138,899 research outputs found

    Real-Time Character Animation for Computer Games

    Get PDF
    The importance of real-time character animation in computer games has increased considerably over the past decade. Due to advances in computer hardware and the achievement of great increases in computational speed, the demand for more realism in computer games is continuously growing. This paper will present and discuss various methods of 3D character animation and prospects of their real-time application, ranging from the animation of simple articulated objects to real-time deformable object meshes

    Real time animation of space plasma phenomena

    Get PDF
    In pursuit of real time animation of computer simulated space plasma phenomena, the code was rewritten for the Massively Parallel Processor (MPP). The program creates a dynamic representation of the global bowshock which is based on actual spacecraft data and designed for three dimensional graphic output. This output consists of time slice sequences which make up the frames of the animation. With the MPP, 16384, 512 or 4 frames can be calculated simultaneously depending upon which characteristic is being computed. The run time was greatly reduced which promotes the rapid sequence of images and makes real time animation a foreseeable goal. The addition of more complex phenomenology in the constructed computer images is now possible and work proceeds to generate these images

    An Animation Framework for Continuous Interaction with Reactive Virtual Humans

    Get PDF
    We present a complete framework for animation of Reactive Virtual Humans that offers a mixed animation paradigm: control of different body parts switches between keyframe animation, procedural animation and physical simulation, depending on the requirements of the moment. This framework implements novel techniques to support real-time continuous interaction. It is demonstrated on our interactive Virtual Conductor

    ESCIM: A System for the Investigation of Meaningful Motion

    Get PDF
    A language is described whose purpose is the investigation of meaningful motion using Stimulus Response animation techniques. The language is capable of adjusting the shape, size and velocity of an actor in real-time computer animation. Some results are presented showing how it is possible to generate such behaviours as chasing, avoidance and hitting using this animation technique. A set of primitives are presented which we find invaluable in the control of size, stretch and velocity parameters when attempting to produce fluid and meaningful interactions

    Digital video display system

    Get PDF
    System displays image data in real time on 120,000-element raster scan with 2, 4, or 8 shades of grey. Designed for displaying planetary range Doppler data, system can be used for X-Y plotting, displaying alphanumerics, and providing image animation

    Animation Control for Real-Time Virtual Humans

    Get PDF
    The computation speed and control methods needed to portray 3D virtual humans suitable for interactive applications have improved dramatically in recent years. Real-time virtual humans show increasingly complex features along the dimensions of appearance, function, time, autonomy, and individuality. The virtual human architecture we’ve been developing at the University of Pennsylvania is representative of an emerging generation of such architectures and includes low-level motor skills, a mid-level parallel automata controller, and a high-level conceptual representation for driving virtual humans through complex tasks. The architecture—called Jack— provides a level of abstraction generic enough to encompass natural-language instruction representation as well as direct links from those instructions to animation control

    Real Time Animation of Virtual Humans: A Trade-off Between Naturalness and Control

    Get PDF
    Virtual humans are employed in many interactive applications using 3D virtual environments, including (serious) games. The motion of such virtual humans should look realistic (or ‘natural’) and allow interaction with the surroundings and other (virtual) humans. Current animation techniques differ in the trade-off they offer between motion naturalness and the control that can be exerted over the motion. We show mechanisms to parametrize, combine (on different body parts) and concatenate motions generated by different animation techniques. We discuss several aspects of motion naturalness and show how it can be evaluated. We conclude by showing the promise of combinations of different animation paradigms to enhance both naturalness and control
    corecore