2,629 research outputs found

    Progression approach for image denoising

    Get PDF
    Removing noise from the image by retaining the details and features of this treated image remains a standing challenge for the researchers in this field. Therefore, this study is carried out to propose and implement a new denoising technique for removing impulse noise from the digital image, using a new way. This technique permits the narrowing of the gap between the original and the restored images, visually and quantitatively by adopting the mathematical concept ''arithmetic progression''. Through this paper, this concept is integrated into the image denoising, due to its ability in modelling the variation of pixels’ intensity in the image. The principle of the proposed denoising technique relies on the precision, where it keeps the uncorrupted pixels by using effective noise detection and converts the corrupted pixels by replacing them with other closest pixels from the original image at lower cost and with more simplicity

    Distance Measures for Reduced Ordering Based Vector Filters

    Full text link
    Reduced ordering based vector filters have proved successful in removing long-tailed noise from color images while preserving edges and fine image details. These filters commonly utilize variants of the Minkowski distance to order the color vectors with the aim of distinguishing between noisy and noise-free vectors. In this paper, we review various alternative distance measures and evaluate their performance on a large and diverse set of images using several effectiveness and efficiency criteria. The results demonstrate that there are in fact strong alternatives to the popular Minkowski metrics

    Fuzzy techniques for noise removal in image sequences and interval-valued fuzzy mathematical morphology

    Get PDF
    Image sequences play an important role in today's world. They provide us a lot of information. Videos are for example used for traffic observations, surveillance systems, autonomous navigation and so on. Due to bad acquisition, transmission or recording, the sequences are however usually corrupted by noise, which hampers the functioning of many image processing techniques. A preprocessing module to filter the images often becomes necessary. After an introduction to fuzzy set theory and image processing, in the first main part of the thesis, several fuzzy logic based video filters are proposed: one filter for grayscale video sequences corrupted by additive Gaussian noise and two color extensions of it and two grayscale filters and one color filter for sequences affected by the random valued impulse noise type. In the second main part of the thesis, interval-valued fuzzy mathematical morphology is studied. Mathematical morphology is a theory intended for the analysis of spatial structures that has found application in e.g. edge detection, object recognition, pattern recognition, image segmentation, image magnification… In the thesis, an overview is given of the evolution from binary mathematical morphology over the different grayscale morphology theories to interval-valued fuzzy mathematical morphology and the interval-valued image model. Additionally, the basic properties of the interval-valued fuzzy morphological operators are investigated. Next, also the decomposition of the interval-valued fuzzy morphological operators is investigated. We investigate the relationship between the cut of the result of such operator applied on an interval-valued image and structuring element and the result of the corresponding binary operator applied on the cut of the image and structuring element. These results are first of all interesting because they provide a link between interval-valued fuzzy mathematical morphology and binary mathematical morphology, but such conversion into binary operators also reduces the computation. Finally, also the reverse problem is tackled, i.e., the construction of interval-valued morphological operators from the binary ones. Using the results from a more general study in which the construction of an interval-valued fuzzy set from a nested family of crisp sets is constructed, increasing binary operators (e.g. the binary dilation) are extended to interval-valued fuzzy operators

    Fast Method Based on Fuzzy Logic for Gaussian-Impulsive Noise Reduction in CT Medical Images

    Get PDF
    To remove Gaussian-impulsive mixed noise in CT medical images, a parallel filter based on fuzzy logic is applied. The used methodology is structured in two steps. A method based on a fuzzy metric is applied to remove the impulsive noise at the first step. To reduce Gaussian noise, at the second step, a fuzzy peer group filter is used on the filtered image obtained at the first step. A comparative analysis with state-of-the-art methods is performed on CT medical images using qualitative and quantitative measures evidencing the effectiveness of the proposed algorithm. The parallel method is parallelized on shared memory multiprocessors. After applying parallel computing strategies, the obtained computing times indicate that the introduced filter enables to reduce Gaussian-impulse mixed noise on CT medical images in real-time.This research was funded by the Spanish Ministry of Science, Innovation and Universities (Grant RTI2018-098156-B-C54), and it was co-financed with FEDER funds

    An Efficient Image Denoising Approach for the Recovery of Impulse Noise

    Full text link
    Image noise is one of the key issues in image processing applications today. The noise will affect the quality of the image and thus degrades the actual information of the image. Visual quality is the prerequisite for many imagery applications such as remote sensing. In recent years, the significance of noise assessment and the recovery of noisy images are increasing. The impulse noise is characterized by replacing a portion of an image's pixel values with random values Such noise can be introduced due to transmission errors. Accordingly, this paper focuses on the effect of visual quality of the image due to impulse noise during the transmission of images. In this paper, a hybrid statistical noise suppression technique has been developed for improving the quality of the impulse noisy color images. We further proved the performance of the proposed image enhancement scheme using the advanced performance metrics

    An Efficient Image Denoising Approach for the Recovery of Impulse Noise

    Get PDF
    Image noise is one of the key issues in image processing applications today. The noise will affect the quality of the image and thus degrades the actual information of the image. Visual quality is the prerequisite for many imagery applications such as remote sensing. In recent years, the significance of noise assessment and the recovery of noisy images are increasing. The impulse noise is characterized by replacing a portion of an image’s pixel values with random values Such noise can be introduced due to transmission errors. Accordingly, this paper focuses on the effect of visual quality of the image due to impulse noise during the transmission of images. In this paper, a hybrid statistical noise suppression technique has been developed for improving the quality of the impulse noisy color images. We further proved the performance of the proposed image enhancement scheme using the advanced performance metrics
    • …
    corecore