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Abstract: To remove Gaussian-impulsive mixed noise in CT medical images, a parallel filter based
on fuzzy logic is applied. The used methodology is structured in two steps. A method based
on a fuzzy metric is applied to remove the impulsive noise at the first step. To reduce Gaussian
noise, at the second step, a fuzzy peer group filter is used on the filtered image obtained at the first
step. A comparative analysis with state-of-the-art methods is performed on CT medical images
using qualitative and quantitative measures evidencing the effectiveness of the proposed algorithm.
The parallel method is parallelized on shared memory multiprocessors. After applying parallel
computing strategies, the obtained computing times indicate that the introduced filter enables to
reduce Gaussian-impulse mixed noise on CT medical images in real-time.

Keywords: CT images; fuzzy logic; fuzzy metric; medical image enhancement; mixed impulsive and
Gaussian noise; noise reduction
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1. Introduction

Filtering algorithms, i.e., methods to remove noise, are of the utmost importance in
medical image processing (e.g., Ultrasound Imaging (US), X-rays, Computer Tomography
(CT), Magnetic Resonance Imaging (MRI)) since noise can deteriorate the quality of the
image and affect the disease diagnosis (e.g., identifying micro-calcifications in mammograms).
Additionally, noise removal methods can be utilized to enhance medical images generated
using a lowered radiation dose [1,2]. This fact is particularly important in CT medical images
in order to lower the X-ray exposure, since the quantity of radiation is required to be high.
Although other types of noise may be present, such as the speckle noise [3], two particularly
usual kinds of noise in CT medical images are the Gaussian and the impulsive noise. The
Gaussian noise is originated during the acquisition procedure and the impulsive during
the transmission process [4,5]. A considerable amount of methods have been proposed to
remove either impulse (see, e.g., [6–14]) or Gaussian noise (see, e.g., [4,15–18]). However,
not all techniques are practical when images are corrupted with Gaussian and impulsive
noise simultaneously. A possible strategy to tackle this issue is to achieve two consecutive
methods to reduce first impulses and then the Gaussian noise, or vice versa. However, the
application of two successive filters could significantly decrease the computing efficiency, and
in consequence, this strategy could not be suitable for real applications.

In [19], an efficient hybrid method for the removal of Gaussian-impulsive noise in
color images was presented. The method obtained excellent results in terms of qualitative
and quantitative metrics. This filter, named FRF-FPGA (Fuzzy Rank-ordered differences
statistic Filter-Fuzzy Peer Group Averaging), makes use of the fuzzy peer group notion [20].
The method is structured in two stages. Firstly, a two-step procedure founded on FRF [14]
is used to remove the impulses. After that, a fuzzy smoothing process founded on the
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FPGA method [20] is utilized to remove the Gaussian noise. Experiments evidenced that
this method obtained outstanding results when filtering color digital images compared
to other state-of-the-art filters, but it has not been evaluated in the area of medical image
processing. By reason of this fact, in this research we present a method based on [19] for
the elimination of mixed noise in grayscale medical images.

Furthermore, because of the large dimensions of high-resolution digital images, se-
quential processors are not able to execute this method in real-time. Thus, experiments
prove that the FRF-FPGA method obtains excellent results in filtering quality but the com-
putation time hinders its application for real-time filtering. Currently, parallel computation
is one of the most suitable techniques to achieve real-time results or to decrease the com-
puting time in all application areas [21–24]. Additionally, as a result of the progress in
cloud computing [25,26], it is feasible to execute parallel methods without many in-house
resources [27].

Due to these reasons, in this research we present a new parallel method based on the
algorithm presented in [19] with the objective of enhancing its computing efficiency so it
can be used in real-time medical image processing.

We have implemented this parallel method on shared memory parallel computers
making use of the Open Multi-Processing (OpenMP) [28,29], and we have analyzed the
parallelization on multi-cores, obtaining good speed-up results. At present, multi-cores
are universally accessible, so the proposed method is a feasible and effective methodology
for real-time image filtering. In this study, we considered CT medical images from the
Radiopaedia dataset (Case Courtesy of A. Prof Frank Gaillard, Radiopaedia.org (accessed
on 16 August 2022), rID 35508) and different noisy low dose CT (LDCT) images from the
2016 NIH-AAPM-Mayo Clinic Low Dose CT Grand Challenge [30]. The filter efficiency has
been analyzed making use of the following objective measures:

• When the noise-free original image is known, the measures used were the Mean Abso-
lute Error (MAE) [4], the Peak Signal-to-Noise Ratio (PSNR) [31], the Mean Structural
Similarity Index (MSSIM) [32], and the Image Enhancement Factor (IEF) [33].

• In noisy CT images obtained with low radiation doses, where the noise changes with
the exposure dose and the noise-free image is not known, the measures used were
the Signal-to-Noise Ratio (SNR) [34], the Contrast-to-Noise Ratio (CNR) [34], and the
Equivalent Number of Looks (ENL) [34].

The proposed algorithm is compared with other competitive filters that have been
applied successfully in medical image processing, including recent fuzzy techniques. The
experiments show that the introduced method improves those state-of-the-art filters with
respect to the mentioned metrics. Experiments show the accuracy of the introduced
technique, which takes advantage of the sensitivity of the fuzzy rank-ordered differences
statistic (FROD) to detect impulses and of the fuzzy logic to determine the best number of
components for a peer group. The proposed parallel method has been implemented on
multi-core architectures, allowing the application to be used on a wide range of devices. The
computational time analysis indicates that the method is quite efficient and achieves fast
execution times which enable its implementation in real-time medical image processing.

This document is organized as follows. Section 2 presents the new denoising algorithm.
In Section 3, the experiments and a comparative analysis with competitive filters are
described. Section 4 describes the conclusions.

2. Materials and Methods

In this section, we propose a parallel algorithm for grayscale medical images based
on the FRF-FPGA method [19] initially introduced for color images. The filter design is
organized as a concatenation of an impulses reduction method and a Gaussian filter.

In the subsequent paragraphs, we will describe the two steps of the method.

Radiopaedia.org
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2.1. Impulsive Noise Removal

The filtering method is based on the fuzzy rank-ordered differences statistic [14]
explained in the subsequent lines. The FROD statistic is used in place of ROAD due
to its effectiveness in detecting impulsive noise. Let F be a grayscale image. Let Wx
be an n × n processing window with central pixel x. Consider W0

x the neighbor pixels
of x in the window Wx, i.e., W0

x = Wx − {x}. To calculate ROAD [35], the distances
dx,xi , xi ∈ W0

x are ascendingly ordered, generating a set of real numbers uj(x) satisfying:
u1(x) ≤ u2(x) ≤ . . . ≤ un2−1(x). For a natural number α such that 0 < α ≤ n2 − 1, the
ROADα represents the α rank-ordered difference, defined as [35],

ROADα(x) =
α

∑
j=1

uj(x).

ROADα denotes the global distance from pixel x to the α closest pixels. This distance
is supposed to be higher for impulsive pixels than for not noisy pixels. We used the fuzzy
metric M∞ [14] to compute dx,xi , xi ∈ W0

x . This metric has been shown to be particularly
useful to detect impulses. It was introduced in the context of RGB images. For two RGB
image pixels xi, xj, the fuzzy metric M∞ is given by:

M∞(xi, xj) =
3

min
k=1

min{xi(k), xj(k)}+ P
max{xi(k), xj(k)}+ P

. (1)

The metric M∞ can be defined in the context of grayscale images as:

M∞(xi, xj) =
min{xi, xj}+ P
max{xi, xj}+ P

. (2)

The value P in Equation (2) was set to 1024, which has been shown to be an appropriate
value [36]. Sorting dx,xi = M∞(x, xi) in a descending order v1(x) ≥ v2(x) ≥ · · · ≥ vn2−1(x),
the fuzzy ROD statistic (FRODm) is given by:

FRODα(x) =
α

∏
j=1

vj(x). (3)

The parameter α in Equation (3) is an integer such that α < n2 − 1. An impulsive pixel
will exhibit a reduced FRODα since it is not supposed to be similar to its neighbor pixels.
On the other hand, non-impulsive pixels are expected to present an FRODα closer to 1.
FRODα(x) was utilized to detect pixels that are plainly impulses or plainly non-impulsive:

• First Step: If FRODα(x) is higher than a parameter th1, then x is marked as impulse-free.

– If FRODα(x) is less than th2, a parameter satisfying th2 < th1, x is marked as
impulsive.

– If x fulfills th1 ≥ FRODα(x) ≥ th2, x is not classified at this stage, and it is studied
in a second stage.

• Second Step: Another parameter, th3, is utilized. FRODα′(x) is calculated on W0
x ,

excluding the pixels previously classified as impulses, and utilizing a parameter
α′ < m. If FRODα′(x) > th3, then x is classified as non-impulsive. Otherwise, x is
classified as impulse.

Once the detection process is finalized, every element classified as impulse is replaced
by VMFout [37] computed using the impulse-free pixels in the filtering window Wx.

2.2. Gaussian Noise Removal

The second step involves the Gaussian noise reduction procedure. At this stage, we
perform a fuzzy weighted smoothing process over the components of the peer group. For this
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purpose, we explain the concepts of peer group [38] and fuzzy peer group [20]. Consider for
every pixel x0 an n× n processing window W with central pixel x0. Consider ρ a similarity
metric function [4]. Utilizing this function, the pixels xi ∈ W are sorted in a descending order
depending on their similarity to x0, generating a set {x(0), x(1), . . . , x(n2−1)} fulfilling

ρ(x0, x(0)) ≥ ρ(x0, x(1)) ≥ · · · ≥ ρ(x0, x(n2−1)),

where x(0) = x0 is the center of the window. Then, in accordance with [38], the peer group
including m + 1 components, P x0

m , for the pixel x0 is given by:

P x0
m = {x(0), x(1), . . . , x(m)}.

In [20], a methodology founded on fuzzy logic is presented to determine the best
number of components for a peer group. Following the definition presented in [20], the
fuzzy peer group for x0 in a window W with central pixel x0 is given by the fuzzy set
FP x0

m̂ defined on the set of pixels {x(0), x(1), . . . , x(m̂)} and determined by the membership
function FPx0

m̂ = ρ(x0, x(i)). Then, the best number of components, represented by m̂, for
P x0

m is defined as the positive integer m, 1 ≤ m ≤ n2 − 1, maximizing the certainty for the
following rule:

Fuzzy Rule: The certainty of “m ∈ NW is the best number of components of P x0
m ”.

IF “x(m) is similar to x0” and the accumulated similarity of x(m) is big THEN “certainty
for m to be the best number of elements in the peer group P x0

m is high”.
Let CFR(m) represent the rule certainty of m. To compute the best number m̂ of compo-

nents, CFR(m) is computed for the integers m ∈ NW , and then the m, which maximizes CFR(m),
is selected as m̂ for the better number of components for P x0

m , i.e., m̂ = arg maxm∈NW
CFR(m).

The certainty for “xm is similar to x0” is given by the function of membership Cx0 deter-
mined by the function of similarity:

Cx0(x(i)) = ρ(x0, x(i)), i,= 0, 1 . . . , n2 − 1.

The accumulated similarity function for x(m) is given as:

Ax0(x(i)) =
i

∑
k=0

ρ(x0, x(k)), i ∈ {0, 1, . . . , n2 − 1}.

Thus, the certainty for “accumulated similarity of x(m) is large” is given by a function
of membership Lx0 determined by:

Lx(0) (x(i)) = −
(Ax0 (x(i))− 1)(Ax0 (x(i))− 2n2 + 1)

(n2 − 1)2

i = 0, 1, . . . , n2 − 1.

As a conjunction operator, the t-norm product was utilized, and hence the defuzzi-
fication procedure was not required. Therefore, CFR(m) = Cx0(x(m))Lx(0)(x(m)). In the
experimentation we utilized the fuzzy similarity function ρ given by

ρ(xi, xj) = e−
|xi−xj |

Fσ , i, j = 0, . . . , n2 − 1. (4)

In Equation (4), Fσ is a parameter studied in Section 3. This function has been selected in
view of the fact that it is a fuzzy metric according to definition presented in [39], and it has
been shown to be convenient in the topic of fuzzy image filtering [9,20,40]. This similarity
function ρ takes values in the interval [0, 1] and fulfills ρ(x0, xi) = 1 for x0 = x(i). Thus,
supposing that the components of an n× n processing window Wx0 with central pixel x0
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are sorted in a descending order, x0, . . . , x(n2−1), by their similarity to x0, the filtered pixel
xout replacing the central pixel x0 is given by:

xout =
∑m̂

j=0 wjx(j)

∑m̂
j=0 wj

, (5)

where wj = ρ(x0, x(j)). The average process in Equation (5) is calculated utilizing only the
peer group components, and hence, uniquely similar pixels are utilized.

2.3. Parallel Fuzzy Filter

To reduce the computing times, a parallel method based on the described algorithm
is introduced. In order to distribute the pixels of the medical image among the comput-
ing units in the parallel computer, the domain Ω of the image is split in P subdomains
Ωi, i = 1, . . . P, being P the amount of computing units. This decomposition fulfills

Ωi ⊂ Ω,⋃
i=1,2,...,P

Ωi = Ω,

and Ωi ∩Ωj = ∅ for i 6= j.

Figure 1 exemplifies the subdomains utilized in the experimentation.

Figure 1. CT image decomposition using 4 subdomains.

To filter pixels located in the internal frontier of the subdomains, every computation
unit requires of some extra pixels. Therefore, we establish an overlapping domain decom-
position. Figure 2 shows an overlapping domain decomposition using four subdomains.
To describe the overlap, we consider Ωλ

i , i = 1, ..., P; an expansion of Ωi, being λ a natural
number defining the proportions of the overlapping area. Computation unit k filters pixels
in subdomain Ωk, but utilizing pixels in subdomain Ωλ

k . λ is the integer part of the number
n/2, being n× n the dimensions of the processing window.

Figure 2. Overlapping domain decomposition using four subdomains.
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Taking into consideration this domain decomposition, Algorithm 1 shows the parallel
filtering algorithm.

Algorithm 1 Parallel Fuzzy Filter.

Require: Noisy image F , domain decomposition {FΩk}
P
k=1, Parameters Fσ, th1, th2, th3, α, α′

Ensure: Denoised image.
for k = 1, . . . , P, in parallel do

Impulses detection: First Step

for x in FΩk do
Compute: d = FRODα(x);
if (d > th1) then

x is classified as non-impulsive;
else

if (d < th2) then
x is classified as impulse;

else
x is classified as non-diagnosed;

end if
end if

end for
Impulses detection: Second Step

for x in FΩk non-diagnosed at first Step do
Compute d = FRODα′(x) excluding pixels classified as impulsive;
if (d > th3) then

x is classified as non-impulsive;
else

x is classified as impulse;
end if

end for
Impulsive Noise Removal:

for x in FΩk labeled as impulsive do
x is substituted by VMFout over noisy-free pixels;

end for
Gaussian Noise Removal:

for x in FΩk do
Compute m̂, the better number of components in P x0

m

xout =
∑m̂

j=0 ρ(x,x(j))x(j)

∑m̂
j=0 ρ(x0,x(j))

.

end for
end for
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To study the performance of the parallel implementation, we analyze the speed-up SP
that is given by:

SP =
TS
TP

, (6)

where TS is the computing time of the serial method, and TP is the computing time of the
parallel method.

3. Results

The introduced algorithm was analyzed on CT medical images from two clinical
datasets. To this end, CT medical images (Figure 3) from the Radiopaedia dataset (Case
Courtesy of A. Prof Frank Gaillard, Radiopaedia.org, rID 35508) were used in the exper-
iments. These CT images appertain to a normal brain of a thirty-year-old woman. CT
images were corrupted with various magnitudes of random impulsive noise (probability
p ∈ [0.1, 0.3]) and Gaussian noise (standard deviation σ ∈ [10, 30]). For this purpose, the
classical Gaussian-noise model and the random value impulsive noise [4] have been con-
sidered. The additive white Gaussian noise presents the following probability distribution:

p(x) =
1

(2πσ)
1
2

exp(− x2

2σ2 ), (7)

where σ is the standard deviation of the distribution. In the random impulsive noise model,
the corrupted pixel x∗ is obtained using random uniformly distributed integer values d in
the interval [0, 255] with probability p:

x∗ =

{
d with probability p,
x with probability 1− p.

(8)

Moreover, to show the denoising performance of the proposed method on low-dose
CT images, we used different noisy low dose (quarter-dose exposure images) abdomi-
nal CT images (Figure 4) from the 2016 NIH-AAPM-Mayo Clinic Low Dose CT Grand
Challenge [30].

(a) Axial view (b) Coronal view (c) Sagittal view

Figure 3. CT medical images utilized in the experimentation. (a) Axial view: 1024× 904 pixels;
(b) Coronal view: 890× 1024 pixels; (c) Sagittal view: 822× 1024 pixels.

Radiopaedia.org
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(a) LDCT image 1 (b) LDCT image 2 (c) LDCT image 3

Figure 4. Low-dose (quarter-dose) abdominal CT medical images, 512× 512 pixels.

3.1. Denoising Performance

To analyze the filtering efficiency, the next metrics have been utilized. The Mean
Absolute Error (MAE) [4] that estimates the detail preserving is defined as:

MAE =
1

QMN

Q

∑
k=1

MN

∑
i=1
|oik − xik|. (9)

The peak signal-to-noise ratio (PSNR) [31] quantifies the noise removal capacity. It is
defined as:

PSNR = 20 log10

 255√
1

QMN ∑Q
k=1 ∑MN

i=1 (oik − xik)2

. (10)

In (9) and (10), M, N determine the image size, Q is the image channels number, xik is
the k-component of the noisy or denoised pixel xi, oik is the k-component of the original
pixel oi, and i is the position of the pixel in the image. Given two patches, x, y, of the
original and denoised images, respectively, the SSIM metric between x and y is defined
by [32]:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
, (11)

where σx, σy, σxy, µx, µy are the standard deviations, covariance, and local means for x, y,
and c1 = (K1L)2, c2 = (K2L)2 are constants utilized to make stable the division when the
denominator is weak. L is a parameter representing the dynamic range of pixel values, and
K1 = 0.01, K2 = 0.03 are constants computed experimentally [32]. To estimate the general
image quality, the mean SSIM index (MSSIM) is used. The MSSIM is computed as:

MSSIM(x, y) =
1
P

P

∑
j=1

SSIM(xj, yj), (12)

where xj, yj are patches of the original and the noisy images, and P is the amount of
patches. The MSSIM is in the interval [0, 1]. A greater MSSIM shows a higher preservation of
structural information. The image enhancement factor (IEF) estimates general improvement
and is given by [41]:

IEF =
∑i ∑j

(
ηij − xij

)2

∑i ∑j
(
yij − xij

)2 , (13)

where xij, ηij, yij are the pixels of the original, the noisy, and the denoised image, respectively.
To analyze the filtering efficiency in the case of the noisy low dose CT images, where there
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is no noise-free reference image, the image quality metrics used were the signal-to-noise
ratio (SNR) [34], the contrast-to-noise ratio (CNR) [34], and the average equivalent number
of looks (ENL) [34]. The CNR measures the contrast between an image feature and an area
of homogeneous noise, while the ENL measures smoothness in areas that should have a
homogeneous appearance but are corrupted by noise. These image quality metrics are
defined as:

SNR = 10 · log10
max(I2)

σ2
n

, (14)

CNRm = 10 · log10
(µm − µb)√

σ2
m + σ2

b

, (15)

ENLm =
µ2

m
σ2

m
, (16)

where I is the matrix of pixel values for the CT image, and σ2
n is the noise variance computed

on a homogeneous region. µm is the mean of the pixels in the mth region of interest (ROI),
σm is standard deviation, and µb and σb are the pixel mean and standard deviation of a
homogeneous region of the image, respectively. The CNR values are averaged over the red
ROIs shown in Figure 5 and the ENL over the yellow homogeneous ROIs. To compute σ2

b ,
the homogenous ROI in Figure 5, delimited by a dashed line, was used.

(a) LDCT image 1 (b) LDCT image 2 (c) LDCT image 3

Figure 5. ROIs considered to compute CNR and ENL measures.

For the setting of the method parameters, the PSNR measure has been studied as a
function of them. In [19], authors observed that sub-optimal performance for the FRF-FPGA
method in terms of PSNR can be obtained for th1, th2, and th3 as a function of the rates
of noise p and σ. The experiments show that for σ ∈ [0, 40] and p ∈ [0, 0.4], sub-optimal
performance can be achieved by setting th1, th2, and th3 as a function of σ and p, as shown
in Equation (17):

th1 = 0.90 +
βp,σ

0.4
0.07,

th2 = 0.87 +
βp,σ

0.4
0.06,

th3 = 0.97 +
βp,σ

0.4
0.01, (17)

where βp,σ = p− 2σ/100 depend on σ, the Gaussian noise standard deviation, and the
impulsive noise p. There are different methodologies to estimate p and σ. In the experiments
with LDCT images, where the noise distribution changes according to the dosage level,
p was estimated using the methodology utilized in [42], and the estimation for σ was
obtained using the technique presented in [43]. Therefore, utilizing these estimations for σ
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and p, the parameters th1, th2, and th3 were automatically set. The optimal setting depends
on both noise and image characteristics. With this adjustment in our experimentation, we
have achieved PSNR sub-optimal performance for all tested images.

Figures 6 and 7 present the dependence of the PSNR measure on the values Fσ and
βp,σ for the Axial view image deteriorated with various rates of Gaussian-impulse noise. A
similar performance is obtained for the other views, as shown in Figures 8 and 9, which
present the dependence of the PSNR measure on the values Fσ and βp,σ for the Coronal view.
Similar results were obtained for the Sagittal view. For noise intensities from 0% to 20%,
the higher value of PSNR is obtained for Fσ ∈ [50, 1500] and βp,σ ∈ [−0.6, 0.4]. For noise
intensities from 20% to 40%. the higher value of PSNR is obtained for Fσ ∈ [250, 1500] and
βp,σ ∈ [0.2, 0.6]. Our experiments revealed that sub-optimal performance can be achieved
by setting th1, th2, and th3 as indicated in Equation (17).

(a) (b) (c)

Figure 6. Dependence of the PSNR metric on the values Fσ and βp,σ. Axial view corrupted with
Gaussian σ and impulsive noise p. (a) σ = 10, p = 0.1. (b) σ = 20, p = 0.2. (c) σ = 30, p = 0.3.
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(c)

Figure 7. Surface plots for the dependence of the PSNR metric on the values Fσ and βp,σ. Axial view
corrupted with Gaussian σ and impulsive noise p. (a) σ = 10, p = 0.1. (b) σ = 20, p = 0.2. (c) σ = 30,
p = 0.3.

(a) (b) (c)

Figure 8. Dependence of the PSNR metric on the values Fσ and βp,σ. Coronal view corrupted with
Gaussian σ and impulsive noise p. (a) σ = 10, p = 0.1. (b) σ = 20, p = 0.2. (c) σ = 30, p = 0.3.
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Figure 9. Surface plots for the dependence of the PSNR metric on the values Fσ and βp,σ. Coronal
view corrupted with Gaussian σ and impulsive noise p. (a) σ = 10, p = 0.1. (b) σ = 20, p = 0.2.
(c) σ = 30, p = 0.3.

We studied the effect of the processing window dimension n and the α, α′ values on
PSNR value. The experiments indicated that the optimal values of the parameters n, α,
and α′ correspond with those obtained in our former analysis [19]. Consequently, in this
experimentation, we have used 3× 3 processing windows (n = 3) and α = 3, α′ = 1.

With respect to the visual appearance, by examining the denoised outputs in Figures 10–13,
we observe that the proposed filter satisfactorily preserves the details of the images and
efficiently reduces the Gaussian-impulsive noise.

We compare the proposed algorithm with other competitive filters expressly designed
to eliminate Gaussian-impulsive mixed noise that have been used successfully in medical
image processing: the SFMR filter [44,45], the RLSF filter [46], and the FPGA filter [20,47].
These methods have been coded using the corresponding optimal parameters indicated by
the authors.

(a) (b) (c)

(d) (e) (f) (g)

Figure 10. Method outputs. Axial view corrupted with impulsive noise p and Gaussian σ. (a) Original
axial. (b) Noisy p = 0.1, σ = 10. (c) Method output. (d) Noisy p = 0.2, σ = 20. (e) Method output.
(f) Noisy p = 0.3, σ = 30. (g) Method output.
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(a) (b) (c)

(d) (e) (f) (g)

Figure 11. Method outputs. Coronal view corrupted with impulsive noise p and Gaussian σ. (a) Original
coronal. (b) Noisy p = 0.1, σ = 10. (c) Method output. (d) Noisy p = 0.2, σ = 20. (e) Method output.
(f) Noisy p = 0.3, σ = 30. (g) Method output.

(a) (b) (c)

(d) (e) (f) (g)

Figure 12. Method outputs. Sagittal view corrupted with impulsive noise p and Gaussian σ. (a) Original
sagittal. (b) Noisy p = 0.1, σ = 10. (c) Method output. (d) Noisy p = 0.2, σ = 20. (e) Method output.
(f) Noisy p = 0.3, σ = 30. (g) Method output.
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(a) (b)

(c) (d)

(e) (f)

Figure 13. Method outputs for LDCT abdominal images. (a) Quater-dose LDCT image 1. (b) Method
output. (c) Quater-dose LDCT image 2. (d) Method output. (e) Quater-dose LDCT image 3.
(f) Method output.

Tables 1–4 present the MAE, PSNR, MSSIM, and IEF measures for the brain CT images
corrupted with various rates of impulsive and Gaussian noise. These experiments show
that the introduced algorithm exhibits the best performance in all results in terms of the
MAE, PSNR, SSIM, and IEF metrics. This implicates that the proposed filter exhibits a
better noise removal and better preserves the image details. Table 5 shows the SNR, CNR,
and ENL image quality values for the original and denoised abdominal LDCT images.
From Table 5, it can be seen that the proposed filter outperforms all the compared methods
(RLSF, SFRF, and FPGA) by achieving the highest values in SNR, CNR, and ENL. The
proposed method is 12.9–14.2 dB higher than the noisy original image on average in the
SNR value and increases the value of structural protection by 13.1–15.0 dB higher than the
noisy original image on average in the CNR value. Moreover, the ENL value is 2.3–3 times
higher than the original image. Obtained values for these objective metrics indicate that
the filter exhibits a robust performance.
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Table 1. MAE measure for noisy and denoised CT images. Values in bold denote the best filtering quality.

Noise MAE

Gaussian Impulsive Noisy RLSF SFRF FPGA New Filter

Axial view

σ = 10 p = 0.1 19.23 8.31 5.78 6.29 5.47
σ = 20 p = 0.2 31.83 13.99 9.27 9.30 6.59
σ = 30 p = 0.3 44.20 21.23 13.95 16.41 8.18

Coronal view

σ = 10 p = 0.1 18.62 8.55 5.93 5.82 5.34
σ = 20 p = 0.2 31.68 14.03 9.41 9.54 7.15
σ = 30 p = 0.3 44.04 21.07 14.10 16.73 9.22

Sagittal view

σ = 10 p = 0.1 18.85 8.82 5.93 5.80 5.44
σ = 20 p = 0.2 32.12 14.85 9.54 9.61 6.94
σ = 30 p = 0.3 44.65 22.45 14.46 17.11 8.61

Table 2. PSNR measure for noisy and denoised CT images. Values in bold denote the best filtering quality.

Noise PSNR

Gaussian Impulsive Noisy RLSF SFRF FPGA New Filter

Axial view

σ = 10 p = 0.1 15.82 28.08 30.89 29.75 31.30
σ = 20 p = 0.2 12.87 23.60 27.22 26.36 29.58
σ = 30 p = 0.3 11.13 19.95 23.74 21.28 27.35

Coronal view

σ = 10 p = 0.1 15.99 27.20 29.88 29.17 31.11
σ = 20 p = 0.2 12.97 23.28 26.56 25.68 28.22
σ = 30 p = 0.3 11.17 19.86 23.30 20.95 26.17

Sagittal view

σ = 10 p = 0.1 15.71 27.23 30.24 29.78 31.16
σ = 20 p = 0.2 12.72 23.07 26.71 25.84 28.54
σ = 30 p = 0.3 10.93 19.59 23.33 20.70 26.63

Table 3. MSSIM measure for noisy and denoised CT images. Values in bold denote the best filter-
ing quality.

Noise MSSIM

Gaussian Impulsive Noisy RLSF SFRF FPGA New Filter

Axial view

σ = 10 p = 0.1 0.1077 0.5048 0.5499 0.5412 0.5600
σ = 20 p = 0.2 0.0534 0.4628 0.4769 0.4299 0.5225
σ = 30 p = 0.3 0.0345 0.4146 0.4405 0.2716 0.4816

Coronal view

σ = 10 p = 0.1 0.1349 0.6098 0.6469 0.6531 0.6532
σ = 20 p = 0.2 0.0709 0.5623 0.5794 0.5119 0.6036
σ = 30 p = 0.3 0.0472 0.5002 0.5421 0.3241 0.5441

Sagittal view

σ = 10 p = 0.1 0.1113 0.4919 0.5429 0.5534 0.5545
σ = 20 p = 0.2 0.0583 0.4463 0.4703 0.4179 0.5063
σ = 30 p = 0.3 0.0390 0.3977 0.4345 0.2619 0.4678
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For small values of σ and p, the FPGA obtains similar results of MSSIM to the new
method. However, for large values of noise, the proposed filter outperforms all the other
filters.

Table 4. IEF measure for noisy and filtered images. Values in bold denote the best filtering quality.

Noise IEF

Gaussian Impulsive Noisy RLSF SFRF FPGA New Filter

Axial view

σ = 10 p = 0.1 1 16.84 32.15 25.28 35.36
σ = 20 p = 0.2 1 11.83 27.23 22.84 46.60
σ = 30 p = 0.3 1 7.71 18.45 10.48 42.38

Coronal view

σ = 10 p = 0.1 1 13.21 24.48 20.77 32.49
σ = 20 p = 0.2 1 10.73 22.84 18.66 33.30
σ = 30 p = 0.3 1 7.40 16.33 9.51 31.60

Sagittal view

σ = 10 p = 0.1 1 14.18 28.38 25.51 35.08
σ = 20 p = 0.2 1 10.84 25.09 20.53 38.18
σ = 30 p = 0.3 1 7.33 17.36 9.49 37.11

Table 5. SNR, ENL, and CNR measures for noisy low-dose CT images. Values in bold denote the best
filtering quality.

Method SNR (dB) CNR (dB) ENL

LDCT image 1

Noisy 22.9282 8.2222 10.0281
RLSF 33.3576 18.6606 21.0721
SFRF 34.9700 20.6087 22.8512
FPGA 34.5917 19.8566 22.1175
New filter 35.9049 21.4057 23.6885

LDCT image 2

Noisy 20.4850 6.0844 5.2926
RLSF 32.7105 19.6692 14.2302
SFRF 33.9070 20.5045 15.7191
FPGA 33.6989 19.9728 15.2304
New filter 34.1144 21.0848 16.1316

LDCT image 3

Noisy 20.6764 6.4583 6.0984
RLSF 31.3755 17.6572 13.4903
SFRF 33.6482 19.1170 15.0607
FPGA 33.0195 18.9262 14.2957
New filter 34.9407 20.4838 15.9328

3.2. Computational Efficiency

We have coded a parallel implementation for shared memory parallel computers
with OpenMP [28,29]. OpenMP software is an application programming interface (API)
addressed to shared memory parallel computing in different programming languages (C,
C++, and Fortran), available for the majority of operating systems and platforms. We
developed the experiments on a shared memory parallel machine: a multi-core platform
equipped with two Intel(R) Xeon(R) Gold 6140 CPU, 2.30 GHz with 24.75 MB L3 Cache.
Each processor is composed of 18 physical cores, resulting in a total number of 36 cores in
the computer. The main memory size is 384 GB of DDR3. Both the parallel and serial code
were developed using the GNU gcc-11.1.0 compiler. Table 6 presents the computational
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time in seconds using the 36 cores of the parallel machine. It can be observed that there
is not a significant dependence of the time on the amount of noise. This fact is due to the
characteristics of the filter. To study the efficiency of the parallel OpenMP implementation,
we carry out the experimentation by increasing the amount of computing units. Figure 14
presents the speed-up obtained by the parallel implementation for the Sagittal view image
contaminated with σ = 30 Gaussian noise and p = 0.3 impulsive noise. Similar results
in speed-up were achieved for all the tested images. The results show that a substantial
speed-up is achieved. The experiments show that the parallel implementation obtains
speed-ups in the range of 25.54 to 28.24 when the 36 computing units of the multi-core were
utilized. The number of computing units in the employed machine is 36. If a machine with
greater number of computing elements was used, a greater speed-up would be obtained.
Similar conclusions were obtained for the other CT images. The times presented in Table 6
show that the proposed algorithm enables the filtering of large CT medical images in
reduced times, which makes the method appropriate for real scenarios.

Figure 14. Speed-up for parallel implementation. Sagittal view corrupted with σ = 30, p = 0.3.

Table 6. Computational time.

Noise Time (seconds)

Brain CT images

Gaussian Noise Impulsive Noise Axial view Coronal view Sagittal view

σ = 10 p = 0.1 0.0873 0.0870 0.0793
σ = 20 p = 0.2 0.0877 0.0871 0.0811
σ = 30 p = 0.3 0.0886 0.0885 0.0813

Low-dose abdominal CT images

Images obtained with quarter-dose exposure LDCT 1 LDCT 2 LDCT 2

0.0429 0.0460 0.0405

4. Conclusions

An efficient parallel algorithm based on fuzzy logic has been introduced to remove
Gaussian-impulsive noise in CT medical images. The filter has been implemented on
shared memory parallel machines utilizing OpenMP. The implementation has been utilized
to remove Gaussian-impulsive mixed noise on medical CT images corrupted with different
noise levels. A comparison analysis with state-of-the-art denoising methods is performed
using qualitative and quantitative measures (PSNR, MAE, IEF, MSSIM, SNR, CNR, and
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ENL) and demonstrating the competitiveness of the proposed technique. The parallel
algorithm introduced exhibited reduced computing times making the proposed technique
applicable for real-time medical image filtering. In future studies, we will study the use
of this methodology to remove other kinds of noise in medical images from US, PET, and
MRI. Moreover, we will implement the algorithm on GPUs making use of CUDA.
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