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Abstract 

An integrated approach for addressing the problem of synthesizing artificial 

seismic accelerograms compatible with a given displacement design/target spectrum is 

presented in conjunction with aseismic design applications. Initially, a stochastic 

dynamics solution is used to obtain a family of simulated non-stationary earthquake 

records whose response spectrum is on the average in good agreement with the target 

spectrum. The degree of the agreement depends significantly on the adoption of an 

appropriate parametric evolutionary power spectral form which is related to the target 

spectrum in an approximate manner. The performance of two commonly-used spectral 

forms along with a newly proposed one is assessed with respect to the elastic 

displacement design spectrum defined by the European code regulations (EC8). 
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Subsequently, the computational versatility of the family of harmonic wavelets is 

employed to modify iteratively the simulated records to satisfy the compatibility criteria 

for artificial accelerograms prescribed by EC8. In the process, baseline correction steps, 

ordinarily taken to ensure that the obtained accelerograms are characterized by physically 

meaningful velocity and displacement traces, are elucidated. Obviously, the presented 

approach can be used not only in the case of the EC8, for which extensive numerical 

results/ examples are included, but also for any code provisions mandated by regulatory 

agencies. In any case, the presented numerical results can be quite useful in any aseismic 

design process dominated by the EC8 specifications.  

 

Keywords: Response Spectrum; Stochastic Processes; Accelerograms; Evolutionary 

Power Spectrum; Harmonic Wavelets; Eurocode 8.   

 

1. Introduction 

Traditionally, code provisions for aseismic design of structures describe the 

seismic severity by means of smooth design (response) elastic and inelastic spectra. This 

practice facilitates significantly the design of regular structures in the framework of 

equivalent linear static or dynamic analysis incorporating proper modal combination 

rules. However, aseismic code regulations prescribe additional linear and/or non-linear 

dynamic time-history analyses to be performed for the design of facilities of critical 

importance and of structures incorporating non-conventional means of protection against 

the seismic hazard (e.g. seismic isolation, energy dissipation devices, tuned-mass 

dampers e.t.c.). In these cases, the input seismic action is represented by a suite of “real” 
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recorded earthquake accelerograms associated with historical seismic events or by an 

ensemble of numerically simulated earthquake signals. Typically, the response spectra of 

the adopted time-histories must satisfy certain criteria of compatibility with the elastic 

design spectra. 

There are several factors likely to contribute to the extensive use of time-

integration analyses for the mitigation of the seismic hazard in the built environment in 

the near future. These include the availability of more powerful computers, the increased 

capabilities of commercial software to account for potential inelastic behavior of 

structural systems, the need for constructing ever more sophisticated structured facilities 

(e.g. base isolated structures, nuclear power plants e.t.c.), and for upgrading/retrofitting 

the important/damaged existing ones. In this context, the development of dependable 

tools to make readily available realistic design spectrum compatible seismic 

accelerograms satisfying the related aseismic code provisions to practitioners is quite 

pertinent. 

 Most of the early methods for the generation of response spectrum compatible 

earthquake records are cited in the review articles of Ahmadi [1], and Spanos [2]. More 

recent commonly-used methods for the purpose are described in the studies of Preumont 

[3], Naeim and Lew [4], and Carballo and Cornell [5].  

Lately, the problem at hand has been addressed by several researchers using 

various non-traditional in the field of structural dynamics techniques. Wang et al. [6] 

processed a collection of real accelerograms via the adaptive chirplet transform to reach a 

joint time-frequency representation of the signals. Similarly, Wen and Gu [7] utilized the 

empirical mode decomposition algorithm in cascade with the Hilbert transform to derive 
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an alternative time-frequency representation of individual accelerograms. In both of these 

studies, the derived representations were used in conjunction with a common random 

field simulation method to produce artificial seismic records possessing frequency 

content and response spectra of similar characteristics to those attained by the original 

recorded signals. Gupta and Joshi [8] and Shrinkhade and Gupta [9] cast the problem on a 

purely stochastic basis by deriving response spectrum consistent power spectra. Then, the 

phase characteristics of certain real accelerograms were used to introduce non-stationary 

attributes in the generated artificial time-histories. Conte and Peng [10] obtained similar 

results by considering a time-dependent (evolutionary) power spectrum numerically 

estimated by individual real acceleration time-histories. Subsequently, non-stationary 

artificial accelerograms compatible with this evolutionary power spectrum were produced 

by way of a special adaptive least-square fitting scheme. Lin and Ghaboussi [11] 

considered a relatively large ensemble of real accelerograms to “train” an appropriately 

constructed stochastic neural network. Hence, the trained network was used to generate 

artificial signals of comparable spectral and waveform characteristics with those of the 

ensemble accelerograms given a design spectrum as input.  

From a deterministic viewpoint, Karabalis et al. [12] incorporated certain 

numerical schemes to appropriately modify individual recorded accelerograms so that 

their response spectra are in close agreement with a given design spectrum. Mukherjee 

and Gupta [13] and Hancock et al. [14] employed wavelet-based methods in the 

frequency and in the time domain, respectively, for the same purpose. A considerably 

different approach was proposed by Naeim et al. [15], incorporating a specific genetic 

algorithm to select and scale in the time domain a proper subset of recorded 
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accelerograms out of a large databank obeying to certain design spectrum compatibility 

criteria.  

Obviously, in the preceding methods and in most of other ones proposed in the 

literature, a suite of real seismic accelerograms is assumed to be available to the designer. 

Ideally, it should include strong ground motion time histories recorded under certain soil 

conditions and seismological environments related to the design spectrum with which 

compatibility is ultimately pursued. Even though databases of recorded accelerograms are 

being gradually extended, the formation of such a suite of signals may not be readily 

feasible for specific seismically active regions. For instance, in some cases, such 

databases contain incomplete background information about the provided signals. 

Furthermore, the regulatory agencies may only provide a very “loose” classification of 

soil types, while typically no detailed information is included about the seismogenetic 

features of the source(s) considered in the definition of the design spectrum.     

To circumvent the above requirement and the limitations of the deterministic 

methods, a stochastic approach originally established in Spanos and Vargas Loli [16], is 

followed in this paper to obtain ensembles of seismic records whose average response 

spectrum bears close resemblance with a given design (response) spectrum. It should be 

noted that this approach accounts for the non-stationarity of the generated signals in a 

more direct manner than in the previous studies of Gupta and Joshi [8], and Shrinkhade 

and Gupta [9]. In particular, a simulated earthquake accelerogram is construed as a 

sample of a non-stationary zero-mean random process characterized by an analytically 

defined uniformly modulated evolutionary power spectrum (EPS) [17]. The latter 

spectrum is related to the design spectrum through an approximate formula involving the 
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maximum variance of the amplitude of the response of a single-degree-of-freedom 

oscillator to a non-stationary stochastic excitation. An appropriate minimization problem 

is formulated and solved numerically to determine the requisite parameters defining the 

EPS. Upon determination of the EPS, an auto-regressive-moving-average model is 

employed to simulate non-stationary artificial accelerograms compatible with the EPS 

[18]. The obtained signals are then individually modified by means of the harmonic 

wavelet transform [19, 20], in the context of an iterative scheme [13], to improve the 

agreement of their response spectra with the target design spectrum. It is noted that the 

unique attributes of the generalized harmonic wavelets provide enhanced flexibility in the 

representation of signals throughout the frequency domain which enhances significantly 

the efficiency of the original matching procedure of Mukherjee and Gupta [13]. In the 

process, an efficient baseline correction technique is utilized [21] to yield accelerograms 

possessing physically proper velocity and displacement traces. 

 The proposed methodology encompasses two distinct formulations: the stochastic 

formulation where an appropriate EPS must be defined and the iterative matching 

formulation whose efficiency depends on the construction of the harmonic wavelet basis 

functions. Both of these formulations are extended and/or customized with respect to the 

elastic displacement design spectrum, and the corresponding compatibility criteria for 

artificial accelerograms set forth by the European aseismic code provisions (EC8) [22]. 

Nevertheless, adopting the specific code provisions does not limit the applicability of the 

proposed methodology; it only exemplifies its versatility.   

To this end, the potential of three different spectral forms of exponentially 

modulated in time power spectra is assessed for the specification of the aforementioned 
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EPS: the Kanai-Tajimi [23], the Clough-Penzien [24], and a novel one comprising a 

predefined high-pass Butterworth filter (e.g. [25]) in series with the Kanai-Tajimi 

spectrum. Furthermore, the construction of custom case-dependent harmonic wavelet 

basis with scales of non-uniform width in the frequency domain is adopted to satisfy 

efficiently the compatibility criteria mandated by the EC8.  

 

2. Stochastic simulation of spectrum compatible artificial earthquake records 

In this section, the pertinent theoretical background for associating an 

evolutionary power spectrum with a given displacement response (design) spectrum is 

first reviewed. Special attention is given to the analytical spectral form characterizing the 

stationary part of this evolutionary power spectrum and alternative expressions are 

considered for the purpose. A brief presentation of an efficient filtering method for 

generating non-stationary signals being samples of an underlying evolutionary power 

spectrum is also included. 

   

2.1. Formulation of the simulation problem on a stochastic basis 

Let the ground acceleration ug(t) due to a seismic event be modeled as a 

realization of a zero-mean separable non-stationary stochastic process expressed in the 

domain of time t by the equation 

 ( ) ( ) ( )gu t A t y t= , (1) 

where A(t) is assumed to be  a slowly-varying time-dependent envelop function that 

modulates a zero-mean stationary stochastic process y(t). The associated two-sided 
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evolutionary power spectrum S(t,ω) of the non-stationary process is expressed in the 

frequency (ω) domain as [17] 

 ( ) ( ) ( )2
,S t A t Sω ω= , (2) 

where S(ω) is the two-sided power spectrum of the stationary process y(t). 

Consider a unit-mass linear single-degree-of-freedom (SDOF) quiescent oscillator 

with ratio of critical damping ζ and natural frequency ωn, base-excited by the process 

ug(t). The motion of this system is governed by the equation 

 
( ) ( ) ( ) ( )

( ) ( )

22

0 0 0
n n gx t x t x t u t

x x

ζω ω+ + = −

= =
, (3) 

in which x(t) is the displacement trace of the oscillator relative to the motion of the 

ground and the dot over a symbol denotes differentiation with respect to time. 

 Assuming that the input energy, as expressed by S(t,ω),  is distributed over a 

broad frequency band throughout the duration of the process ug(t), it can be argued that 

the response of lightly damped oscillators (ζ<<1) trails a pseudo-sinusoidal motion. That 

is: 

 ( ) ( ) ( )cos nx t a t t tω ϕ= +⎡ ⎤⎣ ⎦ , (4) 

where α(t) and φ(t), are the response amplitude and phase and correspond to processes of 

slow temporal evolution statistics.  

The aforementioned assumptions are common in the field of random vibrations 

(see e.g. [26]), and reflect the fact that SDOF systems with small ratio of critical damping 

attain highly resonant transfer functions centered at the natural frequency (ωn). Therefore, 

these systems act as pass-band filters when excited by relatively broadband input, as is 

usually the case of earthquake induced strong ground motions, and thus their response is 
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dominated by the frequencies close to ωn. Under these assumptions, it can be shown that 

the probability density function of the response amplitude follows a time-dependent 

Rayleigh distribution [27]   

 ( ) ( ) ( )
2

2 2, exp
2a a

a ap a t
t tσ σ

⎛ ⎞−
= ⎜ ⎟⎜ ⎟

⎝ ⎠
, (5) 

where the function σa
2(t) is the variance of the amplitude given by the equation 

 ( ) ( ) ( ) ( )2
2

0

exp 2 exp 2 ,
t

a n n n
n

t t S dπσ ζω ζω τ τ ω τ
ω

= − ∫ . (6) 

 To this end, a straightforward relation between a given (target) displacement 

design spectrum Sd(ωn, ζ) and the evolutionary power spectrum of Eq. (2) can be 

established through the maximum value of the variance of the response amplitude [16]:  

 ( ) ( ){ }, max ,d n a nS rω ζ σ ω ζ= , (7) 

where r is known as the “peak factor” [28]. In general, r depends on the stiffness (ωn), 

and damping (ζ) of the SDOF oscillator, on the frequency content and duration of the 

input process ug(t), and on the level of uncertainty furnished by the design spectrum as 

specified by regulatory agencies. The exact determination of the peak factor requires the 

solution of the first-passage problem which is mathematically intractable, especially for 

non-stationary input processes. It is pointed out that for stationary input processes some 

reliable approximate formulae for estimating the peak factor exist in the literature (e.g. 

[29], [30]). However, the use of such formulae for the determination of r in the case 

considered herein necessitates replacing the non-stationary process of Eq. (1) by an 

equivalent stationary process of reduced duration [28]: an assumption which is not 

absolutely consistent with the objective of defining a design spectrum compatible non-
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stationary process. Therefore, for the purposes of the present study, r will be treated as a 

constant. Additional comments on selecting an appropriate value for the peak factor are 

given in section 4 incorporating new numerical results pertaining to the EC8 

displacement design spectrum [22]. 

 

2.2 Spectral form of the evolutionary power spectrum 

    In pursuing a solution to the simulation problem defined by Eq. (7), appropriate 

analytical expressions for the modulation function A(t) and the power spectrum S(ω) 

must be adopted. These must be compatible with the assumptions made in deriving Eqs. 

(5) and (6) and should capture adequately the physical aspects of the problem.  

In this regard, the Bogdanoff-Golberg-Bernard (BGB) envelope function defined 

by [31]  

 ( ) exp
2
bA t Ct t⎛ ⎞= −⎜ ⎟

⎝ ⎠
 (8)  

is used, where C>0 and 0<b<1 are parameters to be determined. This function 

accommodates appropriately the time-evolving intensity typically exhibited by recorded 

seismic accelerograms; namely, a decaying segment preceded by a short initial period of 

development. Note that the value of C is proportional to the peak ground acceleration, 

while the parameter b controls the shape of the envelope and thus the effective duration 

of the strong ground motion. Recently, the “slowly-varying” feature of the BGB function, 

which must hold for Eq. (2) to be valid, was ascertained by means of the adaptive chirplet 

decomposition for an assumed value of b= 0.50 [32]. Furthermore, the spectral form 

considered for the stationary part of the process ug(t) reads 
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 ( ) ( )

2

2

22 2

2

1 4
;

1 4

g
g

b

g
g g

S G

ωζ
ω

ω ω ω ω
ω ωζ
ω ω

⎛ ⎞
+ ⎜ ⎟⎜ ⎟

⎝ ⎠= ≤
⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟− +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

, (9) 

in which ωg and ζg are positive parameters and ωb signifies the highest frequency of 

interest.  

Setting G(ω)= 1 in Eq. (9) yields the well-known Kanai-Tajimi (KT) spectrum 

[23]. Apart from its simplicity, the main asset of the KT spectrum is that it lends itself to 

a clear physical interpretation associated with site specific soil conditions. In particular, it 

accounts for the resonant filtering effects that the surface soil deposits have on 

propagating seismic waves by a linear SDOF system with natural frequency ωg and 

damping ratio ζg. In this context, it has been extensively used in the past in random 

vibration analysis of structures (e.g [28], [29]), and in strong ground motion 

characterization (e.g. [33]). Nevertheless, the KT filter has the major disadvantage of 

allowing for the presence of non-negligible low frequency content in the spectral 

representation of the acceleration process ug(t). Such low frequency components are 

considerably accentuated upon integration of the accelerograms and have a significant 

impact to their corresponding displacement traces. Specifically, this leads to displacement 

time-histories exhibiting a monotonically increasing trend and yielding unrealistically 

high permanent deformations similar to those reported in [4].  

The Clough-Penzien (CP) spectral form incorporates a second order high-pass 

filter to suppress the low frequency content allowed by the KT spectrum [24]. It is 

obtained by setting 
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 ( )

4

22 2

21 4

f

f
f f

G

ω
ω

ω
ω ωζ
ω ω

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠=

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟− +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

, (10)  

in Eq. (9), where ωf and ζf are positive parameters related with the cut-off frequency and 

the steepness of the transfer function of the high-pass filter G(ω). It is reasonable to 

attribute physical meaning to Eq. (10), since it coincides with the transfer function of a 

SDOF system with natural frequency ωf and damping ratio ζf , and is used in series with 

the KT filter. Indeed, some researchers have argued that ωf and ζf can be interpreted as 

the stiffness and damping ratio of the geological formations of the crust of the Earth, the 

bedrock (e.g. [34]). Nevertheless, the filter of Eq. (10) is primarily a signal processing 

element, and thus, the values of parameters ωf and ζf should be set appropriately to 

eliminate the spurious low frequencies [24]. In any case, note that by adopting the CP 

spectral form the complexity of the simulation problem is significantly increased since 

four more undetermined parameters are additionally introduced to the required 

parameters, two, for the definition of the BGB modulating envelop. In this respect, it is 

proposed to utilize a predefined standard infinite impulse response high-pass filter in 

cascade with the KT band-pass filter. For instance, a Butterworth filter given by the 

equation [25] 

 ( )
2

2 2

N

N N
o

G ωω
ω ω

=
+

 (11) 

can be assumed in Eq. (9), where N and ωο denote the filter order and cut-off frequency, 

respectively. These quantities can be judicially selected so that adequate filtering of the 

low frequencies is achieved, while the design of the high-pass filter part G(ω) is left out 



 13

of the simulation problem. Further elucidating comments on the various spectral forms 

presented in this section are given in light of numerical results in section 4.1.     

 

2.3 Approximate solution of the simulation problem 

 Combining Eqs. (2), (6), and (8) the following expression for the time-dependent 

variance of the response amplitude is obtained 

 ( ) ( ) ( ) ( ) ( ){ }
2

2 2 2
2 3 exp 2 exp 2exp 2exp 2a n
n

Ct t bt t bt bt tπσ γ γ ζω
ω γ

= − − − + − − − , (12) 

where  

 2 n bγ ζω= − .  (13) 

This expression possesses a global maximum at time t=t*. This time instant can be 

determined by setting the first time derivative of Eq. (12) equal to zero. This criterion 

leads to the condition 

 ( ) ( ) ( )2 * *2 * *2 2 1 2 4 exp 0nt bt bt b tγ γ ζω γ− − − − + − = . (14) 

Application of the previous operation in Eq. (6), and use of Eqs. (2) and (8) yields the 

maximum value of the variance of the response amplitude. That is,  

 ( ){ } ( ) ( )
2 *2 *

3

exp
max ,

2a n n
n

C t bt
S

π
σ ω ζ ω

ζω

−
= . (15) 

An approximate solution to the simulation problem defined by Eqs. (7), (14), and 

(15) is next pursued, as it has been proposed in [16]. In this regard, it is sought to satisfy 

approximately Eq. (7) in a point-wise manner, at a certain set of frequencies {ωn(j)} for j= 

1,…,M, in the least square sense. This leads to a least squares minimization problem 

which can be cast as       
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 ( )
2 2

1
min

M

j j
j

S σ
=

⎧ ⎫
−⎨ ⎬

⎩ ⎭
∑ , (16) 

where 

 ( )( )2 , , 1,...,

0 , 1,..., 2
d n j

j

S j M
S

j M M

ω ζ⎧ =⎪= ⎨
= +⎪⎩

, (17) 

and 

 

( )
( )

( )( )
( ) ( )

( ) ( )

2 2 *2 *

3

2 * *2 *

*

exp
, 1,...,

2

2 2 1

2 4 exp , 1,..., 2

j j
n j

n j

j j M j M j M j M j M

j M j Mn j M

r C t bt
S j M

t bt bt

b t j M M

ω
ζω

σ γ γ

ζω γ

− − − − −

− −−

⎧ −
⎪ =
⎪
⎪⎪= − − − −⎨
⎪
− + − = +⎪
⎪
⎪⎩

.. (18) 

In Eqs. (16)-(18) the unknowns to be determined are the set of M time instants 

{tk
*}, C, b, plus all necessary parameters involved in the analytical expression of S(ω), 

while the number of equations is 2M. In practice, the number of equations will always be 

greater than the total number of unknowns, since for an acceptable approximation to the 

solution of the problem considered several tenths of points {ωn(j)} along the frequency 

band of concern should be included. Thus, Eqs. (16)-(18) define a typical high-

dimensional over-determined non-linear least-square fit optimization problem. In this 

study, a Levenberg-Marquardt algorithm with line search is utilized to numerically solve 

this problem (see e.g. [35]). 

 

2.4 Generation of artificial non-stationary earthquake records  

Upon solving the optimization problem of Eq. (16), the complete definition for 

the evolutionary power spectrum S(t,ω) is accomplished. Then, an appropriate random 
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field simulation technique can be employed to synthesize an arbitrarily large number of 

non-stationary accelerograms as realizations of the process characterized by S(t,ω). In the 

case of the uniformly modulated non-stationary stochastic processes, this task can be 

carried out conveniently in two steps: First, stationary time histories y(t) compatible with 

a specific power spectrum S(ω) are generated. Next, the corresponding non-stationary 

time-histories are obtained by multiplying the stationary records with the envelop 

function A(t), as Eq. (1) suggests. A plethora of techniques for synthesizing power 

spectrum compatible stationary signals exist in the literature. A self-contained exposition 

of the topic presenting the most common of the methods is provided in [18].  

 In this study, the so-called ARMA simulation method is used. Specifically, a 

discrete stationary stochastic process y  is generated as the response of a linear time-

invariant autoregressive moving average (ARMA) digital filter subject to clipped white 

noise excitation [36]. The s-sample of an ARMA(p,q) process is calculated recursively as 

a linear combination of the previous p samples plus a convolution term as follows 

 [ ] [ ] [ ]
1 0

p q

k l
k l

y s b y s k c w r l
= =

= − − + −∑ ∑ , (19) 

where the bk and cl are the coefficients of the ARMA filter. The symbol w denotes a 

discrete white noise process band-limited to ωb defined by the autocorrelation function 

 [ ] [ ]{ } 2 b uvE w u w v ω δ= . (20) 

In this equation E{.} denotes the operator of mathematical expectation, and δuv is the 

Kronecker delta. Intuitively, the objective in this procedure is to “color” the latter process 

via the ARMA filter so that the filtered process is characterized by the given power 

spectrum S(ω). In mathematical terms this translates into determining the coefficients bk 



 16

and cl such that the squared modulus of the frequency response of the ARMA filter 

matches the power spectrum S(ω). Specifically, require that  

 ( ) ( ) 2
si TS H e ωω = . (21) 

In Eq. (21) Ts is the sampling period of the discrete process which must comply with the 

Nyquist condition to avoid aliasing. That is, 

 s
b

T π
ω

≤ . (22) 

Further, H denotes the transfer function of the ARMA filter which can be expressed as 

 ( ) 0

1

1

s

s

s

q
li T

l
i T l

p
ki T

k
k

c e
H e

b e

ω

ω

ω

−

=

−

=

=
+

∑

∑
. (23) 

In the ensuing analysis the auto/cross-correlation matching (ACM) procedure is 

used to determine the filter coefficients. In implementing this scheme, linear prediction 

theory used in system identification is used to construct a relatively long autoregressive 

(AR) digital filter to represent S(ω) as a first approximation. Next, the output auto-

correlation and the input/output cross-correlation sequences between this preliminary AR 

and the final ARMA model are equated. Eventually, the coefficients of the ARMA filter 

are calculated by solving a p+q by p+q system of linear equations. The mathematical 

details of the ACM procedure can be found in [18]. 
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3. Enhanced response spectrum matching of synthesized records using the 

Harmonic Wavelet Transform  

Obviously, the previously described procedure cannot guarantee that the response 

spectrum of the individual synthetic signals produced will match exactly the target design 

spectrum and satisfy the usual criteria for artificial accelerograms mandated by regulatory 

agencies (see e.g. [22]). This is because of the various assumptions involved in the 

formulation of the simulation problem, the approximate manner by which a solution to 

this problem is sought, and the statistical nature characterizing the generation of the 

signals by way of random field simulation. 

Nevertheless, any arbitrary seismic accelerogram, whether artificial or recorded, 

can be appropriately modified to improve the agreement of its response spectrum with the 

target design spectrum. For this purpose, the generalized harmonic wavelets [19, 20] are 

utilized herein for processing the generated accelerograms along with an iterative 

matching procedure originally proposed in [13]. Compared to the modified Littlewood-

Pauley basis functions considered in [13], the generalized harmonic wavelets provide a 

more flexible and balanced representation of signals throughout the frequency domain 

[20]. Furthermore, advantage is taken of an efficient algorithm incorporating the Fast 

Fourier Transform for the signal decomposition and reconstruction [37]. These attributes 

render the Harmonic wavelet transform an effective tool for processing signals to achieve 

enhanced response spectrum matching as will be shown in the ensuing numerical results. 

This objective is achieved herein by an iterative numerical procedure combined with an 

appropriate high-pass filtering method for the requisite baseline adjustments. 
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3.1 The Harmonic Wavelet Transform 

Generalized harmonic wavelets have a box-shaped band-limited spectrum. A 

wavelet of (m,n) scale and k position in time is represented in the frequency domain by 

the equation [19] 

 ( ) ( ) ( ),

1 exp ,

0 ,

o

m n

i kT m n
n m n m
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ω ω ω ω
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where m, n, and k are taken to be positive integer numbers in what follows and  

 2

oT
πωΔ = , (25) 

with To being the total length of the time interval considered (i.e. the duration of the 

signals generated by Eq. (20)), in seconds. The time-domain Fourier Transform pair of 

Eq. (25) is complex-valued [20], with magnitude  
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and phase 
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ϕ π
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It has been proved [19] that a collection of harmonic wavelets spanning adjacent 

non-overlapping intervals at different scales along the frequency axis, as shown 

schematically in Fig. 1, forms a complete orthogonal basis. Then, the pertinent 

continuous Harmonic Wavelet Transform (HWT) [19] 
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projects any finite energy signal f(t) on this basis function. In Eq. (28) the bar over a 

symbol stands for complex conjugation. It is emphasized that the orthogonal property of 

the harmonic wavelet basis allows for a perfect reconstruction of the original signal given 

its HWT, and is associated with energy preservation concepts. 

 

3.2 Iterative matching scheme 

It can be deduced by the preceding exposition that the HWT decomposes a real 

signal f(t) into several sub-signals fm,n (t), each one of them corresponding to a certain 

band of frequencies defined by the (m,n) pair, so that [20]  

 ( ) ( ),
,

m n
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f t f t=∑ , (29) 

where 
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Taking into consideration the discussions of section 2.1 concerning the shape of 

the transfer function of lightly damped SDOF oscillators, it can be argued that a specific 

part fmj,nj(t) of the original signal f(t) will mainly influence the response of those SDOF 

oscillators whose natural frequencies fall within the interval [mjΔω, njΔω]. Thus, an 

iterative modification procedure can be devised to improve the matching of the 

displacement response spectrum of an accelerogram f(t) with a target spectrum Sd [13].  

At the v-th iteration all sub-signals are scaled according to the equation 
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where D(v)(T) is the displacement response spectrum related to f(v)(t) which is obtained by 

Eq. (29). Note that a sufficient number of properly defined (m,n) pairs should be used to 

cover all frequencies of interest. Furthermore, the width (n-m)Δω of the various pairs can 

be arbitrarily small and varying among different scales, as illustrated in Fig. 1 for a given 

duration To. This yields a significant advantage over the modified Littlewood-Pauley 

basis which defines intervals of logarithmically increasing width on the frequency 

domain as it proceeds towards the higher frequencies [13]. Numerical evidence, and 

additional comments on this feature of the harmonic wavelets in practical terms are 

provided in sections 4.3 and 4.4.       

 

3.3 Baseline correction considerations 

Artificial seismic accelerograms to be used in the earthquake resistant design of 

structures require that certain baseline corrections must be performed as in the case of 

any recorded accelerogram [38]. This requirement has been reported and addressed by 

several researchers in the past (e.g. [4], [12], [13]). It stems from the need to produce 

accelerograms yielding realistic displacement traces. To this end, processing of the 

accelerograms with a Butterworth high-pass filter of order 4 and cut-off frequency of 

0.10Hz is employed in this study to acquire baseline corrected accelerograms. Anti-

causal zero-phase filtering is carried out. That is, the accelerogram is filtered once by the 

aforementioned filter in the forward direction; then the filtered signal is reversed in time 
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and passes through the same filter again. In this manner, no phase distortion takes place, 

and thus the properties of the filter considered have minimum impact on both the shape 

of the displacement time-histories and the long period displacement spectral ordinates 

[39]. Appropriate zero-padding before the initiation and at the end of the accelerograms is 

performed before applying the anti-causal filter [40]. These pads are retained throughout 

the integrations to construct compatible suites of acceleration, velocity and displacement 

records [41]. 

 

4. Application to the Eurocode 8 design spectrum 

 This section provides numerical results pertaining to the displacement design 

spectrum prescribed by the European aseismic code provisions (EC8) given in Appendix 

A. In this context, an estimate for the value of the peak factor which yields a better 

matching of the average response spectra of simulated accelerograms with the target 

spectrum is proposed. Furthermore, an assessment of the three spectral forms of section 

2.2 is included. The performance of the harmonic wavelet-based iterative scheme is also 

demonstrated using a single simulated signal. Lastly, it is shown how to take advantage 

of the versatility of the generalized harmonic wavelet basis to satisfy the compatibility 

criteria for artificial accelerograms mandated by the EC8.    

  

4.1 Selection of the peak factor r 

Taking into account the stochastic structure of the response envelop a(t) (see Eq. 

(5)), it is a reasonable from a theoretical viewpoint to equate the peak factor r of Eq. (7) 
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to the ratio of the maximum mean (μ) over the maximum standard deviation (σ) for 

Rayleigh distribution. That is, [16] 

 
{ }
{ }

max
max 2

a

a

r
μ π
σ

= = . (32) 

However, extensive numerical experimentation (Monte Carlo simulations), not included 

here for brevity, pertaining to the EC8 design spectrum has shown that adopting the 

above value for r yield rather conservative results. In particular, the obtained response 

spectral ordinates of the simulated time-histories tend to be, on average, rather larger than 

the target ones for all natural periods considered. Notably, a similar trend is witnessed in 

the numerical results of the relevant research work by Spanos and Vargas Loli (1985) 

[16] for the case of the Newmark-Blume-Kapur and the Housner design spectra. In this 

respect, it is noted that the aforementioned numerical experiments have suggested that, at 

least in the case of the EC8 spectrum, adopting a peak factor 25% larger than that of Eq. 

(32) yields ensembles of artificial accelerograms whose average response spectra are 

close to the corresponding design spectra while a desirable level of conservatism is 

maintained. Thus, the latter value is the one adopted for r for all the ensuing numerical 

results included in this study.   

 

4.2 Assessment of various evolutionary power spectral forms 

Let the EC8 displacement design spectrum for soil conditions B, damping ratio ζ= 

5%, and peak ground acceleration (PGA) equal to 36% the acceleration of the gravity (g) 

be the target spectrum (see also the Appendix A). The minimization problem set by Eq. 

(16) is solved for the three spectral forms defined in section 2.2. Namely the KT 

spectrum (Eq. (9) with G(ω)=1 ), the CP spectrum (Eqs. (9) and (10)), and the 
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Butterworth filtered Kanai-Tajimi (BWKT) spectrum (Eqs. (9) and (11)), modulated by 

the BGB envelop function (Eq. (8)) on an interval [Tmin, Tmax] of the axis of natural 

periods. The numerical values of the requisite parameters to defining the design spectrum 

compatible evolutionary power spectral forms under consideration are given in Table 1.  

It is noted that in the BWKT case, the cut-off frequency ωo of the high-pass filter 

of Eq. (12) has been judicially selected to coincide with the “corner” period TD= 2sec (see 

Fig. (A1) of Appendix A), prior to the solution of Eqs. (16)-(18). Incidentally, the value 

of TD is the same for all soil types [22], and thus the selected value for ωο is globally 

applicable. Should this specification change in future versions of the EC8, it is suggested 

to always set the cut-off frequency of the Butterworth filter equal to the corner period TD; 

extensive numerical testing has found this to be an effective choice. Moreover, the order 

of the Butterworth filter was set to N= 2, so that a meaningful comparison with the CP 

case to be possible. 

It should be noted that for all soil conditions, the EC8 assumes that the maximum 

displacement of oscillators of natural period greater than 10 sec is independent of the 

stiffness of the oscillators, that is, it attains a constant value equal to the maximum 

displacement of the ground (see also Fig. A1 of Appendix A). Thus, extending the point-

wise matching to periods beyond 10sec will not capture any additional physics to the 

optimization problem at hand. Hence, it is logical to assume Tmax= 10 sec. In both the CP 

and BWKT cases of Table 1 excellent point-wise matching at 100 frequencies ωn has 

been achieved on the interval [0.63, 314.16] (rad/sec) which is mapped onto the interval 

[0.02(=Tmin), 10(=Tmax)] (sec) on the axis of natural periods (Fig. 2). However, for the KT 

spectral form an attempt to extent the right limit of the matching interval (Tmax) to periods 
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greater than TD= 2sec (i.e. to frequencies lower than 3.14 rad/sec) results in an 

unacceptably poor matching. An example is shown in Fig. 2 for Tmax= 4sec. In fact, the 

optimization algorithm completely fails in the KT case for Tmax>TE (= 5 sec for soil B). 

This is because the KT spectrum does not incorporate enough “degrees of freedom” to 

effectively trace the given design spectrum in the region of relatively long periods. This 

aspect is interwoven with the incapability of the KT filter to effectively suppress the low 

frequencies as have been discussed to some extent in section 2.2. This disadvantage of 

the KT spectral form can also be inferred by Fig. 3 where plots of certain evolutionary 

power spectra of Table 1 are presented. In the same figure, it is observed that all spectra 

remain relatively broad throughout their effective duration and that their energy becomes 

negligible after 25 seconds. 

Additional evolutionary CP power spectra compatible with EC8 design spectra for 

two different levels of intensity, and for all soil types defined in EC8 are included in 

Table 2. These results provide evidence that the values of the parameters yielded by the 

optimization solver are not numerical artifacts but actually reflect the physical aspects of 

the problem. Indeed, even though soil characterization is beyond the scope of the present 

study, it can be readily seen that the various soil conditions are represented by the power 

spectrum parameters. For instance, the value of ωg decreases while the damping ratio ζg 

increases marching from stiff (i.e. type A) towards softer soil conditions (i.e. type D). 

More importantly, Table 2 can be used as an interpolation guide for assigning initial/seed 

values for the unknown parameters required by all common optimization algorithms for 

the solution of Eqs. (16)-(18); this is especially pertinent in case the use of a different 

PGA than those included in the table is mandated.  
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Three ensembles of 40 accelerograms, each compatible with the KT (Tmax= 2sec), 

the BWKT, and the CP power spectra presented in Table 1 are synthesized using Eq. (19) 

and a discrete version of Eq. (1). The sampling interval has been taken equal to 0.01 sec 

to satisfy the condition of Eq. (22), and the duration of each record is 40sec. Baseline 

corrected versions of these records have been also produced using the methodology 

detailed in section 3.3. The average displacement response spectra for 5% damping of 

each of the ensembles are plotted in Figs. 4-6 for both the uncorrected (dotted lines) and 

the baseline corrected (solid lines) signals versus the target spectrum. In the same figures, 

the largest and smallest maximum displacement responses along with the medians are 

also shown versus the natural period of the oscillators considered to illustrate the 

statistical nature of the obtained spectral ordinates. 

The fact that the KT spectrum does not filter the very low-frequency content in 

the acceleration traces causes difficulties in the corresponding displacement time-

histories. This attribute ultimately affects the matching of the displacement response 

spectra with the target spectrum exhibiting undesirable trends as evidenced in Fig. (4). 

Clearly, the KT spectrum is not an optimal choice for the purpose. However, both the 

BWKT and the CP spectra yield satisfactory and practically similar results. Evidently, 

these spectra can be used interchangeably to shape the form of the evolutionary power 

spectrum of Eq. (2). To this end, note that the BWKT featuring the predefined high-pass 

Butterworth filter involves fewer free parameters to be determined. Furthermore, it is 

usually more convenient/ intuitive in practice to define a high-pass filter in signal 

processing terms; namely by selecting the properties of a typical IIR filter, versus 

selecting the stiffness and damping of a SDOF oscillator. In this regard, the newly 
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proposed BWKT filter may be more advantageous over the CP filter from a practical 

perspective. 

 

4.3 Performance of the iterative Harmonic Wavelet-based matching procedure 

 In the context of the HWT, the efficiency of the iterative procedure outlined by 

Eq. (31) to modify a certain accelerogram for achieving a better matching of its response 

spectrum with a given design spectrum at all frequencies relies on the total number of the 

wavelet scales (bins of Fig. 1) considered. For a specific range of frequencies, and 

assuming uniform width for all scales, this number depends on the difference n-m (see 

Eq. (24)), and on the duration To of the accelerogram through the value of Δω (see Eq. 

(25)). Addressing the second dependence, it is a common practice in standard Fourier 

analysis to artificially augment the duration of a signal by adding zeros at the end of the 

record for obtaining a more adequate representation of the original signal in the 

frequency domain. This technique can be used herein to obtain a smaller value of Δω 

which eventually yields a larger number of scales for a fixed value of n-m. Then, upon 

reconstructing the modified signal using Eq. (29), the artificially appended segment can 

be discarded. It is noted that for all practical cases the latter operation will have negligible 

impact on the response spectrum of the modified signal and thus on the matching with the 

design spectrum, since most of the signal energy would have been released at earlier 

times. 

 Fig. 7 provides a numerical example involving a single 40sec long artificial 

accelerogram belonging to the previously presented BWKT ensemble to further elucidate 

the above points. In particular, the quality of the matching between the response spectrum 
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of the seismic record D(T) and the target spectrum Sd(T) is gauged against the number of 

iterations performed in terms of the root-mean-squared error (RMS). That is, the 
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is evaluated at Nk= 250 equally spaced points on the interval [0.02, 5] of natural periods 

T. Note that evaluating the RMS error for T>5sec does not serve the purpose of assessing 

the performance of the iterative matching procedure since at this range of periods the 

behavior of the response spectrum is primarily governed by the necessary baseline 

adjustments (see also Figs. 4-6). In Fig. 7a four harmonic wavelet bases of various scale 

widths (n-m), constant at all frequencies are used for processing the same artificially 

augmented record by 10sec of total duration To= 50sec. In Fig. 7b, the difference n-m is 

fixed to 2, and the original signal with To= 40sec plus three other records zero-padded to 

various total durations are considered. As expected, use of smaller n-m values and/or 

larger signal durations To achieves better and faster convergence of the response spectrum 

to the target spectrum. This, of course, comes at the expense of increased computational 

effort per iteration. 

Figs. 8 and 9 provide snapshots of the improved matching achieved by means of 

the proposed harmonic wavelet-based iterative scheme in terms of the displacement and 

the pseudo-acceleration spectra respectively for n-m=2 and To= 50sec. Furthermore, Fig. 

10 includes the acceleration, velocity and displacement time histories of the uncorrected 

and the baseline corrected record considered in Figs. 8 and 9 after 7 iterations. The 

obvious low-frequency unnatural trend of the displacement trace of the uncorrected 

accelerogram necessitates the use of high-pass filtering of the corresponding acceleration 
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trace. As discussed in section 2.3, an appropriate number of zeros have been appended in 

the beginning and at the end of the signal prior to the baseline adjustment [21]. These 

padded segments are maintained throughout the integrations to derive a suite of 

compatible acceleration, velocity, and displacement traces [40]. As can be inferred by 

Fig. 10 ,this need is justified by the fact that both the velocity trace and to a greater extent 

the displacement trace of the corrected accelerogram attain significant non-zero values 

during these initial and final appended segments. These values are artifacts that represent 

the end effects induced by the application of anti-causal filtering. However, their 

relatively small intensity has minor contribution to the response spectral ordinates [39].    

    

4.4 Adjustment of the Harmonic Wavelet basis to meet the EC8 compatibility criteria    

 Noticeably, most of the contemporary regulations adopt compatibility criteria for 

artificial accelerograms to be used for the earthquake resistance design of structures 

significantly different from what Eq. (33) suggests. For a structure of fundamental natural 

period T1, the EC8 requires considering a collection of at least three accelerograms 

obeying the following two rules: (a) The average of the zero period spectral response 

acceleration values calculated from the individual time histories should be greater than 

the product αgS (see also the Appendix), and (b) In the range of periods [0.2T1, 2T1] no 

value of the average response spectrum for 5% damping, calculated from all time 

histories, should be less than 90% of the corresponding value of the 5% damping design 

spectrum [22]. These rules can be mathematically expressed by the equations: 
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and 
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where Ns≥ 3 is the number of accelerograms considered while PGAj and Dj(T) are the 

peak ground acceleration and the displacement response spectrum of the j-th 

accelerogram, respectively.  

 Taking advantage of the versatility of the generalized harmonic wavelets, already 

discussed to some detail in section 3.2, a case-dependent wavelet base featuring scales of 

non-uniform bandwidths (n-m)Δω across the frequency axis can readily be constructed. 

The objective is to have a more detailed discretization of the frequency domain in the 

range of frequencies corresponding to the interval [0.2T1 2T1] and a sparser grid outside 

this range. In this fashion, more weight is assigned to obtaining enhanced agreement of 

the response spectral ordinates of the accelerograms with the target spectrum for the 

oscillators whose natural frequencies lie closer to the fundamental period T1 of interest. 

This renders the iterative matching procedure much more efficient and cheaper in 

computational cost. 

 For instance, suppose a structure of fundamental natural period T1= 1.5 sec is to 

be designed for PGA= 0.36g and soil conditions B. Three arbitrarily selected 

accelerograms out of the previously generated BWKT ensemble are processed using Eq. 

(31) by means of a generalized harmonic wavelet basis with n-m =1 in the range of 

frequencies [2.09, 20.93] (rad/sec). This band corresponds to the range [0.3, 3] (sec) of 

periods, and n-m= 16 for the rest of the frequencies considered. Appropriate 10sec long 
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zero-padding at the end of the records has been considered prior to the modification of 

the signals so that their total duration equals 50sec. This additional segment is completely 

removed, as previously explained, after the required spectrum matching is achieved and 

before any high-pass filtering for the baseline adjustment is made. After only four 

iterations the compatibility criteria of EC8 are satisfied for the baseline corrected 

artificial seismic signals. Specifically, the ratios of Eqs. (34) and (35) are computed as 

1.19 (>1) and 0.92 (>0.90), respectively. The individual and the average displacement 

and pseudo-acceleration response spectra of the three thus obtained signals are shown in 

Fig. 11; Fig. 12 includes the acceleration, velocity and displacement traces these signals 

in the time domain.     

  

5. Concluding remarks 

A stochastic approach for simulating non-stationary strong ground motion records 

compatible with a given design displacement (target) spectrum in combination with a 

harmonic wavelet-based iterative procedure have been presented. Without loss of 

generality, the design spectrum prescribed by the European aseismic code provisions 

(EC8) has been exclusively considered in all numerical examples provided. 

At first, a previously established in the literature stochastic method has been 

extended to relate in an approximate manner the target spectrum with a modulated 

evolutionary power spectrum (EPS), which is parametrically expressed by an analytical 

formula. This is accomplished by the use of a constant peak factor whose value has been 

calibrated via Monte Carlo simulations pertaining to the EC8 design spectrum. Upon 

determining the EPS, non-stationary artificial accelerograms compatible with the latter 
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spectrum have been synthesized using an appropriate auto-regressive-moving-average 

filter driven by white noise. It has been shown numerically that a reasonable agreement 

of the average response spectra of these accelerograms with the EC8 design spectrum can 

be achieved if the assumed spectral form of the EPS can effectively suppress the spurious 

low-frequency components of the underlying non-stationary process. In this respect, the 

Kanai-Tajimi power spectrum has been found rather inappropriate for the purpose, while 

the Clough-Penzien spectrum and a newly proposed Butterworth-filtered-Kanai-Tajimi 

spectrum constitute viable choices for defining the requisite EPS.  

It is acknowledged that the initially determined stochastic model yields 

accelerograms whose frequency composition does not evolve with time, as is the case for 

usual recorded seismic signals. Nevertheless, it does possess a significant practical merit 

since it can yield any required number of design spectrum compatible artificial seismic 

accelerograms, “from scratch”, without the need of having access to any real records. 

Furthermore, it has been verified by numerically obtained EPSs associated with various 

levels of seismic intensity and for all soil types prescribed by the EC8 that the proposed 

approach captures reliably the site-specific soil conditions, as they are reflected in the 

EC8 design spectrum. Clearly these results, given in a tabular form, can facilitate the 

application of stochastic dynamics-based seismic risk assessment of contemporary 

constructed facilities. 

Subsequently, the wavelet transform has been employed to decompose the 

simulated signals in a generalized harmonic wavelet basis of functions. In this regard, an 

iterative scheme has been used to process individually each of the decomposed signals to 

enhancing the agreement of its response spectrum with the target one. Further, it has been 
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shown how to take advantage of the unique attributes of harmonic wavelets to construct 

appropriately customized basis to efficiently treat small suites of simulated accelerograms 

for satisfying compatibility criteria for artificial accelerograms posed by the EC8. 

 Special attention has also been given in obtaining records possessing realistic 

velocity and displacement traces. In this respect, a state-of-the-art baseline correction 

technique, used in the processing of recorded accelerograms pertaining to actual seismic 

events, has been adopted. This step is critical for the design of extremely flexible 

structures or of structures expected to exhibit severe inelastic behavior. In fact, the 

attained values of the displacement spectral ordinates of the simulated records and thus 

their closeness to the corresponding target spectrum in the region of long periods is 

exclusively governed by the baseline adjustment considerations. 

Obviously, the two distinct techniques presented in this study, namely the 

evolutionary power spectrum-based representation of the seismic severity and the 

subsequent wavelet-based iterative modification procedure of individual accelerograms 

can be used independently to address, as well, certain needs arising in the practice of 

aseismic design of structures. Specifically, the former may be used in conjunction with 

any appropriate stochastic dynamics technique (e.g. Monte Carlo-based [18] or statistical 

linearization-based [42]), for design scenarios necessitating the incorporation of the 

uncertainty attributes of the seismic hazard, explicitly. Further, the latter can be readily 

utilized to modify real recorded accelerograms in cases where accounting for the 

temporal evolution of the frequency content of strong ground motions is deemed 

essential. In both cases, the numerical results presented herein could be of particular 

merit for the aseismic design involving the EC8 regulations.  
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APPENDIX A 

 The elastic displacement response spectrum for oscillators with 5% ratio of 

critical damping and natural period T, is defined by the European aseismic code 

provisions (EC8) [22] by the expression 
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In this equation, αg is the peak ground acceleration (PGA), S is a soil-dependent 

amplification factor, and TB, TC, TD, TE, and TF are soil-dependent corner periods which 

define the various branches of the design spectrum, as shown in Figure A1. The values of 

these quantities for the five different types of soil considered in EC8 are included in 

Table A1.  
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Table 1. Parameters for the definition of various evolutionary power spectral forms 
compatible with the EC8 design spectrum for soil type B and peak ground acceleration 

ag= 0.36g (g= 981 cm/sec2). 
 

KT spectrum 
[Tmin= 0.02,Tmax= 2] (sec) 

KT spectrum 
[Tmin= 0.02,Tmax= 4] (sec) 

BWKT spectrum 
[Tmin= 0.02,Tmax= 10] (sec) 

CP spectrum 
[Tmin= 0.02,Tmax= 10] (sec) 

C= 19.05 cm/sec2.5 
b= 0.51 sec-1 

ζg= 0.71 
ωg= 14.27 rad/sec 

C= 7.66 cm/sec2.5 
b= 0.25 sec-1 

ζg= 0.47 
ωg= 15.34 rad/sec 

C= 17.20 cm/sec2.5 
b= 0.45 sec-1 

ζg= 0.74 
ωg= 14.03 rad/sec 

N= 2 
ωο= 3.14 rad/sec 

C= 18.29 cm/sec2.5 
b= 0.46 sec-1 

ζg= 0.78 
ωg= 13.18 rad/sec 

ζf= 0.88 
ωf= 3.13 rad/sec 

 
 
 

Table 2. Parameters for the definition of CP evolutionary power spectra compatible with 
various EC8 design spectra. 

 
Peak ground 
acceleration 

Soil 
type 

CP power spectrum parameters [Tmin= 0.02,Tmax= 10] (sec) 
C 

(cm/sec2.5) 
b 

(1/sec) ζg 
ωg 

(rad/sec) ζf 
ωf 

(rad/sec) 

αg= 0.24g 
(g= 981 
cm/sec2) 

A 9.56 0.58 0.52 18.94 0.94 2.37 
B 13.99 0.54 0.71 13.84 0.96 2.43 
C 14.48 0.48 0.79 10.23 1.25 2.13 
D 22.84 0.50 0.89 7.16 1.17 2.12 
E 17.71 0.54 0.77 12.64 1.29 2.11 

αg= 0.36g 
(g= 981 
cm/sec2) 

A 15.16 0.60 0.56 18.80 0.93 2.43 
B 18.29 0.46 0.78 13.18 0.88 3.13 
C 21.05 0.48 0.80 10.95 0.92 2.47 
D 28.70 0.46 0.85 8.44 1.11 2.08 
E 24.04 0.50 0.75 13.11 1.21 2.19 

 
 

 
 

Table A1. Soil-dependent parameters for the definition of the EC8 design spectrum [22]. 
 

Soil type S TB (sec) TC (sec) TD (sec) TE (sec) TF (sec) 
A  1.00 0.15 0.40 2.00 4.50 10.00 
B 1.20 0.15 0.50 2.00 5.00 10.00 
C 1.15 0.20 0.60 2.00 6.00 10.00 
D 1.35 0.20 0.80 2.00 6.00 10.00 
E 1.40 0.15 0.50 2.00 6.00 10.00 
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Fig. 1. An example of a generalized harmonic wavelets basis spanning non-overlapping 
intervals of arbitrary bandwidths in the frequency domain. 

 
 
 
 

 
 

Fig. 2. Point-wise least square matching for the spectral forms considered in Table 1. Plot 
(b) zooms in plot (a) at the period interval [0.15, 0.45] (sec).  
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Fig. 3. Evolutionary power spectral forms given in Table 1. The plotted KT corresponds 
to the case of Tmax= 2sec. 

 
 

 
 

Fig. 4. Displacement response spectra of an ensemble of 40 simulated accelerograms 
compatible with the KT evolutionary power spectrum given in Table 1 for Tmax= 2sec. 
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Fig. 5. Displacement response spectra of an ensemble of 40 simulated accelerograms 
compatible with the BWKT evolutionary power spectrum given in Table 1. 

 

 
 

Fig. 6. Displacement response spectra of an ensemble of 40 simulated accelerograms 
compatible with the CP evolutionary power spectrum given in Table 1. 
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Fig. 7. Quality of matching of the response spectrum of an individual accelerogram with 
the target spectrum in terms of the RMS error (Eq. (33)) as a function of the number of 

iterations performed, the signal duration and the difference n-m in the construction of the 
harmonic wavelet base. 
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Fig. 8. Performance of the iterative matching procedure in terms of the displacement 
response spectrum of a single 50sec long accelerogram for uniform width of the 

harmonic wavelet basis n-m= 2. Grey line: target spectrum; solid black line: response 
spectrum of the baseline corrected modified accelerogram; dotted black line: response 

spectrum of the uncorrected modified accelerogram. 
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Fig. 9. Performance of the iterative matching procedure in terms of the pseudo-
acceleration response spectrum of a single 50sec long accelerogram for uniform width of 
the harmonic wavelet basis n-m= 2. Grey line: target spectrum; solid black line: response 

spectrum of the baseline corrected modified accelerogram; dotted black line: response 
spectrum of the uncorrected modified accelerogram. 
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Fig. 10. Acceleration, velocity and displacement traces of the uncorrected and the 
baseline corrected record considered in Figs. 8 and 9 after 7 iterations.  
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Fig. 11. Displacement and pseudo-acceleration response spectra of three base-line 
corrected accelerograms appropriately modified using a harmonic wavelet basis with 
non-uniform scale bandwidths (n-m) to meet the compatibility criteria of EC8. Four 

iterations have been performed.     
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Fig. 12. Acceleration, velocity and displacement traces of three base-line corrected 
accelerograms appropriately modified using a harmonic wavelet basis with non-uniform 
scale bandwidths (n-m) to meet the compatibility criteria of EC8. Four iterations have 

been performed.     
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Fig. A1. Graphical representation of the elastic displacement and pseudo-acceleration 

design spectra of the EC8 [22]. 
 


