, in Psychology: A Study in Science, 
Vol. 1, S. Koch, ed., New York: McGraw-Hill, 1959 

E. Lindemann, M. Starkier, and F. Dechelle, The IRCAM Musical 
Workstation: Hardware Overview and Signal Processing Features, Proc. 
ICMC, Glasgow, 132-135, 1990 

E. Lindemann, F. Dechelle, B. Smith, and M. Starkier, The Architecture of 
The IRCAMMusical Workstation, CMJ, 15(3), 41-49, 1991 

C. Lippe and M. Puckette, Musical Performance using the IRCAM 
Workstation, Proc. ICMC, Montreal, 533-536, 1991 

C. Lippe, A Musical Application of Real-time Granular Sampling Using the 
IRCAM Signal Processing Workstation, Proc. ICMC, Tokyo, 190-193, 1993 

C. Lippe, M. Puckette, Z. Settel, V. Puig, and J-P. Jullien, The IRCAM. 
Signal Processing Workstation and IRCAM Max User Groups: Future 
Developments and Platforms, Proc. ICMC, Tokyo, 446-448, 1993 

D. Y-0. Lo, Techniques for Timbral Interpolation, Proc. ICMC, The Hague, 
1986 

F. Lopez-Lezcano, PadA1aster: banging on algorithms with alternative 
controllers, Proc. ICMC, Hong Kong, 425-427, 1996 

G. Loy, Composing with Computers - a Survey of Some Compositional 
Formalisms and Music Programming Languages, in Current Directions in 
Computer Music Research, M.V. Mathews and J.R. Pierce, eds., 291-396, 
Cambridge, Massachusetts: MIT Press, 1991 

LT Sound, Inc., The Thompson Vocal Eliminator, sales literature, 1996 

E. Maggi and F. Dechelle, The evolution of the graphic editing environment 

for the IRCAM musical workstation, Proc. ICMC, Hong Kong, 185-187, 1996 

R.C. Maher, An Approach for the Separation of Voices in Composite Musical 
Signals, PhD thesis, University oflllinois, Urbana, 1989 

R.C. Maher, Evaluation of a Method for Separating Digitized Duet Signals, 
J. AES, 38(12), 956-979, 1990 

V. Majernik and J. Kaluzny, On the Auditory Uncertainty Relations, 
Acustica, 43, 132, 1979 

275 



Maksym 

Mallat 89 

Mallat 93 

Manning 

Mansour 

Markel 

Marple 

MartinO 

MartinK 95 

MartinK 96 

Mason 

Mathews 69 

Mathews 91 

Math Soft 

Matthews 

McAdams 

McAulay 

Mellinger 91 a 

Mellinger 91 b 

Mendelssohn 

J.N. Maksym, Real-time pitch extraction by adaptive prediction of the speech 
waveform, IEEE Trans. on Audio and Electroacoustics, 21, 149-154, 1973 

S.G. Mallat, A Theory for Multiresolution Signal Decomposition: The 
Wavelet Representation, IEEE Trans. on Patterri Analysis and Machine 
Intelligence, 11(7), 674-693, July 1989 

S.G. Mallat and Z. Zhang, Matching Pursuit with Time-Frequency 
Dictionaries, IEEE Trans. on Signal Processing, 41, 3397-3415, 1993 

P.D. Manning, Electronic and Computer Music, Oxford: Oxford University 
Press, 1985 

A. Mansour and C. Jutten, A Simple Cost Function For Instantaneous and 
Convolutive Sources Separation, Actes du XVeme Colloque GRETSI, 301-
304, September 1995 

J.D. Markel and A.B. Gray, Linear Prediction of Speech, Berlin: Springer
Verlag, 197 6 

S.L. Marple, Jr., Digital Spectral Analysis with Applications, Englewood 
Cliffs: Prentice-Hall, 1987 

D. Martin and D. Ward, Subjective evaluation of musical scale temperament 
in pianos, JASA, 33, 582-585, 1961 

K.D. Martin, Estimating azimuth and elevation from interaural differences, 
IEEE WASP AA,. Mohonk 1995, and <ftp://sound.media.mit.edu/pub!Papers/ 
kdm-mohonk95. ps.Z> 

K.D. Martin, Blackboard-Based Transcription Project, <http:// 
sound.media.mit. edu/-kdm/researchlbboard/>, April 1996 

D.K. Mason <76546.1321@compuserve.com>, 'Dave's Targa Animator' and 
'Dave's Flic Viewer' programs, <http://www. povray.org/povcd/ 
programs/povutiVdfv _ dtaldta21 pb.zip>, 1995 

M. V. Mathews, The Technology of Computer Music, Cambridge, 
Massachusetts: MIT Press, 1969 

M.V. Mathews and J.R. Pierce, The Bohlen-Pierce Scale, in Current 
Directions in Computer Music Research, M.V. Mathews and J.R. Pierce, eds., 
165-173, Cambridge, Massachusetts: MIT Press, 1991 

MathSoft Inc., MathCad, <http://www.mathsoft.com/all60.htm>, 1994 

P. Matthews and N. McWhirter, The Guinness Book of Records, London: 
Guinness Publishing, 1995 

S.J. McAdams, Spectral Fusion, Spectral Parsing and the Formation of 
Auditory Images, PhD thesis, Stanford Univ., 1984 

R.J. McAulay and T.E. Quatieri, Speech analysis/synthesis based on a 
sinusoidal representation, Trans. ASSP, ASSP-34, 744-754, 1986 

D.K. Mellinger, Event formation and separation in musical sound, PhD 
thesis, Stanford Univ., 1991 

D.K. Mellinger and B.M. Mont-Reynaud, SoundExplorer: A Workbench for 
Investigating Source Separation, Proc. ICMC, Montreal, 90-93, 1991 

F. Mendelssohn, Sonata III, from Sechs Sonaten.fiir die Orgel, Op. 65, 1844 
(score: Leipzig: Breitkopf & Hartel, republished (1967) Farnborough, UK: 
Gregg Press, 196 7) 

276 



Menninga 

Meyer 

Microsoft 

Milicevic 

Miller 

Mintzer 

Miranda 

Mitchell 

Mont-Reynaud 85 

Mont-Reynaud 88 

Mont-Reynaud 89 

Mont-Reynaud 90 

Mont-Reynaud 93 

MooreB 85 

MooreB 95 

MooreD 

MooreF 77 

MooreF 88 

MooreF 90 

Moorer 75 

Moorer 76 

Moorer 77a 

S. Menninga, "WAV -> MIDI? ... about Physics and feasibility", private 
email, 7 November 1996 

Y. Meyer, Wavelets: Examples and Applications, SIAM, Philadelphia, 1993 

Microsoft Inc., QBasic (part of MS-DOS), 1993 

M. Milicevic, The Impact of Fractals, Chaos, and Complexity Theory on 
Computer Music Composition, Proc. ICMC, Hong Kong, 473-476, 1996 

J.R. Miller and E.C. Carterette, Perceptual space for musical structures, 
JASA, 58(3), 711-720, 1975 

F. Mintzer, Filters for Distortion-Free Two-Band Multirate Filter Banks, 
IEEE Trans. ASSP, 33(3), 1985 

E. Miranda, Cellular Automata Synthesis of Acoustic Particles, <http:!/ 
www.epcc.ed.ac.uk!tracs/eduardo.html>, 11 May 1995 

O.M.M. Mitchell, C.A. Ross, and G.B. Yates, Signal processing for a 
cocktail party effect, JASA, 50(2), 656,660, 1971 

B. Mont-Reynaud, Problem-solving Strategies in a Music Transcription 
System, Proc. Int. Joint Conf. on Artificial Intelligence, 916-918, 1985 

·-· -

B. Mont-Reynaud, On Hearing Music Vis'ual/y, Proc. AAAI, Special Session 
on Artificial Intelligence and Music, St. Paul, 1988 

B. Mont-Reynaud and D. Mellinger, Source Separation by Frequency Co
Modulation, Proc. of the First Int. Conf. on Music Perception and Cognition, 
Kyoto, 99-102, 1989 

B. Mont-Reynaud and E. Gresset, PRISM: Pattern Recognition In Sound 
and Music, Proc. ICMC, Glasgow, 153-155, 1990 

B. Mont-Reynaud, SeeMusic: A Tool for Music Visualization, Proc. ICMC, 
Tokyo, 457-460, 1993 

B.C.J. Moore, B. Glasberg, and R. W. Peters, Relative dominance of 
individual partials in determining the pitch of complex tones, JASA, 77, 1853-
1860, 1985 

B.C.J. Moore, Hearing, San Diego: Academic Press, 1995 

D.R. Moore, Physiology of higher auditory system, British Journal of 
Audiology, 24, 131-137, 1987 

F.R. Moore, Table Lookup Noise for Sinusoidal Digital Oscillators, CMJ, 
1(2), 26-29, Summer 1977 

F.R. Moore, The Dysfunctions of MIDI, CMJ, 12(1), 19-28, Spring 1988 

F.R. Moore, Elements of Computer Music, Englewood Cliffs, Prentice-Hall, 
1990 

J.A. Moorer, On the Segmentation and Analysis of Continuous Musical 
Sound by Digital Computer, PhD thesis, Dept. of Computer Science, Stanford 
Univ., and Stanford Music Dept. Technical Report ST AN-M-3, 1975 

· J.A. Moorer, The Synthesis of Complex Audio Spectra by Means of Discrete 
Summation Formulas, J. AES, 24(9), 717-727, November 1976 

J.A. Moorer, Signal Processing aspects of Computer Music: A Survey, Proc. 
IEEE, 65, 1108-1137, 1977 

277 



Moorer 77b 

Moorer 78 

Moreno 

Motorola 

Nakatani 

Naoi 

Nawab 

Naylor 

Neely 

Newland 93 

Newland 94 

Nieberle 

Niihara 

Noll 

Nunn 84 

Nunn 94 

Nunn 95 

Nunn 96 

Nuttall81 

J.A. Moorer, On the Transcription of Musical Sound by Computer. CMJ, 
1(4), 32-38, Winter 1977 

J.A. Moorer, The use of the phase vocoder in computer music applications, J. 
AES, 24(9), 1978 

E.I. Moreno, The Existence of Unexplored Dimensions of Pitch: Expanded 
Chromas, Proc. ICMC, San Jose, 402-403, 1992 

Motorola Inc., DSP96002 IEEE Floating-Point Dual-Port Processor User's 
Manual, 1989 

T. Nakatani, H.G. Okuno, and T. Kawabata, Auditory stream segregation 

in auditory scene analysis with a multi-agent system, AAAI Conference 
Proceedings, 1994 

K. Naoi, S. Ohteru, and S. Hashimoto, Automatic Accompaniment Using 
Real Time Assigning Note Value, Convention Record of the Acoustical Society 
ofJapan, Spring 1989 [in Japanese] 

S.H. Nawab and E. Dorken, Efficient STFT approximation using a 
quantization and differencing method, Proc. ICASSP, Minneapolis, 587-590, 
April 1993 .. -

J.A. Naylor and S.F. BoD, Techniques for suppression of an Interfering 
Talker in Co-channel Speech, Proc. ICASSP, 6.12.1-6.12.4, 1987 

S. Neely, <neely@boystown.org>, Cochlear Mechanics Tutorial, Boys Town 
National Research Hospital, <http :1 /www. boystown. org/cel/ cochmech. html>, 
March 1995 

D. Newland, Harmonic wavelet analysis, Proc. Royal Soc. London Series A
Mathematical and Physical Sciences, 443, 203-225, 1993 

D. Newland, Harmonic and Musical Wavelets, Proc. Royal Soc. London 
Series A- Mathematical and Physical Sciences, 444, 605-620, 1994 

R.C Nieberle, A Fast Communication Interface to the CAMP-DSP-Subsystem 
for general purpose Sound-Synthesis, Analysis and Processing, Proc. ICMC, 
Montreal, 529-532, 1991 

T. Niihara, H. Katayose, and S. Inokuchi, Transcription ·of Sung Song, 
Proc. ICASSP, IEEE, New York, 1986 

A.M. NoD, Cepstrum Pitch Determination, JASA, 41, 293-309, 1966 

D.J.E. Nunn, The Acoustics of Brass Instruments, Sixth Year Studies Physics 
Project, George Watsons College, Edinburgh, 1984 

D.J.E. Nunn, A. Purvis, and P.D. Manning, Source Separation and 
Transcription of Polyphonic Music, Proc. International Colloquium on New 
Music Research, Gent, Belgium, 1994 

D.J.E. Nunn, A. Purvis, and P.D. Manning, Graphical display of musical 
information, Proc. XI Colloquium on Musical Informatics, Bologna, 235-236, 
1995 

D.J.E. Nunn, A. Purvis, and P.D. Manning, Acoustic Quanta, Proc. ICMC, 
Hong Kong, 52-54, 1996 

A.B. NuttaD, Some windows with very good sidelobe behavior, IEEE Trans. 
ASSP, 29, 84-87, 1981 

278 



Nuttall87 

Okamoto 

Olson 

Oohashi 89 

Oohashi 91 

Oohashi 93 

Opcode 

Pabon 94a 

Pabon 94b 

Pacheco 

Palmer 

Papoulis 

Parash 

Parsons 

PattersonB 

PattersonR 

Pearson 90 

Pearson 91 

Pennycook 86 

Pennycook 93 

A.H. Nuttall, Efficient Evaluation of Polynomials and Exponentials of 
Polynomials for Equispaced Arguments, IEEE Trans. ASSP, 35(10), October 
1987 

H. Okamoto, Mouchu (installation), ICMC Concert Program, Hong Kong, 
85, 1996 

H. Olson, Music, Physics, and Engineering, New York: Dover, 1967 

T. Oohashi et al., High frequency sound on "Trance Induction Music", Tech. 
Report on Musical Acoustics, Acoustical Society of Japan, ES88-77, 11-15, 
1989 

T. Oohashi et at., High-frequency components above the audible range 
affects brain electric activity and sound perception, AES 91st convention 
preprint 3207, 1991 

T. Oohashi, E. Nishina, Y. Fuwamoto, and N. Kawai, On the Mechanism of 
"Hypersonic Effect", Proc. ICMC, Tokyo, 432-434, 1993 

Opcode Systems, Studio Vision Pro (sales literature), <http:// 
www.opcode.com/products/svpro/>, 1996 

P. Pabon, A real-time singing voice analysis/synthesis system, Proc. ICMC, 

Aarhus, 356, 1994 

P. Pabon, Real-time spectrumlcepstrum games, Proc. ICMC, Aarhus, 361, 
1994 

P.S. Pacheco, A User's Guide to MPI, <ftp://math.usfca.edu/pub/MPII 
mpi.guide.ps.Z>, March 1995 

C. Palmer, Timing in Skilled Musical Performance, PhD thesis, Cornell Univ., 
1989 

A. Papoulis, Signal Analysis, New York: McGraw-Hill, 1987 

A. Parash and U. Shimony, An expandable real-time transputer sound 
generator, Proc. ICMC, Montreal, 226-228, 1991 

W. Parsons, Separation of speech from interfering speech by means of 
harmonic selection, JASA, 60 (4), 911-918, 1976 

B. Patterson, Musical Dynamics, Scientific American, 231 ( 5): 78, 197 4 

R.D. Patterson, J.· Holdsworth, I. Nimmo-Smith, and P. Rice, SVOS final 
report: The gammatone filter bank, Cambridge Applied Psychology Unit 
Report 2341, 1988 

E.R.S. Pearson and R.G. Wilson, Multiple Event Detection from Audio 
Signals within a Multiresolution Framework, Proc. ICMC, Glasgow, 156-158, 
1990 

E.R.S. Pearson, The multiresolution Fourier transform and its application to 
the analysis of polyphonic music, PhD thesis, Warwick Univ., September 1991 

B. Pennycook, Language and Resources: A New Paradox, in The Language of 
Electroacoustic Music, S. Emmerson, ed., London: MacMillan Press, 1986 

B. Pennycook, D.R. Stammen, and D. Reynolds, Toward a Computer Model 
of a Jazz Improviser, Proc. ICMC, Tokyo, 228-231, 1993 

279 



Perez 

Phillips 94 

Phillips 96 

Pierce 

Piszczalski 77 

Piszczalski 79 

Piszczalski 81 

Pkware 

Plomp 70 

Plomp 76 

Pope 

Popovic 95a 

Popovic 95b 

Portnoff 

Poulenc 

Press 

Pressing 93a 

Pressing 93b 

Pringle 

I. Perez, MacMUSIC, the MUSIC N environment for Macintosh, algorithmic 
synthesis and composition made ea.\)1, Proc. ICMC, Aarhus, 239-240, 1994 

D.K. Phillips, A. Purvis, and S. Johnson, A Multirate Optimisation for Real
Time Additive Synthesis, Proc. ICMC, Aarhus, 364-367, 1994 

D.K. Phillips, A. Purvis, and S. Johnson, Multirate Additive Synthesis, Proc. 
ICMC, Hong Kong, 496-499, 1996 

J.R. Pierce, Residues and Summation Tones- What Do We Hear?, in Current 
Directions in Computer Music Research, M.V. Mathews and J.R. Pierce, eds., 
175-184, Cambridge, Massachusetts: MIT Press, 1991 

M. Piszczalski and B.F. Galler, Automatic Music Transcription, CMJ, 1(4), 
24-31, Winter 1977 

M. Piszczalski and B.F. Galler, Predicting Musical Pitch from Component 
Frequency Ratios, JASA, 66, 710-720, 1979 

M. Piszczalski, B.F. Galler, R. Bossmeyer, M. Hatamian, and F. Looft, 
Performed Music: Analysis, Synthesis, and Display by Computer, J. AES, 
29(1/2), 38-46, 1981 

Pkware Inc., PKZIP- documentation, <http://www.pkware.com/pkzip.html>, 
1996 . 

R. Plomp, Timbre as a Multidimensional Attribute of Complex Tones,· in 
Frequency Analysis and Periodicity Detection in Hearing, R. P1omp and G. 
Smoorenburg, eds., Leiden: Sijthoff, 1970 

R. Plomp, Aspects of tone sensation, London: Academic Press, 1976 

S.T. Pope, Computer Music Workstations I Have Known and Loved, Proc. 
ICMC, Banff, 127-133, 1995 

I. Popovic, R.R. Coifman, and J. Berger, Aspects of Pitch-Tracking and 
Timbre Separation: Feature Detection in Digital Audio Using Adapted Local 
Trigonometric Bases and Wavelet Packets, Proc. ICMC, Banff, 280-283, 
199 5, and <http://www. music. yale. edu/research/pc/pitchtrack. html> 

I. Popovic, RR Coifman, and J. Berger, Toward a Unified Representation of 
Sound and Analytical Structure in Music, Proc. XI Colloquium on Musical 
Informatics, Bologna, 55-58, 1995 

M.R. PortnofT, Time-scale modification of speech based on short-time 
Fourier analysis, IEEE Trans. ASSP, 29(3), June 1981 

F. Poulenc, Sonata for Hom, Trumpet, and Trombone, 1922. (audio: Record 
ZRG 731, London: Argo) (score: London: J.&W. Chester) 

J. Press, Numerical Recipes: The Art of Scientific Computing, Cambridge: 
Cambridge University Press, 1986, and <http://cfatab.harvard.edu/ 
nr/nronline.html>, 1996 

J. Pressing and P. Lawrence, Transcribe: A Comprehensive 
Autotranscription Program, Proc. ICMC, Tokyo, 343-345, 1993 

J. Pressing and P. Lawrence, Visualization and Predictive Modelling of 
Musical Signals using Embedding Techniques, Proc. ICMC, Tokyo, 110-113, 
1993 

R. Pringle and B.J. Ross, A Symbiosis of Animation and Music, Proc. ICMC, 
Hong Kong, 316-319, 1996 

280 



Prosoniq 

Puckette 90 

Puckette 91a 

Puckette 91 b 

Quatieri 85 

Quatieri 90 

Rabiner75 

Rabiner 78 

Radunskaya 

Railsback 

Rakowski 

Rasch 78 

Rasch 82 

Redding 

Reekie 

Repp 

Rioul91 

Rioul92 

Risset 69 

Prosoniq Inc., The Timescale Modification FAQ, <http://www.prosoniq.com/ 
time_pitch_faq.html>, November 1996 

M. Puckette and D. Zicarelli, MAX- An Interactive Graphic Programming 
Environment, Opcode Systems, 1990 · 

M. Puckette, FTS: A Real-Time Monitor for Multiprocessor Music Synthesis, 
CMJ, 15(3), 56-67, Fall1991 

M. Puckette, Combining Event and Signal Processing in the Max Graphical 
Programming Environment, CMJ, 15(3), 68-77, Fall 1991 

T.E. Quatieri and R.J. McAulay, Speech transformations based on a 

sinusoidal model, Proc. ICASSP, March 1985 

T.E. Quatieri and R.G. Danisewicz, An approach to co-channel talker 
interference suppression using a sinusoidal model for speech, IEEE Trans. 
ASSP, 38(1), 1990 

L.R. Rabiner and B. Gold, Theory and Application of Digital Signal 
Processing, Englewood Cliffs: Prentice-Hall, 1975 

L.R. Rabiner and R. W. Schafer, Digital Processing of Speech Signals, 
Englewood Cliffs: Prentice-Hall, 1978 

A. Radunskaya, Chaos and Non-linear Models, Proc. ICMC, Hong Kong, 
440-443, 1996 

O.L. Railsback, Scale temperament as applied to piano tuning, JASA., 9, 274, 
and 10, 86, 1938 

A. Rakowski, Pitch discrimination at the threshold of hearing, Proc. of the 
Seventh International Congress on Acoustics, vol. 3, 1971 

R.A. Rasch, The Perception of Simultaneous Notes such as in Polyphonic 
Music, Acustica, Vol. 40,21-33, 1978 

R.A. Rasch and R. Plomp, The Perception of Musical Tones, in The 
Psychology ofMusic, D. Deutsch, ed., 1-24, New York: Academic Press, 1982 

N.J. Redding and G.N. Newsam, Efficient Calculation of Finiie Gabor 
Transforms, IEEE Trans. Signal Processing, 44(2), 190-200, February 1996 

H.J. Reekie and M. Meyer, The Host-Engine Software Architecture for 
Parallel Digital Signal Processing, Proc. Australasian Workshop on Parallel 
and Real-Time Systems, Melbourne, 1994 

B.H. Repp, Diversity and commonality in music performance: An analysis of 
· timing microstructure in Schumann's "Traumerei", JASA., 92(5), 2546-2568, 

1992 

0. Rioul and M. Vetterli, Wavelets and Signal Processing, IEEE Signal 
Processing Magazine, 14-38, October 1991 

0. Rioul and P. Duhamel, Fast Algorithms for Discrete and Continuous 
Wavelet Transforms, IEEE Trans. Information Theory, 38(2), 569-586, 1992 

J-C. Risset and M. Mathews, Analysis of Musical Instrument Tones, Physics 
Today, 22(2), 23-30, 1969 

281 



Risset 82 

Risset 91 

Roads 78 

Roads 85 

Roads 88 

Roads 89 

Roads 91 

Roads 92 

Roads 93 

Roads 94 

RobinsonA 

RobinsonK 

Rodet 92a 

Rodet 92b. 

Rodet 92c 

Rodet 93 

Rodet 96 

Ross 

J-C. Risset and D.L. Wessel, Exploration of Timbre by Analysis and 
Resynthesis, in The Psychology of Music, D. Deutsch, ed., 25-98, New York: 
Academic Press, 1982 

J-C. Risset, Paradoxical Sounds, in Current Directions in Computer Music 
Research, M.V. Mathews and JR. Pierce, eds., 149-158, Cambridge, 
Massachusetts: MIT Press, 1991 

C. Roads, Automated Granular Synthesis of Sound, CMJ, 2(2), 61-62, 
Summer 1978 

C. Roads, Granular Synthesis of Sound, Foundations of Computer Music, C. 
Roads and J. Strawn, eds., 145-159, Cambridge, Massachusetts: MIT Press, 
1985 

C. Roads, Introduction to Granular Synthesis, CMJ, 12(2), 11-13, Summer 
1988 

C. Roads, ed., lhe Music Machine- Selected Readings from Computer Music 
Journal, Cambridge, Massachusetts: MIT Press, 1989 

C. Roads, Asynchronous Granular Synthesis, in G. De Poli, A. Piccialli, and 
C. Roads, eds., Representations of Musical Signals, Cambridge, 
Massachusetts: MIT Press, 1991 

C. Roads, Musical Applications of Advanced Signal Transformations, Proc. 
Capri Workshop on Models and Representations of Musical Signals, Dept.· of 
Physics, Univ. ofNaples Federico II, 1992 

C. Roads, Musical Sound Transformation by Convolution, Proc. ICMC, 
Tokyo, 102-109, 1993 

C. Roads, Computer Music Tutorial, Cambridge, Massachusetts: MIT Press, 
1994 

A.J. Robinson, <ajr@softsound.com> Shorten: simple lossless and near
lossless waveform compression, <http://svr-www.eng.cam.ac.ukl-ajr/tr156/>, 
December 1994, and private email. 

K. Robinson and R.D. Patterson, lhe Duration Required To Identify the 
Instrument, the Octave, or the Pitch Chroma of a Musical Note, Music 
Perception, 13(1), 1-15, Fall1995 

X.O. Rodet and Ph. DepaUe, A new additive synthesis method using inverse 
Fourier transform and spectral envelopes, Proc. ICMC, San Jose, 410-411, 
1992 

.. 
X.O. Rodet, Nonlinear Oscillator Models of Musical Instrument Excitation, 
Proc. ICMC, San Jose, 412-413, 1992 

X.O. Rodet and Ph. DepaUe, Spectral Envelopes and Inverse FFT Synthesis, 
Proc. AES Convention, 1992 

' 
X. Rodet, Flexible Yet Controllable Physical Models: A Nonlinear Dynamics 
Approach, Proc. ICMC, Tokyo, 48-55, 1993 

X. Rodet and C. Vergez, Physical Models of Trumpet-like Instruments: 
Detailed Behavior and Model Improvements, Proc. ICMC, Hong Kong, 448-
453, 1996 

M.J. Ross, B.L. ShatTer, A. Cohen, R. Freudberg, and B.J. Manley, 
Average Magnitude Difference Function Pitch Extractor, IEEE Trans. ASSP, 
22, 353-362, 1974 

282 



Rossing 

Rossiter 

Roucous 

Samson 

Sandell91 

Sandell95 

Sano 

Sawada 

Scallan 

Scavone 

Scheirer 95a 

Scheirer 95b 

Scheirer 96 

Schloss 

Schottstaedt 

Schroeder 

Schuck 

T.D. Rossing, The Science of Sound, Reading, Massachusetts: Addison
Wesley, 1990 

D. Rossiter and D.M. Howard, A graphical environment for electroacoustic 
music composition, Proc. ICMC, Aarhus, 272-275, 1994 

S. Roucous and A.M. Wilgus, High Quality Time-Scale Modification of 
Speech, IEEE Trans. ASSP, 35(10), 1486-1487, 1987 

P.R. Samson, Architectural issues in the design of the system concepts digital 

synthesizer, in Digital Audio Engineering: An anthology, J. Strawn, ed., Los 
Alamos: Kaufinan, 1985 

G.J. SandeD, A Library of Orchestral Instrument Spectra, Proc. ICMC, 
Montreal, 98-1 0 1, 1991 

G.J. Sandell, The SHARC Timbre Database, <http://www.parmly.luc.edu/ 
share/>, May 1995 

H. Sano and B.K. Jenkins, A Neural Network Model for Pitch Perception, in 
Music and Connectionism, P.M. Todd and D.G. Loy, eds., Cambridge, 
Massachusetts: MIT Press, 1991 

H. Sawada, N. Onoe, and S. Hashimoto, Acceleration Sensor as an Input 
Device for Musical Environment, Proc. ICMC, Hong Kong, 421-424, 1996 . 

C. Scallan and T. Stainsby, A New Software Package for Spectral 
Investigation and Analysis/Synthesis Using FFT and Sinusoidal Modelling 
Techniques, Proc. ICMC, Tokyo, 399-401, 1993 

G.P. Scavone, Modeling and Control of Performance Expression in Digital 
Waveguide Models of Woodwind Instruments, Proc. ICMC, Hong Kong, 224-
227, 1996 

E.D. Scheirer, Extracting Expressive Performance from Recorded Music, 
M.S. thesis, MIT Media Lab., 1995 

E.D. Scheirer, Using Musical Knowledge to Extract Expressive Performance 
Information from Audio Recordings, Proc. Int. Joint Conf. on Artificial 
Intelligence, Workshop on Computational Auditory Scene Analysis, Montreal, 
August 1995, and <ftp ://sound. media. mit. edu/pub!Papers/eds-ijcai95. ps. gz> 

E. D. Scheirer, Some thoughts on the transcription problem - or, why aren 't 
there good audio-to-MIDI converters available?, <http:// 
sound.media.mit.edu/-eds/transcription.html>, 13 January 1996 

W.A. Schloss, On the Automatic Transcription of Percussive Music- from 
Acoustics Signal to High-Level Analysis, PhD thesis, and Stanford Music 
Dept. Technical Report STAN-M-27, 1985 

W. Schottstaedt, An Introduction to FM, <http://www.notam.uio.no/ 
-andersvi/home/cm-sys/clm/fin. html>, 1991 

M.R. Schroeder, Period Histogram and Product Spectrum: New Methods for 
Fundamental-Frequency Extraction, JASA, 829-834, 1968 

O.H. Schuck and R.W. Young, Observations on the Vibrations of Piano 
Strings, JASA, 15, 1-11, 1943, reprinted in Musical Acoustics - Piano and 
Wind Instruments, E.L. Kent, ed., Stroudsburg: Dowden, Hutchinson and 
Ross, 1977 

283 



Sci Tech 

Serra 89 

Serra 90 

Serra 94 

Serra 96 

Settel 

Shah 

Shankland 

Shephard 

Shower 

Shuttleworth 

Silberg 

Slaney 95a 

Slaney 95b 

Slawson 

SmithJ 87 

SmithJ 91 

SmithJ 92 

SciTech Software, UniVesa documentation, <http://www.scitechsoft.com/>, 
1995 

X. Serra, A system for sound analysis/transformation/synthesis based on a 
deterministic plus stochastic decomposition, PhD thesis, Stanford Univ., 
October 1989 

X. Serra and J.O. Smith, Spectral Modeling Synthesis: A Sound 
Analysis/Synthesis System Based on a Deterministic plus Stochastic 
Decomposition, CMJ, 14(4), 12-24, Winter 1990 

X. Serra, Sound hybridization based on a deterministic plus stochastic 
decomposition model, Proc. ICMC, Aarhus, 348-351, 1994 

X. Serra, Musical Sound Modeling With Sinusoids Plus Noise, 
<http://www.iua.upfes!eng/recerca/mit!sms!articles!msm/>, 1996 

Z. Settel and C. Lippe, Musical Applications Using Real-time Frequency 
Domain Signal Processing, Proc. XI Colloquium on Musical Informatics, 
Bologna, 13-17, 1995 

LA. Shah and A.A. C. Kalker, Theory and design of multidimensional QMF 
sub-band filters from 1-D filters and polynomials using transforms, lEE 
Proceedings, 140(1), 67-71, 1993 · 

R.S. Shankland and J.W. Cottman, Overtones of a vibrating string, in 
Musical Acoustics - Piano and Wind Instruments, E.L. Kent, ed., Dowden, 
Hutchinson and Ross, Stroudsburg, Pennsylvania, 1977 

R.N. Shephard, Structural Representations of Musical Pitch, in The 
Psychology of Music, D. Deutsch, ed., Academic Press, New York, 343-390, 
1982 

E.G. Shower and R. Biddulph, Differential Pitch Sensitivity of the Ear, 
JASA, 3, 274, 1931 

T. Shuttleworth and R.G. Wilson, Note Recognition in Polyphonic Music 
using Neural Networks, Dept. of Comp. Sci. Technical Report CS-RR-252, 
October 1993, and <ftp://ftp.dcs.warwick.ac.uk/pub/reports!rr/ 252/> 

S. Silberg, Intel i860 versus Digital Signal Processors (DSP), 
Microprocessing and Microprogramming, 35, 605-610, 1992 

M. Slaney, D. Ellis, and D. Rosenthal, Report on the Computational 
Auditory Scene Analysis Workshop, <http://sound.media.mit.edu/-dfr/casa! 
surnrnary.htrnl>, 1995 

M. Slaney, A Critique of Pure Audition, Proc. Computational Auditory Scene 
Analysis Workshop, Int. Joint Conf on Artificial Intelligence, Montreal, 
August 1995 

A.W. Slawson, Vowel quality and musical timbre as junctions of spectrum 
envelope and .fundamental frequency, JASA, 43, 87-101, 1968 

J.O. Smith and X. Serra, P ARSHL: An analysis/synthesis program for non
harmonic sounds based on a sinusoidal representation, Proc. ICMC, San 
Francisco, 290-297, 1987 

J.O. Smith, Viewpoints on the History of Digital Synthesis, Proc. ICMC, 
Montreal, 1-10, 1991 

J.O. Smith, Physical Modeling Using Digital Waveguides, CMJ, 16(4), 74-
91, Winter 1992 

284 



SmithJ 93 

SmithM 84 

SmithM 85 

SmithM 86 

Smyth 

Snell 

Solbach 96a 

Solbach 96b 

Sondhi 

Srinivasan 

Stainsby 

Sterian 

Stevens 

Stockham 69 

Stockham 75 

Strawn 

Sundberg 73 

Sundberg 91 

Swaminathan 

J.O. Smith, Efficient Synthesis of Stringed Musical Instruments, Proc. ICMC, 
Tokyo,64-71, 1993 

M.J.T. Smith and T.P. Barnwell, A procedure for designing exact 
reconstruction filterbanks for tree-structured coders, Proc. IEEE ICASSP, 
27.1-4, San Diego, March 1984 

M.J. T. Smith and T.P. Barnwell, A unifying framework for 
analysis/synthesis systems based on maximally decimated filter bands, Proc. 
IEEE ICASSP, 521-524, Tampa, March 1985 

M.J. T. Smith and T.P. Barnwell, Exact Reconstruction Techniques for Tree
Structured Subband Coders, IEEE Trans. ASSP, 34(3), 434-441, 1986 

S.M. F. Smyth and J. V. McCanny, High-fidelity Music Coding at 4 bits, 
Electronic Letters, 24(8), 493-495, 1988 

J. Snell, Design of a Digital Oscillator That Will Generate up to 256 Low
Distortion Sine Waves in Real Time, CMJ, 1(2), 4-25, Summer 1977 

L. Solbach and R. Wohnnann, Sound Onset Localization and Partial 
Tracking in Gaussian White Noise, Proc. ICMC, Hong Kong, 324-327, 1996 

L. Solbach, R. Wohnnann, and J. Kliewer, The complex-valued continuous 
wavelet transform as a preprocessor for auditory scene analysis, in H. Okuno 
and D. Rosenthal, eds., Readings in Computational Auditory Scene Analysis, 
Hillsdale: Erlbaum, 1996, and <ftp://ftp.ti6.tu-harburg.de/pub/paper/ijcai95-
casa_revl.ps.gz>, 30 January 1996 

M.M. Sondhi, New Methods of Pitch Extraction, IEEE Trans. Audio 
Electroacoustics, AU-16, 262-268, 1968 

R. Srinivasan, Auditory Critical Bandwidth for Short-Duration Signals, 
JASA, 50(2), 616-622, 1971 

T. Stainsby, A System for the Separation of Simultaneous Musical Audio 
Signals, Proc. ICMC, Hong Kong, 75-78, 1996 

A. Sterian and G.H. Wakefield, Robust Automated Music Transcription 
Systems, Proc. ICMC, Hong Kong, 219-221, 1996 

S.S. Stevens, The Relation of Pitch to Intensity, JASA, 6, 150, 1935 

T.G. Stockham, High-speed convolution and co"elation with applications to 
digital filtering, in Digital Processing of Signals, B. Gold and C.M. Rader, 
eds., New York: McGraw-Hill, 1969 

T.G. Stockham, T:M. Cannon, and R.B. Ingerbretsen, Blind deconvolution 
through digital signal processing, Proc. IEEE, 63(4), 678-692, April1975 

J. Strawn, Approximation and Syntactic Analysis of Amplitude and 
Frequency Functions for Digital Sound Synthesis, CMJ, 4(3), 3-24, Fall 1980 

J.E.F. Sundberg and J. Lindqvist, Musical octaves and pitch, JASA, 54(4), 
922-929, 1973 

J.E.F. Sundberg, The Science of Musical Sounds, San Diego: Academic 
Press, 1991 

K. Swaminathan and P.P. Yaidyanathan, Theory and Design of Uniform 
DFT, Parallel, Quadrature Mi"or Filters, IEEE Trans. on Circuits and 
Systems, 33(12), 1170-1191, December 1986 

285 



Sweldens 93 

Sweldens 96 

Syntrillium 

Szilas 

T ait 

Takami 

Takeuchi 

Tanguiane 87 

Tanguiane 88 

· Tanguiane 91 

Tanguiane 93a 

Tanguiane 93b 

Tanguiane 95 

Taylor 94 

Taylor 95 

Technics 

Terhardt 71 

Terhardt 78 

Terhardt 79 

T erhardt 82a 

W. Sweldens and R. Piessens, Wavelet sampling techniques, Proc. of the 
Statistical Computing Section, American Statistical Association, 20-29, 1993 

W. Sweldens and P. Schroder, Building Your ~n ·Wavelets at Home, in 
Wavelets in Computer Graphics, ACM SIGGRAPH Course Notes, 1996 

Syntrillium · Software Corp. <syntrill@aol.com>, Cool Edit, <http:// 
www.syntrillium.com/cool.htm>, November 1996 

N. Szilas, Physical Models That Learn, Proc. ICMC, Tokyo, 72-75, 1993 

C. Tait, Audio Analysis for Rhythmic Strocture, Proc. ICMC, Banff, 590-591, 

1995 

K. Takami, H. Katayose, and S. Inokuchi, Extraction of Performance 
Information in Piano Music, Trans. Institute of Electronics, Information and 
Communication Engineers, 1989 [in Japanese] 

N. Takeuchi, H. Katayose, and S. Inokuchi, Virtual Performer: Adaptive 
KARAOKE system, Convention Record of Information Processing Society of 
Japan, Spring 1993 [in Japanese] 

A.S. Tanguiane, Raspomavanie akkordov pri ·avtomaticeskoi notnoi 
transkripcii polifoniceskoi muzyki, Sojuz Kompozitorov SSSR I Akadernia 
Nauk SSSR, Moscow, 1987 [in Russian] 

A.S. Tanguiane, An Algorithm for Recognition of Chords, Proc. · ICMC, 
Cologne, 199-210, 1988 

A.S. Tanguiane, Criterion of Data Complexity in Rhythm Recognition, Proc. 
ICMC, Montreal, 559-562, 1991 

A.S. Tanguiane, Artificial Perception and Music Recognition, Springer
Verlag, Berlin, 1993 

A.S. Tanguiane, An Artificial Perception Model and Its Application to Music 
Recognition, Proc. ICMC, Tokyo, 284-291, 1993 

A.S. Tanguiane, Towards Axiomatization of Music Perception, JNMR, 24, 
247-281, 1995 

I.J. Taylor and M. Greenhough, Evaluation of artificial-neural-network 
Pitch types for the determination of pitch, Proc. ICMC, Aarhus, 114-120, 
1994 

I.J. Taylor and M. Greenhough, Neural Network Pitch Tracking over the 
Pitch Continuum, Proc. ICMC, Banff, 432-435, 1995 

Technics, SC-CH550 Operating lnstroctions, Matsushita Electric Industrial 
Co. Ltd. 

E. Terhardt, Die Tonhohe hannonischer Kldnge und das Oktavinterva/1, 
Acustica, 24, 126-136, 1971 

E. Terhardt, Psychoacoustical evaluation of musical sounds, Perception and 
Psychophysics, 23, 483-492, 1978 

E. Terhardt, Calculating Virtual Pitch, J. Hearing Research, 1, 155, 1979 

E. Terhardt, G. StoU, and M. Seewann, Algorithm for extraction of pitch 
and pitch salience from complex tonal signals, JASA, 71(3), 679-688, 1982 

286 



T erhardt 82b 

Texas 

Therrien 

ThreeL 

Todd 

Todoroff 

Toiviainen 

Transtech 

Truax 87 

Truax 88 

Truax 90 

Truax 91 

Truax 93 

Truax 94 

Tsujimoto 

Ueda 

Ungvary 

V aidy~athan 87 

V aidyanathan 90 

E. Terhardt, G. StoU, and M. Seewann, Pitch of complex signals according 
to virtual-pitch theory: Tests, examples, and predictions, JASA, 71(3), 671-
678, 1982 

Texas Instruments Inc., TMS320C4x User Guide, Literature number 
SPRU063, 1991 

C.W. Therrien, R. Cristi, and O.E. Kjono, Analysis/Synthesis of Sound 
Using a Time-Varying Linear Model, Proc. ICMC, Aarhus, 331-332, 1994 

3L Ltd., Parallel C User Guide, 3L Ltd., Edinburgh, 1992 

N.P.McA. Todd, Wavelet Analysis of Rhythm in Expressive Musical 
Performance, Proc. ICMC, Tokyo, 264-267, 1993 

T. Todoroff, E. Daubresse, and J. Fineberg, lana - a real-time environment 
for analysis and extraction of frequency components of complex orchestral 
sounds and its application within a musical realization, Proc. ICMC, Banff, 
292-293, 1995 

P. Toiviainen, Optimizing Self-Organizing Timbre Maps: The Effect of 
Auditory Images and Distance Metrics, Proc. XI Colloquium on Musical 
Informatics, Bologna, 141-144, 1995 

Transtech Ltd., TDMB416 User Guide, Transtech Ltd., High Wycombe, 
Buckinghamshire 

B. Truax, Real-Time Grarmlation of Sampled Sound with the DMX-1000, 
Proc. ICMC, Illinois, 1987 

·B. Truax, Real-Time Granular Synthesis with a Digital Signal Processor, 
CMJ, 12(2), 14-26, Summer 1988 

B. Truax, Time Shifting of Sampled Sound with a Real-Time Gram1lation 
Technique, Proc. ICMC, Glasgow, 104-107, 1990 

B. Truax, Composition with time-shifted environmental sound using a real
time granulation technique, Proc. ICMC, Montreal, 487-490, 1991 

B. Truax, Time Shifting and Transposition· of Sampled Sound with a Real
Time Grarmlation Technique, Proc. ICMC, Tokyo, 82-85, 1993 

B. Truax, Discovering Inner Complexity: Time Shifting and Transposition 
with a Real-time Granulation Technique, CMJ, 18(2), 38-48, Summer 1994 

K. Tsujimoto, M. Imai, and S. Inokuchi, Assistance Tool for Ethnic Music 
Recognition, Information Processing Society of Japan, 1986 [in Japanese] 

M. Ueda and S. Hashimoto, Blind Decomposition of Concu"ent Sounds, 

Proc. ICMC, Aarhus, 311-318, 1994 

T. Ungvary and S. Waters, The sonogram: a tool for visual documentation 
of musical structure, Proc. ICMC, Glasgow, 159-162, 1990 

P.P. Vaidyanathan, Theory and Design of M-Channel Maximally Decimated 

Quadrature Mi"or Filters with Arbitrary M, Having the Perfect
ReconstructionProperty, IEEE Trans. ASSP, 35(3), 1987 

P.P. Vaidyanaihan, Multirate digital filters, filter banks, polyphase networks, 
and applications: a tutorial, Proc. IEEE, 78(1), 56-93, 1990 

287 



Valimaki 93 

Valimaki 96 

VanDuyne 93 

VanDuyne 96 

Van Klitzing 

Vercoe 84 

Vercoe 85 

Vercoe 88 

Vercoe 90 

Vercoe 93 

Vercoe 96 

Verge 

von Bekesy 

von Bismarck 

Wake92 

Wake94 

Wallraff 

Wang 

Ward 

Watson 

Wawrzynek 84 

V. Vilimiiki, M. Karjalainen, and T.I. Laakso, Modeling of Woodwind 
Bores with Finger Holes, Proc. ICMC, Tokyo, 32-39, 1993 

V. Vilimiki, R. Hiinninen, and M. Karjalainen, An Improved Digital 
Waveguide Model of a Flute - Implementation Issues, Proc. ICMC, Hong 
Kong, 1-4, 1996 · 

S.A. Van Duyne and J.O. Smith, Physical Modeling with the 2-D Digital 
Waveguide Mesh, Proc. ICMC, Tokyo, 40-47, ·1993 

S.A. Van Duyne and J.O. Smith, The 3D Tetrahedral Digital Waveguide 
Mesh with Musical Applications, Proc. ICMC, Hong Kong, 9-16, 1996 

R. Van Klitzing and A. Kohlrausch, Effect of masker level on overshoot in 
running- and frozen-noise maskers, JASA, 95(4), 2192-2201, 1994 

B. Vercoe, The Synthetic Performer in the context of Live Performance, Proc. 
ICMC, Paris, 199-200, 1984 

B. Vercoe and M. Puckette, Synthetic Rehearsal: Training the Synthetic 
Performer, Proc. ICMC, Vancouver, 275-278, 1985 

B. Vercoe and D; Cumming, Connectionist Machine Tracking of Polyphonic 
Audio, Proc. ICMC, Cologne, 2ri-218, 1988 

B. Vercoe and D.P.W. EUis, Real-time Csound: Software Synthesis with 
Sensing and Control, Proc. ICMC, Glasgow, 209-211, 1990 

B. Vercoe, Csound: A Manual for the Audio Processing System and 
Supporting Programs with Tutorials, Media Laboratory, MIT, 1993 

B. Vercoe, Extended Csound, Proc. ICMC, Hong Kong, 141-142, 1996 

M.-P. Verge, Physical modeling of aeroacoustic sources in flute-/ike musical 
instruments, Proc. ICMC, Hong Kong, 5-8, 1996 

G. von Bekesy, Experiments in Hearing, New York: McGraw-Hill, 1960 

G. von Bismarck, Timbre of steady sounds: A factorial investigation of its 
verba/.attributes, Acustica, 30, 146-159, 1974 

S. Wake, H. Kato, N. Saiwaki, and S. Inokuchi, The Session System 

Reacting to the Sentiment of the Player, Japan Music and Computer Science 
Society, Proc. of Summer Symposium, 1992 [in Japanese] 

S. Wake, H. Kato, N. Saiwaki, and S. Inokuchi, Cooperative musical 
partner system using tension parameter: JASPER Oam session partner), 
Trans. IPS Japan, 35(7), 1469-1481, 1994 [in Japanese] 

D. WallratT, The DMX-1000 Signal Processing Computer, <;:MJ, 3(4), 44-49, 
Winter 1979 

A. Wang, Instantaneous and Frequency-Warped Signal Processing 
Techniques for Auditory Source Separation, PhD thesis, Dept. ofEiec. Engg., 
Stanford Univ., Stanford, California, August 1994 

W.D. Ward and E.M. Bums, Absolute Pitch, in The Psychology of Music, 
D. Deutsch, ed., New York: Academic Press, 431-451, 1982 

C. Watson, The Computer Analysis of Polyphonic Music, PhD thesis, Sydney 
Univ., 1986 

J. Wawrzynek, C. Mead, L. Tzu-mu, and L. Dyer, A VLSI approach to 
sound synthesis, Proc. ICMC, Paris, 53-64, 1984 

288 



Wawrzynek 91 

Weintraub 

Weiss 

Wessel 78 

Wessel 79 

Wickerhauser 

Widmer 

Wiggins 

Wildcat 

Williamson 

Wilson 92a 

Wilson 92b 

Winckel 

Wohrmann 

Wood 

Xenakis 

Yamaha 

Zwicker 

J. Wawnynek, VLSI Models for Sound Synthesis, in Current Directions in 
Computer Music Research, M.V. Mathews and J.R. Pierce, eds., 185-198, 
Cambridge, Massachusetts: MIT Press, 1991 

M. Weintraub, A Theory and Computational Model of Auditory Monaural 
Sound Separation, PhD thesis, Dept. ofEiec. Eng., Stanford Univ., 1985 

L.G. Weiss, Wavelets and Wideband Correlation Processing, IEEE Signal 
Processing Magazine, 13-32, January 1994 

D.L. Wessel, Low dimensional control of musical timbre, Proc. 59th Conv. 
AES, Hamburg, 1978 

D.L. Wessel, Timbre space as a musical control structure, CMJ, 3(2), 45-52, 
Summer 1979 

M.V. Wickerhauser, Acoustic Signal Compression with Wave Packets, 
<http :1 /www.math. yale.edu/pub/wavelets/papers/acoustic. tex>, 1989 

G. Widmer, Learning Expressive Performance: The Structure-Level 
Approach, JNMR, 25(2), 179-205, June 1996 

G. Wiggins, E. Miranda, A. Smaill, and M. Harris, A Framework for the 
Evaluation of Music Representation Systems, CMJ, 17(3), 31-42, Fall 1993 

Wildcat Canyon Software, Autoscore, <http://www.wildcat.com/Pages/ 
Autoscor.htm>, 1996 

R. Williamson <76570.2752@compuserve.com>, Video for DOS, <gopher:// 
rnicros.hensa.ac.uk:70/11/rnicros/ibmpc/dosll/l095/>, January 1995 

R.G. Wilson, A.D. Calway, and E.R.S. Pearson, A Generalized Wavelet 
Transform for Fourier Analysis: The Multiresolution Fourier Transform and 
Its Application to Image and Audio Signal Analysis, IEEE Trans. Information 
Theory, 38(2), 674-690, March 1992 

R.G. Wilson, A.D. Calway, E.R.S. Pearson, and A.R. Davies, An 
Introduction to the Multiresolution Fourier Transform and Its Applications, 
Warwick Univ. Dept. of Comp. Sci. Technical Report 204, January 1992, and 
<ftp :/ /ftp. des. warwick.ac. ~pub/reports/rr/204/> 

F. Winckel, Measurements of the Acoustic Effectiveness and Quality of 
Trained Singers' Voices, Proc. 90th meeting Acoust. Soc. of America, San 
Francisco, 1975 

R. Wohrmann and L. Solbach, Preprocessing for the Automated 
Transcription of P_olyphonic Music: Linking Wavelet Theory and Auditory 
Filtering; Proc. ICMC, Banff, 396-399, 1995 

A. Wood, The Physics of Music, London: Chapman and Hall, 1976 

L Xenakis, Formalized Music, Bloomington: Indiana University Press, 1971 

(and Pen dragon, 1991) 

Yamaha Corporation, Yamaha SY77 Operating Manual, Hamamatsu, Japan 

E. Zwicker, G. Flottorp, and S.S. Stevens, Critical Bandwidth in Loudness 

Summation, JASA, 29, 548, 1957 

289 



Internet references are cited according to M. Page <pagem@etsuarts.east-tenn-st.edu>, A brief citation 

guide for Internet sources in History and the Humanities, version 2.1, <http:// 

h-net.msu.edu/~afiicalcitation.html>, February 1996. It is noted that World-Wide Web references may 

move, disappear, or be updated. 

This thesis will be made available via <http://capella.dur.ac.ukldoug/thesisl>. An updated list of the web 

links in the references, and the audio examples, can also be found via this page. 

290 



11.2 Abbreviations 

AES Audio Engineering Society 

ASSP Acoustics, Speech, and Signal Processing 

CCRMA Center for Computer Research in Music and Acoustics 

CMJ Computer Music Journal 

ICMC International Computer Music Conference 

ICSPAT International Conference on Signal Processing Applications and Technology 

lEE Institute ofElectrical Engineers 

IEEE Institute of Electrical and Electronic Engineering 

ICASSP International Conference on Acoustics, Speech, and Signal Processing 

IRCAM Institut de Recherche et Coordination Acoustique/Musique 

JASA Journal of the Acoustical Society of America 

JNMR Journal of New Music Research 

MIT Massachusetts Institute of Technology 

SIAM Society for Industrial and Applied Mathematics 

WASPAA Workshop on Applications of Signal Processing to Audio and Acoustics 

11.3 T~anslations 

Translations offoreign titles are as follows:-

Auger La reallocation: une methode generale d'ame/ioration de Ia lisibilite des 
representation temps-jrequence bilineaires 

Reallocation: a general method to improve the readability of bilinear time-frequency 
representations 

Burck Die Horbarkeit von Laujzeitdifferenzen 

The audibility of propagation-time differences 

Heinbach 87 Gehorgerecht Repriisentation von Audiosignalen durch das Tei/tonzeitmuster 

Aurally accurate representations of audio signals using partial envelopes 

Holdrich 94a Zur Analyse und Resynthese von Klangsignalen unter Verwendung von Zeit-
Frequenze-Repriisentationen mit Verbesserter Loka/isation der 
Signalenergie .. 

On the analysis and resynthesis of sound signals using a time-frequency 
representation with improved localisation of signal energy 

Kodera 76 Analyse numerique de signeaux geophysiques nonstationaires 

Numerical analysis of nonstationary geophysical signals 

Tanguiane 87 Raspoznavanie akkordov pri avtomaticeskoi nomoi transkripcii polifoniceskoi 
muzyki 

Perception of chords in automatic note transcription of polyphonic music 

Terhardt 71 Die Tonhohe harmonischer Kkinge und das Oktavinterva/1 

Tone height of harmonic sounds and the octave interval 

291 



11.4 Company addresses 

American Paper Optics American Paper Optics, 2005 Nonconnah Boulevard, Suite 27, Memphis. TN 
38132, USA 

Atlanta Atlanta Sisnal Processors Inc .. 1375 Peaehtn:c St. NE, Suile 690, Atlanta, GA 30309-3115, 
USA 

Borland Borland International Inc., 1800 Green Hills Road, PO Box 660001, Seotts Valley, CA 
95066·000 1, USA 

Emagie Emagic Inc., 13348 Grass Valley Ave., Bldg C, Suite 100, Gross Valley, CA 95945, USA 
Gravis Advanced Gravis Computer Tcelmology Ud., 101-3750 North Fraser Way, Burnaby, B.C. 

V5J 5E9, Canada I 

Hohner Hohner Midia, SchwabbcnstraBe 27, 0.74626 Bretzfeld, Gennany 
Jordan Hargrapbics Jordan Hargraphies Software, 8760-A Research Boulevard #256, Austin, TX 78758, USA 
LT soonll LT Sound Inc., 7980 LT Parlcway, Lithonia, GA 30058, USA 
Mauusblta Matsushita Eleetrie Industrial Co. Ud., Ceotral P.O. Box 288, Osaka 53G-91, Japan 
Microsoft Microsoft Inc., 1 Microsoft Way, Redmond, WA 98052~399, USA 
Opcodc Opcodc Systems Inc., 3950 Fabian Way, Suite 100, Palo Alto, CA 94303, USA 

Pkware Pkware Inc., 91025 North Deenvood Drive, Brown Deer, WI 53223, USA 
SeiTeeh SeiTech Software Inc., 5 ~Lane, SuiteD, Chieo, CA 9~926·1989, USA 
Syntrillium Syntrillium Software C01p., P.O. Box 60274, Pbocoix, AZ 85082-0274, USA 
Texas ft>struments Texas lnstrumcnulnc., 12501 Research Boulevard, Austin, TX 78759, USA 

3L 3L Ltd., 86/92 Causcwayside, Edinburgh EHI 1PY, UK 
'Tr~pstech Transteeh Ltd., 17·19 Manor Court Yard, Hugbcnden Avenue, High Wycombe, 

Bue c, HP13 5RE, UK 
Wildcat Wildeot Canyon Softwan:, 1563 Solano Aveoue #264, Berkeley, CA 94707, USA 
Yarnaba Yamaba C01p0<ation, Nakauwa-<:ho 1G-I, Hamamatsu, Japan 430 

The Graphics Interchange Format is the copyright property of CompuServe Incorporated. GIF is a 
"Service Mark property of CompuServe Incorporated. PCX files are PC Paintbrush format iJ11118es. PC 
Paintbrush is published by Z.Soft. T ARGA is a registered trademark of Truevision Incorporated. 
Microsoft, Windows, and MS-DOS are trademarks of Microsoft Corporation. UNIX is a trademark of 
AT&T Bell Laboratories. All other produet names menrioned are rrademarks or registered trademarks 
oftheir respecJ:ive owners. 

11.5 Papers presented during the course of this research 

NuJU194 

NuM9S 

ltagaki 95b 

NuM96 

ltagaki 96b 

D.J.E. Nunn, ·A. Purvis, and P.D. Manning, Source Separation and 
Transcription of Polyphonic Music, Proc. International Colloquium on New 
Music Research, Gent, Belgium, 1994 

D.J .E. Nunn, A. Purvis, and P.D. Manning, Graphical display of musical 
information, Proc. XI Colloquium on Musical Informatics, Bologna, 235-236, 
1995 

T. ltagaki, D.J.E Nuna, D.K. Phillips, D. Batjakis, A. Purvis, and P.D. 
Manning, Activity Report, XI Colloquium on Musical Informatics, Bologna, 
51-54, 1995 

D.J.E. Nun• , A. Purvis, and P.D. Manniag, ACQustic Quanta. Proc. ICMC, 
Hong Kong, 52-54, 1996 

T. ltagaki, S. JohMOn, P.D. Manning, D.J.E. Nunn, D.K. Phillips, A. 
Purvis, and J. Spanier, Durham Music Tech110logy: Activity Report, Proc. 
ICMC, Hong Kong, 126·128, 1996 

292 



12. Acknowledgements 

First I thank my parents Margaret and Clifford NuM for their love, suppon, and encouragement during 

this research, and before, and beyond. 

I would like to express my sincere thanks to my supetVisor Professor Alan Purvis, for his valuable 

guidance on the principles ofDSP and for his constant encouragement and practical advice. Thanks are 

also due to Dr Peter MaDDing for sharing his extensive musical expenise. It is also a pleasure to 

acknowledge the contributions made by my ftiends and colleagues: Takebumi ltagak.i, for many useful 

discussions regarding the transputer architecture and the problems of synthesis; Des Phillips~ for sharing 

his in-depth knowledge of computer architecture; Matthew Jubb, for his moral suppon and UNIX 

wizardry; Jonathan Spanier, for his systems programming expertise; and Dionissios Batjakis for 

stimulating discussions. I would also like to thank Milos Kolar for patiently designing and programming 

tlte output board for the C40, and Peter Friend and Trevor Nancarrow for keeping things running as 

smoothly as possible. The staff of the IT service provided dozens of small but vital answers over the 

years. Countless and nameless others in the engineering and music departments are also" appreciated for 

their valuable suggestions. 

Texas Instruments are to be applauded for releasing their DSP assembler source code into tho public 

domain. Transtech and 3L both provided much helpful suppon in tlte implementation of the C40 setup 

in the laboratory. Thanks must also go to American Paper Optics for providing the anaglyphic stereo 

glasses. 

Tony Robinson of SoftSound Ltd. and various anonymous reviewers of papers gave many helpful 

comments. Many others in the wider research community tltat I met vinually via email and tlte usenet 

newsgroups comp.music.researcll, comp.dsp, alt.sci.pbysics.acoustics, and bionet.audiology are also 

gratefully acknowledged. Closer to home, many ftiends in the Graduate Society including lain May, 

Dean Wood, Simon Brown, and Stefan Calven helped me retain a degree of sanity over the course of 

this research. 

This work has been funded by the Engineering and Physical Sciences Research Council. 

II 

293 

. I 


