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ABSTRACT

A robust and fast automatic moving object detection and tracking system is essential

to characterize target object and extract spatial and temporal information for different

functionalities including video surveillance systems, urban traffic monitoring and naviga-

tion, robotic, medical imaging, etc. A reliable detecting and tracking system is required to

generalize across huge variations in object appearance changes due to camera viewpoint,

pose, scale, lighting conditions, imaging quality or occlusions and achieve real-time perfor-

mance. In this dissertation, I present a collaborative Spatial Pyramid Context-aware moving

object detection and Tracking system (SPCT). The proposed visual tracker is composed of

one master tracker that usually relies on visual object features and two auxiliary trackers

based on object temporal motion information that will be called dynamically to assist mas-

ter tracker. SPCT utilizes image spatial context at different level to make the video tracking

system resistant to occlusion, background noise and improve target localization accuracy

and robustness. We chose a pre-selected seven-channel complementary features including

RGB color, intensity and spatial pyramid of HoG to encode object color, shape and spatial

layout information. We exploit integral histogram as building block to meet the demands of

real-time performance. A novel fast algorithm is presented to accurately evaluate spatially

weighted local histograms in constant time complexity using an extension of the integral

histogram method. Different techniques are explored to efficiently compute integral his-

togram on GPU architecture and applied for fast spatio-temporal median computations

and 3D face reconstruction texturing. We proposed a multi-component framework based on

semantic fusion of motion information with projected building footprint map to significantly

reduce the false alarm rate in urban scenes with many tall structures. The experiments on

extensive VOTC2016 benchmark dataset and aerial video confirm that combining comple-

mentary tracking cues in an intelligent fusion framework enables persistent tracking for Full

Motion Video (FMV) and Wide Aerial Motion Imagery (WAMI).
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Chapter 1

Introduction

Image and video content analysis are becoming more popular and complex with the

advent of accessible high quality camera sensors and various video analytics appli-

cations that enable us to automatically process image or video to characterize and

extract temporal and spatial information for different functionalities including fil-

tering [1, 2, 3], video surveillance systems [4, 5], video content retrieval [6, 7], ur-

ban traffic monitoring and navigation [8, 9, 10, 11], behavior and activity recogni-

tion [12, 13, 14, 15], 3D reconstruction [16, 17], etc.

One of the most common and challenging tasks in a video analytics framework is

detecting and tracking moving objects. A robust and fast moving object detection and

tracking system is essential to determine meaningful events and suspicious activities in

a video surveillance system or to automatically annotate and retrieve video contents

in a video content retrieval system. In an urban traffic monitoring system, reliable

tracking results can be applied to automatically compute the flux of the vehicles for

further road traffic congestion analysis and so many other applications. The objective
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of this dissertation is to develop a robust, accurate and high performance moving

object detection and tracking system for Full Motion Video (FMV) as well as Wide

Aerial Motion Imagery (WAMI).

1.1 Problem Statement

A robust visual moving object detection and tracking system needs to generalize

across huge variations in object appearance that may be observed through full motion

videos. These variations usually arise from three sources including object movements,

camera motion and background dynamics. As target object moves through the field

of view of a camera, the object appearance may change dramatically due to variations

in pose, shape and scale or being partially or fully occluded. The 2D shape and ap-

pearance of an object may also change substantially when the camera’s viewpoint is

altered. Capturing images using moving cameras will impose extra challenges on the

system unlike imaging with a fixed camera mounted on a wall or a land-pose. Motion

blur may occur at the moment of ”shot” and can be further magnified by slow expo-

sure [18]. Local sensor noise and compression artifacts are some other difficulties that

may impose to system by camera model. Moreover, environment complexities like

dynamic background, sudden illumination changes, background clutter, occlusion or

shadow interferences are some of the typical challenges that can make moving object

detection and tracking processing more complicated [19, 20, 21, 22]. Figure 1.1 elab-

orates some of these challenges for six selected sequences from 2016 Visual Object

Tracking challenge dataset (VOTC2016) [19].

Aerial video provides a global picture of the ground scene over different time

2



(a) Seq. butterfly, Pose Variation

(b) Seq. gymnastics1, Shape Deformation

(c) Seq. helicopter, Scale Variation

(d) Seq. car1, Motion Blur

(e) Seq. fish1, Background Clutter

(f) Seq. tunnel, Illumination Changes

Figure 1.1: Typical image processing challenges of a moving object detection and
tracking system.
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scales. For example, urban aerial imagery captures large scale activity analysis of

vehicles and pedestrians in urban settings. Airborne imagery enables understanding

the simultaneous behavior of multiple drivers sharing the same road using multi-

object tracking, covers a greater variety of interactions between road-users than would

be encountered by any one single user, and facilitates routing around accidents to

improve traffic flow [23, 24, 25, 8].

However, detecting and tracking moving objects in aerial imagery is impacted by

more challenges due to small and low target resolution, large object displacement due

to low frame rate, congestion and occlusions, motion blur and parallax effect of tall

structures, camera vibration, camera exposure and varying viewpoints, low quality

metadata and geo-registration errors [26, 5, 27, 28] in addition to other challenges

that we usually face in FMV tracking [29, 30, 31, 32].

Many visual tracking systems are developed to address these challenges includ-

ing correlation filter-based trackers [33, 22, 34, 35], fragment-based trackers [36, 37,

38], learning-based trackers [39, 40] and Likelihood of features-based tracker [27]. [38,

41] present Flock of Tracker (FoT) that perform target localization by combining dis-

placement estimations provided by independent local trackers laid out on a regular

grid covering the object. Despite numerous algorithms that have been proposed, it re-

mains a challenging task to develop a video tracking system that performs persistent

tracking accurately and efficiently for both standard Full Motion Video (FMV) and

Wide Aerial Motion Imagery (WAMI). Correlation based trackers are usually search

for the object within a small neighborhood around the previous estimated location

and therefore will lose the object quickly when there is large object displacement

due to low frame rate or fast motion particularly in WAMI dataset. Learning-based

4



trackers usually requires a large dataset in order to achieve good performances. My

dissertation focused on developing a robust and fast moving object detection and

tracking system for Full Motion Videos (FMV) as well as Wide Aerial Motion Im-

agery (WAMI).

1.2 Research Objective

The objective of this dissertation is to develop a robust, accurate and high perfor-

mance moving object detection and tracking system for Full Motion Video (FMV) as

well as Wide Aerial Motion Imagery (WAMI). The input of the systems varies from a

standard definition video to very large scale airborne imagery collected over urban ar-

eas. The output will be target tracklets that are computed using object visual features

and object temporal motion information. Motion prediction will be used to localize

the object when being partially or fully occluded by trees or tall structures. The es-

timated motion detection mask can be fused intelligently with visual object features

to increase tracking localization accuracy or being applied to initialize and perform

persistent multi-object tracking. Disciplined or informed intelligent fusion of different

kinds of information is useful for a general purpose tracking system across modali-

ties and different computer vision tasks. The proposed detection and tracking system

needs to be robust to object visual appearance changes due to scale, pose, orientation

and illumination. Our developed system main objective is to accommodate to object

appearance changes and perform persistent tracking under background noises (clut-

ter, dynamics) and occlusion as well as camera motion effects. Two measures are used

to analyze the performance of the visual tracking: Accuracy and Robustness. Accu-
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Video Streams

Image Preprocessing

Detecting Object 
Visual Features

Detecting Object 
Temporal Motion

Tracking

Computed Tracklets

Motion Prediction

Pool of trackers

Intelligent Fusion

Figure 1.2: Key components of proposed collaborative moving object detection and
tracking system. Disciplined or informed intelligent fusion of different kinds of infor-
mation is useful for a general purpose tracking system across modalities and different
computer vision tasks.

racy is the average overlap between the predicted and ground truth bounding boxes

during successful tracking periods. Robustness measures the number of times that

tracker loses the target during tracking [42, 19, 43]. We weight robustness more than

accuracy since the ultimate goal of visual tracking is performing persistent tracking. It

is also required to achieve real-time performance on low-power computing platforms

(laptops, PCs).

1.3 Dissertation Layout

In this dissertation we propose a collaborative tracking system consists of a master

tracker and two auxiliary trackers. The main idea is to have a pool of trackers that are

working together in an intelligent fusion framework to improve tracking performance

by being called dynamically. Figure 1.2 illustrates the collection of trackers. Master

6



P x, y, v = (cartesian coordinates, feature value)
spatial scale

small

large
Urban Aerial Imagery

high/scene level

low/pixel level

structure level

object level

(a) Image Spatial Pyramid Context (b) Spatial Context Hierarchy (c) Spatial Context Hierarchy(Example)

pixels

corners

Edge/lines
curvesfeatures

Relationships/Structures

Image Content

Buildings/road network

game, party, school, airport

Figure 1.3: Image spatial context can be modeled as a hierarchy of abstractions by in-
creasing the spatial scale. The most left figure shows image spatial context pyramid. Middle
image generalizes the spatial scale concept: at the lowest level are raw pixels with color and
spatial information in 2D Cartesian coordinates (pixel level). Further processing within a
neighborhood yields features that can be interpreted as objects (object-level). At the next
higher level, structures are emerged composed of one or more objects and relationships
among them and finally at the largest scale (image size) information regarding image con-
tent is provided. The right most image presents image spatial context hierarchy for a sample
urban aerial imagery.

tracker is assigned to the cue that has the most contribution in target localization. The

visual feature-based tracker usually takes the lead as long as object is visible and

presents discriminative visual features. Otherwise, tracker will be assisted by motion

information. For example, motion prediction will be used to localize the object when

being partially or fully occluded by trees or tall structures. Accurate temporal motion

information can be used to distinguish moving objects from static background in full

motion video and filter out false object detections.

Image spatial context can be modeled as a hierarchy of abstractions by increasing

the spatial scale. Figure 1.3 describes the hierarchy. At the lowest level are raw pix-

els with color and spatial information in 2D Cartesian coordinates (pixel level). At a

higher layer, further processing within a neighborhood yields features such as corners,

edges, lines, curves, and color regions. One may combine and interpret these features

7



as objects and their attributes (object-level). At the next higher level, structures are

emerged, composed of one or more objects and relationships among them (structure

level). Finally, at the largest scale (image size) information regarding image content is

provided. We utilizes image spatial context at different level to make our video visual

tracking system resistant to occlusion and background noise and improve the ro-

bustness. Pixel-level spatial information are used to build intensity spatially weighted

histogram or compute object foreground and background color histogram tensor. Spa-

tial layout of image fragments are preserved when constructing the spatial pyramid

of HoG. The structure-level spatial context (i.e. road network, building maps) can

be applied to filter out the false object detections by distinguishing background from

moving objects in full motion videos.

Therefore, our proposed visual tracker is named Spatial Pyramid Context-aware

Tracker (SPCT). We chose a 7-channel complementary low-level feature set includ-

ing RGB color(3), intensity(1), gradient orientation and magnitude(2) and edges(1)

to encode target object color, shape and spatial layout information so that to ac-

commodate object appearance changes due to illumination, pose and orientation and

maintain real-time performance. Figure 1.4 illustrates the principle tasks of SPCT

including tracker cues, target localization and fusion scheme.

The main contribution of the work are summarized as follows:

• Pool of trackers with a smart context-based fusion scheme: A collab-

orative tracking system consists of a master tracker and two auxiliary trackers

is developed based on

– Multi-channel Features (Master/Auxiliary): that model target ap-

pearance, accommodate to appearance changes, incorporating spatial con-

8
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text and is simple and fast to compute.

– Motion Detection (Master/Auxiliary): that distinguishes moving

objects from the static scene and filters out false detections.

– Motion Prediction (Master/Auxiliary): that models target motion

dynamics to automatically detect Region of Interest (ROI) and improve

target localization accuracy within and intelligent fusion framework.

• Spatial pyramid appearance tracking: we utilize spatial Pyramid of His-

togram of Gradient Orientation (PHoG) to encode object local shape and spatial

layout of the shape so that to make tracking resistant to occlusion and invariant

to illumination changes.

• Spatially weighted local histograms in O(1) using weighted integral

histogram: we proposed a novel fast algorithm to accurately evaluate spa-

tially weighted local histograms in O(1) time complexity using an extension of

the integral histogram method (SWIH) that encode both spatial and feature

information.

• Parallel GPU implementation of integral histogram: we utilize integral

histogram as the building block to encode candidate regions feature information

and achieve fast, multi-scale histogram computation in constant time. Although

integral histogram enables fast exhaustive search but it is still considered as the

most compute intensive image processing task for the presented tracking sys-

tem. The sequential implementation of the integral histogram uses an O(N)

recursive row-dependent method, for an image with N pixels. Therefore, I ex-

plored different techniques to efficiently compute integral histograms on GPU

10



architecture using the NVIDIA CUDA programming model [44, 31].

• Context-based semantic fusion of motion information with projected

building footprint information: we proposed a multi-component framework

based on semantic fusion of motion information with projected building foot-

print information to significantly reduce the false alarm rate in urban scenes

with many tall structures. Moving object detection in wide-area aerial imagery

is very challenging since fast camera motion prevents direct use of conventional

moving object detection methods and strong parallax induced by tall structures

in the scene causes excessive false detections [45, 46].

• Orientation-Aligned Template Matching by Learning the Object Di-

rection: Experimental results show that most of the orientation sensitive fea-

tures fail to detect the object when object template and search window are

not aligned for example when computing features likelihood maps using nor-

malized cross correlation of target template and search window. I proposed an

orientation-aligned template matching particularly for vehicle detection in wide

aerial imagery using vehicle’s non-holonomic constraints.

• Target object initialization refinement using CAMSHIFT: Many of the

tracking systems rely on ground truth annotations for object tracking initial-

ization and re-accusation of the object in case of tracker failure. These infor-

mation can be used to build the object visual appearance model and local-

ize the target neighborhood. However, the automatic and manual generation

of the ground truth is still one of the most tedious and error-prone aspects

when developing benchmark data set. If the ground truth bounding box an-
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notated around the object is not tight, not oriented aligned or not centered

around the object (drifted), it will contain background information that will be

incorporated into object descriptors which is not desirable. Incorporating back-

ground information will lead to less accurate target localization and rapidly

loss of the target being tracked. Hence, I used the Continuously Adaptive Mean

Shift (CAMSHIFT) algorithm to partially correct the drifted and loose ground

truth bounding box and improve tracking robustness.

• Offline feature selection test-bed using tracking context: A separate

test-bed is developed for filtering-based feature selection in order to decouple

feature performance from the rest of the tracking system where the final outcome

depends not only on the features used but also on the other parameters like the

predictor performance. Based on this experiment, a 7-channel complementary

features including RGB(3), gradient orientation and magnitude (2) and edges(1)

are chosen to characterize the object appearance model [25, 27].

• Automatic Detection of candidate regions using motion prediction: Au-

tomatic prediction of ROI in a complex image or video is a key task for visual

tracking that enables fast search and avoids background clutter, particularly

for large scale aerial imagery. When target motion dynamics is linear or ap-

proximately linear during the intervals between observations then a motion

prediction filter like Kalman filter can be used to automatically determine the

search window in the next image.

• Top performance on benchmark datasets including VOTC2016 and

WAMI data
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Algorithms and methods that are presented in this dissertation are published as

our contributions [44, 27, 25, 31, 42, 45, 46, 19, 43, 47, 48, 49, 50, 51, 52, 53].

Chapter 2 presents the key components of the visual tracking system that mainly

improved tracking robustness and accuracy. Chapter 3 explains the novel fast algo-

rithm we proposed to accurately evaluate spatially weighted local histograms in O(1)

time complexity using an extension of the integral histogram. Chapter 4 discusses

different methods that have been studied to distinguish moving objects from static

background for full motion video as well as aerial imagery. The GPU implementation

of the integral histogram will be presented in Chapter 5. The last chapter concludes

work and discusses future directions.
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Chapter 2

Spatial Pyramid Context-aware
Visual Object Tracking

Automatic visual object tracking is an active research area which has many practi-

cal applications including video surveillance, video compression, video editing, traffic

monitoring, vision-based control, human-computer interfaces, medical imaging, aug-

mented reality, robotics, content-based indexing and retrieval. However, tracking mov-

ing objects in videos is very challenging due to background variations, illumination

changes, shadow interference, camera vibration and occlusions, local sensor noise and

compression artifacts [19].

Tracking in Wide Aerial Motion Imagery (WAMI) is even harder than traditional

tracking using standard ground-based Full Motion Video (FMV) due to the problems

associated with small and low resolution targets, large moving object displacement

due to low frame rate, low quality metadata and georegistration errors, motion blur

and parallax effect, camera exposure and camera varying viewpoints [25, 27, 28].
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This dissertation presents a visual object tracking system that is composed of

one master tracker that usually relies on visual object features and two auxiliary

trackers based on object temporal motion information that will be called dynami-

cally to assist master tracker failure. The visual feature-based tracker usually takes

the lead as long as object is visible and presents discriminative visual features. Oth-

erwise, tracker will be assisted by temporal motion information. For example, motion

prediction will be used to localize the object when being partially or fully occluded by

background. This chapter describes the key components of the visual feature-based

tracker and the path prediction cue.

2.1 Image Pre(Post)-Processing Operations

Some of the challenges that are related to image quality including noise, low contrast,

jitters, etc. which are imposed to the system by camera low quality, camera motion

and background dynamics can be addressed before modeling the object or extract-

ing motion information to avoid further complexities. Image filtering, contrast en-

hancement, image stabilization and aerial imagery geo-registration are typical image

pre-processing operations that can significantly increase the reliability of the visual

tracking system.

Image Pre-processing Operation: Gaussian averaging, Median filtering, Bi-

lateral filtering and histogram equalization are the operators that have been applied

to the images if required to enhance the image quality. We used a state-of-the-art

structure from motion (SfM) and registration algorithm called MU BA4S in order to

orthorectify image sequences in a global reference system and maintain the relative
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movement between the moving camera platform and the fixed scene [54, 55].

Image Post-processing Operation: Parallax effects (which are particularly se-

vere in dense urban scenes) along with spatial camera-to-camera registration and

georegistration errors prevent direct use of detection algorithms relying on motion

information through variations of background subtraction and optical flow analy-

sis [28]. Urban scene contextual information is employed to filter out motion parallax

induced flow responses and enhance robustness of the system.

2.2 Target Tracking Initialization Refinement Us-

ing CAMSHIFT

Many of the tracking systems rely on ground truth annotations for object tracking

initialization and re-accusation of the object in case of tracker failure. These infor-

mation can be used to build the object visual appearance model and localize the

target neighborhood. However, the automatic and manual generation of the ground

truth is still one of the most tedious and error-prone aspects when developing bench-

mark data set. If the ground truth bounding box annotations around the object is

not tight, oriented aligned or not centered around the object (drifted), it will contain

background information that will be incorporated into object descriptors which is

not desirable. Incorporating background information will lead to less accurate target

localization and rapidly loss of the target being tracked.

I used the Continuously Adaptive Mean Shift (CAMSHIFT) algorithm to par-

tially correct the drifted and loose ground truth bounding box and improve tracking

robustness. CAMSHIFT is indeed an adaptation of Mean Shift algorithm which is a

16



Algorithm 1: CAMSHIFT Algorithm [56]

Input : Likelihood Map L, threshold δ, initial point (x0, y0)
Output : xpeak

Estimate x(t=0) = (x0, y0), dt =∞
Form a Search Window (SW) of L centered at x(t=0)

while dt < δ do
Calculate zero and first SW moments

M00 =
∑

x

∑
y P (x, y)

M01 =
∑

x

∑
y x× P (x, y)

M10 =
∑

x

∑
y y × P (x, y)

Find xt = M10

M00
, yt = M01

M00

Compute dt = (xt, yt)− (xt−1, yt−1)
Form new SW center at (xt, yt)
t=t+1

end
xpeak = (xt, yt)

robust, non-parametric method that climbs density gradients to find the peak of the

probability distribution [56]. Algorithm 1 describes CAMSHIFT processing. Given a

likelihood map, CAMSHIFT will converge to the mean (mode) of the probability dis-

tribution by iterating in the direction of maximum increase in probability map. Since

the maximum of the likelihood map is around the center of the target, the conver-

gence of the CAMSHIFT will happen around object centroid as well. I will use the

location of the peak computed by CAMSHIFT as the new object centroid to refine

the tracking initialization information using GT annotations and then recompute the

object scale and orientation. The performance of the CAMSHIFT highly relies on the

probability map. Target RGB color 3D histogram back-projection is used to compute

the likelihood map that associates the pixel values in the image with the value of the

corresponding histogram bin. The pixel value of the probability map is in fact the ra-

tio of the target foreground region normalized histogram bin value to the background

normalized histogram bin value.

Figure 2.1 shows the extracted target template using the ground truth annotation
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Orientation-aligned BBX

Axis-aligned BBX

GT initialization Likelihood map

CAMSHIFT iterations

Corrected BBX

Figure 2.1: Tracking Target initialization refinement using CAMSHIFT algorithm for
sequence butterfly of VOTC2016 challenge dataset.

information and the target initialization refinement process using CAMSHIFT algo-

rithm. Figure 2.2 presents the target bounding box annotation refinement results for

some of the selected VOTC2016 sequences.

I evaluated the overall performance of SPCT on VOTC2016 60 sequences using

the refined tracking initialization information. Using refined centered target template

bounding box for tracking initialization enable us to improve tracking average robust-

ness performance from 1.4 to 1.3.

2.3 Multi-Channel Features for Appearance Mod-

eling

Object model representation is one of the main components in many generative and

discriminative visual tracking algorithm. A good tracking system needs to generalize

across huge variations in object appearance due to viewpoint, pose, scale, lighting

conditions, imaging quality or occlusions. In addition, these tasks should preferably

meet the demands of real-time performance on low-power low-latency computing plat-
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(a) basketball (b) crossing (c) girl

(d) bolt1 (e) birds1 (f) sheep

(g) butterfly (h) fish2

(i) tiger (j) sphere

Figure 2.2: Tracking Target initialization refinement using CAMSHIFT. Each pair
of images presents target template using ground truth annotations on the left and
the refined centered target template using CAMSHIFT on the right for some of the
sequences from VOTC2016 benchmark dataset [19].
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forms. A wide range of features and appearance models have been described in video

and target tracking literature to address these challenges [19, 27, 25]. Using a rich

collection of features increases tracker robustness but is computationally expensive for

real-time applications and localization accuracy can be adversely affected by includ-

ing distracting features in the feature fusion. I evaluated the performance of a rich set

of complementary low level image-based feature descriptors incorporating intensity,

edge, texture, and shape information using filtering-based feature selection method. I

developed a standalone test-bed to explore offline feature subset selections for video

tracking to reduce the dimensionality of the feature space and to discover relevant

representative lower dimensional subspaces for online tracking [25].

2.3.1 Low Level Features

2D Image visual content can be modeled as a hierarchy of abstractions. At the lowest

level, we have the raw pixels with color or brightness information. Many statistical

measures can be derived by further processing of these features. I applied image

fusion using the separable two dimensional steerable Gaussian filter bank operator

with pixel-based correlations of image intensity to extract a rich set of multi-scale

features. Several features based on structure tensor (first derivatives) and Hessian

(2nd derivatives) image operator are computed. These features are grouped into four

categories including color, edge-based, local shape-based and texture-based features.

Many local edge and corner descriptors can be directly obtained from image first

derivatives like gradient orientation and gradient magnitude as well as from the two
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eigenvalues λ1, λ2 of the structure tensor matrix JC

JC =


∑(

∂Ii
∂x

)2 ∑ ∂Ii
∂x

∂Ii
∂y∑ ∂Ii

∂x

∂Ii
∂y

∑(
∂Ii
∂y

)2

 (2.1)

λ1,2 =
1

2
(JC(1, 1) + JC(2, 2)±

√
(JC(1, 1)− JC(2, 2))2 + (2JC(1, 2))2) (2.2)

Some of the common edge and corner detectors that can be derived from struc-

ture tensor are Beltrami [57], Harris [58], Shi-Tomasi [59] and Cumani [60] detectors

computed as

Beltrami(I) = 1 + trace(JC) + det(JC) = 1 + (λ1 + λ2) + λ1λ2 (2.3)

Harris(I) = det(JC)− k trace2(JC) = λ1λ2 − k(λ1 + λ2)
2 (2.4)

ShiTomasi(I) = min(λ1, λ2) (2.5)

Cumani(I) = max(λ1, λ2) (2.6)

Local shape-based features are calculated using the eigenvalues λ1,2 of the Hessian

matrix H, of the intensity field I(x, y), that describes the second order structure of

local intensity variations around each point of the image

H =

 Lxx Lxy

Lxy Lyy

 , λ1,2 =
1

2
(Lxx + Lyy ±

√
(Lxx − Lyy)2 + (2Lxy)2) (2.7)
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Shape Index (SI) (Eq.2.8) and Normalized Curvature-Index (NCI) (Eq.2.9) are two

features that we derived from the eigenvalues, λ1 ≥ λ2, of H,

θ(x, y) = tan−1
λ2(x, y)

λ1(x, y)
(2.8)

φ(x, y) = tan−1
sqrtλ1(x, y)2 + λ2(x, y)2

1 + I(x, y)
(2.9)

Another very popular shape measure is the magnitude weighted histogram of Hessian

eigenvector orientation. We considered two simple texture measures including gra-

dient magnitude and local binary pattern (LBP) histogram [61] to characterize the

quantized local intensity variability. Table 2.3 summarizes the described features.

2.3.2 Feature Selection Test-bed Using Tracking Context

I explored offline feature subset selection for video tracking to reduce the dimension-

ality of the feature space and to discover relevant representative subspaces for online

tracking. Good features should be discriminative, robust and easy to compute so that

result in improved quantitative and more efficient computational performance, and

increased system adaptability and flexibility.

A test-bed that decouples evaluation of the feature selection module from the rest

of the tracking system is being developed [27, 25]. The proposed test-bed performs

three tasks:

• Computes individual likelihood maps for each feature

• Construct fused likelihood maps for the selected feature subsets
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Candidate Features Set
Features 

Label
Normalization Range

Number 
of bins

Equation

Intensity histogram 1: HI [0,255] 10 𝐼(𝑥, 𝑦)

Gradient Magnitude 2: HGM [0,100] 10

Shape Index 3: HSI [-3*pi/4, pi/4] 10

𝐻 =
𝐼𝑥𝑥 𝐼𝑥𝑦
𝐼𝑥𝑦 𝐼𝑦𝑦

Normalized Curvature 
Index

4: HNCI [0, pi] 10

Hessian Eigenvector 
Orientations

5: HEO [-90 90] 10

Gradient Orientation 6: HOG [-90 90] 10

LBP 7: HLBP
16 sampling points on
a  circle of radius 2 17

Intensity Normalized 
Cross-correlation

8: INCC [0,255] 10
1

𝑛
 

𝑥,𝑦

(𝐼 𝑥, 𝑦 −  𝐼)(𝑇 𝑥, 𝑦 −  𝑇)

𝜎𝐼𝜎𝑇

Gradient Magnitude 
Normalized Cross-
correlation

9: GMNCC [0,100] 10
1

𝑛
 

𝑥,𝑦

(𝐺𝑀 𝑥, 𝑦 − 𝐺𝑀)(𝑇 𝑥, 𝑦 −  𝑇)

𝜎𝐺𝑀𝜎𝑇

ARST Orientation 10: HARST [-90 90] 10 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑆𝑇, 𝐽 =
𝐼𝑥
2 𝐼𝑥 𝐼𝑦

𝐼𝑥 𝐼𝑦 𝐼𝑦
2

Shape Index Correlation 11: SINCC [-3*pi/4, pi/4] 10
1

𝑛
 

𝑥,𝑦

(𝑆𝐼 𝑥, 𝑦 −  𝑆𝐼)(𝑇 𝑥, 𝑦 −  𝑇)

𝜎𝑆𝐼𝜎𝑇
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Figure 2.3: Collection of appearance-based candidate features.

• Evaluate feature subsets based on the corresponding fused likelihood map using

the filtering-based methods

In this work, WAMI Persistent Surveillance Systems (PSS) imagery acquired from

an eight camera array for Philadelphia is used. Each camera in the array produces an

11 megapixel 8-bit gray scale image typically 4096 × 2672 at one to four frames per

second. These raw images are georegistered to a 16384× 16384 image mosaic with a

ground sampling distance of about 25cm for the imagery used in this experiment. Fig-

ure 2.4 presents details of the WAMI PSS dataset that have been used for feature

performance evaluation.
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Car Number of frames Size of data
(Number 0f frames * 22)

Car Template

1 254 5588

2 138 3036

3 118 2596

4 266 5852

5 88 1936

7 104 2288

8 92 2024

10 145 3190

11 184 4048

12 35 770

13 110 2420

14 167 3674

15 148 3256

16 46 1012

17 47 1034

Total 15 PSS cars Total frames = 1942 Size of data = 42724

Figure 2.4: WAMI Persistent Surveillance System (PSS) dataset details.

In order to decouple feature evaluation from the rest of the tracking system, at

each frame t, the search window for the target is set to an m × m region around

the true target ground truth position for that frame instead of the predicted target

position in the tracking system. Then the performance of the feature subsets can be

readily evaluated since the true target location is known and the search region is the

same for all feature subsets.

Likelihood maps for individual features are computed using Normalized Cross

Correlation (NCC) (Eq. 2.10) or sliding window histogram distance matching using
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City-Block distance computation metric (Eq. 2.11, p = 1).

γ[u, v] =

∑
k,l(f [x, y]− f̄u,v)(t[x− u, y − v]− t̄)

(
∑

x,y(f [x, y]− f̄u,v)2
∑

x,y(t[x− u, y − v]− t̄)2)0.5
(2.10)

Dist(H1, H2) =

(∑
i

|H1(i)−H2(i)|p
) 1

p

(2.11)

Joint likelihood maps are constructed by fusing individual likelihood maps using

weighted sum. Equal weight fusion is used in this study in order to minimize the

influence of likelihood fusion approach on feature selection performance. The joint

likelihood map for feature subset X∗ for frame t is estimated as:

LX∗(t) =

card(X∗)∑
i=1

wi LX∗
i
(t), wi =

1

card(X∗)
(2.12)

where LX∗(t) is the fused likelihood map for feature subset X∗ at time t, LX∗
i
(t) is

likelihood map for feature i and card(X∗) is the number of features in the subset.

The filtering score for a feature subset is determined by the target localization of its

corresponding likelihood map. The likelihood map scoring is done as follows: Likeli-

hood maps typically contain a number of peaks/local maxima. The height of a peak

L(p, t) is the likelihood that the target is located at peak position p. In the ideal

case the highest score for a feature set is when the most likely (highest) peak in the

corresponding likelihood map is located on the target (i.e. zero distance to target).

The scoring process ranks peaks in the fused likelihood map in decreasing order of

their heights. The highest peak is labeled as rank 1 and higher ranks are assigned to

the other lower confidence peaks (Figure 2.5). Once the peaks are ranked, the score

of a likelihood map L(t) is determined by the rank of the highest peak inside the
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Figure 2.5: Evaluation of a fused likelihood map produced by a feature set. From
Left to right: search window, target to sliding window match likelihood map, local
maxima (peaks) in the likelihood map and corresponding rank, position and class
information.

target ground truth region, or is penalized as a miss if there is no local peak present

in the target region,

score(L(t)) =

 rank
(
arg maxp∈RGT

(L(p, t))
)

if ∃p ∈ RGT

k + 1 otherwise
(2.13)

The score of a feature subset X∗ is computed as the average likelihood score over the

total number of processed frames where occluded frames are ignored.

score(X∗) =

∑card(frames)
t=1 score(LX∗(t))

card(frames)
(2.14)

I analyzed four selection methods with varying levels of optimality and compu-

tational cost. The performance of the exhaustive FOCUS algorithm is compared to

the sequential heuristic SFFS, SFS and RELIEF feature selection methods for 11

features described in Figure 2.3. FOCUS which is not practical for larger feature sets
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because of its exhaustive search, is feasible in this study and produces the best re-

sults. The SFFS-based selection has performance similar to greedy SFS selection and

both outperform the RELIEF method for the vehicle tracking application. The linear

RELIEF unlike the other feature selection methods which produce the same results

each time, uses random class sampling so the resulting weights change from run to

run. Overall SFFS and SFS perform very well, close to the optimum determined by

FOCUS, but RELIEF does not work as well for feature selection in the context of

appearance-based object tracking.

The observed results illustrate that there are many factors that affect the perfor-

mance of a particular feature. Image resolution, target size, target color (i.e. light or

dark car) and background complexities change from one car to the other car. The ob-

tained results validate that the intensity and the gradient magnitude (both histogram

and correlations) are the most discriminative features for the light cars. While in the

case of dark cars, additional feature descriptors like histogram of gradient orientation

(HOG) and histogram of eigenvector orientation (HEO) and Linear Binary Pattern

(LBP) are required.

Therefore, I have chosen the most efficient features including RGB color, intensity

and HoG to accommodate the object appearance changes instead of using a collection

of multiple features that will provide similar information or sometimes distracting

other features during the fusion.

2.3.3 Target Appearance Modeling

Appearance-based tracking algorithm that use color and HOG features achieve state-

of the art performance while maintaining real-time speed. Image color histogram is one
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of the simplest method to achieve robustness to deformation. Color or intensity his-

tograms are insensitive to shape variation, but are often not sufficient to discriminate

object from background and are also sensitive to significant illumination changes. On

the other hand, gradient magnitude weighted histogram of orientation presents to

be a very strong feature that is robust to illumination changes and represents im-

age shape. Therefore, a 7-channel low-level complementary features including RGB

color(3), intensity(1), gradient magnitude(1), gradient orientation(1) and edges(1) are

selected to fully characterize the object and accommodate to appearance changes.

Either pixel-wise (target template) or region-wise (histogram) descriptors are used

to represent target model. Templates provide good spatial localization and discrimi-

native power but are sensitive to change in pose, viewing angle and scale. Therefore, I

incorporate histogram-based descriptors to obtain global information about the ob-

ject that are robust to change due to motion, pose or viewing angle using appropriate

normalization and alignment operations.

Target Template: Target template carries both spatial and appearance information

of the object. However, templates only encode the object appearance that is gener-

ated from a single view. Therefore, it is more suitable for problems where the viewing

angle of the camera and the object pose remains constant or change very slowly like

modeling moving objects in aerial imagery.

3D Histogram of RGB color: Our RGB color descriptor consists of two three

dimensional histograms of size 32 × 32 × 32 to represent foreground object and its

background information. This information are used later for pixel-wise RGB color

likelihood map computation using foreground to background histogram ratio (Fig-

ure 2.6).
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Target Template Foreground Region Color Likelihood MapBackground Region

Figure 2.6: Target foreground and background histogram computations to compute pixel-
wise color likelihood map using foreground to background color histogram ratio.

Spatial Pyramid of Histograms of Gradient Orientation (PHoG): Using

higher resolution feature descriptors for representing the object is essential to im-

prove the system performance, particularly to address occlusion and appearance

changes. With this approach, coarse feature descriptor covers the entire object at

the lowest level L1, while smaller patches of the object are covered at higher resolu-

tion pyramid level. Therefore, the matching process does not only rely on the entire

object but the smaller patches and their spatial order. We have used PHoG to repre-

sent the object by its local shape and spatial layout of the shape [62, 63]. Local shape

is obtained by the distribution over edge orientation within a region, and spatial lay-

out by tiling the image into regions at multiple resolutions. The descriptor consists

of a magnitude weighted histogram of gradient orientation over image subregion at

different resolution level. Figure 2.7 illustrates the spatial pyramid of HoG feature

computation for sequence Singer1 from V OTC2016 dataset.

Spatially Weighted Histogram of Intensity: Instead of plain histograms that

are sensitive to noise and occlusions, we modeled the object brightness information
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Figure 2.7: Compute Spatial Pyramid Magnitude Weighted Histogram of Gradient
Orientation over Edge Image.

by a spatially weighted histogram. The idea is to assign lower weights to the pix-

els that most likely belong to background or occluding objects. We proposed a novel

fast algorithm to accurately evaluate spatially weighted local histograms in O(1) time

complexity using an extension of the integral histogram method (SWIH) that encodes

both spatial and feature information (refer to Chapter 3).

2.3.4 Candidate Region Descriptors

The candidate region or search window is represented either by its template for pixel-

wise matching or an integral histogram tensor will be constructed for each region-

based feature. Integral Histogram is our building block to extract multi-scale local

histograms in constant time.

Integral histogram is a recursive propagation preprocessing method used to com-

pute histograms over arbitrary rectangular regions in constant time [64]. The integral
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Figure 2.8: Computation of the integral histogram up to location (x, y) using a cross-
weave horizontal and vertical scan on the image (left). Computation of the histogram for
an arbitrary rectangular region R is shown on right image (origin is the upper-left corner
with y-axis horizontal).

histogram at position (x, y) in the image holds the histogram for all the pixels con-

tained in the rectangular region defined by the top-left corner of the image and the

point (x, y) as shown in Figure 2.8. The integral histogram for a rectangular 2D region

defined by the spatial coordinate (x, y) and bin variable b is defined as:

H(x, y, b) =

∫ x

0

∫ y

0

Q(I(r, c), b)dr dc ≈
x∑

r=0

y∑
c=0

Q(I(r, c), b) (2.15)

where Q(I(r, c), b) is the binning function that evaluates to 1 if I(r, c) ∈ b for the

bin b, and evaluates to 0 otherwise. Given H, computation of the histogram for any

candidate region R (Fig. 2.8) reduces to the combination of four integral histograms:

h(R, b) = H(r+, c+, b)−H(r−, c+, b)−H(r+, c−, b) +H(r−, c−, b) (2.16)

However, the conventional local histogram computations using integral histogram

does not directly apply to compute spatially weighted local histograms and requires

more processing to build the spatial L-level pyramid high resolution histograms of

gradient orientations.
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Spatial L-level Pyramid Histograms of Gradient Orientations Using Inte-
gral Histogram

The main integral histogram property is to compute multi-scale local histograms

with two subtraction and one addition operations. Using this feature enables us to

construct spatial L-level pyramid of HoG in few steps. Let’s assume that we want to

generate the L level pyramid histograms of sliding windows of size w × h within a

search window of size W ×H(Figure2.9).

At the lowest level L0, we compute the coarse local histograms of size w×h. For the

higher resolution histograms at each pyramid level Li, first we compute the smaller

subregions histograms of size (wi = w
2i
, hi = h

2i
) in constant time by three vectorized

arithmetic operations. In the second step, for each region of size w × h, we combine

the corresponding subregions histograms of size (wi, hi) considering their translations

L0

L1

L2

RGB Intensity

Gradient 
Magnitude

Gradient 
Orientation

Edges

Compute Magnitude Weighted Integral Histogram 
of Orientation Gradients Over Edge Image

GOrientationGMagnitude

w

h

w

h

w/2

h/2

w/4

h/4

W

H

W

H

Figure 2.9: Spatial Pyramid HoG Feature Computation For Search Window.
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Algorithm 2: Computing Spatial L-level Pyramid Histograms of Gradient Ori-
entations Using Integral Histogram
Input : Search Window(SW) of size H ×W , image chip of size w × h, number of bins b, number

of pyramid level L
Output : SPHoG: Spatial L-level Pyramid Local Histograms of Gradient Orientations

1: Compute SW edges using Canny edge detection
2: Compute SW gradient magnitude and orientations
3: Quantize gradient orientations over edge regions into b bins
4: IH = Compute gradient magnitude weighted integral histogram of gradient orientation over

edges
5: //Compute spatial L pyramid level gradient histogram of orientation
6: for l = 0 : L do
7: s = 2l

8: hi = h
s ;wi = w

s ;
9: Hl = Compute-Local-Histograms-Using-IH(IH, wi, hi)

10: indi = 1; indj = 1;
11: for i = 1 : s do
12: for j = 1 : s do
13: subHl

= Hl(indi : h+ indi − 1, indj : w + indj − 1, :)
14: SPHoG = SPHoG+ subHl

15: indi = indi × h;
16: end for
17: indi = 1;
18: indj = indj × w;
19: end for
20: end for

from the region center. Therefore, we will use the same integral histogram tensor L

times to construct the spatial L-level pyramid local histograms. Algorithm 2 describes

the local pyramid histograms computations.

2.4 Feature Likelihood Maps Computation

For every frame It, matching likelihood maps for individual features are computed

based on the feature characteristics and descriptors. Pixel-based normalized cross

correlation of image chip provides good spatial localization and discriminative power

but are sensitive to change in pose, viewing angle and scale. Therefore, we incorporate
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histogram-based descriptors to obtain global information about the object that are

robust to change due to motion, pose or viewing angle using appropriate normalization

and alignment operations. Pixel-wise foreground to background histogram ratio and

sliding window histogram similarity operator are used to compute the histogram-

based likelihood maps.

2.4.1 Normalized Cross Correlation

Normalized Cross Correlation (NCC) is one of the most popular methods to perform

template matching. Providing a reference image of an object (the template image) and

a candidate image chip, correlation-based methods identify all candidate regions that

match the predefined template to localize the object. NCC computation is simple, ef-

fective and invariant to linear brightness and contrast variations. We used Matlab

fast normalized cross correlation function based on integral images [65] to perform

target template similarity matching (Eq. 2.17)

γ[u, v] =

∑
k,l(f [x, y]− f̄u,v)(t[x− u, y − v]− t̄)

(
∑

x,y(f [x, y]− f̄u,v)2
∑

x,y(t[x− u, y − v]− t̄)2)0.5
(2.17)

It is been seen that correlation-based likelihood maps provide more accurate peak-like

response for object localization compare to histogram-based matching. The reason is

that NCC uses local sums to normalize the cross-correlation, giving high likelihoods

within a small local region around the center of the object window and low likelihood

values for the rest of the object window [66]. We applied NCC to compute intensity

feature likelihood map. However, NCC fails to localize the target when there is signifi-

cant rotation and scale changes. Therefore, we incorporate histogram-based matching
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that are robust to translation, pose or viewing angle changes.

2.4.2 RGB Color Foreground to Background Histogram Ra-
tio

Pixel-wise color Likelihood maps are simple and fast to compute, robust to deforma-

tion and discriminative when background color contrasts sufficiently with object.

Bays classifier is used to compute the pixel-wise RGB color likelihood map using

object foreground and background region information prior knowledge, RFG and RBG

respectively, derived from the ground truth position of the target XGT = (Cx, Cy)

(Figure. 2.6). RGB color histogram HFG(bR, bG, bB) and HBG(bR, bG, bB) of size 32×

32× 32 over RFG and RBG region are computed to model foreground object and its

background

HROI(bR, bG, bB) =
∑

(x,y)∈RROI

δ((R(x, y)− bR)× (G(x, y)− bG)× (B(x, y)− bB)) (2.18)

so that the RGB color components at location (x, y) are encoded by the same bin

index set (bR, bG, bB). The probability of foreground and background color information

is approximated using foreground and background histogram information and the

areas |RFG| and |RBG|:

P (bRGB(x, y)|(x, y) ∈ RBG) =
HBG(bRGB(x, y))

|RBG|
(2.19)

P (bRGB(x, y)|(x, y) ∈ RFG) =
HFG(bRGB(x, y))

|RFG|
(2.20)

Then for a given pixel at location (x, y), the probability of belonging to foreground
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region is

L(x, y) = P ((x, y) ∈ RFG|bRGB(x, y)) =

P (bRGB(x, y)|(x, y) ∈ RFG)× P ((x, y) ∈ RFG)

P (bRGB(x, y)|(x, y) ∈ RFG)× P ((x, y) ∈ RFG) + P (bRGB(x, y)|(x, y) ∈ RBG)× P ((x, y) ∈ RBG)

HFG(bRGB(x, y))

HFG(bRGB(x, y)) +HBG(bRGB(x, y))
(2.21)

We applied the same method to evaluate the performance of different color spaces

including RGB, HSV and YCBCr. The results are presented in Section 2.8.2.

2.4.3 Sliding Window Histogram Matching

Histogram-based representation is widely applied in many image processing tasks

including detection, tracking and recognition due to its simplicity and rich discrimi-

native information. Given two image chips, the reference and the candidate image, we

compute the histogram of each and then different histogram distance matching opera-

tors including bin-to-bin distances and cross-bin distances will be applied to compute

the similarity between two images. The bin-to-bin distances between two histograms

are based on the differences of the corresponding bins in the histograms including `1

and `2 distances, histogram intersection and Bhattacharyya coefficient between two

histograms [67]. The cross-bin similarity measures perform cross bin comparison be-

tween two histograms to obtain more robust measure of their similarities including

earth movers distance (EMD) [68].
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We applied the city block distance metric to compute intensity histogram likeli-

hood map that is a special case of the Minkowski bin-to-bin similarity metric (Eq. 2.22),

where p=1.

Dist(H1, H2) =

(∑
i

|H1(i)−H2(i)|p
) 1

p

(2.22)

2.4.4 Spatial Pyramid Matching Using the Mercer Kernel

Using high resolution L-level PHoG descriptor enables us to encode the entire object

feature information at the lowest level L0 and the small object patches at higher

levels. The image grid at level l has 2l cells along each dimension, for a total of D =

2k×l, where k is the histogram bin size. The final PHoG descriptor is the concatenation

of HoG vectors for the grids across all levels with dimensionality of k
∑

l∈L 4l.

Similarity between a pair of PHoGs X and Y is computed using Mercer Kernel

method as described in [63]. Spatial pyramid matching using the Mercer kernel assign

higher weights to the matches that are found at finer resolution than matches found

at coarser resolution. Let HX
l and HY

l represents the histograms of X and Y at level

l and HX
l (i) and HY

l (i) are the number of points from X and Y that falls into ith

cell of the grid. Then, matches at level l is obtained by the histogram intersection

function as

I l = I(HX
l , H

Y
l ) =

∑
min(HX

l (i), HY
l (i)) (2.23)

Finally, the pyramid match kernel is computed as follows:

κL(X, Y ) = IL +
L−1∑
l=0

1

2L−l (I
l − I l+1) =

1

2L
I0 +

L∑
l=1

1

2L−l+1
I l (2.24)
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2.5 Orientation-Aligned Template Matching by Learn-

ing the Object Direction

Experimental results show that most of the orientation sensitive features fail to detect

the object when object template and search window are not orientation aligned for

example when computing features likelihood maps using normalized cross correlation

of target template and search window. Figure 2.10 illustrates the template matching

likelihood map results using normalized cross correlation of target template and region

of interest (ROI) for a vehicle detection and tracking system. As it is shown in the first

row of Figure 2.10, at time t = 1 the detection response perfectly localize the object

since both target template and ROI are vertically aligned. However, the direction of

the vehicle may gradually change as it moves along the image sequences. Assuming

that at frame t, the target template and ROI lose their alignment due to vehicle

Template Region of Interest Likelihood Map

Frame(1)

Frame(t)

Figure 2.10: Orientation sensitivity performance evaluation of intensity Normalized Cross
Correlation (NCC) likelihood map. NCC fails to detect and localize the object when the tar-
get template and region of interest lose their orientation alignment due to object movements
and orientation changes.
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𝐻
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Figure 2.11: Compute transformed ROI using target true position and orientation.

turn. As it is shown in second row of Figure 2.10, NCC fails to detect and localize

the vehicle since it is sensitive to orientation changes.

We conducted two different experiments to evaluate the performance of orientation

sensitive features by rotating the target template or ROI. In both experiments ROI

is cropped around the true target ground truth position so that the ideal detection

response and the likelihood map peak should located at the center of ROI. Initially,

target template is being aligned horizontally or vertically based on its original direc-

tion. Different methods are investigated to estimate the vehicle orientation including

radon transform, object motion dynamics and CAMSHIFT algorithm. In the first

experiment, at every iteration target template is rotated 5 degree CCW while the

ROI is fixed and aligned with target true orientation. In the second run, target tem-

plate remains fixed and at every iteration the ROI is rotated 5 degree CCW. Inverse

warping is used if needed to align search window using homography transformation

matrix H = H1 ×H2 ×H3 based on target true position (Cx, Cy) and orientation θ,

as shown in Figure 2.11, where

H1 =


1 0 −Cx

0 1 −Cy

0 0 1

 , H2 =


cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 , H3 =


1 0 +Cx

0 1 +Cy

0 0 1

 (2.25)
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Figure 2.12: Features orientation sensitivity performance evaluation.

Figure 2.12 presents orientation sensitivity performance evaluation results using slid-

ing window histogram matching and normalized cross correlation template match-

ing. The experiments are conducted on frame 1 of sequence C5 4 1R from CLIF

dataset using fixed aligned target template and rotating ROI. Radon transform is

used to estimate the vehicle orientation. We considered 9 individual features includ-

ing histogram of intensity (I-H), gradient magnitude (GM-H), shape-index(SI-H),

normalized curvature index (NCI-H), eigen-vector orientation (VO-H), linear binary

pattern (LBP-H), correlation of intensity (I-Corr) and gradient magnitude (GM-

Corr). Moreover, we fused features likelihood maps using equal weighting and presents

the results (Fusion). The estimated object orientation is 335 degree and as we ex-

pected the orientation sensitive operations including NCC performs well when the

template and ROI are getting aligned at 335 degree ( Figure 2.12, vertical red-line).
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Figure 2.13: A vehicle displacement is always parallel to the path due to its non-
holonomic constraints.

Experimental results proved the idea that likelihood map will have the maxi-

mum peak value at the center when target template and ROI are completely aligned

particularly for rigid vehicle detection in aerial imagery. Therefore, we proposed an

orientation-aligned template matching module based on vehicle’s non-holonomic con-

straints (Figure 2.13).

2.5.1 Learning the vehicle direction

Accurate object orientation estimation is the most challenging task that affect the

aligned matching performance. I have tested radon transform, CAMSHIFT algorithm

and motion dynamics to estimate the orientation of the vehicle and perform orien-

tation aligned matching at every iteration of the tracking. However, each of them

has its own drawback. Background clutter and noise will adversely affect orientation

estimation using radon transform and CAMSHIFT algorithm.

As it is shown in Figure 2.13, a vehicle displacement is always parallel to the path
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Algorithm 3: Compute vehicle new direction
Input : PrevDir,minDist
Output : NewDir

1: //compute distance between current target location and the previous frame
2: currdist = compute distance(position(currframe),position(currframe-1));
3: // set previous frame two frames before the current frame
4: prevframe = currframe − 2;
5: // compute distance to the previous frame until pass minDist
6: while currdist < minDist and prevframe ≥ Initframe do
7: currdist = compute distance(currframe,prevframe)
8: prevframe = prevframe −1;
9: end while

10: // compute New Dir if conditions passed
11: if prevframe> initframe then
12: NewDir = compute direction(rvel,cvel);
13: if PrevDir == -1 then
14: PrevDir = NewDir;
15: end if
16: end if

due to its non-holonomic constraints. Therefore if we estimate the direction of the

path, in fact we have estimated the orientation of the vehicle that can be used if

required to transform the target reference template.

Algorithm 3 describes the proposed vehicle direction learning algorithm using

estimated target tracklets. We experimentally defined a minimum distance thresh-

old value to avoid inaccurate orientation estimation due to small displacement. This

threshold value set to be double of target vehicle maximum length (minDist =

2 × max(w, h)). At every iteration the new orientation of the vehicle is estimated

using the most displacement along X and Y axis. Then if the new computed direc-

tion is not equal to the previous direction, the target template orientation update

function will be called. The proposed vehicle direction learning method significantly

improves the visual tracking performances when car start turning.
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2.6 Tracking Using Motion Prediction

In many visual tracking applications users typically concentrate on some specific mon-

itored objects, such as a vehicle, a person, a face, a ball etc. Hence, only the region

around this object is important that can be considered as a fixed or dynamic region

of interest (ROI) within the image. Automatic prediction of ROI in a complex image

or video is a key task for visual tracking that enables fast search and avoids back-

ground distractors, particularly for large scale aerial imagery [27, 28]. Many of the

state-of-the art trackers perform their tracking procedure in a search area centered

at the position estimated in the previous image, assuming that the object doesn’t

have large displacement. On the other hand, when target motion dynamics is linear

or approximately linear during the interval between observations then a motion pre-

diction filter can be used to determine the search window in the next frame. Kalman

filter and its extensions are common motion prediction methods that are being used

in many tracking systems [69, 70, 71]. Kalman filter relies on a motion model that

represents how object moves in time. One can estimate system’s dynamical evolution

characteristics, matrix F , based on at least two first frames. Let’s assume that our

system has an state estimate X and covariance matrix P and constant velocity, then

at time t = 0:

X(0|0) = [ Cx Cy Vx Vy ]T (2.26)

P (0|0) =



α 0 0 0

0 α 0 0

0 0 α 0

0 0 0 α


(2.27)
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where α is a small value at the beginning when initializing the tracker. An additional

covariance matrix Q is considered to account for the amount of uncertainty associated

with motion model, F . The process noise matrix Qconst is a powerful parameter that

can be adjusted to allow a linear model to adopt to the dynamics changes of a highly

nonlinear system. Since the time interval between two consequences frame is 1 (4t =

1), Q is a constant matrix set to small values that will be added to state covariance

matrix P to tune the filter. Now, we can estimate the location of the object at time

t+ 1 using Kalman prediction:

X(t+ 1|t) = FX(t|t)

P (t+ 1|t) = FP (t|t)F ′ +Qconst

(2.28)

X(t + 1|t) will be used to detect the region of interest in frame t + 1. Then target

location Z(t + 1) and related covariance matrix R(t + 1) will be estimated using

computed fused features likelihood map on detected ROI:

Z(t+ 1) = [Zx, Zy] (2.29)

R(t+ 1) = 1
conf
×

 β 0

0 β

 (2.30)

If the state observation confidence measure, conf, based on features likelihood map

is low due to weak features responses then Kalman prediction result will be fused

with feature-based tracker result to improve localization accuracy using Kalman filter
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fusion:

S = HP (t+ 1|k)H ′ +R(t+ 1)

W = P (t+ 1|k)H ′S−1

P (t+ 1|t+ 1) = P (t+ 1|t)−WSW ′ +Qconst

X(t+ 1|t+ 1) = X(t+ 1|t) +W (Z(t+ 1)−HX(t+ 1|t))

(2.31)

2.7 Target Localization

Possible target locations within the search window are denoted by peak locations in

the fused posterior features likelihood map. Fused Features likelihood map is com-

puted using weighted averaging. Given a case where feature fused likelihood maps

indicates low probability of the target location (due to inadequacy of features to lo-

calize the object, occlusions, lighting conditions, shape deformation, etc.), a low con-

fidence measure will be reported to call dynamically other cues for assistance. Then

temporal moving object detection mask will be used to filter out false feature-based

detections of background. The low confidence measure computed on features fused

likelihood map will be used to update and enlarge observation covariance matrix. Fi-

nally filtered feature-based estimation will be fused with Kalman predicted position

to localize the object. At the end of every iteration t, object’s appearance descriptors

fk will be updated using blending approach, where α is a small value (Eq. 2.32).

fk(t+ 1) = α× fk(t) + (1− α)× fk(t− 1) (2.32)
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2.8 Visual Tracking Experimental Results

The proposed tracking algorithm has been implemented in Matlab and being tested

for all 60 sequences of VOTC2016 benchmark full motion videos [72] and two aerial

video including ARGUS and ABQ WAMI images. VOTC2016 is considered as the

largest and most challenging benchmark for single-object short term tracking due to

the number of submitted and tested state-of-the-art trackers [19]. The VOTC2016

dataset contains 60 sequences with several visual attributes and challenges includ-

ing illumination changes, scale variations, motion change, camera motion and occlu-

sion. ARGUS WAMI dataset collected by DARPA Autonomous Realtime Ground-

Ubiquitous Surveillance-Imaging System contains more than 4000 wide aerial images.

ARGUS-IS system is capable of imaging an area of greater than 40 square kilome-

ters with a Ground Space Distance (GSD) of 15 cm at video rates of greater than

12 Hz [73]. ABQ aerial urban imagery were collected by TransparentSky [74] using

an aircraft with on-board IMU and GPS sensors flying 1.5 km above ground level of

downtown Albuquerque, NM on September 3, 2013. Imaging was done at frame rate

of 4Hz and 2.6 km orbit radius. This dataset contains 1071 raw ultra high resolution

images (6400×4400) with nominal ground resolution of 25cm which are orthorectified

using MU BA4S registration approach. For evaluation, we carried out the experiments

on the first 200, 2000×2000 cropped images from location (4761, 5800) upper left cor-

ner in the 12K × 12K orthorectified images for which the ground-truth are provided

by Kitware.

This section evaluates the accuracy and robustness performance of the proposed

collaborative spatial context-aware tracking system (SPCT).
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2.8.1 Evaluation Methodology

VOTC 2015 reset-based strategy is applied to evaluate the performance of the pro-

posed Spatial Context-aware Tracking system (SPCT) and other trackers. The reset-

based methodology is a supervised approach that detects a failure whenever tracker

estimated bounding box result has zero overlap with the ground truth. If so tracker

will be re-initialized five frames after the failure occurred. Two measures are used to

analyze the proposed tracking system performance: Accuracy and Robustness. Accu-

racy is the average overlap between the predicted and ground truth bounding boxes

during successful tracking periods. Robustness measures the number of times that

tracker loses the target during tracking [42, 19, 43].

2.8.2 Color Model Performance Evaluation

An image is represented by a 2D array of pixels which are made of combinations of

primary color channels. Color feature information presents rich discriminative power

and are widely used in many detection and tracking systems. RGB color model is the

most widely used color space that consists of three independent image plane including

Red, Green and Blue. The color components of an 8-bit RGB image are integers in

the range [0, 255]. Affine linear transformations of RGB color model create different

color spaces including HSI, YCbCr, CYK etc. Conversion between the RGB model

and the HSI model is as follows:

I =
R +G+B

3
, S = 1− min(R,G,B)

I
, H ∈ [0◦, 360◦] (2.33)
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Intensity (I) is just the average of the red, green and blue components range in [0, 255].

Saturation (S) is indicating the amount of white present and range in [0, 1]. Hue(H)

describes the color itself in the form of an angle between [0◦, 360◦], where 0◦ means

red, 120◦ means green and 240◦ means blue.

YCbCr is scaled and offset version of YUV color space where Y is defined to have

a nominal 8-bit range of [16, 235], Cb and Cr are defined between [16, 240].

We have evaluated the performance of three color model including RGB, HSI and

YCbCr in our proposed tracking system SPCT. We generated a 3D histogram ten-

sor for each of the color models that are quantized in a fixed range. Our RGB and

YCbCr color descriptors consist of two 32 × 32 × 32 histogram tensor to represent

object foreground and background information and HSI information are encoded in

18 × 32 × 32 histogram tensor. Table 2.1 and 2.2 report SPCT performance results

on VOTC2016 dataset for each of the color models with respect to robustness and

accuracy respectively. As it is reported RGB color model achieves the best perfor-

mance with the lowest robustness of 1.3 and accuracy of 0.458 followed by HSI with

robustness of 1.43 and accuracy of 0.46.
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Table 2.1: SPCT robustness performance evaluation using different color spaces on
VOTC2016 dataset.

VOTC2016 Robustness
Sequence RGB HSI YCbCr Sequence RGB HSI YCbCr

bag 0 0 0 handball1 3 3 3
ball1 0 0 0 handball2 4 3 3
ball2 1 2 1 helicopter 1 1 1
basketball 1 1 1 iceskater1 0 1 1
birds1 1 6 4 iceskater2 0 0 0
birds2 0 1 1 leaves 2 2 2
blanket 1 1 1 marching 0 0 1
bmx 1 0 0 matrix 1 2 2
bolt1 0 0 0 motocross1 1 1 3
bolt2 1 1 1 motocross2 1 1 1
book 2 2 2 nature 2 2 3
butterfly 2 2 1 octopus 1 0 0
car1 1 1 1 pedestrian1 1 1 1
car2 0 0 1 pedestrian2 0 0 0
crossing 0 0 0 rabbit 4 4 6
dinosaur 3 4 3 racing 0 0 0
fernando 2 3 2 road 0 0 0
fish1 4 3 5 shaking 2 2 5
fish2 4 4 5 sheep 0 0 1
fish3 0 0 1 singer1 1 1 1
fish4 1 1 1 singer2 0 0 0
girl 1 1 1 singer3 0 0 0
glove 2 2 2 soccer1 3 2 5
godfather 0 0 0 soccer2 3 4 4
graduate 3 4 6 soldier 0 0 1
gymnastics1 5 5 5 sphere 0 0 0
gymnastics2 5 5 5 tiger 0 0 0
gymnastics3 2 2 2 traffic 1 1 1
gymnastics4 0 0 0 tunnel 0 0 0
hand 4 4 5 wiper 0 0 0

Average 1.300 1.433 1.700

49



Table 2.2: SPCT accuracy performance evaluation using different color models on
VOTC2016 dataset.

VOTC2016 Accuracy
Sequence RGB HSI YCbCr Sequence RGB HSI YCbCr

bag 0.475 0.476 0.474 handball1 0.436 0.470 0.439
ball1 0.761 0.743 0.739 handball2 0.430 0.429 0.420
ball2 0.520 0.310 0.564 helicopter 0.378 0.377 0.377
basketball 0.657 0.655 0.651 iceskater1 0.508 0.512 0.495
birds1 0.440 0.466 0.442 iceskater2 0.507 0.516 0.505
birds2 0.451 0.435 0.436 leaves 0.257 0.266 0.268
blanket 0.425 0.416 0.295 marching 0.608 0.614 0.623
bmx 0.239 0.214 0.225 matrix 0.446 0.545 0.417
bolt1 0.388 0.385 0.386 motocross1 0.368 0.375 0.377
bolt2 0.492 0.500 0.484 motocross2 0.415 0.530 0.444
book 0.326 0.389 0.386 nature 0.280 0.276 0.339
butterfly 0.395 0.409 0.375 octopus 0.306 0.289 0.290
car1 0.656 0.654 0.653 pedestrian1 0.562 0.555 0.560
car2 0.709 0.719 0.683 pedestrian2 0.177 0.171 0.172
crossing 0.455 0.439 0.443 rabbit 0.333 0.384 0.314
dinosaur 0.378 0.361 0.377 racing 0.347 0.347 0.346
fernando 0.395 0.424 0.406 road 0.525 0.522 0.522
fish1 0.374 0.354 0.317 shaking 0.577 0.565 0.518
fish2 0.343 0.330 0.371 sheep 0.333 0.342 0.434
fish3 0.460 0.477 0.421 singer1 0.538 0.497 0.539
fish4 0.408 0.409 0.409 singer2 0.672 0.679 0.672
girl 0.527 0.527 0.528 singer3 0.207 0.193 0.206
glove 0.552 0.549 0.547 soccer1 0.484 0.482 0.506
godfather 0.424 0.400 0.414 soccer2 0.576 0.631 0.557
graduate 0.326 0.312 0.335 soldier 0.481 0.483 0.514
gymnastics1 0.372 0.383 0.385 sphere 0.767 0.772 0.767
gymnastics2 0.485 0.487 0.491 tiger 0.721 0.726 0.726
gymnastics3 0.283 0.290 0.282 traffic 0.643 0.660 0.660
gymnastics4 0.494 0.495 0.497 tunnel 0.320 0.339 0.339
hand 0.414 0.448 0.424 wiper 0.630 0.614 0.614

Average 0.458 0.460 0.457
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2.8.3 Motion Prediction Performance Evaluation

One of the main tracking cues that we have considered in our collaborative track-

ing system particularly for path prediction is Kalman filter. SPCT utilizes Kalman

prediction information to automatically detect the candidate region in the coming

frames and to assist feature-based tracker when it fails to localize the object due

to background clutter, occlusion or appearance changes within an informed fusion

framework. This section presents performance evaluation of SPCT with and without

using Kalman prediction on ARGUS WAMI dataset.

Table 2.3: Kalman prediction performance evaluation on ARGUS WAMI dataset.

ARGUS WAMI Dataset

without KF using KF

Seq. Track Len A R MFR A R MFR KF Fused KF%

0 40 0.730 0 0.000 0.748 0 0.000 0 0%

2 997 0.285 0 0.000 0.288 1 0.001 47 5%

3 329 0.472 0 0.000 0.470 0 0.000 21 6%

4 806 0.535 7 0.009 0.673 5 0.006 17 2%

5 97 0.726 2 0.021 0.660 0 0.000 14 14%

6 131 0.650 3 0.023 0.641 2 0.015 14 11%

7 128 0.654 3 0.023 0.607 1 0.008 60 47%

8 172 0.613 6 0.035 0.553 3 0.017 39 23%

10 107 0.629 5 0.047 0.594 1 0.009 18 17%

11 147 0.561 1 0.007 0.528 0 0.000 69 47%

12 114 0.588 2 0.018 0.558 0 0.000 17 15%

13 97 0.595 1 0.010 0.529 0 0.000 23 24%

14 112 0.582 0 0.000 0.584 0 0.000 25 22%

15 273 0.617 0 0.000 0.615 0 0.000 0 0%

16 143 0.630 2 0.014 0.581 0 0.000 41 29%

17 141 0.695 4 0.028 0.559 0 0.000 22 16%

18 124 0.558 0 0.000 0.533 0 0.000 22 18%

19 249 0.502 0 0.000 0.532 0 0.000 63 25%

20 141 0.390 3 0.021 0.425 2 0.014 38 27%

avg
∑

= 4348 0.580 2.053 0.013 0.562 0.789 0.004
∑

=550 18%
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Table 2.3 reports SPCT performance with and without incorporating Kalman

prediction. Kalman Filter (KF) is called 550 times along 4348 ARGUS images which

means that 18% of the time KF is being fused with feature-based results. Using KF

improves the overall performance of SPCT and enables us to reduce the robustness

from 2% to 0.4%.

2.8.4 SPCT Performance Evaluation on FMV

We compared SPCT performance results on VOTC2016 full motion video with 61

state-of-the-art trackers presented in the latest VOTC2016 challenge including purely

color-based trackers DAT [75], ASMS [76], trackers that are variation of correlation

filters including SWCF [77], DSST2014 [34], KCF2014 [33], FCF [19] and some

that combined correlation filter outputs with color like Staple [22], NSAMF [35]

and ACT [78]. We also compared our results with fragment-based trackers including

frag-track FRT [36], optical flow clustering tracker FCT [37], FoT [38], DPCF [79]

and GGTv2 [80]. Tracker collection also contains LoFT-Lite [27] that is based

on fusion of basic features optimized for aerial video, the multiple instance based

tracker MIL [40], colour-aware complex cell tracker CCCT [81], structured SVM

tracker STRUCK’11 [39] and normalized cross-correlation tracker NCC [19]. Seven

of the top ranked trackers are using deep learning techniques including MLDF [82],

TCNN [83], SSAT [84], DNT [19], DeepSRDCF [85], MDNet N [84] and DDC [19].

Raw results of the participating trackers are provided by VOTC2016 organizer.

As it is illustrated in Figure 2.14 SPCT ranked 11 among 62 trackers based on

achieved robustness. Table 2.4 reports the computed measures for 62 considered track-

ers. The reported numbers are the average Accuracy (A) and Robustness(R) perfor-
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Figure 2.14: Robustness performance evaluation of VOTC2016 tested trackers. SPCT
ranked 11 among 62 considered trackers.

mance on all VOTC2016 60 sequences. Trackers have been ranked based on their

robustness performance since SPCT main objective is performing persistent tracking

and accurate object blob detection and segmentation is the next goal. As it is shown

SPCT achieves robustness of 1.3 and accuracy of 0.458 and ranked 11.

2.8.5 SPCT Performance Evaluation on WAMI

In order to evaluate SPCT performance for Wide Aerial Motion Imagery, we have

computed the same measures (accuracy and robustness) for SPCT and 9 other avail-

able trackers. Moreover, we have measured Missing Frame Rate (MFR) for all the 10

trackers that reports the number of failure over total number of frames. Table 2.5 re-

ports the number of tracker failure per track ID on Argus WAMI dataset that contains

ground truth bounding box annotations for 20 vehicles [73]. The last rows report the

average computed Robustness(R), Accuracy(A) and MFR. SPCT ranked 1 among all
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Table 2.4: The table reports SPCT average accuracy and robustness performance on
all VOTC2016 60 sequences compared with tested trackers discussed in VOTC2016.

Rank Tracker A R Rank Tracker A R

1 MLDF 0.486 0.833 32 ASMS 0.485 1.867
2 CCOT 0.519 0.850 33 HMMTxD 0.093 1.900
3 EBT 0.437 0.900 34 SCT4 0.453 1.950
4 TCNN 0.543 0.917 35 TricTRACK 0.443 1.983
5 SSAT 0.098 0.983 36 LGT 0.063 2.000
6 DNT 0.508 1.150 37 KCF2014 0.483 2.033
7 DeepSRDCF 0.514 1.167 38 CDTT 0.415 2.083
8 MDNet N 0.532 1.183 39 SAMF2014 0.486 2.100
9 DDC 0.525 1.233 40 OEST 0.501 2.150
10 SRBT 0.091 1.250 41 MWCF 0.009 2.167
11 SPCT 0.458 1.300 42 DPTG 0.485 2.200
12 STAPLEp 0.547 1.317 43 TGPR 0.453 2.250
13 RFD CF2 0.473 1.333 44 SWCF 0.489 2.367
14 SSKCF 0.095 1.333 45 ACT 0.439 2.400
15 Staple 0.538 1.350 46 MatFlow 0.088 2.483
16 SiamRN 0.548 1.367 47 MIL 0.413 2.533
17 SHCT 0.015 1.417 48 ART DSST 0.495 2.617
18 SRDCF 0.524 1.500 49 DFST 0.461 2.783
19 NSAMF 0.487 1.567 50 SMPR 0.436 2.783
20 ColorKCF 0.089 1.583 51 FCT 0.019 2.817
21 BST 0.084 1.617 52 BDF 0.083 2.833
22 FCF 0.070 1.633 53 sKCF 0.015 2.917
23 CCCT 0.444 1.650 54 FoT 0.068 2.933
24 SiamAN 0.501 1.650 55 DFT 0.439 3.583
25 DAT 0.089 1.717 56 STC 0.368 3.600
26 GGTv2 0.013 1.717 57 IVT 0.408 3.967
27 GCF 0.510 1.733 58 Matrioska 0.087 3.983
28 DPT 0.479 1.750 59 LT FLO 0.019 4.283
29 KCF SMXPC 0.521 1.783 60 LoFT Lite 0.332 4.583
30 MAD 0.480 1.800 61 CMT 0.371 6.067
31 ANT 0.096 1.833 62 ncc 0.451 7.517
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Table 2.5: Table reports the computed average robustness, MFR and accuracy on
ARGUS WAMI 20 sequences.

Robustness (# tracker failure)
Tr# #Frs SPCT SWCF FCT NSAMF SAMF14 LoFT ∗ KCF NCC DPCF STAPLE

0 40 0 0 0 0 0 0 0 6 4 5
2 997 1 1 0 2 1 1 1 3 3 3
3 329 0 0 0 0 1 2 2 3 0 1
4 806 5 8 7 8 8 8 8 10 9 8
5 97 0 3 4 4 3 3 3 4 4 9
6 131 2 5 6 5 5 6 5 10 8 11
7 128 1 4 4 4 5 6 5 5 7 11
8 172 3 9 10 9 8 8 9 8 10 9
10 107 1 5 6 6 5 7 6 7 6 6
11 147 0 4 3 3 4 4 4 5 8 4
12 114 0 2 5 5 5 3 3 14 11 12
13 97 0 4 2 2 4 1 5 7 9 7
14 112 0 3 3 5 4 3 5 14 11 13
15 273 0 0 0 0 0 1 0 0 0 0
16 143 0 3 3 3 4 3 4 5 8 10
17 141 0 3 4 4 3 5 5 5 5 4
18 124 0 1 0 1 1 1 1 2 7 9
19 249 0 2 2 2 3 3 3 4 4 5
20 141 2 3 2 2 2 3 2 3 3 2
Total 4348 15 60 61 65 66 68 71 115 117 129

R avg 0.789 3.158 3.211 3.421 3.474 3.579 3.737 6.053 6.158 6.789

MFR avg 0.004 0.021 0.022 0.023 0.024 0.023 0.025 0.048 0.048 0.055

A avg 0.562 0.637 0.512 0.608 0.632 0.394 0.617 0.595 0.580 0.428

Table 2.6: The table reports SPCT average accuracy, MFR and robustness compared
to several state-of-the art trackers on ABQ WAMI dataset.

Tracker SPCT SWCF NSAMF SAMF14 KCF2014 NCC LoFT ∗ Staple DPCF FCT

R 0.325 0.634 0.789 0.870 0.911 1.000 1.179 1.398 1.585 1.642
MFR 0.005 0.011 0.014 0.016 0.016 0.017 0.017 0.025 0.024 0.028
A 0.628 0.674 0.631 0.662 0.638 0.680 0.367 0.625 0.603 0.590

trackers with low average robustness of 0.789, accuracy of 0.562 and missing frame

rate as low as 0.4%.

Table 2.6 reports the computed measures for ABQ aerial urban imagery which

were collected over downtown Albuquerque, NM [74]. SPCT ranked 1 among the

considered trackers with average robustness of 0.325, accuracy of 0.628 and low aver-

age MFR of 0.005 on all 140 sequences.
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Chapter 3

Multi-scale Spatially Weighted
Local Histograms in O(1)

In many image processing applications, histograms are commonly used to charac-

terize and analyze the region of interest within the image. Histogram-based features

are space efficient, simple to compute, robust to translation and particularly invari-

ant to orientation for color-based features. However, when computing a plain his-

togram, spatial information are missed which makes it sensitive to noise and occlu-

sion. Several techniques are proposed to preserve spatial information including color

Correlograms [86], Spatiogram [87], Multiresolution histogram [88], locality sensitive

histogram [21] and fragment-based approaches that exploit the spatial relationships

between patches [36]. Spatially weighted histograms boost the performance of many

image processing tasks at the expense of speed. In [64], Porikli generalized the concept

of integral image and presented computationally very fast method to extract the plain

histogram of any arbitrary region in constant time. Integral histogram provides an
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optimum and complete solution for the histogram-based search problem. Since then

many novel approaches have been presented based on integral histogram to accelerate

the performance of image processing tasks and incorporate the spatial information

including filtering [1, 89, 2], classification and recognition [88, 90], and detection and

tracking [91, 92].

Despite all different techniques that have been proposed to adaptively weight

the contribution of pixels when computing local histograms by considering their dis-

tance from center pixel, the problem of how accurately extract the spatially weighted

histogram of any arbitrary region within an image in constant time using integral

histogram is still unsolved. Frag-track [36] proposes a discrete approximation scheme

instead of the continuous kernel weighting approach to give higher weight to the

contribution of inner rectangle compare to region margins for fast search.

I present a novel fast algorithm to accurately evaluate spatially weighted local

histograms in O(1) time complexity using an extension of the integral histogram

method (SWIH). The main idea is to (1) decompose the spatial filter into indepen-

dent weights wi and split kernel into multiple quadrants qi subsequently, (2) for all wi

compute candidate region weighted integral histogram IHwi
, (3) for every quadrant

qi compute its weighted local histogram using the corresponding IHwi
and consider-

ing its translation from center pixel, (4) normalize the local histograms, (5) finally

add local histograms together to build the full kernel spatially weighted local his-

togram (Figure 3.5).
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(a) Manhattan (b) Euclidean (c) Gaussian

Figure 3.1: Illustration of linear and non-linear distance kernels.

3.1 Spatially Weighted Local Histograms

Weighting pixel contributions is a key feature in many fundamental image processing

tasks including filtering, modeling and matching to increase the accuracy of results

in detection, tracking, recognition, etc..

The main idea is to assign lower weights to the pixels that most likely belong

to background or occluding objects. One common technique is to define a weighting

function w(x, y) that assigns weights to pixels with respect to their distance from

target center (since undesirable pixels are usually considered around the region con-

tours) including Manhattan, Euclidean, Gaussian or exponential weighting distance

functions (Figure 3.1). Then the spatially weighted histogram is computed as follow:

H(T, bi) =
w×h∑
x,y∈T

δ(Q(f(x, y))− bi)× w(x, y) (3.1)

where T is the region of interest of size w × h, bi is the histogram bin index, δ is the

pulse function, Q is the quantization function for feature values f .

Having such kernels enables us to adaptively weight the contribution of pixels

and diminish the presence of background information when computing weighted lo-

cal histograms. Figure 3.2 shows the accuracy of intensity feature likelihood maps
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Target Template

(a) Region of Interest (b) Plain Histogram (c) Weighted Histogram

Figure 3.2: Performance evaluation of intensity feature likelihood maps using sliding win-
dow (b) plain versus (c) spatially weighted histogram distance matching. Weighting pixel
contribution considering its location is a key feature to increase the accuracy and boost the
performance of detection, tracking and recognition systems

based on sliding window histogram matching when using plain local histograms ver-

sus spatially weighted local histograms. As it can be seen, using spatially weighted

local histograms generates more robust matching results. In the following sections,

we describe the straightforward convolution-based approach, the discrete approxima-

tion scheme and our proposed novel, fast and accurate algorithm based on weighted

integral histogram to compute spatially weighted local histograms for fast search.

3.1.1 Brute-force Approach

The computational complexity of the brute-force approach to compute the adaptively

weighted local histograms at each candidate pixel location is linear in the kernel size

and the number of candidate pixels. Assuming a search window of size w × h and a

neighborhood of size k×k and b-dimensional histogram, the computational complexity

of finding the best matched pixel location is O(b×k2×w×h), which makes the system

far away from real-time performance particularly when it comes to large scale high

resolution image analysis.
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Figure 3.3: (a) Wedding-Cake Approach: the discrete approximation scheme to obtain
the spatially weighted local histogram for the candidate region considering inner-
nested windows and using integral histogram (wi < wi−1 < ... < wi−k). (b) Wedding-
cake slice approximation. (c) Computational time complexity and accuracy increase
by increasing the number of layers.

3.1.2 Wedding-Cake Approach

One solution to meet the demands of real-time implementation is to extract local

histograms in constant time using integral histogram. However, as of our knowledge,

there is still no solution to accurately and efficiently extract spatially weighted local

histograms in O(1) using integral histogram but the discrete approximate scheme

presented in [36]. Frag-track proposed a simple approach to approximate the ker-

nel function with different weights instead of pixel-level kernel weighting. Assuming

that we want to calculate a spatially weighted local histogram in the rectangular

region R centered at point P using integral histogram. Such counting can be ap-

proximated by considering several inner-nested windows Ri at multiple scales around

P (Figure 3.3(a)). The goal is to compute the counts of the rings between two ad-

jacent windows Ri and Ri−1 by subtracting their local histograms that are obtained

in constant time using integral histogram. Then, rings histograms will be weighted

appropriately with respect to their distance from P and combined to provide an
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Figure 3.4: Tiling the kernel into four quadrants and decomposing the weights to
accurately compute spatially weighted local histogram.

approximate spatially weighted local histogram on R.

SWLH(R) = wi × (H(Ri)−H(Ri−1)) + ...+ wi−1 ×H(Ri−k) (3.2)

The accuracy of this approximation relies on the number of considered inner-nested

windows. We presented a new approach to compute spatially weighted local his-

tograms that is more accurate than the wedding-cake method and takes constant

time using an extension of integral histograms.

3.1.3 Multi-scale Spatially Weighted Local Histograms in Con-
stant Time Complexity (SWIH)

When using integral histogram, it is not clear how to weight pixel contributions when

computing arbitrary rectangular region histogram in O(1). We propose to address the

pixel-level weighting problem by tiling the kernel into multiple quadrants as well as

decomposing the weights (Figure 3.4). In this section we describe our proposed algo-

rithm in details when using Manhattan distance function (Figure 3.1(a)) to adaptively

weight pixel contributions for fast matching. Assuming that we want to weight the

contribution of each pixel within region R centered at Pc = (xc, yc) by its Manhattan
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Figure 3.5: Computational flow of accurate spatially weighted local histograms using
weighted integral histogram for the region of interest (ROI) of size w × h.

distance from P when computing histogram of region R. Manhattan or city-block

weighting function measures the sum of the absolute distance between two points

along each axis. In our case, Manhattan distance of any arbitrary point Pi = (xi, yi)

within region R is

DistManhattan(Pi, Pc) =| xi − xc | + | yi − yc | (3.3)

Since the filter is rectilinear and symmetric, we propose to decompose it into four

independent weighting functions in the shape of four quadrants:

TopLeft(TL), TopRight(TR), BottomLeft(BL) and BottomRight(BR) (Figure 3.3(b)).
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As it is shown, weights linearly increase from one corner to its diagonally opposite

corner in each of the quadrants covering four directions: {SE, SW, NE, NW}. We

extend these weights for the region of interest and compute four differently weighted

integral histogram. For each direction, we consider two correlated images f and wdir

to compute the weighted integral histogram up to point (x, y):

IHwdir
(x, y, bi) =

∑
i≤x,j≤y

δ(Q(f(i, j))− bi)wdir(i, j) (3.4)

f contains image feature values, Q is the quantization function that determines which

bin to increase, δ is the impulse function and wdir is the pixel-wise weighing function

that determine the value to increase at that bin. Having four differently weighted

integral histogram, each of the quadrants spatially weighted local histogram will be

computed in O(1) using its corresponding weighted integral histogram and considering

its translation from the kernel center point. We will normalize the histograms and

add them together to build the full region spatially weighted histogram. Figure 3.5

illustrates the flow of the computation.

It is noteworthy to mention that due to weights rectilinear changes, their values

are independent of the pixel location in the region of interests. This characteristic

enables us to appropriately normalize the computed weighted local histogram and

match it with the target spatially weighted histogram regardless of its location. This

new method provides multi-scale accurate spatially weighted local histogram in con-

stant time and can be utilized for other spatial weighting functions. It can be easily

adapted to any fast computation of integral histogram on GPUs to accelerate the

computation [44].
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(a) ROI (b) Brute Force (c) Plain Histogram

(d) Wedding Cake (e) SWIH

Figure 3.6: Performance evaluation of intensity likelihood maps estimation using slid-
ing window histogram matching. Weighting pixel contribution considering its location
results in more accurate and robust target localization as shown in (b) and (e).

3.2 Experimental Results and Performance Eval-

uation

In this section, we evaluate the performance of our approach and compare it with

brute-force implementation and approximation scheme with respect to computational

complexity and accuracy. Figure 3.6 illustrates the performance of the estimated

intensity likelihood maps for a sample image from the VOT2016 data set [72] us-

ing sliding-window histogram matching. We compared the intensity likelihood map

computed by the brute-force implementation with the matching results of the plain

histogram, approximation scheme and our proposed accurate fast spatially weighted

histogram. Background clutter is one of the main challenges in object detection sys-

tems relied on matching. We selected an image that contains background clutter to

make the matching process very challenging. We calculated the mean-squared error

(MSE) between the brute-force result which is our reference model and the two other
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Figure 3.7: Performance evaluation comparison by increasing the local histogram slid-
ing window size. Computational time complexity of integral histogram-based meth-
ods are invariant of kernel size. However, Computational complexity and accuracy of
Wedding Cake approach increases by increasing the number of layers

techniques. The MSE between brute-force and our results (SWIH) is 0 as we expected

and 0.0012 using the approximation scheme with 3 layers respectively. It is proved

that our proposed method not only provides exact results as the brute-force approach

but is much faster and independent of sliding window size.

For a candidate region of size 345× 460 and sliding window of size 61× 91 (Fig-

ure 3.6(a)), SWIH is 4.5 times faster than brute-force implementation. Figure 3.7(a)

and (b) shows the computational complexity of each of the discussed methods for

standard image 640 × 480 as well as large scale image of size 1k × 1k for different

sliding window size from small scale to very large scale. It can be seen that the lo-

cal histograms computational time using the brute-force implementation increases

dramatically by enlarging the kernel size but is invariant of sliding window size for

the approximation scheme and SWIH. The execution time of the integral histogram

based methods are invariant of sliding window size, however there is a small drop in

execution time when increasing the sliding window size. The reason is that the num-

ber of sliding windows and consequently the number of computed local histograms is

65



reducing by increasing the sliding window size.

This chapter presents our novel fast algorithm to accurately evaluate spatially

weighted local histograms in constant time using an extension of the integral his-

togram method (SWIH). We have shown that SWIH produces exact local histograms

compared to brute-force approach and is much faster. Utilizing the integral histogram

makes it to be fast, multi-scale and flexible to different weighting functions. This

technique can be applied to fragment-based approaches to adaptively weight object

patches considering their location. SWIH can be integrated into any detection or

tracking system to provide an efficient exhaustive search and achieve more robust

and accurate target localization.

66



Chapter 4

Automatic Moving Object
Detection

Automatic moving object detection and segmentation is a critical low-level task for

many video analysis and tracking applications. Fast and accurate foreground motion

estimation provides primary useful information for a number of image and video

analysis including urban traffic monitoring [93, 94], object classification [95, 96, 95],

registration and tracking [23, 97]. Moreover, many of the WAMI trackers use motion

based cueing either as the primary module or fused with other modalities to enhance

the performance of detecting and tracking moving objects.

4.1 Moving Object Detection Approaches

I worked on utilizing different techniques to estimate the foreground motion including

spatio-temporal median-based background modeling and the trace of the flux tensor.
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4.1.1 Background Subtraction Using 3D Median Background
Modeling

Median filtering performs as well as other more complicated techniques (i.e.GMM)

and avoids creating unrealistic pixel values when blending pixel values. Spatio-temporal

median-based background modeling is simple, computationally efficient and robust to

noise. Median computation methods can be grouped as sorting-based or histogram-

based approaches. We investigated the computational time and memory complexity

of either sorting-based or histogram-based approaches based on image size, tempo-

ral window size and histogram bin size. For example, computing 64-bins integral

histogram for a 2k × 2k, 8 bit images for a temporal window of size 17 requires 256

Megabytes of memory while following sorting-based approach takes only 44 Megabytes

of memory and the median computation is still fast.

3D Median Computation Using Integral Histogram for Full Motion Video

In the early works, we proposed a fast multi-scale 3D median computation algorithm

that can handle large temporal windows for standard full motion videos utilizing

GPU implementation of integral histogram. The integral histogram of an image pro-

vides the local histogram of every arbitrary target region in constant time. Taking

advantages of this property enables us to compute the medians in constant time for

all target pixels using its local histogram. Algorithm 4 describes spatio-temporal me-

dian computations using the integral histogram (assuming sequences of k images are

transferred to the GPU using double buffering and a spatio-temporal median of size

m× n× (T + 1) is computed). In the initialization phase, the individual integral his-

tograms are computed for each image array. Meanwhile the joint integral histogram
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is computed for the first T + 1 individual integral histograms (assume that T is an

even number). After creating the joint integral histogram, the median calculation

phase started from frame T
2

+ 2. In each iteration, first, the joint integral histogram

is updated by adding the integral histogram of head image and subtracting the inte-

gral histogram of tail image (Fig. 4.1). Then medians are computed for each pixel

using the joint local histograms of kernel size m × n where local kernel histograms

can be obtained in O(1). Figure 4.2 demonstrates background subtraction results

for PETS2013 benchmark background dataset including an indoor hallway motion,

outdoor motion and a tracking scenario (seq. irw01) from OTCBVS Benchmark IR

Database [31]. The performance in terms of speedup has been discussed in chapter 5.

Algorithm 4: 3D Median Computation Using Integral Histogram

Input : Image sequences I[k] of size h× w,
number of bins b,
size of image history T + 1

Output : Medians M[k−T]e of size h× w

1: Initialize JointIH
2: IH tail=JIH=Integral Hist(Quantized(image(1))); //Compute the first joint integral

histogram for the first T + 1 frames
3: for Fr = 2 : T + 1 do
4: IH[Fr] = Integral Hist(Quantized(image(Fr)));
5: JIH = JIH + IH[Fr];
6: end for

7: //Calculate the Median of current frame
8: for Fr = T + 2 : k do
9: //Update the IH head

10: IH head=Integral Hist(Quantized(image(Fr)));

11: //Update the Joint Integral Histogram
12: JIH= JIH + IH head - IH tail;

13: //Update the IH tail
14: IH tail=Integral Hist(Quantized(image(Fr-T)));

15: //Compute Median [Fr − T
2 ]

16: Median [Fr − T
2 ] = ComputeLocalMedian(JIH)

17: end for
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Figure 4.1: Updating the joint integral histogram for spatio-temporal median com-
putation.

Sorting-Based 3D Median Computation for Wide Aerial Motion Imagery

Although using integral histogram boost the median computation performance, but

GPU memory allocation for integral histogram tensor for high resolution, large scale

aerial motion imagery, is not feasible and efficient when the histogram bin size is

much larger than the median temporal window size. For example, computing 64-bins

integral histogram for a 2k× 2k, 8 bit images requires 256 Megabytes while following

sorting-based approach for a temporal window of size 17 takes only 44 Megabytes

of memory and the median computation is still fast. Therefore, I used the sorting-

based approach to compute the spatio-temporal median for high resolution WAMI

images to avoid complexities of Tiling the image for GPU computation and hold the

computation fast enough due to small temporal window size. Figure 4.3 illustrates

moving object detection results for high resolution 2k×2k WAMI images collected over

downtown Albuquerque, NM. We model the background using median of 17 images

(eight frames before and eight frames after the target image), and perform background

subtraction to estimate the moving foreground objects. Every pixel is classified as

moving versus stationary by thresholding the estimated foreground image. Contrast

enhancement and morphology operations are applied to improve the motion detection
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Figure 4.2: Background subtraction for PETS2013 Benchmark background dataset (first row frame
73, second row frame 161) [98], an indoor hallway motion (seq. irin01) from OTCBVS Benchmark
IR Database (row third frame 5150 and row four frame 8329) [99], and outdoor motion and tracking
scenarios (seq. irw01) from OTCBVS Benchmark IR Database (row five frame 332, row six frame
399)[99] using 3D median filter based on GPU integral histogram using different number of bins,
from left column to the right column: original image, background model (256 bins), foreground using
16 bins integral histogram, foreground using 128 bins integral histogram, foreground using 256 bins
integral histogram.
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Figure 4.3: Illustration of motion detection results using spatio-temporal Median: First row
shows the registered 2k×2k cropped frames (57, 123, 182) from Albuquerque aerial imagery.
Second row shows moving object detection results for the corresponding frames. Third
and fourth row present the motion detection masks obtained from 3D median background
subtraction and the building masks in blue, respectively.
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results and to filter out the spurious noises caused by illumination changes. However,

it is seen that approximately 90.2% of the motion responses are induced by parallax

effects of tall structures (area under blue mask shown in last row of Fig. 4.3) which

significantly degrade the precision of the motion detection results. The low average

precision of 12.9% is reported for the first 200 frames of Albuquerque sequence.

4.1.2 Moving Object Detection Using the Trace of the Flux
Tensor

In a similar work, I exploited the trace of the flux tensor to detect moving vehicles

in urban aerial imagery. Flux tensor is presented as an extension of 3D structure

tensor that allows reliable motion segmentation without expensive eigenvalue decom-

position [100, 101]. Under constant illumination model, optical-flow equation of a

spatiotemporal image volume I(x) centered at location x = [x, y, t] is

dI(x)

dt
=

∂I(x)

∂x
vx +

∂I(x)

∂y
vy +

∂I(x)

∂t
vt

= ∇IT (x) v(x) (4.1)

taking the derivative of Eq. 4.1 with respect to t, we obtain Eq. 4.2

∂

∂t

(
dI(x)

dt

)
=

∂2I(x)

∂x∂t
vx +

∂2I(x)

∂y∂t
vy +

∂2I(x)

∂t2
vt

+
∂I(x)

∂x
ax +

∂I(x)

∂y
ay +

∂I(x)

∂t
at (4.2)

which can be written in vector notation as,

∂

∂t
(∇IT (x)v(x)) =

∂∇IT (x)

∂t
v(x) +∇IT (x) a(x) (4.3)
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where v(x) = [vx, vy, vt] is the optical-flow vector and a(x) = [ax, ay, at] is the accel-

eration of the image brightness located at x. Usually v(x) is estimated by minimizing

Eq. 4.3 over a local 3D image patch Ω(x,y):

∂∇IT (x)

∂t
v(x) +∇IT (x) a(x) = 0 (4.4)

Assuming a constant velocity model subject to the normalization constraint ||v(x)|| =

1 and consequently zero acceleration, a least-squares error measure els(x) (Eq. 4.5) is

used to minimize the Eq. 4.4

els(x) =

∫
Ω(x,y)

(
∂(∇IT (y)

∂t
v(x)

)2

dy

+λ
(

1− v(x)Tv(x)
)

(4.5)

Differentiation of els(x) with respect to v, leads to eigenvalue decomposition problem

JF(x) v̂(x) = λ v̂(x). The 3D flux tensor JF for the spatiotemporal volume centered

at (x, y) can be written in expanded matrix format as

JF =



∫
Ω

{
∂2I
∂x∂t

}2
dy

∫
Ω

∂2I
∂x∂t

∂2I
∂y∂tdy

∫
Ω

∂2I
∂x∂t

∂2I
∂t2
dy

∫
Ω

∂2I
∂y∂t

∂2I
∂x∂t dy

∫
Ω

{
∂2I
∂y∂t

}2
dy

∫
Ω

∂2I
∂y∂t

∂2I
∂t2
dy

∫
Ω

∂2I
∂t2

∂2I
∂x∂tdy

∫
Ω

∂2I
∂t2

∂2I
∂y∂tdy

∫
Ω

{
∂2I
∂t2

}2
dy


(4.6)

The elements of the flux tensor incorporate information about temporal gradient

changes which leads to efficient discrimination between stationary and moving image

features. Thus the trace of the flux tensor matrix which can be compactly written

and computed as, trace(JF) =
∫

Ω
|| ∂
∂t
∇I||2dy can be directly used to classify moving
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and non-moving regions without the need for expensive eigenvalue decompositions.

Figure 4.4 illustrates moving object detection results for high resolution WAMI

images described in Figure 4.3 using the trace of the flux tensor that provides in-

formation about temporal gradient changes or moving edges. First row presents the

original cropped ROI and the trace of flux tensor based moving edges results are

shown in second row. Every pixel is classified as moving versus stationary by thresh-

olding the trace of the corresponding flux tensor matrix. However, using this method

70% of the detected motions (averaged on 200 frames) are induced by parallax effect

of tall structures which significantly degrades the precision of the motion detection

results. The low precision of 20% is reported using only the trace of the flux tensor.

4.2 Context-aware Moving Vehicle Detection Us-

ing 2D Depth Maps

We studied that using purely conventional moving object detection methods would

not be sufficient for a wide aerial motion imagery in which there are strong traces of

parallax induced by tall buildings. The trace of the flux tensor or 3D median provides

robust spatio-temporal information of moving objects but a large percentage of the

detected motions are induced by parallax effects of tall structures as the camera view-

point changes (Fig. 4.3 and Fig. 4.4). In order to reject undesirable detections due

to tall structures, we develop a context-based semantic fusion approach to identify

and remove such non-vehicle detections by using the depth map information with an

active contour boundary refinement and filtering process.
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Figure 4.4: Illustration of motion detection results using the trace of the flux tensor: First row
shows the registered 2k × 2k cropped frames (003, 100, 199) from Albuquerque aerial imagery.
Second row shows moving object detection results for the corresponding frames. Third and fourth
row present the motion detection masks obtained from the trace of the flux tensor and the building
masks in blue, respectively.
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The accurate height of every pixel in the orthorectified temporal frames can be

estimated using 3D point clouds or meshes resulting from dense multiview 3D re-

construction algorithms. In order to produce a frame specific building mask, the

3D point cloud or mesh is projected to produce a depth map that is then thresh-

olded. Image pixels with a height value greater than a threshold value are identified

as part of tall structures or buildings which will be used to remove flux tensor motion

responses. Figure 4.5(a) illustrates the true motion detection produced by flux tensor

(in yellow color) and undesirable moving detection caused by parallax in white color.

The areas of tall structures are filtered by building mask and shown in blue. Pro-

vided ground-truth bounding-boxes are drawn in red to enable visual evaluation of

the detection performance.

2D depth maps are projected from 3D point clouds that are obtained by 3D

reconstruction of the scene. These point clouds have lower resolution compared to

the analyzed images. Low resolution combined with 2D projection inaccuracies may

result in filtering out correctly detected vehicles positioned close to tall structure

(zoomed in Fig. 4.5(a)).

In order to refine the coarse building map Bdmap, we proposed to fuse the high

resolution moving edges information from trace of the flux tensor with Bdmap through

a level-set based geodesic active contours framework.

The trace of flux tensor is used to construct an edge indicator function gF which

will guide and stop the evolution of the geodesic active contour when it arrives at tall

structure boundaries,

gF (trace(JF)) =
1

1 + trace(JF)
(4.7)

The edge indicator function is a decreasing function of the image gradient that rapidly
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(a) Illustration of motion detection results: true
motion detection produced by flux tensor (in yel-
low color) and false detection caused by paral-
lax in white color. The areas with high altitude
are filtered by building mask and are shown in
blue. Provided ground-truth bounding-boxes are
shown in red.

(b) Improved building mask using level-set based
geodesic active contours: blue lines are the initial
building contours which are evolved and stopped
at building actual boundaries (red lines).

Figure 4.5: Building Mask Refinement Using Level Set Based Active Contours.

goes to zero along building edges and holds high values elsewhere.

Active contours evolve a curve C, subject to constraints from a given image. In

level set based active contour methods the curve C is represented implicitly via a

Lipschitz function φ by C = {(x, y)|φ(x, y) = 0}, and the evolution of the curve is

given by the zero-level curve of the function φ(t, x, y). Evolving C in a normal direction

with speed F amounts to solving the differential equation [102],

∂φ

∂t
= |∇φ|F ; φ(0, x, y) = φ0(x, y) (4.8)

Unlike parametric approaches such as classical snake, level set based approaches en-

sure topological flexibility since different topologies of zero level-sets are captured
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implicitly in the topology of the energy function φ. Topological flexibility is crucial

for our application since we want to guide the coarse thresholded building mask to

the actual building contours and reveal the filtered moving vehicles next to buildings.

We used geodesic active contours [103] that are effectively tuned to trace of flux ten-

sor edge information. The level set function φ is initialized with the signed distance

function of the coarse building mask (Bdmap) and evolved using the geodesic active

contour speed function,

∂φ

∂t
= gF (trace(JF))(c+K(φ))|∇φ|+∇φ · ∇gF (trace(JF)) (4.9)

where gF (trace(JF)) is the fused edge stopping function (Eq. 4.7), c is a constant,

and K is the curvature term,

K = div

(
∇φ
|∇φ|

)
=
φxxφ

2
y − 2φxφyφxy + φyyφ

2
x

(φ2
x + φ2

y)
3
2

(4.10)

The force (c+K) acts as the internal force in the classical energy based snake model. In

this work, the constant velocity c pushes the curve inwards to the tall structures. The

regularization term K ensures boundary smoothness. The external image dependent

force gF (trace(JF)) is used to stop the curve evolution at building boundaries edges.

The term ∇gF · ∇φ introduced in [103] is used to increase the basin of attraction for

evolving the curve to the boundaries of the objects.

Figure 4.5(b) shows the improved building contours results in red. The blue line

are the initial building contours which are evolved and stopped at building actual

boundaries. As it can be seen, the previously filtered detected cars by initial building

mask are revealed and counted as true detections.
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Figure 4.6: Top row shows original ultra-high resolution images (6600×4400) collected from
an airborne WAMI platform flying over downtown Albuquerque, NM. Bottom row shows
corresponding registered images (12000 × 12000) using the MU BA4S ortho-rectification
module, an extremely fast bundle adjustment algorithm that avoids RANSAC iterations,
and uses less than 12 minutes for 1071 images [54, 55].

4.3 Experimental Results

We elaborate and evaluate our proposed vehicle moving object detection results for

ABQ aerial urban imagery which were collected by TransparentSky [74] using an

aircraft with on-board IMU and GPS sensors flying 1.5 km above ground level of

downtown Albuquerque, NM on September 3, 2013. Imaging was done at frame rate

of 4Hz and 2.6 km orbit radius. Figure 4.6 shows samples of raw ultra high resolution

images (6400× 4400) with nominal ground resolution of 25cm and the corresponding

registered images using MU BA4S registration approach which processes the total

sequence of 1071 images in very short amount of time (less than 12 minutes). For

evaluation, we carried out the experiments on the first 200, 2000 × 2000 cropped

frames from location (4761, 5800) upper left corner in the 12K × 12K orthorectified
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images for which the ground-truth are provided by Kitware (Fig. 4.3 and Fig. 4.4).

In the first step, we applied the state of the art registration algorithm, MU BA4S,

to orthorectify image sequences into a global reference system and to produce dense

3D point clouds [54, 55]. Then, depth or height maps are computed by projecting

the 3D points into each camera view. In the third step, motion detection masks

are obtained using either median-based background subtraction or the trace of the

flux tensor. Finally, we fused building masks information extracted from depth maps

with motion detection masks information to identify moving objects on the ground

from motion induced by parallax effects of tall buildings and reject the false motion

responses.

Figure 4.7 shows the original cropped ROI and the trace of flux tensor results.

Figure 4.8 presents the results of the trace of flux tensor motion detection filtered by

building mask. The left most image in Fig. 4.8 shows the flux tensor motion detection

results in 2 colors; motion detections due to parallax are shown in white color and

the rest are in yellow. In order to enable visual evaluation of the results ground

truth bounding boxes are overlaid on flux tensor mask in red color. Height mask

corresponding to the ortho-rectified ROI is shown in the middle. All the pixels with

height values greater than a fixed threshold are considered as tall structures and are

shown in blue in the rightmost image.

As discussed in Section 4.2 level-set based geodesic active contours is used to

improve the building mask and reveal the filtered moving vehicles positioned next to

the buildings. Improved building mask and final motion detection results are shown

in Figure 4.9. In order to find the best 2D depth map thresholding value so that

to achieve high precision and maintain high recall, we evaluated the performance of
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Figure 4.7: Illustration of motion detection using trace of flux tensor only: From left
to right, cropped ROI of Albuquerque aerial imagery (fr100), the spatio-temporal motion
information computed by trace of flux tensor for the selected image, and flux tensor mask
in which each pixel is identified as moving or stationary by thresholding the trace of flux
tensor. Morphology is applied to improve the result.

Figure 4.8: Illustration of motion detection results using trace of flux tensor filtered by
depth mask. Left most image presents the motion detection results by thresholding the trace
of flux tensor in 2 colors; motion detections due to parallax are shown in white besides other
detection results in yellow color. In order to enable visual evaluation of the detection results
ground-truth bounding boxes are overlaid on flux tensor mask in red color. Altitude mask
corresponding to the orthorectified image is shown in the middle. All the pixels with altitude
values greater than 20 meters are considered as tall structures and are shown in blue in the
rightmost image.

the fused 3D median-based motion detection mask and 2D depth map when using

different height value to threshold the 2D depth map. Figure 4.10 shows the ROC

curve that represents the relation between recall (sensitivity) and precision using
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Figure 4.9: Moving object detection results using the proposed semantic fusion-based
approach. The evolved building contours are shown in red in the left most image. The final
moving object detection results of the region bounded in green box are shown in middle
in red and final building contours in blue. Results are superimposed on the original image
where building masks are shown in blue.

object-level detection evaluation methodology. As it is shown, threshold value of 20

is selected to achieve high precision of 85% and recall of 75%.
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Figure 4.10: ROC curve Performance evaluation of moving object detection mask
using different 2D depth map thresholding.
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4.4 Evaluation Methodology

The general requirement for moving object detection algorithms is providing rea-

sonable precision in terms of the number of true detected objects as well as high

recall in objects contour detection [104]. Therefore we evaluated the performance of

motion detection mask using two methodology: pixel-wise and object-wise detection

performance evaluation.

4.4.1 Pixel-wise Performance Evaluation

The performance of motion detection results are evaluated after each stage of the

fusion by computing the spatial precision and recall as

Precision =

∑ND

i=1 |Gi ∩Di|∑ND

i=1 |Di|
=

|TP |
|TP |+ |FP |

(4.11)

Recall =

∑ND

i=1 |Gi ∩Di|∑ND

i=1 |Gi|
=

|TP |
|TP |+ |FN |

(4.12)

Fmeasure = 2× Precision×Recall
Precision+Recall

(4.13)

where Gi is the moving object bounding box presents in Ground Truth and Di is

the segmented moving object obtained by motion detection algorithm. ND is the

cardinality of the detected objects. Figure 4.11 presents the computed measures for

the first 200 frames from Albuquerque sequence using 3D median and Figure 4.12

shows the results using the trace of the flux tensor. Table 4.1 reports the computed

measures averaged on first 200 frames. The average precision of 73.2%, recall of 48.8%

and Fmeasure of 58.4% is reported using fusion of 3D median and 2D depth map.

84



0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Pixel-Level Precision/Recall for ABQ-200

Precision_MedianOnly
Precision_Median+Depth
Recall_MedianOnly
Recall_Median+Depth

(a) Precision/Recall

0 20 40 60 80 100 120 140 160 180 200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Pixel-Level Fmeasure for ABQ-200

F-measure_MedianOnly
F-measure_Median+Depth

(b) Fmeasure

Figure 4.11: Pixel-wise performance evaluation of proposed fused motion detection
method. Top graph presents the computed precision and recall using 3D median motion
mask and bottom graph illustrate the computed Fmeasure.
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Figure 4.12: Pixel-wise performance evaluation of proposed fused motion detection method.
Top graph presents the computed precision and recall using the trace of the flux tensor
motion mask and bottom graph illustrate the computed Fmeasure.
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Table 4.1: Average moving object detection performance results using pixel-level
evaluation method.

Pixel-wise Evaluation
Average Median Only Median+Depth Flux Only Flux+Depth Flux+Depth+GAC
Precision 7.560 73.200 0.119 0.594 0.585
Recall 52.800 48.800 0.411 0.379 0.394
Fmeasure 13.200 58.400 0.184 0.463 0.471

Table 4.2: Average moving object detection performance results using object-level
evaluation method.

Object-wise Evaluation
Average Median Only Median+Depth Flux Only Flux+Depth Flux+Depth+GAC
Precision 0.129 0.839 0.200 0.867 0.836
Recall 0.801 0.751 0.779 0.735 0.759
Fmeasure 0.222 0.792 0.318 0.796 0.796

4.4.2 Object-wise Performance Evaluation

Since the ultimate goal of the proposed motion detection system is to perform per-

sistent tracking of moving vehicles, we have evaluated detection performance using

object level measures as well. Associations of the detected moving blobs to ground

truth objects is performed using a bidirectional correspondence analysis described

in [105, 106] that handles not only one-to-one matches but also merge and fragmenta-

tion cases. Figure 4.13 presents the performance evaluation results using object-level

methods and 3D Median Motion mask. It can be seen that precision has been dras-

tically increased while recall remained almost the same. Average precision of 83.9%

and recall of 75.1% is achieved. Table 4.2 reports the average of computed statistics

for 200 frames.
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Figure 4.13: Performance evaluation of our proposed fused motion detection method.
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Figure 4.14: Object-Level performance evaluation of proposed fused moving object
detection method using the trace of the flux tensor motion mask.
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Chapter 5

Fast GPU Implementation of
Integral Histogram

Integral histogram provides an optimum and complete solution for the histogram-

based search problem. Porikli [64] generalized the concept of integral image and

presented computationally very fast method to extract the plain histogram of any

arbitrary region in constant time. Integral histograms provide not only an efficient

computational framework for extracting histogram-based regional descriptors, but

also enable low cost multi-scale image analysis. Descriptors for different scales can

be generated in constant time without recomputing the integral histogram, since re-

gional histograms for any-size rectangular regions can be derived from a given integral

histogram.

Many novel approaches have been presented based on integral histogram to accel-

erate the performance of image processing tasks including filtering [1, 89, 2], recog-

nition and classification [88, 107, 108], image retrieval [109], object segmentation
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Algorithm 5: Sequential Integral Histogram
Input : Image I of size h× w, number of bins b
Output : Integral histogram tensor H of size b× h× w

1: Initial H:
H← 0

2: for k=1:b do
3: for x=1:h do
4: for y=1:w do
5: H(k, x, y)← H(k, x− 1, y) +H(k, x, y − 1)

−H(k, x− 1, y − 1) +Q(k, I(x, y))
6: end for
7: end for
8: end for

[110, 111, 112], object detection [31, 113, 114, 115, 116], visual tracking [92, 117, 118,

119, 25, 27, 28, 120], etc.

Our proposed visual tracking system SPCT utilized integral histogram as the

building block to compute candidate regions local histograms in constant time. Al-

though integral histogram enables fast exhaustive search but it is still considered as

the most compute intensive image processing task for the presented tracking sys-

tem. The sequential implementation of the integral histogram uses an O(N) recursive

row-dependent method, for an image with N pixels (5). Therefore, we explored differ-

ent techniques to efficiently compute integral histograms on GPU architecture using

the NVIDIA CUDA programming model [121, 122].

The contributions of the work can be summarized as follows:

• We described four GPU implementations of the integral histogram: Cross-

Weave Baseline (CW-B), Cross-Weave Scan-Transpose-Scan (CW-STS), cus-

tomized Cross-Weave Tiled horizontal-vertical Scan (CW-TiS) and Wave-Front

Tiled Scan (WF-TiS). All the implementations rely on parallel cumulative sums

on row and column histograms. The first three designs operate a cross-weave
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scan, and the latter does a wave-front scan.

• In our implementations, we show a trade-off between productivity and efficiency.

In particular, the less efficient CW-B and CW-STS solutions rely on existing

open-source kernels, whereas the most efficient CW-TiS and WF-TiS designs are

based on custom parallel kernels. We show analogies between the computational

pattern of the integral histogram and that of the bioinformatics Needleman-

Wunsch algorithm. We leverage their similarity to design our most efficient

implementation (WF-TiS).

• We relate the performances of our proposed implementations to their utilization

of the underlying GPU hardware, and use this analysis to gradually improve

over the naive CW-B scheme.

• When computing the 32-bin integral histogram of a 512 × 512 image, our cus-

tom implementation WF-TiS achieves a frame rate of 135 fr/sec on Tesla K40c

(Fig. 5.16(c)) and 351 on a GeForce GTX Titan X graphics card (Fig. 5.16(d)). Fur-

ther, our GPU WF-TiS design reports a 60X speedup over a serial CPU im-

plementation, and a 8X to 30X speedup over a multithreaded implementation

deployed on an 8-core CPU server (Fig. 5.18(b)).

• We have exploited task-parallelism to overlap computation and communication

across the sequence of images. Using dual-buffering improved the performance

by a factor of two when computing 16-bins integral histogram of HD (1280×720)

images versus no dual-buffering on GeForce GTX 480 (Fig. 5.12).

• We evaluated utilizing multiple GPUs for large scale images due to the limited

GPU global memory. The integral histogram computations of different bins
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are distributed across available GPUs using a task queue. We achieved the

increasing speedup range from 3X for HD images to 153X for the large 64MB

images and 128 bins over the single threaded CPU implementation (Fig. 5.17).

5.1 Kernel Optimization for Integral Histogram

In this section, we first describe the integral histogram data structure and its lay-

out in GPU memory and then present different optimization strategies. In our first

implementations [44], we reuse existing parallel kernels from the NVIDIA Software

Development Kit (SDK); we refer to these as generic kernels. We point out the lim-

itations of such an approach, and progressively refine our implementation in order

to better utilize the architectural features of the GPU. This leads to the evolution

of four techniques to compute the integral histogram on GPUs that trade-off pro-

ductivity with efficiency and a discussion of how the performance of the proposed

implementations reflect their utilization of the underlying hardware. The first three

implementations perform cumulative sums on row and column histograms in a cross-

weave (CW) fashion, whereas the fourth one performs a wavefront (WF) scan.

5.1.1 Data Structure Design

An image with dimensions h×w produces an integral histogram tensor of dimensions

b× h×w, where b is the number of bins in the histogram. This tensor can be repre-

sented as a 3-D array, which in turn can be mapped onto a 1-D row major ordered

array as shown in Figure 5.1. It is well known that the PCI-express connecting CPU

and GPU is best utilized by performing a single large data transfer rather than many
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Figure 5.1: Integral histogram tensor represented as 3-D array data structure (left), and
equivalent 1-D array mapping (right).

small data transfers. Therefore, whenever the 1-D array representing the integral his-

togram fits the available GPU global memory, we transfer it between GPU and CPU

with a single memory transaction. The computation of larger integral histograms is

tiled along the bin-direction and distributed between available GPUs: portions of the

1-D array corresponding to the maximum number of bins that fit the GPU capacity

are transferred between GPU and CPU in a single transaction. For all the consid-

ered image sizes a single bin fits the GPU memory; however, our implementation can

be easily extended to images exceeding the GPU capacity by tiling the computation

also column-wise. Finally, we experimentally verified that initializing the integral his-

togram on GPU is more efficient than initializing it on CPU and then transferring it

from CPU to GPU. Therefore, in all our GPU implementations, we initially transfer

the image from CPU to GPU, then initialize and compute the integral histogram on

GPU, and finally transfer it back from device to host.

5.1.2 Naive Cross-weave Baseline Parallelization(CW-B)

The sequential implementation of the integral histogram is represented by Algo-

rithm 5. As can be seen, the algorithm can be trivially parallelized along the b-
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dimension, since the computation of different bins can be done fully independently.

However, the algorithm presents loop-carried dependences along both the x− and

the y− dimensions. Therefore, we need an intelligent mechanism for inter-row and

inter-column parallelization. The cross-weave scan mode enables cumulative sum

tasks over rows (or columns) to be scheduled and executed independently allowing

for inter-row and column parallelization. We observe that NVIDIA CUDA SDK

provides an efficient implementation of the all-prefix-sums [123] and of the 2-D trans-

pose [124] operations. Therefore, leveraging these existing open source kernels, we

can quickly implement the integral histogram. Algorithm 6 presents our cross-weave

baseline approach (CW-B) to compute the integral histogram, combining cross-weave

scan mode with the existing parallel prefix sum and 2-D transpose implementations.

In this approach, we first apply prefix-sums to the rows of the histogram bins (horizon-

tal cumulative sums or prescan), then transpose the array corresponding to each bin

using a 2-D transpose, and finally reapply the prescan to the rows of the transposed

histogram to obtain the integral histograms at each pixel. We now briefly describe

the two parallel kernels available in NVIDIA SDK.

Parallel Prefix Sum Operation on the GPU

The core of our CW-B approach is the parallel prefix sum algorithm [123]. The all-

prefix-sums operation (also refered as scan) applied to an array generates a new array

where each element k is the sum of all values preceding k in the scan order. Given

an array [a0, a1, ..., an−1] the prefix-sum operation returns

[0, a0, (a0 + a1), ..., (a0 + a1 + ...+ an−2)] (5.1)
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Algorithm 6: CW-B: Naive Cross-weave Baseline Parallelization
Input : Image I of size h× w, number of bins b
Output : Integral histogram tensor IH of size b× h× w

1: Initialize IH
IH← 0
IH(I(w,h),w,h)← 1

2: for all bins b do
3: for all rows x do
4: //horizontal cumulative sums

IH(x, y, b)← IH(x, y, b) + IH(x, y − 1, b)
5: end for
6: end for
7: for all bins b do
8: //transpose the bin-specific integral histogram

IHT (b)← 2-D Transpose(IH(b))
9: end for

10: for all bins b do
11: for all rows y of IHT do
12: //vertical cumulative sums

IHT (y, x, b)← IHT (y, x, b) + IHT (y, x− 1, b)
13: end for
14: end for

The parallel prefix sum operation on GPU consists of two phases: an up-sweep and

a down-sweep phase (see Fig. 5.2). The up-sweep phase builds a balanced binary tree

on the input data and performs one addition per node. Scanning is done from the

leaves to the root. In the down-sweep phase the tree is traversed from root to the

leaves and partial sums from the up-sweep phase are aggregated to obtain the final

scanned (prefix summed) array. Prescan requires only O(n) operations: 2 × (n − 1)

additions and (n−1) swaps. Padding is applied to shared memory addresses to avoid

bank conflicts.

GPU-based 2D Transpose Kernel

The integral histogram computation requires two prescans over the data: a horizontal

prescan that computes cumulative sums over rows of the data, followed by a vertical
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Figure 5.2: Parallel prefix sum operation, commonly known as exclusive scan or prescan
[123]. Top: Up-sweep or reduce phase applied to an 8-element array. Bottom: Down sweep
phase.

prescan that computes cumulative sums over the columns of the first scan output.

Taking the transpose of the horizontally prescanned image histogram enables us to

reapply the same (horizontal) prescan algorithm effectively on the columns of the data.

The transpose operation can be performed using the efficient 2D kernel described

in [124]. This tiled implementation uses shared memory to avoid uncoalesced read

and write accesses to global memory, and uses padding to avoid shared memory

conflicts and thereby optimize the shared memory accesses.
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5.1.3 Cross-weave Scan-Transpose-Scan Parallelization (CW-
STS)

As can be observed in Algorithm 6, the CW-B implementation performs many kernel

invocations: b× h times horizontal scans each of size w, b times 2-D transposes each

of size w × h, and b × w times vertical scans each of size h. In other words, this

approach is based on the use of many parallel kernels, each of them performing very

little work and therefore greatly under-utilizing the GPU. With the regular image

sizes in consideration, for example, the scan kernels are invoked on arrays of size

varying from 512 to 2048; however, the all-prefix-sum kernel has been designed to

perform well on arrays consisting of millions of elements. Therefore, an obvious way

to improve the integral histogram implementation is to increase the amount of work

performed by each kernel invocation, and reduce kernel invocation overheads. This,

in turn, will improve the GPU utilization. However, as shown in Algorithm 7, the

computation can be easily broken into three phases: a single horizontal scan, a single

3-D transpose, and a single vertical scan. We call this solution cross-weave scan-

transpose-scan (CW-STS) parallelization. We observe that the CW-STS approach

Algorithm 7: CW-STS: Single Scan-Transpose-Scan Parallelization
Input : Image I of size h× w, number of bins b
Output : Integral histogram tensor IH of size b× h× w

1: Initialize IH
IH← 0
IH(I(w,h),w,h)← 1

2: for all b× h blocks in parallel do
3: Prescan(IH)
4: end for
5: //transpose the histogram tensor

IHT ← 3D Transpose(IH)
6: for all b× w blocks in parallel do
7: Prescan(IHT )
8: end for
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Figure 5.3: Data flow between GPU global memory and shared memory within the trans-
pose kernel; stage 1 in red, stage 2 blue, reads are dashed line, writes are solid lines.

does not require rewriting the prescan kernel, but only invoking it judiciously. As

explained above, the all-prefix-sum operation consists of two phases: the up-sweep

computes partial sums, and the down-sweep aggregates them into the final result.

However, the problem is that in the early stages of the up-sweep phase much more

threads are involved in the computation than in the later stages (leading to GPU

under-utilization). The down-sweep phase has the same problem except that the

thread utilization, initially minimal, increases with the computational stage (Figure

5.2). To avoid this problem, we proposed the CW-TiS and WF-TiS approaches which

compute all row- or column- wise scans with a single kernel call. Specifically, in the

horizontal and vertical scan phase we invoke the custom prescan kernel once using a

2-D grid of size (b, w×h
2×Num Threads

).

In order to allow a single transpose operation, we need to transform the existing

2-D transpose kernel into a 3-D transpose kernel. This can be easily done by using the

bin offset in the indexing. The 3-D transpose kernel is launched using a 3-D grid of

dimension (b, w
BLOCK DIM

, h
BLOCK DIM)

), where BLOCK DIM is the maximum number

of banks in shared memory (32 for all graphics card used). Figure 5.3 shows the data
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Figure 5.4: Cross-weave Tiled Horizonal-Vertical Scan (CW-TiS): Tiled horizontal scan
(left), Tiled vertical scan (right). Both scans are performed in tile and the shadow area
presents one strip.

flow in the transpose kernel. A tile of size BLOCK DIM ∗ BLOCK DIM is written

to the GPU shared memory into an array of size BLOCK DIM ∗ (BLOCK DIM + 1).

This pads each row of the 2-D block in shared memory so that bank conflicts do not

occur when threads address the array column-wise. Each transposed tile is written

back to the GPU global memory to construct the full histogram transpose.

5.1.4 Cross-weave Tiled Horizontal-Vertical Scan Paralleliza-
tion (CW-TiS)

To understand how to further improve the integral histogram computation, we can

observe the following. First, the use of the transpose kernel in the CW-STS im-

plementation is motivated by the reuse of the prescan kernel in the vertical scan

phase. However, the transpose operation can take considerable time compared to the

prescan. For instance, when the image size is 512× 512 and the histogram consists of

32 bins, the transpose takes about 20% of the whole computation time, and almost
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50% of the time of a single prescan (Figure 5.7). Therefore, the execution time can

be greatly reduced by combining the transpose and the vertical prescan into a single

parallel kernel.

Second, the prescan kernel has its own limitations. While in the early stages of the

up-sweep phase many threads are involved in the computation, in later stages only a

few threads are active. For instance, as can be observed in Fig. 5.2, the number of

active threads decreases from 4 at the beginning to 1 at the end. The down-sweep

phase has the same problem (except that the thread utilization, initially minimal,

increases with the computational stage). In general, the up-sweep and down-sweep

phases of a scan on an array of n-element will consist of 2 × log2(n) iterations. In the

up-sweep the number of active threads, initially equal to n
2
, halves at every iteration.

The number of working cycles of all active threads is therefore equal to 3× (n− 1).

The efficiency, defined as the ratio of the total working cycles over the product of the

number of threads and the number of iterations will be

3× (n− 1)

n log2 n
≈ 3

log2 n
(5.2)

For example, the efficiency of the scan on a 1024-element 1-D array is only 30%. To

achieve a better efficiency, we can leverage the data-level parallelism underlying the

integral histogram computation. As mentioned before, different bins can be processed

fully independently. In addition, for each bin, the horizontal scan can be performed

fully independently on the h rows, and the vertical scan can be performed in parallel

on the w columns. Based on these observations, we propose a cross-weave tiled

horizontal and vertical scan (CW-TiS) method that: (i) eliminates the need for the

transpose operation and benefits less memory, and (ii) better utilizes the data-level
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Algorithm 8: CW-TiS: Cross-weave Tiled Horizonal-Vertical Scan Paralleliza-
tion
Input : Image I of size h× w, number of bins b
Output : Integral histogram tensor IH of size b× h× w

1: Initialize IH
IH← 0
IH(I(w,h),w,h)← 1

2: for all bins b in parallel do
3: for all vertical strips vs of width TILE SIZE do
4: Tiled Horizontal Scan(IH)
5: end for
6: for all horizontal strips hs of height TILE SIZE do
7: Tiled Vertical Scan(IH)
8: end for
9: end for

parallelism of the integral histogram. Algorithm 8 represents how CW-TiS oper-

ates. First, each of the b matrices of size (h × w) corresponding to different bins is

divided into tiles. Each tile must be small enough to fit in shared memory and large

enough to contain sufficient amount of data for computation work. In our implemen-

tation, we use squared tiles. The processing is divided into two stages: the horizontal

scan (Fig. 5.4 (left)) and the vertical scan (Fig. 5.4 (right)). In each stage, the com-

putation is performed strip-wise until the whole matrix has been processed. A kernel

call operates on one strip of size tile width× image height in horizontal scan versus

image width× tile height during the vertical scan. The number of vertical strips in

horizontal scan equals to VStrips =
wImage

wTile
. Whereas the number of horizontal strips

during the vertical scan is HStrips =
hImage

hTile
. Therefore, The total number of image

tiles or blocks being processed is given by:

Tiles =
wImage × hImage

wT ile × hT ile

= V Strips×HStrips (5.3)

We expect the image sizes to be evenly divisible by the tile sizes otherwise the
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image will be appropriately padded. In the kernel implementation, each thread-block

is assigned to a tile and each thread to a row/column. Shared memory is used to allow

efficient and coalesced memory accesses. Threads belonging to the same block push

the cross-weave forward (either from left to right or from top to bottom (Fig. 5.4).

Since each thread-block consists of warps, in order to avoid thread divergence within

warps and GPU underutilization, the tile size is set to be a multiple of the warp size

(32).

5.1.5 Wave-front Tiled Scan Parallelization(WF-TiS)

The use of separate horizontal and vertical scan kernels in the CW-TiS method has

a drawback: it causes each tile to be transferred multiple times between global and

shared memory. In fact, in both scan kernels, each tile is first moved from global into

shared memory, processed and then moved back to global memory. As a consequence,

combining the horizontal and vertical scans into a single kernel will allow accessing
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Figure 5.5: ”WF-TiS” implementation. (Left) Tiles with the same color belong to the
same stride and are executed in the same kernel launch iteration. (Right) The horizontal
and vertical scan of a tile. It starts from the horizontal scan, store the boundary data into
extra memory and finally the vertical scan.
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Algorithm 9: WF-TiS: Wave-front Tiled Scan Parallelization
Input : Image I of size h× w, number of bins b
Output : Integral histogram tensor IH of size b× h× w

1: Initialize IH
IH← 0
IH(I(w,h),w,h)← 1

2: for all diagonal strips s of width TILE SIZE do
3: for all bins b in parallel do
4: Tiled Wavefront Scan()
5: end for
6: end for

global memory only twice per tile (once in read, and once in write mode). Before

introducing the detailed implementation, let us briefly analyze the data dependences

of the integral histogram. For the horizontal scan, the data in each row rely on the

data on their left; for the vertical scan, the data in each column rely on the data on

their upper position. This data access pattern is quite similar to that in the GPU

implementation of the Needleman-Wunsch algorithm [125] in the Rodinia Benchmark

Suite [126]. Therefore, we can arrange the computation in a similar fashion, and

compute the integral histogram using a wave-front scan. Algorithm 9 represents the

latest approach which we called Wave-front Tiled Scan Parallelization (WF-TiS).

Similarly to the CW-TiS implementation, we divide the h×w matrix into different

tiles as shown in Fig. 5.5. Again, each tile should be small enough to fit in shared

memory, and large enough to contain non-trivial amount of computation work. All the

tiles lying on the same diagonal line with different bins (they are presented with the

same color) are considered part of the same strip and processed in parallel. Therefore,

for an image of size w × h and tile size TILE SIZE the total number of iterations

are

d w

TILE SIZE
e+ d h

TILE SIZE
e − 1 (5.4)
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Within the parallel kernel, each thread block will process a tile, and each thread will

process a row (during horizontal scan) and a column (during the vertical scan) of the

current tile. The tricky part of this implementation is that after the horizontal scan,

the last column of each tile must be preserved for horizontal scan of the next strip

before being overwritten during the vertical scan. This can be achieved by storing

the extra data in global memory (the additional required memory is an array of h

elements). The WF-TiS method can potentially be preferable to the CW-TiS by

eliminating unnecessary data movements between shared and global memory.

5.2 Experimental Results

In this section, we present a performance evaluation of our proposed GPU imple-

mentations of the integral histogram. Our experiments were conducted on four GPU

cards:

• GeForce GTX Titan X graphics card - equipped with 24 × 128 − core SMs,

maxwell architecture, 12GB of global memory and compute capability 5.2.

• Nvidia Tesla K40c - equipped with 15 × 192 − core SMs, kepler architecture,

11GB of global memory and compute capability 3.5.

• Nvidia Tesla C2070 - equipped with 14× 32− core SMs, fermi architecture and

has about 5GB of global memory, compute capability 2.0.

• Nvidia GeForce GTX 480 - consists of 7 × 48 − core SMs, fermi architecture

with 1GB global memory, compute capability 2.1.
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Our discussion is organized as follows: First, we present a comparative evaluation of

the four proposed GPU implementations focusing on the processing time. Second,

we show how to tune the parameters of our most efficient implementation to achieve

better performances (the WF-Tiled solution). Third, we discuss the impact of the

data transfers on the overall performances. Fourth, we exploit double-buffering to

overlap the computation and communication across sequences of images and calcu-

late the frame rate of our proposed methods. We have extended our experiments

utilizing multiple GPUs for large scale images. To conclude, we compare our GPU

implementations using different GPU architectures with the multi-threaded CPU im-

plementation. We tune all kernel functions to achieve the best performances.

5.2.1 Kernel Performance Evaluation

Figure 5.6 reports the cumulative kernel execution time of the four proposed GPU

implementations on different image sizes for a 32-bin integral histogram. For read-

ability, the data in the y-axis are reported in logarithmic scale. As it is obvious, due

to its extremely poor GPU utilization, the CW-B approach performs extremely poor,
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Figure 5.6: Cumulative kernel execution time of the four proposed GPU implementations
on different image sizes for a 32-bin integral histogram on Tesla K40c.
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Figure 5.7: Kernel execution time for calculating integral histogram of size 512x512x32
(left), and 1024x1024x32 (right) on GTX Titan X.

and is outperformed by all other approaches by a factor in excess of 30X. CW-TiS

outperforms CW-STS by a factor between 2X and 3X depending on the image size.

Finally, WF-TiS leads to a further performance improvement up to about 1.5X over

CW-TiS (Fig. 5.6).

To allow a better understanding of these results, Fig. 5.7 breaks down the exe-

cution times of different processing tasks. We can make the following observations.

First, even when performed on large arrays (consisting of b × w × h elements), the

prescan kernel provided by CUDA SDK is less effective than the custom prescan

kernel that we implemented in our CW-TiS and WF-TiS solutions. In fact, the ex-

ecution time of our custom prescan kernel is comparable to that of the transpose

kernel. Second, additional performance boost is achieved by merging the horizontal

and the vertical scan into a single scan kernel, reducing the total number of global

memory accesses and halving the required memory by removing the transpose phase.

Performance Tuning of WF-TiS

In this section, we discuss the tuning of two important parameters used in our WF-
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TiS design: the tile size and the thread block configuration. Our considerations can

be generalized to other parallel kernels using tiling.

Configuring the Thread Blocks

CUDA kernels can run with different thread block configurations. At runtime, each

thread block is mapped onto a SM in a round-robin fashion. The execution of blocks

mapped onto the same SM can be interleaved if their cumulative hardware resource

requirements do not exceed those available on the SM (in terms of registers and shared

memory). In case of interleaved execution, context-switch among thread blocks can

help hiding global memory latencies. If interleaved execution is not possible, memory

latencies can be hidden only by context switching within a single thread block. There-

fore, properly setting the block configuration can help achieving better performances.

NVIDIA provides a ’CUDA Occupancy Calculator’ to assist the programmer in find-

ing the kernel configuration that maximizes the resource utilization of the GPU.

Although low occupancies (typically below 50%) indicate possible bad performances,

a full occupancy does not ensure the optimal configuration. This fact is highlighted

in Fig. 5.8, which shows the kernel execution time and the GPU occupancy using

different thread block configurations. These results were reported on a 512×512 im-

age and a 32-bin integral histogram. As can be observed(Fig. 5.8), both the best

and the worst configurations, 512 and 1024 threads, in terms of execution time are

characterized by a 100% GPU occupancy. In addition, the lowest execution time is

achieved using 512-thread blocks.

Configuring the Tile Size

The tile size determines the amount of shared memory used by each thread block.

Increasing the tile size will reduce the number of iterations (or strips), and will increase

108



64 128 256 512 1024
3

3.05

3.1

3.15

3.2

3.25

3.3

3.35

3.4

The number of threads per block

K
er

ne
l E

xe
cu

tio
n 

T
im

e 
(m

s)

Oc = 31%

Oc = 63%

Oc = 100%

Oc = 100%

Oc = 100%

Figure 5.8: Kernel execution time and occupancy for different thread block configurations
for an integral histogram of size 512x512x32 on Tesla K40c.
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Figure 5.9: Performance evaluation of the WF-TS kernel for two tile sizes and several
thread block configurations for an integral histogram of size 512x512x32 on Tesla K40c
card.

the amount of work performed by each thread block. But larger tiles may limit inter-

block parallelism and decrease the opportunity to hide global memory latencies by

context switching across thread blocks. We tried different tile configurations (16×16,

32×32, 64×64). However, in the case of 16×16, the performance is much worse than

the two others since the tile data is processed linearly and each line is limited to only

16 elements. This causes that only half of the threads warp be active for each tile.

Figure 5.9 reports a performance analysis of our WF-TiS implementation using two
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Figure 5.10: Kernel execution time versus data transfer time for
64× 64 tile configuration.

tile sizes (32× 32 and 64× 64) and several thread block configurations. The 64× 64

tile configuration performs better than 32× 32 tile configuration by better use of the

limited shared memory.

5.2.2 Communication Overhead Analysis

In this section, we discuss the overhead due to data transfers between CPU and GPU.

The experiments were performed on Tesla k40c with kepler architecture and a Geforce

GTX titan X with maxwell architecture.

Figure 5.10 shows the results. We make the following observations for both GPUs:

the CW-B implementation is compute bound (that is, the kernel execution time is

larger than the CPU-GPU data transfer time), whereas the other solutions are data-

transfer-bound.These experiments suggest that further kernel optimizations may not
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be advisable. On the other hand, potential performance improvements may result

from a reduction in the communication overhead coming from advances in intercon-

nection technologies. However, it must be observed that the data transfer overhead is

significant only when considering the integral histogram a stand-alone application. In

most cases, the integral histogram is part of a more complex image processing pipeline

that can be implemented on GPU. In these scenarios, since the integral histogram

does not need to be transferred back to CPU, optimizing the kernel processing is still

relevant.

Overlap Communication and Computation Using

Dual-Buffering for Sequence of Images

So far we have focused on distributing integral histogram data across available GPU

cores. We can also leverage dual-buffering to overlap CPU-GPU communication and

GPU computation across different images for further performance improvement. This

can be accomplished by using CUDA streams along with page-locked memory and

asynchronous data transfers between host and device. Algorithm 10 represents the

pseudo-code of our dual-buffering based solution. All operations issued to stream 1

CPU Timeline

GPU Timeline
data in
(images)

data out
(integral histograms)

Kernel computations

…

…

…

Read images from disk,
GPU Calls

I1 I2 I3 I4

I1 I2

I1 I2

I1 I2 I4 I5I3

I3 I4

I3 I4

1st iteration

I6

I5 I6

I5 I6

2nd iteration 3rd iteration

I5

I6 …

Figure 5.11: Pipeline parallelism: communication and computation overlap using dual-
buffering.
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Algorithm 10: Integral histogram computation on sequences of images using dual-

buffering

1: for all pair of images do
2: /* Read two images from disk to CPU */
3: h Img1 = CopyImageFromDisk(Img1);
4: h Img2 = CopyImageFromDisk(Img2);
5:
6: /* Transfer two images from CPU to GPU */
7: cudaMemcpyAsync(d Img1, h Img1, stream1);
8: cudaMemcpyAsync(d Img2, h Img2, stream2);
9:

10: /* Generate and intialize the histograms on GPU */
11: init kernel(d IntHist1, d Img1, stream1);
12: init kernel(d IntHist2, d Img2, stream2);
13:
14: /* Compute integral histograms */
15: IntHistComputation kernel(d IntHist1, stream1);
16: IntHistComputation kernel(d IntHist2, stream2);
17:
18: /* Transfer integral histogram from GPU to CPU */
19: cudaMemcpyAsync(h IntHist1, d IntHist1, stream1);
20: cudaMemcpyAsync(h IntHist2, d IntHist2, stream2);
21: end for

are independent of those issued to stream 2. In each iteration, the following operations

are performed: first, two images are read from disk and stored in page-locked host

memory; second, those images are transferred to the GPU with asynchronous data

transfers; then, the initialization and histogram computation kernels are launched;

finally, the computed integral histograms are copied back to CPU (again, using asyn-

chronous data transfers). We enqueue the memcpy and kernel execution operations

breadth-first across streams rather than depth-first to avoid blocking the copies or ker-

nel executions of a stream with another stream. This sequence of operations allows

the effective overlapping of operations belonging to different CUDA streams. Fig-

ure 5.11 exploits pipeline parallelism to address the communication and computation

overlap when computing 32-bins integral histogram for HD images. Our experi-
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ments show that the memory copies from disk to host are twice as fast as the GPU

operations. Therefore, in our implementation, such copies are completely hidden be-

hind the GPU tasks. Figure 5.12 shows the effect of dual-buffering on the frame rate

for a sequence of 100 HD images (1280 × 720) using the WF-TiS kernel. As can be

seen, dual-buffering improves the performance by a factor of two for 16-bins integral

histogram computations. However, as the number of bins increases, the performance

improvement decreases, and becomes negligible at 128 bins. This can be attributed

to the fact that the use of page-locked memory on very large memory regions leads

to performance degradation.

5.2.3 Integral Histogram for Large Scale Images Using Mul-
tiple GPUs

We have extended our WF-TiS kernel implementation to process large images (e.g.

WHSXGA: 6400×4800). For such large images, limited GPU global memory becomes

the bottle-neck since it can not hold the whole integral histogram with all bins. In
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Figure 5.12: Effect of dual-buffering on the frame rate of a sequence of 100 HD images
(1280 × 720) and different bin sizes. The experiments are conducted using the WF-TiS
kernel.
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Figure 5.13: General block diagram of superserver configuration

our approach, bins are equally grouped into distinct tasks which are enqueued. Each

time CPU picks one task from the queue and issues a kernel to the available GPU

in the system. Each kernel computes the integral histogram of task bins using the

WF-TiS approach. When a device is available, CPU will dispatch another task from

the queue to GPU and meanwhile, results will be copied back to CPU. This iterative

process will continue until the queue is empty.

• It is an easy-to-scale approach which can utilize multiple GPUs in the node

• The computation time (on GPU) is overlapped with communication time (copy

result) via dual-buffering

• It can handle the imbalanced computation capability of heterogeneous system

in which GPUs may have different hardware configuration

The experiments are conducted on our superserver equipped with 4 GTX 480 GPUs

(Fig. 5.13). In our system, tasks will be distributed evenly. For instance, if there are

64 bins, each set of 16 bins will be performed on one of the GPUs. The portion of the
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Figure 5.14: Frame rate when computing (a) 32-bins integral histogram for different high
definition large standard images (b) integral histogram for HD and FHD images with dif-
ferent number of bins using four Geforce GTX 480 GPUs.

16 bins that fit the GPU capacity will be performed in parallel. The most efficient

WF-TiS kernel is invoked to compute the integral histogram for each bin.

Figure 5.14(a) shows the frame rate when computing 32-bins integral histogram

for selected high definition image sizes (HD: 1280× 720, FHD: 1920× 1080, HXGA:

4096× 3072, WHSXGA: 6400× 4800 and 64MB: 8k× 8k). Figure 5.14(b) represents

the frame rate for HD and FHD images with different number of bins.

Figure 5.17 shows the speedup of computing 128 bins integral histogram. The

increasing speedup range from 3X (for HD) to 153X for the large 64MB images and

128 bins (total 32GB of 4 byte integer) over a single threaded CPU implementation

is achieved. There are several advantages of this approach:

5.2.4 Frame Rate

The frame rate is defined as the maximum number of images processed per second. In

this section, we compute the frame rate in the assumption that the integral histogram

is a stand-alone application (rather than part of a more complex image processing
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Figure 5.15: Overlapping of computation and communication using double buffering for
(a) compute bound and (b) data-transfer bound implementations. In the diagram, Ci and
Ti shown in blocks represent kernel computation and data transfer, respectively, for the ith
integral histogram

pipeline on GPU). We consider data transfers between CPU and GPU, but since we

use double buffering, the processing of the current image and the transfer of the pre-

viously computed integral histogram from GPU to CPU can be overlapped (see Fig-

ure 5.15). Therefore, the frame rate equals to the (cumulative kernel execution time)−1

for compute-bound implementations, and to (data transfer time)−1 for data-transfer-

bound ones. Fig. 5.16 a and b show the frame rate for different image sizes on the

considered GPUs. The GTX Titan X allows faster data transfers between CPU and

GPU. All data are reported on 32-bins integral histograms. In Fig 5.16 a and b, the

CW-STS, CW-TiS and WF-TiS implementations are data-transfer-bound for consid-

ered images. Figure 5.16 c and d show the frame rate reported on 512× 512 images

with different number of bins. As can be seen in Fig. 5.16c, the three best implementa-

tions are data-transfer-bound. Since increasing the number of bins means increasing

the amount of data to be transferred (from GPU to CPU), the performances degrade

linearly with the number of bins.
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Figure 5.16: Frame rate for 32x32 tile configurations: (a) and (b) for different image sizes,
(c) and (d) for 512× 512 image and different numbers of bins.

5.2.5 Speedup over CPU

In this section, we report the speedup of our GPU implementation of the integral

histogram over a parallel CPU implementation. The speedup is defined in terms of

frame rate considering data transfers between CPU and GPU. As mentioned before,

these data are conservative, since in most cases the integral histogram is part of

a more complex image processing pipeline, which does not require transferring the

computed integral histogram back to CPU.

Figure 5.18 shows the speedup of GPU over CPU for image sizes varying from

256x256 to 2048x2048 and 32-bins. The GPU implementation is run on Tesla K40c
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Figure 5.17: Speedup of integral histogram computations over a CPU implementation
using different degrees of multi-threading for large scale images (up to 64MB) using four
Geforce GTX 480
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Figure 5.18: Speedup of the GPU designs over a CPU implementation using different
degrees of multi-threading
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GPU card. Our CPU implementation, parallelized using OpenMP, is run on an

8-core Intel Xeon E5620. Since the CPU cores are hyper-threaded, the best CPU

configuration consists of 16 threads. Although the GPU implementation is data-

transfer-bound for large images and/or number of bins, the speedup over the single

threaded CPU implementation is about 60X, and over a 16-thread implementation,

it varies between 8X and 30X.

In figure 5.19, we have compared our WF-TiS performances to the best perfor-

mance of the IBM Cell/B.E integral histogram parallel implementation using wave-

front(WF) and cross-weave(CW) scan mode [127] for standard 640× 480 image size.

To calculate the frame rate of our implementation, we chose the maximum value

between kernel time and data transfer time since dual buffering is applied. For our

GPU implementation, in most cases the performance is data-transfer-bound: the

achieved frame rate is limited by transferring the data between CPU and GPU over

the PCI-express interconnect, rather than from the parallel execution on the GPU.

It is shown that the Titan X with maxwell architecture outperforms all the other

GPU devices, CPU and the Cell/BE processors.

5.3 Conclusion

In this chapter, we have evaluated four GPU implementations of the integral his-

togram and proposed the fastest approach to accelerate computer vision applications

utilizing integral histogram. All our designs – namely CW-B, CW-STS, CW-TiS, and

WF-TiS – compute parallel cumulative sums on row and column histograms either

in a cross-weave or in a wavefront scan. While CW-B and CW-STS kernels are based
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Figure 5.19: Frame rate performance comparison of proposed GPU WF-TiS design versus CPU
implementation using different degrees of multi-threading, CPU1, CPU8, CPU16 and Cell/B.E.
performance results presented for wavefront(WF) and cross-weave(CW) scan mode using 8 SPEs
in[127].

on pre-existing scan and transpose kernels, CW-TiS and WF-TiS are based on our

custom scan kernels. Our progressive optimizations were based on a careful analysis

of how each alternative leverages the hardware resources offered by the GPU archi-

tecture. Our kernel optimizations coupled with the use of dual-buffering allow us to

achieve a frame-rate bounded by the data transfer time over PCI-Express connecting

CPU and GPU for smaller images. In particular, when computing the 32-bin integral

histogram of a 512 × 512 image, our most efficient implementation reached a frame

rate of 351 fr/sec on an Geforce GTX Titan X graphics card. However, for a sequence

of larger images (HD size), which were bounded by kernel execution time, the frame

rate has been improved by a factor of two for 16 bins integral histogram using dual-

buffering. For large scale images, mapping integral histogram bins computations on

multiple GPUs enables us to process 32 giga bytes of image data with a frame rate

of 0.73 Hz. These results strengthen the idea of high performance computing to dis-

tribute the data/compute intensive tasks between multiple nodes. Furthermore, our
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optimized WF-TiS kernel had a 60X speedup over a serial single-threaded CPU im-

plementation for standard image size, and a 8X to 30X speedup over a multi-threaded

implementation deployed on an 8-core CPU server.

We have extended the GPU integral histogram approach to design and implement

spatio-temporal median filter algorithm for fast motion detection in full motion video,

as well as for 3D face reconstruction texturing.
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Chapter 6

Conclusion and Future Research

6.1 Summary

Disciplined or informed intelligent fusion of different kinds of information is useful

for a general purpose tracking system across modalities and different computer vision

tasks. We present a collaborative tracking system consists of a master tracker and

two auxiliary trackers. The main idea is to have a pool of trackers that are working

together in an intelligent fusion framework to improve tracking performance by being

called dynamically. The input of the systems varies from a standard definition video

to very large scale airborne imagery collected over urban areas. The output will be

target tracklets that are computed using object visual features and object temporal

motion information. The visual feature-based tracker usually takes the lead as long as

object is visible and presents discriminative visual features. Otherwise, tracker will be

assisted by motion information. Motion prediction will be used to localize the object
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when being partially or fully occluded by trees or tall structures. The estimated mo-

tion detection mask can be fused intelligently with visual object features to increase

tracking localization accuracy or being applied to initialize and perform persistent

multi-object tracking. The main objective of the presented tracker is to accommo-

date to object appearance changes due to scale, pose, orientation and illumination

and perform persistent tracking under background noises (clutter, dynamics) and oc-

clusion as well as camera motion effects. Two measures are used to analyze the per-

formance of the visual tracking: Accuracy and Robustness. Accuracy is the average

overlap between the predicted and ground truth bounding boxes during successful

tracking periods. Robustness measures the number of times that tracker loses the

target during tracking. We weight robustness more than accuracy since the ultimate

goal of visual tracking is performing persistent tracking. It is also required to achieve

real-time performance on low-power computing platforms (laptops, PCs).

Image spatial context can be modeled as a hierarchy of abstractions by increas-

ing the spatial scale. We utilized image spatial context at different level to make our

video tracking system resistant to occlusion and background noise and improve target

localization accuracy and robustness. Pixel-level spatial information are used to build

intensity spatially weighted histogram or compute object foreground and background

color histogram tensor. Spatial layout of image fragments are preserved when con-

structing the spatial pyramid of HoG. The structure-level spatial context (i.e. road

network, building maps) can be applied to filter out the false object detections by

distinguishing background from moving objects in full motion videos. Therefore, our

proposed visual tracker is named Spatial Pyramid Context-aware Tracker (SPCT).

We chose a pre-selected seven-channel complementary features including RGB color,
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intensity and spatial pyramid of HoG to encode object color, shape and spatial layout

information. Integral histogram is the building block to encode candidate regions fea-

ture information and achieve fast, multi-scale local histogram computation in constant

time. A novel fast algorithm is presented to accurately evaluate spatially weighted

local histograms in constant time complexity using an extension of the integral his-

togram method.

The experiments on extensive VOTC2016 benchmark dataset and aerial video con-

firm that combining complementary tracking cues in an intelligent fusion framework

enables persistent tracking for Full Motion Video (FMV) and Wide Aerial Motion

Imagery (WAMI). SPCT ranked 11 among 62 trackers based on achieved average ro-

bustness of 1.3 and accuracy of 0.458 on all VOTC2016 60 sequences. SPCT ranked

1 among all trackers with low average robustness of 0.789, accuracy of 0.562 and

missing frame rate as low as 0.4% on Argus WAMI dataset and robustness of 0.325,

accuracy of 0.628 and low average MFR of 0.005 on ABQ aerial urban imagery.

We proposed a multi-component framework based on semantic fusion of motion

information with projected building footprint map to significantly reduce the false

alarm rate in urban scenes with many tall structures. It was shown that using purely

conventional motion detection methods would not be sufficient for a wide area aerial

imagery in which there are strong traces of parallax induced by tall buildings. In

order to reject undesirable detections due to tall structures we used depth map infor-

mation – obtained from the fast SFM followed by a dense 3D point clouds algorithm

– in a boundary refinement and filtering processing stage. Using the proposed fusion

approach a high average precision of 83.9% and recall of 75.1% is achieved using 3D

median background modeling which promises a reliable persistent tracking.
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6.2 Contributions

The main contribution of the work are summarized as follows:

• Pool of trackers with a smart context-based fusion scheme: A collabo-

rative tracking system consists of a master tracker and two auxiliary trackers is

developed using multi-channel Features predictors and temporal motion infor-

mation.

• Spatial pyramid appearance tracking: we utilize spatial Pyramid of His-

togram of Gradient Orientation (PHoG) to encode object local shape and spatial

layout of the shape so that to make tracking resistant to occlusion and invariant

to illumination changes.

• Spatially weighted local histograms in O(1) using weighted integral

histogram: we proposed a novel fast algorithm to accurately evaluate spa-

tially weighted local histograms in O(1) time complexity using an extension of

the integral histogram method (SWIH) that encode both spatial and feature

information.

• Parallel GPU implementation of integral histogram: we utilize integral

histogram as the building block to encode candidate regions feature informa-

tion and achieve fast, multi-scale histogram computation in constant time. The

custom implementation WF-TiS achieves a frame rate of 135 fr/sec on Tesla

K40c and 351 on a Geforce GTX Titan X graphics card when computing the

32-bin integral histogram of a 512×512 image. Furthermore, the GPU WF-TiS

design reports a 60X speedup over a serial CPU implementation, and a 8X to
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30X speedup over a multithreaded implementation deployed on an 8-core CPU

server [44, 31].

• Context-based semantic fusion of motion information with projected

building footprint information: we proposed a multi-component framework

based on semantic fusion of motion information with projected building foot-

print information to significantly reduce the false alarm rate in urban scenes

with many tall structures. Moving object detection in wide-area aerial imagery

is very challenging since fast camera motion prevents direct use of conventional

moving object detection methods and strong parallax induced by tall structures

in the scene causes excessive false detections [45, 46].

• Orientation-Aligned Template Matching by Learning the Object Di-

rection: Experimental results show that most of the orientation sensitive fea-

tures fail to detect the object when object template and search window are

not aligned for example when computing features likelihood maps using nor-

malized cross correlation of target template and search window. I proposed an

orientation-aligned template matching particularly for vehicle detection in wide

aerial imagery using vehicle’s non-holonomic constraints.

• Target object initialization refinement using CAMSHIFT: If the ground

truth bounding box annotated around the object is not tight, not oriented

aligned or not centered around the object (drifted), it will contain background

information that will be incorporated into object descriptors which is not de-

sirable. Incorporating background information will lead to less accurate target

localization and rapidly loss of the target being tracked. We used the Contin-
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uously Adaptive Mean Shift (CAMSHIFT) algorithm to partially correct the

drifted and loose ground truth bounding box and improve tracking robustness.

• Offline feature selection test-bed using tracking context: A separate

test-bed is developed for filtering-based feature selection in order to decouple

feature performance from the rest of the tracking system where the final outcome

depends not only on the features used but also on the other parameters like the

predictor performance. Based on this experiment, a 7-channel complementary

features including RGB(3), gradient orientation and magnitude (2) and edges(1)

are chosen to characterize the object appearance model [25, 27].

• Automatic Detection of candidate regions using motion prediction: Au-

tomatic prediction of ROI in a complex image or video is a key task for visual

tracking that enables fast search and avoids background clutter, particularly

for large scale aerial imagery. When target motion dynamics is linear or ap-

proximately linear during the intervals between observations then a motion

prediction filter like Kalman filter can be used to automatically determine the

search window in the next image.

• Top performance on benchmark datasets including VOTC2016 and

WAMI data: SPCT ranked 11 among 62 trackers based on achieved average

robustness of 1.3 and accuracy of 0.458 on all VOTC2016 60 sequences. SPCT

ranked 1 among all trackers with low average robustness of 0.789, accuracy

of 0.562 and missing frame rate as low as 0.4% on Argus WAMI dataset and

robustness of 0.325, accuracy of 0.628 and low average MFR of 0.005 on ABQ

aerial urban imagery.
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6.3 Future Research

Many of the moving object detection and tracking algorithms are sensitive to ori-

entation and scale variations and usually fail to accommodate to visual appearance

changes due to pose, orientation or scale changes. Accurate and robust scale and

orientation estimation is still a challenging problem in visual tracking. A reliable

orientation estimation would significantly improve the feature likelihood map com-

putation and consequently the target localization accuracy. Orientation information

can be used to provide orientation aligned tracking results rather than traditional

axis aligned bounding boxes. An accurate scale estimation is also required to improve

SPCT accuracy performance.

We presented an orientation aligned template matching by learning the direction

of the vehicle using four angles including {0◦, 90◦, 180◦, 360◦}. However, orientation

aligned matching performance can be improved by considering more angles for align-

ment and incorporating more information including mean and standard deviation of

the orientation estimations history and getting feedback from motion prediction.

Online feature selection is the next component that can be integrated into SPCT

to adaptively select the most discriminative features along image sequences.

In the past few years, discriminative trackers based on deep learning techniques

outperform the generative trackers performance. One of the immediate directions of

this work is to employ learning algorithms to improve the performance of tracking

cues particularly on aerial imagery.
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[38] Tomáš Voj́ı̌r and Jǐŕı Matas. The enhanced flock of trackers. In Registration

and Recognition in Images and Videos, pages 113–136. 2014.

[39] Sam Hare, Stuart Golodetz, Amir Saffari, Vibhav Vineet, Ming-Ming Cheng,

Stephen L Hicks, and Philip HS Torr. Struck: Structured output tracking with

kernels. IEEE TPAMI, 38(10):2096–2109, 2016.

[40] Boris Babenko, Ming-Hsuan Yang, and Serge Belongie. Robust object tracking

with online multiple instance learning. IEEE TPAMI, 33(8):1619–1632, 2011.

[41] Andreas Wendel, Sabine Sternig, and Martin Godec. Robustifying the flock of

trackers. In 16th Computer Vision Winter Workshop. Citeseer, page 91, 2011.

134



[42] Matej Kristan, Jiri Matas, Ales Leonardis, ..., Mahdieh Poostchi, Kanappan

Palaniappan, and et. al. The visual object tracking vot2015 challenge results. In

Proceedings of the IEEE international conference on computer vision workshops,

pages 1–23, 2015.

[43] M. Felsberg, ..., Mahdieh Poostchi, Kanappan Palaniappan, and et. al. The

thermal infrared visual object tracking VOT-TIR2016 challenge results. In

Computer Vision ECCV 2016 Workshops, pages 824–849, 2016.

[44] Mahdieh Poostchi, Kannappan Palaniappan, Filiz Bunyak, Michela Becchi, and

Guna Seetharaman. Efficient GPU implementation of the integral histogram.

In Asian Conference on Computer Vision, pages 266–278, 2012.

[45] M. Poostchi, H. Aliakbarpour, R. Viguier, F. Bunyak, K. Palaniappan, and

G. Seetharaman. Semantic depth map fusion for moving vehicle detection in

aerial video. Proc. IEEE CVPR Workshop on Automatic Traffic Surveillance,

pages 32–40, 2016.

[46] Kannappan Palaniappan, Mahdieh Poostchi, Hadi Aliakbarpour, Raphael Vigu-

ier, Joshua Fraser, Filiz Bunyak, Arslan Basharat, Steve Suddarth, Erik Blasch,

Raghuveer M Rao, et al. Moving object detection for vehicle tracking in wide

area motion imagery using 4d filtering. In Pattern Recognition (ICPR), 2016

23rd International Conference on, pages 2830–2835, 2016.

[47] M Poostchi and MR Jahed Motlagh. Synchronized an artificial muscle move-

ments with music rhythm according to human perception. In International

Conference on Advances in Computational Tools for Engineering Applications,

pages 661–666, 2009.

135



[48] M. Poostchi, I. Kamkar, and J. Mohebbi. Music visualization by means of comb

filter and relaxation time according to human perception. In Soft Computing

in Industrial Applications, pages 165–173. 2010.

[49] M Poostchi, H. Poostchi, and M. Fathy. Using type ii fuzzy entropy in thresh-

olding phase of motion detection based on temporal variance and background

modeling. In International Conference on Image Processing, Computer Vision,

and Pattern Recognition, pages 477–483, 2008.

[50] Iman Kamkar, Mahdieh Poostchi, and Mohammad Reza Akbarzadeh Totonchi.

A cellular genetic algorithm for solving the vehicle routing problem with

time windows. In Soft Computing in Industrial Applications, pages 263–270.

Springer, 2010.

[51] Gohar Vahdati, Mehdi Yaghoubi, Mahdieh Poostchi, et al. A new approach

to solve traveling salesman problem using genetic algorithm based on heuristic

crossover and mutation operator. In Soft Computing and Pattern Recognition,

2009. SOCPAR’09. International Conference of, pages 112–116. IEEE, 2009.

[52] Mahdieh Poostchi, Ilker Ersoy, Emile Gordon, Abhisheka Bansal, Kannappan

Palaniappan, Susan Pierce, Sameer Antani, George Thoma, and Stefan Jaeger.

Image analysis of blood slides for automatic malaria diagnosis. In NIH-IEEE

Strategic Conference on Healthcare Innovations and Point-of-Care Technologies

for Precision Medicine, 2015.

[53] Z. Liang, S. Jaeger, G. Thoma, J. Huang, P. Guo, A. Powell, K. Silamut,

I. Ersoy, M. Poostchi, K. Palaniappan, and R. J. Maude. Cnn - based image

analysis for malaria diagnosis. 2016.

136



[54] H. AliAkbarpour, K. Palaniappan, and G. Seetharaman. Fast structure from

motion for sequential and wide area motion imagery. IEEE ICCV Video Sum-

marization for Large-scale Analytics Workshop, 2015.

[55] H. Aliakbarpour, K. Palaniappan, and G. Seetharaman. Robust camera pose

refinement and rapid SfM for multiview aerial imagerywithout ransac. IEEE

Geoscience and Remote Sensing Letters, 12(11):2203–2207, 2015.

[56] Gary R Bradski. Real time face and object tracking as a component of a per-

ceptual user interface. In Fourth IEEE Workshop on Applications of Computer

Vision, pages 214–219, 1998.

[57] Theo Gevers, Joost Van De Weijer, and Harro Stokman. Color feature detection,

2006.

[58] Chris Harris and Mike Stephens. A combined corner and edge detector. In

Alvey vision conference, volume 15, pages 10–5244, 1988.

[59] Jianbo Shi and Carlo Tomasi. Good features to track. In IEEE CVPR, 1994.

[60] Aldo Cumani. Edge detection in multispectral images. CVGIP: Graphical

models and image processing, 53(1):40–51, 1991.

[61] Timo Ojala, Matti Pietikainen, and Topi Maenpaa. Multiresolution gray-scale

and rotation invariant texture classification with local binary patterns. IEEE

Transactions on pattern analysis and machine intelligence, 24(7):971–987, 2002.

[62] Anna Bosch, Andrew Zisserman, and Xavier Munoz. Representing shape with a

spatial pyramid kernel. In Proceedings of the 6th ACM international conference

on Image and video retrieval, pages 401–408, 2007.

137



[63] Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. Beyond bags of features:

Spatial pyramid matching for recognizing natural scene categories. In IEEE

CVPR, volume 2, pages 2169–2178, 2006.

[64] F. Porikli. Integral histogram: A fast way to extract histograms in cartesian

spaces. In IEEE CVPR, volume 1, pages 829–836, 2005.

[65] JP Lewis. Fast normalized cross-correlation. In Vision interface, volume 10,

pages 120–123, 1995.

[66] K. Palaniappan, F. Bunyak, P. Kumar, I. Ersoy, S. Jaeger, K. Ganguli, A. Hari-

das, J. Fraser, R. Rao, and G. Seetharaman. Efficient feature extraction and

likelihood fusion for vehicle tracking in low frame rate airborne video. In 13th

Int. Conf. Information Fusion, 2010.

[67] Weiming Hu, Nianhua Xie, Ruiguang Hu, Haibin Ling, Qiang Chen, Shuicheng

Yan, and Stephen Maybank. Bin ratio-based histogram distances and their

application to image classification. IEEE transactions on pattern analysis and

machine intelligence, 36(12):2338–2352, 2014.

[68] Silvio Savarese, John Winn, and Antonio Criminisi. Discriminative object class

models of appearance and shape by correlatons. In IEEE CVPR, volume 2,

pages 2033–2040, 2006.

[69] Yaakov Bar-Shalom, X Rong Li, and Thiagalingam Kirubarajan. Estimation

with applications to tracking and navigation: theory algorithms and software.

John Wiley & Sons, 2004.

[70] Greg Welch and Gary Bishop. An introduction to the kalman filter. 1995.

138



[71] Simon J Julier and Jeffrey K Uhlmann. Unscented filtering and nonlinear esti-

mation. Proceedings of the IEEE, 92(3):401–422, 2004.

[72] VOTC 2016 Benchmark Data. http://www.votchallenge.net/vot2016/

dataset.html.

[73] Brian Leininger, Jonathan Edwards, John Antoniades, David Chester, Dan

Haas, Eric Liu, Mark Stevens, Charlie Gershfield, Mike Braun, James D Tar-

gove, et al. Autonomous real-time ground ubiquitous surveillance-imaging

system (argus-is). In SPIE Defense and Security Symposium, pages 69810H–

69810H, 2008.

[74] http://www.transparentsky.net.

[75] Horst Possegger, Thomas Mauthner, and Horst Bischof. In defense of color-

based model-free tracking. In IEEE CVPR, pages 2113–2120, 2015.

[76] Tomas Vojir, Jana Noskova, and Jiri Matas. Robust scale-adaptive mean-shift

for tracking. Pattern Recognition Letters, 49:250–258, 2014.

[77] Erhan Gundogdu and A Aydin Alatan. Spatial windowing for correlation filter

based visual tracking. In IEEE ICIP, pages 1684–1688, 2016.

[78] Michael Felsberg. Enhanced distribution field tracking using channel represen-

tations. In IEEE International Conference on Computer Vision Workshops,

pages 121–128, 2013.

[79] Osman Akin, Erkut Erdem, Aykut Erdem, and Krystian Mikolajczyk. De-

formable part-based tracking by coupled global and local correlation filters.

Journal of Visual Communication and Image Representation, 38:763–774, 2016.

139



[80] Dawei Du, Honggang Qi, Longyin Wen, Qi Tian, Qingming Huang, and Siwei

Lyu. Geometric hypergraph learning for visual tracking. IEEE Transactions on

Cybernetics, 2016.

[81] Dapeng Chen, Zejian Yuan, Yang Wu, Geng Zhang, and Nanning Zheng. Con-

structing adaptive complex cells for robust visual tracking. In IEEE CVPR,

pages 1113–1120, 2013.

[82] Lijun Wang, Wanli Ouyang, Xiaogang Wang, and Huchuan Lu. Visual tracking

with fully convolutional networks. In Proceedings of the IEEE International

Conference on Computer Vision, pages 3119–3127, 2015.

[83] Hyeonseob Nam, Mooyeol Baek, and Bohyung Han. Modeling and propagating

CNNs in a tree structure for visual tracking. arXiv preprint arXiv:1608.07242,

2016.

[84] Hyeonseob Nam and Bohyung Han. Learning multi-domain convolutional neu-

ral networks for visual tracking. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 4293–4302, 2016.

[85] Martin Danelljan, Gustav Hager, Fahad Shahbaz Khan, and Michael Felsberg.

Learning spatially regularized correlation filters for visual tracking. In Proceed-

ings of the IEEE International Conference on Computer Vision, pages 4310–

4318, 2015.

[86] Jing Huang, S Ravi Kumar, Mandar Mitra, Wei-Jing Zhu, and Ramin Zabih.

Image indexing using color correlograms. In IEEE CVPR, pages 762–768, 1997.

140



[87] Stanley T Birchfield and Sriram Rangarajan. Spatiograms versus histograms

for region-based tracking. In IEEE CVPR, volume 2, pages 1158–1163, 2005.

[88] Efstathios Hadjidemetriou, Michael D Grossberg, and Shree K Nayar. Multires-

olution histograms and their use for recognition. IEEE PAMI, 26(7):831–847,

2004.

[89] Ke Zhang, Gauthier Lafruit, Rudy Lauwereins, and Luc Van Gool. Joint integral

histograms and its application in stereo matching. In IEEE ICIP, pages 817–

820, 2010.

[90] Brian Fulkerson, Andrea Vedaldi, and Stefano Soatto. Localizing objects with

smart dictionaries. In European Conference on Computer Vision, pages 179–

192, 2008.

[91] Qi Zhao and Hai Tao. Object tracking using color correlogram. In IEEE

International Workshop on Visual Surveillance and Performance Evaluation of

Tracking and Surveillance, pages 263–270, 2005.

[92] Piotr Dollár, Zhuowen Tu, Pietro Perona, and Serge Belongie. Integral channel

features. BMVC Press, 2009.

[93] S Cheung Sen-Ching and Chandrika Kamath. Robust techniques for background

subtraction in urban traffic video. In Proc. SPIE Visual Communications and

Image Processing, volume 5308, pages 881–892, 2004.

[94] Rogerio Feris, Russell Bobbitt, Sharath Pankanti, and Ming-Ting Sun. Efficient

24/7 object detection in surveillance videos. In IEEE Advanced Video and Signal

Based Surveillance (AVSS), pages 1–6, 2015.

141



[95] Sayanan Sivaraman and Mohan M Trivedi. Active learning for on-road vehicle

detection: A comparative study. Machine vision and applications, 25(3):599–

611, 2014.

[96] Brendan Tran Morris and Mohan Manubhai Trivedi. Learning, modeling, and

classification of vehicle track patterns from live video. IEEE Transactions on

Intelligent Transportation Systems, 9(3):425–437, 2008.

[97] William R Thissell, Robert Czajkowski, Francis Schrenk, Timothy Selway, An-

thony J Ries, Shamoli Patel, Patricia L McDermott, Rod Moten, Ron Rudnicki,

Guna Seetharaman, et al. A scalable architecture for operational fmv exploita-

tion. In Proceedings of the IEEE International Conference on Computer Vision

Workshops, pages 10–18, 2015.

[98] PETS 2013 Benchmark Data, 2012. http://www.cvg.rdg.ac.uk/PETS2013/

a.html#s3.

[99] Roland Miezianko. IEEE OTCBVS WS Series Bench; Terravic Research In-

frared Database, 2004. http://www.cse.ohio-state.edu/otcbvs-bench/.

[100] Filiz Bunyak, Kannappan Palaniappan, Sumit Kumar Nath, and Gunasekaran

Seetharaman. Flux tensor constrained geodesic active contours with sensor

fusion for persistent object tracking. Journal of Multimedia, 2(4):20, 2007.

[101] Kannappan Palaniappan, Ilker Ersoy, and Sumit Nath. Moving object seg-

mentation using the flux tensor for biological video microscopy. Advances in

Multimedia Information Processing–PCM 2007, pages 483–493, 2007.

142



[102] Tony F Chan and Luminita A Vese. Active contours without edges. IEEE

transactions on Image processing, 10(2):266–277, 2001.

[103] Vicent Caselles, Ron Kimmel, and Guillermo Sapiro. Geodesic active contours.

International journal of computer vision, 22(1):61–79, 1997.

[104] Subhabrata Bhattacharya, Haroon Idrees, Imran Saleemi, Saad Ali, and

Mubarak Shah. Moving object detection and tracking in forward looking infra-

red aerial imagery. In Machine Vision Beyond Visible Spectrum, pages 221–252.

2011.

[105] Filiz Bunyak, Adel Hafiane, and Kannappan Palaniappan. Histopathology tis-

sue segmentation by combining fuzzy clustering with multiphase vector level

sets. In Software tools and algorithms for biological systems, pages 413–424.

2011.

[106] Adel Hafiane, Filiz Bunyak, and Kannappan Palaniappan. Fuzzy clustering and

active contours for histopathology image segmentation and nuclei detection. In

Advanced concepts for intelligent vision systems, pages 903–914, 2008.

[107] Mohammad Reza Vaziri Sereshk and Ali Shafiekhani. Forging-sequence design

to improve service life and manufacturing expenses of products. International

Research on Steel, pages 243–246, 2012.

[108] Ehsan Abbasi, Mohammad Mahjoob, and Ali Shafiekhani. Attitude control

using an extended calssifier system algorithm for offline auto-tuning of a pid

controller. In IEEE Second RSI/ISM International Conference on Robotics and

Mechatronics (ICRoM), pages 930–935, 2014.

143



[109] Xiangyang Li, Minhua Wu, and Zhiping Shi. The retrieval of shoeprint images

based on the integral histogram of the gabor transform domain. In Intelligent

Information Processing VII, pages 249–258. 2014.

[110] J. Yoo, S. Hwang, S. Kim, M. Ki, and J. Cha. Scale-invariant template matching

using histogram of dominant gradients. Pattern Recognition, 47(9):3006–3018,

2014.

[111] K. Ni, X. Bresson, T. Chan, and S. Esedoglu. Local histogram based segmenta-

tion using the wasserstein distance. International Journal of Computer Vision,

84(1):97–111, 2009.

[112] X. Liu and D.L. Wang. Image and texture segmentation using local spectral

histograms. IEEE Trans. Image Processing, 15(10):3066–3077, 2006.

[113] K. Palaniappan, I. Ersoy, G. Seetharaman, S. Davis, P. Kumar, R. M. Rao, and

R. Linderman. Parallel flux tensor analysis for efficient moving object detection.

In 14th Int. Conf. Information Fusion, 2011.

[114] M. Hussein, F. Porikli, and L. Davis. A comprehensive evaluation framework

and a comparative study for human detectors. IEEE Trans. Intelligent Trans-

portation Systems, 10(3):417–427, 2009.

[115] Y.T. Chen and C.S. Chen. Fast human detection using a novel boosted cas-

cading structure with meta stages. IEEE Trans. Image Processing, 17(8):1452–

1464, 2008.

144



[116] Q. Zhu, M.C. Yeh, K.T. Cheng, and S. Avidan. Fast human detection using a

cascade of histograms of oriented gradients. In IEEE CVPR, volume 2, pages

1491–1498, 2006.

[117] Alex Mathew. Rotation Invariant Histogram Features for Object Detection and

Tracking in Aerial Imagery. PhD thesis, University of Dayton, 2014.

[118] H.C. Choi and S.Y. Oh. Robust segment-based object tracking using generalized

hyperplane approximation. Pattern Recognition, 45(8):2980–2991, 2012.

[119] E. Erdem, S. Dubuisson, and I. Bloch. Fragments based tracking with adaptive

cue integration. Computer vision and image understanding, 116(7):827–841,

2012.

[120] A. Adam, E. Rivlin, and I. Shimshoni. Robust fragments-based tracking using

the integral histogram. In IEEE CVPR, volume 1, pages 798–805, 2006.

[121] Nvidia Corp. CUDA C Programming Guide 4.0. 2011.

[122] D. Kirk. Nvidia CUDA software and GPU parallel computing architecture. In

ACM ISMM Proc, pages 103–104, 2007.

[123] M. Harris, S. Sengupta, and J. Owens. Parallel prefix sum (scan) with CUDA.

GPU Gems 3, 3(39):851–876, 2007.

[124] G. Ruetsch and P. Micikevicius. Optimizing matrix transpose in CUDA. Nvidia

CUDA SDK Application Note, 2009.

145



[125] S. Needleman and C. Wunsch. A general method applicable to the search for

similarities in the amino acid sequence of two proteins. Journal of molecular

biology, 48(3):443–453, 1970.

[126] S. Che, J.W. Sheaffer, M. Boyer, L.G. Szafaryn, L. Wang, and K. Skadron.

A characterization of the rodinia benchmark suite with comparison to con-

temporary CMP workloads. In IEEE International Symposium on Workload

Characterization (IISWC), pages 1–11, 2010.

[127] P. Bellens, K. Palaniappan, R. Badia, G. Seetharaman, and J. Labarta. Parallel

implementation of the integral histogram. LNCS (ACIVS), 6915:586–598, 2011.

146



VITA

Mahdieh Poostchi was born in Mashhad, Iran. After earning her high school

diploma in mathematics in 2000, she attended Azad University of Mashhad where

she got her B.Sc in Computer Science. She received her M.Sc in Artificial Intelli-

gence and Robotics from Iran University of Science and Technology in 2009 while

serving as an instructor for several high educational institute. After completing her

M.Sc, she worked for the ITS department of the Mashhad municipality in Iran. In

2011, she got admitted to the doctoral program at Computer Science Department,

University of Missouri-Columbia. She started working as a research assistant in Com-

putational Imaging and Visualization Analysis Laboratory supported by grants from

the US Air Force Research Lab, NIH, NGA, NASA and NSF. She participated UCLA

IPAM Graduate Computer Vision Summer School in 2013. She had an internship in

2014 with Metaio, an augmented reality company that has since been purchased by

Apple. She spent the Summer of 2015 as an intern research fellow at the National

Library of Medicine NIH conducting research on microscopy image analysis of blood

smears. She received her second Master degree from University of Missouri-Columbia

in 2016. Her current research interests include image/video processing, computer vi-

sion, machine learning and high performance computing with emphasis on moving

object detection and tracking for full motion video and wide aerial imagery. She is

a member of the IEEE, UPE, CSGSC, ACM women and Computer Vision Founda-

tion. She has served as a referee for international journals and conferences.

She received her Ph.D. degree in computer science from the university of Missouri-

Columbia in 2017.

147


