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Abstract

This thesis focuses on the development of automatic accompaniment sys-

tems. We investigate previous systems and look at a range of approaches

that have been attempted for the problem of beat tracking. Most beat

trackers are intended for the purposes of music information retrieval where

a ‘black box’ approach is tested on a wide variety of music genres. We

highlight some of the difficulties facing offline beat trackers and design a

new approach for the problem of real-time drum tracking, developing a

system, B-Keeper, which makes reasonable assumptions on the nature of

the signal and is provided with useful prior knowledge.

Having developed the system with offline studio recordings, we look to

test the system with human players. Existing offline evaluation methods

seem less suitable for a performance system, since we also wish to evaluate

the interaction between musician and machine. Although statistical data

may reveal quantifiable measurements of the system’s predictions and be-

haviour, we also want to test how well it functions within the context of a

live performance. To do so, we devise an evaluation strategy to contrast

a machine-controlled accompaniment with one controlled by a human.

We also present recent work on a real-time multiple pitch tracking,

which is then extended to provide automatic accompaniment for harmonic

instruments such as guitar. By aligning salient notes in the output from

a dual pitch tracking process, we make changes to the tempo of the

accompaniment in order to align it with a live stream. By demonstrat-

ing the system’s ability to align offline tracks, we can show that under

restricted initial conditions, the algorithm works well as an alignment tool.
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Chapter 1

Introduction

This thesis is concerned with the creation of interactive musical systems.

In particular, we want to interpret a performance in real-time in order to

develop automated systems that can engage with human players. This is

a difficult task, requiring that we reliably update estimates for the tempo,

phase and bar position. This would provide a framework to enable ma-

chine interaction in a performance by processing rhythmic and harmonic

information with respect to the musical meter. Without such a framework

for understanding the audio input, any response generated by a computer

may not exhibit the musical sensitivity and synchrony that we expect

from intelligent musicians. This is particularly true in genres such as rock

and pop music, where the definition of a regular beat is vital and close

synchronisation is required.

We will first look at a drum tracking system that can synchronise audio

with a live drummer and investigate methodologies for evaluating such a

system. Since there is a two-way interaction between the musician and

the system’s response, we will investigate ways to evaluate this in the

appropriate context. We will then look at a technique for real-time multi-

pitch detection in order that harmonic information from other instruments

can be processed by the system.

Throughout this thesis, U.S. terminology for note durations will be

used. Thus, crotchets are referred to as quarter-notes and quavers as

eighth-notes.

13



1.1. OBJECTIVES AND MOTIVATION 14

1.1 Objectives and Motivation

“The rock musician represents a type of musician for whom

creative involvement with technology, with amplifiers, micro-

phones, special-effect machines and computer-controlled syn-

thesizers has become increasingly characteristic.”

Peter Wicke, Rock Music: Culture Aesthetics and Sociology

[Wic90]

In the studio, musicians are increasingly reliant upon the computer as a

means for recording and mixing. In Rhythm and Noise [Gra96], Theodore

Gracyk puts forward the argument that rock music differs from other gen-

res, such as classical and jazz, in that the audio recording is the actual

aesthetic object which we refer to when we say, for example, the Rolling

Stones’ ‘Satisfaction’ or Led Zeppelin’s ‘Stairway to Heaven’. Live per-

formances might seek to recreate the original recording or, in the case of

Led Zeppelin, expand upon it in a semi-improvised manner, but the song

remains defined by the recorded performance. This differs from classical

music, where the aesthetic object is the score that is ‘interpreted’ live,

with concerts regarded as instantiations of the piece. Prior to rock music,

recordings attempted to capture or replicate the audio sensations of being

present at a live performance. With rock music, musicians and producers

used the studio to create sounds that place the listener in an idealised

(and potentially physically impossible) location. Musicians are at liberty

to overdub tracks and ‘double-track’ vocals to create a surreal effect of

them duetting with themselves.

As an example, Paul Simon has described the recording process in-

volved for “The Boxer”: “It was recorded all over the place - the basic

tracks in Nashville, the end voices in New York St Paul’s church, the

strings in New York Columbia Studios and voices there too.”[Lei73] In

conversation with Daniel Levitin [Lev97], Paul Simon recalls the method

by which they achieved the cannon-like snare sound: “... the snare drum

on “The Boxer” ...was recorded in the elevator shaft of the CBS studios in

New York at 52nd Street. That was a pure Roy [Halee - audio engineer]

sound. He situated the drum in the elevator shaft and he hit it and he
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recorded that. It was just huge.”

In addition, early experimentation in the sixties led to the discovery

of effects such as flanging, phasing, delay, chorusing and distortion; all

of which help to create the psychedelic collages present in many works

from the time such as ‘Sergeant Pepper’s Lonely Hearts’ Club’ and ‘Pet

Sounds’. Gradually, as listeners, we have been accustomed to the sound of

these recordings, with the result that musicians face a significant challenge

when trying to replicate or compete with them live. Indeed, technological

advances are intricately linked with the sounds created on record.

At present, if musicians wish to incorporate electronic parts or samples

into a live performance, they often resort to having the drummer wear

headphones and play in time with a click track. Whilst this is successful

in so far as the electronic component is introduced at the correct time,

the performers are forced to make several concessions. The use of a click

track forces the piece to be at played a set (often uniform) tempo and

so reduces the musical expression of the performance. The drummer who

wears headphones is acoustically isolated from the performance. Other

methods involve using some form of trigger to cue the part, however this

is potentially inaccurate if it is cued by hand and this necessitates that the

computer’s ‘performance’ must be at some pre-determined tempo, hence

forcing the musicians to synchronise to the accompaniment rather than

vice-versa.

One major objective of this thesis is the creation of a system for rock

music so that pre-recorded audio can be synchronised with a band without

such concessions. In order to do so, we focus upon interpretation of the

drum signal to design a system that reliably follows subtle changes in

tempo. This research could lead to new possibilities for live performance

that have only previously been possible within the studio environment. By

designing systems which have the ability to listen and respond accordingly,

exciting new possibilities for musical expression are created. Computers

are exceedingly fast and precise at scheduling events. These might be

musical events such as electronic parts, the automation of audio effects or

the control of visual projections and lighting. Raphael [Rap04] describes

the potential of computer technology to transform performance:
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“A welcome bonus of synthesizing the accompaniment with

electronic instruments is the virtually unlimited technical ca-

pacity one inherits. In this way, compositions with nearly ar-

bitrarily fast notes, arbitrarily complex rhythms, and superhu-

man complexity of interaction between live and synthetic per-

former are now possible.”

If the computer can relate a performance to its higher level abstract

representation, then its powerful time scheduling and ability to manipu-

late audio at a very low level, as seen in granular synthesis and low-level

audio sequencing, could be incorporated into live performance in a truly

responsive, dynamic manner. Similarly, Robert Rowe [Row01] has de-

scribed how his personal motivation is due to the possibilities for the new

compositional domains afforded by the development of machine musician-

ship. It is our experimental nature which seeks to extend thought-based

symbolic processes into computer systems that can realise new conceptual

forms as auditory phenomena.

1.2 Outline of Thesis

In order to build interactive systems, we require the analysis of the

musical content of a live performance in real-time. We will examine two

different approaches to the problem of accompaniment systems. One

which makes use of rhythmic information and the other using pitch

information. For rock bands, when drums are present, they provide a

clear determination of the beat and our first approach to the problem is

a system for drum tracking of music with a regular tempo. Where drums

play a less defined role, harmonic information from other instruments

may be required to synchronise with the performance and, in addition,

interactive systems may require harmonic information, such as pitched

notes, chords or key, for the generation of their musical response. With

these purposes in mind, we present an algorithm for real-time multi pitch

analysis that provides a MIDI representation of audio input.
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Chapter Two

We present relevant background for our development of a real-time drum

tracking system. We examine work in music psychology, beat tracking,

the nature of drum signals and look at existing interactive systems and

the programming languages and environments used to implement them.

Chapter Three

We describe the development of a novel system for real-time drum

tracking.

Chapter Four

We evaluate the drum tracker using offline testing and a musical ‘Turing

Test’, inspired by the famous test for machine intelligence proposed by

Alan Turing.

Chapter Five

We present further modifications made to the drum tracking algorithm

in light of the testing carried out in Chapter Four.

Chapter Six

We present work on a real-time multi-pitch tracking technique which

estimates the amplitude of partials for each fundamental. These estimates

are then used in detecting the fundamental and subtracted from higher

frequencies to prevent false detection of notes. The pitch tracker is

evaluated on offline piano music and contrasted to an online algorithm.

Chapter Seven

We present a conclusion on the work presented in this thesis and give an

outline of possible directions for future work.

Appendix

Preliminary work is presented that makes use of the audio-to-MIDI

algorithm described in Chapter Six as the input to a tracking algorithm
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which aims to synchronise two audio sources from their MIDI represen-

tation. The tracking algorithm is evaluated using performances of Bach’s

‘Well-Tempered Clavier’ by two different pianists.

1.3 Related Publications

D. Stowell, A. Robertson, N. Bryan-Kinns, and M. D. Plumbley. “Evalu-

ation of live human-computer music-making: quantitative and qualitative

approaches.” International Journal of Human-Computer Studies, Volume

67, Issue 11, pages 960-975, November 2009.

A. Robertson and M. D. Plumbley, “Post-processing fiddle∼ : A

real-time multi-pitch tracking technique using harmonic partial sub-

traction for use in live performance systems”, in Proceedings of the

International Computer Music Conference, pages 227-230, Montreal,

Canada, 2009.

A. Robertson, M. D. Plumbley and N. Bryan-Kinns, “A Turing

Test for B-Keeper: Evaluating an interactive real-time beat tracker”, in

Proceedings of the 8th International Conference on New Interfaces for

Musical Expression, pages 319-324, Genova, Italy, 2008.

J.-B. Thiebaut, S. Abdallah, A. Robertson, N. Bryan-Kinns and M.

D. Plumbley, “Real time gesture learning and recognition: Towards auto-

matic categorization”, in Proceedings of the 8th International Conference

on New Interfaces for Musical Expression, pages 215-217, Genova, Italy

2008.

A. Robertson and M. D. Plumbley, “B-Keeper: A Beat-Tracker for

Live Performance”, in Proceedings of the 7th International Conference on

New Interfaces for Musical Expression, pages 234-237, New York, USA,

2007.
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A. Robertson and M. D. Plumbley, “Real-Time Beat Tracker for

Live Performance with Drums.”, in Proceedings of the Digital Music

Research Network Summer Conference, Leeds Metropolitan University,

UK, 7-8 July 2007.

A. Robertson and M. D. Plumbley, “Real-time Interactive Musical

Systems: An Overview”, in Proceedings of the Digital Music Research

Network Doctoral Researchers Conference, London, UK, July 22-23, 2006.

1.4 Thesis Contributions

The principal contributions of this thesis are:

• A real-time beat tracking system designed for drum signals.

• A methodology of evaluation of this system based upon the ‘Turing

Test’.

• A real-time multi-pitch tracking technique for audio to MIDI con-

version.



Chapter 2

Background

The major aim of this thesis is the construction of interactive accompa-

niment systems suited to rock and pop music. In these genres, although

there is often no symbolic score, humans experience a strong perception of

musical structure through regularity of beat and the timing of harmonic

events. The role of the drums is central to this perception of regular

rhythm and so we will look to build the foundations of our accompani-

ment system by using drum signals alone. Before attempting to construct

a real-time system, we will examine the literature from a wide range of

relevant areas including music psychology, drum signals, beat tracking and

interactive systems.

2.1 Interactive Music Systems

We are interested in building an interactive accompaniment system and so

we need to ask the question: “what defines an interactive system?” The

definition for human-computer interaction proposed by the ACM states

that “Human-computer interaction is a discipline concerned with the de-

sign, evaluation and implementation of interactive computing systems for

human use and with the study of major phenomena surrounding them.”

Since this requires an intuitive understanding of what constitutes an ‘in-

teractive’ system, this does not help us to specify the characteristics which

might define such a system. In the literature we find conflicting views on

what constitutes true interactivity.

Robert Rowe [Row93] characterises interactive computer music sys-

tems as “those whose behaviour changes in response to musical input.”

20
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This definition encompasses a wide variety of applications for comput-

ers within music that includes score following, automatic accompaniment,

generative systems, improvisation systems and sound processing. Rowe

distinguishes three processes are present within an interactive system:

sensing, processing and response. Rowe presents a further categorisa-

tion of interactive systems. Score-driven and performance-driven systems

can be distinguished by the extent to which stored musical fragments or

traditional categories of organisation such as tempo and meter are used

by the system to interpret the input. A performance-driven system does

not have a stored representation of musical content as is available to a

score-driven system, but might operate on the basis of other quantities

such as note density or regularity. A system might also display a combi-

nation of these attributes. Another distinction can be made between the

response methods as transformative, generative or sequenced. Transfor-

mative systems take existent musical material and apply transformations

to it. Generative algorithms create musical output from more elementary

source material, whilst sequenced techniques use pre-recorded fragments in

response to input, making variations in tempo or dynamic shape. Finally

Rowe distinguishes between instrument and player paradigms, depending

on whether the system is considered as an augmented musical instrument

or a separate player with a musical personality of its own.

Chadabe proposed the term ‘interactive composing’ to refer to the ac-

tivity of using performable, real-time computer music systems to perform

and compose music. The environment thereby created is one in which

“the computer responds to the performer and the performer reacts to the

computer, and the music takes it’s form through that mutually influential,

interactive relationship.” Chadabe relates how such a system “operates

as an intelligent instrument - intelligent in the sense that it responds to

the performer in a complex, not entirely predictable way, adding informa-

tion to what a performer specifies and providing cues to the performer for

further actions.” Random-number generators can be used to introduce a

level of complexity to the computer’s response and thereby achieve this

element of unpredictability by the performer. However, he leaves open the

possibility for future alternative complex generators, such as an artificially
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intelligent, knowledge-based system, that may be used in the response al-

gorithm.

Dobrian [Dob04] characterises interaction as ‘the mutual influence be-

tween agents that are in some way autonomous decision makers’. Whilst

the concept of mutual influence is useful in this context, Dobrian’s concep-

tion of interaction is intended to apply generative systems and is motivated

by the paradigm of improvisation. For Dobrian, in order for the system to

be more than merely ‘reactive’, the computer must make decisions not fully

predicted by the algorithm. This implies the machine’s behaviour must

include an element of chance, requiring the use of pseudo-random numbers

to generate response in a stochastic fashion. Similarly, Dobrian does not

regard a system as interactive if the musician plays from a score, since

he regards the part as pre-determined. Whilst it is true that the abstract

(or quantified) representation of the performance would be thereby pre-

determined, the musician is still free to interpret the score. This includes

the dimensions of timbre, volume, tempo and timing. This illustrates a

limitation of Dobrian’s conception of what constitutes an ‘interactive’ sys-

tem. He requires the element of interactivity to be located in the methods

used to generate the abstract representation of the computer’s output,

but the complexity of the requirements involved in the process of playing

this part in a musical manner are not considered. Given that two human

musicians are considered to interact when playing scored parts, Dobrian’s

formulation is too strict to apply to the case of automatic accompaniment.

Although the recommendation for randomness might be useful as a

means to creating a perceived autonomy on the part of the computer, in

the context of a description of an interactive system it becomes proscrip-

tive and appeals to structural properties of the algorithm rather than some

musical or perceptual feature or the aesthetic result. Under a strict inter-

pretation of this definition, interactive and reactive systems could not be

distinguished by virtue of their behaviour but only by examining source

code. It follows from Dobrian’s argument, that it is simple to construct

an “interactive” system from a merely “reactive” one by subsequently in-

corporating some quantity of pseudo-randomness in the algorithm. Yet it
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may also be possible to incorporate pseudo-randomness in a determinis-

tic algorithm by calculating functions as the result of multiple variables,

so that the space is never sufficiently known to the performer to enable

them to predict its response to a given input. A similar line of argument

is found in Jordà’s thesis [Jor05], where score following systems are dis-

counted as intelligent but not interactive since the player is following “a

predetermined path”. Given the possibilities for expression by variation

of timing, dynamics and timbre, it would appear that this path is only

predefined in terms of pitch and quantised duration. Jordá states that “in-

teractive music systems must be interactive enough to affect and modify

the performer(s) actions, thus provoking an ongoing dialogue between the

performer(s) and the computer system.” However, since auditory feedback

from a reactive accompaniment affects and modifies a performer’s actions

when the accompanist is human, then, in principle, the same influence

should be possible from a computer-based system.

It is instructive here to look at some of the literature on musical impro-

visation. Benson [Ben03] regards many musical compositional processes

as being essentially improvisational in nature. Whereas it is now common

to separate the composer from the performer and to locate the musical

work outside of any individual performance, Benson argues that impro-

visation has played an important role in shaping the work and that it is

important to acknowledge the historical impact of prior performances in

defining a musical piece. He traces the history of musical performance

practice from its Renaissance and Baroque origins, where performers were

expected to improvise and much of the music was sketched rather than

fully realised. Benson holds the view that “composition and performance

are improvisatory in nature, albeit in different ways and to differing de-

grees.” Benson provides examples of different levels of improvisation that

can be found in musical processes, from filling in details, such as tempo,

timbre, attack and dynamics that are not explicitly stated in the score,

adding trill notes and filling out chords, improvising Classical cadenzas,

making arrangements of the score, changing the melody line or chords, to

using the basic form of the score, such as a twelve-bar blues, to improvise
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within its confines. Beyond these instances of performer-related improvi-

sation, composers may improvise by using particular forms as a template,

using particular pieces as the basis for a composition or working within a

musical tradition, such as classical, blues or jazz, where the tradition it-

self is improvised upon. Thus, while the score suggests pre-determination,

improvisation on the part of the performer is always required to some

degree.

Berliner’s [Ber94] comprehensive study of the practices of jazz musi-

cians reveals insights on how they go about creating solo improvisations.

Performance may consist of adding embellishments, such as grace notes,

and variation of phrasing with subtle anticipations, or transformations

where the original melody is still recognised. Berliner finds that “typically,

... players restrain themselves during the melody’s formal presentation,

reserving their most compositional activity for improvised solos.” How-

ever, each musician’s experimentation is guided by their knowledge of the

jazz tradition and by music theory. Players may differ in their choice of

notes relative to the underlying chords (‘the changes’); some prefer the

‘vertical’ concept of articulating each chord, whilst others may favour a

‘horizontal’ concept of playing a phrase across the chord changes. In addi-

tion, players may be characterised by their tendency to choose notes inside

or outside the chord tones. The theoretical concept of scales provides an

alternative way of thinking about pitch relationships, where the scale can

be conceived of as a combination of pitches both inside and outside of

the chord. Musicians also build up a personal vocabulary of phrases that

can be used when soloing. Thus, the act of improvisation is not to create

music out of nothing without restrictions on structure and form, but to

engage in a practice of inventive composing during performance.

In relation to the the previous argument, rather than requiring that in-

teractive systems incorporate randomness, we might first aim to construct

a system capable of analysing the underlying musical structures. The mo-

tivation behind Dobrian and Jordá’s definitions emerge from Chadabe’s

conception of interactive composing and the requirement that the system

not be entirely predictable. Should we be able to construct a real-time
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system that can analyse structure, we could then create interactive sys-

tems that use this information to transform rhythm and melody using

rules derived from music theories. The use of randomness might be used,

as Chadabe suggests, to generate complexity within the response, but in

the context of human-computer performances, this will be more effective

when used in conjunction within the constraints of music theory and sim-

ilar results might also be achieved through the use of interesting mapping

strategies.

In this thesis, we shall define interaction as a “mutual influence be-

tween performer and system”. This definition is in accord with that

proposed by most commentators in the field and excludes particularities

concerning interaction that might apply to specific fields such as genera-

tive systems. The common features in the design of such systems is that

they accept audio or sensor-based input from a performer, process this

according to system settings or parameters and output a musical or visual

response. The interaction between musician and system thereby creates a

feedback loop of mutual influence.

We are aiming to build a system that is a capable of following a per-

formance and intuiting the musical structure that underlies it, thereby

enabling other types of responsive system to be constructed that make

use of the rhythmic and harmonic information. In order to do so, we shall

examine work on previous accompaniment systems and other systems for

interactive improvisation.

2.1.1 Score Followers

It is over twenty-five years since Barry Vercoe [Ver84] and Roger Dannen-

berg [Dan84] first independently presented work on the task of score fol-

lowing at the 1984 International Computer Music Conference.Dannenberg

[Dan84] formalised the problem of score following as finding the longest

common subsequence of two strings, one representing the score and the

other the observed performance. Where notes are skipped, they must

be removed from the score string. Where they are inserted, they are re-

moved from the performance string and where they are wrongly played
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or detected, they must be removed from both. His real-time accompanist

employs dynamic programming to calculate the least cost match between

the observed performance, translated into MIDI notes, and the score rep-

resentation.

Vercoe’s [Ver84] work on score following, ‘Synthetic Performer’, utilised

both audio-to-MIDI conversion and optical sensors on the keys of the flute

to follow the soloist through the score and provide an automatic accompa-

niment. Despite its ability to follow a wide variety of interpretations and

negotiate errors and distortions of the score, it had no performance mem-

ory. Working in conjunction with Miller Puckette, the subsequent year

he presented ‘Synthetic Rehearsal’ [VP85] which incorporates a mecha-

nism to learn from previous renditions of the piece. Vercoe formulates

the problem of score following as consisting of three processes: Listen,

Perform and Learn.

Listen encompasses all potential input to the system, both audio and

visual or mechanical information, such as provided by his use of pad sen-

sors, from which features of the performance can be extracted. Perform is

responsible for predicting when the next musical event will take place and

scheduling the accompaniment to happen in synchrony with the human

performer. The third process is the ability of the computer to learn timing

data for the piece from rehearsal.

By analogy with the anatomy of a human performer, Vercoe defines

three temporal regions prior to the playing of a note. At a distance in the

future, the note is merely a score event. As the moment for its performance

approaches, it is drawn into short-term memory, when it can be given

chronological definition. As this moment of time approaches, the system

schedules the necessary command to play it and “must” commit to the

performance of the note.

The Learn process works by estimating the local tempo and calculating

the mean and standard deviations of the rhythmic aberrations for every

note from the rehearsal performances. Tempo matching then takes place

to the mean-corrected events and the inverse of the standard deviation is

used to weight the importance of these events in determining the tempo.

The result of this training mechanism is that the accompanist is far more
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sensitive to the soloist’s musical expressions resulting from distortions in

the tempo and note onset times. The requirement for the Learn pro-

cess is motivated by observations on the nature of musical aesthetics and

interaction:

“Computer performance of music can easily demonstrate that

strictly synchronous behaviour lacks much of the information

we routinely seek from live performance. It is as if the musi-

cal score acts as a carrier signal for other things we prefer to

process. Much of this information derives from discrepancies

between individual players. The degree of synchronisation will

vary ...[and] a performer will seek an aesthetic way of adapt-

ing, so as to preserve the integrity of his own line. ...We have

here, in effect, a loosely-coupled system of performance and

control, whose parameters depend on the topology of the score

involved.” [VP85]

Vercoe and Puckette perform score following by assimilating Dannenberg’s

approach to the problem into the Synthetic Performer and incorporating

useful information learned from rehearsals. They assign a cost to every

mapping between the performance and the score by penalising missing,

extra and wrong notes and also metrical deviations from the estimated lo-

cal tempo. Their dynamic programming algorithm works by remembering

four least costly theories which can be used to calculate the best theory

for the next note in the score. Quantitative errors, such as early or late

notes, are accommodated using an unspecified averaging process. Once

sufficient statistical data has been learned from rehearsals, the Synthetic

Performer anticipates the performer to provide a robust yet sensitive ac-

companiment.

Grubb and Dannenberg [GD97] were the first researchers to formalise

the problem statistically using probability distributions for the performer’s

location in the score. Assumptions of independence are required to sim-

plify the calculation over probability density functions. Raphael [Rap99]

also approached the problem from this perspective in his Music Plus One
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(MPO) system, making use of the hidden Markov model (HMM), success-

fully used in many sequential analysis tasks such as speech recognition

[Rab89] and landmine detection [GM99], to model the note transitions

within a piece. He subsequently developed the architecture of the system

using Bayesian Belief Networks [Rap01][Rap02]. These methods require

training so that the system encodes transition probabilities and expecta-

tions learned from rehearsal.

The HMM works by assuming that the observed states, derived from

the processed audio of the performance, are created by a hidden sequence

of states, resulting from the player’s movement through the score. This

assumption in the architecture of an HMM has made it a popular method

of tackling the problem of score following. In Raphael’s model, the states

used in the hidden layer represent the attack and steady-state parts of

each pitched note of the scale and a rest state is included for when the

soloist is not playing. Each note within the score is modelled as a series

of states which are then chained together.

Raphael then models the tempo and duration of each note as two

random variables. The system trains on rehearsals to learn how the tempo

tends to fluctuate within the piece and to what extent each note has an

early or late onset relative to this underlying tempo. By training the

system on previous renditions of the piece, the Music Plus One system is

sensitive to the rhythmic variations of the musician. Raphael has extended

the system to use real audio accompaniment of a recorded orchestra by

time-stretching the accompaniment to synchronise with the soloist.

Following Vercoe, Raphael delineates listen, perform and learn pro-

cesses for the system. Where previous score followers had used pitch-

to-MIDI conversion, the listen component of Raphael’s system processes

monophonic audio to form a vector of features, including the energy of the

signal and the presence of individual notes computed via a Fourier trans-

form. Music Plus One used the phase vocoder to time-stretch audio when

generating accompaniment and using orchestral accompaniment, Raphael

has successfully demonstrated his system with instruments including oboe

and violin. Several audio and video examples are viewable on Raphael’s
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webpage 1.

IRCAM have developed a set of Max patches, Suivi [OF01] [OLS03],

which performs score following from audio input and shares many similari-

ties with Raphael’s MPO project. They use a low-level HMM to recognise

the sequence of features which correspond to the attack, sustain and decay

of a note. The system then analyses the score to generate a higher-level

HMM which calculates the probability transitions between states which

correspond to notes in the score. The HMM is dynamic in the sense that

the set of states used changes as one progresses through the score. For

a particular point, approximately twenty notes might contribute informa-

tion to the transition matrix and the number of states might be around

200. Suivi tends to be used on monophonic instruments at present since

pitch detection is much more reliable when there is only one note to de-

tect. A 4096 sample frame FFT, with a hop size of 512 samples, is used

as input to the system which extract features from the Fourier transform

of the audio. A note is more likely to be detected once it is present in the

central section of the window and so the resulting latency is up to 2000

samples or 45ms. This delay is analogous to the kind of delay one finds

naturally in a large room and the system has been successfully used to

provide automated electronic parts for several classical pieces which blend

natural and electronic sounds such as En Echo by Philippe Manoury and

Explosante-fixe by Pierre Boulez.

Recently Arshia Cont and IRCAM have developed the Antescofo sys-

tem [Con08a] [Con08b] for anticipatory score following, whereby the pre-

dicted time until future events is specified and a running tempo and bar

location is provided. The tempo model uses Large and Jones’s oscillator

[LJ99] to update the tempo estimate on the basis of observed IOI’s from

the score following module. This modelling of tempo in a score follower

allows the scheduling of future events so that the system may no longer

be merely reacting to observed notes in the score, but also anticipating

them. Support for Ante-scofo has been added into Keith Hamel’s Note-

Ability Pro system for score representation [LH07], thereby providing a

1http://xavier.informatics.indiana.edu/~craphael/music_plus_one/
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additional functionality through visualisation of the score in real-time and

creating an ‘Integrated Interactive Music Performance Environment’.

2.1.2 Automatic Accompaniment Systems

Whilst score following systems are a class of automatic accompaniment

system, there is also an alternative class of automatic accompaniment

systems which are not reliant upon scored music. Such a system might

choose to match performances of the same piece which adhere to the same

musical structure. For instance, a blues or jazz piece can be loosely defined

in terms of the underlying chords and this structure can be successfully

followed without there existing a score which specifies the musical content

to the level specific pitched notes.

Simon Dixon’s MATCH Toolbox [Dix05] uses Dynamic Time Warp-

ing (DTW) to create a mapping between two performances of the same

piece. Audio is pre-processed by taking the half-wave rectified (i.e. posi-

tive) spectral difference to emphasise salient points in the music and uses

dynamic programming with an appropriate distance function between two

vectors. This system offers a strong alternative to the explicit note mod-

elling used by score-following systems.

2.1.3 Generative Systems

Other interactive systems have been designed around the paradigm of im-

provisation. The Continuator by François Pachet [Pac02] uses Markovian

techniques to interact with a pianist in a novel way. Pachet was influenced

in this by composer David Cope [Cop96], who used Markov models to dis-

cover new musical phrases that were coherent with his own style. It builds

a database of patterns played by the musician and indexes all subsequences

of the input. When the musician stops playing, the system continues the

phrase by using the transitions from the longest subsequence matching

the input to continue the phrase. The probabilistic matrix that is created

is fully determined by the user’s input. However, due to Markovian pro-

cesses which generate the continuation, the output has the appearance of
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being a creative extension within the style of the musician. The Continu-

ator has several modes. In the first, ‘Autarcy’, the system has no memory

and progressively trains on input to learn the musical style of the per-

former. In the ‘Virtual Duo’ mode, the ‘memory’ of another musician is

used as the transition matrix for the system, with the result that phrases

are completed in the style of the previous player. Pachet describes the

‘Aha’ effect that has systematically surprised musicians on the realisation

that the Continuator has started to play in the same style 2.

Another system designed for improvisation is GenJam by John Biles

[Bil07], which uses genetic algorithms to modify a population of individ-

uals, in this case musical phrases or ‘licks’, which are played over a set

sequence of jazz chords. Each individual is classified according to its suit-

ability as a solution to a problem, which in this case is the aesthetic appeal

of the phrase as a musical improvisation. This suitability rating is used

by the algorithm to determine the individual’s evolution, both its own

survival in the population and how it is combined with other individuals

to create new individuals. Since it is hard to carry out this evaluation

automatically, Biles acts as the arbiter of fitness within the evolution-

ary process. By the fifth generation, the improvisation begins to achieve

some aesthetic success with respect to tonality and rhythm. He relates his

experience of this process [Bil94]:

“The first few generations of a training session are quite numb-

ing for the mentor. Fitnesses are almost all negative, melodic

intervals tend to be large, and the frequency of ‘nice moments’

is very low. Sooner or later, though, a few pleasant licks begin

to emerge, and one or two solid phrases tend to appear by the

fourth or fifth generation.”

Biles modifies the generator of the sound to bend into the notes and in-

troduces variations within onset and duration time. This has the effect

of “humanising” the part by introducing deviation from the timing of a

strict interpretation. A live demonstration of GenJam was given at the

2Video of the Continuator in practice is viewable at http://www.csl.sony.fr/~pachet/

Continuator/index.html (as viewed 7th May 2009)
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ICMC’98. Videos of the system are also viewable on the internet 3.

Blackwell and Young created an interactive system, Swarm Granula-

tor [BY04], which creates musical events from the movement of swarm-

like particles in a virtual space. This system is inspired biological systems

which exhibit self-organisational properties despite the lack of central con-

trol. Each member of a swarm obeys a simple set of local rules inferred

from nature that govern its behaviour:

1. Move towards a given attractor

2. Try to move at the same speed and in the direction of your neigh-

bours.

3. Do not collide with your neighbours.

The system is designed to act as a mechanism to integrate the computer

into ‘free’ improvised music where traditional musical structure and form

are eschewed in favour of the dynamics of social processes. Attractors

are created within this space by analysis of the audio from musicians

and other swarms and the particles repel those close by them, so that

globally, as a swarm, they gravitate towards the attractor but do not

coalesce into one another. The particles’ behaviour around the attractors

has a musical influence over the actions of the performer, hence bringing

about an interaction between the human improviser and the computer

generated events. Audio of the improvised performances featuring the

Swarm Granulator are available via the internet 4.

2.2 Music Psychology

Beat Tracking has been the subject of investigation for many years. Many

commentators, e.g. [Ros92] [Dix05] [Hai06] [KEA06], have observed that

it is simple for a person to tap their foot in time to music at locations

where there is a perceptual beat. It has, however, been surprisingly diffi-

cult to enable a computer to do the same task. Partly, the difficulty is due

3http://www.it.rit.edu/~jab/GenJam.html (as viewed 7th May 2009)
4http://www.doc.gold.ac.uk/~mas01tb/SwarmGranulator/swarmgranulator.html (as

viewed 7th May 2009)
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to the fact that the beat is a perceptual construct, the result of complex,

parallel processing in the brain [TLO02], which relies on the mutual in-

fluence of several levels of cognitive processing. Constructs such as pitch

and beat are generally recognised to be mental phenomenon, products of

our interaction with the world, so that although they are caused by ex-

ternal stimuli, these terms do not necessarily correspond with something

that can be simply measured anything from the signal [Sch98] [Han89].

In addition, the mental processes may make use of top-down processing,

whereby information is fed back to inform the processing at lower levels.

Meyer [Mey56] identified expectation as key to the generation of mean-

ing through music and proposed that deviation from our expectations in-

duced emotion in the listener. Meyer’s theory is derived from the law of

affect, a proposition from psychology, stating that “emotion is aroused

when a tendency to respond is inhibited.” By “tendency”, Meyer signi-

fies a pattern reaction, or set of mental or motor responses, that unless

inhibited, follow a previously ordered course. Whereas in everyday life,

the resulting tensions often remain unresolved and subsumed by the suc-

cession of irrelevant events, in art, the relationship between tendency and

resolution is made explicit and the tendency thereby derives meaning.

“In music, ... the same stimulus, the music, activates tenden-

cies, inhibits them, and provides meaningful and relevant reso-

lutions.”

The “tendency to respond” may be conscious or unconscious, but the more

automatic the response, the less it is brought to the conscious mind. Ex-

pectation in music gives rise to states of suspense where the resolution is in

doubt and there is a subsequent progression from tension to release. Our

expectations are both structural and temporal. With respect to tempo,

the beat is a product of our perception of regularity underlying the mu-

sic, defining the moments at which we expect beats, salient musical notes

and chord changes to happen. Dannenberg [Dan05] describes the paradox

involved in the problem of beat tracking: “If everything depends on every-

thing else, where does one start? If perception is guided by expectations,

will we fail to perceive the truth when it is unexpected?”
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Generally there are thought to be two main components to the problem

of beat tracking. The first is beat or tempo induction, which estimates

the tempo. Dahl [Dah05] enumerates three types of tempo in music per-

formance : the mean tempo, averaged across the whole piece of music, the

main or prevailing tempo and local tempo that is maintained only for a

short time. In some musical genres, tempo is constant enough for these

three categories to merge. The application of tempo induction across a

piece relies on the mean tempo being a good approximation for the main

and local tempos. Beat tracking is the subsequent problem of placing the

beats close to the perceptual beat as agreed by humans. The problem of

bar boundary location is an extension of the problem of discerning the

phase by classifying each beat with respect to its position in the bar and

thereby the time signature and meter.

2.2.1 Temporal Organisation of Sound

Cooper and Meyer [CM63] proposed definitions of three different modes

of temporal organisation: pulse, meter and rhythm.

Pulse

“A pulse is one of a series of regularly recurring, precisely equivalent

stimuli. Though generally established and supported by objective stimuli

(sounds), the sense of pulse may exist subjectively.”

Meter

“Meter is the measurement of the number of pulses between more or less

regularly recurring accents.” Meter thereby specifies regularity of per-

ceived structure within a piece of music. Cooper and Meyer note that

“When pulses are counted within a metric context, they are referred to

as beats. Beats which are accented are called strong; those which are not

are called weak.” Thus all meter requires the existence of an underlying

pulse.
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Figure 2.1: The Generative Theory of Tonal Music’s metrical structure of a
bar, featuring alternating strong and weak beats.

Rhythm

“Rhythm may be defined as the way in which one or more unaccented

beats are grouped in relation to an accented one.”

Lerdahl and Jackendorff’s Generative Theory of Tonal Music [LJ83]

(GTTM) has had considerable influence on researchers in beat tracking.

Their approach is derived from musicological studies of classical music

and extends to many genres of western music. The theory is not con-

cerned with the intricate timing of a performance, but operates at the

abstracted level of a score or quantised representation, thereby discount-

ing the interpretative process required to correctly infer metrical position

from expressively timed events. The GTTM, by analogy with linguistics,

seeks to define a grammar which describes the musical intuitions of an ex-

perienced listener. A generative grammar attempts to describe an infinite

set (of possible musical pieces) by formal finite means. Whereas linguis-

tic grammars employ well-formedness rules that define whether a given

string is a possible sentence, music is not referential or tied to semantic

meaning in the same way, and thus preference rules, which do not feature

in linguistic grammars, play a more important role by indicating which

of the structural definitions of a piece correspond to the intuitions of the

musical listener.

The GTTM defines grouping structures, which express the segmen-

tation of a piece into motives, phrases and sections. Meter is defined

as the hierarchical structure emerging from the occurrence of alternating

strong and weak beats, with different periodicities at each level. Lerdahl

and Jackendorff provide rules as to how these structural levels operate,

so that a beat at one level must be a beat at any lower or weaker level.
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This generates a metrical hierarchy as shown in Figure 2.1. This accords

with our conventional understanding of meter and with the definition pro-

posed by Cooper and Meyer. Jones and Boltz [JB89] proposed a theory of

dynamic attending which concerns regularities in the periodicity of our at-

tending to events. Temporal hierarchies refer to time structures in which

the distributions of temporal markers are consistently related by either

ratio or additive transformations. Meter involves a simple integer ratio

relationship between two time levels which generates the same periodic,

hierarchical structure as found in the GTTM.

Although we do not require the full power of the GTTM for an ex-

planation of meter and rhythm, it might play an important role in future

interactive systems if it can be used to interpret the musical structure of

a piece in terms of phrases and groupings. Time span reduction seeks

to explain the positioning of pitched notes by reference to structure and

underlying key. Thus, given an interpretation of musical structure, an

interactive system might use the GTTM to create musical variations that

will satisfy the constraints expected by listeners.

2.2.2 Synchronisation as a Psychological Phenomenon

We will be looking at the approaches taken by previous beat tracking sys-

tems, but we can also learn relevant facts from studying the behaviour of

a highly efficient and accurate beat tracker: the human. Tapping tasks

have played an important role in the investigation of sensorimotor syn-

chronisation (SMS) [Rep05]. Since we wish our system to rival a human’s

sensibility to microtiming deviations within the beat, tapping tasks pro-

vide experimental data on how this simple feat is accomplished that may

not have been anticipated.

When subjects are asked to tap in time with a metronomic pulse, a

subliminal local change (between 0.8% and 2% of the period) made to a

single interval in an otherwise isochronous sequence results in rapid phase-

correction despite the error being below the perceptual threshold [Rep00].

A further experiment [Rep01] contrasts synchronised tapping with free

or continued tapping, where the external stimulus is removed, and it is
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assumed that the subject will continue to tap at the period of an inter-

nal timekeeper or oscillator. When a pulse change is made to a single

interval, free tapping continues at the rate of the original period. This ex-

perimental evidence supports the two-level timing model, first suggested

by Wing and Kristofferson [WK73], also found in Mates [Mat94] and Vor-

berg and Wing[DW96], which posits separate mechanisms for period and

phase, leading to the implication that changes in phase can be made in-

dependently of changes in period. A simple form of the model makes a

linear combination between an internal timekeeper, controlling the period,

with motor-delays which account for phase, so that the interval times are

characterised by the equation:

In = Tn +Mn+1 −Mn (2.1)

where In is the nth interval between pulses, Tn is the period of the time-

keeper and Mn is the motor-delay. Repp’s empirical data from experi-

ments agree with the two-process error correction model, with the added

assumption that the period is corrected as the result of conscious aware-

ness of tempo change. The experiments indicate that phase changes are

fast, subconscious and automatic, whilst changes in period are slow and

may require conscious recognition of the change. Experiments suggest it

is possible to achieve synchronisation via changes in phase even in a sit-

uation that requires a step-like change of timekeeper period [SVS00]. In

this case, what appears like rapid adaptation of the tapping period to a

small, undetected tempo change is in fact rapid internal phase correction.

If humans tapping to the beat are used to making rapid, subconscious

adjustments to maintain phase, then given that our paradigm is a human

tapping to a beat, we may need to incorporate a comparable mechanism

into our system. Repp suggests the phase-correction process has access to

more accurate timing information than our conscious decision processes

[Rep00].

Phase relationships other than in-phase or anti-phase are difficult to

maintain [Rep05] and participants will synchronise with distractor se-

quences even against their will. The lower limit for SMS is determined by

the speed at which the participant can tap and corresponds to an inter-tap
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interval of 150 to 200 ms. However, if the tapping ratio is less frequent

(every two, three or four beats), then this level is lowered to 100 to 120 ms

[Rep03]. Below this limit, participants are unable to maintain synchrony

and drift in phase.

An estimate of limits of human error can be gained through measure-

ments of the asynchronies between participants’ taps and the isochronous

pulse. Pressing and Jolley-Rogers [PJR97] contrasted measurements from

a trained percussionist and pianist with a non-musician, recording stan-

dard deviations of approximately 2% of the inter-tap interval for the

trained musician and 4% for the novice. Pressing and Jolley-Rogers also

measured statistical data when the trained percussionist was required to

keep a steady beat with no reference pulse. They observed a slow rise in

tempo at 750 ms inter-tap interval (ITI), corresponding to a tempo of 80

BPM, whilst this drift was diminished but still present at a faster tempo

of 240 BPM. Hence, with relevance to the kind of musical behaviour that

we wish to interpret, we can expect that drummers will naturally exhibit

drift when their timekeeping is determined by an internal clock.

2.2.3 Task Description

Toiviainen and Snyder [TS03] describe how a complete model of pulse

finding that can account for SMS would need to account for multiple be-

haviours, including “the extraction of one or more periodicities from the

musical signal, the determination of which periodicity is most appropri-

ate for tapping, the generation of motor outputs that correspond to the

period and phase of the most appropriate periodicity, and the continual

adaptation of period and phase of motor output to compensate for timing

variability in the stimulus and in the synchronising mechanism”.

Whilst this description focuses on explaining the task in relation to

human psychology and physiology, beat tracking systems attempt to sim-

ulate the pulse finding task algorithmically and the decomposition of re-

quirements still applies. Thus an automatic beat tracking process can be

deconstructed as consisting of (mean) tempo estimation, initialisation of
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Figure 2.2: Four examples indicating (a) constant tempo, (b) an expressively
timed event (c) a local tempo change and (d) a global tempo change. After
Gouyon and Dixon [GD05]

period and phase, and adaptation of period and phase throughout the sig-

nal. Whereas non-causal algorithms have access to the full signal before

placing estimated beats, a real-time system without prior representation

of the signal structure will have to operate causally, making use of infor-

mation solely from the signal’s past at any stage.

2.2.4 Tempo, Timing and Causality

We will now introduce some terminology in order to illustrate different

variations within timing structure. Figure 2.2 shows a series of examples

from Gouyon and Dixon [GD05], displaying a variety of timing deviations

within a sequence of regularly spaced events which we can consider as

onset times. In the top line, (a), the pulse is isochronous and regular.

The second line, (b), is an example of expressive timing, where the middle

event happens late relative to its expected time, but future events are not

affected. The event is thus displaced in time locally with no effect on the

tempo. The third line, (c), shows a local tempo shift, where the event

is displaced but the tempo remains constant, so that future events are
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also displaced relative to (a), but the underlying tempo in (c) remains the

same. The fourth line, (d), shows a global tempo change, where the inter-

onset interval has increased by a small factor. Gouyon and Dixon make

the observation that a major difficulty confronting beat trackers is that

the dimensions of tempo and timing have been projected onto a single

dimension of time. Thus, any sequence of events could be represented

as a series of tempo changes, but we are seeking the most parsimonious

representation in which tempo and phase changes are minimised.

This diagram also illustrates an important point regarding any causal

system. At the point of displacement, (b), (c) and (d) have all received

identical information. A non-causal or offline tracker can use future in-

formation to decide which type of event has occurred; but for a causal or

human tracker, without prior information such as that learned from re-

hearsal or exposure to cultural trends, the only way to interpret the event

at the moment of its occurrence is using past observations, and yet, for

these three cases, this information is the same. If a real-time system delays

its reaction, in order to interpret the event in light of future information,

then it is prone to being unresponsive. It is also the case that ‘no reaction’

has implications from the point of view of being a decision made by the

system and reflects a belief that the prior tempo hypothesis is still opti-

mal. Otherwise, we must choose between the most likely interpretation,

given our prior assumptions and knowledge from observation, or we may

choose a compromise path between interpretations.

2.2.5 Real-time and Predictive Beat Tracking

Dixon [Dix01] makes the distinction between predictive beat tracking and

descriptive beat tracking. His BeatRoot system aims to perform descrip-

tive beat tracking, indicating where the beats actually fell, and this is

motivated by its application as a tool for musicological analysis. Transi-

tions can be sudden between successive beats when there are changes in

timing and tempo which surprise the listener. On the other hand, a predic-

tive beat tracker models perception, predicting the listener’s expectation

of beat times using causal algorithms and thus smoothing transitions.
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Causal beat trackers have to make predictions about expected beat

locations on the basis of what they know at the current time. For real-

time automatic accompaniment, the beat tracker inevitably decides the

tempo ahead of time and in the systems we are considering, it can only

change future predicted beat locations via a change in tempo. In order

for this to be musically acceptable, we may wish to impose a limit on the

quantity of change that can be accommodated.

The distinction between predictive and descriptive beat tracking can be

emphasised by a simple example. Supposing a predictive real-time tracker

experiences a global tempo change, where the tempo slows by a given fac-

tor, then the predicted location of the beat has already been passed by the

time this point is reached. So the required change of tempo to synchronise

the next predicted location with the following beat is even greater than

the global change that has been made, since it must also accommodate

the current error. This assumes that the system can register such a tempo

change immediately and reliably. In practice, averaging of some form is

required for stability, and yet the predictive system would have to make

up all the incremental errors between expectation and observation that

have been encountered before recognition of the tempo change.

Reactive systems can be designed that respond to incoming events after

a small amount of detection latency. Early score following systems, such

as those be Vercoe [Ver84] and Dannenberg [Dan84], recognised events in

the score and then cued their response. Provided this event detection was

within an acceptable time limit, this method could adequately serve to

generate automatic accompaniment and create an illusion of synchronic-

ity. Vercoe [VP85] enhanced the performance by incorporating a learning

mechanism that predicted where future events would fall and scheduled

events a short moment ahead of time. Raphael has also developed a system

that learns the characteristic tempo changes of a piece and this has been

used to provide automatic accompaniment to scored monophonic music.

The key development here is the switch from a reactive system, which trig-

gers an event from detection another event that ought to be simultaneous,

to predictive systems, that can predict the future adequately enough so

that future events can be scheduled from observations in the recent past.
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This is, after all, how humans behave when they create music.

Vercoe [BD86] found that “acceptable response appears to require a

close model of the physiological processes involved in actual human perfor-

mance, including score-lookahead, gradual focus on a forthcoming event,

then an anticipatory action decision.” Collins [Col06] points out that

humans have a larger latency than computers when required to identify

notes, and yet we have learned to perform highly complex musical struc-

tures in group ensembles. Lower latencies alone will always be insufficient

to emulate true musical interaction so long as purely reactive systems are

used and, particularly when events have slow attacks, they need to be

triggered before the perceptual onset time. He makes the case that mu-

sical systems need to emulate the predictive power of humans if they are

to succeed in truly interacting and improvising. The challenge is not to

reduce latency in the detection process to near zero, but to translate these

detections into reliable predictions when scheduling future action.

We will describe previous approaches to the problem of beat tracking,

both causal and non-causal, but first, we shall investigate some of the

qualities specific to the signals we expect to encounter in creating a beat

tracking system for drums.

2.3 Characteristics of Drum Signals

In a rock or pop band, the rhythm section is the union of bass and drums

which provides the metrical structure on which the others play. In order

to provide automatic accompaniment for a band, we need to synchronise

our system to the meter of the live rhythm section. Although ‘the beat’

is generated by several instruments in unison, our choice has been to lock

to the drums, on the basis that strong drum events like kick and snare

are the clearest indicator of where the beat falls. By tracking drums in

real-time, we can analyse any other instrumental part with respect to the

metrical structure of the drum pattern. Before describing the system we

have developed, we shall look at some specific qualities of the drum signal

and the styles of playing that characterise the instrument.

At the core of most drum beats is the interlocking pattern created by
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Kick Drum

SnareHi-hat

Figure 2.3: Basic rock beat with conventional drum notation. The hi-hat pat-
tern is a sequence of regular “eighth notes”, which recur at the tatum level.
The snare is present on the backbeat, ‘two’ and ‘four’, with kick drums on the
‘one’ and ‘three’.

the kick drum, the snare and a cymbal pattern, played on the hi-hat or

ride cymbal. For a right-handed drummer, the snare and hi-hats are close

together on the left-hand side. Due to the fast transients and high sound

pressure levels in a snare drum signal, a dynamic microphone, commonly

a Shure SM57 (e.g. Hirsch and Heithecker [HH06]), is recommended for

both the studio and live environments. A dedicated kick drum microphone

is placed either inside or in front of the drum head and a dedicated micro-

phone for the hi-hats may be used if the venue is sufficiently large. This

microphone set-up allows reasonable separation between the kick drum

and the snare, although there may be some ‘bleed’ between them, whereby

the kick drum is picked up by the snare microphone and vice-versa. Much

energy from the hi-hat will often be present on the snare drum micro-

phone, but when the snare is hit hard, it is the clearest acoustic signal

present. In rock and pop drums, the playing style creates distinct events,

such as snare hits, whereas in jazz, brushes may be used which create a

more continuous sound on the snare.

Performers use variation in tempo as an important means of expression.

In classical music, a rubato section may slow dramatically, creating a sense

of anticipation for the next events. Their sense of rhythm is disrupted, so

that the listener searches for a new tempo, a new organisational structure

within which to make sense of the sound. When drums are played within

a band, since an ensemble of musicians is involved in creating a collec-

tive pulse, there tends to be less dramatic variation in tempo. However,
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Figure 2.4: Syncopation example, after Tommy Igoe.

rhythmic deviations can still occur, but to a lesser degree. Onsets may be

placed either early or late, either locally as stylistic deviations (expressive

timing) or constituting local tempo change (described in section 2.2.4),

and there are variations of the global tempo. In addition, drummers are

prone to introducing fills, sections of rapid events, often falling on subdi-

visions of the metrical level, which must be successfully interpreted by the

tracker.

Surprise occurs in the form of syncopation (the stressing of normally

unstressed beats), changes in pattern, and expressively timed events. In

his article for Modern Drummer magazine 5, Tommy Igoe [Igo06] describes

this phenomenon:

“One of the things drummers love about many funk grooves

is the syncopation (the shifting of accents) within the pattern.

The example [in Figure 2.4] uses a common technique called

displaced back-beat. The backbeat in contemporary music is

on beats 2 and 4, but here we’ve displaced the backbeat on

beat 2 by moving it one 16th note earlier to the “ah” of beat

1. This displaced back-beat does two very interesting things:

It forces the groove out of balance, and it opens up the second

half of the bar for numerous rhythmic variations.”

Syncopation is thus viewed as a permutation of rhythm by a sub-division

of the regular pulse. Temperley [Tem99b] has put forward an extension

of the General Theory of Tonal Music to account for the syncopation of

melodies in rock music, which appear to contradict the GTTM rules that

stresses tend to fall on strong beats. Syncopation can then be viewed as a

displacement of a deeper rhythmic structure, where the syncopated event

5Available via the internet at http://www.moderndrummer.com/drum-education.php as
viewed 7th May 2009
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happens earlier than the strong event to which it corresponds. The theory

gains weight from empirical evidence and the observation that syncopation

in the other direction, where events are displaced later, is not commonly

observed.

Jeff Pressing [Pre02] has tried to characterise the qualities associated

with what he terms ‘Black Atlantic Rhythm’. These rhythms, shared cul-

turally between America and Africa, have given rise to many forms of

popular music: jazz, blues, rock, reggae, hip-hop. These rhythmic styles

are principally those that we are aiming at interpreting in real-time. The

rhythmic devices used by such rhythms all rely upon “the support of a

firmly structured temporal matrix”, defined as a “groove”. This is charac-

terised by the perception of a regular pulse with a subdivision structure,

the perception of a longer time cycle, and effectiveness in entraining the

human body to synchronise response and movement. Waadeland [Waa01]

associates the quality of “groove” with a rhythmic phenomenon, resulting

from the conflict between a fixed pulse and various timing accents played

against it, or resulting from the “musician moving in non-metronomical

ways”.

Pressing enumerates several rhythmic devices which “build on the

groove”. These include syncopation, displacement, off-beat phrasing,

polyrhythm, hocketing (an interlocking pattern shared between multiple

instruments) and swing. The groove is the template through which sur-

prising variations in form can be understood. In addition to syncopation,

where the displacement of an event is by sub-divisions of the main pulse,

there can be displacements at the microtiming level. In jazz, funk and latin

music, the quality called “swing” relates to the perception of “groove” by

an uneven division within a beat [Iye98], whereby the two eighth-notes

constituting a quarter-note beat no longer need to have durations in a

1:1 ratio. Whilst Jazz swing can be conventionally notated by dividing

the beat in the ratio 2:1, corresponding to the first eighth-note being ex-

tended to the duration of two triplet eighth notes, in practice this ratio

varies considerably. Friberg [Fri99] demonstrated that this ratio decreases

at faster tempos. Berliner [Ber94] relates that for jazz music “within the

realm of beat subdivision, myriad nuances of phrasing in between an even
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eighth-note subdivision feel, a dotted-eighth and sixteenth-note feel, and a

triplet eighth-note feel are associated with the dynamism of swing.” Free-

man [FL02] reports that the analysis of two jazz recordings of the same

song, “It Don’t Mean A Thing If It Ain’t Got Swing”, shows idiosyn-

cratic differences between individuals. Drummer Gene Krupa consistently

playing the swing at 62% and Buddy Rich playing it at 69%.

The main argument for the musical, rather than random, nature of

microtiming deviations rests on the consistency with which deviation pat-

terns are repeated in the same or similar musical contexts [McG06]. Bilmes

[Bil92] conceives of an event shift function, required to express the rhyth-

mic deviations observed in African and African-American music, which

measures the expected timing deviation of events at a particular bar po-

sition and tempo. By analysing James Brown’s “Funky Drummer” by

hand using accurate audio editing software, Freeman [FL02] found that

the drummer, Clyde Stubberfield, consistently played the snare on beat

two late, with a mean lag of 2.8% of the beat period (17msec). Analysis

of Cuban drum music by Alen [Alé95] also identifies consistent delays on

specific beats that fall within a 30msec window.

This notion of displacement is widely acknowledged by drummers, who

talk of playing “behind the beat”, “in front of the beat” and the creation

of “a pocket”, which is characterised by a very steady tempo and a lack of

ornamentation. Steve Anisman [Ani97] describes the notion of placement

in an article for The Modern Drummer:

“Every member of the band gets to make a decision as to when

they will play their part, in relation to that precise moment [the

beat]. Some people like to play their parts behind the beat.

This does not mean that the player is playing slower than the

rest of the band. The player is playing in perfect time, and his

pulse matches the pulse of the rest of the band precisely. It is

just that this players ‘pulse clock’ got started a millisecond or

two after the first note of ‘the beat’, and every note that this

player plays is a little bit late, technically.”
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Anisman describes the phenomenon of expressive timing or microtim-

ing as it occurs in rock music. Although the shifts in timing are very

subtle, only several milliseconds, it has implications for all beat tracking

systems seeking a level of accuracy attained by humans. Most assume

that observed peaks in the detection function must correspond to “the

beat” when they are approximately aligned. In offline trackers, accuracy

is required to a lesser extent, so this may be a reasonable assumption to

make. However, the beat is a perceptual phenomenon arising from the mu-

tual interaction of musicians and as such there may not be any definable

quality in the signal that corresponds precisely to it. There are several

difficulties to conducting a study into microtiming. The “beat” needs to

be annotated, but there are limits as to the degree of accuracy that can

be achieved. In addition, the study requires the investigation of the re-

lationship between event onsets of different instruments. Onset detection

functions can be used to transform note onsets, events with duration, into

onset times, which do not. Since such a study would be concerned with

relationships in microtime, then care would be required to ensure that bias

is not introduced through the analysis process.

When a drummer plays “behind the beat”, they are placing events a

few milliseconds behind the perceptual beat which has the effect of making

the other members of the band appear to “drive” the song forward, since

other instruments will be sitting ahead of the drums. This characteristic

is often attributed to John Bonham of Led Zeppelin. Examining the first

bar of the classic “When The Levee Breaks” (see Figure 2.5), we can

observe that some beats are placed later than the expected location that

would be implied by strict equal division of the bar. However, the beats

do not always fall late in the same way. After the first intro bar, the snare

on the ‘two’ is relatively accurate, but it is the syncopated hits, which

are placed the eighth-note before the ‘three’ (bar marker 1.4.3 in Figure

2.5), that show the most deviation, happening late relative to the metrical

grid. This is an example of Temperley’s [Tem99b] conception syncopation

in rock, where it is as if the pattern has been stretched to bring the

‘three’ an eighth-note early. By placing it marginally late, this may lead

to an increase in suspense between the anticipated ‘three’ and its early
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Figure 2.5: The first bar of ‘When The Levee Breaks’ by Led Zeppelin. The
syncopated beat at location 1.4.3 and the snare hit at 2.2 both happen slightly
“behind the beat”.

syncopated placement. There is also a change in tempo over the first few

bars, from 141.2 BPM on the first intro bar, to 142.0 BPM on the second

and 142.8 BPM on the third bar, which then remains relatively consistent

over the next few bars. Our aim for an accompaniment system is to find

a balance between responding to such subtle shifts in tempo, whilst not

over-reacting to the kind of timing displacement that we observe in classic

rock drummers such as Bonham.

Gouyon et al. [GFB03] observe that in rock and funk, drummers of-

ten play quarter-notes slightly “behind the beat”. This is visible in the

energy from Bonham’s hi-hats, visible on the second eighth-note of each

beat, where this energy is not obscured by kick and snare events, which

are consistently late. These events, a repetitive pattern of eighth notes,

support the notion that the division of the beat into eighth-notes is of-

ten uneven with the latter eighth-note “swung” slightly late, giving the

resulting pattern a certain “feel”. Vijay Iyer, jazz artist and professional

composer, makes observations relating to regular microtiming deviation

of the backbeat in African-American drumming in his PhD thesis:

“The curious point about the backbeat in practice is that when

performed, it displays a microscopic lobsidedness. If we con-

sider the downbeat to be exactly when the bass drum is struck,

then the snare is very often played ever so slightly later than

the midpoint between two consecutive pulse. Often musicians

are aware of it to some degree, and they have a term for it: the

drummer is said to play ‘in the pocket’. ... A skilled musician or

listener in this genre hears this kind of expressive microdelay as

‘relaxed’ or ‘laid back’ as opposed to ‘stiff’ or ‘on top’.”[Iye98]
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Figure 2.6: The first two sections of a drum take by Led Zeppelin’s John Bon-
ham. The second two-bar loop (bottom) is actually marginally faster than the
first (top) as can be seen from the waveforms.

In Figure 2.6, whilst the first snare drum is precise, the snare hit on the

‘four’ (beneath marker 2.3 in the diagram), is visibly late by as much

as 30ms. However, there is significant movement within the underlying

tempo, even during this short segment, which makes it difficult to distin-

guish expressive timing from tempo variation and motor error.

2.3.1 Studio Practice and Sequencing: Playing to the ‘Click’

One common attribute of sequencing software programs such as Logic,

Pro Tools, Cubase and Ableton Live, is that they provide the option for

a band to record to a ‘click track’: a highly accurate regular pulse deter-

mined by the computer’s CPU. Many commercial songs are recorded to

the click, or the “grid”, to intensify the steadiness of beat. This has been

a common practice since the introduction of drum machines in the 1980’s.

The use of the click has been extensive over recent years, with many indie

guitar bands also making use of it to tighten up their sound. Nirvana’s

“Smells Like Teen Spirit” was not only recorded to click, but the preferred

mix by engineer Andy Wallace featured extensive “tweaks” of the drums

parts which are aligned to their ideal metronomic location, removing any

expressive timing from the performance [Izh08]. The popularity of the

click does support the notion that for some types of music, it is preferable

for there to be no global or local tempo changes.

The result is that many songs on radio sound exciting for the fact that

they are ‘tight’ and feature many computerised sounds, such as samples
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Figure 2.7: Placement of the bass drum and snare relative to the click track by
David Nock on a song, ‘Ride’, recorded to click track.

and synthesizers, positioned perfectly with respect to the musicians; but

for some listeners, the songs lack a quality that older recordings have, an

different form of excitement, where the musicians are interacting without

the need to accommodate a metronome into the performance. The click

denies any tempo fluctuation and so when it is used, the listener can

quickly predict where events will be located temporally and there is no

denial of the anticipation, no surprise.

Drummers often practice to a metronome in order to gain insight into

their sense of timing relative to an absolute. When practising to a click,

Matt Ingram, session drummer, described how he would aim to “bury the

click”, to play in synchronicity to the point where it became inaudible to

him due to the hi-hat pattern and other drum events which masked it. He

could only hear the click when his timing had strayed. This statement has

two interesting implications. The first is that drummers seek to maintain

a constant global tempo, or at least be capable of doing so. The second is

that drummers do intend to place some events, such as in this case hi-hats,

‘on the beat’ with respect to the click. They then learn how the expressive

timing of certain events relative to others affects the “feel” of the pattern.

It is our aim to interpret the drummer’s playing style with respect to a

virtual metronome, whilst adjusting the timing of this metronome so that

it remains in sync with the perceptual beat.

In order to learn more about the interaction between drummer and the

underlying pulse, we examined how a drummer actually plays to a click
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track in the studio. On the song ‘Ride’, we analysed the snare and bass

drum signals through an onset detector, relative to the absolute position

on the grid of the audio sequencer. The relative displacements are shown

in Figure 2.7. David Nock appeared to place the majority of bass drum

events and almost all snare events slightly ahead of the click. Perhaps in

this song, he wanted to convey energy. However, this could also be the

result of negative mean asynchrony, the effect first observed by Dunlap in

1910 [Dun10], whereby humans consistently tap 20 to 50 ms ahead of a

regular pulse. Further investigation would need to take place to conclude

whether this is a regular effect observed in drummers.

Whilst this is not intended as a conclusive demonstration that drum-

mers make deliberate expressive timing deviations relative to the click,

it is clear that they may not always play exactly on it. It is impor-

tant that we remain aware of the many possibilities for timing deviation

within drumming: syncopation, expressive timing relative to the percep-

tual beat, expressive timing relative to other parts of the drum kit, local

tempo changes such as a “push” on a particular beat and small global

changes in tempo, such as when a chorus speeds up slightly. These timing

deviations all occur within music that is at a constant tempo and meter.

Songs may also feature discontinuities in tempo which must be tackled

in the same way that human musicians would tackle them: by mutual

agreement through rehearsal.

2.4 Beat Tracking

We shall describe here previous approaches to the problem of beat track-

ing, both causal and non-causal, and discuss them in the context of cre-

ating a real-time system.

2.4.1 Pre-processing

The audio signal first requires pre-processing to create a ‘driving function’

for the beat tracker. This is either a sequence of discrete onset events
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or an onset detection function representing changes within the audio, us-

ing features such as spectral difference, energy, high-frequency content or

phase deviation.

2.4.2 Oscillator Models

The use of oscillators for beat tracking is motivated by the theory of

dynamic attending [Jon76] [JB89], which holds that the perception of

rhythm causes an entrainment or synchronisation of internal rhythmic

process to an external musical stimulus. The concept of ‘entrainment’ has

existed since Dutch physicist Christiaan Huygens [Huy86] identified how

two pendulum clocks moved with the same period and it has subsequently

been applied in mathematics and in the physical, biological, and social

sciences. In the 1920’s, Appleton and van der Pol [AvdP22] showed that

the frequency of an oscillator could be entrained or synchronised by a weak

signal of similar but slightly different frequency. In 1976, Jones [Jon76]

proposed that the organisation of perception and memory is inherently

rhythmic in nature, with many perceptual rhythms of different scales of

frequency being involved in mental processes that correspond to external

stimuli.

“At each level of a pattern’s structure there is a perceptual

rhythm that can match its time properties. Thus, a set of

rhythms, graded in periods, responds to world structure.”

[Jon76]

It is known that two rhythms of close frequency can entrain each other so

that they come to occur in phase and with the same period. In the theory

of dynamic attending, such entrainment then gives rises to expectations in

the listener, so that identification of novel tone patterns or familiar speech

is more successful when the timing extrapolated from an initial pattern

coincides with the observation of new information [Han89]. When there

is a regular periodic function, corresponding to increased attention, infor-

mation occurring at those temporal locations is more easily assimilated.
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The theory implies that our recognition of structure within music will

be aided by temporal regularity of features which define the auditory pat-

tern. McAuley [McA95] and Large and Kolen [LK94] have investigated

the use of adaptive oscillators to model internally-generated expectancies

arising from a regular attentional pulse and entrainment to external mu-

sical rhythms. Both authors suggest linking several oscillators together in

a network, each corresponding to a different metrical level. For a single

oscillator, the frequency and phase is adapted by differential equation of

the form shown in equation 2.2, and the oscillator will synchronise with

an external pulse of similar frequency.

∆tx = ηs(t)
p

2π
sech2γ(cos 2πφ(t)− 1) sin 2πφ(t), (2.2)

where t is the event time, tx is the expected event time, s(t) is the signal

impulse which is 1 only when an event occurs, η is a coupling strength

parameter, and γ is the output gain which inversely affects the width of

the oscillator. The γ parameter decays toward zero each cycle, so when

there are no events the temporal receptive field of the oscillator widens.

Toiviainen implemented Large and Kolen’s algorithm in his Interactive

MIDI Accompanist [Toi98], with the added observation that perceptually

salient notes, with longer durations, should cause a stronger adaptation

than shorter notes. The problems for the oscillator model, as highlighted

by Toiviainen, result from the absence of metrical representation in the

adaptation process. The system is highly dependent upon initial condi-

tions as to whether it synchronises in phase correctly, and it functions

better when there is polyphonic input, such as accompaniment, since this

provides a more regular rhythmic structure to the input. There also ap-

pears to be a trade-off between rhythmic complexity and the ability of the

system to tolerate tempo change.

The InTime system 6, first released in 2002, is a commercial imple-

mentation of work by Large, which outputs a tempo from MIDI input.

If the tempo is controlling an accompaniment, the effect is that the ac-

companiment will synchronise to the player through phase-locking. One

6http://www.circularlogic.com as viewed 14th April 2009
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stipulation is that the player must listen to the accompaniment, which

guarantees that the phase is approximately correct. Despite the absence of

musical interpretation of the input, in terms of metrical structure, beyond

that imposed by the oscillator, the effect is impressive and demonstrates

the potential of oscillators for mirroring our own psychology.

2.4.3 Comb Filter Resonators

Scheirer [Sch98] proposes that the rhythmic properties of a musical signal

are preserved when calculating amplitude envelopes over six sub-bands and

then convolving with white noise. The derivative of the resulting signals

for each sub-band is fed into a network of comb filter resonators tuned

to appropriate frequencies. Good results were given using 150 resonators,

logarithmically spaced over the range 60 to 240 BPM. The outputs of the

resonators are examined for phase-locked behaviour and this information is

tabulated. The tempo is calculated by summing across the frequencies for

the six sub-bands and calculating the maximum value. Whilst a 2Hz click

track results in a distinct spike at the corresponding tempo of 120 BPM,

when tested with an unspecified example of ‘polyphonic music’, Scheirer

reports that the maximum energy value was only approximately 120%

that of the minimum value. Thus, although the tempo can be determined

through such a filter bank, there is not always a large distinction between

correct and incorrect tempi. Phase is then calculated by examining the

resonators corresponding to the frequency of the estimated tempo and

examining its “predicted output”.

A comb filter with delay T and gain α has a magnitude response:

H(ejω) =
∣∣∣∣ 1− α
1− αe−jωT

∣∣∣∣. (2.3)

The parameter alpha affects how the comb filter behaves with respect

to new information. A high value, close to unity, means the algorithm

will “lock on” to a beat and not be perturbed by energy in the signal at

new periodicities, whereas a low value means that the algorithm is quick

to change its estimate. This feature of a trade-off between inertia and

reactivity will be encountered in other work on beat tracking. Scheirer
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recommends a genre-dependent approach, using higher settings for music

with a regular pulse such as rock and pop, and lower values for classical

music where the tempo can change rapidly. An informal evaluation takes

place with sixty minute-long excerpts used in a variety of styles. The

“easy” pieces featuring rock and roll drums “keeping a straight-forward

beat” are all tracked successfully. There is a latency between two to eight

seconds for the algorithm to begin tracking the signal accurately. Scheirer

introduces two important methods into the evaluation process. Firstly, a

group of volunteers are asked to tap along to a selection of pieces, thereby

enabling comparison of the algorithm with human tapper subjects. Sec-

ondly, Scheirer acts as a ‘musical expert’ tapper, by manually annotating

the beat, which provides the ‘ground-truth’ in the experiment. The al-

gorithm performs consistently as well as the human subjects relative to

this ‘ground-truth’. The most problematic observation is the algorithm’s

tendency to drop beats or shift phase.

Klapuri et al. [KEA06] adopt the comb filter method approach of

Scheirer and, in order to detect harmonic change in cases where onsets

are less apparent, use an increased number of sub-bands. Their method

analyses across several different metrical levels. The tactus level is the

level at which most humans naturally tap along, with one tap per cro-

chet or quarter-note. The level of the tatum, a term first used by Bilmes

[Bil93] to denote the ‘temporal atom’ and in honour of Art Tatum, is the

lowest metrical level encountered in a piece. Finally, the measure level is

determined by points of phenomenal accent, such as on the downbeat of

every bar. Analysis takes place at the tatum, tactus and measure levels

simultaneously.

A weighting system is used to bias the relationship dependencies of

simultaneous periods towards the specific integer relationships found in

music. Klapuri et al. note that “for example, it happens quite often that

one tactus period consists of two, four, or six tatum periods, but mul-

tiples five and seven are much less likely in music and thus have lower

weights.” The distribution is modelled as a Gaussian mixture model to

allow some deviation from strictly integral ratios. The Viterbi algorithm
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Figure 2.8: Autocorrelation on a stereo recording of drums played by Led Zep-
pelin’s John Bonham. There is a peak corresponding to tempo of the piece at
86 BPM and again at double the tempo.

[Vit67] [For73] is then used to find the optimal sequence of period esti-

mates and phase is calculated after the periods have been decided. The

conditional probability between two consecutive phase estimates is mod-

elled as a Gaussian, centered on the previous estimate. Fifteen candidates

are generated for both the winning tactus period and the winning measure

period. Rhythmic pattern matching aids the estimation of the measure

pulse, implying that a model of musical structure informs our perception

of measure.

2.4.4 Auto Correlation

Equation 2.4 shows the general equation for an autocorrelation function

for time lag τ over N samples. When this method is used on a suitable

driving function, such as energy or onset detection, there are generally

peaks when τ corresponds to a multiple of the beat period, since musical

events happen at those intervals.

A[τ ] =
N−1∑
n=0

x[n]x[n− τ ] (2.4)

An example of autocorrelation on a two-minute excerpt of a recording

of drums played by Led Zeppelin’s John Bonham is shown in figure 2.8.

There is a peak at the tactus level of approximately 86 BPM and at the

tatum level of 172 BPM. The magnitude of the difference, however, is
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comparatively slight, with the minimum value of the function over 80% of

the maximum value. The autocorrelation function can be used to estimate

the average tempo for a piece of music, but it does not provide the phase.

It has been used in approaches to the problem by Brown [Bro93] to find

the meter, and for tempo estimation in Davies and Plumbley [DP07] and

Ellis[Ell07].

Ellis uses autocorrelation to provide a global estimate for the tempo,

and multiplies the autocorrelation function by a Gaussian weighting win-

dow, W (τ), in order to account for the human tendency to prefer tem-

pos toward 120BPM. Testing this method on the 2004 Audio Contest for

Tempo database [GD05], Ellis’ algorithm scores 35.7% accuracy relative to

an expert, but this rises to 74.4% accuracy if the estimate is allowed to dif-

fer by a factor 2 or 3 above or below. Modifications made to the algorithm

after testing raised these values to 45.8% and 80.6% respectively.

Davies and Plumbley first calculate a tempo estimation using the au-

tocorrelation function with a comb filter to prioritise tempos in the range

80 BPM to 160 BPM, which correspond to the optimal periods favoured

by humans in tapping tasks [DJB00]. Having found a tempo hypothesis,

beat alignment is initialised by placing the first beat at the location of

a suitable maxima of the onset detection function in the first bar, and

placing the next beat by a process of induction. There is a Gaussian

weighting bias centered at the beat location predicted by the tempo hy-

pothesis. The standard deviation is set to τ
4
, where τ is the beat period,

derived to prevent off-beats falling within the window which would result

in phase-switching. In order to recover from errors and handle changes

in tempo, Davies and Plumbley implement a two-state model, in which

the algorithm has a current tempo estimate around which a narrow band

of tempos are analysed, and also calculates the best result from a wider

range of tempos. If the current estimate fails to be the most prominent

tempo for successive results, it changes to the new tempo. Whilst this is

a successful strategy for recovery from error, a difficulty can arise when it

is used for an accompaniment system if the beat tracker accepts the new

estimate too readily during a complex passage, leading to discontinuous

tempo estimates. The balance between adaptability and stability proves
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consistently hard to define satisfactorily.

Brossier entered a real-time version of Davies and Plumbley’s algorithm

[DP05] into the 2006 MIREX competition [MMDK07]. An alternative

real-time implementation of Davies and Plumbley’s algorithm by Stark

and Plumbley [SDP08] shows considerable promise as a means for real-

time tempo estimation for a wide range of acoustic signals. Nick Collins

has developed a a real-time event detection system BBCut [Col05a] which

makes use of the autocorrelation beat tracking methods of Davies and

Plumbley [DP05] and the onset detection function developed by Bello and

co-authors [BDA+05]. By detecting note onsets, this system is suited

to performing automated creative tasks based on note onsets within the

signal and its low-latency efficiency makes it suitable for the performance

of ‘live coding’ [CMRW03].

2.4.5 Dynamic Programming

Dynamic programming, introduced for beat tracking by Laroche[Lar03],

is an algorithmic procedure which recursively defines a score for a path,

consisting of a tempo track and downbeat locations, and requires only

that this score is a function of the score of the path at the previous frame,

the local score of a new candidate and a transition score. In this way, the

optimal path can be computed efficiently in linear time.

Ellis [Ell07] constructs a cost function designed to the reward both the

strength of the onset at designated beat time ti and conformity of tempo

to the target tempo, determined through the autocorrelation procedure

described above:

C({ti}) =
N∑
i=1

O(ti) + α
N∑
i=1

F (ti − ti−1, τp), (2.5)

where {ti} is a set of beat times, O(t) is the strength of the onset envelope

at time t, α is a weighting parameter determining the relative importance

of onset strength and regularity of tempo, and F (∆t, τp) measures the

consistency of the inter-beat interval ∆t to the target spacing τp defined by

the target tempo. Dynamic Programming is used to recursively calculate

the optimal beat sequence in linear time. The approach is non-causal
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since the cost function has access to the strength of the envelope beyond

where it chooses to place its beat, and in Ellis’ algorithm, the algorithm

progresses backwards from the end of the file when computing the path of

beats.

2.4.6 Agent Based Approaches

A multi-agent architecture enables several hypotheses to be examined si-

multaneously. When events have an ambiguous interpretation, this allow

the consequences of both interpretations to be evaluated until future obser-

vations determine which performs best on the data. Each agent is capable

of adapting and evaluating its own behaviour relative to the input and

can interact with other agents to perform a given task.

Dannenberg and Mont-Reynaud [DMR87] describe a method for real-

time beat tracking that uses a history mechanism, involving a weighted

average of previous tempos estimates, in which a decay rate influences

the behaviour of the tracker. With the decay close to 100%, the tracker

ignores the previous history and is unstable, whilst with a setting close to

zero, it is slow to respond. The ability to adjust or automatically select

parameters can considerably alter the behaviour of an algorithm, so that

for a performance system, the optimal setting can be chosen for the piece.

If an algorithm is intended to work across a large database of recorded

files, the setting would have to be determined by analysis.

Allen and Dannenberg [AD90] adapted this method to allow the tracker

to consider several states, each corresponding to a tempo and phase in-

terpretation, with new events causing each state to generate new states.

In this multiple agent-based approach, Allen and Dannenberg limited the

number of states by choosing those which had the smallest change of

tempo. In order to limit the magnitude of the search, expansion takes

place in order of credibility only until new data is received. Also, similar

states are merged and states that lack musical credibility are terminated.

Goto and Muraoka [GM94] made the observation that music with

drums has a relatively steady tempo, and so the challenge is to locate

the beats correctly, rather than focusing on tempo estimation. Their
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beat tracking system, BTS, interprets onsets from bass drum and snare

drum onsets, although since they deal with stereo files that require pre-

processing, Goto and Muraoka report that it is not possible to locate these

precisely. They use multiple onset-finders in several frequency ranges

which learn the characteristic frequency ranges for the bass and snare

drum.

BTS has a bias towards a particular metrical pattern for drums, since

bass drum onsets tend to fall on the first and third beats of a bar, and

snare drum onsets on the second and fourth. This pattern is a defining

characterstic of rock ’n’ roll music; the snare on the ‘two’ and ‘four’ is

called the backbeat [Iye98] and it typifies many of the early record from

the fifties and sixties from which other genres of music, such as rock,

dance, funk and hip-hop, emerged. In BTS, multiple agents correspond to

different strategies for tracking beats, and they make different predictions

and evaluate their own reliability. BTS generates information on the basis

of the most reliable hypothesis.

Collins’s DrumTrack [Col05b] synthesises work by Goto [Got01] and

Laroche [Lar03] into a real-time system. Whilst tempo induction is re-

ported to be relatively straightforward, correlation of the energy signal was

not sufficient to determine phase alone, and a pattern matching heuristic

was used in the manner employed by Goto. Although evaluation shows

it does not perform as well as Davies and Plumbley’s offline beat tracker,

this is to expected since it is tested on material featuring discontinuities

in tempo without a prior distribution.

Dixon’s BeatRoot algorithm [Dix01] initially has a tempo induction

stage, which clusters observed inter-onset intervals to find the best tempo

hypothesis, and a subsequent beat tracking stage. Multiple agents are

characterised by their state and history, corresponding to a tempo and

phase estimate and a history of beat locations. The system is designed to

track smooth changes in tempo and small discontinuities. Each agent has

an inner window of 40msec from the predicted beat time, within which it

will accept deviations, and an outer window of 20% and 40% of the inter-

beat interval, respectively before and after the predicted time, representing

a change in tempo which an agent accepts as a possibility. If events
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are within the inner window, then they are accepted as beat times, with

beats in between calculated by interpolation. The tempo is updated by a

fraction of the difference between predicted and observed. When an event

falls in the outer window, it accepts the event, but also creates an agent

that ignores the event, with the choice between them determined by their

future scores. Agents which are sufficiently similar result in one of the

agents being removed.

2.4.7 Probabilistic Approaches

Hainsworth [Hai03] proposed a particle filtering approach to the problem,

based on the application by Cemgil and Kappen [CK03] to beat tracking

from MIDI input. He transforms audio using a spectral difference onset

detector and the particle filter provides an estimation for the probability

of each state given the observation. A Kalman filter is used to update

the estimate of the system. One major problem with this model is the

computational time required to calculate the probability distribution.

2.5 Discussion

Large and McAuley initially approached the problem from a psychological

perspective, investigating the process of entrainment of the listener to a

regular beat. Subsequent approaches appear to accept the assumptions

implied by this cognitive standpoint, namely that there is a definitive local

tempo to find, which gives rise to the observed signal. This assumption

seems necessary for the task to be meaningful. However, there are still

strong differences with respect to tempo fluctuation between different gen-

res of music. For rock and pop music, the local tempo is often consistent

with a global tempo averaged across the piece, whereas in some classical

music or, for example, Klezmer music, where some pieces speed up as

they progress, only the idea of an underlying local tempo is meaningful,

reducing the global tempo to a form of statistical average.

Classical performances are often expressive, with soloists or conduc-

tors imposing their particular interpretation on a score and the timing of
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notes may exhibit strong deviations from strict metrical accuracy. There is

considerable emphasis on ‘phrasing’ where a sequence of notes is grouped

together, but transitions between phrases may involve moments of unpre-

dictability, where the listener can no longer gauge the tempo, even at a

local level. Such musical forms play with temporal expectation and the

cognitive process of entrainment in ways that rock and pop music tend

not to. As a result, beat tracking algorithms that aim to work on all

genres require a method for recovery from error and more flexibility for

tempo change. They therefore compromise their stability by tending to

rely on ‘the beat’ being located at moments when there is a noticeable

increase of energy of spectral change in the signal. Likely errors resulting

from this approach are during syncopated passages where the stresses are

at unexpected metrical locations, potentially causing the beat tracker to

change to the off-beat.

With some exceptions, such as Goto and Muroaka’s BTS which

searches for specific bass and snare drum patterns, a common feature of

all the beat tracking systems is their tendency to work as bottom-up algo-

rithms, using low level features of the audio to extract tempo hypotheses

and then looking within the audio frame for a strong beat location. No

top-down interpretation guides this process, yet it seems that for humans,

our ability to tap to musical pieces is directed by our perception of a higher

level metrical and harmonic structure. We may understand the structure

from other clues, such as using the pitch of the notes relative to the key

to place salient notes or chords in strong metrical positions, in accordance

with Temperley’s strong-beat rule [Tem99a], but most beat trackers cur-

rently do not integrate this kind of harmonic information. Temperley

has suggested there is an interaction in our processing of harmonic and

metrical information, whereby each forms an input to the other. Cemgil

[Cem04] has likened this inter-dependency to a “chicken and egg” problem

since “the quantization depends upon the intended tempo interpretation

and the tempo interpretation depends upon the quantization”. It may be

the case that a unified system would perform better than systems with

independent rhythmic and harmonic components. Much of the harmonic

information is discarded in order to find a suitable driving function for
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the beat tracker, such as an onset detection function or Scheirer’s [Sch98]

sub-band noise. However, if a parallel harmonic analysis took place, that

might provide a system with suitable information to locate bar boundaries,

detect time signature and distinguish strong from weak metrical locations.

In addition, musicians may use other means, such as visual cues or

information gained through rehearsal, in order to synchronise their parts.

Desain and Honing [DH99] suggest there may be a strong element of top

down processing involved in rhythm tracking. An initial tempo and phase

hypothesis may be adopted by humans relatively quickly. Beyond this

point, events are interpreted in a top-down manner, in order to guide more

precise updates of the hypothesis. Much of the work on beat tracking in-

vestigates the bottom-up processing required to make the initial estimate,

in which top-down processing has not yet featured.

Where the tempo is relatively steady, less top-down interpretation is

required in order to locate beats, and signal processing techniques such

as the use of autocorrelation and resonators will pick out regularity of

pulse within a detection function. When phrasing or harmonic clues are

relied upon by humans, we might expect these methods to experience more

difficulty. Davies and Plumbley, Klapuri et al. and Dixon’s algorithms all

show a wide variation across genre [MMDK07], performing best on world

and pop music, which has a strong rhythmic component. This suggests

that tacit assumptions of regularity of tempo and the repetitive patterns

of strong beats are important factors in their success. Given the inherent

stylistic differences with regard to tempo, perhaps particular strategies

need to be investigated for different genres, rather than hoping that the

algorithm will perform well across a wide database of musical pieces. As

Hainsworth [Hai03] points out, “it is unlikely a beat tracker designed for

dance music will work on choral music”.

Due to local tempo changes, beat positions may vary in definition.

Temperley [Tem99a] notes that “the exact location of beats is often some-

what indeterminate”. The willingness to test beat trackers on a wide

variety of genres indicates an optimism that the same approach could suc-

ceed for all. However, often each method has a priori assumptions and
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bias concerning the nature of the signal to be tracked. Where this is ex-

plicit, such as in Goto and Muraoka’s [GM94] restriction to 4/4 meter

and inclusion of a pattern bias, the beat tracker is restricted to musical

context appropriate to its design.

What unifies the approaches to beat tracking presented here is the as-

sumption of a locally consistent tempo. This can be seen either directly

in the use of oscillators or resonators, agents with varying tempo hypothe-

ses or through the use of functions such as autocorrelation, designed to

reveal repetition in data. If the local tempo is too variable, none of these

approaches would yield a correct result, since beat tracking would require

the kind of prior knowledge that musicians use when creating music.

In this thesis, we will only be considering interactive accompaniment

for pieces where the tempo is at least locally consistent. Musical forms

with a more defined sense of beat tend to adhere to this assumption and

explains the increased success of beat trackers on databases of rock and

pop music, which tend to have far less tempo variation due to the repetitive

percussive nature of the music. As a comparison, Klapuri et al.’s algorithm

scores approximately 45% correct on classical, yet close to 90% on rock

music.

2.5.1 Multiple Interpretations and Discontinuity

When events are ambiguous, subject to multiple interpretations, and with-

out a score or prior knowledge, one possibility is to adapt the agent-based

approach to the real-time scenario, where each agent follows an alternative

interpretation of previous events until future information indicates which

interpretation should be decided upon. However, a real-time tracker nec-

essarily has to either follow a single course of action, or agent, so there

will be inevitable inaccuracies in synchronisation when the wrong agent

was chosen. In addition, it raises the problem of finding a suitable musical

transition between the multiple hypotheses.

An example of a real-time system which makes use of different modes of

behaviour is the two-state model of Davies and Plumbley’s system, where

one state has a narrow tempo hypothesis, and the other looks analyses
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the tempo across the full range of values. This prevents the sudden jumps

in period which occurred without narrowing the range of tempos, and by

analysing the confidence of the current hypothesis, the beat tracker can

resolve itself after errors and not remain fixed at the last tempo. However,

a transition to the wider tempo hypothesis still involves a discontinuity in

tempo output.

The agent-based approach may be necessary for music with unpre-

dictable timing changes and a wide variety of rhythmic devices. It may be

the case that music with strong tempo variations, deviations, syncopation

and polyrhythms may benefit from multiple agents acting as insurance

against bad interpretation of information. The use of multiple hypotheses

may also be crucial to a system’s ability to recover from error.

2.5.2 Phase and Synchronisation Accuracy

A common feature of these approaches to beat tracking is their focus upon

tempo induction. Clearly this is vital for any offline tracker with no prior

information, but often, despite an accurate tempo hypothesis, the trackers

will fail to track all the beats in a file. The difficulty in doing so is making

the continual adjustments to phase necessary in order to correctly interpret

subsequent events and place beats correctly. Although an accurate tempo

estimate is a good guide to placing the next beat, any inaccuracy will

be amplified over time without re-estimation. Often in the literature, the

problem of tempo adaptation and phase adjustment is given less attention

than that of tempo induction. However, given the wide range of rhythmic

devices that must be correctly interpreted and navigated, it may prove to

be as challenging for a beat tracking system as tempo induction and phase

determination.

Collins’ [Col06] work on autonomous agents for live computer music

led to the recognition that “the determination of the phase is perhaps the

most critical facility of human beat tracking required for musical interac-

tion”. In the case of an interactive system, the phase must not only be

continually estimated for the signal, but an appropriate prediction must be

made for the future with sufficient accuracy that these predicted beats are
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perceptually synchronous with live performers. Without a correct phase

estimate, there can be no metrical interpretation of events: a crucial fac-

ulty for any real-time system.

In seeking a bound for perceptual synchrony, studies of human be-

haviour provide boundaries to the limits of acceptability. There is of-

ten an asynchrony observed when humans attempt to tap in time with

a metronome, whereby subjects tap typically 30 ms before the stimulus

[Asc02] without consciously perceiving that they are doing so. Whilst

subconscious compensation will be made for variations as small as 4ms,

Lago and Kon [LK04] argue that synchronisation within the region of 20

to 30ms, equivalent to a distance of approximately ten meters, should

be sufficiently accurate so as not to be perceptible. Latencies between 10

and 20ms were not detected at all in tests by Mäki-Patola and Hämäläinen

[MPH04], who independently placed the threshold for Just Noticeable Dif-

ference (JNS) at 30ms. With respect to a tactus interval, this corresponds

to approximately 6% of the beat period and is a reasonable limit for the

kind of errors we can expect to tolerate within a real-time system. In per-

formances across a network, it has been observed that latencies greater

than 20 or 30ms result in a gradual slowing of tempo [CGLT04]. We shall

therefore adopt the 30ms bound as the threshold for perceptual synchrony.

2.6 Languages and Programming Environments

The development of a real-time system requires access to audio inputs from

the computer’s soundcard and the ability to send audio or MIDI informa-

tion out of the computer. Most interactive systems therefore make use of

existing programming platforms such as Max/MSP, PureData, SuperCol-

lider [McC96], ChucK [WC03] and Csound [VE90] that provide specialised

routines to handle audio. SuperCollider is based on object-oriented pro-

gramming framework, thereby allowing users to create multiple instances

of audio unit generators, and is a favorite of proponents of ‘Live Coding’

for its speed and flexibility.

Max/MSP is a modular graphical programming environment that
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emerged from work by Miller Puckette at IRCAM in Paris in the eight-

ies. Whilst IRCAM continued to maintain a version of Max, the Max

language was commercialised by Opcode systems and subsequently by

David Zicarelli’s company Cycling ’74 7. Whereas the original Max lan-

guage was designed to handle MIDI information, once processing speeds

increased sufficiently, an audio environment, MSP [Zic98], was also devel-

oped which can perform DSP operations on streams of audio. Max/MSP

thereby allows computer musicians direct access to audio buffers and MIDI

information without the difficulties inherent in coding the necessary sub-

routines at a lower level. Puckette has subsequently released an open

source modular environment, Pure Data [Puc96], which is modelled on

Max.

Both these environments are designed to operate on input from au-

dio and MIDI sources through a series of linked patches [Puc02], which

perform operations in real-time on the streams of audio or numerical data

which are the patches’ inputs. In response to criticism of the limitations of

Max, several authors stress the point that the language also supports the

writing of external objects and routines in C. Lippe and Settel [RGD+93]

emphasise how this combines the power of programming in C with the fast

and convenient framework of Max. The language has recently been ex-

tended to include Java and JavaScript. PureData also allows the writing of

externals in C and Java. Graphical extensions of the environments, Jitter

and gem [Dan97], have been developed which allow the user to manipulate

data for visual projections with similar tools.

The Max language itself is limited in its ability to store and manip-

ulate data effectively. IRCAM’s FTM library [SBS+05] extends Max by

providing the ability to create and manipulate complex data structures.

The initial motivation was the requirement for flexible score representa-

tions and the need for an efficient representation of matrices and vectors,

as used by Suivi for the implementation of hidden Markov models used

in real-time score following. It is also possible to instantiate data struc-

tures within the programming languages that Max supports: C, Java and

7http;//www.cycling74.com as viewed 7th May 2009
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Javascript.

For programming of real-time interactive visuals, OpenFrameworks 8,

is a C++ library for visual and creative coding, and vvvv 9, is a pro-

gramming environment for video which resembles the modular design of

Max/MSP. The power of these languages and environments gives rise to

interesting new possibilities for musical structures and provides an inter-

face for humans to interact with electronically generated sound.

2.7 Summary

The challenge of developing a system that can maintain a stable tempo

and phase hypothesis in real-time is considerable. It is clear from inves-

tigating offline algorithms, that we will have to make assumptions about

the nature of our signal and use prior information if we are to successfully

create a real-time tracking system. Since rock and pop music has a clear

rhythmic structure, any errors will be audible to the audience, so we re-

quire a system that can reliably track the beats with 100% being longest

continuous segment tracked. State-of-the-art beat tracking algorithms at-

tempt to perform the task on all genres of music. We will restrict the

genre to the rock and pop music with a strong rhythmic element and pro-

vide the beat tracker with individual signals from dedicated microphones

rather than a stereo mix. In this way, we hope to develop a method of

beat tracking for live performance that is reliable but responsive.

8http://www.openframeworks.cc as viewed 7th May 2009.
9http://www.vvvv.org as viewed 7th May 2009.



Chapter 3

B-Keeper: A Real-Time Drum

Tracker for Live Performance

We will now present work aimed towards the creation of automatic accom-

paniment systems for rock and pop music. Since the drums are central

to the rhythm of a band, we will focus initially on beat tracking for this

instrument.

3.1 Approach

The beat tracking algorithms discussed in Chapter 2 make use of both

event-based and signal-based techniques. With the exception of Goto and

Muraoka’s [GM94] use of templates for rock and pop music, these tech-

niques are intended for a wide variety of musical signals and in the field of

music information retrieval, they are often applied to fully mixed stereo

files. The goal of these retrieval systems is to enable new functionality for

searches on the vast store of music files [Dow08] and the MIREX compe-

tition for beat tracking therefore includes music representative of many

genres. Thus the beat trackers entered into this competition have to be

adaptable for a wide range of audio signals without any prior information.

Here we will make assumptions appropriate for the genre. In rock music

and pop, the tempo is often relatively steady across the whole song. The

drums are played by striking them with a stick or mallet (an event lasting

under 10msec) and so it is relatively simple to extract onsets from the

dedicated microphones on the drum kit. We therefore choose to process

onset event times rather than use an onset function derived from the audio

69
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signal. We hope that the precision with which these times can be specified

will allow us to track the tempo and phase more accurately.

Our approach to the problem makes use of a dual-process mechanism

for timekeeper period and phase as observed in literature from music per-

ception [Rep05]. We attempt to directly calculate changes to tempo and

phase from incoming events. This requires interpretation of the rhyth-

mic structure and drum pattern, and categorisation of which events for

accuracy and metrical position when making updates.

By categorising events relative to a metrical structure, we aim to build

a system which can then interpret and analyse other harmonic events

relative to their place within the music. This could have significant ad-

vantages for the further development of interactive systems. Klapuri et

al. [KEA06] and Davies and Plumbley [DP07] have both worked on the

extraction of metrical information, such as bar boundaries and on-beat /

off-beat classification, but with no prior knowledge of genre or tempo. In

our approach, we allow the musician to initialise the accompaniment with

an approximation of the correct tempo and phase, then use the metrical

structure imposed by the audio sequencer to maintain the correctness of

the rhythmic alignment. This provision of prior knowledge is justified by

appeal to performances with human musicians where a band knows the

approximate tempo, either learned from rehearsals or through a count-

in. In this way, we avoid the need for tempo, phase and bar boundary

estimation which remains a problem for future research.

Event-based approaches to accompaniment have been used by Large

[Lar95] and Toiviainen [Toi98], who used them to update the frequency of

oscillators. Another parallel with the oscillator model is the integration

of expectation into the algorithm. As an event’s location relative to the

period and phase of the oscillator determines the update, we will search for

new beats within a window around the expected beat locations, employing

an explicit rule-based (using top-down processing) reasoning, dependent

upon factors such as beat location and recent history.

Initially, we designed the drum tracking algorithm to process only au-

dio from the kick drum since this loud event seems to define the beat

[Iye98], but once we began testing the system, added the signal from the
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microphone on the snare drum. In the development of B-Keeper, we as-

sume that all onset events are intended to occur on eighth-note divisions

of the bar, without any expressive timing deviation. By use of a weighting

system, we favour the more important beats, the kick drum on the ‘one’,

and the snare on the ‘two’ and ‘four’, with syncopated beats less likely to

cause phase-correction. We adopt the proposition from the GTTM and

established theories of meter that a hierarchy of beat locations exists and,

accordingly, we will react to an event depending on the beat’s location

within the hierarchy, our recently observed history and our confidence

level in the system’s predictions. In Chapter 5, we shall introduce a fully-

layered hierarchical system, which confidently ignores events at lesser beat

locations on the condition that it has observed recent regular events at a

higher level.

Despite the potential existence of small timing deviations, we will de-

sign our beat-tracker to act as if all beats are placed to a metric grid, so

that a snare at a strong metrical location that is marginally late will cause

a small phase-correction towards the new event. If we consider again, Fig-

ure 2.2, discussed in the previous chapter, then a choice can be made in

light of our discussion on the style of drum playing we may encounter.

Our salient events, the kick drum and the snare backbeat, will be loud

acoustic events at strong metrical positions of the bar. It makes sense to

assume that these define the beat. This is equivalent to stating that the

main drum events do not exhibit expressive timing.

Examining John Bonham’s drum files, although there is evidence that

certain drum hits are deliberately displaced and played late against the

beat, we could equally regard these as exhibiting local tempo change,

whereby the event and future events are displaced but the tempo remains

constant. Under this interpretation, if an expressively timed event, such

as (a) in figure 2.2, was interpreted as a local tempo change, (b), then the

next onset event would be interpreted as a local tempo change in the other

direction. However, our system would have reacted to the beat, and in the

event that it constituted an even greater change, a global tempo change,

(d), then at least it has reacted towards accommodating this global change.

At present, the danger of a lack of response through disregarding actual
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local tempo change outweighs the benefits of smoothness or sensitivity to

expressively timed events.

In rock music, despite the evidence that players sit forwards or back-

wards relative to the beat, the argument that salient events in the drums

define the beat and are therefore local tempo changes seems to be consis-

tent with their role musically in a band. The essential difference between

error and expressive timing is that the latter is a regular rhythmic aber-

ration. If, in future, our system could record the tendency to displace

beats with expressive timing, then we could accommodate this behaviour,

but to incorporate it into the initial design might cause the system to be

unresponsive. We will describe further developments making use of top-

down metrical structure which allow for some expressive timing in Chapter

5. We therefore aim for our metronomic click to sit at the same place,

relative to the perceptual beat, as the drum events we process from the

microphone signal.

Whilst multiple agent hypotheses might enable versatility to negotiate

tempo variation and recover from error, we chose to investigate what can

be achieved with a single hypothesis on the basis that since a human

can successfully tap to rock drums, then in principle a single tempo and

phase hypothesis can be maintained. This means that we are restricting

the range of our beat tracker to more conventional rhythmic patterns, in

order to gain a stability for the resulting system. We hope to recover from

errors by changing modes of behaviour and parameters, rather than switch

between discrete hypotheses.

3.1.1 Model Assumptions

The aim of the drum tracker is to detect the underlying metrical pulse

which explains the occurrence of onsets. We would like this to be stable

despite timing discrepancies between notes and changes in the rhythmic

pattern of the signal. To this end we make some initial assumptions:

• The audio signal is rhythmic and is underpinned by regular beat to

which a human could be entrained.

• An approximation of the tempo is already known by the system.
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Figure 3.1: Signal from bass drum microphone and the pre-processed signal
using an energy-based detection function.

• The tempo is relatively steady, with only small fluctuations occur-

ring.

• Onsets occur on a metrical level that are even subdivisions of the

beat.

• Variations between the inter onset intervals indicate some fluctuation

in tempo.

• We assume that events are not timed expressively, but are displaced

either as a result of local and global tempo change or performance

error.

3.2 Implementation

During development of the algorithm, we used recordings of the bass drum

microphone of a live drum kit being played in a room with a full band.

There is a comparatively low amount of noise from other percussive or

rhythmic instruments other than the bass drum. The signal and the out-

put of an energy-based onset detector can be seen in figure 3.1.
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Figure 3.2: Screenshot of Ableton Live’s Session View.

Initial development of the algorithm was carried out offline in Mat-

lab using an energy-based onset detection function from Bello et al.

[BDA+05]. Subsequently, the algorithm was coded as a Java external

within Max/MSP, with an interface designed to allow the user access to

control parameters which affect the behaviour of the beat tracker. This

implementation made use of Miller Puckette’s bonk∼ [PAZ98] object for

Max/MSP, which is suited to the detection of percussive onsets. The

bonk∼ algorithm makes use of spectral change and has a low hop-size of

256 frames (5.8msec at 44.1kHz sampling frequency). The supervisor sets

an appropriate threshold for the onset detector via the B-Keeper user in-

terface in Max. In order to provide real-time automatic accompaniment,

we made use of Ableton Live 1, a popular audio sequencer with D.J.s.

which, due to its time-stretching features, whereby the tempo of an audio

excerpt is changed, is highly suited for our purposes here. This software

has a professional user interface, familiar to musicians, that can be con-

trolled externally through the sending of MIDI information. The session

view of Ableton Live is shown in Figure 3.2.

Offline tests demonstrated that the system could fall towards local

1http://www.ableton.com as viewed 14th April 2009
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attractors over the tempo range. These are corresponding maxima for

autocorrelation-based processes, such as seen in Figure 2.8 in Chapter

2, where 85 BPM, 170 BPM and 117 BPM are all local maxima. When

determining tempo estimates from inter-onset intervals (IOI’s), if a regular

pulse is tracked at a tempo whose ratio with the original can be expressed

as fraction with integer components, then the tracking tempo will interpret

some intervals as integer IOI’s at the tracking tempo. For instance, if the

tracking tempo is four-thirds the original, then every third beat of the

original will fall on the fourth beat of the related tempo. Hence, one must

either have a good local approximation to the tempo (the approach taken

here), or examine tempo hypotheses over a wide range of tempos, such as

in the beat tracking methods discussed in the previous chapter.

3.3 Algorithm Description

For a given tempo, the tatum, the name given to the temporal ‘atom’ by

Bilmes [Bil93], is the duration of the high-frequency pulse at the lowest

metrical level. Here, we shall take it to be the duration of an eighth

note, measured in milliseconds, although technically it could refer to a

subdivision at an even lower metrical level. The algorithm takes as input

the onset time tn, determined by the CPU of the computer when the nth

onset has been detected. The problem is formulated as how to best align

a sequence of drum event onsets, where the nth onset occurs at time tn,

with a regular click track at the tatum level from a sequencer at times xn

or E[tn]. The onsets are presently assumed to be intended to occur on the

beat, whilst the tempo is steady but not necessarily constant.

We aim to minimize the error between the two sequences by chang-

ing the tempo of the click track on the basis of current observed onsets.

Early investigations of our beat tracking system confirmed the need for

a specialised phase-correction stage as exists in some psychological mod-

els [WK73] [DW96]. Our approach to beat tracking uses two dedicated

processes: one controlling the underlying tempo and a phase-correction

process which quickly adapts to new information. Two processes work in

parallel: one to adjust the general tempo and one to synchronise the phase
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of the tempo. These are referred to as tempo tracking and synchronisation

respectively.

For each onset, we calculate the corresponding inter onset intervals be-

tween our new event for all recent onsets. A decision mechanism, described

below, weights these results and adapts the tempo estimate accordingly.

In addition, a parallel process makes adjustments required for precise syn-

chronisation, equivalent to matching the phase of the sequencer with the

live drummer. The synchronisation process makes temporary adjustments

to the tempo of the accompaniment to account for phase differences and

accommodate local timing deviations, whilst the tempo process adjusts

the underlying global tempo. In practice, the algorithm synchronises first

and then calculates the tempo, since the synchronisation process can in-

form the tempo algorithm which beat of the bar the new onset falls on.

However, for the purposes of understanding how the two processes work

together, we shall describe the general tempo adjustment prior to the

phase adjustment.

3.3.1 Tempo Tracking

Given a recent onset at time tn, we calculate all recent inter-onset intervals

between this onset and recent onsets, tn−k and their interpretation in terms

of the current tempo hypothesis.

I(k) = tn − tn−k (3.1)

v(k) = round(
I(k)

τ
) (3.2)

The duration, I(k), corresponds to v(k) tatum intervals, where τ is the

tatum in msec, which has been defined here as the duration of an eighth-

note.

The error between the observation and the value for the inter-onset

interval (IOI) predicted by the onsets tn and tn−k is:

εn,k = I(k)− v(k).τ (3.3)
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Figure 3.3: Diagram showing the basic structure for the Tempo Process.

The likelihood for an IOI of j tatums occurring is set by the user as

Ltempo(j), where 1 ≤ j ≤ 16, since intervals greater than 16 tatum lengths,

or two bars, will not influence the tempo tracking algorithm. This likeli-

hood function is set prior to the piece. Since we expect inter-onset inter-

vals of a beat, two beats and a bar long, we set the corresponding values

Ltempo(2), Ltempo(4) and Ltempo(8) close to 1, and less likely values such as

Ltempo(5) are close to, if not, zero. In general, a 4/4 beat would suggest

having non-zero values for powers of two only as the rhythm is cyclical

for a regular a power of two (typically 8). Whilst syncopation dictates

that other intervals will be observed, there will still consistently be inter-

vals which are a power of two that can provide a stable way to gauge the

tempo.

Both the tempo tracking and the synchronisation functions make use

of a Gaussian window around the corresponding error terms, so that on-

sets indicating a small tempo fluctuation are used by the system to adjust

its tempo estimate, whereas more radical changes are interpreted as per-

formance errors. The accuracy determined by onsets tn and tn−k, relative
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k εn,k = tn − tk v(k) g(εn,k) Ltempo(v(k)) Acc(k)
1 -1.6 2 0.996 1 0.996
2 -8.2 3 0.901 0 0.0
3 -14.8 4 0.712 1 0.712
4 -4.7 6 0.966 0 0.0
5 -6.3 8 0.940 0.92 0.864
6 -7.9 10 0.907 0 0.0
7 2.1 12 0.993 0.68 0.675
8 0.5 14 0.999 0 0.0
9 10.6 16 0.840 0.8 0.672

Table 3.1: A recorded example of the list of recent onsets and the corresponding
evaluation for the tempo tracking process. The winning onset is k = 1.

to current tatum estimate τ is given by:

Acc(n, k, τ) = g(εn,k).Ltempo(v(k)) (3.4)

where

g(ε) = e
− ε2

2σ2
tempo (3.5)

The Gaussian function, g(ε), given by equation 3.5, has been adapted from

the normal Gaussian, or bell-shaped curve, by omitting the scaling factor

required by probability theory so that the integral across the reals is equal

to 1. Instead, the function g(ε) has a maximum value of 1 when there is

no error, and the function decreases as the error increases according to

the standard deviation σtempo, a parameter of the tempo tracking process.

We evaluate Acc(n, k, τ) for all recent onsets that occurred during the

last two bars. This creates a list, as seen in table 3.1, evaluating the

interval between the current onset and all recent onsets with respect to

the tempo hypothesis.

Then the greatest accuracy value is given by the inter-onset interval

between tn and tkwin . We make use of the following update rule:

If Acc(n, kwin, τ) ≥ θtempo, then τ = τ + ∆τtempo,

where

∆τtempo = α.g(εn,kwin).Ltempo(v(kwin)).
εn,kwin
v(k)

, (3.6)
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and θtempo ∈ [0, 1] is the update threshold. The change in tempo resulting

from equation 3.6 uses the inter-onset interval which is in closest agreement

to our current estimate, whilst factoring in our prior likelihood of our

observing such as interval within a drum signal. This method rejects the

less reliable observations (those falling outside the window) and calculates

an average of the tempo based only on recent IOI’s which fall within the

window. In their an agent-based approach, Allen and Dannenberg [AD90]

limited the number of states by choosing those which had the smallest

change of tempo. We have taken a similar approach here when adjusting

the tempo, favouring tempo coherence, over all other interpretations. An

alternative is to take a weighted average of those inter-onset intervals

above a suitable threshold.

3.3.2 Automatic Tempo Parameter Adjustment

The parameters used in the tempo process are the update threshold, θtempo,

the standard deviation, σtempo (given in msec), used in the Gaussian func-

tion which determines the width of the window, and the likelihood of

observing individual inter-onset intervals, set by the weighting function

Ltempo(v(k)). In order to find the optimal values for the style of playing,

an additional feature automatically adjusts the threshold and standard

deviation parameters dynamically.

If the user sets the threshold and standard deviation, then there is a

danger that if the window is too narrow, the algorithm may fail to re-

spond to tempo change since IOI’s will fall outside the window, whereas if

the window is too wide, the system may respond to inaccurate onsets or

misinterpret events, such as syncopation. In addition, drum fills present a

problem as they generate a succession of rapid IOIs which are to be aver-

aged over. Considerations which account for drum fills will be presented

in Chapter 5 of the thesis.

By adapting the parameters automatically, if the tempo is relatively

steady, then the threshold will rise and the standard deviation lessen,

so that an onset that is then less accurate creates IOIs that fall outside

the window and will not affect the tempo. This prevents the system
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becoming overly responsive. If successive onsets fall outside the window,

the parameters will adjust by lowering the threshold, so that the new IOIs

are accounted for. This results in a slower response to tempo change but

significantly greater reliability since the algorithm naturally finds settings

which suit the accuracy of the majority of onsets detected.

We make use of the following rule to update our parameters θtempo

and the window size σtempo:

If Acc(n, kwinning, τ) ≥ (θtempo + 0.1), then

θtempo = θtempo + 0.3.(Acc(n, kwinning, τ)− θtempo − 0.1).

Otherwise, if Acc(n, kwinning, τ) ≤ θtempo, then θtempo = 0.6θtempo.

The window adjusts itself so that the median result of the Accuracy func-

tion, described in equation 3.4, pivots around the value 0.7, an arbitrary

value chosen so that the average accuracy weighting for onset intervals is

reasonably high. Since the accuracy will be in the range [0, 1], our choice

of value reflects the fact that we wish half the onsets to result in an ac-

curacy of 0.7 or more. By using an equilibrium point, we ensure that the

system adjusts its parameters to respond well when set to automatic mode

since the accuracy result also determines the proportion of synchronisa-

tion. Hence, if the accuracy is less than 0.7, it widens the window, whilst

if it exceeds 0.7 then it narrows the window:

σtempo = σtempo.(1 + [0.7.Ltempo(kwinning)− Acc(n, kwinning, τ)]) (3.7)

3.3.3 Synchronisation

As well as tracking changes in tempo, it is important to also make adjust-

ments to preserve an accuracy in the phase of the estimate or else there will

be a drift in alignment between the accompaniment and the live drums.

A similar strategy is used to synchronise onsets tn to the corresponding

click track event at time E[tn]. The event is categorised by calculating the

accuracy measure described below for the recent and predicted click times,

and choosing that for which the result is higher. It is not necessarily the
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Figure 3.4: Illustration of the how the synchronisation process for kick (red) and
snare (green). The accuracy values of onsets result in automatic adjustment
of the width of the Gaussian windows around the expected beat locations to
maintain synchronisation.

closest click event due to the weighting function employed.

The error between the expected onset and the observed onset time is:

εn = tn − E[tn] (3.8)

In performance, we expect onsets to exhibit inaccuracies due to human

imprecision, as well as expressive timing, where the discrepancy between

where the onset and expected beat time is deliberate. As stated in our

assumptions, we shall make no distinction between the two during the

synchronisation process. In order to do this, we make use of a similar

accuracy function to that employed in the tempo tracker. Given an onset

at time, tn, we estimate its accuracy relative to our tempo hypothesis as:

Acc(tn, τ) = g(tn − E[tn]), (3.9)

where the function g(ε) is the same as used in equation 3.5, except

the standard deviation is now σsync, a specialised parameter for the

synchronisation process. We also make use of a weighting measure,

Lsync(k), which corresponds to the likelihood that an onset occurs
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at beat k of the bar. The measure Lsync(k) functions as the drum

pattern that we expect to be synchronising to and can be set by the

user prior to playing. Typically, one expects kick drum beats to fall

on the ‘one’ and the ‘three’ of a bar, not one eighth-note in. Hence,

one might choose to set Lsync(0) to 1 and Lsync(1) close to 0. In

practice, we wish to favour onsets on the beat and off-beat, so have used

the setting L(2k) = 1, L(2k+1) = 0.4 (0 ≤ k ≤ 7), widely in development.

The updated accuracy function becomes:

Acc(tn, τ) = g(tn − E[tn]).Lsync(nbar) (3.10)

where nbar is the position of the onset within the bar in terms of tatum

lengths from the one. We synchronise with the beat if Acc(tn, τ) > θsync,

in which case we add a synchronisation factor to our tempo estimate:

∆τsync = (
g(tn − E[tn]) + β

β + 1
).g(tn−E[tn]).Lsync(nbar).(tn−E[tn]) (3.11)

where 0 ≤ β ≤ 1 is a user-defined parameter which affects the extent to

which the system makes the corresponding phase adjustment for observa-

tions away from the expected beat location. By setting β close to 1, the

value of the first fraction is increased for lower values of g(tn − E[tn]) so

that phase synchronisation for all observations over our threshold.

3.3.4 Decision Tree

Although the metrical structure can aid the calculation process, as dis-

cussed previously, events do not always have a univocal interpretation.

By adjusting the parameters used in the decision making process, we can

change the behaviour of the algorithm as well as the output. In particular,

by widening the window and lowering the threshold, we can follow a com-

promise between interpretations of events, so the model is more willing to

accept future information from whichever hypothesis turns out to be true.

In the case of synchronisation or phase-correction, we employ a

decision-making mechanism to decide between local tempo change, which

we will correct for, and performance error or events to be discounted.
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     Accurate: 
raise threshold

Outside:! lower threshold,
! ! widen window

Wide:
Don"t act

Inside:! synchronise, 
!  don"t change threshold

Threshold + headroom

Synchronisation threshold

Figure 3.5: Illustration of the different regions for decisions taken by the syn-
chronisation algorithm.

There are three zones into which the beat can fall. These can be seen in

figure 3.5. If the expected location of the onset is very accurate, above the

threshold plus the headroom, then we synchronise and alter the parame-

ters so the threshold increases and the window narrows. When the onset is

above the threshold but within the headroom above it, we synchronise but

do not change the model’s behaviour. If the onset is below the threshold,

then the closer it is to the threshold, the greater the adaptive response of

system parameters by the algorithm, whereby the window widens and the

threshold decreases. The effect of these three zones on the window size

and threshold can be seen in figure 3.7. The plateau corresponds to the

area where onsets result in phase-correction through synchronisation, but

no alteration of the model’s parameters.

This synchronisation factor is added over a short number of intervals, lsync,

set by the user so as to smooth the effect of resynchronisation. Hence, our

tempo adjustment is given by:

τ = τ + ∆τtempo +
∆τsync
lsync

(3.12)

until the synchronisation has been achieved and ∆τsync is reset to zero.
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Figure 3.6: Automatic adjustment of synchronisation parameters. The accurate
onset results in the threshold increasing and a decrease in the standard deviation
used.

3.3.5 Automatic Synchronisation Parameter Adjustment

A corresponding automatic adjustment feature is included in the syn-

chronisation algorithm as well as the tempo tracking algorithm. If the

synchronisation error is so large that the onset is outside the Gaussian

window, then for future onsets, the standard deviation is increased so

that the window widens and the threshold is also decreased. This has

the effect of adjusting the parameters to suit the performance style of the

drummer and to dynamically change these variables within a performance

for optimal response from the system.

Figure 3.7 shows the resulting threshold for different accuracy and beat

probabilities. The threshold increases when accurate events are observed

at likely locations, and decreases most significantly when events are ob-

served just below the threshold. This can be seen as sharp shelf at the

current threshold of 0.6.

3.3.6 Drum Pattern Recording

In order to aid the tracker, we record the pattern of drum events that has

been observed and use this within the weighting process. The pattern is

non-zero at the corresponding beat location for each observed onset and
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Figure 3.7: Projected threshold adjustment as a function of beat probability
and Gaussian accuracy result. The original threshold is 0.6 and the expander
and contractor parameters are 0.3 and 0.25 respectively.

its value is given by the Gaussian function of the accuracy measured prior

to any weighting. The drum pattern is therefore a direct indication of the

expected accuracy of a beat at that location in the bar. In later versions

of the tracker, rather than employing a fixed weighting, we used a linear

combination of the fixed prior weights and the observed weighting during

the performance. This allows the tracker to adapt to a syncopated rhythm

and ‘learn the beat’.

3.3.7 Supervisor Controlled Functions

The algorithm described above makes use of the following parameters

which control the behaviour of the system and are adjustable by the user

or a supervisor via an interface in Max. An early version of this interface

is shown in Figure 3.8:

• The initial starting tempo should be set by the user. There is also a

function for the drummer to set the tempo by playing a set number

of evenly spaced beats of the kick drum (or clicking the sticks on the
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Figure 3.8: Early version of the user Interface in Max/MSP, allowing the manual
setting of initial parameters and weights, and access to rescue functions.

snare microphone), where the average interval is used to determine

the bpm and send a starting signal.

• α : the scaling factor in the tempo tracking process affects how re-

sponsive the system is to changes in tempo. Experimentation has

suggested that values between 0.3 and 0.6 give good results. Al-

though it is possible to adjust to every change in tempo indicated by

incoming onsets, in practice, it is better to find a balance between

stability (α close to zero) and responsiveness (α close to one).

• θtempo and σtempo are used by the tempo tracking algorithm to decide

whether the observed inter-onset interval will be used to update the

tempo estimate. The parameter σtempo determines the size of the

window of the Gaussian function, so if σtempo is large or the threshold

θtempo is low, then inter-onset intervals are more likely have accuracy

functions that exceed the threshold, θtempo, and the system is more

responsive to fluctuations in tempo.

• The parameters θsync and σsync determine the threshold and the win-

dow size around the expected beat locations for the synchronisation
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process, determining in a similar manner how responsive the system

is to local tempo change and adjustment of phase.

• β is a scaling factor, analogous to the parameter α in the tempo

tracking process, which affects the extent to which the system syn-

chronises in phase to an onset.

• Automatic modes are provided for the θtempo, σtempo, θsync and σsync

parameters in which they are adjusted to match the playing style of

the drummer. An optimal balance is sought, where beats regularly

result in adjustment of tempo. The algorithm describing this is in

equation 3.7.

• The system records where onsets occurred for both the kick drum

and the snare drum in the recent playing history. It is possible to

use a linear combination between the fixed weights and the weighting

determined by this data in the synchronisation process, allowing the

system to ‘learn’ the current drum pattern and use the resulting

weights when synchronising with the player.

• Nudge functions have been included which enable the supervisor to

rescue the system from misalignment. If parameters are not set op-

timally or the performance in some way throws the system, the su-

pervisor can see that it may be a tatum interval or a beat out in

its synchronisation. Sometimes a drummer may compensate for this

and the system will synchronise again, but the forward and backward

function, speed and slow the backing respectively via intervention

from the supervisor. A bar function also informs the system when

pressed, that that location is the beginning of the bar and tempo

adjustment is made to realign.

• It is possible that the internal beat position used by the algorithm

might differ from the correct metrical position for the accompaniment

part. For instance, the system might interpret an onset as occurring

on the four tatum intervals into the bar when in fact it is two intervals

in. In this case, the misalignment is not audible, but if different

parts and audio effects are cued relative to the song position, it is
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important to rectify. The plus and minus functions, simply add and

subtract to the beat position to correct such an error. Provision

has also been made to ensure that the internal beat position always

matches that of the sequencer by means of a MIDI messaging.

• Drum patterns can be loaded as pre-stored weight settings for the

synchronisation process. We have made use of the FTM library

[SBS+05] to store the matrix using the SDIF [WCF+99] format. It is

then possible to automate changes between verse, chorus and bridge

in which the synchronisation weights change for each section.

• The latency between the audio inputs and the click track can be set

by experimentation on the user’s part. However, a strategy to avoid

latency is described below.

3.3.8 Real-time constraints

Since the algorithm is operating in real-time, some scheduling issues arose

during the implementation. Max/MSP’s scheduler gives priority to the

signal processing stream over the event-based stream since interruption to

audio would be more problematic in general than small amounts of latency

in numerical processes. However, events are time-stamped so that when

an onset event is processed by the B-Keeper system, it has an associated

cpu-time from the onset detector bonk∼.

As the system increased in complexity, very occasionally we experi-

enced time-stamped events being received in a non-linear order with re-

spect to the time they occurred. So, for instance, it is possible that an

onset at time tn is reported later than a click track event which has a

time-stamp greater than tn. As a result, the coding includes sub-routines

to ensure that the recent and predicted onset times based on the click

track information are in accordance to the cpu-times of the audio onsets.

One potential problem is latency from the drum microphone inputs

which have to pass through the analogue-to-digital converters of the sound-

card and then the onset detector. The latency of the onset detector is 256

samples (5.6 msec) and the buffer of the soundcard is typically in the re-

gion of 256 to 512 samples (5.6 to 11.2 msec). Hence, there is a latency of
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Figure 3.9: System set-up to cancel latency

approximately 10 to 20 msec between the percussive attack and the onset

being recorded in the system. The click track was initially implemented

as a MIDI message sent from Ableton Live (or from an FTM MIDI track

if one is synchronising within Max/MSP) and the latency for MIDI is only

one or two milliseconds. It is known that latency between performers of

more than 30 milliseconds causes a progressive slowing down [CZS+05]. In

this case, although the tempo tracking algorithm functions independently

of the click track, the synchronisation algorithm is directly affected by any
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latency. This could result in a performer constantly adjusting to synchro-

nise with an accompanying audio track that is continually slipping out of

time.

To negotiate this problem, the best solution seemed to be to use the

same kind of signal path for both audio and click track inputs. Hence,

as well as sending audio accompaniment, we send an audio click track

(a regular sequence of percussive sounds aligned with the tatum interval

divisions of the bar) out of a spare soundcard output. This is then passed

directly back into the soundcard (hence is subject to the same analogue-

to-digital conversion process) and through the bonk∼ onset detector in

Max/MSP as shown in figure 3.9. Therefore, using this method, the la-

tency is the same for both the audio input from the drums and the click

track from the sequencer.

3.4 Reports from Initial Trials and Performances

Some qualitative feedback was provided at an early stage in the algorithm’s

development. These reports helped to inform the direction for research

and indicate where improvements could be made. An early performance

with the system have been given at the Live Algorithms for Music (LAM)

Conference at Goldsmiths College, London, December 2006. This perfor-

mance was with an earlier prototype of the system that did not feature

the modes to tune parameters to the drummer automatically. Instead, the

threshold and standard deviation parameters were set by the supervisor

(AR), and it required manual adjustment during the concert to find the

right balance for a stable but responsive system. For this, the threshold

and windows were adjusted and the nudge mechanism was used to change

the internal metrical position of the drum tracker. A video excerpt of the

performance is visible on the internet 2.

David Nock, audio engineer and drummer, who performed at LAM,

commented on the experience: “It has elements of a human - almost an

early learning one - you have to guide them through, accommodate them

2http;//www.youtube.com/bkeepersystem/
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a little.” He described the sense of interaction as “very good. Once it gets

in sync, you can feel where its boundaries are. It’s able to accelerate and

decelerate. Like with a real player, it’s a two way process.”

This certainly indicated potential for the method, however, the difficul-

ties in setting parameters experienced in the concert suggested that these

should be automated. Further tests on the system were carried out in May

2007 with Joe Caddy, session drummer with ‘Captive State’, and Rocco

Webb, session drummer with Cerys Matthews. The addition of automatic

modes significantly improved the system’s ability to home in on a regular

beat and adapt to find settings suitable to the playing style. The tracker

was demonstrated at the Centre for Digital Music Summer Concert at

Queen Mary University of London, June 2007, and at the DMRN 2007

Conference at Leeds University.

Joe Caddy described the current limitations of the system:

“Some of that was great. There are problems with immediate

tempo changes, where if that was nailed, it would make it a great

system, wouldn’t it? There are some times where, I don’t know,

maybe it’s super-intelligent. It sort of locks into a tempo and if

you try to pull away from it, it almost wants to bring you back.

I tried changing some of the bass drum patterns and it dealt

with that. The main thing is it needs to be much more sensitive.

When you start to play something a little more intricate or start

to change tempo a little bit, it doesn’t recognise it until one or

two bars. A couple of times it didn’t, it was too slow. You want

the recovery to be milliseconds.”

The perception of a resistance to change is an interesting point here. Al-

though Joe would like more responsiveness, the tension between accom-

paniment and drummer is preserved with the accompaniment resisting

change. A drummer has more freedom for expressive patterns against a

more steady accompaniment than they would against an accompaniment

that instantly adapted. By not using rival tempo and phase hypothe-

ses, the system doesn’t make sudden jumps to other tempi as occur when

using other real-time beat trackers. This is potentially a disadvantage in
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situations where sudden tempo changes might occur, such as free improvi-

sation, but when utilised on steady tempo music, the advantage is a more

stable system which can accommodate syncopation and drum fills which

might easily cause erroneous judgements. Whilst sensitivity to tempo

change and responsiveness are desirable attributes, we also require an ap-

propriate tension between the system and the drummer that resists tempo

change, but is still compliant when required. During his test, Rocco Webb

had to try to slow its tempo from a false start at 170bpm to 120bpm. He

agreed with Joe Caddy that the response could be faster, but also sug-

gested that “the advantage is that in any musical situation, you’d never

want to slow down that much like I did in the course of three minutes.

You don’t want a hair trigger.”

3.5 Extending the system

B-Keeper provides a metrical structure for processing information within

Max/MSP. By reference to a song structure, changes within the system’s

own parameters and externals MIDI and data messages can be sent to

control other systems. For instance, we have seen how in Ableton Live it

is possible to arm tracks and record audio by sending MIDI messages from

Max/MSP that are routed via Live’s MIDI map to perform the respective

functions. Through the use of appropriate MIDI controllers, a complex

network of commands can be designed to control different sections of pre-

recorded or looped audio, which will lock in time with to drummer.

Jitter 3 is a powerful video manipulation environment within

Max/MSP. Messages within Max can be used to synchronise audio and

video accompaniment to the music. Lighting can be controlled via DMX

messages which can be sent using ethernet-to-DMX or MIDI-to-DMX con-

verters. Using MIDI-to-voltage converters such as Miditron 4, Electrotap’s

3http://www.cycling74.com as viewed 14th April 2009
4http://eroktronix.com/ as viewed 14th April 2009
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Teabox 5 or the Arduino 6, it is possible to send voltage to external elec-

tronic circuits so that events happen that are synchronous with the drums.

In particular, this allows the system synchronise motorised robotics play-

ing musical instruments to drums.

3.6 Summary

There is an acknowledged trade-off between reactiveness and inertia

[GD05], applicable to beat tracking algorithms. If a system is reactive,

new data is acted upon quickly, so the system is ready to change. Inertia

determines how much past data affects the system. If previous estimates

are contradicted by new information, the challenge is how to make the

correct change and interpretation of new data is a key factor.

The B-Keeper system reacts in two ways. By deciding whether the

information is to be acted upon, only data that supports the current hy-

pothesis is used and unreliable observations, of which there can be many,

are discounted. The second reaction maintains the balance required for

this process to be effective. If observations are outside our window of ex-

pectation, it suggests that the window could be too narrow and so even

if the observation causes no tempo adjustment, the system updates its

parameters for the next observation. There is an inevitable latency in re-

action time. The greater the change in the local or global tempo, the more

latency will be experienced before the system’s parameters have updated

sufficiently to use this information. Change can be accommodated up to

a certain point, beyond which, the design of the system cannot correctly

interpret the data.

We have developed a model of drum tracking that incorporates the

two-process tempo and phase model suggested by psychological experi-

ments into human tappers [Rep05]. The rapid phase correction observed

in humans is mirrored by a dedicated phase-correction process in our drum

tracker, which synchronises to salient beats of the bar. By re-adjusting

the phase over a period of two to four beats, any local tempo changes are

5http://shop.electrotap.com/products/teabox as viewed 14th April 2009
6http://www.arduino.cc/ as viewed 14th April 2009
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quickly accommodated by the system, whilst the effect to the underlying

period is minimal.

Our system is based on the entrainment model which is the basis for

many approaches to the problem of beat tracking. It is particularly appli-

cable to drums due to the observed regularity of pulse that is seen in these

signals. From the initial reports, it is clear that drummers experienced a

real interaction with the system, albeit not the same as the interaction

with a human musician. We will now investigate ways to evaluate our sys-

tem, looking at objective, quantitative data and devising an experimental

set-up in order to evaluate the subjective experience of interaction.



Chapter 4

Evaluation

Evaluation of this type of system is not straight-forward since it is intended

for use in live performance. There are two areas of evaluation study which

may be applicable to B-Keeper. In the field of music information retrieval,

beat tracking algorithms have been evaluated offline by testing on a large

database of stereo recordings of music from several genres. In human

computer interaction (HCI), task-based studies have been used to evaluate

musical interfaces. First, we shall look at the methodology and the kinds

of quantitative measurements used for evaluating previous beat tracking

algorithms.

4.1 Evaluation of Beat Tracking Systems

Goto and Muraoka [GM97] presented a quantitative method for beat

tracking evaluation whereby the beats placed by the algorithm were com-

pared with those placed manually by a human annotator which act as

‘ground-truth’ data. In order to ensure the annotator placed beats as

accurately as possible, they had access to a visual sound file and could re-

edit the beat locations. A beat is labelled ‘correct’ if it is within 17.5% of

the beat period from the annotated beat. This boundary is based on the

limitations of establishing a ground-truth by tapping. Goto and Muraoka

then determine the longest continuous segment (LCS) to be tracked, for

which the mean and standard deviation of the difference must be within

20% of the tactus interval. A minute-long excerpt is tracked correctly if it

begins no more than 45 seconds after the start and continues to the end.

95
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The LCS is defined as the ratio of the longest segment to the complete

excerpt.

Goto’s method of detecting ‘correct’ beats was adopted for the MIREX

2006 [MMDK07] competitions, where the ‘P-score’ is calculated by count-

ing of how many beats were within 20% of the inter-tap interval length

from the location of the annotated beats (thus the total area which is

counted as correct is 40% of the tactus). The P-score is then averaged

over the forty sets of annotations from different human tappers. The best

algorithm, Dixon’s BeatRoot, has a P-score of 0.57 over the dataset, where

the humans tappers collectively achieve a score of 0.63. This shows the

extent of disagreement within humans on the tapping task. The majority

of these discrepancies occur when the chosen tempo is twice or half the

most commonly agreed rate.

Klapuri [KEA06] adopted the use of the LCS, an evaluation measure

suited to offline beat tracking algorithms since it tests the dual require-

ments that the error is relatively low and that the algorithm is consistent

over time. The excerpts used were approximately one minute in length

and he contrasted a causal and non-causal algorithm with implementa-

tions of Dixon’s and Scheirer’s algorithms. Discontinuities in tempo are

explicitly excluded by requiring that there are no tempo changes of more

than 40% per beat. The results varied across genres, with the LCS being

over 90% for rap and hip-hop, whilst it measured between 40 and 60%

for jazz and classical. The algorithms tend to perform moderately well on

rock and pop songs with between 75% and 85% LCS. Given the initial time

taken at the beginning of the excerpt to ‘stabilise’, these results suggest

that Klapuri’s comb filter method could be applicable to online systems if

the computation time is reduced, perhaps by considering a smaller range

of tempo hypotheses. It is instructive to listen to the audio examples on

Klapuri’s website 1, both where the algorithm is successful, and to hear

examples such as Glenn Miller’s ‘In The Mood’, where the phase inverts

in an unexpected manner.

Music recorded within the last two to three decades, in particular hip

1http://www.cs.tut.fi/~klap/iiro/meter/examples.html as viewed 9th May 2009.
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hop, rap, rock and pop, may have been recorded with a fixed tempo.

The inclusion of a drum machine in a song, or use of a ‘click track’, has

been increasingly popular as the digital audio workstation (DAW) has

become an alternative recording medium to analogue tape in the studio.

Although this ought to significantly affect a beat tracker’s performance,

there has been little or no investigation of the effect this has on beat

tracking evaluation.

4.2 Measuring Timing Accuracy in B-Keeper

Considering the measures used to evaluate other beat tracking systems, it

is apparent that they require adaptation in order to test B-Keeper. Use of

the longest continuous segment would be appear to be a promising mea-

sure, but in practice, musicians are interacting with the accompaniment

and continually adapting to the behaviour of the machine. To run such

a test efficiently, we would have to use offline data or a scenario in which

the drummer no longer hears the output of the system. This fails to eval-

uate an important aspect of the beat tracker, namely its behaviour in an

interactive context. The style of the piece determines the difficulty of the

tracking procedure so that for our system, when tracking rock and dance

drums, we would expect the LCS to be close to 100% using the metric

of Goto and Muraoka. Also the benchmark of 17.5% of the tatum pe-

riod from the beat, corresponding to almost 100ms at 120 , is much wider

than our goal for perceptual synchrony of 30ms. Thus, according to offline

evaluation measures, a performance system could be evaluated as correctly

beat tracking a live drummer, yet not be suitable for generating an ac-

companiment unless it was purely harmonic, with no distinctive rhythmic

contribution. Although we cannot carry out a satisfactory comparative

evaluation, it is instructive to look at quantitative data as a measure of

the success of the alignment algorithm and we shall undertake an alter-

native investigation of the interactive nature of the system later in this

chapter.

It is possible to form some objective measure of the system’s perfor-

mance by examining its response to input signals from live drums. We can
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Figure 4.1: Diagram showing B-Keeper’s initial response to a bass drum signal
with simple pattern.

identify how the BPM is adjusted in order for the sequencer to remain in

time and measure the resulting error between the click track which rep-

resents the system’s expected beat times and the onset times that occur.

There is an inevitable error due to player inaccuracies, so that any beat

tracking system must attempt to find a line of best fit through onset points

which are only approximately in time. Thus, for any given input, there is

no definitive response, however, a measure of success can still be given by

examining the error and other performance data.

In Figure 4.1, we can see how an early version of B-Keeper responded

to a regular 4/4 Kick drum pattern, typical of dance music. David Nock,

a session musician who has played on records by rock band ‘The Cult’

and with dance group ‘The Orb’, played the drums, and the sole input

to the system was from the bass drum. The pattern remained a simple

4/4 dance beat through-out. The tempo estimate is slightly inaccurate at

the beginning, causing higher error measurements whilst adjustments are

made. Within four bars, the system made adjustments which bring the

error to within around 20ms. In Figure 4.2, we can see the error times
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Figure 4.2: The error times over a full performance by David Nock (top) and
magnified over a short extract (bottom). Solid error measurements correspond
to onsets used by the algorithm in synchronisation whilst dotted error measure-
ments were not used.

from the synchronisation algorithm for the full performance. The mean

error of onsets used to synchronise the system is 10.2ms. Given that events

occurring within 20 to 30ms are perceived by the human auditory system

as being synchronous [LK04], this is the kind of error we require for use

within performance.

In Figure 4.3, we can see how the system makes large synchronisation

adjustments to rectify discrepancies between prediction and observation

during a piece played by Mark Heaney, current drummer with ‘The Gang

of Four’. Synchronisation adjustment takes place for the onsets corre-

sponding to solid error measurements whereas the dotted errors were ig-

nored. The measurements resulting in phase re-estimation are preceded

by a section of increasing error measurements (dotted) which change the

parameters of the algorithm but are initially ignored as error. At the

point of re-synchronisation, the threshold has decreased sufficiently for

the system make an adjustment. After a couple of bars, the error has

been rectified in conjunction with the tempo tracking algorithm and there

is synchronisation within approximately 10ms again.

4.2.1 Timing Measurements from Performance

Having analysed data from a small number of performances, we recorded

the following measures of the error between onsets used to synchronise the
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Figure 4.3: B-Keeper’s response to a difficult passage with drummer Mark
Heaney.

Drummer Beats Counted Mean Error R.M.S.Error
D.Nock 176 10.2 15.2
R.Webb 120 16.0 27.0
J.Caddy 165 16.7 22.5
A.Pickard 202 19.0 26.9
M.Heaney 74 27.0 38.1

Table 4.1: Table showing the mean and root mean squared error encountered
in performances by five different drummers.

beat tracker and their expected times for performances by five different

drummers.

The observed errors are generally within our desired window of 30 msec

for which events will be perceptually synchronous. However, the interpre-

tation of these measurements is not as straightforward as for offline beat

tracking, where the error is between the algorithm’s predicted beat loca-

tions and ‘ground-truth’ human annotations. Here, the measurement is

relative to actual beat events, and hence an element of error is unavoid-

able in an expressive performance and is dependent upon playing style. A

‘zero-error’ performance would correspond to a drum machine at a fixed

tempo. The larger mean error recorded from Mark Heaney is probably a

result of the increased amount of push and pull against a ‘straight’ rhythm

that was present in his playing. In adjusting the machine to work with his

playing style, we found it was necessary to employ a manually set window

size in the synchronisation algorithm and set this to be fairly low. That

way, his expressive fills did not throw the system out of time.
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4.2.2 Discussion

We can make use of quantitative testing to illustrate the behaviour of our

drum tracking system. However, there is no comparative test, analogous to

the MIREX test for offline trackers, available to us. Partly, the problem

is that we have made specific assumptions on the nature of the signal,

so that existing datasets, such as those used in MIREX, are not within

the scope of the system. The other problem is that we wish to test the

system in the context for which it has been designed: as a performance

tool for automatic accompaniment. Although it is possible to rate the

tracker both in live performance and with offline drum recordings, these

tests tend to tell us more about the behaviour of the tracker than provide

a useful quantitative measurement. Through iterative development, the

drum tracking algorithm improved to the extent that it can regularly be

expected to score 100% on the longest continuous segment; but this score

is only informative if it is contrasted with other tracking systems.

In evaluating a real-time performance system, we wish to test not just

quantifiable data such as beat prediction times, but the subjective experi-

ence of interaction. Given the two-way nature of the interaction process,

the system influences the playing of the drummer and vice-versa, so that

measurements of statistical data, whilst useful for analysis, are also de-

pendent upon the behaviour of the drummer and need to be understood

in that context. If a drummer chose to play to a metronome, the the

metronome would make extremely good predictions, but it would not suc-

ceed at being an interactive system since it fully determines the tempo.

Thus, although the difference between the predicted and observed time

of events provides a direct quantitative measurement of the system’s per-

formance, we must be careful when interpreting this data, since these

measurements are dependent upon the playing style.

The accuracy measurements indicate that our beat tracker achieves

the bound of 20 to 30ms recommended for interactive systems [LK04] as

discussed in Chapter 2. It also scores 100% LCS according to the metric

proposed by Goto and Muraoka. However, the situation is very different to

that confronting offline beat trackers since the drummer is able to listen
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and respond to auditory feedback from the system. We now look for

an evaluation strategy that can go beyond quantitative measurements in

order to give a reliable indication of how well B-Keeper functions as a live

performance tool.

4.3 Evaluation of Musical Interfaces

In order to develop a design for evaluation, we will look at evaluation

methodologies for musical interfaces and discuss the nature of the inter-

action we are trying to measure. Human Computer Interaction (HCI) is

concerned with the design, evaluation and implementation of interactive

computing systems for human use. Evaluation methods have traditionally

been task-based, using task analysis, cognitive walkthrough and usability

studies to evaluate the completion or efficiency of specific tasks. Fitt’s law,

which measures the trade-off between speed and accuracy when pointing

at a target, has been shown to apply to traditional HCI tasks, such as

target acquisition. It has been used by HCI to compare different input

devices, transforming performance scores into indexes of performance cor-

responding to the devices and independent of the actual experimental set-

up. Many of the tasks used in HCI have been formulated for the design

of graphical user interfaces.

Wanderley and Orio [WO02] adapted this task-based approach for the

evaluation of new musical interfaces. Musical controllers are a specialised

category of HCI input devices, in which several parameters are controlled

separately using sensory feedback from the body. Time has a privileged

relationship for musical controllers, since the user requires high precision

in time, whereas for most HCI tasks, time is a variable that is measured for

a task. They proposed that controllers could be evaluated by requiring

that musical tasks be completed, such as the control of pitch, musical

gestures, such as glissando or trill, and the replication of musical phrases.

Wanderley and Orio contrast the subjective nature of musical interfaces

to the more measurable objectives of traditional HCI, which might place

more emphasis on task efficiency:
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“the question here is whether this measurement must necessar-

ily be quantitative, as in the case of HCI. In music, it must be

noted that controllers cannot be evaluated without taking into

account subjective impressions of performers, ruled by personal

and aesthetic considerations.’

The drum tracker could be considered a musical controller to the extent

that drums are used ‘to control tempo’. However, it has not been designed

as a tempo controller suited to performing specific tempo-related tasks.

Rather, we expect that the tempo will be controlled by the drums through

a similar interactive process as that which occurs between musicians. We

now describe an evaluation methodology which can be used for B-Keeper

in an interactive context: the Turing Test.

4.4 Evaluation of B-Keeper using a Turing Test

Offline beat trackers are evaluated relative to annotations of human tap-

pers who provide a ground truth against which they can be judged. This

is necessitated by the fact that the beat is a perceptual construct, so we

require humans to indicate the ‘correct’ beat locations. Since the beat is

only defined to a limited precision, the annotations for these tests are de-

termined either collectively or by using an ‘expert’ tapper who annotates

offline using audio editing software.

For a real-time beat tracker, it would therefore make sense to aim to

compare the algorithm with a human tapper, but we face the dilemma

of how best to do so. Since the drum tracker controls an accompaniment

to synchronise with a musician, ideally, we wish to evaluate the result of

this interaction and contrast it with the interaction occurs if a human

controlled the accompaniment. In order to do so, we have looked to the

paradigm of the ‘Turing Test’ in which an interrogator is asked to distin-

guish between human and machine.
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4.4.1 The Turing Test and Variants

In Alan Turing’s 1950 paper, ‘Computing Machinery and Intelligence’

[Tur50] he proposes replacing the question “can a computer think?”, by

an Imitation Game, popularly known as the “Turing Test”, in which it

is required to imitate a human being. Turing formulates the problem as

a game in which a man pretends to be a woman, and an interrogator is

asked to distinguish between them on the basis of typewritten answers

alone.

“We now ask the question, ‘What will happen when a machine

takes the part of A in this game?’ Will the interrogator decide

wrongly as often when the game is played like this as he does

when the game is played between a man and a woman? These

questions replace our original, ‘Can machines think?’ ”

The attribution of mind or mental states to the machine is thereby

based on a functional test: our ability to discriminate between man and

machine on the basis of empirical evidence alone. Turing considered many

objections to this philosophical position within the original paper and

there has been considerable debate as to its legitimacy, particularly the

position referred to as ‘Strong A.I.’. Famously, John Searle [Sea80] put

forward the Chinese room argument which proposes a situation in which a

computer might be able to pass the test without ever understanding what

it is doing. In this example, it can hardly be said that the computer “has

intelligence”, it merely carries out mechanical instructions, such as looking

words up in a dictionary, in order to reply. Harnard [Har00] discusses

the implications of Turing’s paper for empirical research on minds and

machines, describing a hierarchy of Turing tests, and acknowledges the

validity of Searle’s argument in the limited domain of machines which

function exclusively in a symbolic domain. After his defeat by chess-

playing program Deep Blue in 1997, Gary Kasparov expressed scepticism

about whether the computer had indeed been acting alone, leading Krol

[Kro99] to claim that the computer had become the first to ‘pass the

Turing Test’. This is an example of a symbolic domain for game playing

in which a computer has been able to rival and surpass the intelligence of
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an expert human.

Cohen [Coh05] criticises the test as being focused on logical, inter-

personal, linguistic intelligence as opposed to internal, visual-spatial or

musical intelligence. However, the scenario of the Imitation Game might

prove to be an interesting model for constructing an experiment to eval-

uate an interactive musical system. Whilst we do not wish to claim the

system possesses ‘intelligence’, its ability to behave as if it had some form

of ‘musical intelligence’ is vital to its ability to function as an interactive

beat tracker.

The test has been applied to several challenges in the development

of human-computer interaction. The Loebner Prize [Shi94] is an annual

competition which is based on Turing’s original formulation, requiring con-

testant algorithms to converse with a judge via an interface. When the test

requires a response to words with semantic meanings, the common result

is that the programs do not perform well. Laird and Duchi [Lai00] first

proposed the Turing test for the game Quake II, in which human players

were correctly identified 89% of the time and computer bots correctly iden-

tified 56% of the time. The Computer Game Bot Test 2 was subsequently

held as part of the IEEE Symposium on Computational Intelligence and

Games 2008, and asked judges to discern between a human player and a

computer-controlled ‘bot’ for the game ‘Quake-3’. In neither the Loebner

Prize nor the computer contests has an algorithm yet succeeded in con-

vincing the judges. Livingstone [Liv06] identifies the challenge of creating

believable AI in computer games as successful role-playing by computer

characters, both individually and collectively, to mimic the tactics and

style of human ones. He regards Harnard’s hierarchy of Turing tests as

applicable to computer games, where the passing of a t1 test, a toy-version

of the test which applies to sub-routines, would result in realistic game

experiences.

The problem of evaluating the contribution of a computer to in an aes-

thetic medium has been addressed by Pearce and Wiggins [PW01], who

2http://botprize.org/ as viewed 15th April 2009.
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look at evaluation methodologies used in a range of algorithmic composi-

tion programs. Often the evaluation offered is merely a stated subjective

opinion on the part of the system’s developers. Seeking a scientific basis

for their claims, they recognise the need for an experiment that has the

potential to ‘falsify the theory’ in the manner famously proposed by Karl

Popper [Pop59]. They propose a framework which has objective validity

and removes the developers’ judgement from the process. The evaluation

stage takes a similar form to Turing’s “imitation game”, where a com-

bination of human and computer-generated pieces of the proposed style

are played to participants in the experiment. Pearce and Wiggins reduce

the claim made by the test from that of machine “intelligence” to assess-

ing membership or non-membership to the set of human-created pieces.

Whereas in Turing’ s original conception the interrogator is free to interact

with the computer, when used for evaluating algorithmic composition the

test becomes more a discrimination game. Pearce and Wiggins provide

details of an experiment in which a drum and bass composition program is

formally evaluated according to the proposed framework. Particular care

is taken to remove the developer from the evaluation process and to anal-

yse the results for statistical significance. The algorithm’s failure to pass

the test serves to illustrate it’s usefulness as a benchmark for successful

algorithmic computational creativity.

David Cope [Cop01] describes a comparison test known as “The

Game”, in which ‘computer-generated’ pieces in the style of Chopin by

his Emmy algorithm are contrasted with lesser-known, but musically ‘av-

erage’ (as opposed to exemplary or weak) pieces by the composer. The

object of “The Game” is to pick out the computer-generated pieces. Cope

interacts with the algorithm in order to create the computer’s piece, thus

the algorithm is not fully autonomous. Douglas Hofstadter expressed sur-

prise and alarm at the outcome of this ‘Game’, which caused him to ques-

tion the core of his beliefs about the relation between musical expression

and the human mind. A key difference between a musical Turing Test and

a linguistic one is pointed out by Justus [Jus02] in his review, ‘A Musical

Jabberwocky’, of David Cope’s book ‘Virtual Music’. The parallel is made

with Lewis Carroll’s famous poem which features many nonsensical words,
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but whose syntax and structure are classically correct. Where language

requires sentences to be both syntactically and semantically correct in or-

der to be meaningful, by generating musical phrases that incorporate the

correct syntax, it appears that elements of semantic meaning are thereby

present too.

On his website 3, François Pachet describes a musical Turing Test in

which jazz pianist, Albert van Veenendaal, played piano with the Con-

tinuator system. Two critics, Henkjan Honing and Koen Schouten, had

to decide which of the two were responsible for the musical output. The

result is presented informally: “The results were largely in favour of the

Continuator”. The Rencon competition [HBHK04] seeks to compare mu-

sical expression implemented by a performance rendering system. Previ-

ous audiences considered the renderings “were good”, and the organisers

proposed to introduce comparative testing, where pieces were ranked for

human-ness (the ‘Turing Test’) and for machine-ness (the ‘Gnurit Test’).

Where the computer can conceivably take the place of a skilled human,

the formulation of the test can quantify the aesthetic impressions of lis-

teners in an unbiased way. Despite the difficulties involved in passing the

original formulation of the test, when the same principle is applied in a

different discipline, the test has successfully been used to compare human

and computer performance and highlight differences between them. In or-

der to evaluate B-Keeper, we designed a large-scale musical Turing Test.

Since the participant interacts with the system, the experiment is closer

to being a genuine Turing Test than the evaluation method described by

Pearce and Wiggins for composition algorithms, since the drummer is free

to interact with the tempo controller during the experiment. Whilst ac-

knowledging the subjective nature of musical engagement, this framework

means that it is still possible to make objective statistical claims about

the interaction with the beat tracker.

By setting up a human tapper as one accompaniment controller and

B-Keeper as the other, we can directly compare them. When designing

the experiment, we also felt that it was important to have a metronome

3http://www.csl.sony.fr/~pachet/Continuator/ as viewed 8th May 2009
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controller, maintaining a steady tempo throughout, with which there is

no interaction. This functions as a ‘control’ for the experiment.

There are some important features of the Turing Test that make it

so suitable for the evaluation process. We can ask subjective questions

of musicians and observers, such as “how well would you rate that?”, in

a formalised context which can be used to directly contrast the system

with a human controller. In order to ensure impartiality, we constructed

the experiment to be double-blind, so that neither the researchers nor

the participants knew which controller was being used until the end of

each set of trials. Ordinarily, such questions can remain inconclusive,

with the researchers seeking a validation of the system in the absence of

any comparative standard. However, in a context where the identity of

the controller is hidden and contrasted against a human ‘player’, a more

truthful assessment can be obtained. The Turing Test is thus used to

decide two questions: Can the participants distinguish the identity of the

computer from the others? How well do the participants compare the

computer relative to the others?

4.4.2 Experimental Design

The test involves a drummer playing along to the same accompaniment

track three times. For each test, the drummer gives four steady beats

of the kick drum to calculate an initial tempo and start the accompani-

ment. Each time, a human tapper taps the tempo on the keyboard to

keep time with the drummer, but only when the human tapper is selected

as the controller will this alter the tempo of the accompaniment. A Gaus-

sian window is applied to the intervals between taps in order to smooth

the tempo fluctuation, set so the resulting accompaniment is musical in

character, but responds very quickly to tempo change. During the fixed

tempo trials, the accompaniment remains at the initial tempo and during

the other trial the tempo is controlled by B-Keeper. An illustration of the

experimental design is shown in figure 4.4.

We are interested in the interaction between the drummer and the

accompaniment which takes place through the machine. In particular, we
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Figure 4.4: Design set-up for the experiment. Three possibilities: (a) Computer
controls tempo from drum input; (b) Steady Tempo; (c) Human controls tempo
by tapping beat on keyboard.

wish to know how this differs from the interaction that might take place

with a person, or in this case, a human beat tracker. We might expect that,

if our beat tracker is functioning well, the B-Keeper trials would be ‘better’

or ‘reasonably like’ those controlled by the human tapper. We would

also expect them to be ‘not like a metronome’ and hence, distinguishable

from the Steady Tempo trials. These expectations will form the basis of

our hypotheses that are to be tested and we collected quantitative and

qualitative data in order to do so.

After each trial, we asked each drummer to mark an ‘X’ on an equilat-

eral triangle which would indicate the strength of their belief as to which

of the three systems was responsible. The three corners corresponded to

the three choices and the nearer to a particular corner they placed the

‘X’, the stronger their belief that that was the tempo-controller for that

particular trial. Hence, if an ‘X’ was placed on a corner, it would indicate

certainty that that was the scenario responsible. An ‘X’ on an edge would
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Figure 4.5: Sample sheet filled in by drummer Adam Betts.

indicate confusion between the two nearest corners, whilst an ‘X’ in the

middle indicates confusion between all three. This allowed us to quantify

an opinion measure for identification over all the trials. The human tap-

per (AR) and an independent observer also marked their interpretation

of the trial in the same manner. In addition, each participant marked the

trial on a scale of one to ten as an indication of how well they believed

that test worked as ‘an interactive system’. They were also asked to make

comments and give reasons for their choice. A sample sheet from one of

the drummers is shown in Figure 4.5.

We carried out the experiment with eleven professional and semi-

professional drummers. All tests took place at the Listening Room of

the Centre for Digital Music, which is an acoustically isolated studio
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space. Each drummer took the test (consisting of the three randomly-

selected trials) twice, playing to two different accompaniments. The first

was based on a dance-rock piece first performed at Live Algorithms for

Music Conference, 2006. The second piece was a simple chord progression

on a software version of a Fender Rhodes keyboard with some additional

percussive sounds. The choice of accompaniment will have an effect on

the drummer’s playing style and we chose these two pieces so they were

suitable for a straight-forward drum pattern and for variation using syn-

copation and fills. Whilst the human tapper was visible to the drummer,

we do not consider the visual communication channel to have had a large

effect on the ability of the drummer to distinguish between controllers. It

may help the human tapper to be able to use both auditory and visual

information follow the drums, but such information is often available to

musicians in a live performance. We recorded all performances on video

and audio and stored data from the B-Keeper algorithm. This allowed us

to see how the algorithm processed the data and enabled us to look in

detail at how the algorithm behaved and monitor how the tempo of the

accompaniment was changed by the system.

4.4.3 Results

We shall contrast the results between all three tests, particularly with re-

gard to establishing the difference between the B-Keeper trials and the

Human Tapper trials and comparing this to the difference between the

Steady Tempo and Human Tapper trials. In Figure 4.6, we can see the

opinion measures for all drummers placed together on a single triangle.

The corners represent the three possible scenarios: B-Keeper, Human Tap-

per and Steady Tempo with their respective symbols. Each ‘X’ has been

replaced with a symbol corresponding to the actual scenario in that trial.

In the diagram we can clearly observe two things:

There is more visual separation between the Steady Tempo trials than

the other two. With the exception of a relatively small number of outliers,

many of the steady tempo trials were correctly placed near the appropriate

corner. Hence, if the trial is actually steady then it will probably be
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Figure 4.6: Results where the eleven different drummers judged the three differ-
ent accompaniments (B-Keeper, Human Tapper and Steady Tempo) in the test.
The symbol used indicates which accompaniment it actually was (see corners).

identified as such.

The B-Keeper and Human Tapper trials tend to be spread over an

area centered around the edge between their respective corners. At best,

approximately half of these trials have been correctly identified. The dis-

tribution does not seem to have the kind of separation seen for the Steady

Tempo trials, suggesting that the drummers had difficulty telling the two

controllers apart, but could tell that the tempo had varied.

The deduction process used by participants generally involved them

first trying to determine whether the tempo had been steady or not. In

the majority of cases, this was successful, but some misidentifications were

made, particularly if the drummer had played to the accompaniment and
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not made much attempt to influence the tempo. In these cases, the dis-

tinction between an interactive accompaniment, which will adapt to you,

and one at a fixed tempo is harder to judge.

The second deduction to be made would be, in the case where the

tempo varied or the music appeared responsive, to discern whether the

controller had been B-Keeper or the Human Tapper. In order to do so,

there needs to be some assumption as to the characteristics that might be

expected of each. From interviews, we recognised that drummers expect

the human to be more adaptable to changes in rhythm such as synco-

pation and they may also have felt that a human would respond better

to changes within their playing. For instance, as drummer Tom Oldfield

commented: “I felt that was the human, because it responded very quickly

to me changing tempo.”

Case Studies

Joe Caddy

One dialogue exchange with Joe Caddy, an experienced session drummer

whose credits include hip-hop band Captive State, shows the kind of logical

debate in action.4

JC: [talking about the trials]: “The first one I gave 8 and I put actually

closer to human response. I played pretty simply and it followed it quite

nicely. The second one had no response at all to tempo on the drums.

The last one I gave 9 - great response to tempo change, I slowed it up, I

slowed it down. It took a couple of beats to resolve, but I think I put it

nearer the B-Keeper.”

AR: “Is that because you have some experience of the system?”

JC: “If it was human, I would have expected it to catch up more

quickly. I think because it took two or three beats to come in at the new

tempo, it was the B-Keeper.”

AR: “Same. I think it’s an 80 per cent chance that that was B-

Keeper.”

4JC refers to drummer Joe Caddy; AR refers to the first author, who acted as the Human
Tapper in all experiments.
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Figure 4.7: AR taps on the keyboard in time with drummer, Joe Caddy, during
one of the tests.

[Result is revealed: The first was B-Keeper; the last the Human Tap-

per, i.e. controlled by AR - the opposite to what both JC and AR have

identified.]

AR: “I just didn’t think it was that though. I guess it must have

been.”

JC: “The last test we did, I changed the tempo much more. Do they

surprise you those results?”

AR: ”The first I felt was me and I felt that the last wasn’t me.”

This exchange demonstrates how both a drummer and even the person

controlling the tempo can both be fooled by the test. From the point

of view of the key tapper, AR suggests that there is a musical illusion

in which, by tapping along to the drummer playing, it can appear to be

having an effect when in fact there is none. This illusion was stronger

when the B-Keeper system was in operation as the music would respond

to changes in tempo. This effect is reflected in the opinion measures

reported by AR, which we initially expected to be considerably higher for

the Human Tapper trials than the others, but had a mean of only 45%

(see Table 4.2).
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Figure 4.8: Data from the B-Keeper’s interaction with drummer Adam Betts.
The top graph shows the tempo variation. The second graph shows the errors
recorded by B-Keeper between the expected and observed beats. The final
two graphs show how the synchronisation threshold and window automatically
adapt, becoming more generous when onsets fail to occur in expected locations.

Adam Betts

The above study shows a scenario in which the B-Keeper was mistakenly

identified by the drummer (and the human tapper) as being the human-

controller. In one trial with James Taylor Quartet drummer, Adam Betts,

the machine had been calibrated to the standard setting, so as to be fairly

responsive to tempo changes. However, when he played a succession of

highly syncopated beats, the algorithm responded by making the syn-

chronisation window so wide that the machine was thrown out of sync.

In Figure 4.8, this can be seen happening after about fifty seconds, where

the pattern has changed so the onsets are no longer used by the tracker

to synchronise (dotted errors in second graph). When it eventually does

so at sixty to seventy seconds, an erroneous adjustment easily occurs due

to the size of the window and lower threshold.

In this case, it was immediately apparent that the controller was B-

Keeper since the tempo had varied and done so in a non-human manner.
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It had made an apparent mistake and all three involved in the exper-

iment, the drummer, the human tapper and our independent observer,

immediately concluded that this was B-Keeper. On the trial sheet, Adam

commented:

“Scary. Okay at beginning, but got confused and guessed tempo

incorrectly with sixteenths etc. When it worked, it felt good.”

Such an event happened only one time out of the the twenty-two tests 5,

but it is interesting since it suggests that the form of the experiment is

viable for similar reasons to those suggested by Turing. In the scenario of

the imitation game, if the machine did exhibit abnormal behaviour (for

instance, as he suggests, the ability to perform very quick arithmetical

calculations) or, as implied throughout Turing’s paper, the inability to

answer straight-forward questions such as the length of one’s hair, then

one could easily deduce it was the machine. In this case, the absence

of human tolerance to extreme syncopation is the the kind of ‘machine-

like’ characteristic that made it easily identifiable. In the language game,

where the Turing Test is usually applied, the ‘machine-like’ quality is often

evident. Trained computer scientists can spot the times when answers are

‘triggered’ by key words.

Analysis and Interpretation

The mean scores recorded by the drummers are given at the top of Table

4.2. They show similar measures for correct identification of the B-Keeper

and Human Tapper trials. Both have mean scores of 44%, with the con-

fusion being predominantly between which of the two variable tempo con-

trollers is operating. The Steady Tempo trials are identified the majority

of the time and have a mean confidence score of 64% on the triangle.

Each participant in the experiment had a higher score for identifying

the Steady Tempo trials than the other two. It appears that the Human

Tapper trials are the least identifiable of the three and the confusion tends

5This was due to incorrect parameter settings for the drumming style in question.
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Judged as:
Judge Accompaniment B-Keeper Human Steady

Drummer
B-Keeper 44 % 37 % 18 %
Human 38 % 44 % 17 %
Steady 12 % 23 % 64 %

Human B-Keeper 59 % 31 % 13 %
Tapper Human 36 % 45 % 23 %

Steady 15 % 17 % 68 %

Observer
B-Keeper 55 % 39 % 6 %
Human 33 % 42 % 24 %
Steady 17 % 11 % 73 %

Table 4.2: Mean Identification measure results for all judges involved in the
experiment. Bold percentages correspond to the correct identification

to be between the B-Keeper and the Human Tapper. In the trials involv-

ing B-Keeper, drummers were least confident about identifying it as the

controller. The researchers, who acted as independent observer and the

tapper, were more confident. In an analogous result, we might expect

the human tapper, the first author, to be able to distinguish the trials in

which he controlled the tempo, however, this often did not appear to be

the case. He was more successful at discerning the two trials where his

actions did not control the tempo.

We can polarise the decisions made by drummers by taking their high-

est score to be their decision for that trial. In the case of a tie, we split

the decision equally. The advantage of this method is that we can make

pair-wise comparisons between any of the controllers, whilst also allowing

the participants the flexibility to remain undecided between two possi-

bilities. Table 4.3 shows the polarised decisions made by drummers over

the trials. There is confusion between the B-Keeper and Human Tapper

trials, whereas the Steady Tempo trials were identified over 70% of the

time. The B-Keeper and Human Tapper trials were identified in 43% and

45% of cases respectively, little better than chance.
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Judged as:
Controller B-Keeper Human Steady
B-Keeper 9.5 8.5 4

Human Tapper 8 10 4
Steady Tempo 2 4 16

Table 4.3: Table showing the polarised decisions made by the drummer for the
different trials.

Judged as:
Controller Human Tapper Steady Tempo

Human Tapper 12 4
Steady Tempo 5 14

Table 4.4: Table showing the polarised decisions made by the drummer over
the Steady Tempo and Human Tapper trials.

Pair-wise Comparative Tests

In order to test the distinguishability of one controller from the other,

we can use a Chi-Square Test, calculated over all trials with either of the

two controllers. If there is a difference in scores so that one controller is

preferred to the other (above a suitable low threshold), then that controller

is considered to be chosen for that trial. Where no clear preference was

clear, such as in the case of a tie or neither controller having a high score,

we discard the trial for the purposes of the test.

Thus, for any two controllers, we can construct a table that shows pair-

wise polarised decisions between them. The table for comparisons between

the Steady Tempo and the Human Tapper trials is shown in Table 4.4. We

test the hypothesis that the distribution is the same for either controller,

corresponding to the premise that the controllers are indistinguishable.

The Chi-Square Test statistic for this table is 8.24 which means that we

reject the test hypothesis at the 5% significance level. This indicates a sig-

nificant separation between the controllers. Partly, this can be explained

from the fact that drummers could vary the tempo with the Human Tap-

per controller but the Steady Tempo trials had the characteristic of being

metronomic.

Comparing the B-Keeper trials and the Human Tapper trials, we get

the results shown in table 4.5. The Chi-Square test statistic is 0.03 which
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Judged as:
Controller Human Tapper B-Keeper

Human Tapper 9 8
B-Keeper 8 8

Table 4.5: Table contrasting decisions made by the drummer over the B-Keeper
and Human Tapper trials.

is extremely low, suggesting no significant difference in the drummers’

identification of the controller for either trial. Whilst B-Keeper shares the

characteristic of having variable tempo and thus is not identifiable sim-

ply by trying to detect a tempo change, we would expect that if there

was a machine-like characteristic to the B-Keeper’s response, such as an

unnatural response or unreliability in following tempo fluctuation, synco-

pation and drum fills, then the drummer would be able to identify it as

the machine. It appeared that, generally, there was no such characteristic

and drummers had difficulty deciding between the two controllers. It may

appear that having the Human Tapper visible to them would give them

an advantage, however, this did not prove to be the case as the similarity

between the computer’s response and a human tapping along was close

enough that often the observer and the human tapper were also unsure of

the controller.

The difficulty of distinguishing between controllers was a common fea-

ture of many tests and whilst the test had been designed expecting that

this might be the case, the results were often surprising when revealed.

We did not expect drummers to believe that steady accompaniments had

sped up or slowed down with them nor the human tapper to believe he had

controlled the tempo when he had not. This indicates a subjectivity to the

perception of time. It seems that some drummers had an enhanced ability

to spot a fixed tempo without even varying much, perhaps gained through

extensive experience. Matt Ingram, session drummer, who professed to

have been “playing to click for the last ten days, all day every day”, re-

marked of the Steady Tempo trial: “It felt like playing to a metronome,

’cause it was just there. Either that or your time’s great, ’cause I was

trying to push it and it wasn’t letting me.”
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Figure 4.9: Bar Graph indicating the different frequency of cumulative ratings
for the three scenarios - B-Keeper (black), Human Tapper (grey) and Steady
Tempo (white).

Ratings

In addition to the identification of the controller for each trial, we also

asked each participant to rate each trial with respect to how well it worked

as an interactive accompaniment to the drums. For an interactive accom-

paniment to work, it should achieve a close synchrony with the drums

and also be response to change. Our reasoning in obtaining ratings for

the accompaniments is that in addition to trying to establish whether the

beat tracker is distinguishable human tapper controller, it is also desirable

to compare the controllers through a rating system.

The cumulative frequency for these ratings over all participants (drum-

mers, human tapper and independent observer) is shown in Figure 4.9.

The Steady Tempo accompaniment was consistently rated worse than the

other two. The median values for each accompaniment are shown in Table

4.6. The B-Keeper system has consistently been rated higher than both

the Steady Tempo and the Human Tapper accompaniment.

The overall median ratings, calculated over all participants, were:

B-Keeper: 8; Human Tapper: 6; and Steady Tempo: 5.

It is important that not only was the beat tracker not significantly distin-

guishable from the human tapper, but it performed as well when judged by

both the drummer and an independent observer. The fact that the median
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Median Rating
Judge B-Keeper Human Tapper Steady Tempo

Drummer 7.5 5.5 5
Human 8 6.5 4

Observer 8 7 5
Combined 8 6 5

Table 4.6: Median ratings given by all participants for the different scenarios.
The combined total median is given in bold.

rating is towards the top end of the scale suggests that musically the beat

tracker is performing its task well. As the experiment was double-blind,

there was no bias within the scaling of the different controllers.

If we look at pair-wise rankings, we can assess the significance of this

difference between ratings. Firstly, we convert the rating out of ten into

a strict ordinal rating (allowing equality where necessary). The Wilcoxon

signed-rank test, e.g. [SS00], is a non-parametric statistical test that can

apply to test the hypothesis that the controllers’ rankings have the same

distribution. For more than twenty trials, the distribution for this test

statistic is approximately normal.

When contrasting the rankings given by drummers to B-Keeper with

the Steady Tempo and Human Tapper trials, the approximate Z ratios 6

are 2.97 and 2.32 respectively. Thus, we would reject the hypothesis that

the controllers are equally preferable at the 5% significance level in both

cases. The fact that the ratings are significantly higher for B-Keeper is

highly important as the primary aim is to create a musically successful

beat tracker for live drums.

4.5 Summary

In this experiment, we contrast a computer-based beat tracker with a

human tapper and metronome for the purposes of providing interactive

accompaniment to drums. B-Keeper has proved to be comparable in per-

formance, and aesthetically preferable, to the Human Tapper and is not

6normal with zero mean and unit variance
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distinguishable in any statistically significant way. The Steady Tempo

accompaniment was perceived as a less successful accompanist and was

statistically distinguishable from the two variable tempo controllers.

The musical Turing Test has proved a suitable framework for the eval-

uation of a beat tracking system. It is able to evaluate the subjective phe-

nomenon of musical interaction in a scientific context. Subjective claims

that a system works well are replaced by statements of indistinguishability

between the system and human that can be statistically tested. Whilst

subjective judgements are used within the test, both to identify the sys-

tem and to rate the quality of the accompaniment generated, the results

of the test have an objective validity. Since the musician is free to interact

with the system during the test, Turing’s original formulation is preserved,

although transferred from the domain of language to that of music. Tur-

ing replaced the question “is the computer intelligent?” by a behavioural

test, and similarly, our question “is the computer interacting well?” is

replaced by the question “is the resulting interaction distinguishable from

that with a human?”. The latter question is falsifiable whereas the former

relies on subjective opinion. Whilst subjective evidence can support the

claim, no number of occurrences of seemingly “good interaction” could

prove this to be true. The test might be applicable to other interactive

systems; for instance, a score-follower generating a piano accompaniment

could be evaluated within the same formulation. In cases where extensive

rehearsal is required with the system, this may be difficult to accomplish,

however, any musical scenario in which the computer’s role could be ade-

quately performed by a human could conceivably be suited to the musical

Turing Test.



Chapter 5

B-Keeper: Further Modifications

and Evaluation

Having carried out a successful evaluation of the system involving many

drummers, we decided to investigate whether adjustments could be made

to improve the algorithm. The musical Turing Test did highlight one sig-

nificant weakness of B-Keeper. Whilst the system worked well for simple

beats, a passage of complex syncopation by Adam Betts resulted in rapid

parameter adjustment that caused it to fail the trial, and more impor-

tantly, to speed up quickly. Jehan [Jeh05] has emphasised the bottom-up

nature of most beat tracking approaches and their failure on syncopated

and polyrhythmic music. This is attributed to a lack of metrical inter-

pretation of the incoming rhythm or top-down processing. The anomaly

during the trial occurred due to poor top-down interpretation of a com-

plex drum signal and the work described in this chapter aims to identify

and rectify this aspect.

One criticism of top-down models is that by using a set of rules, they

encode a cultural bias of musical interpretation. However, bottom-up beat

trackers may also encode a necessary bias through assumptions about the

nature of the signal, such as the implication that significant peaks in the

onset detection function correspond to beats. The top-down model enables

metrical theory, such as Lerdahl and Jackendorff’s GTTM [LJ83], to be

applied by a beat tracker so that a rhythmic signal is interpreted in a more

exact manner. The synchronisation weights, corresponding to drum pat-

terns, that are used by B-Keeper are a combination of a culturally-specific

prior, dependent upon whether the beat is strong or weak as defined by

123
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the GTTM, and the pattern learnt by recent observation. The hierarchical

structure proposed in the GTTM and other traditional theories of meter

is modelled explicitly in the new developments we describe, which will be

illustrated in the context of two case studies that have taken place.

5.1 Case Study A : Hook and the Twin

Hook and the Twin are a new UK band who make use of an innovative live

set-up. Tom Havelock plays bass, guitar, synthesizers live, with no pre-

recorded parts, making use of Ableton to loop each new section. The songs

tend to have linear structures so that the multiple layered instruments

work in different combinations. By using a MIDI footpedal, messages are

sent to trigger sets of instructions, such as bring in ‘all recorded loops’,

‘erase my last recording’, or ‘switch to bass’.

Since B-Keeper has been implemented via the use of Ableton Live, it

was capable of taking over control of the tempo, allowing drummer Marcus

Efstratiou the freedom of not wearing headphones. Testing was generally

successful, however, since the band were not only using the system to play

back previously recorded loops, they were also using it when recording

those loops and so it could not be guaranteed that the sequencer’s time

was identical to the drummer’s.

We experienced two conflicting needs of stability and responsiveness.

The trade-off between responsiveness and inertia has been commented on

by Gouyon and Dixon [GD05]. The band want the system to respond to

tempo changes “without dragging.” Marcus Efstratiou stressed the im-

portance of confidence in the system. One major requirement is that he

has “got to be able to speed up and know that it’ll follow me.” When this

was achieved through a high expander setting, it also resulted in insta-

bility since the standard deviation is thereby prone to increasing rapidly

during fills and off-beat syncopation. Ideally, we only want the expander

to increase when a beat is missed at a high metrical level, or to inter-

pret the input so that it synchronises with the tempo changes without

being thrown out of phase by complex patterns. It is possible that the

expander setting could be lower and a high beta setting should have been
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Figure 5.1: Illustration of how the algorithm behaves for events of differing
accuracy. The provision for sixteenths can be seen as notches, visible between
the Gaussian shaped windows around expected beat locations. The tatum
period in this example is fixed at 250ms.

used, which would fully correct any phase discrepancy. Since beta was

only 0.4, when phase correction is large but within the window, it only

corrects to 40% of the value, providing a more stable accompaniment, but

one that is less responsive. For the high expansion setting we used, a

discrepancy occurred between the timeclock of the drummer and that of

the sequencer. Since the recorded parts are played to the drummer, when

the synchronisation was varying, the timing error on the resulting loops

seemed exaggerated. When these reactive settings are used, the system

is highly sensitive to syncopation and becomes more reliable. We made

two significant changes to the algorithm incorporating a better top-down

interpretation of events.

5.1.1 Sixteenths

Conversations and tests with Marcus Efstratiou and Adam Betts pointed

out a weakness with the system. Presently, the lowest metrical level, the

tatum, was the eighth notes of a bar and the algorithm had no mechanism

for interpreting sixteenths. Whilst sixteenth notes are not always present

in standard drum patterns, the syncopation in James Brown’s ‘Funky

Drummer’ displaces snare events by a sixteenth note. Sixteenth hi-hat
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patterns are also found in rock music and have been particularly favoured

by British Indie bands in recent years. These events would otherwise be

interpreted as intended to happen on the beat and result in parameter re-

estimation and possibly synchronisation, causing a rapid tempo variation.

The mechanism implemented to correctly interpret sixteenths is de-

pendent upon the accuracy of the system. If the synchronisation window

narrows, so that the standard deviation is less than a third of the inter-

val between successive eighth notes (approximately 80msec at 120 BPM),

then a notch is created for sixteenth events. An event within this region

will be ignored by the system, which relies only upon eighth and quarter

notes to update tempo and phase estimation. These notches can be seen

in the accuracy function, shown in Figure 5.1.

5.1.2 The Layer Function

As previously introduced in Chapter 2, Lerdahl and Jackendorff’s Genera-

tive Theory of Tonal Music characterises rhythm as a succession of strong

and weak beats. They describe a set of rules to construct a hierarchy

of metrical levels, so that a strong beat at one level is a strong beat at

any lower level. B-Keeper defines each beat location as belonging to one

of four ‘layers’, which correspond to Lerdahl and Jackendorff’s metrical

levels. The equivalent layer for the B-Keeper system is the number of

dots below the corresponding bar position in Figure 2.1 of the GTTM’s

metrical structure shown in Chapter 2. B-Keeper also uses eighth notes

between the beats, which are counted at the higher tactus level. Thus, if

a bar is divided into eighth-notes, then the layer of a beat is determined

by its position in terms of eighth-note intervals from the first beat of the

bar.

Definition: The layer, l, is the maximum integer, n, such that the number

of eighth-notes, q, from the first beat of the bar is zero modulo 2n.

l = max{n ∈ N : q ≡ 0 mod 2n} (5.1)

Hence, the ‘one’ is layer 3, the ‘two’ and ‘four’ are layer 1 and the ‘three’

is layer ‘two’. Events on the other eighth notes are layer 0.
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The function works by storing which ‘layer’ the algorithm is currently

‘on’. It will still synchronise if a beat of lower layer is observed which

is more accurate than recent events at the higher layer, but will only

change the model parameters for beats at the higher layer and above. In

particular, it will not expand the window or lower the threshold unless

a beat of the current strong layer is missed, when it drops down a layer

and the window widens. The effect of the function is that the algorithm

is ‘looking’ for strong beats at the current metrical level. It will maintain

its tempo and phase through any amount of syncopation, so long as it can

successfully find the strong beat beyond. This function allows the beat

tracker to respond appropriately during fills and parts featuring expressive

timing, and to make an interpretative response to each incoming beat on

the basis of its bar position and recent playing history.

5.2 Case Study B : Free Improvisation

James Sedwards is a London-based guitarist in Nought, a instrumental

experimental rock band. He collaborated with drummer Jeremy Doulton

and Nought’s original drummer, Al Pickard, to help evaluate B-Keeper’s

performance on improvised music. In order to do so, the system was

synchronised by the supervisor (the author), and James Sedwards was

free to loop sections of guitar and bass. Video of their performances is

visible at the B-Keeper YouTube channel 1 and on the B-Keeper website2.

Pickard’s drumming is rhythmically complex and the duo have a long

history of collaborative playing. He describes an interesting scenario that

arose during the interactive process:

“It stuck more to me. The only times it was thrown was when

I played stuff I thought might throw it - that is too ambiguous

for it to understand possibly. There’s a certain scenario where

I’m trying to throw it and maybe my instinct is re-adjusted to it

and we’re chasing each other. I’m so used to playing to a fixed

1http://www.youtube.com/bkeepersystem/ as viewed 14th April 2009
2http://www.b-keeper.org/ as viewed 14th April 2009
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Figure 5.2: Errors from improvisation recorded with Al Pickard and James
Sedwards.

loop. I’ll be playing and used to that. I’ll shift the beat round,

but [here] if that causes a change, then it starts to change and

I’ll adjust to it. This is loose playing, stuff that would confuse

me. With James, we’ll flip it on its head and the audience goes

‘where are we?’ ”

5.2.1 Swing

The phenomenon of swing was discussed in Chapter 2. Swing and expres-

sive timing are differentiated from performance error only by a regularity

of occurrence. A beat that is ‘swung’, features a consistent uneven division

of each pair of eighth notes which constitute the beat or tactus. A ‘classic’

swing is often conceived as having a triplet feel, whereby the first note is

twice as long as the second and the corresponding ratio is 2:1. However, in

practice, the ratio between the notes exhibits considerable variation and

tends to decrease with tempo [Fri99]. A ‘funky groove’ will utilise a ratio

little over 1:1, so that the first eighth note might only be 55 to 60% of the

tactus interval.

The layer function enables beat tracking of swing patterns, since the

swung events are likely to be those on lower metrical levels. We tested the

system with looped recordings, made as demonstrations by Adam Betts

when interviewed, and the resulting beat tracking is very successful. The

quantity of swing for each event is represented in the graphics panel, shown
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Figure 5.3: B-Keeper’s graphics panel which displays statistical data to the
supervisor or drummer.

in Figure 5.3. The provision for swing could be extended for jazz music

by explicitly finding the constant pulse and discriminating between events

which are swung and those which are on the pulse. Whilst B-Keeper can

interpret swing on the weak beats, if strong metrical beats are swung,

then this could cause difficulties. A graphics window, shown in Figure

5.3, displays the beats of the bar, performance errors, swing and the bass

and snare drum patterns played.

5.3 Further Quantitative Evaluation

By examining the output of the algorithm, the adjustment of system pa-

rameters and statistical data such as recorded errors, we can check that the

algorithm behaves the way we would want under different circumstances.

In software engineering, tests may be carried out to ensure that require-

ments are met and stress tests may be carried out in more problematic

situations than we envisage taking place.
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Figure 5.4: Response of the algorithm to the looped drum solo from James
Brown’s ‘Funky Drummer’.

5.3.1 Analysis of James Brown’s Funky Drummer

In order to test the beat tracker on a definitive example of syncopation, we

looped the drum solo from James Brown’s Funky Drummer. Freeman’s

[FL02] analysis by hand discovered expressive timing on the snare events,

which were regularly displaced by up to 4.8% of the beat period.

The tempo output, shown in Figure 5.4, only varies between 100 and

102 BPM and thus is relatively steady. B-Keeper ignores many of the syn-

copated events, shown as dotted errors in the second graph. The synchro-

nisation window, visible as the blue line in the bottom graph, is maintained

below 40msec. The overall synchronisation errors are shown in Figure 5.5
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Figure 5.5: Mean squared errors for synchronisation to ‘Funky Drummer’.

and these are within our desired perceptual threshold of 30msec.

5.3.2 Gradual Acceleration

In order to check the B-Keeper’s response to a speed-up, drummer David

Nock played to a click track at 120 BPM, heard in his headphones, which

was subsequently sped up to 150 BPM over the course of 30 seconds.

This maintained the higher constant tempo before returning to 120 BPM

over the same interval. The algorithm’s response to his playing is shown

in Figure 5.6. The system reacts smoothly, increasing the window and

lowering the threshold to accommodate the change in tempo. Due to the

rapid rise in tempo, there is a latency between the speed up beginning at

35 seconds and the stabilisation at 48 seconds, when the error between

algorithm and drummer is within the perceptual threshold. This is due

to the time required for the algorithm’s parameters to adapt sufficiently

to compensate, shown in the third and fourth figures. In a performance,

a speed up of this kind would be relatively rare.

5.3.3 Silent Accompaniment

One clear test that the algorithm is following the drummer is by not pro-

viding any audio feedback. In this case the system is functioning reactively

to the drummer as opposed to interacting, but this demonstrates that the

system can follow a metrical structure without performer compensation.



5.3. FURTHER QUANTITATIVE EVALUATION 132

0 10 20 30 40 50 60 70 80

120

140

160
BPM Output from B−Keeper to Sequencer (blue) and underlying tempo (green)

BP
M

0 10 20 30 40 50 60 70 80

−100
0

100

Error between Expected and Observed Onset Values (solid used, dotted unused)

m
se

c

0 10 20 30 40 50 60 70 80

0.5

1
Synchronisation Threshold

Th
re

sh
ol

d

0 10 20 30 40 50 60 70 80

50
100
150
200

Window variation for Synchronisation Algorithm

Secondswi
nd

ow
 s

ize
 (m

se
c)

Figure 5.6: Output from B-Keeper with David Nock playing a regular drum
pattern to a click track which speeds up incrementally from 120 BPM to 150
BPM over the course of 30 seconds. The accuracy result and errors recorded by
the system are shown as diamonds in the third and fourth plots respectively.

During development, audio files of recorded drums were used to test the

system, equivalent to silent testing, which aided the iterative development

of the algorithm and highlighted potential difficulties.

During an evaluation session we examined the difference between inter-

active accompaniment and purely reactive (silent) accompaniment. Dur-

ing this test, B-Keeper successfully tracked the drums when no audio feed-

back was provided to the drummer, indicating that it is capable of reliable

beat tracking. Interestingly, the errors, shown in Figure 5.7, recorded when

feedback is given by the system (interactive) differed from those when the

system tracked the drummer without providing auditory accompaniment.
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Figure 5.7: Errors recorded by David Nock with dance-rock piece. The top two
figures show the errors recorded when accompanied by music from speakers.
The bottom two figures show the results when playing the same drum pattern
but without hearing the song. The errors are inverted here so +10ms means
10ms early.

In the latter case, the errors are still close to zero, as we would hope for

a reactive system, but the placement of the drummer with respect to the

click track has changed. It appears that the drums now are ‘behind the

beat’ as opposed to ‘ahead of the beat’ when the accompaniment is audible

to the drummer. This is consistent with David Nock’s placement of beats

when recording in the studio with an accompanying click track at a fixed

tempo and may relate to the previously discussed phenomenon of negative

asynchrony [Asc02]. A control is provided on the B-Keeper interface so

that the accompaniment can be offset relative to the interpreted beat if

required.
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5.3.4 Other Instrumentation

Initial tests using the B-Keeper on acoustic guitar suggest that it might

be possible to process other musical information when there is no signal

from the drums. B-Keeper’s methodology makes it suitable for adaptation

for other instruments. By using a very simple energy-based onset detector

and suitable settings on the B-Keeper, a percussive backing was provided

to an acoustic guitar input to the system.

5.4 Summary

In this chapter, we have presented new modifications to the beat tracking

algorithm as a result of extensive testing with live drummers and with

recorded audio files. By modifying the system’s parameters differently

depending upon information from top-down processing, the system im-

proves its negotiation of complex syncopation, tempo change and expres-

sive timing. We have also designed a new graphical interface to present

this information to the drummer or supervisor when using the system.

This interface displays performance information relating the drum pattern

played on the kick and snare, error information relative to the predicted

beat, swing information and shows the real-time adaptation of system pa-

rameters such as thresholds and window sizes in response to the musical

signal.



Chapter 6

Real-Time Multi-Pitch Tracking

Having developed a system for beat tracking with drums, we will now

consider the case of semi-percussive instruments such as guitar and pi-

ano. Beat tracking systems could function well on such signals to pro-

vide tempo estimates, but for automatic accompaniment we still require

accurate phase determination. Previous automatic accompaniment sys-

tems [Dan84] [Ver84] [Rap01] [Con08a] have made use of pitched notes

to match an accompaniment to a score. The detection and matching of

salient pitched events might be used to synchronise live and recorded au-

dio sources, thereby requiring real-time pitch tracking. Since we require

this for instruments that are not monophonic, we will first investigate

real-time multi-pitch tracking which outputs a MIDI representation of an

audio input. An alignment algorithm that synchronises two audio sources

by matching the resulting MIDI streams from the pitch tracker is pre-

sented in the appendix. In addition, a polyphonic pitch tracker would

useful as input to generative systems or in the creation of real-time musi-

cal controllers.

6.1 Introduction

Polyphonic or multiple pitch-tracking is a difficult problem in signal pro-

cessing. Much of the existing work in multi-pitch tracking has been in the

field of Music Information Retrieval which takes place offline on large data

135
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sets. Previous research into pitch tracking for interactive music has high-

lighted the importance of minimal latency and accuracy within noisy con-

ditions [dlCMS01]. Since our algorithm is employed for real-time audio-to-

MIDI conversion within a performance system, we require fast detection

of notes and low computation time.

We will first look at some previous approaches to the problem before

presenting a real-time algorithm for audio-to-MIDI conversion.

6.2 Pitch tracking techniques

A method for multiple frequency estimation by the summing of partial

amplitudes within the frequency domain was presented by Klapuri [Kla03]

[Kla06], who makes use of an iterative procedure to subsequently subtract

partials within a pitch detection algorithm. The salience s(τ) of a period

candidate is given by the equation

s(τ) =
M∑
m=1

g(τ,m)|Y (fτ,m)| (6.1)

where fτ,m = mfs/τ is the frequency of the mth harmonic partial of a F0

candidate fs/τ , fs is the sampling rate, and g(τ,m) defines the weight of

partial m in the sum. Y (f) is the short time Fourier transform of the

signal. In practice, the discrete Fourier transform is used. The signal is

pre-processed using spectral whitening in which regions of greater spectral

energy are ‘flattened’ to suppress timbral information, allowing the same

‘pattern’ of partials to be applied to all sounds. Since any fundamental

frequency f0 produces several peaks in the salience function s(τ) at peri-

ods corresponding to its partials, an iterative estimation and cancellation

scheme is employed. Iteration ceases when the quantity

S(j) =

∑j
i=1 ŝ(τi)

jγ
(6.2)

no longer increases, where γ = 0.70 (found empirically) and ŝ(τ) is the

approximated salience using discrete Fourier transform. With a framesize

of 46ms, the error rate is under 10% for monophonic audio, and approxi-

mately 15%, 27% and 36% (errors estimated from graph) for polyphonies



6.2. PITCH TRACKING TECHNIQUES 137

of two, four and six notes respectively. The number of sounds in the

mixture was provided to the estimator.

Pertusa [PI08] lists potential fundamental frequency candidates in or-

der of the sum of their harmonic amplitudes. At least two partials must

have amplitudes exceeding the threshold for any given fundamental to be

detected. The salience of all possible chord combinations is calculated per

frame and discontinuities of detection are reconciled. Short notes less than

six frames (56ms) are discounted. The accuracy on the same data set of

mixtures used for evaluation by Klapuri is 56.21%.

Zhou and Reiss [ZR08] make use of a complex resonator filter bank

to produce a time-frequency energy spectrum. A combination of onset

detection and multiple pitch estimation is used to transcribe polyphonic

audio, with the first four partials contributing to the energy recorded at

any given fundamental.

Algorithms for pitch detection need to account for inharmonicity in the

signal, whereby the ratio between partial frequencies and the fundamental

departs from perfect harmonicity. Wen and Sandler [WS05] explicitly

learn calculate the inharmonicity present in partials in order to aid the

pitch tracking process.

Approaches using non-negative matrix factorisation were originally in-

troduced by Smaragdis and Brown [SB03] and Abdallah and Plumbley

[AP04]. These attempt to learn a ‘dictionary’ of atomic sounds and, as-

suming sparsity, a signal can be decomposed as a linear sum of a small

number of these auditory atoms. For music transcription, each element of

the dictionary can model the combination of partials present in a pitched

note so that the atoms correspond to the individual pitches. The unsu-

pervised learning procedure, used to compute the dictionary, can be com-

putationally intensive. Cont [Con06] [CDW07] has applied the method to

real-time transcription by learning instrument templates. The resulting

transcribe∼ object has been used to generate input for a score following

system. One problem confronting such algorithms is that they require

static harmonic profiles, so that the ‘objects’ used to describe a note do

not change if the ratio between partials varies as the note decays.

Existing real-time algorithms for pitch detection include fiddle∼, a
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Max/MSP object by Miller Puckette based on a Fourier transform which

employs peak picking. Tristan Jehan [JS01] adapted the algorithm to anal-

yse timbral qualities of a signal. In the time domain, Alan de Cheveigné’s

Yin [dCK02] is a widely-known algorithm which uses auto-correlation on

the time-domain signal to calculate the most prominent frequency. How-

ever, both of these algorithms are designed for monophonic signals and

they are not reliable enough to generate a MIDI transcription of audio

from a polyphonic instrument.

6.3 Approach

We proceed from the assumption that a pitched note also causes peaks

to occur in the spectrum at frequencies corresponding to partials of the

fundamental frequency. We iteratively subtract these partials within the

frequency domain in order to aid a real-time pitch detector. A learning

method is employed to optimise the expected amplitudes of the partials of

each detected note by continually updating the weights whenever a note

is detected. In addition, we model the variations within the amplitude

and summed partial amplitudes of detected notes. The weightings for

each partial derived from observations are used within the decision-making

process that triggers a MIDI note-on message.

Implementation

Our algorithm has been implemented in Java within a Max/MSP patch

and in doing so, we made use of the fiddle∼ object by Miller Puckette

[PAZ98], in the pre-processing stage. Ordinarily, fiddle∼ provides its own

fundamental frequency estimation, but it also gives the raw data of the

top N frequencies from the peak picking process and their respective am-

plitudes above a suitable threshold. Since fiddle∼ has been optimised for

fast processing within a real-time environment, it is well-suited to provid-

ing an efficient FFT and noise reduction process used to provide the data

for our partial-removal system. We use a frame of 2048 samples with a

hop-size of 1024, so that our detection of notes is a fast as possible whilst

still detecting pitches as low as 80Hz.
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6.4 Method

Find peak frequencies in the spectrum

The ‘uncooked’ output of fiddle∼ provides a real-time list of the top N

frequency peaks of the spectrum and their amplitudes, where typically N

is between 8 and 20 for polyphonic audio. The system is capable of better

polyphony if N is higher.

Update the amplitudes

The algorithm continually tracks the amplitude of bins in the frequency

domain delineated by their corresponding MIDI note. First we calculate

the MIDI note for each of the incoming peak frequencies and update its

respective amplitude. We accept only a small number, under twenty, peak

frequencies from the spectrum. All other amplitudes are decreased by

20% for each input frame (every 23 msec) to allow for errors if notes are

accidentally skipped in this ‘top 20’ procedure. It is quite common in the

duration of a note, for one of the peak frequencies to shift to an adjacent

note in a frame and this prevents the original amplitude dropping to zero

(triggering a note-off).

Track new and existing notes

We begin with the lowest note and work up the range of frequencies. For

every note present in the incoming peak frequencies list and every note

already playing, we calculate the ‘power’ of the note, P (m), by summing

the product of the amplitude of the MIDI bin corresponding to the re-

spective partials with a weighting matrix, Wm(k), for that note. This is

given by

P (m) =
L∑
k=1

Wm(k)A(m+ h[k]) (6.3)

where A(m) is the amplitude of MIDI note m, L is the number of partials

summed (we chose L = 6), k is the partial number (the note’s frequency

as an integer multiple of the fundamental frequency), h[k] is the interval

in semitones between frequencies f0 and kf0, and Wm(k) is the weight
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Figure 6.1: Median power for triggered notes over the range of piano notes.
The power of played notes varies dramatically with pitch so that learning the
median value for triggering plays an important role.

vector, derived from the observed signal, of the amplitude of the kth partial

relative to the amplitude of the fundamental, specific for each individual

note in the spectrum.

Notes On and Notes Off

For currently playing notes, we look for a note-off event:

If P (m) < θ−.P̄ (m), then output a MIDI note-off event for pitch m,

where θ− is a threshold parameter and P̄ (m) is an estimate of the median

power of a positively detected note, dynamically calculated from triggered

MIDI note-on events. Figure 6.1 shows how this quantity varies over the

range of played notes.

For non-playing notes, we calculate the change in power as a ratio

between the current frame and the previous frame.

r(m) =
Pt(m)

Pt−1(m)
(6.4)

For a note-on event, we require that both the power of the note (the sum of

partials) and the amplitude (the fundamental) exceed suitable thresholds.

Thus, we check that the MIDI note has at least one partial note m+ h[k]

that is one of the top N peaks present in the incoming data from fiddle∼,

such that k <= 4. If the only partial present is k = 3 (19 semitones above

the fundamental), then we require that (m + 7), the fifth, is not also a
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peak. Then, the rule for a note-on is as follows:

If P (m) > θ+.P̄ (m) and r(m) > θr and A(m) > θa.Ā(m), then output a

MIDI note-on for pitch m,

where θ+, θa and θr are thresholds for the power, amplitude and ratio,

r(m), respectively.

This requirement ensures a significant measure of summed harmonic

amplitudes and a significant increase in this measure since the last ob-

served frame. In practice, values for the ratio threshold, θr, tend to be

between 1.4 and 3, depending on the level of response required. The higher

the ratio, the less likely the algorithm is to trigger a false positive.

In the case of a new note-on or if the current note was triggered within

the last three frames, we adapt our weights W (pn) that are used in the

summation process. Our current observation suggests:

W ∗(k) =
A(m+ h[k])

A(m)
(6.5)

We track how many observations have been made in the past and adapt so

W (pn) is the average of these and the new observation W ∗(pn). We per-

form this update for all notes within 5 semitones of the played note since

some notes are played less frequently, yet we can reasonably assume that

the tone and timbre with respect to partial weightings is approximately the

same as the surrounding notes. By including notes close to our observed

note, we adapt the weights more quickly to a useful approximation.

We also update our estimate for the median of the amplitude and power

of a note out at that MIDI pitch using an exponential moving average:

Ā(m) = (1− α).Ā(m) + α.A(m) (6.6)

where α (typically 0.2) defines the response of the median estimate to new

data.

Partial Subtraction

Having evaluated the current note’s strength, if the note is either playing

or a new note, then we subtract from the amplitudes of its partials higher

in the frequency range. High frequencies will have considerable amplitude
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Figure 6.2: Ground-truth MIDI from Bach’s ‘Well-Tempered Clavier’ (top)
and the MIDI output from the corresponding synthesized audio as input to the
pitch-tracker (bottom).

due to this lower fundamental, so the subtraction process helps to prevent

false positives from partials. Hence, we use the following update rule:

A(m+ h[k]) = A(m+ h[k])−Wm(k)A(m) (6.7)

for 1 ≤ k ≤ L. We aim to optimise these weights by introducing some

feedback at this stage. If the subtraction process results in A(k) becoming

less than zero, then we decrease Wm(k). If it is greater than zero then

we increase the weight. Hence, all playing notes function to optimise the

weighting function for the note and its associated neighbouring pitches.

There is an assumption here that for the majority of notes the in-

strument is relatively monophonic. The weights are adjusted on the basis

that if a fundamental is playing, the partial is not also playing as part of a

polyphonic chord. Whilst this may not be strictly true (as when an octave

plays), we hope that it true for the most part, so that when an octave does

play, the residual power in the first partial after the subtraction process

should still be substantial enough to trigger the recognition of the octave

note.
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Piece Correct False Number
Positive of notes

WTC1f 80.0 31.3 1075
WTC1p 71.0 39.3 833
WTC2f 76.4 36.8 647
WTC2p 78.4 27.3 1408
WTC8f 79.0 41.0 1014

Table 6.1: Detection Rates against synthesized harpsichord audio from Bach’s
Well-Tempered Clavier.

6.5 Evaluation

We have used the algorithm in live performances on an acoustic guitar,

using it to create a texture of synthesized sounds behind the guitar. By

filtering notes to an appropriate scale, we can help to avoid dissonance

from false detections. Experimentation with a MIDI-triggered electric

piano sound suggests that there is a detection latency between 60 and

90 msec. This is still quite considerable for use within a live context

when fast passages are played. By comparison, Miller Puckette’s bonk∼
onset detector has a latency of approximately 10 to 30 msec for the same

notes. However, the onset detector is able to make use of a frame-size of

256 samples (or 5.8 msec), whereas for the Fourier analysis involved in

adequate pitch detection, we require a frame-size of 2048 samples (or 46

msec).

When used within performance, this provides good subjective results.

To our knowledge, there is no existing Max/MSP polyphonic real-time

object available for direct comparison. The fiddle∼ and yin∼ objects are

monophonic and were not designed for polyphonic pitch detection, and

their use in this context gives subjectively poor results in comparison. We

would like to provide an objective measure of success within a performance

application. However, we can so far only compare with offline systems.

On this, we tested the tracker on several synthesized harpsichord

recordings of Bach’s Well-Tempered Clavier. By sending MIDI files to

a Yamaha Stage Piano and testing the pitch-tracker on the corresponding

synthesized audio, we can simulate the task of audio-to-MIDI conversion
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Piece Detected False Number Accuracy
(%) Positive of notes (%)

Synthetic
BWV828 46.0 38.0 496 35.9

Humoresque 42.1 49.6 545 27.8
Sonata no.15 61.1 22.4 651 52.0

Real
BWV810 50.1 43.7 652 39.2

Nocturne no.2 38.1 37.6 252 21.2
Entertainer 45.1 42.7 567 33.8

Table 6.2: Detection Rates against the piano data set used to test Sonic.

for a polyphonic instrument, whilst having ground-truth of the notes ac-

tually triggered.

A representation of the MIDI ground truth and the corresponding out-

put from the detector is shown in Table 6.5. The average latency measured

between 70 and 90 msec. The percussive, distinctive nature of the harpsi-

chord sound seems to be an optimal input for the pitch-tracker resulting

in high performance statistics of approximately 80% correct detections.

The precision currently appears to be comparable with some offline track-

ers. The MIREX 2007 [MMDK07] competition results rate offline trackers

with a precision of between approximately 40 and 70%. The equivalent

precision for our real-time pitch-tracker here would be over 50%, but it is

important to note that the MIREX competition uses a wide database of

varied sounds and hence the result on the Bach pieces may be artificially

high.

Marolt [Mar05] has developed an offline pitch-tracker, Sonic, spe-

cialised for piano input, which uses adaptive oscillators and neural net-

works. We also tested the tracker on excerpts from his data set using a

selection of three synthesized audio samples and three performances with

a real piano.

The synthesized pieces were: J. S. Bach, Partita no. 4, BWV828, ; A.

Dvorak, Humouresque no. 7 op. 101, ; W. A. Mozart, Sonata no. 15 in C

major, K. 545, 3. mvm.

The real pieces were: J. S. Bach, English Suite no. 5, BWV810; F. Chopin,
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Nocturne no.2, Op. 9/2; S. Joplin, The Entertainer.

The results are shown in Table 6.5. Sonic obtains a success rate of

approximately 90 % on this data set, with a false detection rate of ap-

proximately 9%, whereas our real-time tracker only succeeded in detecting

between 40 and 50% of the notes with considerably less precision (approx-

imately 40% false positives). A significant proportion of the false positive

rate is due to high frequency content from harmonics present within the

original signal, which are more tolerable in a live context than inhar-

monic and lower frequency errors. The accuracy measure, first proposed

by Dixon [Dix00], is given by:

Acc =
TP

TP + FP + FN
(6.8)

where TP is the number of true positives (correctly identified notes) and

FP and FN are the number of false positives and false negatives respec-

tively. An alternative frame-based evaluation metric is given by Poliner

and Ellis [PE07].

Our proposed system gives an overall accuracy result of 35.0% over

the six pieces in offline tests. The average polyphony on these pieces

varied from 2.7 to 4.4, which partially explains the low correct detection

rate since in these tests we used only the top eight peaks from fiddle∼
as input. Since we required both fundamentals and partials to be present

for a detected note, this limits the potential polyphony that our system

can accommodate. Marolt’s results correspond to an average accuracy

measure of 77.5% over six pieces used for evaluation, five of which were

used in our evaluation.

Although our figure is significantly worse than specialised systems de-

signed for offline polyphonic transcription tasks, the transcription is made

in real-time and our subjective observations are that it is very successful

in a live performance context. This raises the issue of how we can perform

an evaluation that fairly reflects success in such performances. In Chapter

4, we used subjective evaluation to assess the success of B-Keeper and this

is a potential direction for future work. Whilst the accuracy is not as high

as we would like for a multi-pitch tracking system, it is also useful as input

for an audio alignment algorithm which is describe in the Appendix.
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6.5.1 Potential Improvements

There are considerably many false positives in the higher registers, possi-

bly corresponding to higher partials whose frequencies are of integer ratios

higher than six relative to the fundamental pitch. Our algorithm has been

modelled explicitly on the kind of signal we expect to observe when a

note plays. We expect a note with a given fundamental pitch to cause the

observation of pitches corresponding to the higher partials of that funda-

mental. These are tracked in the observation process, firstly contributing

to the positive detection of the fundamental pitch as a note, and secondly,

they are removed from the observed pitch classes, so as to prevent false

positives. However, only the first few harmonics have been accounted for

and there are several false positives in the higher registers, such as at

34 semitones from the fundamental, corresponding to a frequency seven

times the fundamental, which are not subtracted at present. In addition,

it may be the case that there are other pitches which are regularly ob-

served, whose frequency does not have an integer ratio to a fundamental

present. These can be regarded as noisy observations. Thus, it may be

possible to subtract these noisy observations in a similar fashion to the

partials.

At present, we have assumed that a note creates minimal noise in other

bins than the partials. This simplification could be rectified by allowing

the note to create noise in all bins and learning the parameters in real-

time. It is strongly related to the problem of sparse coding [AP04], since

we would be using a non-negative matrix A, where ai,j represents the

contribution to MIDI bin i from a played note j. The array of amplitudes

We aim to investigate a new real-time implementation of the algorithm

with this new formulation.

6.6 Summary

We have presented a system for real-time polyphonic pitch tracking for

live performance applications, based on iterative subtraction of estimated

partial amplitudes from the frequency representation. Our approach uses
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a fast deductive procedure based on the existence of partials for any given

note. By continually updating estimates for the weight of the partials

relative to the fundamental, the median values for the amplitude and

power of all notes, our algorithm is capable of performing moderately

well on databases designed for offline multiple pitch-tracking algorithms.

Although the algorithm does not perform as well in objective tests as other

algorithms designed for offline use, our approach does give subjectively

high success in a live performance application.

Whilst this algorithm might be used to control MIDI devices from

conventional instruments, it can also provide harmonic information that

may be useful for performance systems. In the appendix, we present

initial work on an algorithm that attempts to synchronise recorded audio

with a live rendition. In this case, MIDI information resulting from the

pitch tracking algorithm is used to match between the two streams rather

than using rhythmic information. The pitch tracker could also be used in

interactive performance systems which make use of harmonic information

to generate a musical response.



Chapter 7

Conclusion

In this thesis, we have designed and evaluated a drum-based automatic

accompaniment system for rock bands and looked at other approaches that

may contribute towards the design of interactive music systems. Both B-

Keeper and the tracking algorithm presented in the appendix make use of

a design architecture in which parameters are used to describe the aspects

of the system’s behaviour. Each system processes temporal information

about high-level musical events (onset times in the case of B-Keeper and

MIDI note events in the case of the tracking algorithm) which result in

a tempo output to control the accompaniment and an adjustment of the

system parameters to control behaviour. The pitch tracking technique

presented in Chapter 6 provides harmonic information that may be of use,

either for alignment of an accompaniment system or when determining the

output of a generative system.

We have also made a contribution to evaluation studies for interactive

musical systems. The B-Keeper system has been evaluated using both

offline tests and through the musical ‘Turing Test’ which involved many

drummers. The results have been very positive, suggesting that it behaves

in a ‘human-like’ manner. There is a link here to research in cognitive psy-

chology, where experiments by Repp and others have led to the proposal

of a two-process model for human beat detection, in which phase recov-

ery is near-instantaneous and sub-conscious, whereas adaptation of tempo

is slower and involves recognition. B-Keeper’s main method to maintain

synchronisation is via fast adaptation of the accompaniment’s tempo to

rectify the observed phase differences, whilst adjustments to the underly-

ing tempo are slower to occur. The success of B-Keeper in experimental

148
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evaluation trials suggests that the two-process model is a viable when

implemented as a performance system for drums.

7.1 Thesis Contributions

We now summarise the main contributions of this thesis.

Drum Tracking

We present a novel method for drum tracking, incorporating top down

metrical information into bottom up event based processing. This brings

about an interpretative schema in real-time which simulates musical

understanding. The drum tracking system successfully follows the meter

of difficult drum passages, even when audio feedback is not provided to

the drummer. This level of synchrony is a major contribution towards a

full system for performance following.

Musical Turing Test

We introduce the musical Turing Test for the purposes of evaluating

musical systems where their role is one which could be carried out by a

human. In other fields of research, ‘discrimination tests’ which make clear

analogies to the ‘Turing Test’ have been used to evaluate algorithms,

however, by re-introducing the element of interaction present in the

original test, the formulation is closer to Turing’s original conception.

Multi-pitch tracking

We present a new real-time method for transcribing polyphonic audio

to MIDI which models the presence of partials of higher frequency

within the spectrum. Few real-time polyphonic pitch tracking algorithms

currently exist. Whilst its performance does not rival offline algorithms

for detection rate, the information provided could be valuable for use

within interactive performance systems.



7.2. FUTURE WORK 150

7.2 Future Work

The problem of tempo and phase induction is potentially separate from

that of how to maintain synchronisation. We have focused on the latter

problem which involves categorising new events and making use of key

information to update the hypothesis. Whilst this strategy has appeared

successful, it appears that the problem of synchronisation is more complex

than may be first supposed. We now describe some potential areas for

future research that have emerged from the work presented in this thesis.

Drum Tracking

B-Keeper is a beat tracking system that synchronises with a drummer

and is stable to fills, syncopation and tempo microchanges. The system is

available for download 1 and a version will be developed for the Max4Live

environment which integrates Max/MSP into Ableton Live.

At present, the system does not analyse audio input to detect tempo,

phase and bar boundary, but accepts a specific starting condition (either

by cue or through user input). A complete system for drums might analyse

audio to generate an approximate tempo hypothesis. For example, Davies

and Plumbley’s [DP07] work on tempo detection could be integrated with

B-Keeper to form a more complete system for drum tracking whereby their

algorithm could provide an initial tempo and phase estimation. Once a

stable estimate has been reached, these values could initialise the esti-

mates of B-Keeper system and trigger the accompaniment, thus allowing

a drummer to begin playing and the two beat trackers work in conjunction

with no prior information.

A robust system would be capable of handling more extreme events.

There is provision for a supervisor to intervene to recover from error,

but an automatic recovery process which could analyse the structure of a

piece across the temporal domain would be a significant advantage. In his

book ‘Sweet Anticipation’, David Huron [Hur06] extends Meyer’s [Mey56]

theory of meaning through expectation and describes the ITPRA theory,

1http://www.b-keeper.org
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motivated by the proposition that musical expectation involves five func-

tionally different psychological systems: imagination, tension, prediction,

reaction and appraisal. Whilst prediction is an important psychological

process in forming our response to music, retrospection also plays an im-

portant role through appraisal, whereby an event continues to be analysed

once further information has been received. Our system uses prediction

to react, but does not yet have any provision for short-term retrospective

analysis to inhibit or verify that response which might help to discrimi-

nate between ambiguous events and enable stability in more extreme cases

where the rhythm is more variable.

Pitch Tracking

Our assumption that a pitched note can be decomposed into a simple

sum of sinusoid partials is an idealisation. In practice, the Fourier spec-

trum resulting from a pitched note also contains energy in other bins,

such as those adjacent to all bins corresponding to partials of the given

note. Therefore, it makes sense to extend our approach by formulating

the problem as one of sparse decomposition using a non-negative matrix

factorisation, whereby a pitched note would cause a proportion of energy

in all bins rather than just the partials. Our aim will be to learn the sparse

decomposition for each pitched note in real-time and use this to optimise

the audio-to-MIDI triggering process. There is also the possibility that

timbral features could be analysed to extend the description beyond that

offered by MIDI representation.

Performance Following

There is potential to develop performance systems for a variety of instru-

ments and for combinations of those instruments. At present, the tempo

tracking algorithm in the Appendix measures only the relative tempos by

aligning MIDI information provided by the pitch tracking algorithm. We

would like to extend this algorithm by incorporating tempo estimation

on both streams of audio, so that salient features can be used to match

the phase of the signals whilst tempo could be estimated from both har-

monic and rhythmic features. This approach would improve reliability by
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interpreting live performances with harmonic instruments in a top-down

manner analogous to the rhythmic interpretation provided by B-Keeper

for drums. Further investigation into the representation of musical signals

might help this matching procedure. Both the event-based onset detection

used for drums and the use of MIDI representation for harmonic signals

have the benefit of simplicity, but they are less suitable for the represen-

tation of signals from instruments such as guitar or strings that do not

follow the keyboard paradigm.

7.3 Final Words

An important outcome of this thesis has been the necessity for phase

adaptation within tempo tracking systems for rock and pop music. Our

work in beat tracking suggests that the mechanism for synchronisation

needs to be highly accurate with respect to phase if the system is to be

useful for real-time accompaniment. We have also made use of a design

strategy in which the system changes its parameters as a result of incoming

information. The ability to recover from error and use multiple modes of

behaviour which can adapt to suit the musical context are critical for

autonomous systems.

Reflecting upon the work emerging from music psychology, there are

still several problems confronting real-time beat tracking system for all

types of instruments. We have mainly focused on the task of maintaining

synchronisation, but there are other problems for real-time systems that

relate to tempo and phase induction: when to start a song, how to recover

from mistakes, how to estimate tempo, phase and bar boundaries. If an

algorithm could gauge the reliability of its estimate, this would be valuable

when integrated into a larger performance system.

The unification of algorithms specialised for different instruments

would enable many new creative possibilities. An intelligent system ca-

pable of following the musical structure of a performance could provide

an interactive accompaniment, generate a musical response, and, by ex-

tension, could control visual aspects of the show such as robotics, video

images and lighting. Such a performance environment would respond both
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sonically and visually to the artists. This is an exciting direction for new

research at the boundary of art and science.



Appendix A

A Preliminary Algorithm for Audio

Synchronisation

We are interested in the problem of automatic accompaniment for har-

monic instruments such as guitar and drums. Whilst rhythmic informa-

tion might allow beat trackers to estimate the tempo of such signals, the

notes and chords played are the most useful information for phase align-

ment. The multi-pitch tracker described in the Chapter 6 has been in-

tended for use as input to an audio synchronisation algorithm. We will

now look at previous work in audio alignment and the related problem of

score-following before describing our approach to the problem.

A.1 Tracksuit: An Algorithm for Audio Synchroni-

sation

With the exception of Dixon’s MATCH algorithm [Dix05], accompani-

ment systems have tended to focus on scored music where it is natural

to formulate expectations on the basis of the next notes predicted by the

score. Each performer imposes their own interpretation by varying the

tempo and introducing expressive timing, but the same symbolic struc-

ture gives rise to our aural observations. Here we are aiming to provide

accompaniment to music which has similarity of structure but no score.

There are different possible approaches. We could look to extract

rhythm, tempo and timing information from the audio signal and use

this to synchronise the accompaniment. Alternatively, we could look for

salient events within the audio and seek to match these to their occurrence

154
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in our accompaniment. The B-Keeper system used the metrical structure

and tempo estimate, yet no prior knowledge of the performer’s part to

successfully synchronise drums. We will now describe a system developed

which has only a relative tempo estimate and uses pitched note events

to synchronise audio with an accompaniment. A pre-recorded version of

the same piece effectively provides prior information about which musi-

cal events occur in the accompaniment, but this information is provided

in real-time as synchronised audio rather than stored or learned from re-

hearsal.

A.1.1 Overview

Our motivation in developing the pitch tracker is to provide automatic

accompaniment when this could not be done via beat tracking of drums,

such as for a performance with a solo acoustic guitar or piano. We formu-

late the problem as one of matching a live audio stream to pre-recorded

audio of the same part. We make the assumption that the pre-recorded

version can function as a prior for the expectation of relative timing be-

tween acoustic events. Where this is an alternative take by the same

musician, it is likely that there is a correspondence between variations in

tempo and timing for the two takes.

We use the algorithm described in Chapter 6 to create a symbolic MIDI

representation of incoming audio and perform alignment upon both two

streams. Rather than estimate the tempo explicitly via beat tracking, we

choose to estimate the relative tempo and alignment or phase difference

through a sequence of matched events and thereby output a change in

tempo for the accompaniment to maintain or improve synchronisation.

Since pitch tracking is prone to error and the observations are potentially

noisy, this method functions as a computationally efficient averaging pro-

cess which uses the most accurate new observations to update the tempo.

The system is predictive since the song position of the recorded audio

stream can be either ahead of or behind the song position of the live

audio stream.

We assume that the algorithm has an estimate for the tempo and
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Figure A.1: Illustration showing the design of the algorithm. Relative tempo
and parameter re-estimation take place as a result of new alignments made of
the live and accompaniment MIDI streams.

phase that is approximately correct. This is satisfied initially by providing

a starting tempo and MIDI value of the initial note that triggers the

accompaniment. Such concessions would be appropriate in a performance

system. Additional parameters determine the behaviour of the system and

will be described below. Both the multi-pitch detection and the alignment

algorithm are implemented as Java externals within Max/MSP. Ableton

Live 1 is used as the audio sequencer to play the accompaniment audio

since the time-stretching capabilities of the software allow adjustment of

the tempo in real-time using two ‘warp markers’ at the beginning and end

of the recorded audio file as shown in Figure A.2.

1http://www.ableton.com
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Figure A.2: Warp marker in Ableton Live placed at the beginning of the audio
file. The tempo is set so that at 126 BPM it plays at normal speed.

A.1.2 Match Measure

The pitch tracking algorithm provides MIDI note-on and note-off data as

input to the tracking procedure. We rate the match of a pair of notes

according to the following criteria:

• Exact or partial Match, where one note is identical or corresponds

to an octave of the other

• Surprise or novelty of the note measured against the recent past (an

entropy-related quality)

• Volume

• Pitch: lower notes are considered more salient

Our inclusion of surprise or novelty is based on the need to make genuine

matches between the two streams. Grubb and Dannenberg [GD97] find

that successive note pairs having the same pitch are problematic for their

statistical model of the problem. In order to emphasise the first of such

successive sequences and harmonic change that is encountered, matches

are penalised when there have been other similar notes recently in the

stream. Thus we give priority to matches between notes which are novel

occurrences in both streams. For a note of MIDI pitch n, occurring at
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time Tn, r(m,n) corresponds to the number of recent notes in that stream

within the matching window wrecent that are the same or octaves of n:

r(m,n) =


1 if m = n and |Tm − Tn| < wrecent

0.5 if |m− n| = 12 and |Tm − Tn| < wrecent

0 otherwise

.

Then we weight all occurrences over the window wrecent:

z(m,n) =
∑
m

r(n,m)g(Tm, Tn, 0.5wrecent), (A.1)

and the ‘surprise’ function, S(n), for the new note n is given by:

S(n) = 0.5z(m,n) (A.2)

The window wrecent determining what constitutes the recent past is dy-

namically changed so that the median is 0.7. The resulting match measure

is:

M(nl, na) = S(nl).S(na).V (nl).V (na).P (nl, na) (A.3)

where nl and na are the MIDI pitches of the live and accompaniment

streams respectively, and P (n) measures whether the notes are identical

or related as octaves:

P (nl, na) =



1 if nl = na

0.5 if |nl − na| = 12

0.25 if |nl − na| = 24

0 otherwise

.

V(n) is the normalised volume which provides a bias towards louder notes.

For all matches satisfying M(nl, na) > θmatch, where θmatch is a dynamic

threshold, we calculate the alignment time, defined as the time difference

between the two events:

An = Tna − Tnl , (A.4)

where Tnl and Tna are the times of the live note and accompaniment note

respectively.
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The algorithm has a running estimate for the alignment which is

used to select from the wide number of potential matches resulting

from equation A.3. We calculate a non-normalised Gaussian of the

observation with respect to our current estimate for the alignment,

An (described below). The standard deviation which reflects uncer-

tainty in the matching procedure and is a parameter that can be updated

to change the algorithm’s response. Thus, we define: g(x, µ, σ) = e−
(x−µ)2

2σ2 .

Then, if M(nl, na).g[An, An, σalign] > θalign, we accept the match and up-

date our estimates for the alignment.

A.1.3 Tempo Adjustment

The tatum is defined by Bilmes [Bil93] as the smallest temporal atom.

Here we adopt the term, although τacc can be assumed to refer to the

duration of an eighth note of the accompaniment stream. For each align-

ment, Ak, we will make an adjustment to the tatum of ∆τk milliseconds.

Then the effect of these recent adjustments will have accumulated, so that

for a previously observed alignment of time difference, Ak, our prediction

for the current alignment is:

E[An|Ak] = Ak +
n−1∑
p=k

∆τp.
Tn − Tp
τacc

(A.5)

We can now calculate the expected alignment, which we shall denote

E[An], by summing the expectation over all recent alignments and weight-

ing the expectations:

E[An] =

∑K
k=1Mkrkg(An, E[An|Ak], σx)E[An|Ak]∑K

k=1Mkrkg(An, E[An|Ak], σx)
(A.6)

By including the measure term, Mk, we favour those matches which had

higher measure according to equation A.3. The sum over the recent K

terms is determined by a window within which we will use previous ob-

servations. We used the most recent 15 observations and weighted them

according to how recent they are by an additional function r, defined by:

r(k) = g(tn − 600, tk, 4000). (A.7)
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The Gaussian, g(An, E[An|Ak], σx) biases our mean expectation to those

observations in the past which agree with our current observation. Meth-

ods used to adjust σalign dynamically are described below.

From these expectations, we can generate a running estimate of the

alignment difference, An, using an exponential moving average:

An = αE[An] + (1− α)An−1. (A.8)

We wish to minimise An whilst also minimising change to the tempo and

taking into account that our estimate may not be exact. Early attempts

to synchronise purely on this estimated alignment difference exhibited

a tendency to oscillate between positive and negative phase difference.

Only by modelling the relative position and tempo of the two streams can

suitable adjustments be made to bring about synchronisation. The aim

of the decision process is to minimise such fluctuation whilst maintaining

a responsiveness in the tracker so that alignment differences are rectified.

We thus require an estimate for the change to the average alignment for

recent matches since the relative tempo will have considerable effect on

our synchronisation decision. Thus,

E[∆An|Ak] =
An − E[An|Ak]

Tn − Tk
τacc +

n−1∑
p=k

∆τp, (A.9)

where E[An|Ak] is defined as in equation A.5, but substituting the align-

ment estimate, Ak, for the observation Ak. The combination of estimation

procedures gives rise to two estimates: the alignment difference, An, and

the estimated relative tempo, ∆An.

In order to adjust the alignment, we have chosen to make a suitable

compensation so that the alignment prediction three bars in the future

is zero according to our alignment and relative tempo estimate. This

assumes that the change in relative tempo is zero and the three bar limit

(twenty four tatum intervals) was chosen so that phase rectification is fast

but not too sudden.

∆τn = −(An + 24∆An)

24
(A.10)

Then we set τacc to be τacc + ∆τn. This tempo change is limited to a

maximum of 6 BPM over three seconds in order to prevent any extreme
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fluctuations. This can be adjusted if necessary, although since the pre-

recorded audio is expected to be an alternative take, then we expect the

two streams to be commensurate in tempo.

A.1.4 Adaptation of System Parameters

Having used Gaussians to model the expected prior probability distribu-

tion around our mean estimate, we require a rule to adapt this distribution

dependent upon the data. The standard deviation reflects our uncertainty

in the estimate, so where the observation supports the estimate, the stan-

dard deviation is decreased. When a new observation agrees with our

estimate enough to be considered valid, but the alignment gaussian is low,

then we increase the standard deviation.

A formal solution to this problem may require a more complete

Bayesian formulation, but this could also be computationally problematic

in a real-time system and require training. We describe how an estimate

obtained from dynamic programming can be used below.

A.2 Evaluation

Evaluation is a difficult issue for real-time systems since we are interested

in the subjective experience of performing with the system rather than

statistical measurements obtained in tests. However, the use of recorded

audio does provide an objective measure in the absence of interaction.

We tested the algorithm by attempting to synchronise recordings of pieces

from Bach’s Well-Tempered Clavier performed by Friedrich Gulda to ren-

ditions by Keith Jarrett. Ideally, the accompaniment would consist of

a previous rendition by the same performer so that the recorded perfor-

mance contains similar stylistic deviations of tempo and expressive timing

that the musician makes during the piece. The use of different perform-

ers is a stricter test of the algorithm. The system was set with an initial

tempo gauged by ear so the two tracks were approximately synchronised

and the MIDI value of the first note to trigger the accompaniment. Due
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Figure A.3: Observations above the accuracy threshold in the alignment window
(triangles) and the resulting alignment estimate (solid) of the algorithm for
Prelude No. 9 of Bach’s Well-Tempered Clavier.

to the minor latency involved in starting, we generally observed the ac-

companiment speed up to ‘catch’ the accompaniment audio and then slow

to achieve synchronisation as can be seen in Figure A.3.

Goto and Muraoka [GM97] suggest the use of the Longest Continuous

Segment for beat tracking evaluation. We indicate whether there was an

adequate synchronisation was achieved. Out of the pieces tested, 21 of 24

were successfully followed from beginning to end. Subjectively the algo-

rithm seems successful at synchronising the two audio files and listening to

them simultaneously, one hears shifts in phase between the performances.

In over half the pieces tested, the median and the mean were under 100ms.

Given that there is no auditory feedback or genuine interaction, this is an

impressive result.

The three cases where synchronisation failed demonstrated potential

improvements that could be made to the algorithm. The common feature

was a divergence in tempo between the two performers that was beyond



A.2. EVALUATION 163

Results Aligned Mean Median Maximum
Prelude No.1 Y 55 40 240
Fugue No.1 Y 93 60 240
Prelude No.2 N 4129 1840 17000
Fugue No.2 Y 20 20 40
Prelude No.3 Y 49 60 140
Fugue No.3 Y 38 20 140
Prelude No.4 Y 60 135 460
Fugue No.4 Y 142 120 400
Prelude No.5 Y 64 60 300
Fugue No.5 Y 298 280 740
Prelude No.6 Y 83 40 460
Fugue No.6 Y 233 100 1500
Prelude No.7 N 2180 4027 18420
Fugue No.7 Y 54 60 120
Prelude No.8 N 1123 440 6320
Fugue No.8 Y 135 60 660
Prelude No. 9 Y 54 40 180
Fugue No.9 Y 29 20 80
Prelude No.10 Y 592 100 2760
Fugue No.10 Y 174 200 260
Prelude No.11 Y 70 40 260
Fugue No.11 Y 65 40 400
Prelude No.12 Y 235 200 640
Fugue No.12 Y 219 60 1060

Table A.1: Results showing the errors (in msec) from synchronising pieces from
Bach’s Well-Tempered Clavier by Friedrich Gulda to recordings by Keith Jar-
rett. Overall synchronisation is indicated by a Y or N in the second column.

the scope of the algorithm to compensate for. Whilst our assumptions

stated that the piece should provide a suitable prior estimation for the

future event distribution if played at identical tempos, by using renditions

of the same piece by different musicians, the challenge to synchronise was

thereby harder than in the case when our assumption holds true. However,

divergence through tempo deviation is likely to occur in a performance and

the system clearly requires a means of error recognition and recovery. This

is discussed below.

We recorded the same statistics as used by Dixon [Dix05] for offline
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evaluation of his MATCH algorithm: the mean, median and maximum

error in alignment during each piece. These exclude a short (14 second)

segment at the beginning and end of each piece to account for the problems

of initial synchronisation and the tendency for dramatic ritardando at the

end of pieces. If included, these have the potential to be misleading.

In order to generate statistical data, we performed an alignment in

Sonic Visualiser [CLSB06] using Dixon’s MATCH algorithm. This pro-

vides us with annotated ‘ground-truth’ data from which the mean, median

and maximum were extracted. There could be some error introduced by

this offline alignment process, but generally it is expected that this would

be minimal compared to the real-time alignment differences experienced.

The results are tabulated in Table A.1. The degree of synchronisation

appears acceptable and agrees with our aural perception that the algo-

rithm succeeds in real-time synchronisation and has strong potential as

an interactive performance tool.

A.2.1 Error Recovery

There are several potential pitfalls for a system which seeks to classify

observations and make explicit calculations in this manner. It would diffi-

cult to train such a system using ‘ground-truth’ data since the algorithm

adjusts the accompaniment in real-time hence affecting the tempo. In ad-

dition, there may be no optimal tempo change in a given situation. Since

our aim is for the accompaniment to be aesthetically acceptable, we have

attempted a balance between fast synchronisation from perceived error

and tempo smoothness. Potentially offline algorithms could test the least

squared error that could result from a line of best fit and the algorithm

could be evaluated with respect to this bound, and this is a potential area

for inquiry.

The major problem faced by our algorithm is that there is no provision

to check whether the current estimate is indeed approximately correct

across the range of potential values. We rely on the assumption that our

alignment estimate is in the general locality of the optimal alignment so

that the matches used by the algorithm are for note events that ought
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Pitch C#5 F#6 B6 D5 G5 C#5
values
C#6 29.74 30.01 30.28 30.01 30.28 30.01
D5 29.47 29.74 30.01 31.28 31.01 30.73
G5 29.20 29.47 29.74 31.01 32.28 32.01

C#5 29.93 29.66 29.47 30.74 32.01 33.28
G#6 29.66 29.93 29.66 30.47 31.74 33.01
B4 29.39 29.66 29.93 30.20 31.47 32.74

C#6 29.20 29.39 29.66 29.93 31.20 32.47

Table A.2: Dynamic Programming on two pitch sequences within our alignment
evaluation. The winning alignment is shown in bold.

to be synchronous. When this estimate was approximately correct, the

tempo adjustments made often synchronised the audio with mean and

median under 100 to 200 msec as seen in Table A.1. However, there was

no mechanism to know when the observations had become less reliable

and seek a new estimate.

One option might be to look at the density of notes and the density and

accuracy of matches. However, when the audio-to-MIDI conversion is not

necessarily accurate, there may be a low density of matches even when the

alignment is correct. The problem is how to analyse the match across the

whole range of potential values. Whilst generating a probability distribu-

tion for the alignment estimate is not possible in real-time, it is possible to

calculate the optimal alignment according to a classic dynamic program-

ming algorithm. In his 1984 ICMC paper, whilst using dynamic program-

ming to calculate the alignment, Dannenberg [Dan84] also describes the

method as a potential means by which a computer can recover from er-

ror. We implemented a secondary algorithm based on Dannenberg’s that

penalises added or skipped notes, and rewards correct matches, defined so

that the alignment rating, d(i, j), between observed notes nl(i) and na(j)

of the live and accompaniment accompaniment streams can be calculated
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iteratively:

d(i, j) = max
{ d(i− 1, j)− w,
d(i, j − 1)− w,
d(i− 1, j − 1) + δ(nl(i), na(j))

}
, (A.11)

where w is the cost of a non-match, d(0, 0) = 0 and δ(a, b) equals 1 if and

only if a equals b. Table A.2 illustrates the algorithm used on our test

data with the penalty w set to 0.27.

This can be applied to the adaptation of system parameters as de-

scribed in section A.1.4. If the resulting estimate is outside the expected

window around our alignment estimate, An, then we increase the standard

deviation, σalign, and if it is inside then we decrease it. Although this esti-

mate can fluctuate between values, this method sets an equilibrium for the

expectation window in which matches are accepted so that the standard

deviation used is the median error between the dynamic programming

algorithm and the tracksuit algorithm described in section A.1.1

Currently we are investigating the use of the dynamic programming

estimate for the purposes of automatic recovery so that the algorithm is

robust when experiencing unexpected timing deviations between the live

audio and accompaniment. One problem encountered by this form of

dynamic programming is that the order of notes in chords can be reversed

resulting in a less than optimal path cost for a correct match. A clustering

algorithm has been suggested by Dannenberg although, in this context,

it is less critical than when the algorithm’s result is used to align the

sequences directly. Initial results look promising for this dual system.

A.3 Discussion

Figure A.4 shows the algorithm’s output when tracking a song on the

guitar. The errors within our matching window are scattered more widely

and thus providing less precision as to tempo and song position. Whilst

tests with piano were moderately successful, this may be accounted for by

the fact that there are many note variations that provide many alignment

points for the algorithm. When guitar is used as input, the part often
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Figure A.4: Observations within the alignment window (triangles) and the
resulting alignment estimate with a guitar part.

involves ‘strumming’ a sequence of chords.

The advantage in using MIDI representation is that it is computa-

tionally less demanding since the data is reduced to note-on and note-off

timing information and volume. However, although it is successful at

tracking piano which suits representation in this form, our audio-to-MIDI

algorithm does not adequately represent the information in a guitar signal.

Chromagram analysis [HS05] or chord recognition [SP09] might prove an

alternative to MIDI representation for the guitar.

We aim to investigate the integration of several algorithmic techniques

to create a more robust system. In particular, beat tracking could guide

the tempo calculation process described above, whilst harmonic change

could be used to determine the phase difference. Adaptation of Dixon’s

MATCH algorithm for real-time use would also provide an alignment es-

timate that could be used in this process either as an estimate or to adapt

the behaviour of the system’s parameters.
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A.4 Summary

We have presented a synchronisation algorithm for audio sources which

makes use of MIDI streams for the alignment process. The results indicate

that symbolic MIDI may be usable for the purposes of synchronisation,

provided these denote reliable salient onsets in the signal. We also aim to

to contrast these results with those achieved by including other features

such as spectral difference.

At present, our algorithm is not as reliable we would ideally hope for

in a performance system. However, sequence alignment could be used

to improve the algorithm, particularly in periods of uncertainty when it

is searching for the best estimate. In these cases, sequence alignment

could provide a coarse estimate of the probability distribution at different

alignment times, so that closest to the current estimate could be chosen.

By switching between two modes, the modelling algorithm could be used

to adjust small variations in the tempo to optimise the synchronisation

and the sequence alignment could search for a new estimate if matches no

longer occur close to the estimate.

We aim to investigate similar approaches when using lower-level infor-

mation. In using only high-level musical information, we inherently reduce

the information content of the signal to a symbolic level, discarding some

of the information present in the signal. However, if this symbolic level,

focusing on pitched note onsets is the important feature that we require to

be synchronised, then this has two advantages. We have less noise in our

feature and the computation time is significantly improved since we cal-

culate synchronisation on an event-based level rather than the frequency

or time domain.
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