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Summary

Summary

This thesis is concerned with the extraction of dense three-dimensional depth maps from sequences 
of two-dimensional greyscale images using correlation based matching. In particular the thesis is 
focused on the noise processes that occur in the depth map and the removal of that noise using 
nonlinear filters based on fuzzy systems.

The depth from stereo algorithm is reviewed and a widely used correlation based matcher, the Sum 
Squared Difference (SSD) matcher, is introduced together with an established method of measuring 
sub-pixel disparities in stereo pairs of images. The noise in the disparity map associated with this 
matcher is investigated. The conjecture is made that a fuzzy inferencing system can be trained to 
perform a nonlinear filtering process which is more effective than conventional filters at removing 
the mixed impulsive and Gaussian-like noise present in the depth map.

Six methods of training fuzzy systems of the Sugeno type based on the simulated annealing 
algorithm are proposed and tested by training fuzzy systems to approximate a simple function of 
two variables

The thesis reviews existing fuzzy logic based filters and proposes a taxonomy for such systems. 
This distinguishes between direct and indirect acting fuzzy filters. An indirect acting fuzzy filter is 
applied to the task of smoothing a disparity map. The first order Sugeno fuzzy system is then 
proposed as an architecture that would be suitable as the basis for a direct acting fuzzy filter. This 
architecture is then applied to the task of smoothing depth maps derived from real and simulated 
data.

The main contributions of the thesis are the identification of the Sugeno fuzzy system as a form of 
filter, the proposed training techniques, and the application of fuzzy filters to depth map smoothing.
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/ Focal length
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V[n]
av2

PM 
KM

Chapter 3
L(u, v), R(u, 
SSD
n(u,v)
CTn2

F(u,v)
d(u, v)
a,b,c
S,
do
Q(d)
Qminpos

v) Grey level values of points in a pair of images 
Sum of squared differences value 
Corrupting Gaussian noise at pixel (u,v) 
Variance of corrupting Gaussian noise 
True grey level value at pixel (u,v) 
True disparity for pixel (u, v)
Coefficients of quadratic fitted to SSD values for different estimates of disparity 
SSD value at position 1
Nearest integer disparity value to fitted quadratic minimum 
Quadratic fitted to three disparity versus SSD points 
Sub-pixel disparity value at fitted quadratic minimum
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Chapter 1: Introduction and Overview of Thesis

Chapter 1 : Introduction and Overview of Thesis

1.1 Introduction

This thesis is concerned with an aspect of the important problem of the recovery of three- 

dimensional information from sequences of two-dimensional images. The recovery of the lost 

depth information is an example of a class of problems termed 'inverse problems'. Such 

problems are often mathematically 'ill-posed' such that the solution does not exist, is not 

unique, or is unstable to small perturbations in the data. Many of the image processing 

techniques used to recover depth information are ill-posed (Bertero et al, 1988) and the result of 

this is that the depth data that is recovered contains large errors which appear as sharp noise 

spikes in the recovered depth map. The removal of these noise spikes without also removing 

important information from the depth map poses a difficult challenge. This challenge can be 

regarded as a filtering problem or equivalently as a problem of regularising (op cit. Bertero et al, 

1988) the ill-posed depth recovery problem by applying a priori knowledge about the allowable 

forms of real depth maps.

The main focus and contribution of this thesis is to put forward and test a new approach to 

filtering dense depth maps using techniques based on the Sugeno (Takagi and Sugeno, 1983) 

fuzzy inferencing method. The use of fuzzy logic was adopted as an approach to filtering for 

two reasons. Firstly, a fuzzy system can approximate any mapping from input data to output 

data, which allows fuzzy systems to offer the possibility of performing any arbitrary linear or 

non-linear filtering operation. Secondly, a fuzzy system offers a possible means of capturing 

the a priori regularising constraints in a particular non-linear mapping in an explicit way 

through its rulebase. The new fuzzy filter structure, which is introduced in the thesis, can also 

be applied to other problem domains such as filtering mixed noise in one-dimensional signals 

that contain discontinuities.
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The fuzzy filter structure can also be optimised or trained using exemplar data and a further 

important contribution made in this thesis is to apply the stochastic search technique known as 

simulated annealing to the optimisation of fuzzy systems of the Sugeno type. Simulated 

annealing was explored as a training method because unlike the more commonly used gradient 

descent techniques simulated annealing as a search technique is not prone to becoming trapped 

in local minima.

The thesis also makes two further small contributions by analysing the noise processes 

associated with correlation-based matching, which is widely used in depth map generation, and 

by suggesting an approach to classifying fuzzy logic-based filters.

1.2 Background to the Problem

Since the very earliest days of electronic computers researchers have looked to the possibility of 

creating entities which display that characteristic of human beings that is called intelligence. 

The beginnings of the serious scientific quest for 'artificial intelligence' dates therefore from the 

time that machines capable of implementing Boolean logic reasoning processes on a large scale 

became available. Since the landmark essay of Turing (Turing, 1950), the debate about whether 

a large capacity finite state machine can mimic human intelligence has raged. Moreover, the 

quest for artificial intelligence has been constantly encouraged by speculation that its goal can 

be achieved with the next generation of increased computational power.

With the search for artificial intelligence came a debate on the exact nature and definition of 

intelligence. This debate has led to the identification of a collection of attributes, at least some 

of which are required to be present before an entity's behaviour can be said to be intelligent. 

These attributes include the ability to sense and analyse the immediate environment, to learn 

patterns in the environment, and to predict by inference the future behaviour of the environment.
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The ability to sense and learn represents a necessary requirement before intelligent behaviour 

can be said to be present. An intelligent entity must also place itself within, and include itself as 

part of the environment, whilst at the same time distinguishing itself from the environment. 

This ability to self locate within an environment is necessary for any mobile entity to navigate 

that environment. This navigational 'self-awareness' may be the origins of that other attribute 

of intelligence called consciousness. Consciousness may therefore be an emergent property of 

the intelligence needed for mobility and navigation. Certainly, life forms that are not mobile, 

and do not need therefore to navigate, do not display any of the attributes of intelligent 

behaviour.

A major feature of naturally occurring intelligence is purposive autonomous motion. In nature 

such behaviour is ultimately directed towards enhanced genetic success. A restricted goal for 

the creator of artificial intelligence might be limited autonomous behaviour in a machine 

directed towards achieving a task that would be too dangerous or costly to carry out using 

human beings or remote control. An example of this might be a roving vehicle designed to 

explore the surface of a remote planet in the solar system. Another example might be an 

autonomous robot whose task would be to continuously inspect the underwater structure of an 

oilrig. Such limited goals are termed 'soft' artificial intelligence to distinguish them from the 

higher goal of creating an entity displaying 'hard' artificial intelligence which displays the full 

human attributes of consciousness, creativity, and emotion.

For an intelligence to exhibit itself through autonomous behaviour it needs the ability to extract 

information about the environment around it. Indeed, the ability to sense its environment may 

be essential to the development of such intelligence. For this reason the ability to make explicit 

certain properties of a scene, called low level vision, may form an important adjunct to creating 

artificially intelligent machines. The identification of the relative (and absolute) depth of points 

in a scene is one such low level vision process. This low level vision task is also important for
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industrial inspection, robot guidance and autonomous vehicle navigation. It is to aid in the task 

of depth reconstruction that the new class of fuzzy logic based filters described in this thesis 

have been developed. However, although the fuzzy based filters have been motivated from the 

requirements of low level depth reconstruction and developed with this task in mind, they are 

applicable to other filtering problems.

The basic principle of operation of the technique used to generate depth maps that is explored in 

this research is that of correlation based stereo matching. A simplifying assumption is made 

that the viewed scene is assumed to be static. A pair of images is taken with each image in the 

pair being taken from different camera positions, but with identical cameras. The stereo 

matching approach to depth map generation from image pairs can be broken down into the 

following steps:

  Points are identified in the two images that represent the same point in the viewed scene. 

These are called corresponding points.

  The shift in the position of the corresponding points between the two images is measured. 

This shift is known as the disparity.

  The image formation process for the camera is determined. This consists of obtaining the 

geometrical transformation or projection from three-dimensional object space to the two- 

dimensional image space. This step is called the camera calibration process and is 

described by a camera projection matrix.

  From knowledge of the camera projection matrix and the disparity, the original three- 

dimensional co-ordinates of the point in the viewed scene can be determined.
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  The above steps are repeated for a sampled set of points in the images. In this way a depth 

map of the viewed scene is generated. This depth map is a two-dimensional function of the 

image co-ordinates and is relative to a fixed origin defined in the calibration step. 

The camera calibration problem is relatively well understood (Tsai, 1987). The most difficult 

step is that of establishing corresponding points. The simplest method of establishing 

correspondence is to use a correlation-based matcher. The Sum of Squared Differences (SSD) 

matcher (Anandan, 1984) is an example of such a correlation matcher and is used in the work 

described in this thesis. It can be used to produce dense depth maps and can be adapted to give 

a measure of the uncertainty in the measured depth (Matthies et al, 1989). Feature based 

matching is another powerful matching technique which can give more reliable results than 

correlation based matching. However the resulting depth maps are sparse and require 

interpolation between the points for which a depth value is determined.

An examination of depth maps generated from synthesised and real images using the SSD 

matcher reveals that they are corrupted by noise and areas of gross error. As noted in section 

1.1, these gross errors can be attributed to the fact that the matching process is an example of an 

ill-posed inverse problem. In this case the problem is that of inverting a projection or mapping 

from three-dimensional space to two-dimensional space so as to recover the lost information of 

the third dimension. The classic method of solving such ill-posed problems and eliminating the 

gross errors is called regularisation. hi order to regularise a problem a prior condition or 

conditions are set which limit the range of allowable solutions. The prior conditions are chosen 

so that they represent a known fact about the nature of the true solution to the problem. Such 

prior conditions are often described by an energy functional or cost penalty, which penalises 

solutions that violate the prior assumptions. The measured data is also included in the energy 

functional as a term that penalises solutions which are different from that suggested by the data. 

The solution finally adopted is such as to strike a balance between that suggested by the 

measured data and that which most closely satisfies the prior assumption. The regularised
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problem is then cast a minimisation problem for which the solution is that which minimises the 

energy functional. The minimisation of the functional can be carried out using iterative gradient 

descent methods or more robust search techniques but both of these approaches can be computationally 

intensive.

The prior assumptions that are used in regularisation are derived from knowledge of the world 

that the solution describes. A common prior constraint that is applied to depth maps is that the 

depth map should be generally smooth. This constraint reflects reality in general but is violated 

at a few points in a viewed scene where depth discontinuities exist. Unfortunately these depth 

discontinuities occur at edges. The locations of these edges represent the most important 

information in a depth map. In other words, the prior constraint fails at the most important 

points in the depth map. It is the combination of this complexity in the real world, and hence 

the possible solution space, and the ill-posed nature of the problem of depth recovery from two- 

dimensional images which lends it its fascination and challenge.

Certain simple energy functionals that are commonly used to regularise the depth recovery 

problem express depth map smoothness in terms of the depth map gradients. For these cases the 

minimisation of the energy functional can be carried out analytically using the calculus of 

variations (Terzopoulos, 1986(b)). The analysis shows that the minimisation is equivalent to 

passing the data through a linear filter. However, the effect of a simple linear filter on depth 

map edges is to severely round them and introduce uncertainties as to their location. This also 

suggests that an energy functional that allows for depth discontinuities is likely to be equivalent 

to a non-linear filter of some form.

As well as being viewed as the consequence of the ill-posed nature of the problem, the observed 

gross errors can be viewed as a form of unwanted noise corrupting the wanted signal of the 

depth map. An analysis of this noise reveals that the noise has the characteristics of mixed
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Gaussian and impulsive noise. The normal operation of the SSD matcher results in a Gaussian 

noise process. However, where the matcher makes a false match or fails to make a match the 

result is a spike or impulse in the depth map. The task of regularising the ill-posed problem can 

be viewed as a filtering problem in which the filter is required to remove impulses and smooth 

Gaussian noise, whilst at the same time preserving edges in the depth map.

Order statistic filters form a class of non-linear filters which are effective in the task of 

removing impulsive noise, whilst preserving edges. The median filter is the most widely used 

of this class of filter. However, these filters are suboptimal for Gaussian noise. A broad task, 

which is an active area of current research, is to create non-linear filters that are effective in 

filtering mixed noise containing a strong impulsive component, but which preserve 

discontinuities in the data.

Fuzzy logic was first described as a technique for decision making in the presence of 

uncertainty by Zadeh (Zadeh 1965), (Zadeh, 1973). Since then its use in control engineering 

has grown because of its effectiveness in controlling complex and non-linear systems. A 

particular advantage is the use that the designer of a system using fuzzy logic can make of 

'expert' knowledge expressed in linguistic terms. A fuzzy system maps input values to output 

values in a way which is determined by a set of linguistically expressed rules. This mapping 

can be complex and non-linear. One view of fuzzy systems is to regard them as Black box 

universal function approximators (Wang, 1992), (Kosko, 1994). The Black box can be trained 

using exemplar data to closely match the desired non-linear mapping. Since the non-linear 

mapping does not have to be explicitly described, but is instead captured through the exemplar 

data, such universal function approximator systems are sometimes termed 'model free 

estimators'.
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The main contribution to knowledge of this thesis is to develop a class of non-linear filter based 

on a fuzzy logic paradigm. The motivation for the development of this new fuzzy filter was the 

need to smooth dense depth maps without using computationally slow iterative techniques. 

Thus the 'fuzzy filters' have been designed and trained to tackle the problem of filtering depth 

maps generated using correlation-based matching and which, therefore, are corrupted by mixed 

Gaussian and impulsive noise. The body of reported work on the use of soft computing 

approaches to non-linear filtering contains far more papers on filters based on neural networks 

than papers using a fuzzy logic based approach. Nevertheless, fuzzy inferencing systems share 

the universal function approximator property of artificial neural networks (op cit. Kosko, 1994), 

and moreover posses an advantage in their ability to capture expert knowledge. Of the 

relatively few papers which report the use of fuzzy logic based filters, the vast majority use the 

fuzzy logic stage as a 'bolt on' means of controlling a conventional linear or non-linear filter. A 

rarely adopted approach (Kim and Kosko, 1996) is to perform all the filtering within the fuzzy 

logic stage. These two approaches are designated respectively 'indirect' and 'direct' in this 

thesis. The new fuzzy filter structure proposed and explored in this thesis is based on the 

Takagi-Sugeno fuzzy inferencing system. This fuzzy filter structure is a direct filter structure 

but can also be related to indirect fuzzy filter structures. It is believed that the work described in 

this thesis is the first time that a Sugeno inferencing system has been used as the basis for a 

filtering structure, as distinct from as a structure for a control system. It is also believed that the 

thesis contains the first explicit classification of fuzzy filters as direct or indirect acting. 

Furthermore it is believed that no previously reported work on fuzzy filters specifically address 

the problem of depth map filtering so that the work reported in this thesis represents a new 

application for fuzzy logic based filtering.

The new fuzzy filter structure can also be trained using exemplar input output data, which is a 

model-free approach to filter design. In the context of filtering viewed from a regularisation 

standpoint, a fuzzy or neural network filtering system generated using the model-free approach
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captures the prior assumptions implicit in the data. This makes the choice of representative data 

critical. Investigation of the general properties of such filters may require that data be modelled 

in order to create synthetic data whose properties are well understood. A potential disadvantage 

of the model-free approach is that the action of the filter is not explicitly described and therefore 

not necessarily understood. This may not be a problem if the exemplar data has itself been 

explicitly modelled, in which case the action of the trained filter is understood, albeit at one 

remove. The fact that fuzzy systems contain rules that capture linguistic statements about the 

desired action of the filter allows fuzzy systems to be more explicit and therefore, potentially, to 

be better understood than neural network based filters. Unlike neural network based filters, it is 

possible to 'take the lid off the Black Box' in a trained fuzzy system. However, this statement 

about the relative explicitness of fuzzy systems must not be made too glibly. Much depends on 

the structure of the fuzzy system and the details of the algorithm used to train it and also on how 

that fuzzy system is integrated into an overall scheme for filtering.

In order to take full advantage of the ability of the fuzzy systems to form model-free estimators, 

efficient and effective training techniques are needed. Fuzzy systems can be created using 

expert knowledge alone to create the rulebase. The input set parameters can be set initially so as 

to evenly cover the input universe of discourse. The input set parameters can then be manually 

or automatically adjusted on exemplar data to minimise the error between a desired output and 

the fuzzy system's actual output. This adjustment has to be of a limited nature if the original 

meaning of the rulebase is to be maintained. Unlimited variation of input set parameters results 

in a change in the meaning of a rule. For example a rulebase may contain the predicates "If X is 

small then ....." and "If X is large then....". The meaning of these two predicates changes if the 

input sets are changed so that "small" becomes larger than "large".

The price to be paid for unlimited training of input fuzzy sets is, therefore, a loss of the explicit 

understanding of the fuzzy system's action. However, unlimited training may result in a fuzzy
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system that performs better than a system trained using constrained training. This is especially 

true for non-exhaustive rulebases that do not contain all the possible rules for a given set of 

inputs and input fuzzy sets. It is frequently necessary to use non-exhaustive rulebases when 

fuzzy systems are used as the basis for two-dimensional filters. This is because the problem of 

dimensionality (op cit Kim and Kosko, 1996) comes into play. This problem is the exponential 

rise in the size of the exhaustive rulebase with the number of inputs. What is not explicitly 

mentioned by them is that the hypervolume to be explored by a training algorithm that adjusts 

the input set parameters also increases with input vector dimensionality and that it also does so 

exponentially. Exponential increase in the computational size of a problem with scaling leads to 

a computational load which is termed Non-polynomial (NP) complete and is the hallmark of a 

computationally intractable problem. Non-exhaustive rulebases are one answer to this problem 

and the use of non-exhaustive rulebases is discussed in Chapter Five. With the use of non- 

exhaustive rulebases a new training option arises. This is the option of selecting which subset 

of all the possible rules should be used in the rulebase. Taken all together there are three 

possible things to adjust whilst training a Sugeno inferencing system. These are the input set 

parameters, the output set parameters and the choice of rules in the sub rulebase.

The input and output parameters of a Sugeno fuzzy system can be optimised for a given set of 

input data by using a combination of linear least squares and backpropagation (Jang, 1993), the 

output parameters being optimised by the linear least squares and the input parameters by the 

backpropagation. However the backpropagation algorithm is a form of gradient descent, and 

can become trapped in local minima of the n-dimensional error versus input parameter surface. 

The simulated annealing algorithm (Metropolis et al., 1953), (Kirkpatrick et al., 1983) is 

designed to optimise combinatorial problems whilst avoiding such local minima, and it can be 

modified for use in the optimisation of problems with continuous variables (Vanderbuilt and 

Louie, 1984), (Press et al., 1994). This thesis describes the application of simulated annealing 

in combination with linear least squares for the optimisation of input and output parameters in
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Sugeno fuzzy systems in general, and of Sugeno-based fuzzy filters in particular. It is believed 

that this work is the first reported use of simulated annealing for training Sugeno inferencing 

systems, although there is a recent report of the use simulated annealing to optimise a Mamdani 

type fuzzy model (Garibaldi and Ifeachor, 1999). The thesis also describes the use of simulated 

annealing for the combinatorial problem of choosing an optimal non-exhaustive rule base.

It is interesting that the iterative techniques used for filtering or regularising depth maps by 

previous workers in the field have used search techniques that are related to simulated annealing 

as the basis for their regularisation algorithm (Geman and Geman, 1984), (Acton, 1997). In 

trying to create filters based on fuzzy logic as a one-pass alternative to these iterative 

approaches, the need for a search technique to train the fuzzy filters has been identified. In this 

thesis the same search technique, namely simulated annealing has been used. Other search 

techniques, notably genetic algorithm approaches might also be tried in future. The important 

difference between the iterative approach and the one pass non-linear filtering based on fuzzy 

logic approach is that the searching is done off-line in the fuzzy approach.

1.3 Overview of the thesis

The structure of the remainder of the thesis follows broadly that of the description of the 

problem in section 1.2 above, starting with a review of the stereo matching process and the 

noise associated with it and leading on to a review of possible methods of filtering the depth 

maps. The thesis goes on to review fuzzy techniques and describes the new approaches 

proposed for the training of Sugeno fuzzy systems using simulated annealing, before 

introducing the use of fuzzy systems as filters. The new Sugeno-based fuzzy filter is then 

introduced and the results of applying it to one and two-dimensional real and simulated depth 

maps are presented. Finally the conclusions from the work described in the thesis are drawn 

and recommendations for future work are made.

1-11



Chapter 1: Introduction and Overview of Thesis

Chapter Two describes in more detail the steps necessary for stereo matching and the camera 

calibration problem is discussed.

Chapter Three continues with an analysis and tests on the performance of the sum of squared 

difference matching technique. This analysis shows that the noise in the depth map consists of 

mixed Gaussian and impulsive noise. The Gaussian component of the noise is shown to be a 

consequence of the interaction of the sub-pixel SSD matcher and the statistics of the underlying 

intensity patterns of the image, whilst the impulsive component of the noise is shown to occur 

when the intensity patterns in the image cause the matcher to make a false match.

Chapter Four contains a brief review of existing major approaches to linear and non-linear filter 

structures, including the Wiener and median filter which are used as benchmarks with which to 

compare the performance of the novel filters described in this thesis.

Chapter Five of this thesis contains an overview of different approaches to fuzzy inferencing. It 

also contains a discussion of the suitability of different inferencing systems as approximators for 

different types of mappings or functions. Chapter Five also describes the new approaches to 

fuzzy system training using the simulated annealing algorithm. Within this chapter six different 

ways of training a Sugeno fuzzy inferencing system are described and the results of testing these 

training methods on a simple function approximation problem are presented. Amongst the 

training methods is a method for automatically selecting an optimal non-exhaustive rulebase. 

The fuzzy system training software, which was written to test the ideas on fuzzy training 

algorithms put forward in this thesis, is also described in this chapter.

Chapter Six discusses various existing approaches to the use of fuzzy inferencing in filtering 

problems. It includes a detailed review of the literature on fuzzy logic in filtering and also

1-12



Chapter 1: Introduction and Overview of Thesis

introduces a taxonomy of fuzzy filters based on the way that the fuzzy system is integrated into 

the overall filtering scheme. This comparison of reported work on fuzzy logic-based filters 

provides a context within which two possible filter structures for depth map smoothing are 

introduced. The first structure is based on an indirect filter structure and a zeroth order Sugeno 

fuzzy system. The second structure is the new filter structure based on a first order Sugeno 

network and this structure is described in detail.

Chapter Seven presents the results of applying the fuzzy filters described in Chapter Six and 

trained using the methods of Chapter Five to one-dimensional signals and simulated two- 

dimensional depth maps corrupted by mixed noise. The results of applying the filters to depth 

maps generated from simulated image data, and to real depth maps generated from real image 

sequence data are also presented here. Comparisons are also made between the effect of Wiener 

and median filters and the fuzzy filters when tested on simulated data. The results of some 

comparisons between the effects of non-exhaustive and exhaustive rulebases are also made in 

Chapter Seven.

Finally Chapter Eight reviews the thesis, summarises the conclusions from the work presented 

in the thesis and makes recommendations for further work. Appendix A contains copies of 

three conference papers that have been produced during the course of the work described in the 

thesis.
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Chapter 2: Recovery of Depth from Image Sequences

2.1 Introduction

The purpose of this chapter is to outline the theory behind the stereo matching technique used in 

this thesis to extract depth from image sequences. The chapter begins with a review of the 

formation of grey-scale images by a camera via the perspective projection and goes on to discuss 

how depth information can be recovered from pairs of such grey-scale images. As stated in 

Chapter 1, recovery of the depth information by stereopsis requires the identification of 

corresponding points in pairs of images and the measurement of the relative displacement or 

disparity of these points between the two images. This chapter, therefore, goes on to review two 

broad approaches to measuring the disparity, the correlation-based matchers and the optic flow 

approach. A correlation-based technique due to (Anandan, 1984), called the Sum of Squared 

differences (SSD), allows a sub-pixel estimation of the disparity and a measure of the uncertainty 

associated with the disparity. This estimate and the uncertainty measure can be input to a Kalman 

filter (Kalman, 1960) to allow the fusion of depth estimates from a sequence of multiple pairs of 

images (Matthies et a/., 1989). The fusion of the depth information from multiple images by the 

Kalman filter should result in a temporal (or sequence number) filtering of the noise in the depth 

map provided that the noise is essentially Gaussian and that the uncertainty estimate produced by 

the matcher is accurate and consistent. Chapter 3 examines in detail the theory and noise 

performance of the matchers proposed by (op cit Anandan, 1984)and (op cit Matthies et al., 1989).
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2.2 Perspective and inverse perspective projections

2.2.1 3-D to 2-D projection

An imaging system such as a camera or the human eye forms a two-dimensional image of the three- 

dimensional world. For monochrome camera systems, a point in the three-dimensional object 

space maps to an intensity or brightness value in the two dimensional image space. The brightness 

value at a point in the two-dimensional space is a function of the incident light intensity and angle 

as well as the reflectance of the object at the corresponding point in three-dimensional space. The 

two dimensional co-ordinates of a point in the image space which corresponds to a point in the 

object space depends on the three-dimensional co-ordinates of the object space point through a 

mapping called a projection. In order to recover the three-dimensional co-ordinates of a point in 

object space from the measured two-dimensional image space co-ordinates, it is necessary to derive 

a model that captures the projection from object to image space.

The model that is used to model the three to two-dimensional projection is called the 'pinhole 

camera' model. The geometric behaviour of many image-forming systems, including complex 

systems with multi-element lenses, can be quite accurately modelled by the pinhole camera model 

(Trucco and Verri, 1998). The geometric optical approximation (rectilinear propagation of light) 

is used by the model, which assumes that all the light rays from an object in the three dimensional 

world space which impinge on the planar sensing surface or retina pass through a point C called the 

optical centre. The optical centre can be thought of as a small hole cut in an opaque screen, hence 

the pinhole camera model name. The optical centre lies in a plane called the focal plane of the 

camera, and the retina lies in the image plane. The distance from focal to image plane is/which is
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the focal length of the optical system. The geometry of the pinhole camera model is shown in 

Figure 2.1.

Optical Axis

Point in Object 
Space (x,y,z)

Focal Plane
Point in Image 
Space («,v)

Image Plane 
Figure 2.1 Geometry of the Pinhole camera model

The position of a point in the image space can be described by two Cartesian co-ordinates (u, v) 

relative to an image space origin and that of a point in object space by three co-ordinates (x, y, z) 

relative to an object space origin. In order to describe the projection from object to image space, it 

is necessary to obtain a relationship between the co-ordinates (x, y, z) of the object space point that 

maps to an image space point of co-ordinates (u, v).

It can be assumed without loss of generality that the origin of the object space Cartesian co 

ordinate system is at the pinhole C, and the origin of the two-dimensional image space co-ordinate 

system is at the point of intersection of the perpendicular to the focal plane at C with the image 

plane. The length of this perpendicular is designated/. By similar triangles, the image space co 

ordinates and object space co-ordinates are related by:

u 
x

V

y
2.1
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This relationship is often expressed in the homogenous co-ordinate form (Haralick and Shapiro, 

1993):

With:

~u~
V
s

=
~-f 000" 

0 -/ 0 0 

0 010

JC

y
z 
1

2.2

and

U = S.u

V = S.v

2.3

2.4

Equation 2.2 expresses the image co-ordinates in terms of the co-ordinates [U, V ,5]T of a two 

dimensional projective space, P 2 . The negative sign of the '/ terms in the equations show the 

inversion of the image that occurs under pinhole camera projection. If the object space co 

ordinates are expressed in terms of a three dimensional projective space, P 3 , then equation 2.2 can 

be written:

~u~
V
s

=
~-f 000" 

0 -/ 0 0 

0 010

'X' 

Y
z
T

2.5

Or in the matrix form:
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M = P.W 2.6

Equations 2.5 and 2.6 express a camera model that performs a projective transformation from the 

three-dimensional object projective space to the two-dimensional image projective plane. The 

advantage of expressing the camera model in this way is that equation 2.6 is a linear relation 

whereas the more intuitive expression of the model in equation 2.1 involves non-linear equations. 

The matrix P is the projection matrix. Changes to the image plane origin and scaling and to the 

world space origin can be accommodated by suitably modifying P. Given the co-ordinates (x, y, z) 

of a point in the three dimensional world, the resulting image space co-ordinates, (u, v), can be 

computed from equation 2.5 and equations 2.3 and 2.4.

Straight lines in the three-dimensional world plot to lines in the image plane (op cit. Haralick and 

Shapiro, 1993). The vector equation of a straight line passing through points FI = (xj, y,, z/)T and r2 

= fe y2, £2)T in the three-dimensional world is:

r = AT, + (l-A)r2 2.7

where ~k is some scalar for every point on the line. By applying equations 2.2 to 2.6 the equation 

for the straight line in image space corresponding to the line described by equation 2.7 is given by:

M ) f " 1 I M 7 I

= ft \ + d-77) 2.8vj UJ UJ
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Where:

77 = 2.9

2.2.2 2-D to 3-D inverse projection
Equation 2.5 with equations 2.3 and 2.4 allow the computation of the image co-ordinates of a given

three dimensional point. The inverse problem is that of determining the three dimensional co 

ordinates (x, y, z) of a given image point (u, v). The ray projecting (x, y, z) to (u, v) must pass 

through the point C = (0, 0, 0) and the point (u, v, -f). The vector equation of a line passing through 

two given points is given by equation 2.7 so that in Cartesian co-ordinates for this case:

X

y
vz y

= A
u
V-f, + (1-4)

u
0

,0,

= 4
u
V-f, 2.10

Therefore any point on the line defined by equation 2.10 projects to (u, v) and so, in contrast to the 

forward projection, the inverse projection of a point is a line. The perspective projection from 

three-dimensional object space to two-dimensional image space results in a loss of information. 

For a point, the information that is lost is the z co-ordinate or depth of the point.

2.2.3 Image plane to camera plane transformation

The projection matrix P, which has been described in section 2.2.1, has a world origin at the optical

centre C, and an image plane origin at the centre of the image plane and such that the line joining 

the image and world origins is perpendicular to both the focal and image plane. It has also been
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assumed that the u and v co-ordinate axis scaling is the same. In a real imaging system, it is 

convenient to have an image plane origin either at the bottom left of the imaged area (after allowing 

for inversion) for Cartesian co-ordinates or at the top left of the viewed image when dealing with 

the image in terms of matrix element addressing. In either case a shift of image co-ordinate system 

origin is required. A further complication with real cameras is that the individual sensing elements 

of the camera are not square so that the u and v axis scaling after sampling is different. Both of 

these complications can be dealt with by adjusting the projection matrix P. If the origin of the old 

co-ordinate system is at («o,v0) in the new co-ordinate system then the co-ordinates of a pixel in 

the new co-ordinate system (unew , vnew) are given in terms of the old co-ordinates, («<,;<* voW) by:

u —u + u 2.11 

And

V new = Vold + V 0 2 ' 12

The difference in scaling between the u and v co-ordinates can be allowed for by introducing two 

scaling factors ku and kv (Faugeras, 1993) so that equations 2.11 and 2.12 become:

u = k u + u 2.13

And:

vnew = kv vold + v 0 2.14

These changes can be incorporated into the projection matrix P, which becomes:
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P' =
'-kj 0 M0 0

0 -* / v0 0

00 10

2.15

The terms k,f and k/ can be written as OH and a*. The parameters 0^,0^, u0, and v0 are known as 

the intrinsic parameters of the camera as they depend only on the camera itself rather than its 

position or orientation. The parameter /is related to the focal length of the imaging system, but 

varies as objects at different distances are brought into focus.

The effect of moving the object space co-ordinate system origin from the optical centre and the 

orientation of the object space axes in space can be allowed for by a Euclidean rotation and 

translation. Such a rotation and translation is defined by a matrix (op cit. Faugeras, 1993) where:

And:

E =
r3i r 32*33* z 

V0 0 0 1,

rn = COS (ft COS K

rn = sin co sin 0 cos/r + cos fa sin K

r, 3 =-

r21 =   cos ̂  sin X"

r22 = - sin (0 sin </> sin K + cosa) cosrc

r23 = cos co sin (f> sin K + sin Q) cos K

2.16

r31 = sn

2.17

2.18

2.19

2.20

2.21

2.22

2.23
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r32 = — sin^ycos^ 2.24 

r33 = cosa)cos<p 2.25

Where the angle of rotation about the x-axis (tilt) is denoted to, the angle about the y-axis (pan) (|), 

and the angle about the z-axis (swing) K. The position of the old camera co-ordinate system origin 

(the optical centre, C) in the new co-ordinate system is (ta ty, tz). The new overall projection 

matrix P" is obtained by post-multiplying the projection matrix P7 by the matrix E to give:

P" =
<X u rn + u0 r33 a u tx 
(X v r23 + v0 r33 a v ty 2.26

The twelve parameters rih ta , ty, and tz are called the extrinsic parameters of the camera and depend 

on the position of the camera relative to the external co-ordinate system being used. There are, 

however, constraints on the matrices which can be written in the form of 2.26 (Horn, 1986), (op cit. 

Faugeras, 1993). These constraints arise from the orthonormality of the 3 by 3 submatrix defined 

by ru as given by equations 2.17 to 2.25 and have the result that the determination of the projection 

matrix P// from measurements of image and object co-ordinates becomes a non-linear problem.

2.2.4 Camera calibration
Camera calibration consists of determining the projection matrix P* and from this determining the

intrinsic and extrinsic parameters. Equation 2.26 has six unknown extrinsic parameters since the 

nine rotation parameters r,, are determined using equations 2.17 to 2.25 from the three angles co, <)>, 

and K. Together with the four unknown intrinsic parameters, there are therefore at least ten 

parameters to be determined in order to calibrate the camera. For extraction of depth information
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using stereo techniques, however, it is not necessary to determine all the extrinsic and intrinsic 

parameters. The parameters that need to be determined for stereopsis are discussed in section 2.3.

Estimation of the projection matrix begins with the measurement of N reference points in three 

dimensional space, MI =(*/,;y,,z,), together with their corresponding co-ordinates in the image plane 

nij = (uir v,) with (i=l...N). From equation 2.6 using P":

M = P".W 2.27

If the elements of the matrix P" are written in the form qu in order to simplify the appearance of the 

matrix, then P"becomes:

P" = <?22 <?23 #24 

432 433 434

2.28

The relationship between the image co-ordinates (M,, v,) and the object co-ordinates, (x;, yf zi) 

becomes:

s. «, = 4n*, + 0i 2 :v,- + luZi + 014 2 - 29

S. v. = q uxt + qri yi + q 23 Zi + q 24 2.30

2-31, = 031*,- + ^32^, + q^i + ^34

So that:

. = 0 2.32

^ + 023 Z < + #24 ~ 031 V/*i ~ ^32 V/>' I ~~ 033 V |Z,- ~ ^34 V , = 0 2.33

Equations 2.32 and 2.33 can be written as a linear homogenous matrix equation:
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A.q = 0 2.34

Where A is a 2N by 12 matrix dependent on JC;,y;,z,-. uh and v, and q is the 12 xl column vector of 

parameters qn ....qi4 . If A is of rank 12 then only the meaningless solution q = 0 exists. In general 

it can be shown (op cit. Faugeras, 1993) that if the number of calibration points N > 6 then rank 

A=ll, and a unique solution exists. However, as mentioned in section 2.2.3 above, not all values 

of qn fit the camera model of equation 2.26. Specifically the model of equation 2.26 requires that:

<7 3 , 2 + ?32 2 +*33 2 =l 2.35 

And:

07ll>4l2>9l3) A (tf31>932'933)*(tf21>922>923) A (#31'#32 ><?33> = 0 2.36

(where A and   indicate the vector and scalar products of the vectors (qn, qi2, qts) )

The second condition as expressed by equation 2.36 is not necessary if the projection matrix P" is 

modified so as to allow the axes of the image plane to be non-orthogonal. This introduces a 

parameter 6, which is the angle between the u and v axes in the image plane. The projection matrix 

becomes f"1 where:
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tan0

v0r31

a,,r12 +ii0 r32 .

tan#

v _
32

tan#

vr3333

au t x + u0 tz

tan0

flr v r—— - 
sin6>

2.37

With this camera model the parameters <?,, can be found by minimising:

min|| A. q|| 
q

Subject to the constraint of equation 2.35.

2.38

2.3 Depth recovery from multiple pairs of images

2.3.1 Description of technique
As outlined in section 2.2.2, knowledge of the depth of a point on an object in a viewed scene is

lost under perspective projection onto a two dimensional image. The depth information can be 

recovered, however, by taking two or more views of the same scene from different camera 

viewpoints whose relative positions and orientations are known. If the displacement of 

corresponding image points between such a pair of images is determined and using the known
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projection matrix then the depth co-ordinate and hence the three dimensional co-ordinates of the 

scene point can be recovered.

If a point W= (X,Y,Z,T)T expressed in homogenous co-ordinates is imaged by a camera from two 

known positions 1 and 2, using equation 2.27, assuming that the camera rows and columns are 

orthogonal, and if the motion from position 1 to position 2 is described by the Euclidean 

transformation matrix Ts the corresponding image plane co-ordinates for positions 1 and 2, MI and 

M2 are given by:

=P .W

M =P T.

So that:

M,-M2 = P"W-P"T,-W = P"(I-Tf )W

2.39

2.40

2.41

In general the transformation matrix Ts has the same form as the matrix E in equation 2.16. 

However, if it is assumed that the camera motion from position 1 to position 2 involves no further 

rotation relative to the axes but is simply a translation, then Ts is given by:

(\ 0 0 
0 1 0 A/,
001 Atz 
000 1

2.42

Then:
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I-T. =

'0 0 0-Af/ 

00 0-A 

0 0 0-A?Z 

000 0

2.43

0 0 0
000
000

Atx (au rn + u0r3l 
Atx (av r2l

f (ccu rl2 + u0r32 )-Atz (al

-A^r32 -A/z r33

u jz ' —z ^—H i j u jj '
 V0r32 )-Arz (orv r23 +v0r33 )

^'13+"0^3)1^" 
f,,r,, +vft r«) I 7

^

2.44

By careful mounting of the camera and the CCD array it can be arranged that the angles K,ca, and <p 

are zero or close to zero so that 2.44 becomes:

'U,
- v, f°

= 0
1°

0
0
0

0
0
0

- At a - At i
-Aty av -A/z i

-**

^fx}
*0 I y
"0 Z

AT
2.45

If it is further assumed that the camera is translated in the x-y plane only then Atz = 0, and:

AV 
AS

f o
0

0
0
0

0
0
0

'X 

Y 
Z 
T

2.46

Where: At/ = U 2 -Ut etc. As T= 1 and S = z, the change in the image co-ordinates is given by:

1
z

2.47
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Av =   aAt 2.48

Under the above assumptions camera motion along the jc-axis alone results in image plane motion 

along the w-axis. Similarly, motion along the y-axis results in image plane motion along the v-axis. 

By determining the shift of corresponding points in the image plane, under known camera motion, 

the depth, or z co-ordinate of those corresponding points can be determined using equations 2.47 

and 2.48. The shift in the image plane of corresponding points is often known as the 'disparity'. A 

two-dimensional disparity map for all points in the image plane can be built-up and converted to an 

equivalent two-dimensional depth map.

The assumption of a static scene with all image plane motion being the result of camera motion is 

known as camera egomotion. In principle, for the more general case of a non-static scene, two 

separate views using two cameras in different known relative positions could be acquired to give a 

snapshot disparity or depth map. If a sequence of such snapshots were acquired then the evolving 

depth map for a non-static scene could be generated.

2.3.2 The Epipolar Constraint
The situation for a pair of cameras in general relative position and orientation is shown in figure

2.2. A three-dimensional point M projects to mL in the left image plane RL and to mR in the right 

image plane RR . All the points M that could project to mL lie on the line joining mL to the optical 

centre CL and extending to infinity. Lines project to lines, so that the image of this line in the right 

image plane is a line. But this line in the right image is the locus of all possible points which 

correspond to the point mL in the left image i.e. mR must lie on the line which is called the epipolar
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line. This constraint is called the epipolar constraint. The right hand epipolar line for a point M 

must pass through the image of CL in RL, and this point is called the epipole of RR with respect to 

RL. The epipolar constraint is symmetrical, so that an epipolar line also exists in RL .

R

Epipolar Lines 
Figure 2.2: Epipolar geometry for a pair of cameras in general relative positioning and orientation

The epipolar lines lie on the intersection of the plane defined by M, CL and CR , called the epipolar 

plane, with the planes RL and RR . If the planes of RL and RR are arranged to be parallel to the line 

CL-CR then the epipolar lines in RL and RR are parallel. In particular if the conditions of section 

2.3.1 are met such that equations 2.47 and 2.48 hold with camera motion along the .x-axis only then 

the epipolar lines lie along the scanlines of the camera image detector array. This means that a 

search for corresponding points between two images need only be conducted along the scanlines.

If the camera motion is along the jc-axis only, but there exists some error in mounting the camera or 

the image sensing array such the angles of pan (p and swing K are non-zero then the image plane 

motion as the camera moves is given by:
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A\/ = 0 0 0 Ar,, (-orv cos(^) sin(x-) + v0 si 
i^AS } I 0 0 0 Atx sin(^)

U U U i-ii v \w,l \s\j&\^y/j w»^o\fv f ~r I*Q L3UJv- v/7/ I w

Z
r

2.49

In all the work with real images described in this thesis, the camera motion has been constrained to 

be along the x-axis only. The camera has also been mounted so that the camera image detector 

array plane coincides with the x-y plane of motion. However some small errors in swing and pan 

will still exist. From equation 2.49 an estimate of the effect of these small errors on the assumption 

that the image plane shift occurs along the detector scanline can be made. The change in w-axis 

position for pure jc-axis translation of the camera under the epipolar constraint is given by equation 

2.47. The corresponding movement along the v-axis is zero.

The equations 2.47 and 2.48 can be modified by dividing by the dimension of a sampled detector 

pixel in metres, p so that all measurements are in pixel units. If it is assumed also that the pixels 

are square so that Ou = Ov= -/. and that p = 4 x 10"5 m, z =lm, and/= 25 mm, which are typical 

figures for the camera used in the experiments described in the thesis, then from equation 2.47, Atx 

= 1.6 mm for one pixel shift along the M-axis. Assuming an error of 3 degrees in both swing and 

pan, equation 2.49 predicts that the true w-axis shift will be 1.007 pixels. The corresponding v-axis 

shift is -0.04 pixels. Under these conditions the assumption that it is only necessary to search along 

the image detector scanlines is weakened by approximately half a v-axis pixel in ten w-axis pixels.

2.3.3 Determining image plane motions
There are two main approaches to determining the image plane motions Au and Av in equations

2.47 and 2.48. These are the gradient-based or optic flow methods (Horn and Schunk, 1986) and
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the correlation-based or matching methods. Both these methods share very similar underlying 

assumptions. In the work described in this thesis, the correlation-based approach has been used.

The Depth from optic flow method (op cit. Horn and Schunk, 1986) aims to compute an 

instantaneous velocity vector for points in an image, from sequences of images starting with the 

first image. It also assumes that local brightness or intensity patterns within an image do not 

change between images, but simply change their position within the image frame. Thus if the 

brightness of an image point (u,v) at time t is represented by l(u ,v, ,t), then for a small time interval 

8? under this assumption:

du dv
I(u,v,t) = I(u + ——St,v + —— St,t + dt) 2.50 at at

As the time interval 5r tends to zero, then:

dl(u,v,t) du dl(u,v,t) dv dl(u,v,t)——-——— .—— + ——-———.—— + ——-——— = 0 2.51
du dt dv dt dt

Equation 2.51 allows the computation of the image velocities at a point u, v , given measurements of 

the spatial derivatives of the image intensity and the time derivative of the image intensity with the 

following restriction. From equation 2.51, it can be seen that along any line of constant brightness

dl dl
then the components of -r— and -r— along that line will be zero. Thus 2.51 does not allow a

du dv

determination of image velocity components along lines of constant intensity, but only along lines 

perpendicular to the lines of constant brightness. This is called the aperture problem. Because of
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the aperture problem equation 2.51 does not of itself allow a determination of the instantaneous 

image velocities, and an additional constraint is needed. In a method proposed by Horn and 

Schunk (op cit. Horn and Schunk, 1986) the additional constraint adopted is that the image 

velocities are smooth everywhere. The problem of determining the image velocities is then recast 

as a variational problem in which a functional E is minimised where:

E = —— dudv 2.52

The first integral represents the constraint of equation 2.51 modified to be in terms of the 

component of image plane velocity perpendicular to the line of zero brightness gradient, and the 

second integral term represents a smoothness constraint on the image velocities. The constant A. 

balances the importance assigned to the smoothness constraint and the constant intensity constraint

du
which is now effectively weakened to a minimal intensity change constraint. Solutions for -^— and

at

dv
-r—which minimise equation 2.52 are obtained by numerically solving the corresponding Euler
at

equations. The optic flow technique requires that the image be sampled sufficiently quickly to 

avoid aliasing. The chief weaknesses of the optic flow method is that the velocities at points of 

depth discontinuities are discontinuous and therefore the smoothness constraint is invalid.

The correlation-based approach aims to directly determine the displacements of corresponding 

points in two images. The Depth from Stereo method for two images can be summarised in the 

following steps:
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• Points in the two images that are both the perspective projections of a common three- 

dimensional point are identified. These image points are the corresponding points.

• The change (disparity) in the image co-ordinates of the image points is measured.

• The depth is recovered from the known relative positions and orientations of the camera 

viewpoints and the projection matrices.

As pointed out by (Marr, 1979), the main difficulty with the extraction of three-dimensional scene 

structure using the stereo approach is that of determining the correspondence of points. Correlation 

based methods attempt to establish correspondence of points by extracting a numerical measure of 

the difference between the brightness patterns in small patches centred on the point to be matched 

in the first image and the candidate matches in the second image. The assumption of (nearly) 

constant image brightness from image to image that is assumed in the gradient-based methods is 

also implicitly assumed in correlation-based methods. Some possible measures of match, measured 

over a matching patch A, between the brightness (or grey-scale) values of pixels h(u, v) in one 

image and g(u, v) in another image might be:

max ^ \h-g\ 2.53

ti A \h-g\, 2.54

\\ A (h-g)2 2.55

A normalised cross correlation can be derived (Rosenfeld and Kak, 1982) from 2.55 for discreetly 

sampled images, which is:
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corrcoeffdirectnomi = _ _T^———„ „ ~——— £1 2.56

This correlation measure is called the direct normalised cross correlation. If the grey-scales of the 

images h and g are normalised by subtracting the average grey level of the image from each pixel, a 

mean normalised match measure is generated:

corrcoeffmeannonn = , ^^ =-^—————'-———'- 2.57

Where (J. and vare the means and a,i the standard deviations of the images.

It is known that cross correlation of a patch in one image with candidate patches in another is the 

same as convolution with a filter that has the complex conjugate spatial frequency response to the 

spatial frequency response of the image patch to which a match is sought. This is exactly 

analogous to the matched filter from communication theory which maximises the signal to noise 

ratio under the assumption that the signal which is sought is corrupted by additive white noise. The 

matched filter, which has the complex conjugate frequency domain response to the image patch to 

be matched, has a space domain point spread function which is the same as that of the image being 

matched but rotated by 180° and shifted to the centre pixel of the candidate match patch. Because 

correlation is the same as 'flipped' convolution, convolution with such a point spread function is 

the same as correlation with the point spread function of the original image to be matched. This 

provides a signal to noise ratio justification for correlation as a matching measure.
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As is pointed out by (op cit Rosenfeld and Kak, 1982), signal to noise ratio is not the only criterion 

that can be used to define optimality for a matched filter. Another criterion that is suggested is to 

maximise the ratio of the expected value of the filter output at the matching point to the variance of 

the filter output taken over all points. This criterion produces an optimum filter whose point spread 

function contains derivatives of the brightness values for search spaces that are locally correlated, 

and filters whose point spread function are the same as the matched filter for highly uncorrelated 

search spaces. In effect this is the same as using the outline of the object to be matched as a 

correlation template. This argument leads logically to feature-based matching which is robust and 

stable to noise but which produces sparse depth information. A study of correlation-based 

matchers of the type discussed above is presented in (Burt et al., 1982).

A correlation-based matcher which implements equation 2.55 directly is the Sum of Squared 

Differences (SSD) matcher and this matcher is widely used in the literature, (op cit. Anandan, 

1984), (Anandan, 1989), (op cit. Matthies et al., 1989), (Corbatto et al, 1995), and (Trucco et al., 

1996). In the work described in this thesis the SSD matcher is used as the matching mechanism. 

The theory and performance of the SSD matcher is left to be examined in detail in Chapter 3

2.3.4 Tracking of image plane motion through a sequence of images
Under the assumption of planar x-axis motion the shift along the w-axis of a point in the image plane is

given by equation 2.47. From 2.47 it can be seen that for a point at some fixed depth the shift along 

the w-axis is proportional to the camera shift. For a fixed precision in disparity determination from the 

matcher, a larger camera shift gives better depth precision. However, the larger the camera shift, the 

greater is the range of possible candidate matches. This increases the chances of a false match, and 

therefore gross error in the depth measurement.
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An approach due to Matthies et at (op cit. Matthies et a/., 1989), and which has been adopted by 

other workers (Distante et al., 1992), (op cit. Corbatto et al., 1995), and (op cit. Trucco et al., 

1996). is therefore to track either the depth or the disparity through a sequence of images where the 

camera shift is very small between images. At each matching step the search space is constrained to a 

small range, given some knowledge of the range of depths encountered in the visible scene, which 

reduces the possibility of false match. However, at the end of a sequence of images the camera shift 

between the first and last image can be large, giving the potential for good depth precision. A Kalman 

filter (op cit. Kalman, 1960) is then used to track the evolution of the disparity or depth and to update 

the depth map after each matching step. The Kalman filter relies on the matcher giving an estimate of 

the uncertainty in each measurement of disparity (see section 2.4). At each matching step there also 

exists a measure of the depth uncertainty at each pixel. The equations for the scalar Kalman filter for 

disparity tracking used in the work with image sequences described in this thesis are:

Process Model:

(n + 1)
.d [n] + g[n+I] 2.58

Where d[n] = disparity in pixels at camera step (image) n. g[n} is zero mean Gaussian noise with

variance <jg2

Measurement Model:

= C.d[n +l] + V[n+J] 2.59
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M[n] = measured disparity. C = measurement constant = 1. v [n] is zero mean Gaussian noise of 

variance ov2 due to the measurement process.

Estimator Equation:

(n+1) , ^ (n+1) „
M[n+]] - C. ——— .dM J 2.60

Where jfnj = estimated disparity at step/n7;

Updated Mean square error:

(n+l} = ~ • K[n+l] • O v 2.61

Filter Gain:

ClP^—) .PM + &g 2 ] 
————--———————————-2——— 2.62

+ C2 .( ——— ).P[n] 
n
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The disparity, dM , for the step n = 1 is obtained after the first pair of images in a sequence are matched. 

The estimated measurement noise variance is supplied by the SSD matcher, and the mean squared error for 

each pixel being tracked is initialised to a high value.

2.4 Summary of Chapter 2

Chapter 2 has presented an overview of the stereo matching approach to depth recovery that is used 

in this thesis. The image formation process under the perspective projection has been examined 

and the requirements for camera calibration and the determination of disparity for depth recovery 

have been reviewed. The epipolar constraint and the effect of limiting camera motion to x-axis 

motion only have been discussed as simplifying assumptions for the problem of depth map 

determination. The two general approaches to measuring image plane motion have been outlined, 

and the use of correlation-based matchers in the stereo matching approach has been discussed. The 

SSD matcher has been introduced, and the use of the SSD matcher's potential to produce both sub- 

pixel estimates of disparity and estimates of the uncertainty in those estimates in a Kalman filter 

has also been discussed. The SSD matcher is used in this thesis to generate depth maps. Therefore, 

because the design of filters for depth map filtering, which is the main thrust of this thesis, depends 

in part on knowledge of the noise processes associated with the matcher, the SSD matcher is 

examined in detail in Chapter 3.
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Chapter 3 : Performance of the SSD matcher

3.1 Introduction

The analysis of the noise processes associated with the SSD sub-pixel matcher that is made in this 

chapter shows that the noise process associated with the SSD sub-pixel technique is a mixture of 

Gaussian and impulsive noise. It also shows that there exists a minimum backstop noise associated 

with the correlation-based matcher that is reasonably independent of the image statistics. 

Furthermore, it is established using examples that the measure of uncertainty in the disparity due to 

(Matthies et al., 1989) can be unreliable. Therefore, the filtering produced by the Kalman filter as 

outlined in section 2.3.4 is ineffective and spatial filtering of the depth map is required to remove 

the impulsive noise component. The chapter finishes by reviewing the relationship between 

filtering and regularisation of ill-posed problems, which provides a motivation for the use of filters 

based on fuzzy inferencing systems that is the primary subject of this thesis.

3.2 The Sum of Squared Differences (SSD) sub-pixel matcher

3.2.1 Introduction to section
This section discusses some of the ideas of previous workers on the use of the Sum Squared

Difference (SSD) matcher and its performance (Anandan, 1984), (Anandan, 1989) (op. cit. Matthies 

et al. 1989). These ideas have been used in this thesis in the algorithms that have been implemented 

to produce noisy depth maps, which have then been used to test the performance of fuzzy logic- 

based smoothing algorithms. Tests on the behaviour of the SSD matcher are presented in section 

3.3.
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3.2.2 The SSD Matcher as a sub-pixel disparity estimator
For the case of stereo matching under the epipolar constraint, the SSD matcher chooses the value of

disparity d (u, v) which in the continuous case minimises:

SSDc (d,u,v) = tt[L(u+h,v + k)-R(u + h + d(u,v),v + k] 2 dhdk 3.1
win

(Where L(u, v) and R(u, v) are the grey level values in the left and right images respectively.) 

In the discrete case for e.g. a 3x3 window, the matcher chooses d (i, j) to minimise:

h=+\k=+l 2
SSDd = X X [L(i + h>J + V- *(' + h + d(i, j\ j + *)] 3.2 

h=-\k=-\

(Where (h, K) are indices defining the matching patches)

Equation 3.2 can be used to give an estimate of disparity at pixel (/, j). It should be noted that the 

disparity d(i, j) can be a continuous quantity. However, in the case of a simple discrete matcher the 

values of disparity are quantised in whole pixels. The actual value of the SSD at the pixel i, j could 

be taken as a measure of confidence in the disparity obtained.

(op. cit. Matthies et al.. 1989) report an SSD matcher which not only gives a sub-pixel (continuous) 

estimate of disparity but also yields a measure of the uncertainty or variance in that estimate. Their 

argument, which is based on continuous quantities, goes as follows:

Starting from equation 3.1, it is assumed that the two images L and R are produced from some 

underlying true image F which is corrupted by uncorrelated Gaussian noise n of zero mean and 

variance on2 so that:
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L(M,V) = F(w,v) + «,(«, v) 3.3 

and

/?(M,v) = F(«-d(w,v),v) + «2 (M,v) 3.4 

(Note d(u, v) is the true disparity map)

Equation 3.1 can now be rewritten as:

SSD(d,u,v) =
v)-d(u,v) + h, v + k) + 3.5

k)- n2 (u + d(u, v) - d(u, v) + h,v + k)] 2 dhdk

Now assuming that d (u, v) - d(u, v) is small, i.e. .the estimate d is close to the true disparity d a 

Taylor expansion can be made :

F(u + d(uf v)-d(u,v)+h,v + k)= ^ 36 
F(u + h,v + k) + [d(u,v)-d(u,v)]F'(u + h,v + k)+...O(d-d) 2

dF
Where: F'(u + h,v + k) = ——

on

From 3.6 in 3.5:

SSD(d,u,v) =

3.7 

+ JJ[»i -n2 ] 2 dhdk
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Equation (3.7) is a quadratic in [ d (u, v) - d(u, vj] of the form

a(u, v)[d -d] 2 + b(u, v))[d -dj + c(u, v) 3.8 

Where:

a(u,v) = \F'(u + h,v + k) 2 dhdk 3.9

3.10 

c(u,v) = jj[n, - n.fdhdk 3.11

A sub-pixel estimate of disparity is obtained as follows. The SSD for a fixed patch size is evaluated 

for a range of possible disparity values in whole pixels. A quadratic is fitted to the integer disparity 

value giving lowest SSD and its two neighbours. These three points are in effect considered to be 

samples of the true underlying SSD error surface about the true minimum. The minimum point of 

this quadratic gives the sub-pixel estimate of disparity. In the paper of (op. cit. Matthies et al, 1989) 

each scan line in the pairs of grey-scale images is expanded by a factor of four using cubic 

interpolation. This is said to ".... improve precision..." as it gives a sub sub-pixel estimate of the 

disparity. A point not explicitly mentioned in the paper is that the interpolation process makes the 

resulting SSD error surface fit the quadratic ideal more closely as it makes the derivatives of the 

grey-scale finite. The main reason for the improvement in precision obtained due to expansion of 

the grey-scale image is discussed further in section 3.3.3. Expansion of the grey-scale images by 

interpolation is not used in the experiments described in this thesis as it also increases considerably 

the computational burden of computing the disparity.

The minimum point of the fitted quadratic, corresponding to the minimum SSD is given by:

3-4



Chapter 3: Performance of the SSD matcher

2.a(u,v).[d-d] + b(u,v)=Q 3.12

so that the estimate d which minimises the SSD is given by:

b(u,v)
The variance of the ————- term represents the residual error on the estimate of disparity, d . 

2a(u,v)

The coefficient a(u, v) is a sum of the squares of the derivatives of the underlying intensity image. 

It will be higher when the underlying image is 'busier' i.e. in areas of the image where there is 

higher information content. In uniform areas of the image this coefficient will be zero. The 

confidence (or inverse variance) in the disparity estimate is proportional to this coefficient. The 

variance in the best estimate is given by:

f\

, . var[£(M,v)] 2.<7nestimated variance = ——j-^——— = ——— 3.14
a (u,v) a(u,v)

/>.

where an is the variance of the noise in the image. Substituting in 3.8 for [d —d] from 3.13 the 

residual SSD at the minimum of the quadratic is given by:

5SD—< =i^rc(«- v) 3 - 15
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3.3 Investigations of matcher performance - Gaussian noise component

3.3.1 Introduction to section
This section investigates the performance of the SSD matcher under the idealised conditions of no

grey-scale image noise and no distortion of the grey-scale images. Under these conditions, the 

theory of the sub-pixel matcher described in section 3.2.2 should result in zero noise in the disparity 

map. However, in practice noise does occur in the disparity map even under these ideal conditions.

The images below (figure 3.1) are three random dot images. The bottom two images are the same 

as the first image but with offsets of 15 and 32 added to the grey-scale values of different areas of 

the image to create a step edge. The auto SSD vectors centred on column 5 of these three images 

are then plotted and shown in figure 3.2.

3x10 random dot image

3x10 random dot image with step

3x10 random dot image with step reversed

Figure 3.1: Three random dot images used for SSD matcher tests
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Figure 3.2: Plots of SSD versus shift for the random dot images of figure 3.1 

180

-3 -2-1 01 

Figure 3.3: Example of a quadratic fitted to an SSD error surface

Disparity=0.07386 

Variance=0.2809
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Figure 3.3 shows an example of a quadratic fitted to an SSD error surface. Because of the 

asymmetry of the SSD plot on either side of the true minimum the quadratic sub-pixel estimate is 

offset from the true value, which in this case equals zero pixels.

In order to test the 3x3 SSD matcher under ideal conditions the auto SSD of a large (64x64) random 

dot grey-scale image was calculated for each pixel (true disparity = 0) and a histogram plotted of 

the estimated disparities. The random dot image consisted of uniformly distributed pixel values of 

between 0 and 63 (It was generated using the MATLAB '63*Rand(64,64)' function). The 

resulting histogram is shown in figure 3.4.

-04 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Figure 3.4: Histogram of disparities for image pair with no added noise

The distribution of errors is in this case of a Gaussian form. The theory described in section 3.2.2 

does not predict such a Gaussian 'backstop' noise in the absence of additive noise or perspective
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and camera distortions in the image forming process. However (Corbatto et al., 1995), followed up 

in more detail in (Trucco etal.,1996), point out the existence of this backstop noise, which is a result 

of the quadratic interpolation scheme used to obtain the sub-pixel estimate. An alternative 

interpolation scheme based on heuristic assumptions is proposed in (op cit Trucco et al., 1996). 

Section 3.3.2 provides an explanation of the backstop Gaussian noise process observed in the 

quadratic interpolation case.

3.3.2 Analysis of Gaussian backstop noise
Consider the parabola fitted to the SSD surface generated by the SSD matcher as shown in figure

3.5. The position of the parabola minimum will vary partly as a result of true sub-pixel shifts under 

the assumptions of (op cit Matthies et al., 1989) and partly as a result of variations due to the 

statistical distribution of the SSD values on either side of the minimum. The analysis described in 

section 3.2.2 neglects the terms in the Taylor expansion containing higher order derivatives and 

these are the terms that describe the variations in the SSD values on either side of the minimum. 

This section provides an explanation of these variations based on an analysis of the effect of the 

grey-scale image statistics on the statistics of the SSD values and hence on the position of the 

minimum of the quadratic used to obtain the sub-pixel estimate of disparity. The analysis assumes 

a simple random uniform distribution of grey-scale values and that the grey scale values are 

independent, but nevertheless provides an insight into the disparity map noise that occurs with more 

complex grey-scale image statistics.

In the case shown below in figure 3.5, the true SSD minimum is at a disparity of zero pixels. In 

order to analyse the noise on the disparity measurement due to the distribution of the adjacent SSD 

values it is necessary firstly to analyse the effect of the SSD values S ls S2, S 3 at the integer disparity 

positions do-1, d0, do+1, on the position of the fitted quadratic minimum.
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Figure 3.5: Illustration of the effect of SSD variations about the minimum SSD value on the sub- 
pixel measure of shift using the method of Matthies et al.

The fitted quadratic is given by Lagrange's formula (Davis, 1963) for the interpolating quadratic, 

S=Q(d) through three points:

Q(d) = (d-d0 )(d-d0 -l) •s, + (d-d 0 +l)(d-d0 -l)
(d 0 -l-d0 )(d 0 -l-d0 -l) (d 0 -l-d 0 )(d 0 -l-d0 -l)

(d-d0 +l)(d-d0 )

After a rearrangement:

(d 0 -l-d0 )(d 0 -l-d0 -l)

[2d 0 (S,+S 2 +S3

S 3
3.16

3.17
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The value of d which gives the minimum of this quadratic, d^ is:rrunpos

S!-S3
•ninpos- 0 + 2(S]+S2+S3) 3 ' 18

It is assumed, without loss of generality, that do=0. In the absence of noise and perspective 

distortion in the original grey-scale images S2 can be set to zero. Equation 3.18 becomes:

hi order to determine the distribution of dmnpos it is necessary to determine the distributions of the 

sum-squared differences, S] and S2 . The simplifying assumption is made that the pixel grey-scale 

values are independent and uniformly distributed between 0 and 63 i.e. a uniform discrete joint 

probability distribution P^Ri.Rj). The probability distribution P(SD) for the square of the 

difference, SD of any two pixels, R] and R2 is given by:

P(SD)= Pf (R,,R 2 ) 3.20
R,.R2 eF

Where F is the set of points R,, R2 such that SD = (R] - R 2 ) 2

Implementing equation 3.20 using MATLAB the probability distribution of the squared difference 

of two pixels is obtained and shown in figure 3.6 below. The distribution is discontinuous because 

the grey level values are quantised into 64 possible levels.
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Squared Difference, SD
Figure 3.6: Probability distribution of the squared difference of two pixels with grey-scale values 
that are independent and uniformly distributed between 0 and 63

The probability distribution of the sum of two independent random variables each having 

probability distribution f] and f2 is given by the convolution of fi and f2 (Kendall and Stuart 1963). 

The probability distribution of the Sum of Squared differences (SSD) over a 3x3 patch, Sn is 

therefore given by the convolution with itself of the probability distribution shown in figure 3.6 

carried out nine times. The result of doing this is illustrated below in figure 3.7. It can be seen that 

the distribution of SSDs in this case tends towards a Gaussian distribution as would be expected 

from the central limit theorem. The thickness of the plotted line is due to the discontinuities of the 

plot of figure 3.6. After discrete convolution nine times, the number of data points is very large and 

therefore in order to implement the next stages of the calculation in MATLAB the probability 

distribution of the SSDs was sub-sampled and approximated as a continuous distribution. This sub- 

sampled probability distribution is shown in figure 3.8
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Figure 3.7: Probability distribution of the Sum of Squared differences (SSD) over a 3x3 patch.
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Figure 3.8: Sub-sampled probability distribution of the Sum of Squared differences (SSD) over a 
3x3 patch
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From equation 3.19, the sub-pixel disparity measure is given by:

3 - 21

Which can be written as

Diff

In order to find the probability distribution of the sub-pixel disparity it is necessary to find the 

probability distribution of the quotient:

3.23
2.Sum

This can be done in three stages. Firstly the joint Probability distribution of 'Sum' and 'Diff is

determined. Then the joint probability distribution of the Quotient, ———, is determined before
2. Sum

finally determining the marginal probability distribution of the quotient alone. An assumption made 

as an approximation is that the SSDs Si and S3 making up the sum and difference are independent 

random variables. This is not strictly true as the matching windows that generate Si and S3 overlap. 

For 3x3 windows the overlap area is a minority of the total area and the independence assumption 

is reasonable as a first approximation. However, the assumption of independence of Si and 83 is 

increasingly violated for larger matching windows. This increasing overlap area is illustrated in 

figure 3.9 for a 3 x 3 and a 5 x 5 matching window.

3-14



3X3 Matching window

Chapter 3: Performance of the SSD matcher

5X5 Matching window

)verlap area which 
violates independence

verlap area which 
violates independence

Figure 3.9: Illustration of increasing overlap area with matching window size, which causes 
violation of assumption of independence of SSDs Si and S2

Under the independence assumption, which is reasonable for 3 x 3 matching windows:

Sum = St +

So that:

5, = g} (Sum, Diff ) = 05. Sum + 05Diff 

S2 = g2 (Sum, Diff ) = 05. Sum - Q5Diff

3.24

3.25

3.26

3.27
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The joint probability, Pjsd of random variables such as Sum and Diffthat are related by equations of 

the form of 3.26 and 3.27 to random variables such as Sj and S3 is given by (op cit. Kendall and 

Stuart 1963):

Pjsd (Sum, Diff) = Pjss (Sl , S3 ).\Jgg (53 ). Jgg \
= Ps (05. Sum + 05Diff ). Ps (05. Sum - 05. Diff)

3.28
88]

where Pj(.) and Ps(.) are the joint and marginal probability distributions and Jgg is the Jacobian:

= det 3Sum 3Diff

3Diff

= -05 3.29

The joint probability distribution of Sum and Diff was calculated by implementing equations 3.28 

and 3.29 in MATLAB and using the previously calculated probability distributions for the SSDs 

PS(SJ. This joint probability distribution is shown in figure 3.10.
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20000

Sum of SSDs values ° -20000 Difference of SSDs value

Figure 3.10: Joint probability distribution of sum and difference of SSDs

Now all that remains is to derive the marginal probability distribution of the quotient

Diff
2(Sum) "

Define two new random variables:

So that:

« = Diff
2Sum 

Y2 = Sum

iff = 2Yl Y2 =hl (Yl ,Y2 )

3.29

3.30

3.31
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The joint Probability distribution of Y! and Y2 ,Pjyy(Yi,Y2), given by:

Pjyy(Y,,Y2 ) = Pjgd (2.Y1 Y2 ,Y2 )|J hh | = 2Y2 .Pjsd (2.Y,Y2 ,Y2 ) 

Where the Jacobian J^ is:

3.32

Jhh =
dh

3.33

And PjS d is determined using equation 3.28.

The joint probability distribution Pjyy is shown in figure 3.11. The marginal probability distribution

of the quotient, Pmy, which is the probability distribution of the sub-pixel disparities is given by:

Y,=+~

Pmy(Yi)= 3.34

This marginal probability distribution is shown in figure 3.12. Figures 3.13 and 3.14 show an actual 

histogram of sub-pixel disparities for a random dot image and the predicted distribution under the 

above assumptions plotted to the same disparity scale for comparison. It can be seen that even with 

the approximations and assumptions made in deriving the predicted distribution that the agreement 

between the prediction and the measured distribution is reasonably close, with a similar spread in 

values.
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Figure 3.11: Joint probability distribution of quotient —^— and sum of SSDs
2.Sum
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Figure 3.12: Predicted probability distribution of sub-pixel disparities for a uniformly distributed 
random dot image
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Figure 3.13: Histogram of sub-pixel disparities for a uniformly distributed random dot image
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Figure 3.14: Predicted distribution of sub-pixel disparities for a uniformly distributed random dot 
image

Figures 3.15 and 3.16 show the actual and predicted distribution of disparities for a 5 x 5 matching 

window. In this case the prediction under the same assumptions as above does not agree as well 

with the actual measured distribution of disparities. However the prediction of a narrower 

distribution for a larger window is correct. The fact that the predicted distribution for the 5 x 5 

window is wider than the measured distribution is due to the violation of the assumption that the 

SSDs on either side of the parabola minimum are independent. Section 3.3.3 examines the way that 

the width of the backstop distribution of disparities depends on the distribution of brightness values 

in the original images being matched.
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Figure 3.17: Actual distribution of disparities for a uniformly distributed random dot image using a 
5x5 matching window
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Figure 3.18: Predicted distribution of disparities for a uniformly distributed random dot image using 
a 5 x 5 matching window
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3.3.3 Effect of grey scale image statistics on the distribution of disparity values
The approach used in section 3.3.2 to predict the distribution of disparities for a uniformly

distributed grey scale image can be used to predict the distribution of disparities for grey scale 

distributions that are not uniform. The predicted and measured distributions of disparities for a 

Gaussian distributed grey scale image with a standard deviation of 5 and matched using a 3 x 3 

window are shown in figures 3.19 and 3.20. For the cases of independent grey scale pixel values 

considered here, the distribution of disparities is found to be substantially independent of the 

statistics of the grey scale image in the absence of noise. However, the width of the disparity 

distribution depends on the matching window size. Larger matching windows give rise to narrower 

disparity distributions.
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Figure 3.19. The predicted distribution of disparities for a 3 x 3 matching window and a Gaussian 
distributed grey scale image with a mean of 32 and standard deviation of 5
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Figure 3.20. The measured histogram of disparities for a 3 x 3 matching window and a Gaussian 
distributed grey scale image with a mean of 32 and standard deviation of 5

The width of the distribution of disparities, and hence the precision in the disparity measurement for 

a fixed window size, is a fixed fraction of the smallest jump in disparity presented before fitting the 

quadratic to the error surface. Thus in the example shown in figure 3.20, the standard deviation of 

the disparities is 0.1 of a whole pixel. In the histogram of disparities shown in figure 3.21, the grey 

scale image has been expanded by cubic interpolation before matching, as was done by Matthies et 

al. (pp. cit. Matthies et al. 1989). Although the shape of the histogram is no longer Gaussian in 

form, the width of the histogram measured by the extent of its tails and indeed the estimated 

standard deviation, as a fraction of the smallest jump in disparity is the same as that of figure 3.20. 

However this smallest jump is now only a quarter of a pixel. This is why grey-scale image 

expansion is successful in improving precision, as it reduces the effect of the backstop noise 

introduced by the quadratic method of determining sub-pixel disparity. However, this grey-scale
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expansion considerably increases the computational load needed to compute a match. The reason 

for the interesting tri-modal shape of the disparity histogram, resulting from the interpolation 

between independent Gaussian distributed grey scale values is not pursued here.

120

100

80

60

40

20

0
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 

Sub-sub-pixel disparity (X0.25)
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Figure 3.21. The measured histogram of disparities for a 3 x 3 matching window and a Gaussian 
distributed grey scale image with a mean of 32, standard deviation of 5, and expanded by a factor of 
four using cubic interpolation.

3.3.4 Transformation of disparity map noise to depth map noise
The discussion of noise above is confined to the noise in disparity maps. The distribution of noise

in the corresponding depth map is corrupted by a transformed version of this noise. From equation

2.47:

z = 3.35
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If the probability distribution function of the disparities is PD(Au), the distribution of the depths is 

given by (op cit. Kendall and Stuart 1963):

^ P-z )\ ^ p.z ) p.z'

For a mean |4. Gaussian distribution of disparity the distribution of depths becomes:

3.36

This distribution is illustrated in figure 3.22 for a camera with/= 25mm, p = 4 x 10~5 m, a camera 

translation Atx = 4 mm, and a mean disparity of 2.5 pixels with standard deviation 0.1 pixels (cf. 

Figures 2.15 and 2.16). The distribution of 3.22 is skewed, although for the particular camera 

parameter values listed above the distribution is still Gaussian in character (thin tailed and 

reasonably symmetric). However for objects at 2 m depth and therefore a mean disparity of 1 pixel, 

the same standard deviation of disparity values results in the depth distribution illustrated in figure 

3.23. The same Gaussian distribution of disparities now results in a very broad and skewed 

distribution of depths. This illustrates the importance of minimising the Gaussian component of 

error in disparity maps, and that depth map noise is not Gaussian distributed, even when the 

disparity map noise is Gaussian. The shape of the depth map noise distribution is also strongly 

dependent on the camera parameters and is a function of the depth values.
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Figure 3.22: Probability distribution of depths corresponding to a Gaussian distribution of 
disparities for a camera with f = 25mm, p = 4 x 10"5 m, a camera translation Atx = 4 mm, and a mean 
disparity of 2.5 pixels with standard deviation 0.1 pixels
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Figure 3.23: Probability distribution of depths corresponding to a Gaussian distribution of 
disparities for a camera with/= 25mm, p = 4 x 10~5 m, a camera translation Atx = 4 mm, and a mean 
disparity of 1.0 pixels with standard deviation 0.1 pixels
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3.4 Impulsive noise component

The following section demonstrates the existence and character of an impulsive noise component 

that corrupts disparity maps generated by the SSD matcher. Figures 3.24 to 3.29 show the 

distribution of errors for the auto SSD of a 64 x 64 random dot image with uniform distribution of 

grey scale values, but with progressively more additive white Gaussian noise added to the second 

image in the pair before matching.

0
-0.4 -0.3 -0.2 -0.1 0 0.1

Disparity

Figure 3.24: Histogram of disparities resulting from a grey-scale image matched with itself (auto 
SSD) after Gaussian noise of variance =1.0 is added to the grey-scale image
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Figure 3.25: Histogram of disparities resulting from a grey-scale image matched with itself (auto 
SSD) after Gaussian noise of variance =2.0 is added to the grey-scale image
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Figure 3.26: Histogram of disparities resulting from a grey-scale image matched with itself (auto 
SSD) after Gaussian noise of variance =4.0 is added to the grey-scale image
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Figure 3.27: Histogram of disparities resulting from a grey-scale image matched with itself (auto 
SSD) after Gaussian noise of variance =8.0 is added to the grey-scale image
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Figure 3.28: Histogram of disparities resulting from a grey-scale image matched with itself (auto 
SSD) after Gaussian noise of variance = 16 is added to the grey-scale image.

3-30



Chapter 3: Performance of the SSD matcher
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Figure 3.29: Histogram of disparities resulting from a grey-scale image matched with itself (auto 
SSD) after Gaussian noise of variance = 32 is added to the grey-scale image

It can be seen that initially the added image noise has very little effect on the distribution of errors. 

For low additive image noise the noise on the disparity is dominated by the backstop noise of the 

SSD sub-pixel matcher. As more image noise is added however (figure 3.27) then the distribution 

of errors starts to contain outliers. The position of the minimum SSD shifts from the correct zero 

offset position to ± 1 pixels, ± 2 pixels, etc. The quadratic is then fitted to these grossly errored 

positions. The outliers take the form of clusters of errors about integer pixel values. The 

distribution of the clusters on their own are Gaussian about each integer error for the same reason as 

the main lobe of the error histogram is Gaussian, but the errors are centred on an incorrect mean 

value. The errors appear as impulsive noise in the disparity and hence in the depth map produced 

by the SSD matcher. Figure 3.30 shows the effect of this impulsive noise on a disparity map. The 

true disparity map for figure 3.30 is a smooth plane, but the plane is corrupted after matching both
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by Gaussian noise, making it rough, and by impulsive noise, which produces the spikes on the 

plane.

20

Pixel index 0 0 Pixel index

Figure 3.30: Disparity map corrupted by impulsive noise as a result of mismatching due to Gaussian 
noise of variance = 16 in the grey-scale images from which the depth map is derived

Figures 3.31 to 3.38 show examples of the effect that adding noise to the second image of a pair of 

grey-scale images that are being matched on the position of the fitted quadratic. The first plot of 

each pair of plots is the SSD plot and fitted quadratic with no noise added to the second image 

being matched. The second plot shows the SSD plot and fitted quadratic when noise is added to the 

second image. Figures 3.31 and 3.32 show a comparatively small effect of the added noise on the 

disparity. Figures 3.33 and 3.34 show a large effect, resulting in a mismatch and noise spikes. The 

other figures up to figure 3.38 show similar effects. The estimated error using the approach of (op 

cit. Matthies et al.., 1989) is also shown on the plots, showing that this error estimate is unreliable 

(see also section 3.5).
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Figure 3.31: Plot showing SSD versus shift and the best fit quadratic for a pair of grey-scale images 
being matched with no noise added to the grey-scale images
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Figure 3.32: Plot showing SSD versus shift and the best fit quadratic for a pair of grey-scale images 
being matched with noise variance=16 added to the grey-scale images
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Figure 3.33: Plot showing SSD versus shift and the best fit quadratic for a pair of grey-scale images 
being matched with no noise added to the grey-scale images
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Figure 3.34: SSD versus shift and the best-fit quadratic with noise added to the grey-scale images 
before matching showing a mismatch, which results in a noise spike
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Figure 3.35: Plot showing SSD versus shift and the best fit quadratic for a pair of grey-scale images 
being matched with no noise added to the grey-scale images
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Figure 3.36: SSD versus shift and the best fit quadratic with noise added to the same grey-scale 
images as used to produce figure 3.35
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Figure 3.37: Plot showing SSD versus shift and the best fit quadratic for a pair of grey-scale images 
being matched with no noise added to the grey-scale images.
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Figure 3.38: SSD plot corresponding to figure 3.37 with added noise, resulting in a mismatch
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Figure 3.39 plots the percentage occurrence of impulsive noise in a disparity map versus signal to 

noise ratio in the grey-scale images used to generate the disparity map. The true disparity is zero 

pixels and an impulse is deemed to have occurred when the quadratic is fitted around any non-zero 

disparity value.

5 10 15 20 25 30 
Overall Greyscale Image Signal to Noise Ratio

Figure 3.39: Percentage occurrence of impulsive noise in a disparity map versus signal to noise ratio 
in the grey-scale images used to generate the disparity map

In practice, noise added to the images is only one source of distortion that weakens the implicit 

constant brightness assumption of correlation based matching. Other distorting effects are changes 

in illumination, unmodelled lens distortions, perspective distortion, occlusion, and de-occlusion. 

The effect of noise illustrated above gives a qualitative description of these other distortion effects 

on the SSD matcher output.
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3.5 Uncertainty estimate

Equation 3.14 can be used as the basis for an estimate on the uncertainty in a disparity 

measurement, and hence the uncertainty in the corresponding depth map. This uncertainty measure 

is needed by the Kalman filter described in section 2.3.4. It is not clear from (Matthies et al., 1989) 

whether that work used a fixed value for an2 in equation 3.14 It is also stated there that the 

coefficient c(u, v) is a chi-squared distributed random variable with mean cn2. It is suspected that 

the number of degrees of freedom of this chi-squared distribution is too low for the mean to be used 

as a means for evaluating an2. In practice, in some cases the coefficient of the squared term in the 

SSD plot, a.(u, v) is large, but the residual SSD at the minimum is also large. This gives a low 

estimate of uncertainty, which is fed to the Kalman filter, when a large residual SSD estimate at the 

minimum argues that the estimate of disparity is poor. An estimate of uncertainty based on three 

heuristic measures has been proposed (op cit Corbatto et al., 1995), and in more detail (op cit 

Trucco et al., 1996). These measures are the absolute SSD error, a measure of irregularity of the 

SSD plot about the minimum, and a measure of the peak to peak local variation. The three 

measures are combined to give a quasi variance estimate. In the work described in this thesis, 

however, the uncertainty measure of equation 3.14 using a fixed on2 is fed to the Kalman filter 

where it is used since there is some more theoretical basis to this uncertainty measure than the more 

heuristic approach.
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3.6 Ill-posedness, regularisation, and filtering of disparity maps

3.6.1 Ill-posedness and stereo matching
Sections 3.3 and 3.4 examine the SSD matcher from an additive noise viewpoint. However the

behaviour of the SSD matcher can be viewed from a different perspective. Many inverse problems 

such as the recovery of depth information using stereo matching fall into the mathematical class of 

ill-posed problems (Poggio et al. 1985), (Terzopoulos 1986(b)), (Bertero et al. 1988). Ill-posed 

problems are those which satisfy at least one of the following conditions:

• A solution does not exist (non-existence)

• More than one possible solution exists (non-uniqueness)

• The solution does not depend continuously on the data (non-continuity)

hi general the SSD matcher can satisfy any of the above conditions as illustrated in the following

examples:

• hi an area of no texture the matcher cannot find a minimum SSD value (non-existence)

• In an area of a repeating pattern there will be more than one equal minimum (non- 

uniqueness)

• Where noise is added to the grey-scale image pair being matched or where distortion due

to perspective occurs the output of the SSD matcher changes in a discontinuous way. 

It is the occurrence of the last of these conditions that leads to the impulsive noise that has been 

observed and discussed in section 3.4. It may be that impulsive noise is a hallmark for processes 

involving ill-posed problems for which the solutions are unstable to noise.

3.6.2 The role of prior assumptions in regularisation
The classical way of dealing with ill-posed problems is to impose additional constraints to the

problem formulation such that the best solution is chosen given uncertain and ambiguous
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measurements. These additional constraints express a priori assumptions about the form of 

acceptable solutions. These a priori constraints can be expressed in variational terms.

In the case of depth and disparity maps the most commonly used constraint is that of local 

smoothness. In a typical viewed scene the change of disparity per pixel or disparity gradient for the 

majority of pixels is low. Thus, apart from at a finite number of discontinuities the disparity 

gradients and hence the depth gradients are limited. (Hakkarainen et al., 1991) and later (Kanade 

and Okutomi, 1994) review the development of local smoothness constraints from the frontoparallel 

constraint of (Marr and Poggio, 1976), to the disparity gradient limits of (Crimson, 1985) and 

(Pollard et al., 1985). (op cit Kanade and Okutomi, 1994)use a constraint that includes a measure of 

the proximity of pixels as well as the disparity gradient between them.

3.6.3 Equivalence of regularisation to filtering
The application of regularising prior constraints to ill-posed problems can be regarded as equivalent

to a filtering process when those constraints are expressed in variational terms. That this is so is 

demonstrated by the following argument of (op cit. Terzopoulos 1986(b)). Consider a one- 

dimensional signal, c(x) which is the noise-corrupted output signal of an unconstrained process 

(e.g. the raw output of an SSD sub-pixel matcher). A simple smoothness constraint would be to 

look for a solution s(x) which over the domain of the signal (all x) minimised the integral of the 

weighted sum of the square of the first derivative of the solution and the squared difference of the 

solution and original noisy signal. This results in the following functional to be minimised:

A

-[s(x)] dx 3.38

The Euler-Lagrange equation whose solution for s(x) minimises E in 3.38 is:
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,2
-— 
dx2 3.39

Taking the Fourier Transform of 3.39 gives:

)-C(a))-A(j(orS(<Jt)) = 0 3.40 

Which is the low pass filter form:

CYflrt
3.41

So that the process of minimising the functional 3.38 is equivalent to filtering the corrupted data 

with a low pass filter. As is pointed out by (op cit. Terzopoulos 1986(b), constraints that modify 

their behaviour depending on the form of the signal do not have a linear form and a frequency 

domain representation like equation 3.41. However, there is a general correspondence between 

filtering and the regularisation of an ill-posed problem, although the filters may be complex and 

non-linear.

Most types of filtering or signal estimation processes involve the implicit application of general 

constraints that are based on models of the true underlying signal and noise process. Where the 

model is tightly applied then high efficiency or even optimality is obtained for signals and noise 

processes that fit the model. Where the assumptions of the model are violated, however, the 

performance can degrade dramatically. Looser signal models are more robust. The question that 

this thesis explores is whether a filter framework based on fuzzy logic can effectively apply broad 

regularisation constraints in an explicit and robust manner. The problem of depth map filtering,
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viewed as a regularisation problem, requires a class of filters that can capture complex and 

imprecise regularisation constraints. The ability of fuzzy systems to capture complexity and 

uncertainty motivates the question of their utility as a basis for such a class of filters.

3.7 Summary of Chapter 3.
The purpose of this chapter has been to examine the noise processes that arise from the generation

of disparity and depth maps using the Sum Squared Differences matcher technique. The Sub-pixel 

matcher of (op cit. Anandan, 1984) and (op cit. Matthies et al, 1989) has been described, and the 

noise processes associated with this matcher have been examined. It is shown that the noise 

processes are a mixture of (almost) Gaussian noise and impulsive noise. The existence of a 

'backstop' Gaussian noise for this type of matcher, not discussed in either (op cit. Anandan, 1984) 

(op cit. Matthies et al., 1989) and demonstrated but not analysed in (op cit. Trucco et al., 1996), is 

established and explained. This backstop noise is in addition to any Gaussian noise induced by 

noise in the original grey-scale images and is associated with the quadratic-fitting sub-pixel 

matcher. The chapter has also reviewed the errors associated with stereo matching from the 

perspective established by (op cit. Poggio et al. 1985) of the ill-posed nature of stereo matching by 

correlation. The equivalence in principle between filtering of signals and the application of 

regularisation to ill-posed problems is also briefly reviewed. This equivalence is a major motivation 

for adopting the approach taken in this thesis of using filters based on fuzzy logic. In such filters the 

stabilising prior assumptions applied to regularise the ill-posed problem can be explicitly encoded 

in the fuzzy inferencing system. The next chapter, Chapter 4, reviews other major approaches which 

can be used to filter depth or disparity maps corrupted by mixed noise.
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Chapter 4 : Major Current Approaches to Filtering and Smoothing

4.1 Introduction

The noise processes associated with the SSD matcher have been discussed and highlighted in 

Chapter 3. These noise processes result in a mixed Gaussian and impulsive noise corrupting the 

disparity map, and this mixed noise is further transformed on conversion of the disparity map to a 

depth map. The impulsive component of the noise is associated to the fact that stereo matching is 

an ill-posed problem, which requires regularisation in order to obtain stable solutions. The 

correspondence between regularisation and filtering was discussed in section 3.6.3. This chapter is 

a review of existing approaches that could be taken to filter either the two-dimensional disparity or 

the two-dimensional depth map. The review serves three purposes.

One purpose is to establish the relationship of the fuzzy filter approach adopted in this thesis to 

existing methods. In particular the unifying concept is suggested that filtering processes 

correspond to the mathematical idea of a function. Since it has been shown (Wang, 1992), (Kosko, 

1992), and (Kosko, 1994) that fuzzy inferencing systems can be universal function approximators, 

then fuzzy inferencing systems should in principle be able to approximate any filtering process that 

can be described as a function. Another link between the fuzzy filter approach and existing 

approaches is that fuzzy filters provide an alternative description of prior assumptions about the 

underlying image being filtered to the prior statistical distribution used by regularisation-based 

techniques.
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The second reason for examining existing filter methods is that the fuzzy logic based approach to 

filtering taken in this thesis allows the possibility of the integration of two or more of these existing 

filtering techniques within a unified filter architecture.

The third purpose for reviewing different approaches to filtering is that three existing techniques, 

the Wiener, moving average, and median filters are used as benchmarks with which to compare the 

performance of the novel filters described in this thesis

4.2 Black box model of a digital filter.

hi the filters described in this thesis, all inputs or outputs are regarded as real numbers. It is 

assumed that these real numbers are represented within computations as floating point numbers of 

an adequate precision to the task in hand. The real numbers are samples drawn from a 'signal' 

which may be one or two-dimensional and which represents some real world property such as depth 

in a scene. Within the thesis the term 'filter' is viewed in a broad sense as a 'Black Box' process 

which maps an input vector of real numbers into a single output value. The single output value is 

used to replace one of the input vector values. The input vector is arranged to consist of samples of 

the signal drawn in some (usually symmetrical) way from the neighbourhood surrounding the input 

value to be replaced. The neighbourhood is referred-to as the 'filter window'. Figure 4.1 shows 

how an input vector can be extracted from a two-dimensional image signal for presentation to a 

filter using a square 3x3 filter window. Other possible filter window shapes are rectangular and 

cross-shaped.
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Filter Window

Input Value to 
be replaced

Signal
e.g. depth map

12 9 8 8 12 7 6 9 10

Possible Input 
Vector

Figure 4.1: Extraction of input vector from image

Figure 4.2 illustrates the notion of a filter as a Black box. For a filter, the mapping performed by 

the Black box is a function in N dimensions from a domain of real numbers onto a one-dimensional 

co-domain as the correspondence from domain to co-domain has to be unique. Moreover for the 

type of filters considered in this thesis the domain and co-domain are the same set (generally 

positive real numbers), therefore the Black box satisfies not only the mathematical definition of 

function (Brainerd et al, 1967) but also that of an operation.
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10 9 6|7 12 8 8 9 12

I
Black Box 

Filter

Figure 4.2 Black Box View of filter

In summary, a general filter is essentially a function. For the problem domain addressed in this 

thesis the function also needs to be an operation. Since the idea of a function is intimately tied to 

that of sets, it is observed that a generalised view of filters can be formulated in terms of set theory.

4.3 Linear Filters

4.3.1 Introduction
Linear filters are the most commonly used class of digital filter. Linearity implies that the function

performed by these filters is independent of the amplitude of the input signal. Strictly linear filters 

are temporally or spatially invariant. Those filters that vary with time or space are termed 

adaptive. Since in general adaptive filters alter their behaviour in response to changes in the 

incoming signal such filters are often not strictly linear, but may be locally linear.
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4.3.2 FIR and IIR low pass filters
A class of non-recursive filters that is frequently used for signal smoothing is the Finite Impulse

Response (FIR) class of filters. The diagram for a discrete FIR filter operating in one dimension is 

shown in figure 4.3:

ut————— *• yfi-n-
1]

\

y[i-n-2]

\

y[i

i

-i] y

i

[i]

Output x [i]

Figure 4.3: General one-dimensional FIR filter

The FIR filter generates an output x [i] which is the weighted sum of the present and past inputs,

y[i] to y[i-n]. The vector of weights, h[i] is the impulse response of the filter. The output is given

by:

n-l
4.1

t=o
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In the two-dimensional case, where each input pixel value in an n x m rectangular filter window is 

represented by y(k,l), each output value is x[i,j], and the impulse response is replaced by the Point 

Spread Function, h(k,l) the equation 4.1 becomes:

n-\ m-\

4.2

In this case the Finite Point Spread (FPS) filter replaces the centre pixel value by a weighted sum

of its neighbours. For the case where all the h[k,l] are equal to —— the filter becomes a moving
nm

average filter. Both the FIR and FPS filter are linear filters and have a corresponding one and two- 

dimensional frequency domain representation respectively. A linear filter is effective in removing 

noise if it attenuates strongly at those frequencies where the noise has a high level and the signal a 

low level. At frequencies where the converse is the case the filter should have low attenuation. 

Such linear filters operate on the a priori assumption that the signal and the noise can be 

distinguished in the frequency domain. Where the signal and noise frequency components overlap 

in the frequency domain the filter must make a compromise. A type of linear filter that uses a 

priori knowledge of the signal and noise statistics to optimise this compromise is the Wiener filter 

(Wiener, 1949).

FIR filters are non-recursive filters. If the filter output is a linear function of both the past inputs 

and outputs of the filter the filter becomes an infinite impulse response (IIR) filter. Such filters are 

computationally more efficient. However it is also more difficult to ensure stability of the filter, 

particularly for two-dimensional signals. Since the fuzzy filters presented in this thesis are based
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on a non-recursive type of architecture DR filters are not discussed further, although a recursive 

architecture could be used within the framework of the fuzzy filters described in Chapter 6.

4.3.3 Optimal Linear niters - Wiener Filters
The Wiener filter is an optimum non-recursive linear estimator (op cit Wiener 1949). (FIR/FPS

filter) for a Gaussian signal corrupted by Gaussian noise. The criterion for optimality is minimum 

mean squared error. In the following description the true pixel values at position indices i,j are 

represented by x[i,j], the noise corrupted pixel values by y[i,j] and the estimate produced by the 

filter as x[i,j]. E{.} is the expected value operator. The mean squared error, E, to be minimised is 

given by:

4.3

The estimate x[i, j] is given by equation 4.2. The minimum mean squared error will occur when 

all the partial derivatives of the mean squared error with respect to the point spread function 

coefficients are set to zero so that:

/i-l m-l

de , <?]}=<> 4.4
(n-l) , (m-l) /= ————

which can be re-written as an orthogonality constraint for all pixel pairs [ij] and fp.qj:

4-7



Chapter 4: Major current approaches to filtering and smoothing

4.5

It can also be written as:

B—1 m— 1~T~

) , (TO-D

If the true image x[i,j] and the observed image y[p,q] are jointly stationary then the cross 

correlation depends only on the difference between the image co-ordinates, i-pj-q.

In the case of additive Gaussian noise of mean zero which is uncorrelated with the uncorrupted 

signal:

[i,j] 4.7

and:

,q}} = E{x[iJ].x[p,q]} = R^iJ) 4.8

Where R^ (/, _/) is the autocorrelation of the uncorrupted signal. Also:
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n-\ m-\

n-1 m-1

{ J J ^w (*['-*» y -/]+»[/- *, ./ -/]).(*[/>,?] +«[/>,?]) >} 4.9
fc= (n-l) /= . (m-l)

2 2

n-1 OT-1

By the Wiener-Khinchine relation, the autocorrelation and the power spectral density of wide sense 

stationary processes are Fourier transform pairs, therefore taking the discrete Fourier transform of 

equation 4.9 above and rearranging for the two dimensional frequency transfer function of the 

filter, H[(0k,(0i]:

This is the frequency domain description of the Wiener filter for a signal corrupted by uncorrelated 

Gaussian noise. In parts of the spectrum where the noise power density is small compared to the 

signal power density this filter has a gain of unity. In parts of the spectrum where the noise PSD 

dominates the filter has a small gain. If the noise PSD is small at all frequencies then the filter has 

a gain of unity at all frequencies and a corresponding point spread function which is a Dirac delta 

function at the origin, i.e. each pixel value is left unchanged. For the case of a true signal which is 

a constant flat surface corrupted by zero mean Gaussian noise, the filter frequency domain response 

is a Dirac delta at the frequency origin and zero elsewhere. Therefore, for this case, the Wiener
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filter point spread function becomes an averaging operation over all pixels. This averaging 

operation can be approximated by a moving average filter. Thus a moving average filter implicitly 

assumes a locally flat surface depth map model and zero mean Gaussian noise. Locally flat depth 

map models contain most energy at low spatial frequencies. A common statistical model used for 

images and depth maps is a Markov process (Geman and Geman, 1984), (Li, 1994), in which the 

conditional probability of a pixel taking a certain value depends only on the values of its 

neighbours (Poggio et al.. 1985). A first order Markov field has a power spectral density given by:

4.11
la.}]

where K ,ak, and <X] are constants. For small 0*. and oci this PSD model tends towards the spike at 

the origin, and the optimal filter tends towards a moving average filter.

Example

Figure 4.4 shows the simulated depth map "cake2" and figure 4.5 shows "cake2" corrupted by 

additive Gaussian noise. Figure 4.6 shows the resulting two-dimensional Wiener filter transfer 

function whilst figure 4.7 shows the depth map after Wiener filtering. In the cases shown below 

the noise and signal power spectra are known exactly a-priori which is not the case for real depth 

maps. In general some estimate of the signal and noise PSD have to be made. If these are 

incorrectly estimated then the performance of the filter deteriorates badly.
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20

pixel i 0 Q
20

40

pixel j

Figure 4.4 Simulated depth map "cake2

40

Pixel index

20 20
0 0

60
40

Pixel index

Figure 4.5. "Cake2" corrupted by additive Gaussian noise.
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Frequency (cycles/pixel) -0-5 -0.5
Frequency (cycles/pixel)

Figure 4.6 Two-dimensional Wiener filter transfer function for example of section 4.3.3

2.5,

60

Pixel Index 20 40

0 0
20 Pixel Index

Figure 4.7 Noise-corrupted depth map "Cakes2"after Wiener filtering.
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4.4 Robust linear Filters

As discussed in section 4.3.3 for the example of the Wiener filter, linear filters can be designed to 

be optimal in some sense (minimum mean squared error for the Wiener case) for a given statistical 

model of the signal and the noise. However if the signal or noise does not satisfy the model then 

the performance of the filter can be significantly degraded. The techniques of robust filtering seek 

to design filters that are insensitive to deviations from the assumed model of signal and noise. At 

the same time robust filters, whilst not optimal for the assumed model of signal and noise process, 

must perform acceptably for such signals. In practice robust filtering techniques have a defined 

performance for a range of signal and noise models. A performance criterion that is often used for 

such filters is the worst case performance for the allowed models of signal and noise. Where a 

filter is optimal in this performance criterion with respect to a set of allowed models the filter is 

said to be minmax robust. An expectation for minmax filters is that by optimising the worst case 

performance the performance for most other cases is not far worse than the optimal performance.

The models of signal and noise are often based on assumptions about their probability distributions 

and the parameters of the distributions. For example an assumption of Gaussian noise requires the 

estimation of two parameters, the mean and the variance, of the noise. Model uncertainty can 

encompass uncertainty in the parameters or uncertainty in the functional form of the distribution, 

for example whether the distribution function is Gaussian or Laplacian. Robust techniques are 

concerned with the latter type of model uncertainty. Robust techniques are broadly applied to the 

two problem areas of signal estimation and signal detection. The area with which this thesis is 

concerned is that of estimation which is concerned with the problem of predicting or smoothing a 

signal which has been corrupted by noise using only the corrupted measurements. A review and 

analysis of robust techniques in both these areas is given by Kassam and Poor (Kassam and Poor,
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1985). In this review an example of a Wiener type filter is given in which the ideal output signal to 

noise ratio versus input signal to noise ratio is compared with the worst case performance of the 

filter assuming a plausible set of signal and noise spectra over the same range of input signal to 

noise ratios. It is shown that the optimal filter would produce worse output signal to noise ratio 

than was presented to its input under these conditions. A performance criterion for robustness for 

such filters is the ratio of the worst case mean squared error performance over an input set of noise 

and signal spectra to the optimal performance. A minmax design aims to minimise this ratio. A 

solution for such robust Wiener filters was obtained for a general case by Poor (Poor, 1980). 

Poor's solution is to find the least favourable pair of noise and signal spectra 

PSDx_ieast_favourable^^il and PSDnJeast_favourable [(ok ,co{ ] (i.e. the spectra which are closest

in shape) out of the allowed sets of noise and signal spectra, and then to find the optimal Wiener 

filter for that pair as in equation 4.10. Robust filters designed using the above approach are 

discussed in the review paper by Kassam and Poor (op cit. Kassam and Poor, 1985) for four 

different examples of spectral uncertainty in the signal and noise models. The review also 

discusses optimum and robust filters for the case of noise correlated with the signal.

A reason for deviation from assumed noise statistics (usually Gaussian) and hence the reason for 

the need for robust filtering techniques is the presence in the noise-corrupted signal of statistical 

outliers. These outliers are due to gross errors. As has been shown in section 3.4 such outliers are 

present in the depth map obtained using a correlation-based matcher
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4.5 Filtering based on Singular Value Decomposition

A non-linear technique for noise filtering is described in Andrews and Patterson (Andrews and 

Patterson, 1976) and developed by (Konstantinides et al, 1997) for application to data 

compression. This technique is based on the Singular Value Decomposition of a matrix. The 

Singular Value Decomposition is also discussed in another context in section 5.5.2.

The Singular Value filtering technique is based on a theorem from linear algebra (Lawson and 

Hanson, 1974) that any I by J matrix B having I greater than or equal to J can be factored into three 

matrices U, W, and V such that:

B=U.W.V r 4.12

Where U is I by J, W is J by J, and V is J by J. The matrix U has columns that are orthomormal 

and therefore is an orthogonal matrix. V is also an orthogonal matrix. The matrix W has values on 

the main diagonal only which are also all positive, all off-diagonal values being zero. The elements 

on the diagonal of W are called the Singular Values' and are usually arranged in descending order. 

Any matrix can be decomposed as equation 4.12. The rank of a matrix is the number of its nonzero 

singular values. Hence the rank r of an m by n matrix representing a noiseless image can be 

determined. If the image is corrupted by additive Gaussian noise then the noise can be represented 

by a full rank, R noise matrix of the same dimensions as the original image matrix. The resulting 

noisy image will now have small but nonzero values for the last R-r singular values. For zero mean 

Gaussian noise of standard deviation a, the upper bound on these remaining singular values is 

given by (Konstantinides and Yao, 1988):
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(4.13)

The filtering method is simply to determine the singular values of a noisy image matrix and replace 

those singular values that are smaller than e, with zero. The filtered image is then reconstructed 

using equation 4.12 using the adjusted singular values in matrix W.

The algorithm is computationally intensive if applied to the whole image at once, (op cit. 

Konstantinides et al., 1997) apply the singular value decomposition to non-overlapping blocks in 

the image. They also determine a value for £ using a plot of the second derivative of the 

compression versus e for a sample part of the image. The e that maximises this plot is used as a 

threshold for the remainder of the image. The algorithm performs well in the tests presented in the 

paper, however the method is predicated and tested on additive Gaussian noise. 

Example

Figures 4.8 To 4.11 show the results of applying the basic Singular Value Decomposition method 

of filtering to a simulated depth map which has been corrupted by additive Gaussian noise of 

standard deviation 0.2. The threshold level for e given by the method of (Konstantinides et al, 

1997). for this depth map is 12.75. The first four singular values of the noisy depth map are: 

55.7369, 5.5780, 3.1923, and 2.8919. Accordingly all except the first singular value should be 

replaced with zeros. However the mean squared error after filtering is best in this case when the 

first two singular values are retained. The errors obtained are shown in Table 4.1. Also shown in 

the table are the mean squared errors after applying the method to the depth map corrupted with 

mixed Gaussian and impulsive noise.
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Number 
Gaussian

of singular values retained for 
noise case

1

2

3

Number of singular values retained for 
mixed impulsive and Gaussian noise

1

2

3

Resulting Mean squared error 
for Gaussian noise case (cf. 
filtering )

0.0085

0.0029

0.0054

Resulting Mean squared error 
for mixed noise (cf. 0.44 before

0.022

0.046

0.066

after filtering 
0.04 before

after filtering 
filtering )

Table 4.1 Summary of performance of SVD filtering as a function of the number of singular values retained for both Gaussian and mixed noise

20 20
y axis pixel index 0 0

40

x axis pixel index

Figure 4.8 Simulated Depth map before filtering using SVD technique
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20
y axis pixel index 0 0

20
40

x axis pixel index

Figure 4.9 Simulated Depth map with added noise before filtering using SVD technique

2.5 ^

20 20
y axis pixel index 0 0

40

x axis pixel index

Figure 4.10 Simulated Depth map with added noise after filtering using SVD technique, keeping 
only the first singular value.
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20 20
y axis pixel index 0 0

40

x axis pixel index

Figure 4.11 Simulated Depth map with added noise after filtering using SVD technique, keeping 
first two singular values

4.6 Robust Non-linear filters

4.6.1 Median filters
The median of a vector x of length n, med(xn), is computed from the vector Xranked by:

med(xn )=-
1 ranked 1 if n is odd

if n is even

4.14

where x ^ed is the vector formed by rank ordering the n samples in the vector xn and x ranked(i) is 

the ith element of the vector. The median can be used as a function operating on the samples within
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a filter window to give the median filter. A discussion of the theoretical properties of the median 

filter is given in chapter 4 of (Pittas and Venetsanopoulos, 1990). The median filter is an example 

of M estimators of location (Huber 1964), for which:

Loc(x) = the value of u which minimises: ^'^"L(xf -u) 4.15

where the function L(x) = x2 for a sample mean, L(x) = I x I for the median. For additive noise of 

probability density function fix) if L(x) = - log(/(x)) , the M estimator of location is the maximum 

likelihood estimator (op cit Pittas and Venetsanopoulos, 1990), (op cit. Kassam and Poor, 1985).

Quantitative methods of comparing the performance of filters are the use of influence functions, 

asymptotic variance, and asymptotic relative efficiency. The influence function measures the effect 

of a single outlier on the estimation of location provided by a filtering scheme (op cit Pittas and 

Venetsanopoulos, 1990). For some estimator of location, T(x), where x is a vector of observations 

with idealised distribution F, the Influence Function, IF(x;T,F), is given by:

4.16
t-»o t

Where it is assumed that the estimator T(.) correctly measures the location parameter 

asymptotically for the true distribution F. Equation 4.15 can also be used on an empirically

measured distribution (histogram) of n-1 observations Gn_i by substituting Gn.] for F and t = — ,
n

taking the limit as being the value for large n. The highest value of the Indicator Function is taken 

as the "gross-error sensitivity". An estimator with a finite gross-error sensitivity is said to be B 

robust, (op cit Pittas and Venetsanopoulos, 1990)derive the influence function of the median and
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arithmetic mean for Gaussian distributed samples From the plot of figure 4.12, reproduced from 

(op cit Pittas and Venetsanopoulos, 1990) it can be seen that the arithmetic mean is not B-robust in 

contrast to the median, showing that the median produces an estimate of location which is stable to 

outliers in the data.

IF(x,T,F=Gaussian)

Median

Arithmetic Mean

Figure 4.12: Plots of influence functions of mean and median for Gaussian 
distributed data reproduced from (Pittas and Venetsanopoulos, 1990).

A quantity called the Asymptotic Variance V(T,F) can be derived from the Influence Function for 

the estimator T (op cit Pittas and Venetsanopoulos, 1990) given by:

V(T,F) = \IF(x;T,F) 2dF 4.17

From the asymptotic variance a comparison of two estimators T and S can be made using the 

asymptotic relative efficiency, ARE, given by:

V(S,F)ARE(T,S) = - (4.16)
V(T,F)

Comparing the asymptotic relative efficiency for the arithmetic mean as S and the median as T for 

various distributions gives an asymptotic relative efficiency of less than unity for distributions 

which are short tailed such as the Gaussian, implying that the mean is a better estimator of 

locations for these distributions. An asymptotic relative efficiency of greater than unity is given for
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thicker tailed distributions such as the Laplacian distribution, implying that the median is a better 

locator for such distributions. For mixed distributions, such as the mixed Gaussian and impulsive 

distribution characteristic obtained for the noisy disparity maps discussed in Chapter 3, which of 

the median or mean filter is the more efficient depends on the balance between the Gaussian and 

impulsive components of noise. Since this will vary from one part of the disparity map to another, 

an ideally efficient (at least in an asymptotic relative efficiency sense) filter will change its 

behaviour depending on the noise statistics.

Example

Figure 4.13 Shows the Gaussian noise-corrupted simulated depth map of figure 4.5 after filtering 

with a 3 x 3 window Median filter. The mean square error after filtering in this case was 0.0089.

20 20
y axis pixel index 0 0

40

x axis pixel index

Figure 4.13 Gaussian noise-corrupted depth map of figure 4.5, after filtering with a 3 
by 3 median filter
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4.6.2 Other Non-linear Filters
Other, related, types of non-linear filters are alpha and modified trimmed mean filters (Lee and

Kassam, 1985), truncated median (mode) filters (Evans and Nixon, 1995) weighted order statistic 

(WOS) filters (Kleihorst et al.., 1997), filters that are based on morphological operations (Pessoa 

and Maragos, 1998)(Singh and Siddiqi, 1997), hybrid FIR/WOS filters (Heinonen and Neuvo, 

1987), and filters based on neural networks (Yin et al.. 1991), (Haykin et al.., 1997 ).

4.7 Filters based on statistical a priori models and regularisation

This class of filters has been used to restore images affected by degradation effects such as 

blurring, noise and non-linear transformation. The approach was first described in the seminal 

paper of (op cit. Geman and Geman, 1984) and placed in the general framework of the idea of the 

regularisation of ill-posed problems by (Poggio et al.. 1985). These filters are more often described 

as stochastic restoration techniques rather than filters. Nevertheless they can be looked on from the 

point of view of a Black Box filtering process. However, for these filters the processes that take 

place inside the Black Box are iterative processes which converge toward the final output. The 

approach used is based on maximising the sum of the conditional probability of the original 

corrupted image given a possible solution and the probability of the trial solution as a function of 

the trial solution. Since the theoretical end point maximises these probabilities (which is assumed 

to give a unique solution), then the process in the Black Box is a unique mapping and satisfies the 

requirement outlined in section 4.2 for the process to be a mathematical function. However since 

there are many local maxima to the probability distribution as a function of possible solutions, and 

since a stochastic Monte Carlo approach is generally taken to obtaining the solution, the solution 

may not in practice be unique for a given input. In this case the mapping process taking place
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within the Black Box will not be a 'function* in the strict mathematical sense. Nevertheless the 

ideal mapping process can be regarded as a function.

In the work of (op cit. Geman and Geman, 1984) images degraded by blurring, non-linear distortion 

and noise were restored by choosing the estimate for the original image which maximised the a 

posteriori probability of that estimate conditioned on the probability of that estimate given the 

observed degraded image. The original image and the estimate were each modelled as a pair of 

Markov Random Fields (MRFs), consisting of a matrix representing the pixel grey level intensities 

and another matrix representing line (edge) processes. MRFs are an extension into two-dimensions 

of the idea of a Markov chain. In an MRF the conditional probability of a particular pixel taking a 

particular value given the values of all the pixels in the remainder of the image is the same as the 

conditional probability of the pixel taking the same value given the values of the pixels in a defined 

neighbourhood known as a clique. The size and shape of the clique is a parameter of the MRF. 

MRFs capture the local correlation of most real images. An MRF can also be identified with a 

corresponding Gibbs probability distribution. The probability distribution allows a 

computationally more tractable description of the MRF representing the image. This is because the 

probability measure of each pixel in the neighbourhood taking a given value is expressed in terms 

of potentials rather than conditional probabilities. The sum of these potentials over the clique gives 

an energy function for a given configuration. This energy function is arrived at by consideration of 

an appropriate image corruption model of blurring, non-linear transformation, and additive or 

multiplicative independent noise. Maximising the posterior distribution is equivalent to minimising 

the energy function. This minimisation is carried out in the paper using the Metropolis algorithm, 

(Metropolis et al. 1953) which is itself discussed further in a different context in Chapter 5 of this 

thesis. This is a Monte Carlo technique but with optimised sampling of the system configuration.
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Because the energy function is only computed over the local clique the algorithm readily allows 

parallel computation.

It was pointed out in (op cit. Poggio et al. 1985) and discussed in (Bertero et al. 1988) that the 

technique of Geman and Geman is an example of a stochastic approach to the regularisation of an 

ill-posed problem. Such problems were discussed in section 3.6. In this case the a priori 

knowledge is captured in the choice of probability distribution for the pixel values or equivalently 

the potential function of the Markov random field. More recent papers adopting the general 

approach of Geman and Geman either view the technique from the standpoint of the regularisation 

of an ill-posed problem or tend to emphasise the Bayesian nature of the approach. The choice of 

the potential function is critical to the effect of the method on the preservation of edges in the 

original images. As discussed in section 3.6 for the deterministic minimisation of a potential 

function, a simple quadratic potential leads to the loss of edges in the original image. This problem 

is avoided in Geman and Geman by the use of the line process matrix, but leads to a non-quadratic 

potential. In general edge preservation demands that the potentials to be minimised become non- 

convex (Charbonnier et al. 1997). (Blake and Zisserman, 1987) in their Graduated Non-Convexity 

algorithm, reduce the problem to the problem of minimising a sequence of energy functionals, each 

of which can be minimised deterministically.

4.8 Summary of chapter 4

This chapter has carried out a brief review of possible filtering strategies that could be adopted to 

filter the noisy depth maps produced by the SSD stereo matcher. From Chapter 3 it has been 

established that the depth map noise is not purely Gaussian, but that it contains a substantial

4-25



Chapter 4: Major current approaches to filtering and smoothing

impulsive noise component. The chapter began by describing the class of linear filters, focusing on 

FIR filters, and leading to a discussion of the optimal Wiener filter. For a frontoparallel flat 

surface corrupted by Gaussian noise, the optimum filter reduces to an averaging filter, which can be 

reasonably approximated by a moving average filter. However, the moving average, or indeed a 

Wiener filter predicated on Gaussian noise, is not robust to outliers such as exist in the presence of 

impulsive noise.

Non-linear filters are then discussed starting with an example of a filter based on the singular value 

decomposition of an image matrix. The chapter then discussed the median filter, which is more 

robust in the presence of outliers and also preserves edges and discontinuities. However, the 

median filter is not optimal for Gaussian noise. Other non-linear filtering approaches that have 

been proposed in the literature were then briefly enumerated. Finally the chapter discussed the 

widely explored iterative Bayesian approach to image restoration based on a Markov random field 

statistical model of images and their discontinuities. The median, Wiener, and moving average 

filters will be used as benchmarks with which the new fuzzy filters proposed in this thesis will be 

compared in Chapter 7.
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Chapter 5 : Sugeno Fuzzy Systems and their Training.

5.1 Introduction

This chapter describes the fuzzy inferencing systems which are used in this thesis as the basis 

for filters to smooth signals corrupted by mixed Gaussian and impulsive noise such as the noisy 

depth maps obtained using correlation-based matching described in Chapter 3. After a 

description of the fuzzy inferencing systems used to realise such filters, this chapter seeks to 

outline the contribution made by the thesis to the training of fuzzy inferencing systems using 

various methods based on the simulated annealing algorithm of (Metropolis et c/,1953).

The training approach described in this chapter allows the automatic adjustment of all the free 

parameters of the fuzzy inferencing systems so that they can perform an approximation to the 

underlying function mapping exemplar input data to its corresponding output data. The chapter 

also describes the application software called 'FTEST' that was developed to implement the 

training algorithms. This FTEST software is used to create and train an instantiation of a fuzzy 

inferencing system object. This object has the property of persistence as it can be stored to 

hard disk and recreated for use as a filter in another software application called 'WINIM' 

developed to perform the image processing necessary to perform correlation-based matching 

and depth map re-creation.

5.2 Fuzzy Inferencing Systems

This section forms a brief outline of the development and theoretical background of fuzzy 

systems and a comparison of the Mamdani and Sugeno approaches to fuzzy inferencing 

systems.
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5.2.1 Fuzzy systems in engineering
The use of fuzzy inferencing systems for engineering problems was originally conceived by

Lotfi Zadeh (Zadeh, 1965), (Zadeh, 1971), and (Zadeh, 1973). Zadeh built on the mathematical 

foundations of multivalued logic to allow the mathematical and hence the computational 

manipulation of variables such as speeds whose values can be expressed as linguistic terms 

such as 'fast' or 'slow'. These linguistic terms capture the uncertainty inherent in much of 

'real-world' reasoning. Fuzzy inferencing systems attempt to emulate the flexibility and 

robustness with which the human mind manipulates such linguistic variables to produce 

sensible working results in the face of uncertainty. An obvious example of the robustness of 

human reasoning processes is the ability of humans to control systems under grossly varying 

conditions. Moreover, what is significant in the context of fuzzy inferencing is that human 

operators can describe their control actions and the conditions giving rise to them in linguistic 

terms such that another human can quickly learn the complex control actions. It is natural, 

then, that the earliest, and still the commonest, application area for fuzzy systems is in control 

engineering. The seminal papers in this field were those of (Mamdani, 1974), and (Mamdani 

and Assillian, 1975), in which an experimental boiler and steam engine system was controlled. 

The Mamdani approach is to model the relationship between input fuzzy linguistic variables 

and output fuzzy linguistic variables using a set of control rules to generate a fuzzy relation. 

An essentially equivalent approach is that of (Holmblad and 0stergaard, 1982) which considers 

the degree of activation of a number of rules in parallel. The effective equivalence of these two 

approaches is discussed in some detail (Bandemer and Gottwald, 1995). Both for convenience, 

and because of the effective equivalence between them, both approaches will, from this point in 

the thesis, be referred-to as Mamdani inferencing systems. The Mamdani approach to control 

and modelling is now widely used as a standard approach in the research literature. It is also 

the predominant inferencing system used in fuzzy logic-based filters described in the published
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literature on fuzzy filters which is reviewed in Chapter 6 of this thesis. Mamdani Inferencing is 

discussed in more detail in section 5.3.3

5.2.2 Fuzzy sets and fuzzy inferencing - a brief overview
Fuzzy systems are based on an extension of crisp set theory. In normal crisp sets an element

either is or is not a member of a set. In crisp sets the degree of membership of an element in a 

given set can only have the values ' 1' or '0' when the element is or is not a member of that set. 

In fuzzy sets an element can have any degree of membership in the range [0,1] in a given set. 

This captures the imprecision inherent in linguistic variables such as 'tall', 'fast' or 'large'. A 

crisp variable such as a speed in mph can be assigned a degree of membership in a set called 

'fast' according to a function of the crisp input value, called a membership function for the set 

(denoted by JUA(X) for the set A and the argument x) The range of values of the argument for 

which the membership value is non-zero is called the support of the fuzzy set and the set of all 

possible values for the argument x is called the universe of discourse for the set A. 

Membership functions are often chosen to be Gaussian, trapezoidal, or triangular in shape, the 

peak of the function at a membership degree of T having the argument representing the most 

typical value of the fuzzy set in question. A fuzzy singleton is a special type of membership 

function, which has a non-zero value for only one argument - i.e. it is a spike situated at that 

argument value.

The normal set operations of intersection, union, and complement can be extended to fuzzy sets 

by applying suitable operators to the membership functions defining the fuzzy sets. Operators 

suitable for carrying out fuzzy intersection are called t-norms (represented in general by *) and 

those operators suitable for fuzzy union are called t-conorms (represented by ©). In many 

engineering applications the min() operator is used for fuzzy intersection and the max() operator
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for fuzzy union. The membership function for the complement of a fuzzy set A is typically 

defined by the operation J-jUA(x).

In crisp set theory a (binary) relation between two sets of objects is defined so that given an 

ordered pair (x,y) in the Cartesian product of two sets A (xe A) and B (ye B), x is related to y by 

the relation R if, and only if, (x,y) is in R (Epp 1990). The relation is itself a set and expresses 

some relationship between the elements of the sets A and B. Similarly a fuzzy relation R can be 

defined for two fuzzy sets A and B defined by |iAW and [i^(y) such that the relation is defined 

by a membership function \JiR(x,y). If the universe of discourse of fuzzy set A is U and that of B 

is Vthen the relation has a universe of discourse of (U X V). The fuzzy relation is itself a fuzzy 

set and fuzzy relations can therefore be subjected to the operations of intersection, union, and 

complement. The intersection and union of two relations performed using t-norm and conorm 

operators are called compositions of the two relations. Thus the composition which is the 

union of two relations R(U,V) and S(U,V) is given by JUK(X y) @?/j.s(x,y). Compositions can also 

be defined, again by analogy with crisp set theory, for two fuzzy relations e.g. R(U,V) and 

S(V,W) that are defined on different product spaces, provided that they share one common 

universe of discourse. In this case if ze Wthen the composition C=R0S which is the union of R 

and S is defined by:

HROS(X,Z)= supy (juR(x,y) * jus(y,z).) 5.1

Where the sup operator is the supremum of the membership function and the * operation is a t- 

norm.

The significance of the ideas of relations and compositions is that by using compositions of 

fuzzy relations, complex relationships between fuzzy sets can be described. In effect the 

composition of two relations is equivalent to chaining the two relations. Moreover the 

composition of a fuzzy set F defined by jUpfx) with a relation R defined by juR(x,y using equation
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5.1 gives the (fuzzy) output when a fuzzy set excites a fuzzy relation. In this case equation 5.1 

reduces to:

l*FoR(y)= sup x (fJ.f(x.) * fJ.R(x,y).) 5.2

The process of making a logical inference is a process of arriving at a conclusion from a 

hypothesis. In conventional logic the process of inferring an output value from the values of 

input variables proceeds by a statement or rule of the form:

If input variable 1 is set a AND input variable 2 is set b ... AND input n is set z THEN output 

variable 1 is output set oa .

The first part of the statement or hypothesis up to the THEN is called the antecedent and the 

second part after the THEN is the consequent or conclusion. The antecedent consists of 

propositions or predicate clauses - e.g. IF input variable I is set a — linked by connectives 

(AND or OR). The propositions are either true or false - corresponding to the variable either 

being or not being a member of the input set named in the proposition. This mode of 

inferencing is called 'Modus Ponens' and consists of the following steps:

x is a member of set A

IF x is a member of set A THEN visa member of set B

v is a member of set B.

The second step is an implication- A implies B or A—>B

This mode of inferencing can be extended (Generalised Modus Ponens, GMP) using the idea of 

fuzzy sets to read:

jc is a member of set A to some degree

IF x is a member of set A THEN visa member of set B

y is a member of set B to some degree.

The fuzzy implication A—>B is equivalent to a fuzzy relation and is described by a membership 

function HA^B(x,y). The output fuzzy set resulting from GMP is given from equation 5.2 by
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)= SUP x (J^A(X) * nA^B(x,y)). This is called the compositional rule of inference (op cit 

Zadeh, 1973).

In order to apply GMP and equation 5.2 to an engineering problem involving the determination 

of some output value from multiple input values, the following issues have to be addressed:

a) A method of transforming the usually crisp numerical input data into an input fuzzy set 

/UA(X). This is called fuzzification.

b) An operator has to be chosen for combining multiple input sets through the AND 

connective.

c) A suitable t-norm must be chosen for the*operation.

d) A suitable method is required for determining the relation defined by |o.A_>B(-x,;y) (the 

implication operator)

e) In general many rules will be needed, each expressed using an equation of the form of 5.2, 

thus some means is needed to combine the resulting multiple fuzzy output sets for a given 

input

f) The fuzzy output set resulting from a given rule (or combined rules) and input will in 

general need to be converted to a single crisp value. This process is called de-fuzzification.

The following represent typical choices in engineering systems for the issues a) to f):

a) The input fuzzy set represented by JUA(X) in equation 5.2 is derived from the crisp numerical 

input data by determining the value i of the membership function for that input data. The 

input set fk(x) then becomes a fuzzy singleton of height T. This is called the singleton 

fuzzifier. The effect of this is to remove the need for the sup operator in equation 5.2 since 

the value of the supremum is simply T

b) Either the min or product operator is typically used for the connective AND.

c) Either the min or product operator is also typically used for the * operator.
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d) The many possible choices of implication operator are reviewed in (Lee, 1990(b)). 

However (Mendel, 1995) points out there that only certain implication operators satisfy the 

engineering requirement of preserving causality. The commonly made choices of the 

min(/j.A(x),nB(x)) (Mamdani, 1974; and JUA(X)JUB(X) (product) (Larsen, 1980) operators for 

implication preserve causality, but do not satisfy the truth table for implication in 

conventional logic, (op cit Mendel, 1995) proposes that these operators be called 

".. .engineering implications."

e) The t-conorm - corresponding to fuzzy union- is a generally used method of combining, the 

final output sets (op cit Mendel, 1995)

f) A range of different methods exist for de-fuzzification (op cit Lee, 1990(b)), the salient 

methods being the Max criterion, the mean of maximum and the centre of gravity method. 

The need for de-fuzzification can be avoided (see section 5.2.3) by using a Takagi-Sugeno 

inferencing system (Takagi and Sugeno, 1983).

5.2.3 Mamdani and Sugeno Inferencing
The Mamdani inferencing system uses the singleton fuzzifier, the compositional rule of

inference using a relation derived from a set of n IF.....THEN rules and one of the 

defuzzification techniques referred to in section 5.2.2. The overall fuzzy relation derived from 

the rule base is derived by a composition of all the relations associated with each rule in the 

rule base. Each relation in the rule base is derived using the min implication operator. A 

general block diagram of a Mamdani inferencing system is shown in figure 5.1

An alternative to the Mamdani approach, but one that is closely related (op cit Bandemer and 

Gottwald, 1995) is to use the idea of a degree of activation for each rule (op cit Holmblad and 

0stergaard, 1982). The degree of activation of each rule is a measure of the degree to which 

the input value satisfies the input set specified in the rule. This activation degree is then used to
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weight the output set associated with that rule and the overall system output is a superposition 

of all the weighted output sets.

Crisp Input (s) Fuzzy 
variables

Figure 5.1: General block diagram of a Mamdani fuzzy inferencing system 

A different inferencing system to the Mamdani approach is that due to (op cit Takagi and 

Sugeno, 1983). This Sugeno approach avoids the need for a defuzzification stage. The inputs 

to a Sugeno fuzzy system are crisp numbers which are fuzzified using the fuzzy singleton 

fuzzifier. A degree of activation, which is a crisp number, is determined for each rule from the 

degrees of membership of the input values in the fuzzy sets that are the antecedents in the rules.

Up to this stage the Sugeno approach is very similar to the Mamdani approach. The Sugeno 

system differs, however, in that the output consequent for each rule is a function of the crisp 

inputs. The function is often either simply a constant associated with each rule (a zero order 

Sugeno system) or a linear combination of the crisp input values (a first order Sugeno system). 

However other functions can be used, for example the median of the input values. In this thesis 

the output functions are referred-to as the 'output sets'. The overall output of the Sugeno 

system aggregated over all the rules is given by the weighted sum of the output functions where 

the weighting for each rule's output is equal to the degree of activation of that rule normalised 

by the sum of the activation degrees over all rules. The zero order Sugeno system is very

5-8



Chapter 5: Sugeno Fuzzy Systems and their Training

similar to a Mamdani type system in which the output sets are fuzzy singletons, and in many 

cases the result from such a Sugeno system is very close to that which would be obtained using 

a Mamdani system with centre of gravity de-fuzzification. The general block diagram for a 

Sugeno system is shown in figure 5.2. Since all the fuzzy systems used in this thesis are Sugeno 

systems, they are described in more detail in section 5.4.

Crisp Input 
variable(s)

FUZ2L-*

Fuzzy 
variables

-j——— \ \ 
:iner * Inferencing 

Engine

Weighted 
Degrees o 
activation

Output 
functions

A
f

k 
Ci

^^•M

Crisp output

Figure 5.2: General block diagram of a Sugeno fuzzy inferencing system

5.3 Application software 'FTEST'

5.3.1 Purpose of FTEST
Since one of the aims of the work described in this thesis was to investigate the use of fuzzy

systems as a basis for non-linear filters, it was necessary to generate the fuzzy systems in 

software. Moreover it was necessary that the fuzzy systems thus generated could be applied to 

the task of image processing. The approach taken to tackling these requirements was to create 

two software applications running under the Microsoft Windows NT ™ operating system using 

the Microsoft Visual C++ ™ compiler. The first application called FTEST is a tool for 

creating, configuring and training Sugeno fuzzy inferencing systems. The fuzzy systems 

created by FTEST can be saved to disk in a format which can be read by the second
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application. The second software application, called WINIM, performs the image processing 

necessary to extract depth and disparity maps from pairs or sequences of two-dimensional 

images. The fuzzy systems created by FTEST can therefore be used by WINIM to filter noisy 

depth maps. Sections 5.3.2 to 5.3.4 briefly describe the user interfaces of FTEST.

5.3.2 Fuzzy system editing screen
This screen enables the user to set the overall configuration of the fuzzy system. The

configuration of the system includes the definition of the system as a zero order or first order 

Sugeno system, or the special case of a first order Sugeno system called 'FIR Type'. The FIR 

type has output set functions that are linear combinations of the crisp input values but which do 

not include the constant term that is usually included in the linear combination used in first 

order Sugeno systems. This enables each output set to be equivalent to an FIR filter acting on 

the input data vector.

The user must also define the length of the input data vector to the fuzzy system in the fuzzy 

system editing screen through the 'No of inputs' window. The Universe of discourse for the 

inputs must also be defined. This is the same for all inputs in FTEST since the intended inputs 

to the fuzzy systems are the depth map samples at each pixel. The specified Universe of 

discourse is used to generate an out of bounds penalty during training (see section 5.7.4) and is 

also used to initialise the input sets during automatic rule generation.

The system editing screen also allows a check for the internal consistency of the fuzzy system. 

This ensures that input sets and output sets referenced in defined rules exist, since fuzzy 

systems can be saved to disk in a partially completed state.

Figure 5.3 shows the fuzzy system entry screen for FTEST.
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Edit Fuzzy System

r FIS Type Select 

Sugeno Zero C 

Sugeno First *~

FIR Type <?

Fuzzy System Name : Unfilled

FIS Parameters
No of inputs 

(max 100)

Number of rules in 
rulebase

Number of defined 
output sets

Max No input sets 
per input= 5

Universe of 
Discourse

Min Max

0. 10.

Finish Check FIS Input MFs

Goto Edit: 

Output MFs Rulebase

Figure 5.3: Fuzzy system entry screen for FTEST

5.3.3 Membership function editing screen.
This screen allows the user to define the membership function parameters for each the input

fuzzy sets. The fuzzy sets can be Gaussian or trapezoidal in shape, with triangular forming a 

special case of trapezoidal. This is termed the 'MF Flavour' in the editing screen. The 

membership function can be of 'type' normal, left or right. These are illustrated in figure 5.4 

for a trapezoidal membership function. Also shown in figure 5.4 are the parameters for the 

different trapezoidal membership functions. A left or right trapezoidal membership function 

requires two parameters to be specified (shown as a, b and g, h in figure 5.4), whereas a normal 

trapezoidal membership function needs four parameters (shown as c, d, e, f in figure 5.4). All 

Gaussian membership functions are specified by two parameters, a width parameter and a 

position parameter, equivalent to the standard deviation and mean for a Gaussian function.

The membership function editing screen is shown in figure 5.5.

5-11



Chapter 5: Sugeno Fuzzy Systems and their Training

Left trapezoidal 
membership function

1.0

t
Degree of 
membership

0.0 

Figure 5.4: Illustration o

/Normal 
i( / trapezoidal 
• ' membership 
', / function 
i /
» ' S
» 
\ |a |d / f |h /

\ \i/ V i; \ f

—Right 
Trapezoidal 
membership 
function

Membership ——————— ̂  
function 
argument

f different types of trapezoidal membership functions

Membership function edit box

Input Input Fuzzy Set MF Type

1

« »

1 Lefl j^|| [

« » ———— i ———— 1 Parameters
0.5,2.5

Set Same as i/p 111 _ " ******"*' ii nrrpnt Karan»*fpi<t MP

Finish I
Goto Edit : 

Fuzzy System Output MFs

^•^•••^•^1

MF Ravour

^TTIffliffl •»• II

lete Member Fn

I Rulebase 1

Figure 5.5: Screenshot of input fuzzy set editing window of FTEST

5.3.4 Output sets editing screen.
This interface, shown in figure 5.6, allows the user to enter the parameters for the output sets.

In the case of a Zero order system only the constant parameter needs to be set. For a first order 

or FIR system as many output set parameters as there are inputs need to be specified. The 

constant parameter is also required for a first order Sugeno system.
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Edit Output Sets

Output No of Output Sets FIS Name
Unfilled

FIS Type
FIR type Sugeno

No of Inputs

Set Output Same As: |1

Output Set Parameters Constant Paiameter
0.5,0.5.

Delete Output Set

Goto Edit : 

Fuzzy System Input MFs Rulebase

Figure 5.6: Screenshot of Sugeno output set editing window of FTEST

5.3.5 Rules editing screen
This screen, shown in figure 5.7, enables the user to manually enter rules for the fuzzy system.

The rules are of the form: 

IF input n is fuzzy set nn AND.. ..AND input m is fuzzy set mm THEN output is output set p.

In the Rule editing box the rules in the above form are coded as:

[n, nn].......[m, mm]: p

Rules can also be read in from a file generated by an external program such as MATLAB 

provided that they are in the form of pairs of numbers representing the inputs and the fuzzy sets 

and that every input is associated with an input set. Additionally rules can be generated from 

the FTEST training dialogue box. The FTEST training dialogue box is discussed in section 

5.7.4 following a description of the algorithms used to train the fuzzy systems in this thesis.

Rule Editing Box

Rule No: Go To Rule 1 No of Rules:

Rule: [1,1][2,2]:1

Accept new rule

Finish ReadRule

Delete current rule

Goto Edit: 

fuzzy System Input MFs Output MFs

Figure 5.7: Screenshot of Rulebase editing window of FTEST
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5.4 Description of Sugeno Inferencing system used as basis for Fuzzy Filters
Each rule consists of N predicate clauses, one predicate clause for each input. Each predicate

clause produces a weight which expresses the degree to which that predicate clause is satisfied - 

a singleton fuzzifier. For Gaussian input sets the weight of the nth predicate clause in the rth rule 

is given by:

Wpc rn = Gauss(IPn ,Vf ,af ) 5.3 

Where:

Gauss( x, p.,a)= exp — 5.4

The (if , and of are the location and width parameters of the membership function describing the 

fuzzy input set invoked in the predicate clause.

The overall firing weight for the rule is determined by applying a conjunction operator to the 

vector of weights consisting of all the individual predicate clause weights. The 'min' operator is 

chosen as the conjunction operator for all the work described here so that the unnormalised 

firing weight for the r* rule is given by:

5.5

Normalisation is then applied to the firing weight of each rule by dividing by the sum of the 

firing weights over all the R rules, so that the normalised firing weight for each rule, Wr is given 

by:
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5.6

Each rule is assumed to have its own output set. As described in section 5.3.3, the FIR type 

output set consists of an n-tuple of output set parameters (one output parameter for each crisp 

input). The output for each rule r consists of the scalar product of the TV-length vector of crisp 

input values X with the TV-length vector of output set parameters Ar, multiplied by the 

normalised firing weight for that rule as given by equation 5.6. The vector X is:

X = {xj, x2.......xn }

And the output set parameter vector Ar is:

a.
a'

a'

a'

5.7

5.8

The final crisp output from the fuzzy inferencing system is obtained by summing the weighted 

outputs over all the rules. The operation of a first order Sugeno Fuzzy inferencing system can 

be split into two parts:

• A non-linear mapping of the TV-length input vector X into an /?-length normalised 

firing weight vector W. The nature of this mapping is determined by the R rules in 

the rule base and by the 2.N.F input set parameters (referred-to as the 'non-linear 

parameters').
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For any given normalised firing weight vector, a linear mapping of the input vector 

X into a single crisp output. This mapping is controlled by the parameters of the 

output sets (referred- to as the 'linear parameters').

5.5 Training of the linear output set parameters

5.5.1 Overall approach to output set training
The overall approach to training of the linear output set parameters uses input -output data that

is representative of the typical inputs to and corresponding desired outputs from the fuzzy 

inferencing system, called the training data set. For a given training data set, and for given non 

linear input set parameters and rules, the output set parameters are chosen so as to minimise the 

squared error between the actual output of the fuzzy inferencing system for the training data set 

inputs and the training data set output values. The squared error is evaluated over the whole of 

the data set. In this way, providing that the training data captures all the important features 

which might be encountered in the problem domain to which the fuzzy inferencing system is to 

be applied, the linear output set parameters can be optimised for the given input set parameters 

and fuzzy system rules.

The application of linear least squares optimisation of output set parameters to first order 

Sugeno inferencing systems was first used in the hybrid training algorithm of (Jang, 1993). The 

implementation of the technique described in sections 5.5.2 and 5.5.3 differs slightly from that 

of (op cit Jang 1993), in that a singular value decomposition technique is used rather than an 

iterative solution to the least squares problem.

5.5.2 Formation of the training problem as a system of linear equations
If there are D sets of N length input data vectors, then the training data can be written as a D by

N training data input matrix, T , and a D x 1 vector of training data outputs O, :
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iii i i x1c l X2 X3 ••••••••Xfj 2
V 2 V 2 V 2 V 2 X •*! -*2-*3 ••••••••Xfj _

T= : : = X 5.9

D D D D 'Cj X2 X3 ........X N

For the d* input training data set an R length vector of normalised firing weights, Wd, is 

computed according to equations 5.5 and 5.6, where:

ft u u d I c 1 r\ 
M/j \\>2 VV3 ....W^jl 5.10

A D by N.R matrix B is formed such that:

w/X 1 v^X 1 w^X 1 ..................w^X 1

w2 X 2 w|x 2 w|x 2 .................w^X 2
B= : : 5.11

By writing the vector of output set parameters for the r* rule as equation 5.8:

a.
a-,

A =

a.
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Then an R.N length vector P of all the output set parameters can be formed:

P=

a,
a-,
a-,

aN

a,

a,

5.10

The output of the fuzzy inferencing system for each of the D sets of training data input vectors 

will be given by the elements of the D by 1 output vector O given by:

= B.P 5.11

This represents a set of linear equations. In order to force the fuzzy system to give the correct 

output for the input training data it is necessary to solve equation 5.11 for P when O = Ot. For 

real data sets in general D * R..N and therefore equation 5.11 cannot be solved uniquely for P. 

Even if it is arranged for D = R.N, the matrix B is likely to be singular for real data or very 

nearly singular (ill-conditioned). Thus for real data an exact unique solution to equation 5.11 

cannot be obtained. However provided it is arranged that D > R.N (i.e. sufficient training data 

is used) then equation 5.11 represents an overdetermined set of linear equations. A least 

squared error solution can then be obtained for P (Lawson and Hanson, 1974). One solution to

such an overdetermined set of equations is solved using the pseudo inverse of B, labelled B :
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P=B (>0, 5.12

where the pseudo inverse, B , is given by :

5.13

However, the matrix Br B is often also ill conditioned for real data, making evaluation of its 

inverse unreliable. In order to avoid this problem a least squared error technique for solving 

equation 5.11 for the overdetermined case using a singular value decomposition of B is used. 

This is described in section 5.5.3

5.5.3 Least squares solution by Singular Value Decomposition
It can be shown from linear algebra, e.g. (op cit Lawson and Hanson, 1974), that any I by J

matrix B having I greater than or equal to J can be factored into three matrices U, W, and V 

such that:

B=U.W.V T 5.14

Where U is I by J, W is J by J, and V is J by J. The matrix U has columns which are 

orthonormal and therefore is an orthogonal matrix. Vis also an orthogonal matrix. The matrix 

W has values on the main diagonal only, which are also all positive, and all the off-diagonal 

values of W are zero. The elements on the diagonal of W are called the Singular Values'. Any 

matrix can be decomposed as equation 5.14 even if it is ill-conditioned or singular. Singular 

matrices have values of zero for some of the singular values. If a matrix is ill-conditioned then 

the singular values will be small.

5-19



Chapter 5: Sugeno Fuzzy Systems and their Training

For a non-singular matrix B then from equation 5.14 :

B~'=V.W'.U T 5.15

where W is the matrix W with the diagonal elements (the singular values), wtj replaced by 7Av,y 

(i=j). For the case of a singular matrix B the diagonal elements of W ' will be infinite, and for 

an ill-conditioned B the elements will be very large. If the zero or small valued elements of W 

are replaced by zero instead of l/w,y to form the matrix W " then the solution to with O = Ot 

given by:

P=V.W ".U T 5.16

gives a solution for the parameter vector P which is the least sum of squared error (Press et al.., 

1994). i.e. equation 5.16 gives the vector P such that

\B.P-Ot \
is a minimum.

5.5.4 Singular Value decomposition applied to training the linear output set parameters
In general the equation 5.11 will consist of an overdetermined set of equations for real training

data. In fact it is desirable to ensure that the number of training data sets comfortably exceeds 

the number of linear parameters to be adjusted. The result of equation 5.16 also applies to the 

overdetermined case. In order to use Singular Value Decomposition to train the output set 

parameters for a given set of non-linear parameters, the matrix B is computed over the training 

data set. The Singular Value Decomposition of B is then carried out and the diagonal elements
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of W (the singular values) are then examined. If any are less than a number e the corresponding 

elements of W" are set to zero. For elements greater than e the corresponding elements in W" 

are set to their reciprocal. The value of e is dependent on the precision of the floating point 

representation used in the software and is set to 1 x 10"6 in the program FTEST. The vector of 

all the output sets parameters, P is then calculated using equation 5.16.

5.6 Implementation of output set training in the FTEST application software
This section uses an example to describe the implementation of linear output set training in the

FTEST application software.

Example:

The example used to illustrate the method of training the linear output sets described in section 

5.5 is a fuzzy inferencing system which approximates a simple function of two input variables, 

x\ and x2 over a universe of discourse from 0 to 10. The function is:

5.17

The function defined by equation 5.17 and the fuzzy approximator to it are referred to as 

'SQR2' for brevity in the following text. The initial (untrained) fuzzy inferencing system used 

to approximate this function was configured to have three fuzzy sets per input, giving a 

maximum of 32 = 9 rules. All nine of the possible rules were used and in the notation described 

in section 5.3.4 these were as shown in table 5.1:
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Table 5.1 Rulebase for Fuzzy system approximating SQR2

The output sets, which were to be trained were initially all set, using the notation of section 

5.3.2 to the parameter vector [5,5]. The Gaussian input sets were spread evenly about the 

universe of discourse as shown in table 5.2. These input sets were not trained in this example

Input 1 Input 2

(j. = 2, a = 3 M. = 2, a = 3Fuzzy set 1

Fuzzy set 2 

Fuzzy set 3

Table 5.2: Parameters for Input fuzzy sets for 
function SQR2

Since there were eighteen linear parameters to adjust, the training data set needed to contain at 

least eighteen input-output data pairs. In this case a set of a hundred input-output data pairs 

were used, resulting in an overdetermined system corresponding to equation 5.11. These 

training data pairs were created in MATLAB saved as a matrix of floating point numbers, and 

read in by the FTEST application software. The FTEST training window also allows the 

calculation of mean squared error and mean absolute deviation before and after training. For 

the example here the mean squared error was 859.1 over the training data set before training of 

the output sets, and 24.5 after training using least squares. It should be noted that optimising 

the total squared error will also optimise the mean squared error. However optimising the mean 

squared error does not optimise the total squared error in general. After training, the output sets 

were as shown in table 5.3.
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Output set T
1
2
3
4
5
6
7
8
9

Parameter 1 (a/)
-3.33
-0.125
-3.02
3.62
4.61
2.93
14.3
12.3
12.3

Parameter 2 (a/)
-4.04
3.44
14.3
1.69
6.81

10
-6.26
3.58
16.3

Table 5.3: Output set parameters for output fuzzy sets for 
function SQR2 after training

The adjustment of the output set parameters resulted in a large improvement in the ability of the 

fuzzy system to approximate the function SQR2. Clearly, though, the error is still quite large 

and the fuzzy inferencing system is not optimal, as the input set parameters have not been 

adjusted. The output sets as defined in table 5.3 are only those that produce least squared error 

given the input set parameters of table 5.2. Inspection of table 5.3 also shows very little 

discernible pattern in the values of the output set parameters. It would be difficult to predict 

these parameters from an intuitive linguistic description of the problem. This is partly because 

the problem being tackled is a mathematical function that is not easily described in natural 

language, and partly because the Sugeno inferencing method uses a mathematical description 

for its output sets which cannot be easily identified with a linguistic label. Thus this example 

gives rise to two points:

There is a class of problems, of which the approximation of mathematically described 

functions is an example, for which adequate natural language descriptions do not exist. 

For problems of this type the ability of fuzzy systems to capture natural language or 

intuitive descriptions is of no advantage. If a fuzzy inferencing system is to be applied 

to these problems, therefore, it must be capable of being trained using numerical 

exemplar data.
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Fuzzy inferencing systems that use the Sugeno inferencing method lose some of the 

links to intuitive natural language reasoning. In such fuzzy systems training of the 

output set parameters is likely to be necessary. For first order Sugeno systems the least 

squares method described above is an effective one-pass technique.

5.7 Training of the non-linear input set parameters.

5.7.1 Overview of problem
In section 5.6 the least squares approach was applied to train the output set parameters, but it

was pointed out that this technique could not be used to train the non-linear input set

parameters. The problem can be stated as:

Adjust the parameters so as to minimise a measure of the error between the training 

data output and the actual output obtained from the fuzzy inferencing system when it is 

presented with the training data inputs. The error measure should be taken over a set of 

input-output training data so as to ensure adequate generalisation from the trained 

system.

If there are P parameters to be adjusted, the problem can be visualised as a P+l dimensional 

landscape or 'error terrain'. P of the dimensions represent the values of the input set 

parameters and the P+l^ dimension or height dimension represents the error measure over the 

training data set. The problem is then to find the P co-ordinates of the 'lowest' point in this 

terrain. In general the error terrain will have many local minima and finding the global 

minimum may well be impossible at least within a reasonable time of computation. The 

problem statement can therefore be re-stated as that of finding a 'good local minimum' within a 

reasonable time of computation. An acceptable level of error must be chosen beforehand in 

order to define a 'good local minimum'. It is an advantage for training techniques used to 

optimise fuzzy inferencing systems to allow for the existence of local minima. Those
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techniques which do not allow for local minima can become trapped in a local minimum which 

does not satisfy the criterion of a good local minimum. Pure gradient descent techniques such 

as the back-propagation technique used in the ANFTS algorithm (op cit Jang, 1993) do not 

allow for local minima. Pure gradient descent is appropriate for those problems in which the 

topology of the error terrain is roughly known so that any local minima can be avoided. 

Gradient descent can also be used when the fuzzy inferencing system can incorporate enough 

expert knowledge before training that the system can be assumed to be close to a good local 

minimum. When neither of these conditions obtain then more robust search techniques are 

needed.

5.7.2 Simulated Annealing
Simulated annealing is a stochastic search technique which can be used to find minima in an

error terrain. It possesses the advantage that it can avoid becoming trapped in local minima. 

The origins of the algorithm lie in work carried out by (op cit. Metropolis et ai, 1953) to 

simulate thermodynamic systems using Monte Carlo techniques. In such thermodynamic 

systems in equilibrium at a temperature T the probability distribution of the energy of the 

system is given by the Boltzmann distribution (Mandl, 1973):

1 r F iP(r)=-exp \—=^-\ 5.18 
Z I KT\

where r is an index for a particular discrete microstate of the system, and Er is the energy of that 

microstate (different microstates can have the same energy). K is the Boltzmann constant. 

The quantity Z is the partition function for the system. It acts as a normalising constant and 

represents the sum over all microstates of the system:
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Z=Xexri—=£ 5.19 
KT

The Metropolis algorithm simulates a system with the probability distribution given by 

equation 5.18 in the following way:

The system is initialised to some state rj and the energy E(r,) is calculated. A random 

change is made to the system to some other state r2 with energy E(r2) and the change in 

energy AE is calculated.

5.20

If the change in energy AE is negative then the random change is accepted. If AE is 

positive then the change is accepted with probability given by:

i= exp ———— 5.21 
H[ KT \

In a physical system if the temperature of the system is slowly reduced so that the system 

remains in equilibrium throughout, then the system will relax to a minimum energy state, 

avoiding intermediate metastable states. This process is called annealing and results in well- 

ordered systems with low energy. In the Metropolis algorithm the annealing process is 

achieved by reducing the temperature T after a sufficient number of random changes have been 

made at a fixed temperature. The process governing the reduction in temperature is called the 

'Annealing Schedule'.
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(Kirkpatrick et al., 1983) have applied the Metropolis algorithm to n-dimensional optimisation 

problems. The energy is replaced by an objective function that depends on the parameters 

whose optimal values or configuration is sought. This objective function is chosen to reflect 

the goodness of the parameter configuration. For example in a function fitting problem, the 

mean squared error over the domain of the function between the actual data to be fitted and the 

proposed function could be used as an objective function. A potential advantage of applying 

the Metropolis algorithm to optimisation problems is its ability to avoid local minima in the 

error terrain which correspond to the metastable energy states of a physical system. It achieves 

this by having a high probability of accepting a random change which results in a higher system 

energy state when the temperature is high. In this way the system has a good probability of 

stepping out of small local minima during the early high temperature phase of the annealing 

process. During the final low temperature phase of the annealing schedule the algorithm 

performs a random descent in which only downward steps are accepted

Although the simulated annealing appears relatively easy to implement, the choice of annealing 

schedule and initial temperature can have a large effect on the final result and are problem 

dependent. This has the effect that some insight into the nature of the problem is required to 

make effective choices. A typical tactic for determining effective starting temperatures is to 

perform short initial runs of the algorithm at various temperatures and to observe the change in 

the error measure. Such an initialising process is difficult to automate and therefore a 

drawback to the algorithm. It is also important that the method of making the random system 

state changes allows adequate coverage of the parameter space to be searched. This also 

requires some insight into the problem being solved. Nevertheless the algorithm has been used 

to solve problems whose computational complexity scales at a rate that is greater than can be 

expressed as a polynomial function of the problem size (NP complete problems). Its main 

competitor for such search problems is the class of Genetic Algorithms (Goldberg, 1989). The
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Tabu search technique has also been used for combinatorial optimisation and is compared with 

simulated annealing in (Chiang et al., 1992).

The Metropolis algorithm has been successfully applied to combinatorial optimisation 

problems such as the 'travelling salesman' problem (Kirkpatrick et a/., 1983), (Kirkpatrick, 

1984). In such problems the states of the systems are represented by combinations of discrete 

parameters. One of the chief justifications for applying the algorithm to optimisation problems 

other than those statistical mechanics problems for which it was originally conceived is the 

similarity of such systems to each other. However, the original problem domain governed by 

the Boltzmann distribution and for which the algorithm is a sampler, has discrete variables and 

more closely represents a combinatorial optimisation rather than a continuous parameter 

optimisation.

The application of the algorithm to optimisation over continuous variables is discussed by 

(Vanderbilt and Louie, 1984). Optimisation over continuous variables raises further issues over 

and above those raised for combinatorial optimisation. These issues are the choice of the 

direction and size of the random perturbations made to the continuous parameters and whether 

such changes should vary with the annealing temperature. Small steps, particularly in the early 

stages of the annealing schedule are inefficient, whereas very large steps result in too high a 

rejection rate. It is suggested by (op cit Vanderbilt and Louie, 1984) that optimum efficiency 

occurs when half the random changes are rejected. They also propose and demonstrate a 

sophisticated method of controlling the size and direction of the random steps in the n- 

dimensional parameter space. Their scheme is based on deriving a measure of the local error 

space topography from the random walk segment of accepted solutions of the last training 

epoch. This measure is used to choose the values of a covariance matrix which controls the 

distribution of the random steps. A growth factor ensures that the covariance matrix is set so
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that a free random walk would cover ever-increasing volumes of the parameter space. In the 

constrained error space the covariance matrix grows to fit the shape of the error space so that 

the step size only grows in the direction of downhill moves. The annealing schedule used is a 

geometric series with a common ratio % between zero and unity so that the temperature at the 

n* iteration is %nT.

5.7.3 Simulated annealing applied to optimisation of fuzzy inferencing systems
The training of a fuzzy system involves optimising a multidimensional parameter set, which is

the type of task for which simulated annealing is ideally suited. Nevertheless, apart from a 

recent paper by (Garibaldi and Ifeachor, 1999), in which simulated annealing is applied to the 

optimisation of a fuzzy expert system of the Mamdani type, it is not believed that simulated 

annealing has appeared in the literature applied to fuzzy system training. As part of the work 

described in this thesis, the simulated annealing algorithm was applied in six different ways to 

the problem of training fuzzy systems from training data. These six methods were:

1. Simulated annealing applied to search for input and output parameters

2. Simulated annealing applied to search for input parameters only

3. Simulated annealing applied to search for output parameters only

4. Simulated annealing applied to search for input parameters with linear least squares 

applied to optimise the output set parameters for the candidate input parameters 

before assessing the error.

5. Simulated annealing combined with downhill simplex algorithm to search for input 

parameters with linear least squares used to optimise output set parameters

6. Simulated annealing used with an automatic rule-generating algorithm to select the 

optimal set of rules. The input set parameters were held constant for this method, 

but the output set parameters were optimised using linear least squares for each 

candidate set of rules.
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5.7.4 Simulated annealing used for training input and output parameters
This section covers the first three methods enumerated in section 5.7.3 since the techniques

used are essentially the same for all three methods. The differences between methods are 

solely the choice of parameters to be adjusted by the algorithm. The basic steps of the 

algorithm are shown in the flow diagram figure 5.9.

The following list describes some of the details of the implementation of the first three methods 

in the application software FTEST.

1. The initial value of the temperature parameter is input by the user through the training 

dialog box in FTEST. The training dialog box is shown in figure 5.8. The initial 

temperature needs to be large compared to the largest changes in error which are to be found 

in the error space. A feel for the magnitude of the error changes that are likely to be 

encountered can be obtained by carrying out a few short trial training runs.

2. The number of iterations per epoch can be set in the dialog box as can the maximum number 

of epochs to be run. A minimum error can also be entered, which, if achieved during 

training, automatically terminates the training run.

3. The initial input and output parameters of the fuzzy inferencing system are normally 

manually entered through the Fuzzy system editing dialog boxes. If desired however, the 

'initialise system' button will automatically generate a default set of input sets, output sets, 

and rules. The generated input sets are evenly distributed over the input universe of 

discourse set in the 'fuzzy system' editing dialog box. The output set parameters are all set 

to a default value of one. This automatic rule and parameter generating option was written- 

in to the software to implement the rule training option (method 6). In general the
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parameters and rules should be manually entered to initialise the fuzzy system to a good 

initial configuration, taking full advantage of 'expert knowledge'.

IfFfSlfKillfPiF'*™
r Training Data-

Input No. 1
•
i Number oi { , H , 
Training Sets

; II?1? 1 M*

Input Vector Output

2.19.5.717 37.4732 j

« » I Accept

Disk FiteT raining Data : Read... Write...

- UOD ———— •-- •

Upper fc |
Lower |o [ \

Finish

Stop

Train _ ., r- . T .

lnpu« Para«s Only ^J| CooBna ^H Max Current Tstart T
Enor *•-*---

Mean Squ
, Error 

i Best error
, 10000

rRute Trai 
Exhaust™

i 9

uuoum ,01 I 10 t I 1. I 1.

— : ———— : ———— ' ... .. ............. r Iterations: 
Mm Currant Total OQB Error Max Current

jl.B-002 1 0. 0. 1 100 i \

MSE 0 MAO |0 J | o

Bf| \ **-

e tize Ho 1/P* No F Sets Max No Rules | -,„.„.... —— —.,.,., ,„„„..,.„,,„

2 ______ I [3 ]|0 | | °-
_ _ —— ..... ................. .......... ....................................... Q^

Start Training | InitLaGsA System |

DoLMS Ev^ Error |

Figure 5.8: Screenshot of training dialog box in application FTEST

4. For training of the input parameters only, random perturbation of the parameters are made as 

follows:

One of the inputs to the fuzzy system is chosen at random with even probability of 

choosing any of the inputs. One of the possible fuzzy sets covering this input's space is 

then randomly chosen with all sets being equiprobable. The type of fuzzy set is then 

determined (Gaussian or Trapezoidal) and hence the number of parameters defining it. 

For a Gaussian set one of the two parameters is chosen randomly. The width parameter 

is allowed to change to between 10% and 150% of its previous value. The position 

parameter is allowed to change by up to ± 50% of its previous value. For trapezoidal 

input sets the four parameters defining the trapezoid are also randomly varied such that
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the effective centre and width of the fuzzy set can evolve from their existing values. 

The four parameters of trapezoidal input sets are constrained by the software to 

maintain their ordering. Thus for the example shown in figure 5.4 the parameters c, d, 

e, f are constrained so that c< d< e <f.

5. When the output set parameters are being trained random changes are made as follows:

One of the output sets is chosen at random with equal probability for each set. Within 

that output set of parameters one of the parameters is chosen at random. The selected 

parameter is randomly perturbed by up to ± 50% of its existing value.

6. If both inputs and outputs are being trained at once a random 'coin toss' is made at each 

iteration to determine whether an input or output set is to be perturbed. Thereafter the 

random moves are either as those described above for perturbations of the inputs or outputs.

7. The basic error measure used as a cost functional is the mean squared error over the training 

data set. If the fuzzy system produces an output O, for the Ith training data input and the 

actual training data output for that input is OTt then the mean square error EI over the set of 

T training inputs and outputs is:

E,=—\(0,-OT.f 5.22
I rr, ^^^ ' I '

f=l

An additional error measure is added to Ej to derive an overall cost functional. This error is 

called the Out Of Bounds error (OOB error) and is included to increase the efficiency of the 

training algorithm. The Out of Bounds error is computed from the input parameters. During 

training the input parameters may be perturbed such that the area of coverage of one of the 

fuzzy sets falls outside the universe of discourse of the fuzzy system. In general, the training
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data does not fall outside the universe of discourse. Therefore any fuzzy set whose area of 

coverage is far outside the universe of discourse will never be activated by the training data and 

will have no effect on the output and hence the error. Any such fuzzy set is therefore 

effectively removed from the fuzzy system. A further random perturbation of this set causes no 

change in the error unless it is brought back into the universe of discourse. The out of bounds 

error measure penalises the removal of fuzzy sets to a distance defined by a radius parameter 

beyond the edges of the universe of discourse. The radius parameter, RO , is set before training 

in the training dialog window. For the n* input and the /* Gaussian input fuzzy set, 

Gauss(centre, width), with the upper and lower bounds of the universe of discourse denoted by 

UOD_lo and UOD _hi, the out of bounds cost is given by:

OOBCost(n,f) =

OOBCost(n,f) = 0 

OOBCost(n,f) =

\UOD_ lo - centre + 3. width) 1

J

( centre - 3. width - UOD_ hi) 1

centre + 3. width < UOD_ lo

UOD_ lo < centre < UOD_ hi 

centre - 3. width > UOD_ hi

5.23

The out of bounds measure E2 is computed over all inputs and all fuzzy sets and is given by:

E2 = max NF (OOBCost(n, /)) 5.24

Where max #,/•(•) denotes the maximum over TV input sets and F input fuzzy sets.

For the n** input and the/11 trapezoidal input fuzzy sets, Trapz(a ,b ,c ,d) with parameters a, b, c,

d, the out of bounds cost is given by:

OOBCost(n, f ) = MAX[OOBCost_ lo(n, f ), OOBCost_ hi(n 5.25

Where:
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OOBCost _ lo(n, /)= exp (UOD_lo->>_lo-a)'\ 
KO \

a<UOD lo

OOBCost _ lo(n, /)= 0 UOD _lo<a

OOBCost _ hi(n, /)= exp d-UOD hi
d >UOD hi

5.26 
OOBCost _hi(n,f)=0 UOD_hi>d

The overall error is given by E, = E, +E2 . If the change in overall error from the previous 

system state, AE, , is positive (i.e. the error is worse than the previous error) then the 

function metrop is evaluated:

metrop = exp - ——- 5.27

If the value of metrop is greater than a uniformly distributed pseudo random number then the 

change in the system state is accepted.

8. The Annealing schedule sets the temperature, T[e+l] at epoch e+1 as:

5.28\ + a.T[e]

Where a is the cooling coefficient, which determines the rate at which the temperature is 

reduced during training, and T[0] is the initial temperature at the start of the first training 

epoch.
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Figure 5.9: Flow diagram for training of input and output parameters using simple simulated
annealing

5.8 Simulated annealing used to train fuzzy inferencing system to approximate SQR2
The following examples demonstrate the three training modes described above applied to the

training of a fuzzy inferencing system to approximate the function 'SQR2'

5.8.1 Example: Training of output set parameters only
The first example used simulated annealing to train the output set parameters only, as described

in section 5.7.4. The starting point for the fuzzy system was identical to the fuzzy system 

trained using linear least squares in order to allow some comparison. After training for 1500 

epochs of 120 iterations each, with an initial temperature of 10 the mean squared error (MSB) 

was reduced from the initial value of 859.1 to a value of 8.5. The mean absolute deviation
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(MAD) was also monitored, but was not a part of the objective function. The MAD reduced 

from 22.5 to 2.3. Figure 5.10 shows the change in error with respect to the epoch number 

during training.
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Figure 5.10: Plot of error versus epoch number for simulated annealing training of output 
parameters

The MSE compares well with the result of a MSE of 25 obtained using the linear least squares 

method (section 5.6). This illustrates the fact that optimising the squared error does not 

automatically optimise the mean squared error. Using MSE as an error measure a few large 

errors may be tolerated in a large data set if allowing them improves the mean squared error 

calculated over all the data. By contrast such large errors can dominate a squared error 

criterion.

The least squares method of training the output sets has an advantage when comparing speed of 

execution however, since the simulated annealing algorithm took four orders of magnitude 

longer to run in this case than the one-pass least squares method. Moreover, in training fuzzy
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systems the ability to generalise from the training data to another set of test data and hence to 

real data is an important criterion of successful training. In this case the fuzzy inferencing 

system trained using simulated annealing gave a MSE of 8.8 for a further test data set, whilst 

the linear least squares-trained system gave a MSE of 10 on this test data. In this case at least, 

then, the difference between fuzzy systems using SA to train the output sets and those trained 

using linear least squares was not so clear on further test data. However it could be argued that 

the linear least squares solution showed greater variability between data sets and therefore did 

not generalise as well.

The output sets after training using simulated annealing are tabulated in table 5.4.

Output set r
1
2
3
4
5
6
7
8
9

Parameter 1 (W)
0
0
0
0
0
13

13.7
15.3
8.7

Parameter 2 (a/)
8
0

16.4
0
0

7.2
0
0

17.1
Table 5.4: Output set parameters for output fuzzy sets for function SQR2 after training using 
simulated annealing.

It might be conjectured that those output set parameters which have values of all zeros 

correspond to rules which could be removed from the fuzzy system rule base and have no effect 

on the output of the system. However, the performance of the fuzzy approximator after training 

of only the output sets leaves some room for improvement. Training of the input sets offers the 

possibility of improving its performance, and therefore removal of rules before investigating the 

effects of training the input sets would be premature.
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Application of the simulated annealing routine to the output sets after they had been initially 

trained using the least squares method improved the MSE from 25 to 3.4. In this application of 

the simulated annealing routine the temperature was set to a very low value and 1000 iterations 

were used. This results in the algorithm becoming a simple random search around the starting 

point with greedy descent. The error on the test data was 3.8 after this further training. This 

improvement again illustrates the difference between a least squares error criterion and a 

minimum mean squared error criterion.

5.S.2 Example: Training of input sets only
In this example the simulated annealing algorithm was used to train the input sets only, as

described in section 5.7.4. The output sets were initialised to the values given by the least 

squares algorithm, so that the initial MSE was 25. Thereafter during the training the output sets 

were left unchanged. After training the mean squared error reduced from 25 to 3.8. The error 

on the test data set was 3.9. The input set parameters after training are shown in table 5.5

Fuzzy set 1

Fuzzy set 2

Fuzzy set 3

Input 1

|X = 2.63

a = 2.95

u. = 6.7

a = 2.78

H = 8.1

a = 3.2

Input 2

11 = 2.1

a = 2.7

jj, = 5.66

0 = 3.17

\i= 1.025

0 = 0.1

Table 5.5: Parameters for Input fuzzy sets for function SQR2 after training using simulated 
annealing
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The success of this algorithm in the training of the input sets is dependent on the settings 

chosen for the initial temperature and the cooling coefficient. A high initial temperature in 

conjunction with too high a rate of cooling can cause the algorithm to become trapped in a local 

minimum. It would be possible to detect this condition and abort the training run by monitoring 

the change in error over several epochs. In practice in the FTEST application software this 

process is carried out manually by periodically checking the progress of the algorithm. Where 

the error is observed to settle quite early at a high value, and particularly where a much lower 

'best error' has been observed then the training process is likely to have become trapped in a 

local error minimum (the best error is monitored in the training dialog box). In this case 

manual intervention is required to reset the cooling rate and possibly the initial temperature. 

This requirement for intervention is a drawback for this version of fuzzy system training using 

simulated annealing and is more noticeable for input parameter training. It is conjectured that 

the need for intervention is greater for input set parameter training because the space defined by 

the error as a function of the input parameters contains more local minima than the error space 

for the output parameters alone. One of the major contributors to this sensitivity to cooling 

coefficient is that the algorithm is not efficient in searching out the local minimum in its 

vicinity. Thus during the early high temperature phase of training areas of parameter space 

with potentially deep error minima are abandoned too soon by the search without finding the 

true local minimum. Later in the low temperature phase of the search the algorithm cannot re 

visit these minima, as the temperature is then too low to allow the search to move from its 

existing local minimum. Figure 5.11 shows the change in error as a function of the epoch 

number for this example.

5.8.3 Example: Training of input and output sets using simulated annealing
The third example used a combination of the routines used in the examples of sections 5.8.1

and 5.8.2. The routines were combined as described in section 5.7.4. The initial configuration
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of the fuzzy system was the same as that used to test the least squares method. After training 

for 2000 epochs of 100 iterations each, starting with an initial temperature of 4 and a cooling 

coefficient of 0.05, a final mean squared error of 10 was achieved. The MSE over the 

verification test data was 12.4. The plot of error Vs epoch number is shown in figure 5.12 and 

the trained input and output set parameters are shown in tables 5.6 and 5.7.
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Figure 5.11: Plot of epoch error versus epoch number for example of section 5.8.2
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Figure 5.12: Plot of error versus epoch number for example of section 5.8.3

500

Output set T
1
2
3
4
5
6
1
8
9

Parameter 1 (a/)
0
0

4.1
10.9

0
0

7.67
0
11

Table 5.6: Output set parameters for function SQR2 after

Input 1

Fuzzy set 1 u. = 6. 1 a = 0

Fuzzy set 2 ji =6.5 a = 1 .5

Fuzzy set 3 (j. = 7.5 a = 0

Parameter 2 (« /)
0
0

8.9
0
0

14.4
0
0

8.39

training for example of section 5.8.3

Input 2

u,= 2.9 a =2.6

(j. =5 a = 0

H = 0.2 a = 0

Table 5.7: Input set parameters for function SQR2 after training for example of section 5.8.3.
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The disappointing performance of this algorithm using simulated annealing for both inputs and 

outputs is fairly typical of this training method. This is due to the inefficiency with which the 

algorithm selects candidate moves. The handicapping effect of this inefficiency becomes more 

pronounced the larger the search space becomes. In this case the search space is larger because 

of the dimensionality of the problem and thus the search space has been increased from 12 for 

the input sets only and a dimensionality of 18 for the output sets only, to a combined 

dimensionality of 30. Since the search space volume scales the power of the problem 

dimensionality the efficiency of the search algorithm becomes acutely important. Assuming 

that all the parameters to be searched have an equal and bounded range of possible values Rp 

then the volume to be searched for a P parameter problem is given by:

VOLSEAKCH -*/ 5.29

The potential difficulties imposed by this increase in the problem search-space become even 

more apparent when the scaling of fuzzy system dimensionality with number of inputs is 

discussed in section 5.13. Because of the importance of the efficiency of the training methods 

in searching parameter space the methods described in the following section were adopted to 

improve the searching efficiency of the algorithm.

5.9 Simulated annealing combined with least squares to train input and output sets

5.9.1 Description of training method
The training method described in this section combines the least squares approach for training

the output parameters with simulated annealing to train the input parameters (method 4 of 

section 5.7.3). The algorithm is similar to the hybrid method described in (op cit Jang, 1993), 

but whereas in that work backpropagation is used to optimise the input parameters, simulated 

annealing is substituted in the method described here. The overall method is shown in the flow 

diagram of figure 5.13.
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The motivation for the adopting this approach is to try and reduce the effective dimensionality 

of the search space for the simulated annealing algorithm by taking advantage of the 

comparative computational efficiency of the least squares approach for improving the output set 

parameters.

5.9.2 Example: Training of input and output sets using simulated annealing and least 
squares.

In order to compare this approach with the other approaches described in this chapter the 

example of training a fuzzy system to approximate the function SQR2 is again used. In this 

example after a few trial runs the most effective training parameters were found to be: initial 

temperature = 1, cooling coefficient = 0.4, number of iterations per epoch = 100, number of 

epochs=100. The initial MSE was 25 and the final MSE on the training data was 0.18 whilst 

the MSE on the test data was 0.30. The input and output set parameters after training were as 

shown in tables 5.8 and 5.9. The change in error with epoch number, which is shown in figure 

5.14, shows that this training routine converges much more quickly to its best MSE than the 

example of section 5.8.3
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No

Modify temperature
according to

annealing schedule
Begin new epoch

No

Figure 5.13: Flow diagram showing combined linear least squares and simulated annealing

Fuzzy set 1 

Fuzzy set 2 

Fuzzy set 3

Input 1 Input 2

, = 0o=31.4 

= 0o= 4.89 

i = 0, o= 0

0.74 a =51.8 

. = Oa=lll

Table 5.8: Parameters for Input fuzzy sets for function SQR2 after training inputs and outputs 
using simulated annealing and least squares
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Output set r
1
2
3
4
5
6
7
8
9

Parameter 1 (a/)
-387
2,760
2,510

-14,000
8,200
5,710
13,300

-51,100
38,000

Parameter 2
232
-815
665
669

-2460
1,820

38,100
-173,000
135,000

(a/)

Table 5.9: Output set parameters for output fuzzy sets for function SQR2 after training inputs & 
outputs using simulated annealing and least squares

Figure 5.14: Plot of MSE versus epoch number for example of section 5.9.2

5.10 Simulated annealing combined with downhill simplex method and least squares to 
train input and output sets.

5.10.1 Overview of technique
This technique utilises the ability of linear least squares to optimise (at least in a least squares

sense) the output parameters of the fuzzy inferencing system in a single pass. This leaves the 

input parameters to be optimised in some way. As discussed in section 5.7.2, simulated
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annealing has the ability to search for optimal parameters without getting trapped in local 

minima. However it was also noted that simple simulated annealing using purely random 

perturbations about an existing point in error space can be inefficient. (Press et al., 1994) 

suggest a method which combines simulated annealing with a downhill simplex technique to 

improve the efficiency of simulated annealing for continuous parameters. Their algorithm and 

code has been applied and modified in the FTEST application software for training fuzzy 

inferencing systems. The following subsections describe downhill simplex and its use in 

combination with simulated annealing. The combination of this technique with linear least 

squares to produce an efficient overall training algorithm for training fuzzy systems is then 

described.

5.10.2 Downhill simplex
The basic downhill simplex is a multidimensional function minimisation technique due to

(Nelder and Mead, 1965) and described in (op cit Press et a/., 1994). The multidimensional 

function to be minimised is the error as a function of the fuzzy system parameters. Gradient 

descent techniques such as backpropagation require the evaluation of the partial derivatives of 

the error measure versus each parameter. The simplex method does not, however, require 

evaluation of the derivatives of the function that is being minimised. This is a potential 

advantage for its use in training a fuzzy system. In the case of fuzzy systems where the 

parameters to be adjusted are the input fuzzy set parameters, evaluation of these derivatives 

require differentiable membership functions. This is avoided by the simplex method, which 

only requires evaluation of the function itself rather than its derivatives.

For a fuzzy system with N inputs, F fuzzy sets per input, and Gaussian membership functions 

the error function is a function of 2.N.F variables (the parameters). In D dimensions a solid can 

be formed with D+l vertices in such a way that if any vertex is taken as origin the vectors from
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the origin to the remaining vertices span the vector space of D dimensions. Such a D- 

dimensional solid is called a nondegenerate simplex. In the fuzzy system error minimisation 

problem the simplex is formed in a D = (2.N.F) space and has D+l = (2N.F+1) vertices. The 

co-ordinates of each vertex consist of a possible set of parameters to the fuzzy system and each 

vertex has an associated mean squared error over a training data set. Thus each vertex is a trial 

point in parameter space and has to be initialised at the start of the training.

The downhill simplex method carries out a sequence of moves that are geometrical 

transformations of the simplex. The moves are such that the simplex travels through the D- 

dimensional error space in a direction towards a minimum local to the simplex's starting point 

i.e. the simplex moves 'downhill'. The basic moves are called 'reflection'', 'reflection with 

expansion', 'reflection with contraction' and 'contraction' (op cit Press et al., 1994).

Reflection: In this move parameter co-ordinates of the vertex having the highest 

mean squared error are changed such that the vertex moves through the face of the 

simplex which is opposite it. i.e. it is reflected in that face.

Reflection with expansion: In this move if an initial reflection is successful 

(produces an error lower than the vertex with the best error), the reflection is 

extended by a factor of two i.e. the reflected vertex is moved to twice as far behind 

the plane of reflection as it was originally in front of it.

Reflection with contraction: This move is carried out if a reflection produces an 

error that is higher than that of the vertex with the second highest error. In this case 

a reflection with a factor of 0.5 is tried and accepted if it improves on the original 

error of the vertex. The factor of 0.5 implies that the reflected vertex is half the
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distance behind the plane of reflection as the original vertex was in front. If after a 

reflection and contraction the vertex has a lower error than its original error then the 

move is accepted.

Contraction: This is the move carried out when all the above moves fail to reduce 

the error of the worst vertex. In this case all the vertices are contracted in length by 

a factor of 0.5 about the vertex with the lowest error.

The downhill simplex algorithm iterates over these moves in order and terminates when all the 

vertices have an error which is within some defined tolerance parameter of each other. The 

simplex contracts in directions across valleys in error space and expands along such valleys in 

the downhill direction. In minima the simplex keeps contracting, until all the vertices converge 

on the minimum point. The simplex can also manoeuvre through narrow constrictions in error 

space.

The downhill simplex method is an efficient method of exploring multidimensional error 

spaces. However it can converge on local or poor minima. It does, however, offer a useful 

method of generating efficient moves for a simulated annealing-based algorithm.

5.10.3 Downhill simplex combined with simulated annealing
The approach of combining the downhill simplex method with simulated annealing to produce

an efficient and robust search method, which is resistant to entrapment in local minima, is due 

to (op cit Press et al., 1994). In order to implement the Metropolis algorithm, rather than 

testing the effect on the error of a random perturbation of the system against an exponential 

distribution, a natural logarithm distributed random number is added to the error computed for 

each existing point in the simplex. Furthermore a natural logarithm-distributed random number
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is subtracted from any trial points generated using the moves of the simplex described in 

section 5.10.2. The logarithm-distributed number is proportional to a temperature parameter, 

which is initialised at some high value and progressively reduced after a fixed number of 

iterations. The random number, logran , is given by:

logran = -T loge [pseudran] 5.30

Where pseudran is a uniformly distributed random number. This addition and subtraction of 

logran has the same overall effect on the evolution of the simplex as the conventional simulated 

annealing method has on its single search point. This effect is that some moves which result in 

an increase in the error of a vertex are still accepted. In (op cit Press et al, 1994) the motion of 

the simplex is described as ".... a stochastic , tumbling Brownian motion ....".

The simplex method is a localised multipoint search with those points that have the lowest 

errors pulling the points with the worst errors in their direction. The simplex can be regarded 

as a set of sample points in parameter space competing to find the lowest set of energy or error 

states. This is similar in concept to a low population genetic algorithm. The addition of the 

random numbers to the error values of the vertices can be regarded as the analogue of random 

mutation in Genetic Algorithms.

5.10.4 Simplex, simulated annealing, and linear least squares combined algorithm
This section describes how the downhill simplex and simulated annealing method of Press et al.

is applied in the 'FTEST' application program to train the input set parameters of fuzzy 

systems. In this implementation the combined simplex - simulated annealing method is also 

combined with the linear least squares method to produce an overall training method for 

Sugeno fuzzy inferencing systems. This training method can be selected in the training dialog 

box of FTEST under the Train...' options. It is called the 'AMEBSA & LLS' option there.
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The name AMEBSA is used as this is the name given by Press et al. to their code for the 

simplex-simulated annealing routine described in section 5.10.3 and which is used as part of the 

implementation in FTEST. Whenever the error associated with a vertex is needed the 

AMEBSA routine calls a function 'funk' using the function call:

float funk(float* NEWparams).

In FTEST 'funk' returns the value of the mean squared error over the training data set obtained 

with the input parameters pointed to in the function call to 'funk', 'NEWparams', after the 

output parameters of the fuzzy system have been set to those giving the least squared error 

using the method of section 5.5.4. Thus the error associated with each vertex takes into account 

the optimisation possible by tuning the output set parameters. The comments of section 5.8.1 

on the effects of the difference between the least squares and the least mean squares error 

criterion also apply to the use of the least squares method in the 'AMEBSA & LLS' approach. 

Figure 5.15 is the flow diagram showing how the routine AMEBSA is used in FTEST to train 

fuzzy systems.

5.10.5 Example: Training of input and output sets for 'SQR2' using downhill simplex, 
simulated annealing and least squares.

As for the previous described training techniques, approximation of the function SQR2 by a 

fuzzy system is taken as an example to illustrate the training technique and to allow a 

comparison with the other training techniques investigated. After training for 77 epochs of 100 

iterations, starting with a temperature of 4 and with a cooling parameter of 0.2, an MSB of 

0.009 was obtained. This is clearly an improvement on the other methods described in this 

chapter. The change in MSB versus epoch number is illustrated by the plot of figure 5.16. 

Tables 5.10 and 5.11 show the final parameter settings. The error on the verification data set 

was 0.032 after training.
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Output set r
1
2
3
4
5
6
7
8
9

Parameter 1 (a/)
3.64
-100
287
29.1
82.7
-472
17.1
35.1
162

Parameter 2
-411
1030
-676
-21.8
-35.8
95.1
-8.89
25.5
26.7

(a/)

Table 5.10: Output set parameters for output fuzzy sets for function SQR2 after training inputs 
& outputs using the hybrid downhill simplex, simulated annealing, and least squares approach.

Fuzzy set 1 

Fuzzy set 2 

Fuzzy set 3

Input 1 Input 2

|u = 9.27 o = 9.35 n = 0.098 c = 15.11

H = 0.98 a = 18.23 u = 4.65 a = 24.62

p. = 9.56 o = 13.89 |ii = 0.055 a = 6.28

Table 5.11: Parameters for Input fuzzy sets for function SQR2 after training inputs & outputs 
using the hybrid downhill simplex, simulated annealing, and least squares approach
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Initialise temperature to TO

Initialise a matrix of simplex vertices 
of size ndim+1 by n^. 
The first vertex is the existing 
parameter set. The other vertices are 
chosen to randomly cover the input 
space of possible parameters

Initialise a vector of size 
consisting of the mean squared errors 
associated with the vertices specified 
in the simplex matrix. Set the best 
error to be the value of the error 
corresponding to the existing set of 
parameters

I
Call Amebsa for the specified 
number of iterations per epoch

Set the Fuzzy system parameters to 
those of the vertex with the lowest 
error. Update temperature according 
to the annealing schedule______

Last epoch ?

YES

STOP

NO

Figure 5.15: Flow diagram showing how the routine AMEBSA is used in FTEST to train fuzzy 
systems.
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Figure 5.16: Variation of MSE versus epoch number for example of section 5.10.5

5.11 Simulated annealing and automatic rule generation for rulebase selection.

5.11.1 Non exhaustive rulebases
All the training techniques described in the previous sections have used the training to optimise

input and output fuzzy set parameters. However the action of a fuzzy inferencing system also 

depends upon its rulebase.

In the case of the inferencing systems approximating 'SQR2', used in the training examples, the 

maximum possible number of rules is nine, assuming that all inputs appear in all rules. This is 

because there are two inputs and three fuzzy sets per input. If the further restriction is made 

that all the inputs are associated with the same number of fuzzy sets, there will be NR possible 

rules given by:
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N R =F N 5.31

Thus, as the number of inputs to a fuzzy inferencing system increase, the number of possible 

rules in a rulebase grows as the power of the number of inputs. This problem of dimensionality 

(Kim and Kosko, 1996) potentially causes problems in the speed of execution of a fuzzy system 

as the number of rules to be evaluated increases. However, a fuzzy system can be created and 

trained offline and the mapping from input vector space to output scalar space can be 

established. This mapping need not then be implemented as a program or piece of hardware 

evaluating rules, but can be implemented as a look up table with a trade-off between speed of 

execution and memory requirements. Nevertheless the power law nature of fuzzy system 

scaling will establish a practical upper limit to the size of workable fuzzy systems. The 

problem of fuzzy system scaling becomes even more acute when the scaling of the 

computational cost of training with number of inputs is taken into consideration. The 

computational cost of training is affected by the following factors and in the following ways:

The number of rules in the rulebase will affect the time taken to train a fuzzy system. 

This is because for every example input/output data pair all rules must be evaluated.

The number of input and output fuzzy set parameters affects the dimensionality and 

hence the volume of parameter space to be explored in the way described by equation 

5.29. The output set parameters increase the time required to perform the singular 

value decomposition and are also in practice observed to cause problems of 

convergence in the SVD algorithm. More seriously, for the input fuzzy set parameters 

trained using the methods described in this chapter, the number of iterations required in 

each epoch should be increased in proportion to the volume of search space i.e. as the 

power of the number of inputs.
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For equal levels of representation of possible input output combinations the number of 

input output pairs in the training data set should also be scaled as the power of the 

number of inputs.

It is not clear however that a rulebase containing all possible rules (referred-to in this thesis as 

the exhaustive rulebase) is inherently superior to a rulebase consisting of a subset of the 

exhaustive rulebase. In any case with a large number of inputs the rulebase has to be less than 

exhaustive in order to remain computationally tractable. A valid question for a non-exhaustive 

rulebase is 'which of the possible subsets of the exhaustive rulebase gives least mean squared 

error?'

In order to explore the effect of using a non-exhaustive rulebase, an automatic rule generating 

mechanism was used in conjunction with simulated annealing to select a non-exhaustive 

rulebase. If the maximum number of rules in a rulebase is A^ then a subset of SNK rules was 

generated and the error for this particular subset was evaluated. The subset was accepted or 

rejected according to the usual rules for the Metropolis algorithm. Three variations of this rule- 

training algorithm are implemented in the 'FTEST' application software.

A further modification made to the FTEST software in order to use non-exhaustive rulebases is 

that a default 'ELSE' rule is included. This rule is fired if the firing weights for all the rules in 

the rulebase fall below a pre-set threshold. This situation arises with a trained non-exhaustive 

rulebase when an input is presented to the fuzzy system that was not represented in the training 

data. In practice with a well-configured system this default ELSE rule should be rarely fired.
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5.11.2 Automatic rule generation
In order to implement rule selection using simulated annealing a function for generating

individual rules is needed. Blocks of rules, forming the subsets of the exhaustive rulebase can 

then be generated by successive calls to the function.

Recall that all rules are of the form:

IF Ip 1 is Fuzzy Set A AND Ip2 is Fuzzy set B AND

. . . ..IpN is Fuzzy set Z THEN output is output set O

These rules can be written in the concise form:

The exhaustive rulebase can be ordered e.g. for the case of three inputs and three input fuzzy 
sets: [1,1][2,1][3,1]:1

[1,3][2,3][3,3]:27

Since the inputs occur in order in the rules this can be written even more concisely as:
1,1,1:1 
1,1,2:2 
1,1,3:3

3,3,3:27

The three digits on the left are the base three representation of the output rule number, but with 

the smallest digit allowed being a T instead of a zero and the largest digit being a '3' instead 

of a '2'. The method for generating the O'h rule then is to convert the number O-l to its base F 

representation where F is the number of fuzzy sets per input and add one to each of the digits of 

the TV digit number obtained where N is the number of inputs. This method forms the basis of 

the function 'Rulegen' used in FTEST for automatic rule generation. Rulegen takes the index 

of the rule to be generated as an argument and returns that rule in the appropriate form for
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incorporation into FTEST's rulebase to the rule training routine. The code fragment for the 

function 'Rulegen' is shown below:

int* CTRNDLG::Rulegen(int rule_no,int* rulevec)

int i;
int nO=rule_no-l;
for(i= 1 ;i<=m_nips;i++) // m_nips is the number of inputs

{ // m_nfs is the number of fuzzy sets
int di visor=(int)floor(pow(m_nfs,m_nips-i)+0.0001);
rulevec[i]=(int)floor(nO/divisor)+1;
nO=nO-((rulevec [i]-1 )*divisor);

return rulevec;

The automatic rule generating mechanism is also used in FTEST to allow the user to initialise a 

fuzzy system with a given universe of discourse and a given number of rules, inputs, and input 

sets. This is the 'initialise system' option in the training dialog box. When this option is 

chosen FTEST generates a set of Gaussian fuzzy input sets uniformly distributed over the input 

universe of discourse for each input, a set of rules, and default output sets. This 'initialise 

system' is intended to be used to easily and quickly generate starting point fuzzy systems before 

applying any training algorithms.

5.11.3 Simulated annealing used to optimise non-exhaustive rulebases
Three different variants on the use of simulated annealing to optimise non-exhaustive rulebases

were explored. These variants are:

Variant 1: Simulated annealing is used to select a non-exhaustive rulebase, perturbing 

the rules one at a time. The least squares method is also used to optimise the output set 

parameters before the accept or reject decision is made according to the simulated 

annealing algorithm. The flow diagram for this variant is shown in figure 5.17.
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Variant 2: In this variant whole blocks of rules within the existing non-exhaustive 

rulebase are changed at a time before the accept/reject decision is made. Again the 

output set parameters for the new rulebase configuration are also optimised using the 

least squares method. The size of the block of rules to be changed is chosen at random, 

evenly distributed from one rule to all the rules in the existing rulebase. The flow 

diagram for this variant is shown in figure 5.18.

Variant 3: This variant is the same as variant 2 but in addition the amebsa routine is 

called with a very low temperature to locally optimise the input fuzzy sets for the new 

rule configuration. The least squares method is used to optimise the output set 

parameters as before. By using a low temperature setting the amebsa routine is 

effectively reduced to a downhill simplex method. Also only one epoch of a fixed 

number of iterations is used in the call to 'amebsa'. This variant is a compromise of the 

possible but computationally longer approach of carrying out a full simulated annealing 

optimisation of input and output set parameters for every possible rule configuration. 

The flow diagram for this variant is shown in figure 5.19.

A different approach to rulebase training is suggested in a recent report on training a Mamdani 

fuzzy system (Garibaldi and Ifeachor, 1999). In this approach the choice of rules in the 

rulebase is treated as one of a set of discrete variables which also include other structural 

parameters of a fuzzy system. A random choice is then periodically made in the training 

algorithm as to whether to train discrete or continuous parameters for a fixed number of 

iterations.
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Figure 5.17: Flow diagram for rulebase training using Variant 1
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Figure 5.19 Flow diagram for rulebase training using Variant 3
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5.11.4 Examples of rulebase training
The function SQR2 was again used to test the rulebase training routines. In this case, however,

the 'initialise system' option of FTEST was used to set up a fuzzy system with three input fuzzy 

sets per input but with only six out of the possible nine rules. The task to which the three 

rulebase training variants were each applied was to select an optimal set of six rules with their 

associated output sets. In the case of variant 3 some optimisation of the input sets is also 

carried out before selecting or rejecting a particular rule combination.

After initialising the fuzzy system in FTEST the MSE over the training data set was 5,644, 

which reduced to 2,648 after applying the least squares routine to optimise the output set 

configuration. This raw system was saved and used as the start point for all the rulebase 

training routines tested. The hybrid simplex, simulated annealing, and linear least squares 

algorithm described in section 5.10.4 was also applied to the raw system so that a comparison 

could be made between training a non-exhaustive rulebase system with no rule selection and 

the rule-selecting methods of variants 1 to 3. The hybrid simplex, simulated annealing, and 

linear least squares algorithm achieved a MSE of 0.6 on the training data and 4.7 on the test 

data after training for 100 epochs of 100 iterations.

When applied to the raw fuzzy system, both variant 1 and variant 2 of the rulebase training 

algorithm consistently achieved a minimum MSE of 192 on the training data and 299 on the test 

data. Moreover the set of rules chosen by both variants was also the same. This suggests that 

for this problem, with the particular choice of input sets made by the FTEST initialising 

routine, this was the optimum subset of six rules, and that neither training method variant 

offered an advantage over the other. Typical plots of MSE versus epoch number for variants 1 

and 2 for this example are shown in figures 5.20 and 5.21.
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The MSE achieved by variants 1 and 2 on this problem is poor by comparison with that 

achieved by the hybrid simplex, simulated annealing, and linear least squares algorithm, since 

the input sets are not optimised by variants 1 and 2. When, however, the hybrid simplex, 

simulated annealing, and linear least squares algorithm was applied to the system generated by 

variants 1 and 2 a MSE of 0.046 was achieved on the training data and 0.123 on the test data.

Variant 3 of the rulebase training routines improved the MSE of the raw six-rule version of 

SQR2 to a MSE of 2.8 on the training data and a MSE of 3.25 for the test data. The plot of 

MSE versus epoch number for this example is shown in figure 5.22. Since variant 3 locally 

optimises the input sets before accepting or rejecting a particular rule configuration, the variant 

3 solution for the best rule configuration might be expected to be different from those of 

variants 1 and 2. However, for this example, the rule configuration chosen by variant 3 differed 

in only one rule from that chosen by variants 1 and 2.

When the six-rule fuzzy system for SQR2 generated by variant 3 was trained using the hybrid 

simplex, simulated annealing, and linear least squares algorithm, the MSE was further reduced 

to 0.053 on the training data and 0.07 on the test data.

5.11.5 Discussion of rulebase selection strategies
The results of the examples discussed in section 5.11.4 suggest that for a non-exhaustive

rulebase, which combination of rules is chosen influences the ultimate MSE that can be 

achieved, even with subsequent optimisation of the input sets. Moreover the results suggest 

that if, after rulebase training, the input sets are subsequently trained using an approach like the 

hybrid simplex, simulated annealing, and linear least squares algorithm, there is little difference 

between the three possible approaches to rulebase training discussed in section 5.11. However, 

there is scope for further work to establish whether this result extends to fuzzy rulebase training 

in general.
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Figure 5.20: Plot of MSE versus epoch number for variant 1 for example of section 5.11.4
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Figure 5.21: Plot of MSE versus epoch number for variant 2 for example of section 5.11.4
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Figure 5.22: Plot of MSE versus epoch number for variant 3 for example of section 5.11.4

5.12 Summary of Chapter 5

Chapter 5 has presented a brief overview of fuzzy sets, fuzzy logic, and Mamdani and Sugeno 

fuzzy inferencing systems. The chapter has introduced the FIR type of first order Sugeno 

system that is investigated in Chapter 7 as a basis for filtering signals, such as depth maps, 

corrupted by mixed Gaussian and impulsive noise. After a brief description of the FTEST 

software that is used in the work described in this thesis to investigate and generate fuzzy 

systems, the chapter has introduced six related approaches to fuzzy system training. These are 

based on combinations of a linear least squares method, the simulated annealing algorithm and 

the simplex method. The remainder of the chapter has been concerned with testing these six 

approaches using a simple function approximator example. When used to train fuzzy systems 

with a fixed rulebase, the hybrid simplex, simulated annealing, and linear least squares 

algorithm produced the best results. The need for non-exhaustive rulebases because of the
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problem of rulebase explosion was introduced and three approaches to fuzzy system training 

with rulebase selection were suggested and tested. The training approaches to Sugeno system 

training introduced in this chapter and which form a part of the contribution made by the thesis, 

are used in the training of the filters discussed in Chapter 7.
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Chapter 6: Fuzzy logic-based filters

6.1 Introduction

This chapter describes the development of fuzzy logic-based filters for filtering signals corrupted 

by mixed Gaussian and impulsive noise, such as the depth maps described in Chapter 3. A review 

of previous work on the use of fuzzy logic in filtering problems is also presented in this chapter and 

a taxonomy of such fuzzy filters is proposed. A fuzzy logic-based filter using a zero order Sugeno 

network (Takagi and Sugeno, 1983) is described and applied to the task of smoothing disparity 

maps derived from real image sequences. A universal fuzzy filter architecture based on the FIR 

type (see section 5.3.2) first order Sugeno fuzzy inferencing system is then presented. The 

performance of this filter architecture can be optimised using the techniques described in Chapter 

5. The contributions of this chapter are the proposed fuzzy filter taxonomy, the application of the 

zero order filter to disparity map smoothing, and the proposed use of the FIR type Sugeno network 

as a fuzzy filter architecture.

6.2 Motivation for the use of Fuzzy Logic in filtering

The use of fuzzy logic in tackling the problem of filtering dense depth maps produced by 

correlation based matchers is philosophically motivated by the ill-posed nature of the problem of 

establishing correspondence using correlation which was discussed in section 3.6. As discussed 

there, the classical way of dealing with ill-posed problems is to impose additional constraints to the 

problem formulation such that the best solution is chosen given uncertain and ambiguous 

measurements. These additional constraints express a priori assumptions about the form of
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acceptable solutions. For certain constraints expressed in a variational form, a known linear or 

nonlinear filter can be identified. Thus for these cases the mapping from input to output carried out 

by a filter is identical to applying the prior constraint corresponding to that filter. Because of their 

universal function approximation property (Kosko, 1992), (Wang, 1992), (Wang and Mendel, 

1992) fuzzy inferencing systems can be used to approximate any mapping from an input vector to a 

single output. The use of fuzzy inferencing systems as general input-output mappers or general filters 

allows the regularising a priori assumptions to be potentially explicitly embodied in the fuzzy rule base and 

the input and output membership functions. Neural networks can also be used as general input-output 

mappers (Hornik et al.., 1989) and neural networks have been used as the basis for image processing filters 

(Pugmire et al. 1995). The mapping performed by a neural network is entirely derived from training using 

input-output data pair. Thus, the a priori assumptions being applied are only implicit in this data and not 

explicit. However, knowledge in the form of input-output pairs can also be useful in deriving filter 

mappings. Fuzzy inferencing systems possess the twin advantages of being trainable like neural networks 

as well as being derivable using prior knowledge. This makes them attractive in principle as a general 

filtering method, and gives them an advantage over neural network based filtering. Filters based on fuzzy 

inferencing can also potentially make explicit use of known filtering techniques.

6.3 A taxonomy of Fuzzy filters

In the discussion in this chapter fuzzy filters are divided into two classes, direct and indirect acting. 

The first class of filters which are examined here are termed 'indirect acting' because the fuzzy 

system is used to determine the parameters of a conventional filter system. If this conventional 

filter system is viewed as a Black box which has external control knobs, the indirect fuzzy systems 

take the place of an operator manipulating the control knobs. The control knobs are manipulated
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by a fuzzy expert system, which is external and separated from the filter system. The action of the 

fuzzy system on the raw input signal is 'indirect'. This is the most commonly used approach to 

applying fuzzy inferencing systems to filtering problems.

The distinction between direct and indirect filters is a fundamental one. A direct filter architecture 

based on Mamdani Inferencing (Mamdani, 1974) is a pure fuzzy system. In such a pure system, 

input numerical data is turned into linguistic (fuzzy) data by a fuzzifier stage. The fuzzy system 

infers a linguistic output from the fuzzy input data according to its internal rulebase and inferencing 

method. Finally, the linguistic output data is converted into crisp numerical data by the defuzzifier 

stage. This type of filter architecture is illustrated in figure 6. 1

Input
n x n Filter 
Window

n x n input 
vector

Fuzzy Inferencing 
System

Output

Figure 6.1: Direct acting fuzzy filter architecture.

Because of its purity as a fuzzy system the design and analysis of a direct fuzzy filter can draw on 

the body of knowledge concerning fuzzy calculus. However the direct acting architecture with 

Mamdani inferencing requires care in the fuzzification stage to ensure unique signal representation 

as a fuzzy set and to avoid 'fuzzy aliasing' (deOliveira, 1996). The necessary and sufficient 

condition for this is discussed in (op cit deOliveira, 1996) and is that the mapping performed by the
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fuzzification stage from crisp numerical input to fuzzy set is injective. If this condition is met then 

two different input vectors always result in a different fuzzy representation. If two different input 

vectors result in the same fuzzy representation then, according to (op cit deOliveira, 1996), fuzzy 

aliasing takes place. Although (op cit deOliveira, 1996) does not state this, there is an underlying 

assumption that the fuzzy system is memoryless, which is normally the case. Ensuring that this 

condition is met complicates the training of a fuzzy system using numerical input-output data 

unless the sufficient condition in (op cit deOliveira, 1996) of linearity through the direct 

fuzzification/defuzzification process is met. By contrast, an indirect fuzzy system always acts on 

the data by controlling a conventional filter stage or selecting between such stages. Thus, non- 

uniqueness of the signal representation in the fuzzy inferencing system does not result in the same 

output for different inputs. Different inputs can result in the same type of filter action however. 

Similar filter action for different inputs is often perfectly acceptable. This distinction between 

direct and indirect fuzzy systems is not drawn in (op cit deOliveira, 1996). Filters based on the 

Sugeno inferencing system, are hybrid systems in the direct/indirect taxonomy. They do not suffer 

from the fuzzy aliasing problem of direct Mamdani based filters, but as is shown in section 6.6, 

they encapsulate the whole of the filter within a single fuzzy inferencing system. This 

encapsulation of the filter action facilitates the training of such filters with input-output training 

data.

6.4 Review of work on fuzzy-based filters

The majority of the papers on fuzzy-based filters discussed in this section describe filters that are 

based on an adjusted weighted mean filter. In this type of filter, having a filter window of size 

2N+1 the output value y[n] for a particular sampling point x[n] indexed by VT is given by:
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k=n-N

h[n-k].x[n-k]

h[n-k]
r

This is very similar to a conventional linear transversal or finite impulse response filter except that 

the filter weights are determined for each value of '£' as some function of the input data in the 

window. This function is achieved using some form of fuzzy inferencing system in many of the 

indirect fuzzy filters described in the papers discussed in this section

(Arakawa and Arakawa, 1991) is an early paper which describes the use of fuzzy logic-based filters 

to cope with signals which have non-stationary statistics. The indirect filter is an adjusted 

weighted mean type in which the weights are determined by the fuzzy stage. In this case the fuzzy 

stage simply consists of a stepwise approximation to a nonlinear fuzzy membership function. The 

nonlinear membership function defines the set whose elements are described by: "Is a member of a 

region having the same statistics as the centre value in the filter window". The membership 

function is a function of the absolute difference from the centre value in the filter window. The 

stepwise approximation is obtained by training using a representative training data set and a 

gradient descent method. The filter is applied to a one-dimensional signal corrupted with Gaussian 

noise and its performance compared with a moving average filter. A performance comparison is 

also made with an adjusted weighted average filter in which a crisp rather than fuzzy decision is 

made as to whether an input value belongs to the same type of signal region as the centre value in 

the filter window. The fuzzy filter outperformed both these filters and was reported to be more 

robust than the crisp adjusted weighted mean filter.
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(Kwan and Cai, 1993) describe two types of filter based on a 'fuzzy concept'. Both types of filter 

use the adjusted weighted mean method of filtering. The weights applied to each sample in the 

filter window are a nonlinear function of the input data, the window median, and the maximum and 

minimum value in the filter window. As in (op cit Arakawa and Arakawa, 1991) there is no 

explicit rulebase and fuzzy inferencing to derive the filter weights. The method of deriving the 

filter weights is akin to a Fuzzy Associative Memory (Kosko, 1992). However, the basic filter 

structure is used in many other designs of fuzzy filters.

(Taguchi et al., 1994) describe a fuzzy inferencing system which is used to determine the weighting 

coefficients of a 5x5 two-dimensional weighted mean filter for grey scale image restoration. This 

filter is therefore of the indirect type. The Mamdani fuzzy inferencing system used in (op cit 

Taguchi et al., 1994) uses the distance from the centre of the window and the difference in grey 

scale value from the centre pixel's grey scale value as input variables and produces the weight for 

each pixel in the window as output. The fuzzy system is optimised by hand using the improvement 

in signal to noise produced by the filter as a metric. A remark is made at the end of the paper that 

the difference from the filter window median rather than the centre pixel value as input variable 

would make the filter more effective in removing impulsive noise.

(Takashima et al., 1995(a)) and (Takashima et al., 1995(b)) are a continuation of the work of (op 

cit Taguchi et al, 1994). (op cit Takashima et al, 1995(a)) adds 'macroinformation' based on the 

local image statistics as an additional input variable to the fuzzy system. This paper also adopts 

zero order Sugeno type inferencing. The training of the fuzzy set parameters is based on a 

backpropagation type of rule. The purpose of the additional observation variable is to ensure that 

in areas of the image which do not contain discontinuities, the output weighted mean filter being
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controlled by the fuzzy filter adopts equal weights for all pixels. Thus in these image areas the 

filter approximates an optimal filter for Gaussian noise. It is assumed that no impulsive noise is 

present. The 'macroinformation' variable k(i,j) measures the presence or absence of discontinuities 

within a filter window by comparing the sample variance within the filter window with the 

(assumed known) Gaussian noise variance. Specifically:

6.2 
Var(i,j)<=a*

The use of this 'macroinformation' derived from local statistics is based on the work of (Lee, 

1980). (op cit Takashima et al., 1995(a)) demonstrate an improvement over the two input filter of 

(op cit Taguchi et al., 1994), the mean, the median, and the modified trimmed mean (Lee and 

Kassam, 1985) filters tested on one and two-dimensional signals corrupted by Gaussian noise, (op 

cit Takashima et al., 1995(b)) also describe an indirect fuzzy filter which determines the weights 

of a weighted mean filter. In this case, the weight-determining fuzzy system is in two stages. The 

second stage determines the weight assigned to a pixel as in (op cit Taguchi et al., 1994) and (op cit 

Takashima et al., 1995(a)), based on the difference from a reference value and the distance from 

the filter window centre. The reference value is derived from the first fuzzy stage. The purpose of 

this first stage is to determine a reference which is undisturbed by impulsive noise. The first stage 

incorporates a median filter as a pre-filter to achieve this. The results of applying the two stage 

fuzzy filter to images corrupted by both Gaussian and mixed Gaussian and impulsive noise show an 

improvement over the performance of mean, median, and modified trimmed mean filters. A direct
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comparison with the filters of (op cit Taguchi et al, 1994) and (op cit Takashima et al, 1995(a)) is 

not presented.

(Peng and Lucke, 1994) describe a filter for mixed noise removal in images which uses the concept 

of a fuzzy set to determine the weights applied to each pixel in a weighted mean filter. The weight 

is determined directly from the degree of membership of each pixel in a set 'difference from centre 

pixel value'. The membership function parameters of this set are determined from training data 

using an iterative gradient estimate technique. In order to eliminate impulsive noise any pixel 

which is 'too different' from the filter window median is removed and replaced by the median, 'too 

different' is presumably defined by a hard thresholding operation. This paper does not explicitly 

use fuzzy inferencing. (Peng and Lucke, 1995) develop this filter design into a 'Multi-Level 

Adaptive Filter'. This filter is derived from the observation that for the filter of (op cit Peng and 

Lucke, 1994) the optimal shape of the weight-determining fuzzy set's membership function is the 

same for different image and noise statistics but the scaling (width) of the optimal set is different 

for different image and noise statistics. An additional fuzzy inferencing stage is therefore added to 

determine a scaling factor for the weighting fuzzy set membership function. This Mamdani 

inferencing stage uses the local variance of the filter window as an observation variable.

A novel approach to using fuzzy methods of modifying classical filters is taken in (Hsiao and Lai 

1995). Here a least squares filter is modified by a fuzzy inferencing system. A conventional least 

squares algorithm is first run on the data. The residuals (differences between the observed data and 

the estimated data multiplied by the measurement matrix) of the least squares algorithm are then 

taken as observation variables into the fuzzy inferencing system. The triangular fuzzy sets of the 

fuzzy system have their universe of discourse and scaling set depending on the mean and standard 

deviation of the residuals. The fuzzy system calculates a weighting to be applied to the residuals.
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Those residuals which are higher relative to the mean of all residuals are given a lower weighting. 

A new observation is then derived from the original observation by subtracting the original residual 

and adding the new weighted residual. The least squares algorithm is then re-run to obtain a 

modified least squares estimate. The overall effect is that the fuzzy system is used to classify the 

reliability of the input data and thus re-weight the data input to the least squares filter based on the 

size of the residuals. A similar approach is also described for modifying a recursive least squares 

filter and a Kalman filter.

In (Yang and Toh 1995) a fuzzy inferencing method is applied to a 'Multilevel Median Filter' 

(MLMF) to derive an 'Adaptive Fuzzy Multilevel Median Filter' (AFMMF). In the MLMF four 

one-dimensional median filters oriented vertically, horizontally, and in the two diagonal 

orientations within a filter window centred on pixel (i,f) is taken. The maximum and minimum of 

these medians is taken and the median of these two values and the value of the centre pixel (i,f) is 

taken as the final output of the MLMF filter. The MLMF has a better ability than the median filter 

to preserve line structures. The AFMMF is better able than the MLMF to remove noise that 

appears as 'short line like noise'. A fuzzy associative memory (op cit Kosko, 1992) is used to 

derive a confidence value for each output of the oriented one-dimensional median filters. The 

outputs of the two one-dimensional filters which have the best confidence values are added to the 

final overall median filter.

(Russo, 1996) (an earlier very similar paper is (Russo, 1993)) uses a fuzzy system to determine a 

correction to the centre value in a filter window. The input to the correction determining stage is 

the difference from centre value for each sample in the filter window. A modification is also made 

to a type of inferencing mechanism which is called 'Fuzzy Inference Ruled by Else-Action' or
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'FIRE' (Russo and Ramponi, 1994). The essence of this inferencing technique lies in partitioning 

the fuzzy rulebase into sub-rulebases. Within each sub-rulebase, the consequent output set is the 

same for all rules and is mutually opposed to the consequent sets of the other sub-rulebases. There 

is also a single 'ELSE' rule, which activates a default action if none of the sub-rulebases are 

activated. Within each sub-rulebase the MIN operation is used for the AND operator and the MAX 

operator is used to aggregate the rules. Correlation product inferencing is then used to aggregate 

the output of all the sub-rulebases and the ELSE rule. The use of the 'MAX' operator for 

aggregation within the sub rulebase and correlation product to aggregate all the sub rule-bases and 

ELSE rule gives the fuzzy system a multi-layer architecture. (Russo, 1996) demonstrates the 

removal of mixed impulsive and uniformly distributed noise from a simulated one-dimensional 

signal and a real two-dimensional image. The problem of rulebase explosion is also mentioned as 

the support neighbourhood of the filters is increased and cascading fuzzy filters is suggested as a 

solution.

An indirect approach, described in (Arakawa, 1996), is to use a fuzzy inferencing system to 

perform a fuzzy or soft selection between the output of a median filter and raw unfiltered data. 

This is called a 'conditional median' filter in the paper. The fuzzy system is used to identify the 

presence or absence of impulsive noise in a flexible way. The first observation variable used is the 

absolute difference between the centre pixel and the median. If this observation variable is high 

then impulsive noise is judged to be present. A second observation variable is the mean of the 

differences between the centre pixel and the two pixel values closest to the centre pixel. Again, a 

high value of this observation variable points to the presence of impulsive noise. A two- 

dimensional function of the two observation variables yields a coefficient 'n' which is used to 

determine the filter output as:
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output(i, j) = median(i, j) + ju.[input(i, j) - median(i, j)] 6.3

The two-dimensional function is built up of piecewise steps, which are trained using a gradient 

descent algorithm. This constrains the shape of the membership function surface less than if a 

smooth nonlinear function were used. The results of applying this type of filter to images 

containing fine line-like structures corrupted by impulsive noise shows an improvement over both 

conventional and conditional median filtering. In this paper, the nonlinear mapping from the two 

input observation variables to the weighting coefficient (j, is derived directly from training, rather 

than by using the formalism of conventional fuzzy inferencing systems.

In (Mancuso et al., 1996) a very similar approach to that of (op cit Arakawa, 1996) is taken to 

reduce impulsive noise in television signals. In (op cit Mancuso et al., 1996) this is referred to as a 

'decision directed filter'. Within the taxonomy of introduced in this chapter this filter is also an 

indirect fuzzy filter. In order to achieve the real time processing needed for television signals the 

fuzzy system is broken down into three layers of small fuzzy systems. The first layer produces a 

fuzzy possibility measure of the presence of impulsive noise in each of four oriented one- 

dimensional windows within the overall two-dimensional window. The possible existence of 

impulsive noise is determined by the differences in value between the centre pixel and its two 

neighbours. The second and third layers disambiguate this possibility from the existence of a small 

line-like structure in the image. The fuzzy inferencing sub systems use 'Min' for the AND operator 

and use centroid defuzzification. Each sub-system has only one rule and an ELSE clause. The 

structure of the overall system has therefore close similarities to that of (Russo, 1996).
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In contrast to all the above fuzzy filters, a direct acting fuzzy system is described in (Kim and 

Kosko, 1996) for predicting and filtering one-dimensional signals corrupted by impulsive noise. 

The paper opens with a review of the properties of noise having alpha stable statistics as a model 

for impulsive noise processes (Gaussian noise statistics is a special case of noise with alpha stable 

statistics ). A new pseudo covariance measure is derived for such noise processes, which do not 

have finite second moments. One of the two fuzzy systems that are compared uses the 'Standard 

Additive Model' (SAM), which is essentially a Mamdani-type system with defuzzification carried 

out using only the centroids of the output fuzzy sets. The problem of rule base explosion with 

increase in dimensionality is pointed out and it is suggested that effective rule base identification is 

the answer to this problem. In the first fuzzy system, an adaptive vector quantisation with 

competitive learning method is used to identify ellipsoids in input-output space using training data. 

These ellipsoids are projected onto the input axes to form triangular fuzzy set member functions. 

The output fuzzy sets are formed by projecting the centroids of the learned ellipsoids onto the 

output axis. In this fuzzy system the conjunction operator AND is effected using one of the normal 

'Min' or 'Product' operators. The second fuzzy system described differs in that there are no 

separate fuzzy sets for each component of the input vector. Instead, only a joint fuzzy set value is 

calculated for all the antecedents in each rule. This joint fuzzy set value is calculated using the 

'Mahalanobis distance' of the input vector from the rule centroid. The Mahalanobis distance 

measure is better able to preserve the correlation information between the input data vector 

components than the usual factored form of antecedent. Two fuzzy filters based on the above ideas 

are demonstrated at the end of the paper and compared with a radial basis function filter network. 

The filters are applied to a polynomial signal corrupted with Cauchy noise and the best 

performance measure by mean squared error is obtained by the fuzzy filter using the Mahalanobis 

distance based conjunction operator. Table 6.1 is a summary of the fuzzy filters reviewed here
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Paper 
Reference
(Arakawa and 
Arakawa, 1991)

(Kwan and Cai, 
1993)

(Taguchiera/., 
1994)

(Takashima et 
al., 1995(a))

(Takashima et 
al., 1995(b))

(Peng and Lucke, 
1994)

(Peng and Lucke, 
1995)

(Hsiao and Lai 
1995).

(Yang and Toh 
1995)

(Russo, 1996)

(Arakawa, 1996)

(Mancusoet al., 
1996)
(Kim and 
Kosko,1996)

Direct/ 
Indirect
Indirect

Indirect

Indirect

Indirect

Indirect

Indirect

Indirect

Indirect

Indirect

Indirect

Indirect

Indirect

Direct

Inferencing 
method
FAM type

FAM type

Mamdani

Zero order 
Sugeno

FAM type

FAM plus 
Mamdani 
for scaling 
stage
FAM type

FAM

FIRE

FAM

Zero order 
Sugeno
Mamdani
(SAM)

Input Variables

Difference from 
centre value

Centre, median, max 
and min values

Difference from 
centre value, 
distance from centre
As (Taguchi et al., 
1994) & local 
variance
Difference from 
reference & distance 
from centre

Difference from 
centre value

As [PENG94] & 
local variance for 
FAM scaling

Residuals of Least 
Squares algorithm

Difference from 
median within each 
level
Difference from 
centre value
Difference of centre 
value, median & 2 
closest values to 
centre.
difference from 
centre value
Two sample 
differences

Training

Gradient 
descent 
of stepwise 
approximation

Heuristics plus 
manually 
adjusted
Back- 
propagation

Heuristics plus 
manually 
adjusted

Iterative 
gradient 
estimate

Scaling stage 
training- 
heuristic

Input MFs set 
up according to 
variance of 
residuals
Heuristic

Heuristics

FAM trained 
by gradient 
descent

Heuristic

Competitive 
learning of 
input MFs

Summary

Adjusted 
weighted mean 
filter

Adjusted 
weighted 
Mean filter
Adjusted 
weighted 
Mean filter
Adjusted 
weighted 
mean filter

Adjusted 
weighted 
Mean. Two 
fuzzy stages
Adjusted 
weighted mean 
Data pre- 
filtered
As (Peng and 
Lucke, 1994) & 
additional fuzzy 
scaling stage
Input data 
modified by 
fuzzy system. 
Ls then re-run
MLMF adapted 
by fuzzy stage

Correction to 
centre value
Conditional 
median

Conditional 
median
Direct acting 
Mamdani.

Table 6.1 Summary of review of fuzzy filters.
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6.5 Indirect acting fuzzy logic-based filters (indirect FLBF)

6.5.1 Introduction
As outlined in section 6.4, indirect acting filters form by far the majority of fuzzy filter

architectures described in the literature. Such filters have been applied to the task of greyscale 

image restoration. However, other than the work reported here and in (Rothwell Hughes et al., 

1995) and (Rothwell Hughes et al., 1996), it is believed that there are no reports of their use to 

smooth depth or disparity maps. Because the fuzzy filters based on the FIR type Sugeno 

inferencing system described in section 6.6 represent a development of the indirect fuzzy filter 

architecture, the development of an indirect FLBF is described here. The performance of the filters 

based on the FIR type Sugeno system is examined in Chapter 7.

6.5.2 Description of indirect FLBF
The indirect acting fuzzy logic-based filters, which follow the adjusted weighted mean architecture,

are structured in a similar way to one-dimensional or two-dimensional finite impulse response 

filters (figure 6.2). The filter weights applied to each pixel in an n x n filter window are 

determined by the output of a fuzzy logic system. The overall filter output is then given by 

equation 6.1. The general structure of such a filter is illustrated in figure 6.2.

Figure 6.2 depicts a two-dimensional filter, but the structure is essentially the same for a one- 

dimensional filter with the n x n filter window replaced with a 1 x n window. The pre-processor 

stage can be included to derive inputs to the fuzzy inferencing stage from the raw input data. If the 

filter design is such that only raw data is input to the fuzzy weight-determining stage, then the pre 

processor stage is omitted. The firing weights, which multiply the input data in the window, are 

determined by the output of the fuzzy stage. The remainder of the filter implements equation 6.1.
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A feature of this filter architecture is that the fuzzy inferencing system must either be a multiple- 

input, multiple-output (MIMO) system, or must be a multiple-input single-output (MISO) system 

applied n x n times for each output value. This point is illustrated in section 6.5.4 which discusses 

an indirect fuzzy filter structure that has been used to smooth dense disparity maps (op cit Rothwell 

Hughes etal., 1995).

1* .' = Pixel to be 
replaced

Filter Window 
(in this case 2- 

D)

1

Pre-proces 
Derives in 
Fuzzy Sys

'

doT
Wjx_

>sor Fuzzy 
puts to ——— » or app
tem to dete

(x\ (x^(X) ....... (X)

l»,l/
System (MIMO 
ied n x n times) 
rmine w,...W|

Output

Figure 6.2 Structure of general indirect fuzzy filter

6.5.3 Difference from median pre-processor

As can be seen from table 6.1 a majority of the papers listed describe fuzzy filters with the 

architecture of figure 6.2, in which the pre-processor stage extracts the difference from some 

reference value for each input value in the filter window. The choice of this reference value is 

made so that a high difference indicates that the input value concerned does not belong to the same 

group or class as the centre value that is being filtered. The degree to which the input value is 

related to the centre pixel is determined by the fuzzy inferencing system, which then weights the 

input value accordingly. If the centre input value itself is chosen as the reference then the filter can 

be made to behave as a weighted mean or transversal filter, which does not smooth over abrupt
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boundaries in the signal. This approach is only effective, however, when the signal to noise ratio at 

boundaries is high and there is a low probability of impulsive noise. In poor signal to noise 

regimes or when the noise is impulsive, the centre input value is quite likely to be corrupted itself 

and is thus an unreliable reference.

As discussed in section 4.6.1, the median value of an input filter window is stable in the presence 

of impulsive noise and preserves edge structures. The use of the median as a reference in an 

indirect filter offers two advantages over the centre value. Firstly, the difference from median 

(DFM) is a robust predictor of whether a pixel belongs to one side or another of an edge. 

Secondly, the difference from median is robust to impulsive noise. The DFM therefore serves as a 

good measure of outliers due to signal discontinuities and impulsive noise. A fuzzy system can 

take this measure of the degree to which an input signal value is an outlier and apply a soft 

thresholding operation. This soft thresholding operation applies a low weight to input signal values 

with a high possibility of being outliers. Once the outliers have been attenuated by being given a 

low weight the probability distribution of the resulting sample should be shorter tailed and the 

sample should be taken only from homogenous signal areas. Thus after applying the weighting, the 

signal has been conditioned by being segmented into homogenous areas, and the impulsive noise 

component should be removed. As noted in (Pittas and Venetsanopoulos, 1990) the arithmetic 

mean is a better (in an asymptotic relative efficiency sense) filtering strategy than the median for 

data that have distributions with shorter tails than the Laplacian distribution. Thus after the 

weighting operation is carried out the arithmetic mean of the weighted values is an appropriate 

strategy, providing the weighted sample has a shorter tailed distribution than the Laplacian.
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In order to demonstrate the ability of the DFM measure to detect noise impulses, a hard logic 

filtering system was implemented. The hard logic filter was governed by the rule:

IF DFM is > threshold THEN filter weight assigned to value is Zero. R6.1

The result of applying this hard logic filter to a signal corrupted by mixed Gaussian and impulsive 

noise is shown in figures 6.3 to 6.8. Figure 6.3 shows a constant signal corrupted by mixed 

impulsive and Gaussian noise, with the impulsive noise component showed in figure 6.4. Figure 

6.5 shows the DFM signal where the median is evaluated over a 1 x 5 window. Figure 6.6 is a hard 

thresholded version of the DFM signal, which represents detected impulses. This hard thresholding 

corresponds to a crisp rule based system. Figure 6.7 shows the distribution of the noise-corrupted 

signal. A Gaussian curve of the same mean and variance as the Gaussian component of the mixed 

noise is superimposed on the histogram to show the long tailed nature of the signal distribution. 

Figure 6.8 shows the distribution of the signal after removal of the impulses detected by the 

difference from median signal. The resulting histogram has fewer samples in the tail of the 

distribution than before the impulses were removed, although it still contains some outliers.

The effect of the same hard logic filter system on a step signal contaminated by Gaussian noise is 

illustrated in figures 6.9 to 6.17. Figure 6.9 represents an ideal step signal and the passage of filter 

windows over the step. If this signal is contaminated with Gaussian noise, then the distribution of 

values in the filter windows h2 to h5 over a large number of such steps will be bi-modal. An 

averaging filter is clearly not ideal for these bi-modal distributions. If segmentation could take 

place such that the values in the diagonally striped parts of the filter windows were excluded, then 

the residual values could be filtered with an averaging filter.
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Figure 6.3: Constant signal corrupted by mixed impulsive and Gaussian noise
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Figure 6.4: Impulsive noise component of signal shown in figure 6.3
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Figure 6.6: Hard thresholded version of the DFM signal, which represents detected impulses
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Figure 6.9: Representation of an ideal step signal and the passage of filter windows over the step

By applying the same rule, R6.1, the DFM measure can achieve the required segmentation. This is 

illustrated in figures 6.10 to 6.17 which show the filter window histograms before and after 

applying the rule R6.1 to a step signal which changes value from 3 to 4 and is corrupted by 

Gaussian noise of variance 0.09. The spike in the histograms after segmentation at zero represent 

values which have been rejected by the rule R6.1, i.e. they would be given a weighting of zero in 

the subsequent weighted average process. The histograms are unimodal after applying the rule 

R6.1, giving a resultant signal for which averaging is an appropriate filtering strategy.
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Figure 6.10: Histogram of filter window h2 values before segmentation
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Figure 6.11: Histogram of filter window h2 values after segmentation

6-22



Chapter 6: Fuzzy logic-based filters

30

25

20

TO
o

115

o> .a
110

0 IrJiinn
2.5 3 3.5 4 

Histogram bin values

Figure 6.12: Histogram of filter window h3 values before segmentation
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Figure 6.13: Histogram of filter window h3 values after segmentation.
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Figure 6.14: Histogram of filter window h4 values before segmentation
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Figure 6.15: Histogram of filter window h4 values after segmentation
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Figure 6.16: Histogram of filter window h5 values before segmentation
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Figure 6.17: Histogram of filter window h5 values after segmentation
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6.5.4 An Indirect Fuzzy Filter with Difference from Median Pre-processor.

In this section, an indirect fuzzy filter is described which is designed to smooth disparity maps 

derived from sequences of images as described in section 2.3.4. These disparity maps are typically 

corrupted by impulsive noise. The hard logic approach described in section 6.5.3 is extended by 

using a fuzzy threshold. An example of the use of this filter on disparity maps derived from real 

images is shown in Section 6.5.5.

In the hard logic system a pixel value is either accepted or rejected within a filter window, 

depending on a hard threshold applied to the difference from median. This is equivalent to 

classifying a pixel as being of the same class as the majority of other pixels in a window or not. 

The fuzzy approach allows a pixel to have some degree of membership in this class. The structure 

of the fuzzy filter has the architecture of figure 6.2 with a difference from median pre-processor 

and a 5 x 5 filter window. In addition, the distance of the pixel being weighted from the centre 

pixel of the filter window is taken as an input to the fuzzy weigh-determining stage. The crisp 

input values that are fuzzified (the observation variables) are:

The Euclidean distance of a pixel whose weight is being evaluated, Pixel(i+h,j+K) from the 

pixel to which the smoothed disparity output will be assigned, Pixel(/,y): This distance is:

pixel dist = -h + k 6.4

The difference in disparity of pixel (i+h,j+k) from the median of the disparities in the 5 x 5 

filter window, dmedian (the DFM) normalised to the value of the median. This disparity 

difference measure is:
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disparity _ difference =
divisor

6.5

where divisor = dmedian when dmedian > 1, and divisor = 1 otherwise.

The disparity measure is scaled to the local median disparity, because in this application the 

disparity will increase through the sequence of images as the camera moves. By normalising to the 

median, the universe of discourse for the disparity^difference fuzzy sets does not have to cover the 

full range of disparities that might be encountered. The need for this normalisation illustrates a 

potential problem with filters based on fuzzy logic, which is that they can only implement a desired 

mapping over a fixed and pre-defined universe of discourse.

The three triangular fuzzy input sets for pixel distance are labelled Near, Local, and Far. They 

have membership functions as shown in figure 6.18

" 1.0

aiU 
,0sm n A 
S 1-0 2.0 3.0

Distance in pixels from centre pixel 

Figure 6.18: Pixel distance membership functions for indirect filter of section 6.5.4.

The three sets for disparity_difference are labelled Small, Medium, and Large with 

triangular/trapezoidal membership functions and are shown in figure 6.19. The shapes of the 

membership functions are chosen to be triangular/trapezoidal for ease of computation. They need 

not in general be symmetrical. The fuzzy rule base and inference engine combine the antecedent 

fuzzy sets two at a time and associate them with an output or consequent set. The fuzzy rule base
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used is shown in table 6.2. The output or consequent sets are fuzzy singletons corresponding to a 

zero order Sugeno system. The membership functions for the output sets are shown in figure 6.20 

and they are labelled Ot , i=l,2,..5.

<u

tc/o
13

1

1.0

0.0

Small ^Medium y Large

c b f e 
0.0 0.5 1.0

dispa rity_difference 
Figure 6.19: Input sets for disparity<_difference for indirect filter of section 6.5.4.

Consider the following disparity values in a 5 x 5 filter window :

43453

24232

4 704 5 The window median = 4

45654

54443

The centre disparity value in the box is the pixel to be filtered. The underlined disparity is at a 

distance 1 pixel from the centre pixel, and so its membership values in the distance sets are:

{Mnear(l), MIocal (l)Mfar(l)} = { 1 ,0 ,0 } 6.6

The disparity_difference is (7-4)/4 = 0.75 with membership values:

{Msmall(l), M^diUOMlargeCl)} = (0.0 ,0.33 ,0.33 } 6.7
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disparity_difference '"" """"'" "

Small Medium Large

<u Near O5 O3 O2

.« Local O4 O3 O,

1 Far O3 O2 O,

Table 6.2: Rulebase for indirect filter of section 6.5.4.
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Figure 6.20: Singleton output sets for indirect filter of section 6.5.4.

The rule base reflects the a priori assumptions about the correct form of the disparity map; pixels 

are correlated in proportion to their separation and pixels of markedly different disparity belong to 

different surfaces. The first rule in the rule base can be read as:

IF pixel_distance is Near AND disparity_difference is Small Then Output is O5 R6.2 

For this rule, a weight w, is assigned to the consequent fuzzy singleton O5 . The weight is 

determined by taking the minimum of the antecedent membership function values, i.e.

= minf M near(J )> M small (0- 75^ = """^ l -° 1 = ° 6.8
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This is repeated for all the rules in the rule base, until a weight w, is associated with each rule Rj 

and its consequent fuzzy singleton Oj. The final crisp output, O(h,k) is computed by the weighted 

sum over all the N rules:

6.9

This crisp output is now taken as the weight of pixel (i+h, j+k). The process of obtaining filter 

weights is repeated for all the pixels in the 5 x 5 filter window. The final filtered output which 

replaces the unfiltered value of disparity for pixel (i ,f) is calculated from:

h = +2 k =+ 2 

. _h = -2k=-2__________

I+ I,0(h,k) 
h = -2k=-2

6.5.5 Example: Application of the Indirect Fuzzy Filter to a noisy disparity map

The parameters of the indirect fuzzy filter described in section 6.5.4 were adjusted manually on the 

disparity map resulting from a random dot simulated image sequence for which the disparity map is 

known exactly. The resulting observation variable to filter weight mapping is illustrated in figure 

6.21. Figure 6.22 shows the first image in an image sequence 'Toys'. This sequence of images 

was taken of a static scene under known camera motion. Using the approach described in section 

2.3 and the SSD matcher discussed in Chapter 3, a noisy disparity map was generated as shown in 

figure 6.23. Figure 6.24 shows the disparity map generated for the image sequence 'Toys' after the 

manually tuned indirect acting fuzzy filter was applied between each matching step.
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Figure 6.21: Observation variable to filter weight mapping for indirect fuzzy filter of section 6.5.5

Figure 6.22: First image in image sequence 'Toys'
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Figure 6.23: Noisy disparity map generated from image sequence 'Toys'
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Figure 6.24: Disparity map generated for the image sequence 'Toys' after the manually tuned 
indirect acting fuzzy filter was applied between each matching step.

6-32



Chapter 6: Fuzzy logic-based filters

6.6 A direct acting FLBF using the Sugeno inferencing system

6.6.1 Architecture of the Sugeno FIR type FLBF.

The structure of the Sugeno FIR type FLBF is based on the FIR type Sugeno fuzzy system 

described in section 5.3.2 in which each output set is defined by its coefficient set, a,-. If the 

coefficients a, are chosen appropriately, each output set can be regarded as a transversal or finite 

impulse response (FIR) filter. Thus, the FIR type Sugeno system can be drawn as a feedforward 

nonlinear filter structure as shown in figure 6.21.

x[k]

Figure 6.25: FIR type Sugeno system drawn as a feedforward filter structure

The pre-processor assembles the raw depth data samples from the filter window into a correctly 

ordered vector for input to the FIR type Sugeno system. The blocks F, to Fr represent the output
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sets of the first order Sugeno network. There are as many of these blocks as there are output sets in 

the Sugeno network. The weights WFJ to WFr , which are applied to the outputs of the linear filters 

are the firing weights of each rule for the applied inputs x[kj. The final output of the filter is the 

weighted sum of the outputs of the filter bank with the weights determined by the fuzzy stage as a 

nonlinear function of the pre- processed input. Viewed in this way it can be seen that the FIR type 

Sugeno network can implement a general nonlinear filter. The structure can also implement any 

linear FIR filter as a special case by fixing the output of the fuzzy inferencing stage to select the 

appropriate filter or combination of filters regardless of the input. However, the advantage of this 

filter structure lies in its ability to choose the output coefficient set, and hence the filter action, 

depending on the inputs to the filter. This leads to an overall nonlinear filter, which in effect 

interpolates multiple linear filters. In control applications this is described as a gain scheduling 

approach (Jang and Gulley, 1994), but it is believed that the explicit identification of this approach 

with the idea of a filter structure is a novel idea. The use of the FIR type Sugeno filter offers the 

potential advantage over previously proposed fuzzy filters that the choice of the coefficients for the 

different output sets can be guided by conventional filter design techniques. It is also easier to train 

the filter output coefficients and the input sets' membership functions using simulated input-output 

data with the FIR type Sugeno fuzzy filter structure than with the indirect FLBF.

6.6.2 Mapping performed by FIR type Sugeno fuzzy filter

Let there be N inputs defined for the fuzzy system, and let there be R rules. Let the pre-processor 

assemble the input data into the IxN input vector X, and let the feedforward fuzzy stage be 

represented by the function f(.) which maps the 1 x N vector X into the IxR rule firing-weight 

vector W. Assume without loss of generality that each rule has a corresponding filter in the filter
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bank. If the coefficients of the R filters in the filter bank are represented by the RxN matrix A, the 

action of the filter can be described by the equation:

= W.A.Xr =f(X).A.Xr 6.11 

The function /(.) is dependent on the choice of fuzzy rules and input fuzzy sets. If the r* fuzzy rule 

in a rulebase of R rules is :

IF jc, is FS{ AND ....xN is FS rN THEN Wr is wr R6.3

Where the xn are elements of the crisp input vector X=(jc/...jcw), the Wr are elements of the weight 

vector W =(W]...Wr_WK), and the FS rn are fuzzy sets defined by Gaussian membership functions, 

then the r* element in the weight vector is given by:

_ min{tlrFSl( Xl ),....lirFSN (xN )} 
vvr - r=R

£ min{jjrFSl (xl ),....ju rFSN (xN ) 
r=\

Where JU rFSn ( xn ) is the membership of x.n in the fuzzy set FS rn .

The nonlinear feedforward mapping, f(.):X—>W is determined by the rulebase and equation 6.12.

In order for the filter defined by the mapping of equation 6.11 to be useful in depth map 

regularisation, appropriate rules and input fuzzy sets have to be identified. However, for a 3 x 3 

two-dimensional filter with two fuzzy sets per input, an exhaustive set of rules requires 29 rules. As 

discussed in section 5.11.1, this large increase in the size of the rulebase with filter size not only
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makes the fuzzy system slow to evaluate the output for a given input, but also very hard to train 

effectively. Therefore, practical filters have to be generated using only a small subset of all the 

possible rules. A number of different approaches to using the FIR type Sugeno-based filters on one 

and two-dimensional signals are described in Chapter 7.

6.7 Summary of Chapter 6.

This chapter has presented a review of existing work on filters based on fuzzy logic and proposed a 

taxonomy for fuzzy filters based on the idea of direct and indirect acting filters. By far the majority 

of existing work on fuzzy filters describes indirect acting filters. Fuzzy-based filters of this type 

have previously been used to remove impulsive and mixed noise from greyscale images. An 

indirect acting fuzzy filter suitable for disparity map smoothing has been described in this chapter 

and used to smooth a noisy disparity map derived from a sequence of real images. The chapter 

concludes with a description of a direct acting fuzzy filter structure that is based on the FIR type 

Sugeno system. It is believed that the explicit identification of the FIR type Sugeno system as a 

filter structure represents a contribution made by this thesis.
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Chapter 7: Testing of Fuzzy Filters

7.1 Introduction

Chapter 6 has introduced a new architecture for fuzzy filters based on Sugeno inferencing 

systems that can be trained using the techniques described in Chapter 5. This chapter 

investigates the performance of the new fuzzy filter architecture when applied to the problem of 

filtering one-dimensional signals. It also applies filters based on the new fuzzy filter 

architecture to the task of filtering two-dimensional depth maps derived from real and simulated 

images.

The performance of the new fuzzy filter architecture is compared with that of moving average, 

Wiener, and median filters

7.2 WINIM software

This section is a brief description of the WINIM software that was written in order to 

investigate the application of fuzzy filters generated using the FTEST software that was 

described in section 5.3

The WINIM software is designed to read in pairs or sequences of images and carry out a stereo 

matching process as described in section 2.3 and the SSD matcher investigated in Chapter 3. In 

matching or sequence mode WINIM can carry out the following operations:

(a) Stereo matching can be performed on a pair of images taken with a known camera shift 

between images (under the assumptions (section 2.3.2) that the epipolar constraint holds
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and that the camera is along the jc-axis only). This step produces a disparity map and its 

associated variance map (section 3.5) and depth map.

(b) Filtering of the resulting depth map can be carried out using moving average, median, or 

any fuzzy filter generated using the FTEST software. The filter windows can be 

rectangular, square, or cross-shaped. The disparity map associated with the depth map is 

updated after filtering. Filtering is applied to the depth rather than the disparity map 

because the depth map has a constant range through a sequence of images, whereas a 

disparity map will evolve through the sequence.

(c) The steps (a) and (b) can be repeated with the next image in the sequence. WINIM also has 

the option of allowing the tracking of the disparity map using the Kalman filter described in 

section 2.3.4.

(d) The resulting depth map at each step is displayed as a greyscale image in the WINIM 

window. The depth map can also be saved for analysis and plotting in MATLAB.

(e) Simulated depth maps or other signals can also be read in from disk and filtered using the 

filtering options of WINIM and the resulting filtered signals saved to disk. Because of this 

last option, WINIM can be used to filter one-dimensional signals.

A screenshot of the WINIM main window is shown in figure 7.1.

7.3 Generation of simulated one-dimensional signal and noise

7.3.1 Introduction

The one-dimensional signals that are used as a source of test signals are generated using a 

program written in MATLAB. Another MATLAB program generates noise that is used to 

corrupt the one-dimensional signals. The signals are saved to disk from where they can be read 

by the WINEVI image processing software introduced in section 5.3.1. The signals and
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corrupting noise are designed to be one-dimensional equivalents of the depth maps and noise 

described in Chapter 2.

jftFM

File
Untitled - WINIM

Help

Size Image

Read DM

Initialise Seq

Save DM 

Save Var

Places* Mlch Settings Filtei Settings Seq Settings Settings: ————————'————————" ————————
Static Match Filter Sequence

View: Depth | Vat | Gray | Gr Edge | D Edge)

Rea4> f <NUMI
Figure 7.1: Screenshot of WINIM software main window 

7.3.2 Simulated Signal Source

The following desirable characteristics were aimed for in the design of a source of simulated 

one-dimensional signals to train and test fuzzy filters:

(a) The source must be capable of generating many non-identical signals. This is to enable any 

filters which are created to be tested on different signals to ensure that the filters are not 

trained so as to only be effective on one particular signal.over:
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(b) The different signals generated by the signal source must share common properties. These 

properties should be such that the signal is a one-dimensional version of typical two- 

dimensional depth maps. In particular the depth gradients should be more likely to be low 

except at finite many discontinuities.

In order to meet the requirements a MATLAB script file program was written, 'CHAINGEN'. 

This program generates a signal made up out of an alphabet of five possible sub-signals. These 

are a constant level (horizontal part), a negative or positive discontinuity (vertical parts), and a 

positive or negative slope (sloping parts). The probability of the next part of the signal being 

one of these sub-signals depends on the sub-signal type of the current part of the signal. These 

probabilities are given by a state transition matrix whose entries tend to favour continuity in the 

signal, whilst allowing finite many discontinuities. The signal amplitude varies from zero to 

one.

A parameter can be passed to the signal generating function that defines a 'characteristic 

length' for the slope and horizontal sections of the signal. This characteristic length parameter 

is used to scale the signal. This is illustrated in figures 7.2 and 7.3, which show a length 100 

signal, and a length 1000 signal. Using the default characteristic length the features of both 

signals appear at the same scale when plotted over their full length. Figure 7.4 shows a length 

1000 signal with a characteristic length of 100 plotted over the full 1000 points, whilst figure 

7.5 shows the section from sample numbers 300 to 399 of the same signal. The characteristic 

length parameter allows the generator to generate long runs of signal at a given constant scale. 

These long runs of signal can then be used as training and test data. The gradients of the slope 

sections of the signal are normally distributed about zero with a standard deviation set so as to 

discriminate against steep depth gradients. The gradients of the slope sections can also be set
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to a constant value to produce a more restricted set of test data. An example of a constant 

gradient test signal is shown in figure 7.6.
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Figure 7.2: Signal of length 100 generated by 'CHAINGEN'
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Figure 7.3: Signal of length 1000 generated by 'CHAINGEN'
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Figure 7.4: 1000 samples of Signal of characteristic length 100 generated by 'CHAINGEN'
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Figure 7.5: 100 samples of length 1000 signal of figure 7.4
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Figure 7.6: Example of test signal with constant gradient produced by 'CHAINGEN'
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7.3.3 Source of noise to corrupt the signal

In order that the test signals should be one-dimensional versions of typical depth maps obtained 

from a correlation based matcher it was necessary to corrupt the signals generated by 

CHAINGEN with additive impulsive, Gaussian, or mixed impulsive/Gaussian noise. The 

addition of Gaussian noise was achieved using the MATLAB 'Randn' command, which 

generates vectors of Gaussian distributed numbers of unity standard deviation. In order to 

generate impulsive noise a MATLAB script file program called 'IMPTRAIN' was created. 

IMPTRAIN generates a vector of impulses and has the calling syntax:

function imptrn = IMPTRAIN(trainlen, occurrence, ampdist)

The parameter trainlen defines the length of the impulse train. Occurrence defines the 

percentage occurrence of the impulses. Ampdist can take the values 'flat' or 'gaussian' which 

give uniformly or Gaussian distributed amplitudes for the impulses. Figure 7.7 shows a typical 

length 100, 10% occurrence impulse train generated by IMPTRAIN.

Figure 7.8 shows a mixed Gaussian and impulsive noise signal. The histogram for this mixed 

Gaussian and impulsive noise is shown in figure 7.9. This can be seen to be very similar in 

form to the histograms of the disparity maps produced using correlation-based matching shown 

in figures 3.28 and 3.29.
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Figure 7.7: Typical length 100, 10% occurrence impulse train generated by IMPTRN.
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Figure 7.8 Mixed Gaussian (standard deviation 0.1) and impulsive (10% occurrence) noise
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7.4 Approximation of median filter using a Fuzzy Filter

1.5

7.4.1 Motivation for approximating a median filter

It is trivial to achieve a linear filter using the FIR type Sugeno filter architecture since the 

output sets of the Fuzzy system are linear filters acting on the data. However, as discussed in 

section 4.6.1, the median filter is a useful non-linear filter that preserves edges and is effective 

in removing impulsive noise. If a fuzzy filter is to share these characteristics then it should be 

able to approximate a median filter's behaviour. A set of rules for such an approximation can 

be determined heuristically from knowledge of the behaviour of the median filter. This use of 

prior knowledge demonstrates one of the advantages of fuzzy function approximation over 

neural network function approximation.
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7.4.2 Heuristic and trained median approximators

A set of rules and corresponding output sets for a fuzzy approximation to a three element 

median filter with three input fuzzy sets per input is shown in table 7.1 (in the notation 

described in section 5.3.4). The rules are a subset of six out of the possible 27 rules for such a 

system. In addition a 'hidden ELSE' rule as described in section 5.11.1 is included in the 

rulebase. The hidden ELSE rule simply outputs the second value of the input vector if none of 

the rules in the rulebase is fired by the input vector. The initial input fuzzy set parameters can 

be chosen such that the Gaussian input set membership functions are evenly distributed across 

the input universe of discourse. These initial input fuzzy sets are shown in figure 7.10.

Rule number Rule Output set parameters 
_

2
3
4
5
6

]:1 1,0,0
[1,2][2,3][3,1]:2 1,0,0
[1,1][2,2][3,3]:3 0,1,0
[1,3][2,2][3,1]:4 0,1,0
[U][2,3][3,2]:5 0,0,1
[1,3][2,1][3,2]:6 0,0,1

Hidden ELSE Rule ELSE________0,1,0___________ 
Table 7.1: Rulebase and output sets for a fuzzy approximation to a three element median filter

-2 0 1 2
Input value

Figure 7.10: Initial input fuzzy set membership functions for fuzzy approximation to a three 
element fuzzy filter (the input sets are initially the same for all inputs)
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In addition to the heuristic six rule approximation to the median, fuzzy systems with 4, 9, 10, 

16 and 27 rules were generated using the 'initialise system' (section 5.11.2). Using MATLAB, a 

set of 200 training data pairs was created. These pairs consisted of inputs that were triples of 

evenly distributed random numbers in the range [0,3] and outputs that were the median of the 

input triples. These training data pairs were used to train the six fuzzy systems to approximate 

the median using the combined simplex, simulated annealing, and linear least squares algorithm 

described in section 5.10. In order to test the trained fuzzy approximators' ability to generalise 

from the training data, they were applied as a three-element filter to a test signal of 1000 

samples. Their output was then compared with the output of a three element median filter. The 

test signal consisted of a set of 1000 evenly distributed random numbers. As a further 

comparison a naive approximator, which simply repeated the centre value in the 3 element 

window, was applied to the test data.

7.4.3 Tests and results

The mean square error (MSB) over the training data set for the untrained six rule fuzzy filter 

was 0.035. After training, a MSB of 0.0092 was achieved over the training data set. The 

results for this and the other filters are summarised in table 7.2.

The results summarised in table 7.2 appear to show that the greater the number of rules the 

lower the MSB achieved on training data. The number of rules versus the MSB on training data 

is plotted in figure 7.11. The 27-rule (exhaustive) fuzzy system in particular achieved a better 

MSB as a median approximator acting on the training data compared with the six rule fuzzy 

approximator. However, it failed to maintain this improvement in performance on both the 

uniformly distributed test data and the test signal. In general, the performances of the
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approximators with fewer rules are degraded less on the test data than the performances of 

those with more rules.

Approximator type

Naive approximator

Untrained heuristic 6-rule

Trained 1-rule

Trained 4-ruIe

Trained 6-rule

Trained 9-rule

Trained 10-rule

Trained 1 6-rule

Trained 27-rule

MSE on training data

N/A

0.035

0.0838

0.026

0.00941

0.014

0.0105

0.00425

0.00265

MSE on test data

0.53

0.0345

0.1056

0.0338

0.0173

0.0209

0.0118

0.0119

0.0252

Table 7.2: MSE for training data and test data for 3-element median approximators

The trained and untrained approximators were also applied as a three element filter to signals 

generated using CHAINGEN and corrupted by noise and their output compared with that of a 

three element median filter. These two outputs for the median and trained filter are shown 

plotted on the same graph in figure 7.12. On this graph, it is difficult to see the difference 

between the approximator and the median filter. Therefore, the difference between the median 

and the approximator is plotted in figure 7.13. The corresponding graphs for the untrained 

fuzzy approximator are shown in figures 7.14 and 7.15. The same test was applied to the 27- 

rule approximator and its performance was qualitatively similar to those shown in figures 7.12 

to 7.15.
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Figure 7.11: Plot of MSE versus number of rules for fuzzy approximator to median. 

A 20-rule approximation to a five element median filter was also generated and tested. This 

approximator achieved a MSE of 0.008 on training data and 0.115 on the test data. The MSE 

for the fuzzy approximators on the signal generated by CHAINGEN are shown in table 7.3

Type of approximator Mean squared error on test signal 
_____________________generated by CHAINGEN

untrained 6 rule 

trained 6 rule 

trained 27 rule filter

trained 5 element, 20-rule 
filter

0.034

0.031

0.053

0.49

Table 7.3: MSE for the fuzzy approximators on the signal generated by CHAINGEN
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Signal sample number

Figure 7.12: Plots of test signal after filtering with median (-) and trained fuzzy approximation 
to median (*) filters.

-0.4
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1000

Figure 7.13: Plot of difference between test signal after filtering with median and trained fuzzy 
approximation to median filters.
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200 800 1000400 600 
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Figure 7.14: Plots of test signal after filtering with median (-) and untrained fuzzy 
approximation to median (*) filters.
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Figure 7.15: Plot of difference between test signal after filtering with median and untrained 
fuzzy approximation to median filters
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7.4.4 Discussion

It is interesting to note that fuzzy systems are often tested on chaotic time series prediction 

(Jang, 1993). For such systems the benchmark with which the outputs of the fuzzy system are 

compared is the output of a first order hold. In testing the effectiveness of a fuzzy 

approximator to the median it is difficult to identify a reasonable 'naive' approximator with 

which to compare the performance of the fuzzy approximator. This may explain why fuzzy 

prediction is often used in the literature as an example of fuzzy function approximation. For a 

fuzzy median approximator operating as a median filter one possibility is to take the unfiltered 

raw signal as the most naive approximator to the median filter and using its output as a 

benchmark. However, whether this or the raw mean squared error is used as a comparison, the 

performance of fuzzy approximators when used on test data after training depends on the 

similarity between the training data and the verification or test data.

The dependence of the trained system's performance on the training data is both an advantage 

and disadvantage in the context of fuzzy filters. It is an advantage if filtering is viewed as a 

process in which a priori assumptions about the underlying data and noise are applied to the 

noisy signal in order to remove the noise. The fact that trained filters closely model the training 

data allows such filters to capture the prior model from the training data. The disadvantage lies 

in the problem of ensuring that the training data is a true representation of the real signals and 

noise for the problem which is being modelled. It could be argued that the results of table 7.2 

suggest that the fuzzy systems with more rules and which appear to model the training data best 

were in some way over-trained on that data and so were unable to effectively generalise to the 

test data. The interesting question of over-training, in which a trained system is said to model 

the training data too closely to generalise well to other data, is related to the question of 

identifying sufficiently large and representative training data sets. The one-dimensional 

training data generated by CHAINGEN and IMPTRAIN is designed to address the problem of
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representative data for depth and disparity maps. The question of sufficiency in the training 

data not only depends on the underlying signals and noise being modelled, but also depends on 

the scaling of the fuzzy system (see section 5.11.1). Such sufficiency questions represent 

interesting opportunities for further work.

7.5 Three-element Fuzzy Filters

7.5.1 Introduction

The work of section 7.3 was concerned with approximating a median filter. In fact, what is 

desired is a filter that exceeds the performance of a median, moving average or practical 

Wiener filters. As noted in section 7.3.4, the performance of a fuzzy approximator depends on 

the adequacy of the training data. In order to test the concept of using fuzzy filters whilst 

avoiding the question of training data adequacy some constraints are applied in this section to 

the test and training data. The CHAINGEN program described in section 7.3.2 allows the 

generation of strongly similar but non-identical signals. Thus training data generated using 

CHAINGEN and EVIPTRAIN will be strongly representative of any test data generated by these 

programs. This section describes work to train and test three-element fuzzy filters which 

outperform both median and moving average filters on this test data and match or outperform 

ideal Wiener filters. However, the performance of these ideal Wiener filters is not 

representative of what would be obtained by a practical Wiener filter. This is because they use 

exact knowledge of the signal and noise power spectral densities, which would have to be 

estimated by a practical Wiener filter, but they represent a firm benchmark with which to 

compare the fuzzy filter.
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7.5.2 Construction of filters

The nine-rule filter contains the same six rules as outlined in table 7.1 with the addition of the 

rules and output sets shown in table 7.4. This nine-rule filter was then trained on a set of 998 

samples of training data that was generated by CHAINGEN using the constant gradient option, 

with a characteristic length of 100, and corrupted by IMPTRAIN. The impulse-corrupted 

training data was arranged in triples as input training data and the uncorrupted CHAINGEN 

output corresponding to the centre sample of the corrupted data triples was taken as the output 

training data. Before training, the nine-rule filter had a MSE of 0.0747 over the training data 

set. It achieved a MSE of 0.0286 after training.

Rule number

1 to 6 
7 
8 
9 

Hidden ELSE 
Rule

Rule

As table 7.1 
[1,1][2,1][3,1]:7 
[1,2][2,2][3,2]:8 
[1,3][2,3][3,31:9 

ELSE

Output set parameters

As table 7.1 
0.33,0.33,0.33 
0.33,0.33,0.33 
0.33,0.33,0.33 

0,1,0

Table 7.4: Rulebase and output sets for nine rule fuzzy filter

In addition, using the same training data, several nine-rule filters, a 16-rule filter and a 27-rule 

filter were generated using the 'initialise system' option of FTEST and combinations of the 

training techniques described in sections 5.10 and 5.11.

7.5.3 Tests on three-element filters

All the three-element filters were tested in WINDVI on the same 99-sample test signal. This test 

signal was generated using CHAINGEN with the constant gradient option and corrupted using 

IMPTRAIN. The uncorrupted version of this signal is shown in figure 7.16, whilst the signal 

corrupted by a 20% occurrence impulse train is shown in figure 7.17. For comparison 

purposes, three-element median and moving average filters were also applied to the test data as
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well as a Wiener filter. The Wiener filter was separately implemented in the frequency domain 

using MATLAB.

The results from the training and test data for these filters is summarised in table 7.5. Figures 

7.18 to 7.20 Show the results of applying the median, moving average, and Wiener filters to the 

test data. Figure 7.21 and figure 7.22 show the effects of applying the fuzzy filters 

Id3rg5imp.fis and 27rulet3.fis to the test data.

1.5

CD 
13

0.5

-0.5

-1
0 20 40 60 

Sample Number

Figure 7.16: Uncorrupted test data used to test three-element filters.

80 100
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Signal Corrupted by Impulse Train

20 8040 60 
Sample Number

Figure 7.17: Test data of figure 7.16 corrupted by 20% occurrence impulse train

100

Name of filter

Wiener

Median
Moving average

3eleref.fis

Selerefrt

IdSrglimp.fis

Id3rg3imp.fis
Id3rg5imp.fis
16rulegt.fis

27ruletl.fis

27rulet3.fis

Description

Ideal Wiener filter in 
frequency domain
3 element median
3 element moving 
average
Untrained 9 rule 
fuzzy system
Trained version of 
3eleref
9 Rule generated and 
trained fuzzy system
As Id3rgl
As Id3rgl
16 Rule generated 
and trained fuzzy 
system
27 Rule generated 
and trained fuzzy 
system
As 27ruletl

MSE on training 
data
N/A

N/A
N/A

0.0376

0.01415

0.0210

0.0093
0.0082
0.00965

0.0053

0.0055

MSE on test data

0.0158

0.0727
0.0734

0.0747

0.0286

0.0859

0.0157
0.0115
0.0251

0.0320

0.0101
Table 7.5 MSE achieved on training and test data for three-element filters.
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-1
40 60 
Sample number

Figure 7.18: Test data after filtering with three-element median filter.

80 100

20 40 60 
Sample number

80 100

Figure 7.19: Test data after filtering with three-element moving average filter
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1

0.9 

0.8

0.7 

a, 0.6

1.0.5

0.4 

0.3 

0.2 

0.1 

0

Depth map after Wiener filtering

20 40 60 
Sample number

80 100

Figure 7.20: Test data after filtering with ideal Wiener filter.

1.6

1.4

1.2

1

a, 0.8
T3

t 0.6

< 0.4

0.2

0

-0.2

-0.4
0 20 40 60 80

Sample number
Figure 7.21: Test data after filtering with fuzzy filter Id3rg5imp.fis
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1.2 

1

0.8 

0.6

.

< 0.4

0.2

-0.2
0 20 40 60 

Sample number
Figure 7.22: Test data after filtering with fuzzy filter 27rulet3.fis

80 100

A further test that was carried out was to generate a nine-rule three-input filter using the 

'initialise system' option and to train this system on training data that was corrupted with mixed 

Gaussian and impulsive noise. The signal was generated by CHAINGEN, the impulsive noise 

component had a 20% occurrence and the zero-mean Gaussian noise had a standard deviation 

of 0.2. The inherent MSE of the noisy signal compared with the original clean signal was 

0.2241. Again, the performance of the fuzzy filter was compared with those of median, moving 

average and an ideal Wiener filter. The Fuzzy system achieved a MSE of 0.0273 on the 

training data. The comparison between the fuzzy filter and the other filter types is given in 

table 7.6.
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Type of filter

Ideal Wiener

Moving average

Median

Nine-rule trained fuzzy filter

MSE on test signal

0.0272

0.0758

0.1031

0.0465

Table 7.6: Comparison of filter MSE for mixed noise test signal.

7.5.4 Discussion

Three-element fuzzy filters have been trained and tested on signals corrupted by impulsive and 

mixed Gaussian and impulsive noise. The MSE performance of these filters was compared to 

that of median, ideal Wiener, and moving average three-element filters. The training and test 

signals, although different, were limited to a restricted class of signals generated by 

CHAINGEN. Within these restrictions the fuzzy filters, three of the trained fuzzy filters 

exceeded or equalled the MSE performance of the benchmark Wiener filter. Six of the trained 

fuzzy filters produced a lower MSE than the median or moving average filters on the test data. 

An untrained heuristically generated nine-rule fuzzy system produced a MSE that was close to 

that of the three-element median and moving average filter

7.6 Two-dimensional depth maps

7.6.1 Depth maps used to test fuzzy filters

Three types of two-dimensional signal were used to test the action of fuzzy filters on depth 

maps. The three types were a simulated depth map called 'ref, depth maps generated using 

stereo matching on a random dot image sequence 'cake', and depth maps produced from 

sequences of real images 'box' taken by a CCD camera. The advantage of the first two types of 

depth maps is that for these depth maps the 'ground truth' depth map is known and therefore

7-25



Chapter 7: Testing of Fuzzy Filters

the performance of the fuzzy filters can be compared with that of a moving average and a 

median filter. The simulated depth maps are, however, less complex and do not model the 

distortions present in real images acquired by a camera.

The simulated depth map, 'ref, is simply a two-dimensional signal which can be corrupted by 

Gaussian or impulsive noise. It is shown uncorrupted in figure 7.23 and like all the depth maps 

shown in this chapter, it is plotted relative to a reference plane which is 3 m in front of the 

camera. The ideal depth map that should be generated from the random dot image sequence 

'cake' is identical to the simulated depth map of figure 7.23. Each random dot image in the 

simulated image sequence consists of areas that are shifted by an amount that correspond to the 

disparity that would result from the three dimensional scene represented by figure 7.23 and a 

fixed set of camera parameters. The camera parameters that were used are the same as those 

used for the real image sequence and were a focal length of 25 mm, a pixel size of 4 x 10"5 m, 

and a shift along the camera array axis of 4 mm between images. The first two images in the 

sequence 'cake' are shown in figure 7.24 as they appear in the WINIM software. Figure 7.25 

shows the depth map that results from applying the stereo matching algorithm described in 

section 2.3.3 and the SSD matcher discussed in Chapter 3 to the image sequence 'cake' as 

implemented in the WINIM software. In producing the depth map of figure 7.25, a fixed 

matching patch size of 5 x 5 was used, the Kalman filter was disabled and the disparity was 

tracked through a sequence of five images. The MSB that was achieved was 0.7224.
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40

pixel i

20
0 0

20
40

pixel j

Figure 7.23: Simulated depth map 'ref

With the Kalman filter enabled, and a WINIM option that varies the size of the SSD matching 

window also enabled, the depth map improved to that of figure 7.26. The variable SSD 

matching window option starts with a small matching window of 3 x 3 at each pixel and 

increases the window size up to a maximum window size if the uncertainty measure described 

in section 3.5 is above a threshold value. If the uncertainty measure is below this value the 

disparity is accepted and the matcher moves on to the next pixel. The MSE for figure 7.26 is 

0.4653. The MSE for the depth map produced with a fixed matching patch size and the Kalman 

filter was 0.6582.
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Untitled - WINIM
Ete £dit yiew Help

D|Eg|y| ;*'i>
Size Image

Read DM

Initialise Seq

Save DM 
Save Var

Piocesj Mtch Setting* I Filtei Settings I Seq Settings Setting*: —————————' —————————' —————————

Static 

View:

Match Filtei Sequence

Depth Var Gray I Gc Edge I D Edge I

Ready

Figure 7.24: First two images of image sequence 'cake' as they appear in the WENIM software

40

pixel i

20 20
0 0 pixel j

Figure 7.25: Depth map produced from noiseless simulated image sequence 'cake' with no 
filtering
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2.5 ^

pixel i pixel]

Figure 7.26 Depth map produced from noiseless simulated image sequence with Kalman 
filtering and variable SSD matching window size.

The first image of a sequence of real images 'box' is shown in figure 7.27. The images are of 

three computer disk boxes stacked on a wooden board and viewed against a speckled 

background. The depth map which results from these images with the variable patch size and 

Kalman filtering options enabled is shown in figure 7.28.

Figure 7.27: The first image of a sequence of real images 'box'
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200

250

300 300
pixel i

Figure 7.28: The depth map which results from image sequence 'box' with the variable patch 
size and Kalman filtering options enabled, but with no filtering applied between matching 
steps.

Figure 7.28 shows the extent of the potential filtering problem for depth maps generated from 

real image sequences using correlation based matching.

7.6.2 Extension of fuzzy filtering to two-dimensional depth maps

Because of the problem of rulebase explosion with dimensionality and the related problem of 

training high dimensional fuzzy systems discussed in section 5.11.1, the extension of the FIR 

type Sugeno fuzzy filter to two-dimensional windows is a severe computational challenge. For 

example the smallest two-dimensional window has nine elements, which with three fuzzy sets 

defined per input leads to an exhaustive rulebase of 39 =19683 rules. With two parameters per 

input set the nine element filter leads to a search space dimensionality of 18 for the input 

parameters. The time taken to train such a system with the current FTEST software is 

prohibitively long. Moreover, thus far all attempts at devising non-exhaustive rulebase filters 

both using a heuristic approach or using the rulebase training approach of section 5.11 have
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failed to produce successful fuzzy filters. Therefore, the strategy that has been adopted to 

investigate the performance of fuzzy filters for depth map smoothing is to apply one- 

dimensional filters along the rows and then the columns of the depth map.

7.6.3 Filtering of depth maps using fuzzy filters

The depth map 'ref was corrupted with impulsive noise generated by the MATLAB program 

IMPTRAJN. This noisy depth map was used as a test signal and filtered using a 3 x 3 moving 

average filter, a 3 x 3 median filter, and two fuzzy filters. The results are summarised in table 

7.7.

Filter
Median
Moving Average
9 rule fuzzy filter trained on mixed noise and 
signal generated by CHAINGEN
27 rule fuzzy filter

MSB
0.003
0.0217
0.0333

0.0135
Table 7.7: Results of applying median, moving average, and two fuzzy filters to simulated 
depth map corrupted by impulsive noise.

Gaussian noise of different standard deviation was then added to the depth map and the 

resulting MSE was noted for the median, and moving average filters as well as the better of the 

two fuzzy filters. The results are shown as a plot of root MSE (RMSE) versus Gaussian noise 

standard deviation in figure 7.29.

It can be seen from figure 7.29 that the median is the better filter when the impulsive noise 

dominates, and that as the Gaussian component increases the moving average filter becomes the 

better filter. In no case is the fuzzy filter better than the median however, although the 

compromise made by the fuzzy filter between a median and a moving average filter can be 

seen The target for an ideal fuzzy filter is for the curve of RMSE versus added Gaussian noise 

for the fuzzy filter to cross below that of the median.
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Thus far, despite many attempts, it has proved impossible to train a fuzzy filter using fuzzy 

filters and the approach described in section 7.62 that exceeds the performance of the median 

filter on the simulated depth map 'ref corrupted with mixed noise. This is illustrated in Figure 

7.30, which shows a graph of RMSE versus the standard deviation of the added Gaussian noise 

for several fuzzy filters. The lower dashed line shows the performance of the median filter, 

which can be seen to form a lower bound. The upper dashed line is the RMSE before filtering, 

and shows the point at which a filter starts to worsen rather than improve the signal.

0.1 0.2 0.3 0.4 
Gaussian noise standard deviation

Figure 7.29: Plot of RMSE versus Gaussian noise component of mixed noise for Moving 
average, Median, and 27 rule fuzzy filter.

It was also observed that the fuzzy filters that gave the best performance were those that were 

trained to approximate the median. In attempt to improve on the performance of these filters, 

they were further trained on training data that consisted of signals corrupted with mixed 

Gaussian and impulsive noise as input data and the true uncorrupted signal as output data. 

Although in general the training process achieved a low MSE on the training data, in all case
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the training process resulted in a filter with poorer performance than the original fuzzy filter. 

Some of the filters produced a very poor performance on test data. The reasons for this are 

discussed in section 7.6.4.

9rulet.fis

/

'27rulet2.fis 

no filter

lOruiet.fjs
l7ruletl.fis

median

0.1 0.2 0.3 0.4 0.5 
Standard deviation of Gaussian component

Figure 7.30: Plot of RMSE versus Gaussian noise component of mixed noise before filtering 
(upper dashed line) after filtering with four different fuzzy filters (solid lines), and after 
filtering with a median (lower dashed line).

The fuzzy filter with the best performance was also tested by using it to filter the depth maps 

produced by the WTNIM software from the simulated and real sequences of greyscale images 

'cake' and 'box'. The result of applying the fuzzy filter, which was a 10-rule approximation to 

a median, to the depth maps produce by the image sequence 'cake', is shown in figure 7.31. 

Also shown for comparison are the corresponding results for a 3 x 3 moving average (figure 

7.32) and a median filter (figure 7.33). In all cases the Kalman filter was enabled, the variable 

matching window size was enabled with a maximum of a 9 x 9 window, and the filters were 

applied between every matching step. The corresponding RMSE at the end of the sequence of 

five images is also shown in the figures.
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Figure 7.34 shows the result of applying the fuzzy filter to the depth map resulting from the real 

image sequence 'box'. For comparison, the corresponding depth map after applying a 3 x 3 

median filter is shown in figure 7.35.

RMS Error 
0.5275

40

pixel i

20 20
0 0 pixel j

Figure 7.31: The result of applying the fuzzy filter, which was a 10-rule approximation to a 
median, to the depth maps produced by the image sequence 'cake'.
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RMS Error 
0.436

2.5.

40

pixel i

40
20 20

0 0 pixel j

Figure 7.32: The result of applying a 3 x 3 moving average filter to the depth maps produced by 
the image sequence 'cake'.

RMS Error 
0.4653

2.5,

40

pixel i

20 20
0 0 pixel j

Figure 7.33: The result of applying a 3 x 3 median filter to the depth maps produced by the 
image sequence 'cake'.
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Figure 7.34: The depth map resulting from applying the 10-rule fuzzy filter to the depth map 
resulting from the real image sequence 'box'.

250
pixel i

pixel j 250 300

Figure 7.35: The depth map resulting from applying a 3x3 median filter to the depth map 
resulting from the real image sequence 'box'.
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7.6.4 Discussion

One interpretation of the results of section 7.6.3 is that for the mixed noise that has been added 

to the simulated depth map 'ref, the median filter represents the best possible performance for 

a given filter size that can be obtained whilst the noise is predominantly impulsive. As the 

Gaussian noise component increases, the median becomes inferior to the moving average filter. 

This interpretation relies on the assumption that if the search techniques used to train the fuzzy 

filters were ideal and if a better nonlinear filter than the median existed, then a fuzzy filter 

approximating this improved nonlinear filter would have been found. It is, however, difficult to 

be wholly confident of the effectiveness of the training techniques. It is possible, for example, 

that the training data set used was insufficiently large or insufficiently representative. This 

concern is given some support from the observation that some filters behaved pathologically on 

the depth maps after training despite having a low MSE on the training data. This pathological 

behaviour took the form of outputting extremely large values for reasonable input vectors 

where those input vectors did not occur in the training data. In effect this pathological 

behaviour represents 'overtraining' writ large. A possible avenue for future research is to 

incorporate a test of the stability to the data of a fuzzy system during training by applying 

perturbation to the training data set and measuring the change in the value of the output to the 

perturbation. It is also possible that the number of input fuzzy sets used in the fuzzy systems 

(three) was inadequate to capture the optimal mapping from noisy input vector to filtered 

output. Increasing the number of fuzzy sets or the size of the training data set, however, led to 

unacceptably slow training rates. It is likely that this could be improved by re-writing the 

FTEST training software, since the current version of this software has been arrived-at by a 

process of evolution and is almost certainly less than maximally efficient.
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7.7 Alternative approach to the use of the Sugeno fuzzy architecture

This section outlines a different approach to the use of a Sugeno type architecture for fuzzy 

filtering to that taken in the other sections of this chapter. The different approach, which is 

described in more detail in (Rothwell Hughes et al. 1997) has more in common with the 

indirect filter approach more commonly taken in the application of fuzzy systems to filtering. It 

is included here to illustrate that the Sugeno fuzzy filter architecture is flexible enough to 

contain the strategies used in indirect filters. The filter described here was designed using a 

heuristic approach and the training techniques described in Chapter 5 were not used.

The input vector to the fuzzy system consists of the nine pixels reading from left to right and down 

in a 3 x3 filter window; the difference from the filter window median for each of the nine pixels, 

and the median itself. Thus, the crisp input vector has 19 elements. The differences from median 

inputs are classified by their membership in three fuzzy sets labelled negative large (NL), positive 

large (PL) and small (S). The membership functions of these sets are Gaussian in shape and are 

parameterised by two parameters, width and centre.

The rules for each pixel (l,m) in the filter window having depth d(l,m) are of the form: 

IF Difference-From-Median is S THEN output is : d(l,m)

IF Difference-From-Median is NL or PL THEN output is : Median.

The output sets are achieved by setting the output set coefficient ajt corresponding to the input 

values to be one. The effect of this difference-from-median filter (DFM) is to act as a moving 

average filter in smooth areas and as a median filter in areas containing discontinuities.
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The filter was applied between the matching steps during the generation of depth maps from the 

simulated image sequence 'cake'. After adjustment of the input set parameters the RMSE 

achieved were as shown in table 7.8.

Filter Type

Moving 
(3x3)
Median (3x3) 
DMF (3x3)

Average

RMSE on simulated 
image______
0.2482

0.2589
0.2303

Table 7.8 Comparison of RMSE for DFM filter, moving average and median filters.

The Resulting depth map is shown in figure 7.36. It can be seen that there is some loss of 

definition at the depth discontinuities, although the RMSE is better than either the moving average 

or the median filters. The discontinuities can be better preserved by adjusting the input set 

parameters, but only at the cost of worsening RMSE.

40

Pixel Index

20 20
0 0

40

Pixel Index

Figure 7.36: Depth map filtered by Fuzzy Difference-From-Median Filter
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7.8 Summary and Conclusions

This chapter has briefly described the WINIM software that was used to implement the stereo 

matching algorithm using the SSD matcher. The software allows the fuzzy systems created 

and trained in the FTEST software to be applied to the task of filtering the depth maps thus 

generated. A description was given of the methods used to generate training and test signals 

corrupted by mixed Gaussian and impulsive noise.

It was shown that the FIR type Sugeno fuzzy filter architecture described in Chapter 6 could 

be used to approximate a 3 x 3 median filter, which is known to be effective in removing 

impulsive noise and preserving signal discontinuities. The results of the tests on the 

effectiveness of various fuzzy systems in matching the training data appear to show that the 

'goodness of fit' to the training data improves nonlinearly with the number of rules used. 

However, this improvement is not always maintained when tested against separate exemplar 

data.

The FIR type Sugeno fuzzy architecture was then applied to the task of removing impulsive 

noise from one-dimensional signals. The fuzzy filters generated were trained and tested 

using mixed noise corrupted test data that was constrained to be very similar in form to the 

training data. For this type of test data, the fuzzy filters gave a promising performance that 

compared well with the MSB performance of median, moving average and Wiener filters.

The one-dimensional fuzzy filters were applied to two-dimensional simulated depth maps and 

depth maps generated from simulated greyscale images. Although the fuzzy filter 

architecture can be applied to two dimensional filter windows, it is computationally 

intractable to train the fuzzy systems that result. It was therefore decided to apply the one- 

dimensional filters along the horizontal and then the vertical directions. The results of doing
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this appeared to contradict the results of section 7.5, which suggested that fuzzy filters could 

approximate filters of a better performance than the median, moving average or even an ideal 

Wiener filter. The results were suggestive that for noise that was predominantly impulsive 

and for a fixed size of filter, the median could not be improved-upon. Reasons for why this 

conclusion might not be valid were also discussed.

Finally, an alternative approach to using the Sugeno fuzzy architecture for depth map 

filtering was briefly outlined and the results of some tests on depth maps generated from 

simulated image sequences were presented. This alternative approach is an implementation 

using the Sugeno fuzzy system of the indirect filter approach in which the fuzzy system 

arbitrates between two conventional filters. The tests showed that this approach could give 

results that are an improvement on the median and moving average filters.
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Chapter 8: Review of thesis, Conclusions, and Further Work

8.1 Review

This thesis begins from the problem of extracting three-dimensional depth information from 

sequences of two-dimensional images using stereo matching. The SSD matcher is widely used in 

the literature (Matthies et al., 1989), (Trucco et al., 1996), (Anandan, 1984) for stereo matching and 

a method of extracting sub-pixel measurements of disparity using this matcher has been previously 

proposed and used (op cit Matthies et al., 1989) . The existence of a mixed noise in the disparity 

map has been noted in (op cit Trucco et a/.,1996). In section 3.3.2, an analysis is made of the noise 

process associated with the SSD matcher in terms of the statistics of the original greyscale image. 

The predictions of this analysis on the distribution of the error in disparities are in agreement with 

the results of tests on random dot images. Further tests presented in section 3.4 illustrate the fact 

that increasing noise in the greyscale images leads to impulsive noise due to mismatching. The 

combination of the Gaussian and impulsive noise components leads to a mixed thick-tailed 

Gaussian-like and impulsive noise observed in the depth maps produced using the SSD matcher.

Depth from stereo using correlation based matching is known to be ill-posed (Bertero et al, 1988) 

and this results in gross mismatches. These gross mismatches appear as impulsive noise in the 

resulting depth map. A classical approach, called regularisation, to the resolution of an ill-posed 

problem is to constrain the solutions to that problem to conform to some prior assumptions (op cit. 

Bertero et al., 1988). These prior assumptions come from some extra knowledge about the form of 

allowable solutions. Regularisation can be equivalent to a filtering process on noisy data 

(Terzopoulos 1986(b)). This thesis examines the proposition that filters based on fuzzy inferencing 

systems offer a flexible method of applying regularisation to the ill-posed problem of disparity and
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depth map generation using correlation based matching. The regularising prior assumptions can be 

coded into the filter by way of the rulebase and the fuzzy system parameters.

A brief review of possible existing techniques that could be used for depth map filtering is made in 

Chapter 4 and the observation is made that filtering processes can be likened to a function-like 

mapping process which can be approximated by fuzzy systems. Some of the existing filtering 

techniques are optimal for certain classes of signal and noise. However in a mixed noise 

environment no one filtering approach is optimal. The possibility exists for a filter based on fuzzy 

logic to vary its behaviour under different signal conditions so as to approximate that of an optimal 

filter for those conditions

Filters based on fuzzy systems inherit the general feature of fuzzy systems that they can be trained 

using exemplar input and output data. This is referred-to as the neuro-fuzzy approach and 

following an overview of fuzzy systems in which the Mamdani and Sugeno systems are described, 

Chapter 5 proposes and investigates six approaches to fuzzy system training based on the simulated 

annealing algorithm.

It is believed that the interpretation of a fuzzy logic based filter in terms of the ideas of 

regularisation has not been made before. However, the concept of applying fuzzy logic to filtering 

problems has been reported in a number of papers. Chapter 6 makes a survey of these papers and 

proposes a taxonomy of fuzzy logic based filters (fuzzy filters) using the idea of direct and indirect 

acting fuzzy filters. The majority of filters in the existing literature are of the indirect acting class in 

which the fuzzy inferencing system is used to control or select the output from a set of conventional 

filters. Direct acting fuzzy filters encapsulate the whole of the filtering action within the fuzzy 

system. Chapter 6 gives an example of the application of an indirect acting filter to the smoothing
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of disparity maps generated using the SSD matcher. It is believed that there are no previous 

examples of fuzzy filters being applied to this problem.

The Sugeno fuzzy system architecture lends itself to a filtering application since its output fuzzy 

sets are functions of the crisp input variables. The FIR type Sugeno filter, introduced in section 5.4, 

is a special version of the Sugeno first order system in which the constant term is suppressed. 

Chapter 6 emphasises the suitability of this type of fuzzy system as the basis for a fuzzy filter by 

drawing a FIR type Sugeno system as a bank of controlled linear filters. The Sugeno system 

effectively subsumes the mechanism of an indirect fuzzy filter into one fuzzy system, making a 

direct fuzzy filter structure which can be trained using the techniques discussed in Chapter 5.

Chapter 7 initially considers the problem of generating suitable training data for training Sugeno 

system based fuzzy filters for the task of depth map regularisation. Using suitable MATLAB script 

files noisy one-dimensional signals are generated whose histograms mimic those of the disparity 

and depth maps discussed in Chapter 3. A restricted class of signals can also be generated as the 

wanted signal.

Fuzzy filters were trained to mimic three element median filters in order to demonstrate that fuzzy 

filters could approximate this important type of nonlinear filter. The fuzzy filters were then trained 

on simulated training data to filter a signal corrupted by impulsive noise. After training, most of 

these filters achieved a mean squared error performance on test data that was better than three 

element median or moving average filters. Some of the fuzzy filters achieved performances that 

were better than even an ideal Wiener filter for which the exact signal and noise power spectral 

density was known. A further fuzzy system was trained to have an error performance that was
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better than either a three-element moving average or a three element median filter on test data 

corrupted by mixed Gaussian and impulsive noise.

Owing to the computational difficulties of training a Sugeno fuzzy filter with a two-dimensional 

window, one-dimensional fuzzy filters were applied successively along the horizontal and vertical 

axes. Such filters were applied to simulated depth maps, depth maps generated from simulated 

greyscale images, and depth maps generated from real greyscale images. Thus far it has proven to 

be impossible to produce fuzzy filters using this approach that outperform the median filter in the 

presence of impulsive noise.

Another technique that was discussed and demonstrated in Chapter 7 was to extend the Sugeno 

system so that some pre-processing of the inputs was allowed which extracted the filter window 

median and difference from median for each pixel. This technique allows a much simpler rulebase.

8.2 Discussion and Conclusions

8.2.1 Sum of squared difference matcher

The theory of (op cit Matthies et al, 1989) suggests that for no greyscale image noise the subpixel 

SSD matcher should produce zero noise in a disparity map produced using the matcher. However 

observation of the performance of the SSD sub-pixel matcher on random dot greyscale images 

suggests that this is not the case and that there is always a minimum, backstop, noise associated 

with the sub-pixel matcher. An analysis is made in section 3.3.2, of the effect of the greyscale 

image statistics on this minimum backstop noise. The analysis assumes a simple random uniform 

distribution of grey-scale values, that the grey scale values are independent, and makes a 

simplifying approximation that the SSDs on either side of the fitted quadratic minimum are

8-4



Chapter 8: Review of thesis, Conclusions, and Further Work

independent random variables. Nevertheless despite these assumptions, it provides an insight into 

the disparity map noise that occurs with more complex grey-scale image statistics. For a small 3 x 

3 matching window the agreement of the analysis with experiment is good. The poorer agreement 

for larger matching windows is due to the failure of the assumption of the independence of the 

SSDs to either side of the quadratic minimum.

The salient conclusions that are drawn from the analysis are that for the cases of independent grey 

scale pixel values considered, the distribution of disparities is found to be substantially independent 

of the statistics of the grey scale image in the absence of noise. However, the width of the backstop 

disparity distribution depends on the matching window size. Larger matching windows give rise to 

narrower disparity distributions.

Examination in section 3.3.3 of the effect of the greyscale image expansion used in (op cit Matthies 

et al., 1989) shows that the main effect of this image expansion is to reduce the inherent backstop 

noise of the sub-pixel matcher.

The investigations detailed in section 3.4 confirm the observations of (op cit Trucco et al., 1996) that 

the SSD matcher produces impulsive noise due to gross mismatches when additional noise is added 

to the greyscale images. These gross mismatches would also occur in the presence of image 

distortion. The disparity maps resulting from the SSD matcher will consist of a mixed impulsive 

and Gaussian noise. Moreover when depth maps are generated from the disparity maps, the 

Gaussian noise in the disparity map will be transformed to a different distribution. The 

transformation will depend on the camera parameters and the value of the disparity. Therefore the 

distribution of errors in a depth map will not be simply Gaussian noise, but consist of a mixture of 

impulses and transformed Gaussian noise.
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8.2.2 Current filtering approaches
There are many possible linear and nonlinear current approaches that could be applied to depth map

filtering. The Wiener filter (Wiener, 1949), as the optimum linear filter can be used as a benchmark 

where the signal and noise power spectral densities are known. For frontoparallel flat surfaces 

corrupted by Gaussian noise, a moving average filter can reasonably approximate the Wiener filter. 

However the average is not stable in the presence of outliers (Huber 1964). The median filter is a 

nonlinear filter that is robust to outliers and also preserves edges and discontinuities in the signal. 

For signals such as the mixed noise corrupted depth maps generated by the SSD matcher, a filter 

which changes its behaviour between the median and the moving average depending on the 

presence of impulses or discontinuities has the potential to perform better than either a pure moving 

average or a pure median.

8.2.3 Training of fuzzy systems
In Chapter 5 six different approaches to training a Sugeno fuzzy system were proposed, and tested

by testing the ability of the fuzzy system to approximate a simple nonlinear function of two inputs. 

The simplicity of the function that was chosen to be approximated was such as to allow many 

training runs to be accomplished in a reasonable time. All the training approaches were based on a 

combination of known search and optimisation algorithms (Metropolis et al. 1953) (Nelder and 

Mead, 1965), (Press et al., 1994) (Jang, 1993). However, although a recent paper has applied an 

approach that shares certain aspects of the approach taken in this thesis to fuzzy system training 

(Garibaldi and Ifeachor, 1999) the specific application to the training of Sugeno fuzzy systems is 

felt to be a new contribution made by this thesis.

The output sets of the Sugeno fuzzy systems, which are defined by the parameter set that scale each 

crisp input, can be trained by using a linear least squares approach. This approach, used by (Jang,
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1993). in conjunction with the backpropagation algorithm, is implemented using an SVD approach 

to solving the linear least squares problem. The input parameters are trained using different 

versions of the simulated annealing algorithm

There is a potential problem with the conjunction of the simulated annealing algorithm with the 

linear least squares algorithm. As implemented in the work described in this thesis all the simulated 

annealing algorithms are used to minimise the mean squared error whereas the total squared error is 

minimised by the least squares routine. The target for the simulated annealing algorithms could be 

changed to the total squared error, but the mean squared error is a more usual measure in noise 

removing filters, the target application for the fuzzy systems to be trained. This is because the mean 

squared error is associated with the power of a zero mean noise process. Moreover improvement in 

the total squared error results in an improvement in the mean squared error. A practical problem 

that has been encountered is that the numerical routine (taken from (Press et ai, 1994)) used to 

perform the SVD as a step in the least squares algorithm, often fails to converge for large matrices.

After training of a Sugeno system using the training methods described in Chapter 5, the supposed 

advantage of the transparency of fuzzy systems disappears unless steps are taken to preserve that 

transparency. These steps are not taken in the training routines used in this thesis, and therefore 

since training using exemplar input-output data plays a central role in the approach to fuzzy filter 

design taken in this thesis, the resulting fuzzy systems are not amenable to having their action 

understood by examination of the fuzzy system parameters.
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8.2.4 Direct and indirect acting fuzzy filtering systems
A review of the literature covering the topic of filters based on fuzzy logic reveals that the majority

of the published work on fuzzy filters concerns the class of indirect filters. In this type of filter the 

fuzzy system is used as a control mechanism that arbitrates between several conventional filters. 

Direct filters, in which the data enters the fuzzy system and the outputs emerge directly from the 

outputs of the fuzzy system alone are very rare. Direct acting filters have an inherently high 

dimensionality (many inputs), which brings with it the problems of rulebase explosion, a large 

search space volume for training, and the need for a large training data set. Nevertheless fuzzy 

systems are capable of universal approximation (Wang, 1992), (Kosko, 1992) which make them 

into candidates for filtering tasks. Also the first order Sugeno fuzzy system (Takagi and Sugeno, 

1985) can approximate complex mappings with fewer rules than the Mamdani model.

8.2.5 Filters implemented using a Sugeno fuzzy system

The first order Sugeno fuzzy system can be drawn as a feedforward filter network. The mapping 

performed by this network is nonlinear, even though the output sets are linear combinations of the 

inputs. The filter structure that results is sensitive to input level, not only because of the nonlinear 

nature of the filter, but also because the filter is designed to work over a finite universe of discourse. 

Because of the level sensitivity, it is better to apply the fuzzy filter to depth rather than disparity 

map filtering when the disparities are derived from sequences of greyscale images. This is because 

the range of depths encountered is constant at every matching step, whereas the disparity evolves 

through the sequence.

The Sugeno network can approximate a median function with three inputs. It can also approximate 

a five-input median. An exhaustive rulebase is not necessary to implement the median filter. There 

appears to be a strong relationship between the number of rules in a rulebase and the ability of a
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fuzzy system to match training data. However, the relationship between the number of rules and the 

ability to generalise to the underlying model behind the training data does not appear to be so 

strong, at least for a three input median function.

It is possible for a Sugeno filter trained to filter noise on a very restricted type of signal to 

outperform median, moving average and even Wiener filters when applied to a different signal that 

is restricted in the same way as the training data. However, it is possible that for this case the 

Sugeno filter has learnt the salient aspects of the signal, rather than the function necessary to filter 

noise from that signal.

The extension of Sugeno-based filters to two-dimensional filters causes computational problems if 

it is necessary to train the resulting filters. This is because of the dimensionality problems inherent 

in fuzzy systems. Non-exhaustive rulebases where the number of rules used as a fraction of the 

exhaustive number is small have not yielded good results when used as filters, despite using the rule 

selecting training method described in section 5.11. This may be because the training data used was 

inadequate, the search methods ineffective, or because the small number of rules were insufficient 

to capture any useful mapping from the training data.

When Sugeno based fuzzy filters were applied to mixed noise corrupted two-dimensional signals by 

filtering successively in the horizontal and vertical directions, those one-dimensional fuzzy filters 

that were designed to operate as median approximators produced the best results. These results 

were never better, however than those for a median filter which delineated a lower bound on the 

MSB that was achieved by any of the fuzzy filters. Some filters that were trained on mixed noise 

signals produced very large incorrect outputs when presented with data that did not appear in the 

training data set, even though the error achieved over the training data set was reasonable. This
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suggests that the training methods should be modified to ensure that the fuzzy filter is not overly 

sensitive to the input data

The results observed on a simulated depth map are reflected in the performance of the fuzzy filters 

on depth maps produced from simulated image sequences, except that for these depth maps the 

fuzzy filters produced worse results than both the median and moving average filters. When the 

filters have been applied to depth maps derived from real image sequences it has not been possible 

to make direct comparisons of MSB between the different filters since the ground-truth depth map 

is not known. It is apparent, however, that with the matching techniques used in WINIM the 

filtering problems are much more severe than those encountered with the simpler more idealised 

simulated images.

8.3 Further Work

The matching routines as currently implemented in WINIM are crude. In particular the geometrical 

model used for the perspective projection is the simplest possible. Since the focus of interest of the 

thesis was in the application of fuzzy systems to filtering, the matching routines were not developed 

to eliminate the errors that were introduced by the simplicity of the model. Instead much of the 

work has been carried out on simulated images that matched the assumptions of WINIM. The 

simulated image sequence also has the advantage of having a known but simple depth map which 

has only frontoparallel surfaces. It would be useful and interesting to implement a more 

sophisticated matching model and concurrently to verify this model on more sophisticated 

simulated imagery. This simulated imagery would in effect be a 'simulated calibrated imaging 

laboratory'. Using this model the distortions that lead to mismatching could be closely examined 

and hence a better statistical model of the disparity map noise developed.
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The efficiencies of the training routines described in Chapter 5 should be examined so that the 

dimensionality problem inherent in fuzzy system training is not exacerbated by an inefficient 

implementation. The annealing schedule used in the simulated annealing routine could also be 

modified so as to be controlled by the rate of change of error.

The loss of transparency of the fuzzy system after training negates the salient advantage of fuzzy 

systems over neural networks. It would be useful to restrict the changes that the training routine can 

carry out so that some of the transparency of the fuzzy system is not lost. An example of this would 

be to prevent input sets from being reordered during training.

Two critical questions for fuzzy system training are the question of the sufficiency of training data, 

and the stability of a fuzzy system's output to small changes in input data. It would be useful if this 

stability could be assessed during the training of a fuzzy system by factoring a measure of the 

stability into the cost function evaluated by the simulated annealing routine. This could be achieved 

by perturbing the training data by a small amount and assessing the change in error rate. 

Alternatively a second training data set could be used instead of a perturbation to assess the 

sensitivity of the error rate to the data. The size of the training data set is a thorny question since 

too small a data set may lead to the problems of a fuzzy system being unable to generalise, whereas 

too large a training data set slows the training process. The relationship between the necessary size 

of the training data set and the task to which the fuzzy system is to be applied represents a large 

field of potential future research.

The fundamental task which the work described in this thesis has attempted was to establish 

whether some nonlinear filter which could be approximated by a fuzzy system could improve on the 

performance of existing conventional filters when applied to the task of depth map filtering. This
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target remains as a challenge to be achieved, but the computational challenges of a search that 

scales as the power of the input vector length are profound. Given the problems of fuzzy system 

dimensionality, the immediate future of research into the application of fuzzy systems to filtering 

may lie with more research into the design and behaviour of one-dimensional fuzzy filters.
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Kalman and Fuzzy Logic Filters for 3-D Industrial Inspection
Using a Single Camera

N Rothwell Hughes, G R Wilson, G N Roberts. 
Gwent College of Higher Education, PO Box 180, Newport, Gwent, NP9 5XR, U.K. email: nrhughes@gwent.ac.uk

Abstract The work described here uses a sequence of images 
taken at closely spaced intervals with a camera moving in a 
known way to extract a dense depth map of the viewed scene. 
The small step size between images, and assumptions about the 
range of depths in the viewed scene limit the search space in the 
image pairs for a stereo matching algorithm. A scalar Kalman 
filter is used to track the increasing pixel shift or disparity 
between corresponding points in the images. The resulting 
disparity map can be converted into a depth map using the 
inverse perspective projection. The disparity map obtained 
using the above technique is contaminated by noise resulting 
from gross errors in the correlation. This necessitates a 
smoothing stage in the algorithm which is based on a priori 
assumptions about the true disparity map and the corresponding 
underlying depth map. A filter based on fuzzy logic is used to 
smooth the disparity map.

1. INTRODUCTION

The ability to use machine vision to produce a 3 dimensional 
map of a part of the real world is needed both for 3-D industrial 
inspection and for robot or vehicle guidance. The work 
described here is directed towards that end. The approach taken 
uses a single CCD camera under known motion to generate a 
depth map. This approach is based on a technique which has 
been described by other workers [1],[2]. In contrast to the 
previous work, however, a filter based on fuzzy logic is used to 
smooth the resulting output.

The motion of the camera is a sequence of small steps at each of 
which an image is taken. By measuring the shift in the image, 
or disparity, of corresponding points between the first and 
subsequent images the depth of those points can be determined 
using the perspective projection. Because the camera step size 
is small, and assuming a range of depths which are of interest, 
the search space for matching between the images can also be 
made small. If the camera motion is also constrained to be in the 
same plane and parallel to its scanline axis for all steps the 
search space is confined to a search along a scanline (the 
epipolar constraint) [3]. By tracking the disparity through a

sequence of small steps, a wide baseline can be built up and the 
precision in the depth map made as great as is required. 
The matching is carried out using the sum of squared difference 
technique (SSD) [4]. A scalar Kalman filter is used to track the 
increasing disparity for each pixel as the image sequence 
progresses. After the matching process for an image pair and 
after updating the disparity map with the Kalman filter, a noisy 
disparity map is obtained. It is at this stage that the Fuzzy filter 
is applied. Fuzzy filters have been used in image restoration [5] 
and their nonlinear filtering properties are ideal for smoothing a 
disparity or inverse depth map, whilst preserving the edges or 
areas of high disparity gradient.

2 ALGORITHM TO GENERATE DISPARITY MAP

The stages of the algorithm used to generate the disparity map 
are as follows:

(i) The first and second intensity images from the image 
sequence are read in as 256 X 256 matrices, each entry in the 
matrices corresponding to a gray scale value in the images

(ii) The Sum of Squared Differences (SSD) centred on each 
pixel (i,j) in image 1 and a 3 X 3 patch centred on pixels 
(i,j+shift) in image 2 are computed for shifts from -1 pixel to +5 
pixels. The SSD is a simple measure of match between the two 
patches.

(iii) The shift which generates the minimum SSD, t»est_shift*, 
and its two neighbours best_shift ± 1' are stored along with their 
SSDs.

(iv) A quadratic is fitted to these three points. The minimum of 
the quadratic gives a sub pixel estimate of the shift or disparity 
for pixel (i,j). The width of the quadratic function (i.e. the 
coefficient of the square term) is taken as a measure of the 
uncertainty in the disparity measurement (op cit[l] ).

(v) Steps (ii) to (iv) are then iterated with increasing matching 
patch size, until the uncertainty measure has dropped below a 
threshold and ceased to improve, or the matching patch exceeds
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a maximum size. The rate of increase of the patch size is 
controlled by the incremental improvement in the uncertainty.

(vi) The disparity with least uncertainty and the uncertainty 
measure are passed to a scalar Kalman filter. The filter tracks 
the evolution of the disparity for each pixel from image 1 to n 
which is modelled as a linear function of the camera shifts 1 to 
n. The prior disparity is assumed to be zero for all pixels

(vii) After the above steps are carried out for all pixels a 
disparity map, or inverse depth map, exists for all pixels. This 
map is then passed to a fuzzy logic filtering stage for smoothing. 
The final smoothed map is stored.

(viii) All the above steps are repeated with images 1 and n 
where n= 3,4,5...
The search space along the scanline within which matches are 
sought for each pixel is determined by the overall uncertainty in 
the disparity for that pixel. Pixels with a large uncertainty in 
disparity having a larger search window. The search window is 
centred on the predicted disparity based on the gradient of 
disparity with camera shift. At each stage the Kalman filter 
updates its estimate, and the fuzzy smoother smooths the 
disparity map.

(ix) At the end of a sequence of images a disparity value has 
been obtained for each pixel in the original intensity image. 
Assuming the perspective projection and known camera motion, 
a dense x,y,z map of the original scene can be recovered.

3 KALMAN FILTER

The scalar Kalman filter [6] is used in the algorithm to track the 
evolution of the disparity value for each pixel(ij). The usual 
equations for the Kalman filter become in this case:

Process Model:

Measurement Model:

(n + 1)
n -d[n] (1)

(2)

Estimator Equation:
(n + 1) .

(3)

Updated Mean square error:
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Where d[n) = disparity in pixels at camera step (image) n; g[n] 
is zero mean Gaussian noise variance ag; M[nj = measured 
disparity; C = measurement constant=l; v[n] is zero mean 
Gaussian variance av; J[n] = estimated disparity at step[n];

4. DISPARITY MAP SMOOTHING

The general problem of extracting depth from pairs of 2-D 
images using SSD matching is an example of an ill posed 
inverse problem [7] In order to solve this problem it is 
necessary to impose constraints on the allowable solutions so 
as to choose the best solution given uncertain and ambiguous 
measurements. In the approach discussed here the small step 
size between images, and the bounding of scene depths form 
some additional a priori constraints on the possible range of 
solutions. The Kalman filter also imposes a constraint on the 
allowable solutions, given the latest and past disparity 
measurements, and a measure of the variance of those 
measurements. Nevertheless, the disparity map which is 
obtained is noisy, and contains areas of gross error where the 
matching algorithm fails. A general approach to such 
problems is that of regularisation. In this approach the 
optimum solution is that which jointly minimises two energy 
or cost functionals. The first cost functional measures the 
closeness of a solution to the measurement, whilst the second 
measures how well the solution satisfies some a priori 
constraint such as smoothness. The second cost functional is 
often called the regularising operator or stabilising functional. 
A typical pair of cost functionals for the problem being 

considered here might be:

and

El =/J [d(x,y) - d(x,y)]2 dxdy

= JJ [Vd(x,y)]2 dxdy

(6)

(7)

where d is the disparity estimate, d is the measurement, and 
Vd is the gradient of the disparity estimate, x,y are the co-ordinates 
in the image, and the integrals are evaluated over the image area.

so that the overall functional Et to be minimised becomes:
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Et = Ei + (8)

The exact choice of the stabilising functional and the 
parameter A, is a choice of a priori beliefs about the problem, and 
of confidence in those beliefs relative to the data The minimisation 
of the functional is often carried out using iterative gradient descent 
methods and can require much computing time. The process of 
minimising the energy functional can be thought of as a processing 
module which has as its inputs the measured disparities and the 
a priori beliefs about reasonable constraints on the smoothness of 
the disparity map; and has as its output the disparity map solution 
which best fits both the measured disparities and the smoothness 
constraints. A fuzzy logic system can perform the task of such a 
processing block, where the a priori assumptions are embodied in 
the fuzzy rule base and the input and output membership functions.

5. FUZZY FILTER

Fuzzy logic was first described as a technique for decision 
making in the presence of uncertainty by Zadeh [8]. Since 
then its use in control engineering has grown because of its 
effectivenes in controlling complex and non-linear systems. A 
particular advantage is the use which the designer of a system 
using fuzzy logic can make of 'expert' knowledge expressed in 
linguistic terms. A fuzzy system maps input values to output 
values in a way which is determined by a set of linguistically 
expressed rules. This mapping can be complex and non 
linear.

A fuzzy logic system is generally broken down into four parts. 
The first part, the fuzzification stage takes crisp numerical 
values and determines their degree of membership in each of a 
collection of sets which are given linguistic labels that are 
meaningful in terms of the problem to be solved, e.g. near, 
local, far. The second part is the fuzzy rule base which 
expresses relations between the input fuzzy sets A and B and 
the output fuzzy sets C in the form of 'IF A and B THEN C'. 
The fuzzified inputs are combined using these rules in the 
third part, the fuzzy inference engine. This produces a 
combined fuzzy output set. The final part, the defuzzifier, 
produces a crisp output from the combined fuzzy output set, 
usually by taking the centroid of the combined output set.
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The fuzzy filter is structured in a similar way to a 2-D finite 
impulse response filter (figure 1), but the filter weights 
applied to each pixel in a 5 X 5 filter window are determined 
by the output of a fuzzy logic system. This approach was 
used by Taguchi et al op cit [5] for restoration of grayscale 
images.

The crisp input values that are fuzzified are:

(i) the euclidean distance of a pixel whose weight is being 
evaluated, Pixel(i+h,j+k) from the pixel to which the 
smoothed disparity output will be assigned, Pixel(ij). This 
distance is:

pixel dist = Vh + k (9)

and
(ii) a measure of the difference in disparity of pixel (i+h,j+k) 

from the median of the disparities in the 5X5 filter window, 
d_median. This disparity difference measure is:

k) - dmedia
divisor

where divisor = dmedian when 
and divisor = 1 otherwise.

(10)

> 1,

The disparity measure is scaled to the local median disparity 
so that the filter has the same relative smoothing effect as the 
disparity measures evolve through the image sequence.

The three fuzzy input sets for pixel distance are labelled Near, 
Far, and Local. They have membership functions as shown in 
figure 2.

1.0

0.0
Near Far

1.0 2.0 3.0

Figure 2: Pixel distance membership functions.

The three sets for disparity difference are Small, Medium, and 
Large with triangular/trapezoidal membership functions and 
are shown in figure 3. The shape of the membership functions
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are chosen to be triangular/trapezoidal for ease 
computation. They need not in general be symmetrical.

of

t 

1.0

0.0

.

c ',C S C 3 C . c *

0.0 0.5 1.0

Figure 3: disparity difference membership functions. 

Consider the following 5X5 window to be filtered:

43453
24232
47545
45654
54443

The window 
median = 4

The centre disparity value is the one to be filtered. The 
underlined disparity is at a distance 1 pixel from the centre 
pixel, and so its membership values in the distance sets are:

{Mneard), Mlocal(l)Mfar(l)} = {1 ,0 ,0 } 

The disparity difference is:

disparity difference =
7 - 4

= 0.75

(11)

(12)

with membership values:

{Msma]1(l), MmediHm(l)Mlarge(l)} = {0.0 ,0.33 ,0.33 } (13)

The fuzzy rule base and inference engine combine the 
antecedent fuzzy sets two at a time and associate them with an 
output or consequent set. The fuzzy rule base used is shown 
in figure 4.

Near
Local
Far

Small
05
04
03

Med
03
03
02

Large
02
o.
0,

Figure 4. Fuzzy Rule base for filter.
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The output or consequent sets are fuzzy singletons in this case 
in the interests of computational simplicity. The membership 
functions for the output sets are shown in figure 5. Their 
labels are: Oj, i=1..5

1.0

0.0
Small AMed). Large 

\ . / \ .
c b f e 

0.0 0.5 1.0
Figure 5: Output fuzzy sets (singletons).

The rule base reflects the a priori assumptions about the 
correct form of the disparity map; pixels are correlated in 
proportion to their separation and pixels of markedly different 
disparity belong to different surfaces. The first rule in the rule 
base can be read as:

IF pixel distance is Near AND disparity difference is Small 
Then Output is O5
For this rule a weight Wi is assigned to the consequent fuzzy 
singleton Os. The weight is determined by taking the 
minimum of the antecedent membership function values, i.e.

W] = min[M near .75)] = min[l ,0 ] = 0
(14)

This is repeated for all the rules in the rule base, until a weight 
Wj is associated with each rule Rj and its consequent fuzzy 
singleton O;. The final crisp output, O(h,k) is computed by 
the weighted sum over all the N rules:

N
0(h,k) = (15)

This crisp output is now taken as the weight of pixel (i+hj+k). 
The process of obtaining filter weights is repeated for all the 

pixels in the 5X5 filter window. The final filtered output 
which replaces the unfiltered value of disparity for pixel (ij) 
is calculated from:
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h = +2 k =»f 2

dfil(ij)
h = -2

= +2 k=H-2 (16)

h = -2

6 RESULTS
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processing of each image. The parameters of the disparity 
difference fuzzy set membership functions were then adjusted 
and the algorithm tested again. The performance of the fuzzy 
filter was assessed each time by measuring the mean squared 
error between the ideal disparity map for the simulated data, 
which is illustrated in figure 8 and the actual disparity map 
obtained using the algorithm with the fuzzy filter (figure 9). 
In this way the parameters a,b,c,d,e,f,g of the input fuzzy set 
membership function (figure 3) were adjusted for lowest mean 
squared error.

The algorithm was first tested on some simulated image data. 
This simulated data consisted of a sequence of ten random dot 
pattern images generated using MATLAB (figure 6). The 
images consisted of a fixed random dot background and a 
square area of a different random pattern which was shifted by 
2 pixels between each image in the sequence. The moving 
foreground is highlighted in figure 6 by the white box, which 
was not present in the original images. The shifting 
foreground was allowed to occlude and dissocclude the 
background as it shifted.

Figure 6: Part of first image of simulated image sequence.

The algorithm was first tested using this simulated data 
without the fuzzy filter, and the resulting disparity map is 
shown in figure 7

80 20

60

Pixel Index j

60
40

Pixel Index 80 20 Pixel Index J

Figure 8: Ideal disparity map for simulated images.

Pixel Index 80 20 Pixel index J

Figure 9: Disparity map with filter, simulated images.

The algorithm was then tested on some real image sequences 
using the fuzzy set parameters obtained by adjusting on the 
simulated images. These image sequences were obtained 
from a CCD camera which was moved in steps of 3mm to a 
precision of +10"5 m. The focal length of the lens was about 
25mm and this gave a shift between images of about 2 pixels 
for objects at 1m from the camera, which is the distance of the 
nearest part of the first image in the sequence shown in figure 
10.

Figure 7: Disparity map without filter,simulated images.

The algorithm was then tested again on the simulated data, but 
with the fuzzy filter applied to the disparity map between the
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Figure 10: First image of sequence.

The disparity map which was obtained without the fuzzy filter 
is shown in figure 11 and that obtained with the fuzzy filter is 
shown in figure 12.

Pnel index i 40 40
Pixel index j

Figure 11: Disparity map for image in figure 10 generated 
after 20 camera shifts without fuzzy filter.
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[t can be seen that the fuzzy filter improves the performance 
of the algorithm. The disparity map that is obtained reflects 
the depth map for figurelO.

7 CONCLUSIONS AND RECOMMENDATIONS

This paper has presented work aimed at generating dense 
depth maps of a viewed scene using a sequence of images 
taken by a camera moving in small steps. As in previous work 
a Kalman filter is used to track the evolving disparity. 
However the resulting disparity map contains gross errors in 
some areas due to mismatching in the correlation stage. The 
Kalman filter does not correct these errors since it only tracks 
one single pixel, and areas in the images which cause 
mismatching for one pair of images tend to do so for all pairs

of images. Because of this a method of smoothing the 
disparity map is needed. In the work described here the 
smoother is interleaved with the matching and Kalman filter 
stages. The smoother used is an adaptive filter operating over 
a 5X5 patch in the disparity map. The filter weights are 
adaptively determined using fuzzy logic. The results on 
simulated and real data show that such a fuzzy logic based 
filter can be effective in smoothing noisy disparity maps.

The results gained thus far show that filters based on fuzzy 
logic are useful in obtaining a solution to the inverse problem 
of obtaining depth from sequences of images. The use of 
fuzzy logic provides a framework for incorporating a priori 
assumptions about the underlying depth map in the solution.

140

Pixel index j
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ABSTRACT

In this paper two types of nonlinear filter structure based on fuzzy logic are presented and 
applied to the problem of depth map regularisation. The first type of filter uses a fuzzy 
inferencing system to select the coefficients of a finite impulse response filter. The second uses 
a first order Sugeno fuzzy inferencing system to implement the filter. A correlation-based 
stereo matching algorithm is used to extract the depth information from a sequence of two 
dimensional images of a static scene under known camera motion. The resulting depth map is, 
however, corrupted by noise and areas of gross error due to the ill posed nature of the 
matching problem. The depth map is smoothed, thus regularising the problem, using the 
fuzzy-based filters which embody a priori assumptions about the underlying true depth map.

1. INTRODUCTION

The identification of the relative (and absolute) 
depth of points in a viewed scene is a 
potentially important low-level vision process 
in such applications as intelligent autonomous 
vehicle navigation, robot guidance, and 
industrial inspection in hazardous or 
inaccessible locations. This paper is concerned 
with this low-level vision process of depth 
reconstruction.

The basic principle of operation of the 
technique used is that of correlation-based 
stereo matching. The viewed scene is assumed 
to be static, and a sequence of images is taken 
by a single camera moving in a known way 
between images. The camera motion is such as 
to allow the use of the epipolar constraint, and 
the camera displacement is small enough 
between images in the sequence to restrict the 
search space for matching. This restricted 
search space provides a constraint which 
reduces the likelihood of a false match. 
However, small camera displacement (baseline) 
gives a depth measurement of low precision. In 
order to obtain the required precision the image 
displacements or disparities of corresponding 
points in the first and n image are tracked 
using a Kalman filter. The Kalman filter tracks 
the increasing disparity through the image 
sequence until the required precision in the

depth measurement is attained. The resulting 
dense disparity map is converted into the 
corresponding depth map using the inverse 
perspective transformation. This depth map, 
which is a two dimensional (2-D) function 
aligned with the first image in the sequence, is 
corrupted by noise and areas of gross error.

These errors arise from the fact that, in 
common with other so called 'inverse 
problems', the problem of depth recovery is 
mathematically 'ill posed' [1]. In order to solve 
such ill posed problems it is necessary to 
impose constraints determining allowable 
solutions such that the best solution is chosen 
given uncertain and ambiguous measurements. 
A general approach to such problems is that of 
regularisation. In this approach the optimum 
solution is that which jointly minimises two 
energy or cost functionals. The first cost 
functional measures the closeness of a solution 
to the measurement, whilst the second measures 
how well the solution satisfies some a priori 
constraint such as smoothness. The second cost 
functional is often called the regularising 
operator or stabilising functional.

The choice of the stabilising functional is 
determined by the a priori beliefs about the 
underlying true solution and of confidence in those 
beliefs relative to the data. The minimisation of the 
functional is often carried out using iterative
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gradient descent methods and can require much 
computing time. The process of minimising the 
energy functional can be thought of as a processing 
module which has as its inputs the measured 
disparities and the a priori beliefs about 
reasonable constraints on the smoothness of the 
disparity map; and has as its output the disparity 
map solution which best fits both the measured 
disparities and the smoothness constraints. 
Previous workers [2] have used smoothing 
stages based on the piecewise continuous 
generalised splines of Terzopolous [3] in order 
to regularise the problem of depth extraction 
from image sequences. A new approach based 
on fuzzy logic is proposed and explored in this 
paper. An advantage of the fuzzy approach is that 
the regularising a priori assumptions are explicitly 
embodied in the fuzzy rule base and the input and 
output membership functions.

The work described here compares two types of 
fuzzy-logic-based depth map regularisation 
stages. The first approach (see also [4]) uses a 
filter structured in a similar way to a 2-D finite 
impulse response filter, but in which the filter 
weights applied to each pixel in a 5x5 filter 
window are determined by the output of a fuzzy 
inferencing system. This general approach has 
been adapted from that used by Taguchi et al. 
[5] for the restoration of gray scale images.

The second approach is based on the first order 
Sugeno method of fuzzy inference [6]. This 
Sugeno-based fuzzy filter structure is suggested 
by the equivalence of the first order Sugeno 
output sets to finite impulse response (FIR) 
filters. By adopting the Sugeno structure the 
filter structure is completely contained within 
the fuzzy inferencing system (FIS). This results 
in a fuzzy filter stage which acts directly on the 
disparity data, instead of determining the 
weights of an adaptive filter as in the first type 
of filter. The structure of the second type of 
filter has the advantage that it allows the 
possibility of training the filter using simulated 
input-output data pairs.

Section 2 of the paper describes the algorithm 
used here to derive depth maps from image 
sequences. Section 3 describes the first type of 
fuzzy filter, and section 4 the second, Sugeno- 
based, filter. Section 5 presents some results 
using both types of filter on simulated depth 
maps and depth maps derived from real images. 
Finally section 6 presents the conclusions and 
future directions of the research.

2. ALGORITHM DESCRIPTION

The stages of the algorithm used to generate the 
disparity map are as follows:
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(i) The first and second intensity images from 
the image sequence are read in as 256x256 
matrices, each entry in the matrices 
corresponding to a gray scale value in the images

(ii) The Sum of Squared Differences (SSD) 
centred on each pixel (i,j) in image 1 and a 3x3 
patch centred on pixels (ij+shift) in image 2 are 
computed for a range of shifts. The SSD is a 
simple measure of match between the two 
patches.

(iii) The shift which generates the minimum 
SSD, best_shift', and its two neighbours 
best_shift + 1' are stored along with their SSDs.

(iv) A quadratic is fitted to these three points. 
The minimum of the quadratic gives a sub pixel 
estimate of the shift or disparity for pixel (i,j). 
The width of the quadratic function (i.e. the 
coefficient of the square term) is taken as a 
measure of the uncertainty in the disparity 
measurement (op cit[2] ).

(v) Steps (ii) to (iv) are then iterated with 
increasing matching patch size, until the 
uncertainty measure has dropped below a 
threshold and ceased to improve, or the matching 
patch exceeds a maximum size. The rate of 
increase of the patch size is controlled by the 
incremental improvement in the uncertainty.

(vi) The disparity with least uncertainty and the 
uncertainty measure are passed to a scalar 
Kalman filter. The filter tracks the evolution of 
the disparity for each pixel from image 1 to n 
which is modelled as a linear function of the 
camera shifts 1 to n. The prior disparity is 
assumed to be in the middle of the range of 
possible disparities, but with a high uncertainty, 
for all pixels

(vii) After the above steps are carried out for all 
pixels a disparity map, or inverse depth map, 
exists for all pixels. This disparity map is 
converted to the equivalent depth map using the 
inverse perspective projection and the known 
camera parameters. The depth map is then 
passed to a fuzzy logic filtering stage for 
smoothing, and the current disparity map is 
updated using the forward perspective 
projection. The final smoothed map is stored.

(viii) All the above steps are repeated with 
images 1 and n where n= 3,4,5... The search 
space along the scanline within which matches 
are sought for each pixel is centred on the 
predicted disparity based on the gradient of 
disparity with camera shift. At each stage the 
Kalman filter updates its estimate, and the fuzzy 
smoother smooths the depth map.
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(1X) At the end of each match/smooth step a 
depth value has been obtained for each pixel in 
the original intensity image and a dense x,y,z 
map of the original scene can be recovered.

3. INDIRECT FUZZY FILTER

The first type of fuzzy filter, which is described 
in more detail in op cit[4], is structured in a 
similar way to a 2-D finite impulse response 
filter (figure 1), but the filter weights applied to 
each pixel in a 5x5 filter window are 
determined by the output of a fuzzy logic 
system.

2-D store 
(5x5) 
patch 
around 
pixel (i.j)

Weighted mean 
of 5x5 patch . Output 

of Pixel 
(ij)

Adaptive weight 
determining 
stage (fuzzy )

Figure 1: Adaptive Fuzzy Filter. 

The crisp input values that are fuzzified are:

(i) the Euclidean distance of a pixel whose 
weight is being evaluated, Pixel(i+/ij+Ar) from 
the pixel to which the smoothed disparity 
output will be assigned, Pixel(ij). This 
distance is:

pixel dist =

and
(ii) a measure of the difference in disparity of
each pixel in the 5x5 filter window, d(i+h,j+k)
from the median of the disparities, d_median, in
the window. This disparity difference measure
is:

k)
divisor

where divisor = 
divisor = 1 otherwise.

when

(2)

> 1, and

The fuzzy inferencing system to which the 
above observation variables are applied is a 
zero-order Sugeno system. Both fuzzy 
observation variables have three triangular 
membership function fuzzy sets. There are nine 
rules in the rulebase, and the 'minimum' 
operator is used for the 'AND' conjunction as
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well as for the implication operator, THEN', in 
the fuzzy rulebase. The firing weights for each 
rule are applied to the appropriate one of five 
Sugeno singleton output sets, Ot . These are 
used rather than the more common Mamdani 
fuzzy output sets for computational simplicity. 
The aggregate output O(h,k) for each pair of 
inputs is obtained as a normalised weighted 
sum over all the rules, with the weights, w, 
being the firing weight for each rule.

0(h,k)=
R

I = 1
(3)

This crisp output is now taken as the weight of 
pixel (i+h,j+k). The process of obtaining filter 
weights is repeated for all the pixels in the 5x5 
filter window. The final filtered output, dfli(i,j) 
which replaces the unfiltered value of disparity 
for pixel (i,j) is calculated from:

h=+2k=i-2

h=-2k=-2
h=+2 
£ ?,0(h,k)

h=-2 k=-2

(4)

The first type of fuzzy smoother acts indirectly 
on the data and adds an additional stage 
between the input corrupted disparity data and 
the output smoothed map. This makes it 
difficult to use existing techniques of input- 
output data pair training of the fuzzy system. 
However, after adjustment of the parameters of 
the fuzzy inference system using simulated test 
data, this type of filter works effectively on 
depth maps derived from real image sequences. 
The filter smooths the depth map whilst 
preserving discontinuities. The effect of the 
fuzzy weight-determining stage is to assign a 
larger weight to pixels closer to the pixel being 
filtered, and to those whose disparity is closer 
to the median of the filter window.

4. SUGENO-BASED FILTER

The structure of the second direct-acting fuzzy 
filter is based on a first order Sugeno type 
Fuzzy Inferencing System (FIS) op cit [6]. This 
type of FIS differs from the Mamdani type of 
FIS in that the values of the output sets are a 
linear combination of the crisp inputs, *,-. Each 
output set is defined by its coefficient set, a/.

i=R
(5)
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If the coefficients a, are chosen appropriately, 
each output set can be regarded as a transversal 
or finite impulse response (FIR) filter. Thus the 
Sugeno FIS can be drawn as a feedforward 
nonlinear filter structure (figure 2).

x[k]

Fuzzy
Reasoning 

Stage
1 L _

F,

. ...
w,F1

y[k]
Figure 2. Sugeno-based filter

The pre-processor assembles the raw depth data 
samples from the filter window into a correctly 
ordered vector for input to the Sugeno FIS. The 
blocks FI to Fr represent the output sets of the 
first order Sugeno network. There are as many 
of these blocks as there are output sets in the 
Sugeno network. The weights WFI to Wpr 
which are applied to the outputs of the linear 
filters are the firing weights of each rule for the 
applied inputs x[k]. The final output of the 
filter is the weighted sum of the outputs of the 
filter bank with the weights determined by the 
fuzzy stage as a non-linear function of the pre- 
processed input. Viewed in this way it can be 
seen that the first order Sugeno network can 
implement a general non-linear filter. This 
structure can implement any linear FIR filter as 
a special case by fixing the output of the fuzzy 
inferencing stage to select the appropriate filter 
or combination of filters regardless of the input. 
However, the advantage of this filter structure 
lies in its ability to choose the output coefficient 
set, and hence the filter action, depending on 
the inputs to the filter. This leads to an overall 
non-linear filter which in effect interpolates 
multiple linear filters. The choice of the 
coefficients for the different output sets can 
thus be guided by conventional filter design 
techniques. It is also easier to train the filter 
output coefficients and the input sets'
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membership functions using simulated input- 
output data with this second fuzzy filter 
structure than with the first type of fuzzy filter.

Let there be N inputs defined for the fuzzy 
system, and let there be R rules. Also let the 
pre-processor assemble the input data into the 
IxN input vector X, and let the feedforward 
fuzzy stage be represented by the function f(.) 
which maps the 1 x N vector X into the IxR 
rule firing-weight vector W. Assume without 
loss of generality that each rule has a 
corresponding filter in the filter bank. If the 
coefficients of the R filters in the filter bank are 
represented by the RxN matrix A, the action of 
the filter can be described by the equation:

= W.A.Xr =f(X).A.XT (6)

The function /(.) is dependent on the choice of 
fuzzy rules and input fuzzy sets.

If the r* fuzzy rule in a rulebase of R rules is :

IF jc, isFS{ AND....xN isFS rN THEN Wr is wr
(7)

where the xn are elements of the crisp input 
vector X=(XI...XN), the Wr are elements of the 
weight vector W=(Wi...Wr..WR), and the FS are 
fuzzy sets defined by Gaussian membership 
functions, then the r element in the weight 
vector is given by:

xl
r=R

mn
r=\

where f^ rFSn (xn ) is the membership of xn in the 
fuzzy set FS rn .

The nonlinear feedforward mapping, f(.):X—>W 
is determined by equations (7) and (8). hi order 
for the filter defined by equations (6)-(8) to be 
useful in depth map regularisation appropriate 
rules and input fuzzy sets have to be identified. 
However, for a 3x3 two dimensional filter with 
two fuzzy sets per input, an exhaustive set of 
rules requires 2 rules. Therefore an effective 
filter has to be generated using only a small 
subset of all the possible rules. The results for 
Sugeno-based filters, described in the next 
section, are derived from rules which aim to 
identify depth discontinuities or edges within a 
3x3 and 5x5 filter window. A region within the 
window to which the centre pixel belongs is 
inferred from these edges. The centre pixel
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value in the filter window is then replaced by 
the arithmetic mean of this region. The 
formation of the arithmetic means for each rule 
is carried out by the filter blocks in figure 2.

5 RESULTS

5.1 Indirect fuzzy filter
The indirect fuzzy filter parameters were 
adjusted on depth map test data derived from a 
sequence of random dot images. A square area 
in these images was shifted by a fixed known 
amount from one image to the next in the 
sequence. The mean squared error (MSB) of 
the resulting depth map after filtering was used 
as the performance criterion. After adjustment 
of the fuzzy inferencing system parameters, the 
control map for the weights 0(h,k) in equation 
(3) was as shown in figure 3. It can be seen 
from figure 3 that small departures from the 
normalised median are heavily penalised, and 
that pixels further from the centre pixel are 
assigned a lower weight.

Figure 4 shows the first image in a sequence of 
real off-camera images. Figure 5 is the 
resulting depth map after ten four mm shifts of 
the camera if no regularisation is carried out. 
Figure 6 is the depth map which results from 
the same image sequence when smoothed 
between matches by the indirect fuzzy filter.

5.2 Sugeno-based fuzzy filter
The Sugeno-based fuzzy filter was tested for its 
filtering action on a simulated 'depth' map 
consisting of a pyramid, a stepped pyramid, a 
Gaussian 'hump' , and several square columns 
of different widths and heights ranging from 1.0 
to 2.0. This depth map was corrupted with zero 
mean, variance 0.16 Gaussian noise. 3x3 and 
5x5 Sugeno-based filters of nineteen rules were 
applied to this depth map and the results 
compared with 3x3 and 5x5 moving average 
and median filters. A comparison of their 
performances on the simulated depth map is 
shown in table 1.
The performance of the fuzzy filters on this test 
data gives an indication of the potential of such 
filters. Figure 7 shows a depth map smoothed 
by a 5x5 Sugeno-based filter. This depth map 
is not as well smoothed as the one generated by 
the indirect fuzzy filter, however the 
performance of the Sugeno-based filter has the 
potential to be improved using input-output 
training data pairs.

Appendix APapers
Control map for MF set 7

o.o 
o.oo

0.05

0.10

Disparity_difference
015 3

Pixel distance

Figure 3. Control map for indirect fuzzy filter

Figure 4. First image from sequence'Boxes
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Figure 5. Depth map from sequence 'Boxes' 
generated by algorithm with no regularisation
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Figure 6. Depth map of test image 'Boxes' 
smoothed by indirect fuzzy filter

Table 1. Comparison of filter performance on 
test data corrupted with Gaussian noise

Filter type
3x3 median
3x3 moving average
3x3 Sugeno-based
5x5 median
5x5 moving average
5x5 Sugeno-based

Mean squared error
0.0287
0.0214
0.0207
0.0145
0.0131
0.0105

0.5 -,

300 300 i coordinate

Figure 7. Depth map of test image 'Boxes' 
smoothed by Sugeno-based fuzzy filter

8. CONCLUSIONS AND FUTURE WORK

Two different fuzzy-logic-based methods of 
regularising the noisy depth maps resulting 
from a correlation-based stereo matching 
algorithm have been presented. The first of 
these methods, the indirect method, results in 
good smoothing of the depth map, whilst 
preserving edges. The second method, based 
on the first-order Sugeno fuzzy inferencing 
method, encapsulates the whole filter within the 
fuzzy inferencing system, and therefore allows 
the use of input output training data pairs. The
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number of possible rules for a two dimensional 
filter grows exponentially with the filter size, 
therefore a subset of the possible rules has to be 
chosen. Initial results on simulated depth maps 
corrupted with Gaussian noise using such a 
filter show a small improvement over moving 
average and median filters. Although the 
performance on real depth maps is not yet as 
good as the indirect acting fuzzy filter, the 
performance can be improved using 
representative training data.

Work is currently in progress to improve the 
performance of the Sugeno-based filter. This 
will be achieved by using training data 
corrupted with both impulsive and Gaussian 
noise to identify effective rules; and also by 
using simulated annealing to train the input 
fuzzy set parameters on the same type of 
training data.
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APPLICATION OF FUZZY SIGNAL PROCESSING TO THREE DIMENSIONAL VISION

N Rothwell Hughes, G N Roberts ,G R Wilson.

Mechatronics Research Centre 
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Introduction

The ability to sense and construct a three dimensional 
representation of the operating environment is an 
important enabling technology for intelligent 
autonomous vehicle navigation, robot guidance, and 
industrial inspection in hazardous or inaccessible 
locations. The goal of recovering three dimensional 
shape information from multiple two dimensional 
images also offers the achievement of completely 
automatic inspection of three dimensional manufactured 
objects. The use of CCD cameras and correlation-based 
stereo matching techniques is attractive because dense 
depth maps of the viewed scene can be generated in this 
way.

However, the recovery of depth using correlation-based 
matching is a mathematically ill-posed problem, Bertero 
et al (1), for which a priori information about the form 
of acceptable depth map solutions is required to correct 
erroneously matched areas of the depth map. This is 
usually referred to as 'regularisation' and is closely 
related to the problem of filtering corrupted signals. An 
important feature of any regularisation stage for depth maps is 
the ability to identify and deal appropriately with 
discontinuities. The use of fuzzy-based smoothing filters 
offers a new approach to the regularisation of depth maps.

Work on the use of fuzzy logic in filtering of one dimensional 
signals in the presence of noise has been reported by Kirn and 
Kosko (2), Kwan and Kai (3), and Hsaiao and Lai (4). Other 
workers, Taguchi et al (5), Takashima et al. (6), Yang and 
Toh (7), Peng and Lucke (8), and Arakawa (9) report work on 
fuzzy logic-based filters for image restoration. Similar 
techniques for spatio-temporal filtering of impulsive noise 
corrupted TV signals have been reported by Mancuso et al 
(10). The authors have applied similar techniques to the 
smoothing of depth maps derived from correlation-based 
matching algorithms, Rothwell Hughes et al. (11,12). The 
motivation for much of the work listed above is to develop a 
non-linear filter system which can cope with signals corrupted 
with both Gaussian and impulsive noise whilst preserving 
signal discontinuities. An advantage of the fuzzy approach is 
that the a priori assumptions are explicitly embodied in the 
fuzzy rule base and the input and output membership 
functions. In the case of filtering depth maps which have been 
derived from sequences of grey level images, information 
over and above the raw depth data is available which can be 
input to the filter. This additional information is the

uncertainty in the depth measurement at each pixel and the 
original grey scale images

The remainder of the paper consists of six further 
sections. The first describes the basic depth from image 
sequences algorithm The next section describes the 
basic architecture of the fuzzy filters used to smooth the 
depth maps. The three following sections describe the 
development of three types of fuzzy filter of increasing 
complexity. Each filter builds on the previous filter by 
incorporating more information as input to the fuzzy 
inferencing system. The results of applying the three 
types of fuzzy filter to depth maps derived from 
simulated images and to sequences of real images is 
presented and discussed in these sections. The final 
section is a conclusion and discussion of the results 
obtained.

Depth From Image Sequences

The basic principle of operation of the technique used is 
that of correlation-based stereo matching. The viewed 
scene is assumed to be static, and a sequence of images 
is taken by a single camera moving in a known way 
between images. The camera motion is such as to allow 
the use of the epipolar constraint, and the camera 
displacement is small enough between images in the 
sequence to restrict the search space for matching. In 
order to obtain the required precision the image 
displacements or disparities of corresponding points in 
the first and n* image are tracked using a Kalman filter. 
The Kalman filter tracks the increasing disparity through 
the image sequence. This technique is similar to that 
described in Matthies et al (13), and Trucco et al (14). 
Details of the Kalman filter used are given in (11).

The stages of the algorithm used to generate the disparity 
map are as follows:

(i) The first and second intensity images from the image 
sequence are read in as matrices of pixel grey level, each 
entry in the matrices corresponding to a grey scale value 
in the images

(ii) The Sum of Squared Differences (SSD) centred on 
each pixel (i,j) in image 1 and a 3x3 patch centred on 
pixels (i,j+shift) in image 2 are computed for a range of

A15



Appendix A: Papers

shifts. The SSD is a simple measure of match between the 
two patches, Annandan (15).

(iii) The shift which generates the minimum SSD, 
best_shift', and its two neighbours 'best_shift ± 1" are 
stored along with their SSDs.

(iv) A quadratic is fitted to these three points. The 
minimum of the quadratic gives a sub pixel estimate of the 
shift or disparity for pixel (i j). The width of the quadratic 
function (i.e. the coefficient of the square term) is taken as 
a measure of the uncertainty in the disparity measurement 
(14).

(v) The disparity with least uncertainty and the 
uncertainty measure are passed to a scalar Kalman filter. 
The filter tracks the evolution of the disparity for each 
pixel from image 1 to n which is modelled as a linear 
function of the camera shifts 1 to n. The prior disparity is 
assumed to be in the middle of the range of possible 
disparities, but with a high uncertainty, for all pixels

(vi) After the above steps are carried out for all pixels a 
disparity map, or inverse depth map, exists for all pixels. 
This disparity map is converted to the equivalent depth 
map using the inverse perspective projection and the 
known camera parameters. This depth map, which is a 
two dimensional (2-D) function aligned with the first 
image in the sequence, is corrupted by noise. The depth 
map is then passed to the filtering stage for smoothing, 
and the current disparity map is updated using the forward 
perspective projection. The final smoothed map is stored.

(vii) All the above steps are repeated with images 1 and n 
where n= 3,4,5... The search space along the scanline 
within which matches are sought for each pixel is centred 
on the predicted disparity based on the gradient of 
disparity with camera shift. At each stage the Kalman 
filter updates its estimate, and the fuzzy smoother smooths 
the depth map.

(viii) At the end of each match/smooth step a depth value 
has been obtained for each pixel in the original intensity 
image and a dense x,y,z map of the original scene can be 
recovered.

rules in a rulebase. These rules link patterns in the fuzzy 
input sets to an output set. In the Sugeno type of FIS the 
r'h output set is a function Fr of the crisp input data. In 
the case of the filters described here the output functions 
are linear combinations of the input data. If the n input 
data vector elements are described by x/ , the /*" output 
set Of is defined by its coefficient set, a,-,-. There are R 
rules and R output sets so that for each rule:

j = ao + (1)
1=1

Each rule is fired to a degree Wj depending in a non 
linear way on the data. The form of the non-linearity is 
dependent on the fuzzy inferencing engine and its 
parameters. The final crisp output y of the FIS is the 
weighted sum over all R rules:

j=R

(2)
W

7=1

The overall Sugeno FIS can be drawn as a mapping 
from an input vector X to a single crisp output Y as 
shown below in figure 1. Such a mapping can be 
regarded as a filter. In the case of the filters described 
here the pre-processor stage collects the depth data from 
a 3x3 filter window into a vector. This vector is 
concatenated with other available data. This other data 
can incorporate additional information such as the 
associated uncertainty in the depth data. It can also be 
extracted from the depth data such as the median of the 
depth data in the filter window. The weights Wj shown 
in Figure 1 are the normalised firing weights:

(3)

FHter Architecture

All the filters described in this paper share a common 
architecture. This architecture is based on the Sugeno 
Fuzzy Inferencing technique described by Tagaki and 
Sugeno (16). In this type of Fuzzy Inferencing System 
(FIS) each element of the crisp input data vector is 
assigned a degree of membership in a set of fuzzy input 
sets. This converts the crisp input data into a fuzzy data 
set a process often called 'fuzzification'. This fuzzy 
data set is fed to an inferencing engine. The inferencing 
engine produces a firing weight for each one of a set of

The filters described in the following section all use the 
architecture described above. They differ from one 
another in the data which is input to the filter. As 
additional data is added to the input vector, the 
information from this additional data is used to modify 
the action of the fuzzy filter. In effect the fuzzy filter is 
integrating available information.
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Figure 1: Fuzzy filter architecture

Fuzzy Difference from Median filter (DMF)

The first type of filter uses the fact that median filters are 
effective in smoothing impulsive noise whilst preserving 
discontinuities. They are less effective in a mean squared 
error sense when used on areas of images which are 
smooth (do not contain discontinuities) and corrupted with 
more Gaussian noise. Simulated image sequences of 
moving patches of different grey level and texture have 
been generated to investigate the behaviour of the SSD 
matcher. The ground truth depth maps of these simulated 
image sequences are therefore known and do not depend 
on camera and viewed scene calibration. Examination of 
histograms of errors in depth maps generated from 
simulated image sequences suggest that the noise process 
is a mixture of Gaussian and more impulsive noise and 
that the noise process differs in different parts of the 
image.

The first filter strategy adopted is therefore to modify the 
filter behaviour between a median filter and a moving 
average filter in order to achieve an improved 
performance over either a pure median or moving average 
filter. The performance measure adopted is that of root 
mean squared error (RMSE) over the depth map for a 
depth map derived from a simulated image sequence. The 
use of RMSE as a performance measure does not perhaps 
attach sufficient weight to preservation of depth 
discontinuities, but allows some objective comparison of 
the effect of the filter to be made.

The first image of the test image sequence is shown below 
in figure 2. The ground truth depth map for this image 
sequence is shown in figure 3.

Figure 2: First image in simulated sequence

Pixel Coordinate 0 0 Pixel Coordinate

Figure 3. True depth map for simulated image sequence

The input vector to the fuzzy system consists of the nine 
pixels reading from left to right and down in a 3x3 filter 
window; the difference from the filter window median for 
each of the nine pixels, and the median itself. Thus the 
crisp input vector has 19 elements. The difference from 
median inputs are classified by their membership in three 
fuzzy sets labelled negative large (NL), positive large 
(PL) and small (S). The membership functions of these 
sets are Gaussian in shape and are parameterised by two 
parameters, width and centre.

The rules for each pixel (l,m) in the filter window having 
depth d(l,m) are of the form:

IF Difference-From-Median is S THEN output is :

IF Difference-From-Median is NL or PL THEN output 
is : Median.
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The output sets are achieved by setting the output set 
coefficient a^ corresponding to the input values to be one. 
The effect of this difference-from-median filter (DMF) is 
to act as a moving average filter in smooth areas and as a 
median filter in areas containing discontinuities.

After adjustment of the input set parameters the root mean 
square errors achieved after an input sequence of ten 
simulated images were as shown in table 1 below.

Table 1. Comparison of RMSE for filters

Filter Type________ RMSE on simulated image
Moving Average (3x3) 
Median (3x3) 
DMF (3x3)

0.2482
0.2589
0.2303

The Resulting depth map is shown in figure 4 below. It 
can be seen that there is some loss of definition at the 
depth discontinuities, although the RMSE is better than 
either the moving average or the median filters. The 
discontinuities can be better preserved by adjusting the 
input set parameters, but only at the cost of worsening 
RMSE.

2-5 ,

20
Pixel Index

Figure 4. Depth map filtered by Fuzzy Difference-From- 
Median Filter

Fuzzy DMF with uncertainty measure input

The second type of filter utilises the fact that the SSD 
matcher that is used can produce an estimate of 
uncertainty in its measurements of depth (13). This 
uncertainty measure or quasi-variance is used by the 
Kalman filter to integrate the depth measurements 
through the sequence of images. It can also be used to 
weight the importance of each pixel in a spatial filter 
window. The uncertainty measure for each pixel in the 
filter window (a nine element vector of uncertainty 
measures) is concatenated with the vector of input 
values used by the fuzzy filter. This results in an input 
vector whose first eighteen elements are the same as the

first eighteen for the fuzzy DMF, the next nine inputs 
are the uncertainty measures for each pixel and the last 
element is the median of the depths in the filter window.

The work described in (14) reveals some flaws in the 
uncertainty measure used in this algorithm and a better 
empirically derived uncertainty measure is proposed 
there. Clearly the uncertainty measure needs to be 
reliable in order for its use to be effective. Because the 
ground-truth depth map is known for the simulated 
image, the actual error at each pixel can be compared to 
the estimated uncertainty. Figure 5 below shows the 
cross correlation of the measured uncertainty and true 
error for a portion of a depth map, which shows that the 
uncertainty measure is quite well correlated with the 
actual error.

Normalised Cross correlation of measured and actual errors

y shift x shift

Figure 5. Cross correlation of actual error and estimated 
uncertainty measure at each pixel._____________

Only one fuzzy set is defined for the uncertainty level 
input. This has a Gaussian membership function 
labelled Small (S). The rule base is now modified so 
that the rules are of the form:

IF Difference-From-Median is S AND the uncertainty is 
S THEN output is : d(l,m)

IF Difference-From-Median is NL or PL THEN output 
is : Median.

This change to the first rule has the effect of 
strengthening the contribution of pixel depth values 
whose measured uncertainty is low.

With this change to the rules and after adjustment of the 
fuzzy set parameters a Root Mean Square Error for the 
depth map derived from simulated images of 0.2286 was 
achieved. This is a small improvement on the RMSE 
achieved by the fuzzy DMF. The associated depth map 
using this smoothing stage is shown in Figure 6.
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Figure 6. Depth map after smoothing with Fuzzy DMF 
with uncertainty input.

Figure 7 shows the first image of a sequence of real 
images of three stacked computer-disk boxes. The tonal 
range in the image has been severely reduced for 
reproduction. The lower box is about a metre from the 
camera and each box is O.lm further from the camera than 
the one below. Figure 8 shows the depth map derived 
from this sequence of real images after smoothing with the 
fuzzy DMF with uncertainty input rendered as a grey scale 
image.

Figure 7. First image in sequence of real images

Areas in the grey-scale-rendered depth map which are 
closer to the camera are represented by a lighter shade of 
grey. The dark patch on the lowest of the disk boxes in 
the depth map represents a failure by the SSD matcher to 
match corresponding points between the image pairs. 
This is due to the lack of texture in these areas on the 
original images. The fuzzy filter is unable to fill in these 
large areas of failure. However the depth map is quite 
well smoothed by the filter in other areas and the depth 
discontinuities are preserved.

Figure 8. Depth map for real image sequence after 
smoothing with Fuzzy DMF with uncertainty input.

Fuzzy DMF with uncertainty input and edge input

The third type of filter attempts to use the edges extracted 
from the first grey scale image in the sequence as a guide 
to the location of edges in the depth map. Edges in grey 
scale images arise along lines of depth discontinuity. 
However, they also arise due to shadows, variations in 
reflectance, and variations in texture. Thus a grey scale 
edge offers supporting evidence of the existence of a 
depth edge at a location where there is some evidence of a 
depth discontinuity. However, the existence of a grey 
level edge does not of itself suggest a depth discontinuity 
at a location.

In order to incorporate this idea into the fuzzy DMF filter, 
a Sobel edge detector is applied to the first grey scale 
image in the sequence to form an edge map. The output 
of the Sobel operator is not thresholded, but left as a 
measure of edge strength. Since the depth map is aligned 
with the first grey scale image, it is also aligned with the 
edge map. Thus pixels in the depth map have 
corresponding pixels in the edge map. The corresponding 
edge map pixels for each 3x3 window are added to the 
vector which is input to the fuzzy filter. There is only one 
fuzzy set defined for the edge strength, which has a 
Gaussian member function with a maximum at 63 and a 
width parameter of 20.

The additional rules which are added to the rule base are 
of the form:

If the difference from median is ML or PL and the edge 
strength is large then output the median.

A19



Appendix A: Papers

This rule assumes that the difference from median will 
tend to be large at depth discontinuities. If a grey scale 
edge is present where the difference from median is large 
then its presence will reinforce the filter's tendency to act 
as a median filter. Where there is little or no edge 
strength this rule will not be fired and will thus not 
reinforce the filter's tendency to act as a median filter.

The result of using this third type of filter to the simulated 
image sequence is shown below in Figure 9. The RMS 
error is poor at 0.449, although the depth discontinuities 
are distinct.

depth relative to 3m ref. plane

20
pixel i 0 0

20
40

pixel j

Figure 9. Depth map generated by DMF with 
uncertainty and edge input. _____ _____

Conclusions

Three types of filter based on Sugeno fuzzy systems 
have been presented. These filters aim to improve on 
the results of a depth from image sequences algorithm 
using either a moving average or median filter as a depth 
map smoother. The fuzzy filters attempt to do this by 
using additional information on the uncertainties in the 
depth map and information on edge location in the 
original grey scale images. The results of the first two 
types of filter described show an improvement in RMS 
error on sequences of simulated images. The results 
using the edge information are disappointing, but work 
is ongoing to investigate the reasons for the poorer RMS 
error when this type of filter is used.
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