77 research outputs found

    An Improved CAMSHIFT Tracking Algorithm Applying on Surveillance Videos

    Get PDF
    [[abstract]]In this paper, we present an improved version of CAMSHIFT algorithm applying on surveillance videos. A 2D, hue and brightness, histogram is used to describe the color feature of the target. In this way, videos with poor quality or achromatic points can be characterized better. The flooding process and contribution evaluation are executed to obtain a precise target histogram which reflects true color information and enhances discrimination ability. The proposed method is compared with existing methods and shows steady and satisfactory results.[[sponsorship]]Information Engineering Research Institute[[conferencedate]]20130303~20130304[[iscallforpapers]]Y[[conferencelocation]]Phuket, Thailan

    Gravity optimised particle filter for hand tracking

    Get PDF
    This paper presents a gravity optimised particle filter (GOPF) where the magnitude of the gravitational force for every particle is proportional to its weight. GOPF attracts nearby particles and replicates new particles as if moving the particles towards the peak of the likelihood distribution, improving the sampling efficiency. GOPF is incorporated into a technique for hand features tracking. A fast approach to hand features detection and labelling using convexity defects is also presented. Experimental results show that GOPF outperforms the standard particle filter and its variants, as well as state-of-the-art CamShift guided particle filter using a significantly reduced number of particles

    Bio-Inspired Robotic Fish With Vision Based Target Tracking

    Get PDF
    The lionfish is an invasive species that out-competes and overcrowds native sh species along the eastern seaboard of the United States and down into the Caribbean. Lionfish populations are growing rapidly. Current methods of monitoring lionfish populations are costly and time intensive. A bio-inspired robotic fish was built to use as an autonomous lionfish tracking platform. Lionfish are tracked visually using an onboard processor. Five different computer vision methods for identification and tracking are proposed and discussed. These include: background subtraction, color tracking, mixture of Gaussian background subtraction, speeded up robust feature (SURF), and CamShift based tracking. Each of these methods were compared and their accuracy analyzed. CamShift based tracking is determined to be the most accurate for this application. Preliminary experiments for system identification and control design are discussed

    Robust object tracking algorithms using C++ and MATLAB

    Get PDF
    Object tracking, all in all, is a testing issue. Troubles in tracking objects emerge because of unexpected motion of the object, scene appearance change, object appearance change, structures of objects that are not rigid. Besides this full and partial occlusions and motion of the camera also pose challenges. Commonly, we make some assumptions to oblige the tracking issue in the connection of a specific provision. Ordinarily it gets important to track all the moving objects in the real time video. Tracking using colour performs well when the colour of the target is unique compared to its background. Tracking using the contours as a feature is very effective even for non-rigid targets. Tracking using spatial histogram gives satisfactory results even though the target object undergoes size change or has similar coloured background. In this project robust algorithms based on colour, contour and spatiograms to track moving objects have been studied, proposed and implemented

    Vision-Aided Navigation for GPS-Denied Environments Using Landmark Feature Identification

    Get PDF
    In recent years, unmanned autonomous vehicles have been used in diverse applications because of their multifaceted capabilities. In most cases, the navigation systems for these vehicles are dependent on Global Positioning System (GPS) technology. Many applications of interest, however, entail operations in environments in which GPS is intermittent or completely denied. These applications include operations in complex urban or indoor environments as well as missions in adversarial environments where GPS might be denied using jamming technology. This thesis investigate the development of vision-aided navigation algorithms that utilize processed images from a monocular camera as an alternative to GPS. The vision-aided navigation approach explored in this thesis entails defining a set of inertial landmarks, the locations of which are known within the environment, and employing image processing algorithms to detect these landmarks in image frames collected from an onboard monocular camera. These vision-based landmark measurements effectively serve as surrogate GPS measurements that can be incorporated into a navigation filter. Several image processing algorithms were considered for landmark detection and this thesis focuses in particular on two approaches: the continuous adaptive mean shift (CAMSHIFT) algorithm and the adaptable compressive (ADCOM) tracking algorithm. These algorithms are discussed in detail and applied for the detection and tracking of landmarks in monocular camera images. Navigation filters are then designed that employ sensor fusion of accelerometer and rate gyro data from an inertial measurement unit (IMU) with vision-based measurements of the centroids of one or more landmarks in the scene. These filters are tested in simulated navigation scenarios subject to varying levels of sensor and measurement noise and varying number of landmarks. Finally, conclusions and recommendations are provided regarding the implementation of this vision-aided navigation approach for autonomous vehicle navigation systems

    Robust and real-time hand detection and tracking in monocular video

    Get PDF
    In recent years, personal computing devices such as laptops, tablets and smartphones have become ubiquitous. Moreover, intelligent sensors are being integrated into many consumer devices such as eyeglasses, wristwatches and smart televisions. With the advent of touchscreen technology, a new human-computer interaction (HCI) paradigm arose that allows users to interface with their device in an intuitive manner. Using simple gestures, such as swipe or pinch movements, a touchscreen can be used to directly interact with a virtual environment. Nevertheless, touchscreens still form a physical barrier between the virtual interface and the real world. An increasingly popular field of research that tries to overcome this limitation, is video based gesture recognition, hand detection and hand tracking. Gesture based interaction allows the user to directly interact with the computer in a natural manner by exploring a virtual reality using nothing but his own body language. In this dissertation, we investigate how robust hand detection and tracking can be accomplished under real-time constraints. In the context of human-computer interaction, real-time is defined as both low latency and low complexity, such that a complete video frame can be processed before the next one becomes available. Furthermore, for practical applications, the algorithms should be robust to illumination changes, camera motion, and cluttered backgrounds in the scene. Finally, the system should be able to initialize automatically, and to detect and recover from tracking failure. We study a wide variety of existing algorithms, and propose significant improvements and novel methods to build a complete detection and tracking system that meets these requirements. Hand detection, hand tracking and hand segmentation are related yet technically different challenges. Whereas detection deals with finding an object in a static image, tracking considers temporal information and is used to track the position of an object over time, throughout a video sequence. Hand segmentation is the task of estimating the hand contour, thereby separating the object from its background. Detection of hands in individual video frames allows us to automatically initialize our tracking algorithm, and to detect and recover from tracking failure. Human hands are highly articulated objects, consisting of finger parts that are connected with joints. As a result, the appearance of a hand can vary greatly, depending on the assumed hand pose. Traditional detection algorithms often assume that the appearance of the object of interest can be described using a rigid model and therefore can not be used to robustly detect human hands. Therefore, we developed an algorithm that detects hands by exploiting their articulated nature. Instead of resorting to a template based approach, we probabilistically model the spatial relations between different hand parts, and the centroid of the hand. Detecting hand parts, such as fingertips, is much easier than detecting a complete hand. Based on our model of the spatial configuration of hand parts, the detected parts can be used to obtain an estimate of the complete hand's position. To comply with the real-time constraints, we developed techniques to speed-up the process by efficiently discarding unimportant information in the image. Experimental results show that our method is competitive with the state-of-the-art in object detection while providing a reduction in computational complexity with a factor 1 000. Furthermore, we showed that our algorithm can also be used to detect other articulated objects such as persons or animals and is therefore not restricted to the task of hand detection. Once a hand has been detected, a tracking algorithm can be used to continuously track its position in time. We developed a probabilistic tracking method that can cope with uncertainty caused by image noise, incorrect detections, changing illumination, and camera motion. Furthermore, our tracking system automatically determines the number of hands in the scene, and can cope with hands entering or leaving the video canvas. We introduced several novel techniques that greatly increase tracking robustness, and that can also be applied in other domains than hand tracking. To achieve real-time processing, we investigated several techniques to reduce the search space of the problem, and deliberately employ methods that are easily parallelized on modern hardware. Experimental results indicate that our methods outperform the state-of-the-art in hand tracking, while providing a much lower computational complexity. One of the methods used by our probabilistic tracking algorithm, is optical flow estimation. Optical flow is defined as a 2D vector field describing the apparent velocities of objects in a 3D scene, projected onto the image plane. Optical flow is known to be used by many insects and birds to visually track objects and to estimate their ego-motion. However, most optical flow estimation methods described in literature are either too slow to be used in real-time applications, or are not robust to illumination changes and fast motion. We therefore developed an optical flow algorithm that can cope with large displacements, and that is illumination independent. Furthermore, we introduce a regularization technique that ensures a smooth flow-field. This regularization scheme effectively reduces the number of noisy and incorrect flow-vector estimates, while maintaining the ability to handle motion discontinuities caused by object boundaries in the scene. The above methods are combined into a hand tracking framework which can be used for interactive applications in unconstrained environments. To demonstrate the possibilities of gesture based human-computer interaction, we developed a new type of computer display. This display is completely transparent, allowing multiple users to perform collaborative tasks while maintaining eye contact. Furthermore, our display produces an image that seems to float in thin air, such that users can touch the virtual image with their hands. This floating imaging display has been showcased on several national and international events and tradeshows. The research that is described in this dissertation has been evaluated thoroughly by comparing detection and tracking results with those obtained by state-of-the-art algorithms. These comparisons show that the proposed methods outperform most algorithms in terms of accuracy, while achieving a much lower computational complexity, resulting in a real-time implementation. Results are discussed in depth at the end of each chapter. This research further resulted in an international journal publication; a second journal paper that has been submitted and is under review at the time of writing this dissertation; nine international conference publications; a national conference publication; a commercial license agreement concerning the research results; two hardware prototypes of a new type of computer display; and a software demonstrator

    Spatial Pyramid Context-Aware Moving Object Detection and Tracking for Full Motion Video and Wide Aerial Motion Imagery

    Get PDF
    A robust and fast automatic moving object detection and tracking system is essential to characterize target object and extract spatial and temporal information for different functionalities including video surveillance systems, urban traffic monitoring and navigation, robotic. In this dissertation, I present a collaborative Spatial Pyramid Context-aware moving object detection and Tracking system. The proposed visual tracker is composed of one master tracker that usually relies on visual object features and two auxiliary trackers based on object temporal motion information that will be called dynamically to assist master tracker. SPCT utilizes image spatial context at different level to make the video tracking system resistant to occlusion, background noise and improve target localization accuracy and robustness. We chose a pre-selected seven-channel complementary features including RGB color, intensity and spatial pyramid of HoG to encode object color, shape and spatial layout information. We exploit integral histogram as building block to meet the demands of real-time performance. A novel fast algorithm is presented to accurately evaluate spatially weighted local histograms in constant time complexity using an extension of the integral histogram method. Different techniques are explored to efficiently compute integral histogram on GPU architecture and applied for fast spatio-temporal median computations and 3D face reconstruction texturing. We proposed a multi-component framework based on semantic fusion of motion information with projected building footprint map to significantly reduce the false alarm rate in urban scenes with many tall structures. The experiments on extensive VOTC2016 benchmark dataset and aerial video confirm that combining complementary tracking cues in an intelligent fusion framework enables persistent tracking for Full Motion Video and Wide Aerial Motion Imagery.Comment: PhD Dissertation (162 pages

    VIDEO OBJECT TRACKING USING FOREGROUND MODELS

    Get PDF
    Improvement of object tracking techniques using grab cut an foreground modelsThis Master Thesis present an approach to Video Object Tracking segmentation using foreground models. For the video sequences analysed, the foreground and the background have been modelled using Spatial Colour Gaussian Mixture Models (SCGMMs). SCGMMs are Gaussian Models which describes the foreground and the background using five components in colour and spatial domains. In order to have a better result in the segmentation process, the Gaussian Models computed for each frame are passed to the next frame using a tacking technique that helps in the individuation of the object in foreground alone the sequence. Using the location provided by the tracking, the Gaussian Mixture Model for the background is computed only in the close region around the object in foreground allowing in this way a better modelling of the region. The Thesis is structure as follows: after a presentation of the study of the State of the Art where the techniques for tracking and segmentation are presented, there is the presentation of the method proposed. At the end there is a Chapter that describes the results obtained and some conclusions and a Chapter which presents some future developments

    Real-Time, Multiple Pan/Tilt/Zoom Computer Vision Tracking and 3D Positioning System for Unmanned Aerial System Metrology

    Get PDF
    The study of structural characteristics of Unmanned Aerial Systems (UASs) continues to be an important field of research for developing state of the art nano/micro systems. Development of a metrology system using computer vision (CV) tracking and 3D point extraction would provide an avenue for making these theoretical developments. This work provides a portable, scalable system capable of real-time tracking, zooming, and 3D position estimation of a UAS using multiple cameras. Current state-of-the-art photogrammetry systems use retro-reflective markers or single point lasers to obtain object poses and/or positions over time. Using a CV pan/tilt/zoom (PTZ) system has the potential to circumvent their limitations. The system developed in this paper exploits parallel-processing and the GPU for CV-tracking, using optical flow and known camera motion, in order to capture a moving object using two PTU cameras. The parallel-processing technique developed in this work is versatile, allowing the ability to test other CV methods with a PTZ system using known camera motion. Utilizing known camera poses, the object\u27s 3D position is estimated and focal lengths are estimated for filling the image to a desired amount. This system is tested against truth data obtained using an industrial system

    People tracking and following with a smart wheelchair using an omnidirectional camera and a RGB-D Camera

    Get PDF
    The project implements a new service that enables a smart wheelchair user and another person to have a normal talk while freely strolling around the environment, without the need of any interaction towards the wheelchair, called Jiaolong
    corecore