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Beeldsequenties spelen een belangrijke rol in de hedesdaagreld. Ze kunnen ons
namelijk veel informatie verschaffen. Video's worden ondeer gebruikt voor verkeers-
observaties, bewakingssystemen, autonome navigatiBoor.een slechte beeldverwer-
ving, -transmissie of -opname zijn de sequenties echtepgelijk onderhevig aan ruis.
Hierdoor zal het resultaat van beeldverwerkingstechmed@ms sterk gereduceerd wor-
den en is het vooraf filteren van de beelden dikwijls noodljakéde meest voorkomende
ruistypes zijn impulsruis, additieve ruis en multipliea ruis. In het geval van impulsruis
is een bepaald percentage van de pixels aangetast en isijswagrde ofeén of meerdere
van de kleurcomponenten vervangen door een ruiswaarde. iDisavaarde kagén waarde
uit een beperkte reeks vaste waarden zijn (meestal de mahiofianaximaal toegelaten
waarde: zout-en-peper-ruis) of kan een willekeurige waaitleen bepaalde verdeling zijn
(gewoonlijk is dit een uniforme verdeling). Bij een beeld dangetast is door additieve
ruis, is bij iedere grijswaarde of kleurcomponent van iedakel een ruiswaarde opgeteld
die het resultaat is van een toevalsproces (bijvoorbeatdnekekeurige waarde uit een
Gaussische verdeling). Multiplicatieve ruis tenslott@rdi gekenmerkt door het feit dat
de ruiswaarde die aan iedere grijswaarde of kleurcompomertt toegevoegd afhankelijk
is van die grijswaarde of kleurcomponent zelf. Spikkeligisen voorbeeld van dit laatste
type.

Nadat in de twee hoofdstukken van het inleidende deel vahafist de basisbegrippen
betreffende vaagverzamelingleer en beeldverwerkingrmbdid zijn, worden in het tweede
deel van de thesis verschillende videoruisfilters vooridstin het ontwerp van deze fil-
ters zullen vaaglogica en vaagverzamelingenleer gebngkden. Vaagverzamelingenleer
is een veralgemening van de klassieke scherpe verzamelé@ege Terwijl scherpe verza-
melingen in een universutl¥ gemodelleerd worden al§ — {0, 1} afbeeldingen, worden
vaagverzamelingen gekarakteriseerdXls- [0, 1] afbeeldingen. In de klassieke verzame-
lingenleer behoort een element uit het universum dus stefeets tot de verzameling ofwel
niet. In de vaagverzamelingenleer zijn ook lidmaatschisguken tussen 0 en 1 mogelijk, wat
een meer graduele overgang tussen behoren tot en niet hebtieelaat. Dergelijke gradu-
ele overgang maakt vaagverzamelingen zeer geschikt vaoreheerken van menselijke
kennis waarin vaak lingstische waarden (zoals groot, klein, ...) worden gebruildgor
het gebruik van vaagverzamelingen is een verschil in gaiggde tussen twee pixels niet
noodzakelijk groot of niet groot, maar kan het ook in een b&fmmate groot zijn. Vaagver-
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zamelingenleer heeft zijn nut al meermaals bewezen in edtiberwerkingsdomein zoals
bijvoorbeeld gédlustreerd wordt in [54].

De eerste filter die we voorstellen, in hoofdstuk 3, is bedaelor grijswaardevideo’s
die onderhevig zijn aan additieve Gaussische ruis. De k#argezien worden als een vaag-
logische verbetering van de filter gepresenteerd in [148].12e ide@n achter deze filter
werden vertaald in een vaaglogisch systeem gebaseerd gpeyas. En van de voorde-
len van een vaagregel is dat nieuwe informatie eenvoudigtée@gevoegd worden, zoals
bijvoorbeeld gélustreerd wordt in de tweede kleuruitbreiding die besekn wordt in het
volgende hoofdstuk. Net zoals in [146, 149] wordt de filtek aitgebreid van het pixel-
domein naar het wavelet-domein. De wavelettransformagtiestormeert een gegeven beeld
in een beeld dat relatief weinig niet-verwaarloosbarefeméhten bevat. Deze coeffegiten
corresponderen met de details die aanwezig waren in heprooiselijke beeld, zodat het
onderscheiden van ruis en details tijdens het ontruisingss eenvoudiger wordt. Experi-
mentele resultaten tonen aan dat de voorgestelde pixetidamethode de overige state-of-
the-art pixel-domein methoden overtreft in performantielat de wavelet-domein methode
kan concurreren met state-of-the-art wavelet-domein ageth van een gelijkaardige com-
plexiteit en die zelfs overtreft op het gebied van PSNR (psghal-to-noise ratio) voor
beeldsequenties bekomen met een stilstaande camera zzwatar De gepresenteerde
wavelet filter wordt echter overtroffen door filters van e@myére complexiteit die bewe-
gingsschatting en 3D-transformaties gebruiken.

In tegenstelling tot voor grijswaardevideo’s, kunnen idiigatuur slechts weinig filters
gevonden worden voor kleurenvideo’s die aangetast werdenatiditieve Gaussische ruis.
De reden hiervoor is dat grijswaardefilters op een recteiste manier uitgebreid kunnen
worden tot kleurensequenties. De grijswaardefilter kanatigirtoegepast worden op elk
van de kleurbanden apart of op de helderheidscompaorievdan deY UV -transformatie
van de beelden. In hoofdstuk 4 bieden we twee alternatiexeriitbreidingen voor de
grijswaardefilter uit hoofdstuk 3. De eerste kleurenfileeeén vector-gebaseerde techniek
die iedere kleurenpixel aé&n geheel beschouwt, waarvan de componenten niet afzipkderl
gebruikt mogen worden. De variabelen die gebruikt werddreirgrijswaardefiltersysteem
uit hoofdstuk 3 worden desgevallend uitgebreid van grigndan naar kleurvectors. In
de tweede voorgestelde kleurenaanpak worden de versalgllkleurbanden afzonderlijk
gefilterd met het grijswaardesysteem, dat echter uitgelwerdt door het toevoegen van
informatie uit de overige kleurbanden aan de vaagregeisleBdeuruitbreidingen proberen
dus zoveel mogelijk gebruik te maken van de correlatie tudseverschillende kleurbanden
om een zo optimaal mogelijk kleur- en detailbehoud te bekonize experimenten tonen
aan dat de filters inderdaad beter in dit opzet slagen danwleogdijk toegepast& UV -
aanpak.

Na de reductie van additieve Gaussische ruis in hoofdstukd34a concentreren we
ons in de volgende twee hoofdstukken op willekeurig vemdkehpulsruis. In hoofdstuk 5
ontwikkelen we twee grijswaardefilters voor dit ruistypen@en zo goed mogelijk balans
te vinden tussen ruisverwijdering en detailbehoud, wondbéide filters de ruis in ver-
schillende opeenvolgende filterstappen verwijderd. Daildetullen gemakkelijker kunnen
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behouden worden doordat niet alle ruis verwijderd moet worth één drastische stap,
wat onvermijdelijk gepaard zou gaan met detailverlies. dsade andere kant zullen ook
overgebleven ruispixels gemakkelijker gedetecteerd &nmwmorden daar er, door het reeds
gefilterd zijn van enkel buren in een vorige stap, meer batbawe buren zijn om de pixel
mee te vergelijken. In de eerst beschreven methode wordl ivae de filterstappen voor
iedere pixel een graad berekend tot de welke hij als ruis thmschouwd. ledere pixel die
een niet-nul graad krijgt, wordt gefilterd. In de tweede gastelde ruisfilter wordt voor
elke pixel nu zowel een graad tot de welke hij als ruis en towvdkke hij als ruisvrij gezien
wordt. Pixels worden nu gefilterd als hun ruisgraad in di@ gpater is dan hun ruisvrije
graad. De filtering zelf gebeurt in beide algoritmes aan dellvan bewegingscompensatie.
Deze techniek vindt zijn oorsprong in de compressie vano/atewerd reeds overgenomen
in verschillende filters voor additieve Gaussische ruis. t&hniek heeft echter nog niet
echt zijn intrede gedaan bij impulsruisfilters. De gelijleevan twee pixelblokken in twee
opeenvolgende frames is gewoonlijk berekend aan de hanéemmgemiddelde absolute
afstand, een maat die nogal onderhevig is aan impulsenoBestellen we een aanpassing
van deze maat voor die rekening houdt met gedetecteerdeUitisle experimenten kan
men besluiten dat beide beschreven impulsruisfilters tevgul in een zeer goede balans
tussen ontruiskracht en detailbehoud en alle andere ekgeimethoden overtreffen.

Als laatste filter, introduceren we ook een kleurenfilternvoet willekeurig verdeelde
impulsruistype. Analoog als in het vorige hoofdstuk wordtrdis opnieuw stap per stap
verwijderd zodat een goede ruisverwijdering gecombin&ardworden met een goed de-
tailbehoud. De beschreven methode ontruist elk van de tkdeaen afzonderlijk, maar de
vaagregels die de graad bepalen tot de welke een pixelcanpais ruis of als ruisvrij
beschouwd wordt, houden nu rekening met de extra inforndé&ibeschikbaar is in de an-
dere kleurbanden. Pixelcomponenten die een grotere agdgtan ruisvrije graad hebben
in een gegeven stap, worden opnieuw gefilterd. Hiertoe hellgede bewegingsgecom-
penseerde techniek die toegepast werd in het vorige hadfdsrder uitgewerkt door de
zoekruimte voor het vinden van een gelijkaardige pixelhlibke breiden en ook blokken in
het huidige frame te onderzoeken en zo naast de temporelenafie ook zoveel mogelijk
de beschikbare spatiale informatie uit te buiten. Soms kamers geen vergelijkbare blok
gevonden worden in het vorige frame door bijvoorbeeld srsdlweging die groter is dan de
zoekruimte. De experimenten tonen aan dat de voorgestiddeekfilter andere state-of-
the-art methoden duidelijk overtreft zowel in termen vafjeobeve kwaliteitsmaten zoals
de PSNR en het genormaliseerd kleurverschil (NCD) als eisue

In tegenstelling tot het tweede deel van de thesis dat headet ruisverwijdering en
eerder praktisch gericht is, is het derde deel van de thesieetheoretisch van aard. In
dit derde deel bestuderen we de intervalwaardige wiskengdiggmorfologie. Wiskundige
morfologie is een theorie die ontwikkeld werd voor het asahgn van ruimtelijke structuren
[127, 129] en die onder andere toegepast wordt in beeldvkingstechnieken zoals rand-
detectie, objectherkenning, patroonherkenning, begidsatatie, beeldvergroting, ...De
benaming ‘morfologie’ komt voort uit het feit dat de theot@ doel heeft de vorm van
objecten te analyseren. Het bijvoeglijk naamwoord ‘wiglighis te wijten aan het ge-
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bruik van onder andere verzamelingenleer, topologie dieiadgebra tijdens deze analyse.
De theorie werd dgatroduceerd in de jaren zestig door G. Matheron en J. Serspruiit
voort uit de studie naar de geometrie van poreuze media. elligggmedia kunnen binair
geinterpreteerd worden in de zin dat een punt van een poreusimexwel tot een porie

zal behoren ofwel tot de grondmassa rond de&oriDaarom ontwikkelden G. Matheron
en J. Serra een verzamelingenformalisme om binaire (amigrbeelden te analyseren. De
matrix rond de poén kan dan gezien worden als de verzameling van voorwereputar-

wijl de porién zelf samen het complement van deze verzameling vormesd\Bmrwerpen
kunnen dus verwerkt worden met behulp van eenvoudige velragenbewerkingen zoals
doorsnedes, unies, complementering en verschuivingenbaSis van deze bewerkingen
worden de morfologische basisoperatoren dilatatie erieeemsopening en sluiting als een
combinatie van de eerste twee gedéfand die een gegeven beeld omvormen met behulp
van een structuurelement om op die manier meer informat@{tg, vorm, ...) over de
voorwerpen uit het beeld te verkrijgen. De binaire theorggdhin een later stadium uitge-
breid naar grijswaardebeelden. Bekende aanpakken hiezijpale umbrabenadering en de
schijfjesbenadering, alsook een derde aanpak die steurgtapegeven dat-dimensionale
grijswaardebeelden en vaagverzamelingeR’irop eenzelfde manier gemodelleerd kunnen
worden, namelijk al®™ — [0, 1] afbeeldingen. Bijgevolg kunnen vaagverzamelingenbewer-
kingen toegepast worden op grijsbeelden. Recent werd datzte aanpak nog verder uitge-
breid op basis van uitbreidingen van de vaagverzameliegenin deze thesis concentreren
we ons op intervalwaardige vaagverzamelingen en de daageysard gaande interval-
waardige wiskundige vaagmorfologie. Zoals scherpe veeliagen en vaagverzamelingen
respectievelijk overeenstemmen met binaire en grijsvedmelden, stemmen intervalwaar-
dige vaagverzamelingen nu overeen met intervalwaardigkelee. Dit zijn beelden waarbij
de beeldpunten niet langer @n specifieke grijswaarde worden afgebeeld, maar op een
gesloten interval van grijswaarden, zodat onzekerheidearhtle grijswaarde in rekening
gebracht kan worden.

In hoofdstuk 7 geven we eerst een overzicht van de versotélstappen in de evolu-
tie van binaire wiskundige morfologie via de grijswaardefolmgien naar intervalwaardige
vaagmorfologie en bespreken we het intervalwaardige bemdeél meer in detail. Vervol-
gens onderzoeken we de basiseigenschappen van de intavdige vaagmorfologische
operatoren.

Hoofdstuk 8 handelt over de decompositie van de intervaliiga vaagmorfologische
operatoren. Meer precies gaan we op zoek naar het verbasehteserzijds dév;, as]-
niveauverzameling van het resultaat van een morfologispkeator op een intervalwaardig
beeld voor een gegeven intervalwaardig structuurelemergnelerzijds het resultaat van
de corresponderende binaire operator ofrdeas]-niveauverzamelingen van het interval-
waardig beeld en structuurelement. In sommige gevalledeonve een gelijkheid, in an-
dere slechts een benadering. De bekomen resultaten Ajregerooral interessant omdat ze
ons een theoretisch verband verschaffen tussen interaedvge wiskundige vaagmorfolo-
gie en binaire wiskundige morfologie. Verder zal een omvogiin binaire operatoren ook
de rekentijd die nodig is voor het berekenen van een dekgétij; , a2|-niveauverzameling



reduceren.

In hoofdstuk 9 tenslotte, wordt het omgekeerde vraagstde@ocht, namelijk de con-
structie van intervalwaardige morfologische operatorgme binaire morfologische ope-
ratoren. We vertrekken vanuit een meer algemeen standplortiderzoeken eerst de con-
structie van een intervalwaardige vaagverzameling uigesestelde familie scherpe verza-
melingen naar analogie met de constructie van een inteagzalige vaagverzameling uit
zijn a1, as]-niveauverzamelingen. Deze resultaten worden dan vezmsigebruikt om
stijgende binaire operatoren uit te breiden tot intervaldaye vaagoperatoren door de
uitkomst van deze laatste te deéiren als de intervalwaardige vaagverzameling die gecon-
strueerd wordt uit de familie die ontstaat door het toepasaa de binaire operator op de
[a1, ax]-niveauverzamelingen van de argumenten. Wanneer we giassen op de binaire
dilatatie, vinden we de intervalwaardige vaagdilatatieageerd op de infimumoperator.
Dit geeft ons opnieuw een mooi theoretisch verband tusdenvaiwaardige wiskundige
vaagmorfologie en binaire wiskundige morfologie.

De resultaten in deze thesis werden gepubliceerd in irtierade tijdschriften [73, 74,
79, 80, 81, 85] en werden gepresenteerd op internationalfem@mties [75, 76, 77, 78,
82, 83, 84, 86]. Ook hijdragen tot andermans werk werden lgeg@erd in internationale
tijdschriften [101, 106, 130], in een hoofdstuk in een bogk][en in de proceedings van
internationale conferenties [91, 97, 98, 99, 100, 102, 103, 105, 107, 120, 131].
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Preface

Image sequences play an important role in today’s worldyfnevide us a lot of informa-
tion. Videos are for example used for traffic observationsyeillance systems, autonomous
navigation and so on. Due to bad acquisition, transmissigeaprding, the sequences are
however usually corrupted by noise, which hampers the fomicty of many image process-
ing techniques. A preprocessing module to denoise the imaffen becomes necessary.
The most common noise types that can be distinguished angismpoise, additive noise
and multiplicative noise. In the case of impulse noise, tatepercentage of the pixel grey
values or colour components is replaced by noise valuesh Boise value can be fixed
(usually as the minimum or maximum allowed value: salt angpee noise) or the result of
a random process (usually with a uniform distribution).rfiamage is corrupted by additive
noise, then a random value from a given distribution (e.gaagSian distribution) has been
added to each pixel. In the multiplicative noise type, findhe intensity of the noise value
added to a pixel depends on the intensity of the pixel greyeval colour component itself
(e.g. speckle noise).

After a short overview of the basic concepts in fuzzy set themd image processing,
respectively given in the two chapters of the introductigniirst part of this thesis, we
introduce several algorithms for the denoising of imageieages in Part II. In those video
filters, fuzzy logic and fuzzy set theory is used. Fuzzy sebti [142] is a generalisation of
classical crisp set theory. Where crisp sets in a univ&rgan be modelled b — {0, 1}
mappings, fuzzy sets are characterizedas [0, 1] mappings (membership functions). In
classical set theory an element X belongs to a set or doesn't belong to it. In fuzzy set
theory also membership degrees between zero and one and thoe gradual transition
between belonging to and not belonging to is allowed. Thigkeaduzzy sets very useful
for the processing of human knowledge, where linguisticesl(e.g. large, small, .) are
used. For example, a difference in grey level is not neciyg$age or not large, but can be
large to some degree. Fuzzy set theory has already shownsarpeffective in the domain
of image processing as illustrated e.g. in [54].

The first proposed filter, discussed in Chapter 3, is interfdedjreyscale image se-
guences corrupted by additive Gaussian noise. It can beasearfuzzy logic based im-
provement of the multiple class averaging filter (MCA) frotdf, 149]. We took the ideas
behind the MCA filter and translated those in a fuzzy logierfeavork containing fuzzy
rules. One of the advantages of such fuzzy rule is that it y ¢a include new infor-
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mation as is e.g. illustrated in the second colour extengresented in the next chapter.
Analogously to the MCA filter, the proposed filtering framawavas first developed in the

pixel domain and additionally extended to the wavelet domdihe wavelet transform of

an image results in a sparse representation of its contén trinsformed image contains
relatively few non-negligible coefficients that corresgda the details in the image, which
facilitates the denoising process.

Only few filters for colour videos corrupted by Gaussian a@ian be found in literature.
Greyscale methods can be extended to colour sequencesaightgbrward way by apply-
ing them on each of the colour bands separately or by appthieig on theY-component
of theY UV -transform of the frames. In Chapter 4, we present two atéra colour exten-
sions of the greyscale method introduced in Chapter 3. Tétealilernative is a vector-based
approach in which the colour vectors are treated as entfieghich the different colour
components are not used separately. The used variables fiitéhing framework are ac-
cordingly extended from grey values to colour vectors. engbcond alternative, each of the
colour bands is filtered separately by the filtering framéwfoom the previous chapter, in
which the fuzzy rules are now extended by integrating colefarmation, i.e., information
from the other colour bands. Both extensions thus try toak{iie correlation between the
different colour bands.

In the next two chapters, we concentrate on image sequenoegpted by random im-
pulse noise. In Chapter 5 two greyscale filters for this ntype are developed. To find
a good trade-off between noise removal and detail preservan both filters the noise is
removed step by step. Details are better preserved becatiath moise needs to be filtered
in one drastic denoising step and remaining noise pixelsheileasier to detect if some
of its neighbours have already been filtered and more reliabighbours are available for
comparison. In the first presented algorithm, in each of theessive steps, for each pixel
a degree is calculate to which it is considered noisy. Alefsxhat are noisy to some de-
gree will be filtered in this step. The second presented hgorcalculates in each step
for each pixel both a degree to which it is considered noigy ramisefree. Pixels are now
filtered if their noisy degree is larger than their noisefilegree in this step. For the filtering
of the pixels, we apply motion compensation, a technique us&ideo compression, that
is already adopted in video filters for additive Gaussiars@obut has not really found its
way to impulse noise video filters yet. For the calculatiorthef correspondence between
two pixel blocks in successive frames, we have made the caorynused mean absolute
distance (MAD) adaptive to the impulse noise.

Next, in Chapter 6, an impulse noise filter for colour seqesris introduced. Anal-
ogously as in the previous chapter, the noise is again retnsiep by step to combine a
good noise removal to a good detail preservation. The filkgrotses each of the colour
bands separately. However, the fuzzy rules that are useet¢omine the degrees to which
a pixel component is considered noisy and noisefree nowfiv&en the extra information
that is available from the other colour bands. Pixel comptéor which the noisy degree
is larger than the noisefree degree are filtered in the cereidstep. For this filtering, we
further develop the motion compensated technique from téeiqus chapter by searching



for a similar block not only in the previous frame, but alsdhe current frame. In the case
that, e.g. due to motion, no similar block can be found in tfevipus frame, there is still a
probability that a similar block can be found in the curreanie.

Where Part Il that introduces fuzzy techniques for the rerhaivaoise in video is more
practical, Part Il of the thesis is more theoretical. Instpart we study interval-valued
fuzzy mathematical morphology. Mathematical morphologaitheory intended for the
analysis of spatial structures [127, 129] that has foundiegtjon in e.g. edge detection,
object recognition, pattern recognition, image segmantatmage magnification, ... The
term ‘morphology’ reflects to the fact that the theory aimaralysing the shape of objects.
The adjective ‘mathematical’ results from the use of sebmjetopology, lattice algebra
and so on in this analysis. The theory was introduced in tkieesiby G. Matheron and J.
Serra and arises from the study of the geometry of porousan&ice a point of a porous
medium either belongs to a pore or to the matrix surroundiegpbres, porous media can
be looked at in a binary way. Inspired by this study, G. Matheand J. Serra introduced a
set formalism to analyse binary (black-and-white) imadeghe above, the matrix can be
considered as the set of object points, while the pores itotesthe complement of this set.
Image objects can thus be processed by simple operatiomsassyuintersections, comple-
mentation and translations. Using these set operatioasydkic morphological operators
dilation and erosion and the opening and closing, as a catibimof the former two, are
defined to transform a given image by the help of a structugleghent in order to obtain
information (size, shape, ...) about the image objectsaimathematical morphology
was later extended to greyscale images by the thresholdrabdauapproach as well as by
a fuzzy approach that is based on the observation that fuatayirs the univers®™ and
n-dimensional greyscale images can be modelled in the sameiwa as mapping from
R™ into the unit intervall0, 1]. This allows us to apply fuzzy set operations on greyscale
images. Recently, fuzzy mathematical morphology has begher extended based on
extensions of fuzzy set theory. In this thesis we concentoat the extension based on
interval-valued fuzzy sets, called interval-valued fumagthematical morphology. Where
classical crisp sets and fuzzy sets respectively corragubto binary and greyscale images,
interval-valued fuzzy sets now correspond to intervaligdlimages, where an image ele-
ment is not longer mapped onto one specific grey value, botaminterval of grey values,
such that uncertainty concerning the grey value is allowed.

In Chapter 7, we give an overview of the evolution from binargthematical morphol-
ogy over the different greyscale morphology theories terivdl-valued fuzzy mathematical
morphology and the interval-valued image model and we iiy&t® the basic properties of
the interval-valued fuzzy morphological operators.

Chapter 8 deals with the decomposition of the interval-edliwzzy morphological oper-
ators. We investigate the relationship betweendheas]-cut of the result of such operator
applied on an interval-valued image and structuring eléraed the result of the corre-
sponding binary operator applied on tlag, as]-cut of the image and structuring element.
Sometimes an equality can be found and sometimes only amxdppation can be found.
These results are first of all interesting because they gecilink between interval-valued
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fuzzy mathematical morphology and binary mathematicalphology, but such conversion
into binary operators also reduces the computation timdetér the calculation of such
[041, Oég]-CUt.

In Chapter 9, the reverse problem is tackled, i.e., the cocisdn of interval-valued mor-
phological operators from the binary ones. We start from aengeneral perspective and
investigate the construction of an interval-valued fuzzyfsom a nested family of crisp sets
in analogy to the construction of an interval-valued fuzeyfsom its[ay, as]-cuts. These
results are then additionally used to extend increasingrpinperators to interval-valued
fuzzy operators by defining the result as the interval-\éliuzzy set that is constructed
from the family that arises by applying the binary operatotte [« , co]-cuts of its argu-
ments. Application on the binary dilation results in theeival-valued fuzzy dilation based
on a specifig-norm (the infimum operator), which again provides us a riestetical link
between interval-valued fuzzy and binary mathematicalpiology.

The results in this thesis have been published in intemaltjournals [73, 74, 79, 80, 81,
85] and have been presented on international conferenbe3¢y7 77, 78, 82, 83, 84, 86].
Also contributions to other people’s work have been pullisin international journals
[101, 106, 130], in a book chapter [31] and in the proceedafgsternational conferences
[91, 97, 98, 99, 100, 102, 103, 104, 105, 107, 120, 131].
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Introduction to Fuzzy Set
Theory

In this chapter, we introduce the basic concepts of fuzzyhesry, which will be needed
for a good comprehension of the remainder of this thesis.aFoore extensive study, we
refer the interested reader to [53].

1.1 Fuzzy Sets

1.1.1 Characterization

In classical set theory, a set in a universeX divides the universe into two parts: the
elements that belong té (and thus satisfy a given defining property) and the elentbats
do not belong ta4 (and do not satisfy the defining property). As a consequenckssical
set (or crisp set) in a universeX can be represented by the functipn given by

XA : X—){O,l}
z—1,ifzxeA,
x—0,ifzdgA,

which we call the characteristic function df The class of all crisp sets in a universeis
denoted byP(X).

However, in real life situations, an object often satisfigg@perty to some degree, i.e.,
it does not completely satisfy the property, but also dodscompletely not satisfy the
property. For example, when do we call a persat? We can not say that a man bf80
is not tall at all. However, there are still a lot of peopletthee taller. E.g., a man &fm
satisfies the propertiall to a higher degree. It is clear that classical crisp sets atralvie

7
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to represent the propertgll. In that case, we would have to choose one value,leiR0,
and all lengths greater or equal to this value are callecatall all other lengths are called
not tall. So two persons of e.glm60 and 1m79, that differ a considerable number of
centimeters in length, are both called not tall. Howevegespn ofl m80, who is onlylem
taller than a person ofm79, would suddenly be called tall. To overcome this problem,
Zadeh introduced the concept of a fuzzy set [142] by extenttie characteristic functions
to membership functions and in this way allowing a graduaisition between satisfying a
property (belonging to a set) or not. An element can now atsefa membership degree
betweerD and1. The more an object belongs to the set (e.g. the taller a pgrg® higher
its membership degree. Summarized, a fuzzy4sit a universeX is characterized by the
functiony 4 given by

XA X — [07 ”
x = xa(z),

which we call the membership function df. For the ease of notation, in the remainder of
this thesis, we will use the name of the set for its member&niption, i.e., we will write
A(z) instead ofy4(x). Further, the class of all fuzzy sets in a univeféas denoted by
F(X).

1.1.2 Basic Concepts

In this subsection, we give some basic concepts concernzay fsets that will return in the
remainder of this work.

Definition 1.1. Let A € F(X). The supporti4 of A is defined a&
da ={z € X|A(z) > 0}.

Definition 1.2. Let A € F(X). The kernek 4 of A is defined a&
ka={z € X|A(z) = 1}.

Definition 1.3. Let A € F(X) and leta €]0, 1]. The weala-cut A,, of A is defined as:
Ay ={z € X|A(z) > a}.

Remark that the choice = 0 would not yield new information (because it would result
in the universeX). Further, in a lot of properties this special case wouldlrtede excluded.
Therefore, this case is usually also excluded from the digfini

Definition 1.4. Let A € F(X) and leta € [0, 1[. The strongy-cut A5 of A is defined as:
Az ={z € X|A(z) > a}.

1Also the notatiorsupp A is often used.
2Also the notatiorker A is often used.
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Remark that the choice = 1 would not yield new information (because it would result
in the empty seft). Further, in a lot of properties this special case wouldirtede excluded.
Therefore, this case is usually also excluded from the digfini

Definition 1.5. Let A € F(X). A is called normalized if
(Fz e X)(A(z) =1).
Definition 1.6. Let A € F(X). Alis called pseudo-normalized if

sup A(x) = 1.
reX

Definition 1.7. Let A € F(X). The heighti(A) of A is defined a&

h(A) = Eg}g A(x).

Definition 1.8. Let A € F(X). The plinthp(A) of A is defined a&

p(4) = inf A(x).

1.2 Fuzzy Logical Operators

Analogous to the extension of a crisp set to a fuzzy set, th@piBoolean logic is extended
to fuzzy logic by also allowing truth values between zero and. The Boolean negation
(), conjunction (), disjunction {) and implication {) on {0, 1} are respectively gener-
alized by negators, conjunctors, disjunctors and impbicsabn|0, 1] [137].

1.2.1 Definitions

Definition 1.9.

e A negator\ on |0, 1] is a decreasingd0, 1] — [0, 1] mapping that coincides with the
Boolean negation o0, 1}, i.e.,A/(0) = 1 and N (1) = 0.

e A negator/\ is an involutive negator of0, 1] if (Vz € [0, 1])(N (N (z)) = ).

The best known involutive negator is Zadeh’s standard wegés, given by N (z) =
1—zforallz € [0,1].
Definition 1.10.

e AconjunctorC on|0, 1] is an increasind0, 1]2—[0, 1] mapping that coincides with the
Boolean conjunction o#0, 1}, i.e.,C(0,0) = C(0,1) = C(1,0) = 0 andC(1,1) =
1.

3Also the notatiorhgt A is often used.
4Also the notatiorplt A is often used.
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e A conjunctorC is a semi-norm o0, 1] if (Vz € [0,1])(C(1,z) = C(x,1) = z).
e A semi-nornT is a triangular norm (t-norm) ono, 1] if it is commutative and asso-
ciative.

Well-known triangular norms are e.g. the minimum opera&tgr, the producCp, the
tukasiewicz t-nornCy, and the drastic t-norrfi:

CM(x7y) = min(m7y)u
Cp(l',y) = Y,
CW(J;’ y) = ma’X(Ov T+ y— 1)5

min(z,y) if max(z,y) =1
0 else

b

CZ(1'7 y) = {

with (z,y) € [0,1]2.

Definition 1.11.

e A disjunctorD on [0, 1] is an increasing0, 1]* —
the Boolean disjunction of0,1}?, i.e., D(1,1)
D(0,0) = 0.

e AdisjunctorD is a semi-conorm of0, 1] if (Va € [0,1])(D(0,z) = D(z,0) = z).

e A semi-conornD is a triangular conorm (t-conorm) oft), 1] if it is commutative and
associative.

mapping that coincides with

[0,1]
= D(0,1) = D(1,0) = 1 and

Well-known triangular conorms are e.g. the maximum operag, the probabilistic
sumDp, the Lukasiewicz t-conorry, and the drastic t-conor®:

DM (I, y) = Inax(x, y)a
Dp(r,y) = z+y—z-y,
Dw(z,y) = min(l,z+y),
max(z,y) if min(z,y) =0
D 9 = )
z(®y) {1 else

with (z,y) € [0,1].
Definition 1.12.

e An implicatorZ on [0, 1] is a hybrid monotonid0, 1]> — [0, 1] mapping (i.e., de-
creasing in the first argument and increasing in the secomiarent) that coincides
with the Boolean implication o0, 1}, i.e., Z(0,0) = Z(0,1) = Z(1,1) = 1
andZ(1,0) = 0. Every implicatorZ induces a negatoN7 defined byNz(z) =
Z(x,0), Yz € [0,1].

e AnimplicatorZ is a border implicator or{0, 1] if (Va € [0,1])(Z(1,x) = x).

10
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e A border implicatorZ is a model implicator on0, 1] if it is contrapositive w.r.t. its in-
duced negator, i.e(V(x,y) € [0,1)*)(Z(z,y) = Z(Nz(y), Nz (x))), and if it fulfills
the exchange principle, i.6Y(z, v, 2) € [0,1]*)(Z(x,Z(y, 2)) = Z(y, Z(z, 2))).

Well-known model implicators are e.g. the Kleene-Dienegplicator Zx p, the Re-
ichenbach implicatoZ i and the tukasiewicz implicatdfy :

Ikp(z,y) = max(l—=x,y),
Ir(z,y) = l—-a+a-y,
IW(Z‘,ZJ) = mln(171_'x+y)7

with (z,y) € [0,1].

1.2.2 Fuzzy If-Then Rules

The fuzzy logical operators are e.g. used to calculate thieation degree of a fuzzy if-
then rule. Such fuzzy rules will constitute the basis of tbise filters for video sequences
developed in Part 1l of this thesis. Consider for examplefetiewing fuzzy rule:

Fuzzy Rule 1.1.
IF( ais AORbis B) AND cis NOTC

THENCd is D.

InthisruleA € F(X1),a € X1, B € F(X2),b e Xo,C € F(X3), c € X3and
D € F(Xy), d € X4 (Where (some of) the universe§,, X», X3 and X, may coincide).
The degreeD(d) to whichd is D (belongs taD), i.e., the degree to which the consequent
of the rule is true, equals the activation degree of the ride, the degree to which the

antecedent of the rule is true. So, if we use a conjur@tardisjunctorD and a negatal
for the AND-, OR- and NOT-operator respectively, the degped) is then given by

1.3 Fuzzy Set Operations

1.3.1 Complement, Intersection and Union of Fuzzy Sets

The definition of the complement, intersection and union ri$pcsets is based on the
Boolean logical operators. Indeed, ktB € P(X), then

co(A) = {z€X|~(z€ A},
ANB = {zeX|(zeAA(xeB)},
AUB = {zeX|(xe AV (zeB).

So, to extend the crisp set operations to fuzzy sets, fuzzigdboperators are used.

11
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Definition 1.13. Let A, B € F(X). If N is a negator on0, 1], then theN'-complement
copr(A) of Ais defined as the fuzzy setihgiven by:

(con(A))(z) = N(A(x)), Vz € X.

If C is a conjunctor or0, 1], then theC-intersectionA N¢ B of A and B is defined as the
fuzzy set inX given by:

(Ane B)(z) = C(A(z), B(z)), Ya € X.

If D is a disjunctor on0, 1], then theD-union A Up B of A and B is defined as the fuzzy
setinX given by:
(AUp B)(z) = D(A(z), B(x)), Vx € X.

If C (respectivelyD) is the operato€,, (respectively the operatdp,,), then the inter-
section (respectively union) is called the Zadeh-intaisegrespectively Zadeh-union) and
the notatiom is simplified ton (respectivelyJp to U).

If C andD are commutative and associative (in particular if they atenarm and a
t-conorm), then the above definitions can be extended tontieesiection and union of an
arbitrary finite family of fuzzy sets. If further the conjuncC and the disjunctoP can also
be extended to an infinite number of arguments, then also tem&rn to infinite families
is possible. For the Zadeh-intersection and Zadeh-unidnaanarbitrary (infinite) family
(Aj)jes In F(X), this becomes:

(Njesd)(w) = inf Ay(x), Va € X,
J

(UjEJAj)(l‘) = sul?A](x), Vr e X.
JE-

1.3.2 Inclusion of Fuzzy Sets

The inclusion of two fuzzy sets is defined as follows:

Definition 1.14. Let A, B € F(X), then

AC B & (Vz € X)(A(z) < B(z)).

1.4 L-Fuzzy Sets

In some cases, the intenjél 1] does not suffice as an evaluation space. Therefore, Goguen
generalized the fuzzy sets introduced by ZadeBi-fozzy sets [40], wher& is a complete
lattice.

12
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1.4.1 Lattice Theory

To give the definition of a complete lattice [7], we have tortsfeom that of a partially
ordered set.

Definition 1.15. A partially ordered set (poset) is a coudl®, <p), whereP is a non-empty
set and<p is a binary relation (ordering) on P that satisfies:

o (Vz € P)(x <p z) (reflexivity),
o (V(z,y) € P?)(x <pyandy <p x = x = y) (anti-symmetry),
o (V(z,y,2) € P?)(x <pyandy <p z = x <p z) (transitivity).
If further also each two elements in the partially orderet (& <p) are comparable (i.e.,
(V(z,y) € P?)(x <p yory <p x)), then(P, <p) is called a totally ordered set or chain.
Some important concepts that are defined in a poset are therifog):

Definition 1.16. Let (P, <p) be a posetd C P andb € P.
e bis an upper bound ol & (Va € A)(a <p b),
e bisalowerbound oA & (Va € A)(b <p a),
e Ais bounded above ifi°, <p) < (3b € P)(bis an upper bound aft),
e Ais bounded below ifP, <p) < (3b € P)(bis a lower bound of4),
e AisboundedinP,<p) < Ais bounded above and is bounded below,
e bisthe greatest element df < b € A andb is an upper bound af,
e histhe leastelement of < b € A andbis alower bound of4,
e bisthe supremum ol (b = sup A) < b is the least upper bound of,
e his the infimum ofd (b = inf A) < b is the greatest lower bound ¢f.

By the help of those concepts, the definition of a completetan be given.

Definition 1.17. A poset P, <p) is called a lattice if every doubleton iR has a supremum
and infimum.

Definition 1.18. A lattice (L, <) is called bounded if. has a greatest and a least element.
A lattice (L, <) is called complete if every non-empty subseL dfas a supremum and
infimum.

Remark that a complete lattice is also bounded. The greatekteast element of a
bounded latticeZ = (L, <;,) are unique and will be denoted by and0. respectively.

To end this subsection, we introduce the different lattiaphisms.

Definition 1.19. [7, 28] Let £ = (L, <) be a complete lattice anflan L — L mapping.
If for all (z,y) € L? it holds that

5The binary relatior< p puts an ordering on the elements@fand should be read as “is less than or equal to”.
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e f(inf(z,y)) = inf(f(x), f(y)), thenf is a meet-morphism,
o f(sup(z,y)) = sup( (x), f(y)), thenf is a join-morphism,
o f(inf(x,y)) = sup(f(z), f(y)), thenf is a dual meet-morphism,
o f(sup(z,y)) = 1nf( (x), f(y)), thenf is a dual join-morphism.

If for each family(x;) ;< s in L, whereJ is an arbitrary index family, it holds that
° f(inf xj) = inf f(z;), thenf is an inf-morphism,
JE

e f(supz;) = sup f(z;), thenf is a sup-morphism,
JjeJ JjeJ

e f(inf z;) =sup f(x;), thenf is a dual inf-morphism,
jed jeJ

e f(supz;) = inf f(z;), thenf is a dual sup-morphism.
JjeJ jeJ

1.4.2 Characterization

For a complete lattic€ = (L, <), anL-fuzzy setA in a universeX is characterised by
its membership function 4:

xa: X—=1L

x = xa(x).

Analogously as for fuzzy sets, we will simplify the notatign (z) to A(z) for the mem-
bership degree of an elemente X in the L-fuzzy setA. The higher this degree (w.r.t.
<r), the more the element belongs to the set. The class gfhlzzy sets in a univers&
is denoted byF . (X).

Remark that([0, 1], <) forms a complete lattice and that fuzzy sets as introduced by
Zadeh are a special casefffuzzy sets.

1.5 L-Fuzzy Logical Operators
1.5.1 Definitions

The fuzzy logical operators oft), 1] can be extended to operators 6n= (L,<) as
follows.
Definition 1.20.

e Anegator\ on £ is a decreasind. — L mapping (w.r.t.<;) that satisfiesV'(0.) =
1. and/\/(lg) = 0.

e Anegator\ is an involutive negator ot if (Vz € L)(N (N (x)) = z).

14
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Definition 1.21.

e A conjunctorC on £ is an increasingL? — L mapping (w.r.t. <;) that satisfies
C(0£,02) =C(0g,12) =C(1£,02) = 0z andC(1g, 1) = 1..
e A conjunctorC is a semi-norm orc if it satisfies(Ve € L)(C(1z,2) = C(x,1z) =

e A semi-nornT is a t-norm onZ if it is commutative and associative.

Definition 1.22.

e A disjunctorD on £ is an increasingL? — L mapping (w.r.t. <;) that satisfies
D(1z,12) =D(0g,12) =D(1£,0,) =1z andD(0,,0z) = 0.
e AdisjunctorD is a semi-conorm o4 if it satisfies(Vx € L)(D(0.,x) = D(z,02) =

e A semi-conorn® is a t-conorm ory if it is commutative and associative.

Definition 1.23.

e AnimplicatorZ on £ is a hybrid monotonid.> — L mapping (i.e., decreasing in the
first argument (w.r.t.<;) and increasing in the second argument (w.kt;)) that
satisfiesZ(0.,02) = Z(0z,12) = Z(12,12) = 12 andZ(12,02) = 0. Every
implicator Z induces a negatah’z defined byz (z) = Z(x,0.), Vz € L.

e AnimplicatorZ is a border implicator onC if it satisfies(Va € L)(Z(1.,x) = z).

e A border implicatorZ is a model implicator onC if it is contrapositive w.r.t. its
induced negator, i.e(V(z,y) € L?)(Z(z,y) = Z(Nz(y),Nz(x))), and if it fulfills
the exchange principle, i.eY(z,y, z) € L*)(Z(z,Z(y, 2)) = Z(y,Z(z, 2))).

In the above definition, it is already mentioned that everplicator Z on £ induces
a negatotN'z on £ given by Nz(z) = Z(z,0.), Vo € L. Further, also conjunctors and
implicators can be induced by other logical operators.

Let A/ andC be respectively a negator and a conjunctorforThen the operatdPc ar
given by De ar(z,y) = N(C(N(2),N(y))), V(z,y) € L? is a disjunctor onC. Analo-
gously, if A" andD are respectively a negator and a disjunctoothen the operatdip A
given byCp n(z,y) = N(D(N(z),N(y))), V(z,y) € L*is a conjunctor orC. If N'is
an involutive negator, then a conjunctdoand a disjunctoD are called dual with respect to
Nifandonly if C = Cp nr andD = D¢ .

Let NV andZ be respectively a negator and an implicatorbrrThen the operatafz i
given byCz n(z,y) = N(Z(x, N (y))), V(z,y) € L*is a conjunctor orC and it is called
the conjunctor induced LY and\.

Let V- andC be respectively a negator and a conjunctorforThen the operatdfc A
given byZc pr(z,y) = N (C(x, N (y))), ¥(z,y) € L? is an implicator on and it is called
the implicator induced bg and.\.

Let \V andD be respectively a negator and a disjunctorforrhen the operatdfp A
given byZp nr(z,y) = (D(N(z),y)), V(x,y) € L? is an implicator on’ and it is called
the implicator induced b and\/.
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£5 Introduction to Fuzzy Set Theory

LetC be a conjunctor o that satisfie$vVz € L)(C(1z,x) =0, = = = 0,). Thenthe
operatotZ¢ given byZe(z,y) = sup{z € L|C(x, z) <r, y}, ¥(z,y) € L? is an implicator
on £ and it is called the residual implicator 6f{32].

Further, the order relatiof 7, on the lattice can be extended to the logical operators
as follows:

Definition 1.24. Let A} and N> be two negators o, then
M <p Na & (Vz e L)(Ni(z) <p Na(x)).
LetC; and(C, be two conjunctors off, then
C1 <1 C2 & (Y(z,y) € L*)(Ci(z,y) < Ca(,y)).
LetD; andD, be two disjunctors oif, then
Dy <1, Dy & (V(z,y) € L*)(Di(x,y) <r Da(z,y)).
LetZ, andZ, be two implicators o, then

I <p I & (V(z,y) € L) (Tu(w,y) <1 Ta(,y)).

1.5.2 Some Properties

In this subsection, we will give some properties concernir@L-fuzzy logical operators,
that will be used in the remainder of this thesis.

Lemma 1.5.1. LetC be a conjunctor orC and let(a;);c; and(b;);c s be families inL,
with J an arbitrary index family. It holds that:

i) supC(a;,b;) <, C|(supa;,supb; |,
35 0j j j
jeJ jeJ T jed

(ii) ;25@% bj) =1 C (}gﬁ a;, inf bj)-
Proof. (i) Since the partial mappings Gfare increasing it follows that

Cla;,b;) < C (supaj7supbj) ,
jeJ T jed

for all couples(a;,b;) (with i € J). As a consequence, <Sup a;,sup bj> is an
jeJ jeJ
upper bound for the s€C(a;, b;)|i € J}, and thus

supC(aj,b;) < C (supaj,supbj> .
JjeJ JjeJ jeJ
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(i) Analogous.
O

Lemma 1.5.2. Let D be a disjunctor ornZ, and let(a;);c; and (b;);cs be families inL,
with J an arbitrary index family. It holds that:

(i) supD(a,,b;) <p D <sup a;,sup bj),
jeJ jeJ jeJ

(i) ]116152)(@]7bj) >, D (}relgam]nelg bj)

Proof. Analogous to the proof of Lemma 1.5.1. O

Lemma 1.5.3.[28] If Z = Z¢ with C a conjunctor onL for which (Vo € L)(C(1z,z) =
Oz = x=0g),then
(V(a,b) € L*)(b <y, Tc(a,C(a,b))).

Proof. For all (a,b) € L*:

Zc(a,C(a,b)) = sup{d € L|C(a,d) <p, C(a,b)}
>r b

O

Lemma 1.5.4. [28] If Z = Z. with C t-norm on L, of which the partial mappings are
sup-morphisms, then

(V(a,b) € L*)(C(a,Zc(a, b)) <p b).
Proof. For all (a,b) € L*:

C(a,Zc(a,b)) = C(a,sup{d € L|C(a,d) <1, b})
= sup{C(a,0)|6 € LandC(a,0) <r, b}
<t b

Lemma 1.5.5.[93, 28]

1. If Z = Z; » with C an associative conjunctor ofi and A an involutive negator on
L, then it holds that:

(Y(a,b,¢) € L*)(Z(a,Z(b,¢)) = Z(C(a,b),c)).

17



Introduction to Fuzzy Set Theory

2. If Z = Zo with C a t-norm onZ, then it holds that:
(Y(a,b,¢) € L*)(Z(a,Z(b,c)) <1 Z(C(a,b),c)).
If the partial mappings of are sup-morphisms, then
(V(a,b,c) € L*)(Z(a,Z(b,c)) = Z(C(a,b),c)).
Proof.

1. Suppose thaf = Z¢  with C an associative conjunctor ahand\ an involutive
negator onl.. For all(a,b,c) € L*:

Z(a,Z(b,c)) = NI[C(a, N(Z(b,c)))]
= NC(a, N[O N ()]
= NiC(a,C(b, N(0)))]
= NC(C(a,b), N (e))]
= Z(C(a,b),c)

2. Suppose now that = Z. with C a t-norm onZ. For all(a, b, ¢, d) € L* it holds that
C(b,C(a,d)) <p ¢ = C(a,d) <p Z¢(b, c).
Indeed, ifC(b,C(a,d)) <r, ¢, then
C(a,d) € {e € L|C(b,e) < ¢}
and thus
C(a,d) <r, sup{e € L|C(b,€) <r ¢} = Z¢(b, c).
Due to the associativity and commutativity@fit follows that for all(a, b, ¢) € L?:
Ic(a,Ze(b,e)) = sup{d € L|C(a,d) <p Zc(b,c)}

<r sup{é € L|C(b,C(a,d)) <, ¢}

= sup{d € L|C(C(a,b),d) <r c}

= Zc¢(C(a,b),c).
If the partial mappings of are sup-morphisms, then it also holds for(allb, ¢, d) €

L* that
C(b,C(a,d)) <p ¢ <=C(a,d) <, Z¢(b, c).

Indeed, since the partial mappiddb, .) is increasing, it follows fronC(a,d) <p,
Ic(b, C) that
C(b,C(a,d)) <p, C(b,Zc(b, c)).

Applying Lemma 1.5.4 results iéi(b, C(a, d)) <, c¢. As a consequence
sup{0 € L|C(a,0) <1, Zc(b,c)} = sup{d € L|C(b,C(a,?)) <y, c}.
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1.6 L-Fuzzy Set Operations

1.6.1 Complement, Intersection and Union of£-Fuzzy Sets

The £-fuzzy logical operators can be used to define the complenmeatsection and union
of £-fuzzy sets:

Definition 1.25. Let A, B € F.(X). If N is a negator onZ, then the\-complement
copn(A) of Ais defined as th€-fuzzy set inX given by:

(con(A))(z) = N(A(x)), Vz € X.

If C is a conjunctor onZ, then theC-intersectionA N¢ B of A and B is defined as the
L-fuzzy setinX given by:

(ANe B)(z) = C(A(z), B(z)), Vz € X.

If D is a disjunctor onZ, then theD-union A Up B of A and B is defined as th&-fuzzy
setinX given by:
(AUp B)(z) = D(A(z), B(x)), Vz € X.

If C (respectivelyD) is the infimum operator (respectively the supremum opeyateen
the intersection (respectively union) is called the Zaohbrsection (respectively Zadeh-
union) and the notation is simplified toN (respectivelyUp to U).

If C andD are commutative and associative (in particular if they atenarm and a
t-conorm), then the above definitions can be extended tontieesiection and union of an
arbitrary finite family of £-fuzzy sets. If further the conjunctat and the disjunctoD
can also be extended to an infinite number of arguments, teeraa extension to infinite
families is possible. For the Zadeh-intersection and Zadebn and an arbitrary (infinite)
family (A4;) e in F,(X), this becomes:

(NjesA;)() = inf A;(z), Vo € X,
J

(UJEJAJ‘)(JJ) = su;}) Aj(l‘), Vr e X.
JE-

1.6.2 Inclusion of£-Fuzzy Sets
Definition 1.26. Let A, B € F.(X), then
AC B« (Vz e X)(A(z) <, B(z)).

1.7 Interval-valued Fuzzy Sets

In Part Ill, we will focus on a special case 6ffuzzy sets, namely the interval-valued fuzzy
sets.
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1.7.1 Characterization

Interval-valued fuzzy sets [117] at&fuzzy sets where the complete latti€das given by
£ = (L, <;r). L here stands for the set of all closed subintervals of theintgtval
[0,1],i.e.

L' = {[a1, mo]|[x1, 22] C [0,1]}.

We will denote the lower and upper bound of an elemeot L’ by respectivelyr; andzs:
x = [z1, 2] (Fig. 1.1). Further, the partial ordering,: on L! is defined by

0.11] [1.1]

Xoboone- o

v

[0,0] X
Figure 1.1: Graphical representation @f’.

v <pry<s z <y andzy < yo, Va,y € LT

The infimum and supremum of an arbitrary subSetf L’ are then respectively given by:

inf S = [inf 24, inf x
[IGS I’IES 2},
supS = [supxy,supxs.
€S zeS

We use the notatior: for inf L’ = [0,0] and1,: for sup L = [1,1].
Related orderings oh’ that we wil also use in this thesis afér,y € L!):
<1y & x<pryandx #£y,
rLry & r1 <y andxz < Y2,
r2pry & Y=gz,
>y < y<przw,
r>ry & y<Lpnr .
Summarized, an interval-valued fuzzy sétin a universeX is characterised by the
mapping
A: X It
= Az) = [A1(z), Az (2)]
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So, an interval-valued fuzzy set can also be seen as an @iesfsa classical fuzzy set,
where now uncertainty concerning the membership degrdioiseal. Instead of mapping
an element in the universe onto one specific membership walige1], it is now mapped
onto a subinterval of, 1].

Finally, in the remainder, we will denote the class of aleival-valued sets in the uni-
verseX by F 1 (X).
1.7.2 Basic Concepts

The basic concepts concerning fuzzy sets as introduceddisestion 1.1.2, can be extended
to interval-valued fuzzy sets in a straightforward way. aémtigular, we give the definitions
for the support and thiev;, as]-cuts of interval-valued fuzzy sets.

Definition 1.27. Let A € F,:(X). The supportl4 of A is defined as:
da ={z € X|A(z) # 0,1} = {x € X|Ax(z) > 0}.

For the definitions of the differerfitv;, ao]-cuts of an interval-valued fuzzy set, we need
to introduce the notatiofi;; = {[z1, 5] € Lf|zo = 1}.

Definition 1.28. [135 Let A € F :(X).
For [ar, o] € LI\{0,:}, the weaKay, ao]-cut A92 of A is defined as:

A2 = {z|lr e X, Ai(z) > ay and Ay(z) > ag}
= {zfr e XandA(z) Zpr [on, o]}

For [ay, ap] € LI\Up1, the strict[ay, ap]-cut A22 of A is defined as:

AT = (gl € X, Ai(z) > a1 and Ay (2) > ap}
{zlz € X and A(z) > [, o]}

The cases$ay, as] = 0,1 and[ay, as] € Upr are excluded for respectively the weak
and the stricfay, as]-cut. Since{z|z € X, A;(x) > 0 and Ay(z) > 0} = X and
{z]z € X andAy(x) > 1} = 0, these cases don't yield new information.

Also cuts based only on the lower or upper bound can be defined.

Definition 1.29. Let A € F,:(X).
For a; €]0, 1], the weaky;-subcut4,,, of A is defined as:

Ay, ={z|lzr € X and Ay (z) > a3 }.
For as €]0, 1], the weakxy-supercutd®2 of A is defined as:

A = {z|r € X andAy(z) > as}.
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For a; € [0, 1], the stricta; -subcutdg7of A is defined as:
Aar = {z|z € X and Ay (z) > a1 }.
For as € [0, 1], the strictas-supercutA®2 of A is defined as:
A% = {z|z € X and Az(z) > aa}.
The casesy; = 0 anda; = 1 are excluded for respectively the weak and the strict
as-subcut. Sincdz|z € X andA;(z) > 0} = X and{z|z € X andA;(z) > 1} =0,

these cases don't yield new information. An analogous m@agadholds for the weak and
strict as-supercut.

Finally, also a combination of weak and strong bounds isiptess

Definition 1.30. Let A € F,:(X).
For [ay, o] € LI\Up1, the weak-stricfay, ap]-cut A22 of A is defined as:

AZ? = {z|z € X, Ai(z) > a; and Ay (z) > as}.
For [y, o] € LI\{1.:}, the strict-weaKa, ao]-cut A22 of A is defined as:
Az ={zlr € X, Ai(z) > a; and Az(z) > az}.
The cases$a;, as] € Upr and[ay, as] = 1,1 are excluded for respectively the weak-

strict and strict-weaKa, as]-cut. Since{z|x € X and Ay(x) > 1} = 0 and{z|x €
X andA; (z) > 1} = 0, these cases don't yield new information.

1.7.3 Construction of Interval-valued Fuzzy Logical Operabrs

Interval-valued fuzzy logical operators can be constdiatsing fuzzy logical operators
defined o0, 1] in a straighforward way.

Proposition 1.7.1. Let (z,y) € (L)
e If M is a negator orf0, 1], then the operatolV, given by

N(z) = [N(22), N (x1)], Vo € L,

is a negator on.’.
e If Cis a conjunctor or{0, 1], then the operato€, given by

é(l’,y) = [C(xlvyl),c(x%yZ)]v V(lﬂ,y) € (LI)27
is a conjunctor onC’.
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e If Dis a disjunctor o0, 1], then the operatoD, given by
25(‘r7y) = [D(xlvyl)vp(m%yQ)]ﬂ V(l',y) € (LI)27

is a disjunctor on’?.
e If Z is an implicator on0, 1], then the operatof, given by

I(w,y) = [T(x2, 1), L(x1,42)], ¥(w,y) € (L)?,
is an implicator onZ’.
For example, the (extended) standard negafgrgiven by
Ny(z) =1 — 29,1 — 2], Vo € L,

is an involutive negator of’.
The conjunctot,,;,,, based on the minimumnormcC,,, i.e.,

Cmin(x7y) = [min(I17y1)vmin(x23y2)]v V(I’,y) € (LI)Qa

is a t-norm on’’.
The disjunctorD,,., that extends the maximutaconormD,,, i.e.,

Dmax($7y) = [max(xlvyl)7max<x27y2)}7 V(x,y) € (LI)27

is at-conorm on.!.
The extended Kleene-Dienes implicafQs p, given by

Ierp(x,y) = max(l — x2,y1), max(1 — x1,y2)], V(z,y) € (LI)27

is a model implicator o, Remark thal i p = Zec,.. N, = IDuar V. -

Also other ways of constructing interval-valued fuzzy kjioperators from fuzzy ones
exist. For a more thorough study, we refer the interestediercta [34].

1.8 Intuitionistic and Bipolar Fuzzy Sets

Although being different semantically, intuitionistic][and bipolar fuzzy sets [8, 9] are
formally equivalent. They namely ar&fuzzy sets where the complete latti€es given by
L£* = (L*,<r+), with

L = {($1,$2>|($1,$2> S [07 1]2 andx; + xo < 1},

and
(w1, 22) <p+ (y1,92) & 1 <y andag > yo, V(w1,22), (Y1,92) € L™,

So, an intuitionistic (respectively bipolar) fuzzy sétin a universeX is characterised by
the mapping
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»

A: X — L*
x — A(z) = (A1(x), Az(x)).

For an intuitionistic fuzzy setl in X, A;(x) defines for each elemente X the degree
to which z belongs toA (membership degree) anth(x) the degree to which does not
belong toA (non-membership degree). The degree of indeterminatitresitation is then
given byl — A (z) — Ax(x). Bipolar fuzzy sets on their turn, are used to representdipo
information. For a bipolar fuzzy setin X, A, (z) denotes the degree to whictsatisfies a
given property (positive information) andk(z) (negative information) denotes the degree
to which z satisfies the opposite property. Bipolar information is égthe left of-to the
right of’ and 'close to-far from’. Remark that such opposiéations don’t need to be each
others complement and some indetermination is possible ni&in thing is that bipolar
fuzzy sets don't need to represent one physical objectabiier more complex information,
possibly coming from different sources.

The infimum and supremum of an arbitrary subSetf .* are respectively given by:

inf S = (inf x1,supzs),
z€S z€S

supS = (supzy, inf x9).
zeS €S

The notation$) .- and1.- respectively stand fanf L* = (0, 1) andsup L* = (1,0). Fur-
ther, the class of all intuitionistic and bipolar fuzzy seter the univers& are respectively
denoted byZ FS(X) andBFS(X).

Finally, intuitionistic and bipolar fuzzy set theory areviisorphic to interval-valued
fuzzy set theory as shown in [35]. The isomorphiém F,:(X) — ZFS(X) is given
as follows: for allA € F,:(X) and allz € X it holds that if A mapsz onto A(x) =
[A1(z), A3(z)], then the intuitionistic fuzzy seb(A) mapsz onto the coupleb(A)(z) =
(Ai(x),1 — Ay(x)) (and analogously for bipolar fuzzy sets). So all definitiansl results
in interval-valued fuzzy set theory can be translated tarthationistic or bipolar case. This
holds in particular for the results concerning intervaiteal mathematical morphology that
are discussed in Part Ill of this thesis.
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2

Introduction to Image
Processing

In this chapter, we give a short overview of some basic imagegssing concepts that will

be used in this thesis. Section 2.1 discusses the représarafimages and videos (images
sequences) and introduces the notations. Next, the diffei@se types by which images
can be degraded are listed in Section 2.2. Section 2.3 pgeeseme objective measures to
determine the similarity between two images (e.g., a fitteneage and the original image
that the filtered one tries to approximate/restore). IniSe@.4 finally, the basic concepts
of the discrete wavelet transform are given.

2.1 Representation of Images and Videos

2.1.1 Binary Images

An n-dimensional binary (or black-and-white) image can be modelled byR&n— {0,1}
mapping, that maps each image point onto black (0) or white The set of all image
points (that is a subset @&"), is called the image domain. If we agree to map the points
that do not belong to the image ortidi.e., black), the image domain can be generalised to
R™. For the case of simplicity, some devices (such as fax mashire restricted to binary
images, i.e., the most simple kind of images. However, liitanges can also arise as the
output of a binary decision on the image points (e.g., seg¢atien into two classes, edge
detection,...).

In € N\ {0}.
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Remark that aiR™ — {0, 1} mapping can also be seen as the characteristic function of
a crisp set iR™. A binary imageA can thus be seen as a crisp subsét’dsf An element
x € R™ then belongs to the (foreground of) imageif it corresponds to a white point in
the image. Ifx corresponds to a black point, therdoesn'’t belong to the image (belongs to
the background).

Itis well known that the universR”™ contains an infinite number of elements. Therefore,
it is technically impossible to store an image onto a compoteny other device without
sampling the image domain. To do this, the image domain islelivby a raster of a finite
number ofn-dimensional regions (called image eleméntnd the image can be stored as
an n-dimensional matrix. Each image element is then assigneddlue (0 or 1) that is
the most prominent in that region. The image is thus modelfednZ™ — {0, 1} mapping
then and we call it a digital image. For an image the colour (black or white) of the
image element at location € Z" in the raster, is denoted hyj(z). As an example, a
(digital) binary Lena image (as the result of Canny edgediiete on the greyscale Lena
image in Fig. 2.2) is given in Fig. 2.1 (a). In the enlargedooobthe right eye in that image
(Fig. 2.1 (b)) the pixels are clearly visible.

(b)

Figure 2.1: (a) The binary Lena image. (b) Enlarged crop of the right eye in thepinena image.

2.1.2 Greyscale Images

A n-dimensional greyscale (or monochrome) image is repreddnt anR™ — [0, 1] map-
ping. Image points are not longer only mapped onto black (@tate (1), but can also be
mapped onto a grey value (or grey level) in between those The.darker an image point,
the lower its grey value.

2If n = 2, we call them picture elements (pixels)yif= 3 the term volume elements (voxels) is used.
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Analogously to the remark that a binary image could be seena@isp set inkR”, we
can now remark that a greyscale image can also be considetluazy set ilR", where
theR™ — [0, 1] mapping corresponds to the membership function. The meshipedegree
of an image point can then e.g. be seen as the degree to wigdiright.

Further, analogously to the storage of a binary image, alsthé storage of a greyscale
image the image domain needs to be sampled fidhto Z™. However, since also the
interval [0, 1] contains an infinite number of values, now also the set ofatbgrey values
needs to be sampled to a finite subchiir= {0, 5,..., =2 1} (r € N\ {0,1}) of [0, 1].

If m bits are used for the storage of a grey value, tiiérgrey values are possible. To work
with integer values, the intervil, 1] is then sometimes rescaled to the intef@a™ — 1].

A greyscale image that is the result of such sampling, isdadl digital greyscale image.
For an imageA, the grey value of the image element at locatiog Z™, is, analogously
as for binary images, denoted bBiyz). As an example, a (digital) greyscale Lena image is
given in Fig. 2.2 (a). In the enlarged crop of the right eyehattimage (Fig. 2.2 (b)) the
pixels are again clearly visible.

(b)

Figure 2.2: (a) The greyscale Lena image. (b) Enlarged crop of the right eye igréhescale Lena
image.

2.1.3 Colour Images

In a colour image, an element from the image domain is now aragér mapped onto a
grey value, but onto a colour. The representation of a caliepends on the used colour
model. A colour model is an abstract mathematical model poeseent colours by tuplés
of numbers. All colours that can be represented in this ¢ateadel then form the colour

SUsually 3- or 4-tuples are used.
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spacé. The best known colour model is thieG B model, in which colours are obtained
by mixing the three primary colours red, green and blue togrein different proportiorts
Colours can then be represented by a 3-tuple, i.e., a vecatdaining three components,
where the first component represents the amount of red, dtomdeomponent the amount
of green and the third component the amount of blue that idetk#o obtain the colour.
If these proportions are given by values in the intef@al |, a colour image modelled in
the RGB colour model, can then be represented bR'an- [0, 1]> mapping. The vectors
(1,0,0), (0,1,0) and(0, 0, 1) then respectively correspond to red, green and blue. \&ctor
for which the three components are equal, correspond tovgdegs. In particalur(0, 0, 0)
corresponds to black ard, 1, 1) to white (Fig. 2.3). All red (respectively green and blue)
component values of the images points together form therespéctively green and blue)
colour band. Such colour band can thus actually be modedléttisame way as a greyscale
image, i.e., as aR™ — [0, 1] mapping. For an imagd, we will denote the red (respectively
green and blue) colour band by? (respectivelyA® and AP).

A

blue (0,0,1) cyan (0,1,1)

white (1,1,1
magenta (1,0,1

Q
el

@\?'/

o

L green (0,1,0) -
,* black (0,0,0) =

/

/
red (1,0,0) yellow (1,1,0)

Figure 2.3: Graphical representation of the RGB colour model.

To obtain a digital colour image, i.e., a colour image that lba stored on a device, the
image domain again needs to be sampled fishto Z™ and analogously to the grey values
of a greyscale image, also the colour component values ocleel sampled. Ifn bits are
used for the storage of a colour component, 2& ,values are possible, the interyal 1]
can again be rescaled to the interggaR™ — 1] to work with integers. Analogously to binary
and greyscale images, for an imageA(z) = (A% (z), A%(x), AB(x)) now denotes the
RGB colour vector at locatiom € Z". As an example, a (digital) colour Lena image is
given in Fig. 2.4 (a). In the enlarged crop of the right eyehattimage (Fig. 2.4 (b)) the
pixels are again clearly visible.

4Remark that usually not all colours that can be seen by the hayancan be represented in a given colour
model.
5The colours red, green and blue can be explicitly defined &y tavelength.
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2.1 Representation of Images and Videos

(a) (b)

Figure 2.4: (a) The colour Lena image. (b) Enlarged crop of the right eye in thaucdlena image.

Apart from the RGB model, several other colour models eXssi3., the YUV, YCbCr,
YIQ, HSV, HSL, CMY, CMYK, XYZ, L*a*b*, L*u*v* models). For more information on
these models, we refer to [118, 128]. We will only give a femagks here.

The YUV, YCbCr and YIQ colour models (used for colour teléisbroadcasting) are
based on the fact that the human eye is more sensitive to ebandrightnessthan to
changes in hueand saturatioch The Y-component in these models (that is identical to
theY -component in the XYZ colour model) contains the informatim the brightness of a
colour. The other components contain the colour infornmedi@., hue and saturation). As a
consequence, by omitting the colour information and onlggitheY -component, we can
obtain a greyscale image from a colour image (e.g., the gadyd ena image in Fig. 2.2
corresponds to thE-component obtained from the colour Lena image in Fig. 2.4).

Further, theL*a*b* and L*u*v* colour models have been designed to obtain a linear
colour model, i.e., a model in which equal geometric distasreorrespond to roughly equal
perceived colour differences. In the RGB colour model faaregle, a small difference in
one of the colour components might in some cases result isuaNy very different colour
and in other cases in a colour for which the difference to tigireal colour can hardly be
detected by the human eye. Thé&a*b* and L*u*v* colour models are consequently good
models to determine the colour preservation after the jging of an image.

Brightness is the human visual sensation to which an areaapfeemit more or less light, to which an area
seems to be more or less clear.

"Hue is the attribute of a visual sensation according to whictarea appears to be similar to one or to the
proportions of two of the perceived (opponent) colours sedlow, green and blue. E.g., purple can be seen as
lying somewhere between red and blue, orange between recetiady. . .

8The saturation of a colour, sometimes called colour intenisiticates how much white light is present in the
colour. The lower the saturation, the more dull the coloug.,Bed and pink are two different saturations of the
colour hue red.
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2.1.4 Videos

A video (or image sequence) is a sequence of images (frathes)how the evolution of
a scenery over time. The successive frames of a video arenhthhly correlated (unless
there is a scene switch between them). If the image sequsrsenbted by/, then the
notation(t) stands for the-th frame of/. In this thesis we will only consider videos of
which the frames are digitalD images. If(z, y, t) denotes the pixel in the-th row and the
y-th column (where the counting starts from the upper lefheor of thet-th frame in the
sequence, then for a greyscale video (respectively colioeoy!(x,y,t) denotes the grey
value (respectively the colour vectoF(z, y,t), I%(z, y,t), I (x,y,t))) at that location.
In the remainder of this thesis, we will also sometimes comlhe spatial coordinates of a
pixel in a vector = (z,y), i.e.,(r,t) = (x,y,t).

2.1.5 Image Models Used in This Thesis

In Part Il of this thesis, we will assume the greyscale andwovVideo frames to be digital
images where we work with integer grey values and colour @mapt values for which
m = 8 bits are used to store them (i.e., grey values and colour ooem values belong to
[0,255] N Z). Further, colour images are assumed to be modelled in ti& &&ur model.
In Part 11l of this thesis, grey values are assumed to belortgée interval0, 1], such that
greyscale images can be seen as fuzzy sets, which allowspglptechniques from fuzzy
set theory on them. Further, in Part Ill, we will also consibleth the theoretical continuous
case (unsampled images and thus a continuous image d&faind grey values belonging
to [0, 1]) and the practical discrete case (digital images and thiscaate image domaif™
and grey values belonging to the discrete subsef [0, 1]).

2.2 Noise Types

Images contain a lot of information. However, they are ugudggraded by noise that was
introduced during the image capturing, the transmissiotherrecording [92]. This can
e.g. be caused by dust sitting on the lense, by the detestdf that is not working as
it should be, by the fact that the electronics convert radimergy to an electrical signal
or by electromagnetic distortions during transmissione Tiree main categories of noise
that can be distinguished are impulse noise, additive naisk multiplicative noise. In
their introduction below as well as in the remainder of thissis, we will use the notations
1, and I,, for the original noisefree image sequence and the sequemogpted by noise
respectively. We will define the noise types for greyscatpisaces. For colour images, the
definitions remain valid by applying them on each of the coleands separately. We will
illustrate the different noise types on the 10-th frame efgheyscale and colour “Salesman”
sequence (Fig. 2.5).
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(b)

Figure 2.5: 10-th frame of the original noisefree greyscale (a) and colour (A)$nan” sequence.

2.2.1 Impulse Noise

Impulse noise is characterized by the fact that only parhefiinage pixels are affected,
while the others remain unchanged. Further, a changed giteg wf a noisy pixel, is not
related the original noisefree value. Two types of impulsis&can be found in literature:

e Fixed (valued) impulse noisghe grey level of a corrupted pixel is always replaced
by one ofk fixed grey values; ... ng:

ni, with probability pr,

na, with probability prs,
I(x,y,t) =< ...,

Ng, with probability pry,

I,(x,y,t), with probabilityl — 2% | pr.

The best known example of this type of noise is salt-and-eeppise, where there are
only two noise values; andns, given by the minimum and maximum allowed grey
level (i.e.,n; = 0 (black) andny, = 2™ —1 (white) if we work with integer grey values
stored bym bits). As an example, Fig. 2.6 shows the 10-th frame of raspedg the
greyscale and colour “Salesman” sequence, corrupted basaddpepper noise with
pri = pro = 2.5%.

e Random (valued) impulse nois@ contrary to the fixed valued impulse noise case,
the grey level of an affected pixel is now replaced by a randoey value instead of
one of a few fixed values:

I,(z,y,t), with probabilityl — pr,

In(z,y,t) = X .
(=.3.%) {n(m,yﬂt), with probability pr,
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(b)

Figure 2.6: 10-th frame of the greyscale (a) and colour (b) “Salesman” seguenrcupted by salt-
and-pepper noisef; = pra = 2.5%).

wherepr € [0, 1] denotes the probability that a grey value is corrupted apthced
by a random grey valug(z, y, t) coming from a given distribution. Corresponding
to the literature [1, 17], we will consider the uniform dibtrtion in this thesis. As
an example, Fig. 2.7 shows the 10-th frame of respectiveygtikeyscale and colour
“Salesman” sequence, corrupted by random impulse noisepwit 5%.

() - (b)

Figure 2.7: 10-th frame of the greyscale (a) and colour (b) “Salesman” seguearcupted by random
impulse noisejfr = 5%).
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2.2.2 Additive Noise

In the case of additive noise, a random noise value is addiénxt tgrey value of each pixel:

Iy(z,y,t) = I, (x,y,t) + n(z,y,t),

wherern(z,y,t) is a random noise value coming from a given distribution. edavdistri-
butions can be found in literature such as a Gaussian distiy a Poisson distribution,
a Laplacian distribution, a Cauchy distribution, ... Thesistudied among them is the
Gaussian distribution of which the probability densitydtian is given by:

1 -
3

Nl=

In (x3 s 0) =
oV 2T
for x € R and whereu ando respectively denote the mean and standard deviation of the
noise. Usually: = 0, an assumption that we will adopt in this thesis.As an exairig. 2.8
shows the 10-th frame of respectively the greyscale anducé®alesman” sequence, cor-
rupted by Gaussian noise with= 20. The Gaussian noise model is a very good approx-

(a) ) (b)

Figure 2.8: 10-th frame of the greyscale (a) and colour (b) “Salesman” seguesrcupted by Gaus-
sian noise ¢ = 20).

imation of the noise that is present in many imaging systehiewever, to model noise
with a more impulsive behavior, a distribution with heavieils is needed. In this case,
an a-stable distribution [39, 43, 88], that is a generalizatidrthe Gaussian model, might
result in a better approximation. For mesvalues, there is no closed-form expression for
the probability density function of the-stable distribution, but its characteristic function

is given by

o(t) = exp(iAt — y[t|*(1 +ifsgn(t) tan &) o # 1
) exp(irt — AJt|(1 + iBsgn(t)Zloglt])) a=1"
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wheret € R, i = v/—1 is the complex unit,

1 t>0
sgn(t) =40 t=0,
-1 t<0

the characteristic component<]0, 2] controls the heaviness of the tails (the lowerthe
heavier the tails and the more impulsive the noise), thetimcgparamete € R corre-
sponds to the meam(€]1, 2]) or median & €]0, 1)), the dispersion parameteidetermines

the spread of the density aroundand the skewness parametee [—1, 1] is an index for

the symmetry of the distribution3(= 0 means that the distribution is symmetric). The
casesy = 2, = 0anda = 1, § = 0 respectively correspond to the Gaussian and Cauchy
distribution.

2.2.3 Multiplicative Noise

If an image is corrupted by multiplicative noise, then totegeey value, a noise value is
added that is a random multiple of the original grey value:

In(xvyvt) = Io(xayvt) + n(‘r7yat) : Io(xayvt)a

wheren(z,y,t) is a random noise value coming from a given distribution. &ammple
speckle noise, that e.g. occurs in satellite images (SAR&s)/r medical images (ultrasound
images) and in television environments, is usually modehés way, withn(z, y, t) coming
from a uniform distribution, given by:

1
fu(z;o) = {20\/5 o] < V30

0 else

9

for x € R and wherer denotes the standard deviation of the noise. The highestdnslard
deviation, the higher the noise level. As an example, Fig.shows the 10-th frame of
respectively the greyscale and colour “Salesman” sequenceipted by speckle noise with
o = 25.

2.3 Similarity Measures

To be able to judge the performance of image and video filjemethods, such as the ones
developed in Part Il of this thesis, objective measuresmilarity and dissimilarity between
a filtered frame (imageJ,(¢) and the original ond,(t) are needed. Some well-known

measures are:
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() (b)

Figure 2.9: 10-th frame of the greyscale (a) and colour (b) “Salesman” seguasrcupted by speckle
noise ¢ = 25).

e The mean squared error (MSE), defined as

M N

Z Z(Ia(xvyvt) - If(x7y7t))2
MSE(L(t), I(t)) = ==

N-M ’

wherel,(t) and;(t) respectively denote an original and a filtered greyscaladra
each containingl/ rows andN columns of pixels. Iff,(t) andI;(t) are colour
frames, then the average is taken over the three colour bands

M N
SN Uy, t) — I, y,y))?
ce{R,G,B} z=1y=1
3-M-N

The higher the MSE, the more dissimilar (less similar) thefesl, (¢) andl;(t). Re-
mark however, that the interpretation of the MSE is highlpeledent on the number
of bits m that is used for the storage of a grey value or colour comptoradne. The
visual difference between two successive grey values aucaomponent values is
larger if there are less allowed values, i.e., for a smatleiSo an average difference
of 10 grey levels, i.e, an MSE equal to 100, will e.g. look éeform = 10 than for
m = 8.

MSE(I,(t), I;(t) =

Finally, several variants on the MSE have been developeth asithe mean absolute
difference (MAD), where the absolute difference between walues is used instead
of the squared difference, and the root mean squared erkd8E}, that is given by
the square root of the MSE.
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e The peak signal to noise ratio (PSNR), defined as

(2" —1)?
B(I,(0, I;(0)’

where I,,(t) and I;(t) respectively denote an original and a filtered (greyscale or
colour) frame, each containint/ rows and/N columns of pixels and where de-
notes the number of bits used for the storage of a grey valwlour component
value. The higher the PSNR value, the more similar (lessndiss) the images.
Since the maximal possible grey value or colour compondnev@™ — 1) is taken
into account, the interpretation of the PSNR no longer ddpemm. Further, the
logarithmic decibel scale is used, because many signasR8NR/MSE does not
need to be restricted to images) have a wide dynamic range.

e The normalized colour difference (NCD), defined as

PSNR(L,(t), 1 (t)) = 10+ log1g <

M N
ZZ HIOLAB(xvyvt) - fl‘/AB(il',y,t)Hz

x=1y=1

M N
DIPIN Il CHZD] ¥

r=1y=1

NOD(L,(t),I(t) =

where||-||, is the Euclidean norm angf*” (,y,t) and I ;45 (x, y, t) respectively
denote thel *a*b*-transform of the original and the filtered colour framhgt) and
I,(t), each containing/ rows andN columns of pixels. The lower the NCD value,
the more similar (less dissimilar) the images. Sincel/the*b* colour model is linear,
i.e., approaches the human perception, the NCD is a gooduneetts evaluate the
quality and colour preservation of processed images ir@hol human inspection.

2.4 The Discrete Wavelet Transform

In this section, the discrete wavelet transform is intr@licSince this transform is only
used in Subsection 3.2.2 of this thesis, only a basic uraletsig of the transform is aimed
here. For a broader background we e.g. refer to [24, 26, 7218%. More recently, also
other new wavelet-like decompositions with better origataselectivity can be found in
literature (e.g., complex wavelets [56], steerable pydanfb2], curvelets [15], contourlets
[36], shearlets [60], ...).

The main idea behind the use of wavelets, is to analyze alsgd#ferent scales, i.e.,
looking at it from various distances. At a coarser scale,rtlte structure of the signal
is unfolded, while at a finer scale, the finer details can bdistl A classical example
in this context is that of a picture showing a forest. Coasale, medium-scale and fine-
scale approximations then respectively approximate #estrthe leaves and the lice that
are eating those leaves.
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2.4.1 Multiresolution Analysis

Multiresolution analysis [24] is a sequence of approximasubspace§V; }cz of Ly(R)
that satisfy:®

1. TheV; are generated by a scaling functiore L, (R) (called the father wavelet) in
the sense that for each fixgdthe family

Gin(t) =220t —k), ke Z
constitutes a Riesz basis fof.
2. The family{V;}cz is increasing¥V; C Vj41, Vj € Z.
3. Forallf € Ly(R), the orthogonal projectionB; f onto V; SatiSfijToo Pif=f
andjl}][_n00 P;f=0.

From the above, it follows thaf < V; is equivalent to the functionf e Vj41 for which

(Vz € R)(f(z) = f(2z)) and thatV; is invariant under translation over’. FromV;
Vj41 it also follows thatp is the solution of a two-scale equation

\th (2t — n).
neZ

In the case where the integer translatespaire orthonormal, the orthogonal projection
corresponds to the best approximatiénf of f in the approximation spadg; (i.e., at the
scale2/):

Aif = {f, bik) bjike

keEZ
If the integer translates @f only constitute a Riesz basis (but are not orthonormal),ad du
scaling functions can be constructed such tf(a;i, ¢07k> = 0o, and the best approximation

becomes 3
Ajf = Z <fa ¢j,k> G-
kEZ
The scalar productéﬂ éjk> are denoted by, , and are called the scaling coefficients.
Also the dual scaling functio:{) satisfies a scaling equatithh

=V2)  hlnjg(2t —n). (2.1)

nez

9Ly (R) is the Hilbert space of square integrable functions, itee 8 — R functions f such that|| f||* =
f+°° |f(®)|?dt < oo, with the scalar product of two such functionfs and g defined as(f,g) =
f+°° f(t)g*(t)dt, whereg* denotes the complex conjugateg)f

1OFor the duality to hold it is necessary tha} ", ., h[n]h*[n+2k] = &) o, whereh* is the complex conjugate
of h. Under some additional technical assumptions, this comditecomes sufficient [26, 23].
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If we now define
gln] = (=1)"h[l —nl,
glnl = (=1)"h[1 —n],
the wavelets) (called the mother wavelet) anglare derived as
=2 " glnle(2t —n), ¥(t) = V2> gnle(2t —n). (2.2)
ne”z neE”Z

As an example, the scaling function and corresponding ea¥ehction for the orthogonal
Daubechies waveletb?2 is depicted in Fig. 2.10. Remark that in the orthonormal case

Scaling and wavelet function for db2

++ Scaling function ¢
—— Wavelet function y

@x) and @ (x)

Figure 2.10: The scaling function and corresponding wavelet function for the odhalgDaubechies
waveletdb2.

¢ = &, hin] = h[n], gln] = gln] andyy = ¢. If we definew; . (j, k € Z) asey; k(1) =
271/24)(27t — k), Vt € R (and analogously fop), then a direct computation now shows that
[24]
Ajf—Ajf = Z <f, 1/)j,k> V) k-
kEZ
The scalar productéf, 1&7k> are denoted byv; ;, and are called the wavelet coefficients.

It holds that the family{4); 1 }rcz constitutes a Riesz basis for a detail spécgthat is
the complement of/; in V;, (i.e., V11 = V; @ ;) and thus contains the detail infor-
mation needed to go from an approximation at s@aleo an approximation at scagdt!.
Moreover, it holds that

<¢j,k7¢j/,k/> = 0;,j/ O,k

and{v; 1}, rez constitutes a Riesz basis @5 (RR) [23]. For anyj, it is thus possible
to obtainA;, f from a coarser approximatiad;, f (jo < ji) by adding a combination of
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wavelets at intermediate scales:

Ji—1 ji—1
A F=Af+ D) winthin =Y Sjonbiok + D D wiktjk.
j=jo kEZ kEZ Jj=Jjo kEZ

By taking limits j; — 400 andj, — —oo, we obtain

+o00
F= " siokbion+ D> wiktie= Y wjxthjx.

kez j=jo kEZ JkEL

2.4.2 The Discrete Wavelet Transform

For the computation of the wavelet coefficients in the wavederesentation Mallat has
introduced a fast filter bank algorithm [71] that is in litaree usually referred to as the
discrete wavelet transform. This algorithm goes as followe assume that the multires-
olution analysis axioms hold and we start with a functjom V;. From formula (2.1) we
derive

din(t) = 22¢(27t —k)
2UTD/2N " hin)p (27t — 2k — n)
nez

= ) h[l - 2K]$j 11 k(1)

leZ

As a consequence

Sjk = <f7 é]k> = <f7271[l - 2k}&j+1,k> = ZTL[% —1sjt1,0,

leZ leZ

wherelAz[k] = h[—k] forall k € Z. The scaling coefficients at the scaleare thus computed
by convolving* the scaling coefficients from the sc&&™! with the filter and downsam-
pling by 2. The filterh is a low-pass filter, i.e., only the lower frequencies of tignal
(corresponding to the rude signal features) are passedhwésults in a kind of averaging
or blurring. Analogously, we find that

Wik = <f7 ¢j,k> =Y g2k —Usj,
leZ
whereglk] = g[—k] for all & € Z. The filterg is a high-pass filter, that passes only
the higher frequencies of the signal (corresponding to tier ignal features). The filter
bank thus separates the signal into averages (smooth padgjifferences (rough parts).
Fig. 2.11 illustrates the decomposition into three levéla one-dimensional signgl(z).

The convolutionu = v of two discrete one-dimensional signalandw is for all k € Z defined agu xv) (k) =
S u®u(k —1).
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[ & P2y
f(x) ~
I @%
s,
’ 5, [ & P2
S
@_’53

Figure 2.11: A three-level one-dimensional wavelet decomposition. The coeffisidrscripts denote
the decomposition level to which the coefficients belong.

For the reconstruction, it can be derived from expressiariy @nd (2.2) that

Sivth =Y hlk—2l]s;0+ > glk — 2lw;,.
leZ leZ

The scaling coefficients at the scafecan thus be computed by taking the sum of the con-
volution of the upsampled (by inserting a zero between eachcbefficients) scaling and
wavelet coefficients from the scaté*! with the filter h and g respectively. The recon-
struction of the original signaf (x) from the wavelet coefficients is illustrated in Fig. 2.12.

[ 8 (2w

fx)

I ‘_@“V‘é

S,

L@ Z-@w

Figure 2.12: A three-level one-dimensional wavelet reconstruction. The coeffisigbscripts denote
the decomposition level to which the coefficients belong.

2.4.3 Extension to Images

The multiresolution analysis from Subsection 2.4.1 canxtergled to images (i.e, to the
2D casé?) in a separable and non-separable manner. In this thesigjlivenly consider

12And more general to the-dimensional case.
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the separable case [71] in which the detail spaces are spdiynshifts and dilations of
the wavelet function@ > (z, ) = ¢(x)y(y), VIE(z,y) = ¥ (2)¢(y) and U H (2, 4) =
¥(x)y(y) and the approximation spaces by shifts and dilationd’df(z,y) = ¢(z)¢(y).
The 2D discrete wavelet transform algorithm is then a stitbégward extension of the 1-
dimensional one. The scaling coefficients that serve asithé for the first decomposition
step are approximated by the image grey levels. Each roweahthge is then first filtered
by the low-pass filteh or the high-pass filteg of the filter bank. For ad/ x N image, this
results in 2M x N/2 images. Additionally each of the columns is again filtereﬁhyﬁ
resulting in 3M /2 x N /2 detail images (the rows or the columns have been filtergg bpd
oneM /2 x N/2 approximation image (both the rows and columns were fiItb;e/Ad). This
2-dimensional decomposition is shown in Fig. 2.13, in whithwavelet coefficients in the
detail bands at scale ™! are denoted by [, w}}’; andw{'] and respectively correspond
to horizontal, vertical and diagonal oriented image stites. The scaling coefficients of the
approximation band at scaé*! are denoted by, ;. This band roughly corresponds to
averaging the approximation band at the previous s¥dl&€and can be further decomposed
into the next scal@’. The usual representation of the obtained frequency sulsdarmgiven
in Fig. 2.14 and illustrated for the Lena image in Fig. 2.15:0rk Fig. 2.15 it can be seen

—[2 @ W

high-pass

—[2 @

low-pass
A
e
~N
— h P02
horizontal vertical
filtering filtering

Figure 2.13: A decomposition level in the two-dimensional discrete wavelet transform.

that the discrete wavelet transform has an edge detectapepy, meaning that the large
wavelet coefficients correspond to image edges. Furthenitlso be noticed that only few
large coefficients appear in the detail images. This spyansitkes the wavelet transform
very useful for image coding and compression and usually falsilitates the denoising of
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LL, [LH
LK,
HL,|HH,
LH,
HL, | HH,
HL, HH,

Figure 2.14: Usual representation of the frequency subbands in the two-dimehegisogete wavelet
transform.

the image.
In an analogous way as for the decomposition, also the récmtion algorithm can be
extended from the 1-dimensional case.

2.4.4 The Non-decimated Discrete Wavelet Transform

A disadvantage of the discrete wavelet transfrom, is thatibt invariant under translation,
which leads to numerous artefacts when an image is recatetr@after modification of

its wavelet coefficients. Therefore, for denoising appitas, usually a redundant non-
decimated wavelet transform is used, that approachedatmmsinvariance and is therefore
called the stationary wavelet transform. In this transfotihe representation of a signal
has an equal number of wavelet coefficients in each scale sighal is decomposed into
a family of wavelets{y, , }; xez, with ¢/ (z) = 20/2¢(27(x — k)), that are no longer

linearly independent and thus don’t constitute a basis angm

F=3 (rd.) v

J,kEZ

The transform is computed as follows, where the filter thisearby inserting’ — 1 zeros
between each two coefficients of a filteis denoted by:7:

Sjk = Zhj[kfl]sﬂ_l,l, Wik fZg k—1sj41,,
ez I€Z.
5j+17k— ZhJ —Zsjl—&—Zg —lw]l
IEZ l€Z
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(b)

Figure 2.15: A three-level wavelet decomposition (b) of the Lena image (a) basettherdb2’
wavelet.
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This algorithm is called tha trous algorithm [46, 72] and is illustrated on an examplagm
in Fig. 2.16. For the non-decimated transform to be a carsisixtension of the decimated
discrete wavelet transform from Subsection 2.4.2, all treffcients of the latter transform
should reappear in the new transform. This will be the caseedy inserting the zeros
between the filter coefficients, the extra coefficients inrdaindant representation will be
skipped before applying the convolution.
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2.4 The Discrete Wavelet Transform

Figure 2.16: The LL, LH, HL and HH band (up to down) of the first (left) and secoright) undeci-
mated wavelet decomposition level (based on the ‘db2’ wavelet) of thgdrimeFig. 2.15 (a).
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3

Additive Gaussian Noise in
Greyscale Image Sequences

The first filters for video denoising were single resolutidtefs. These were often some
well-known 2D filters extended to a spatio-temporal (3Dghéiourhood that also contains
pixels from neighbouring frames. Some examples are the 3D ilkr [27, 89, 147] and
the 3D threshold averaging filter [61, 147], which try to mne® the details by averaging
only over thek nearest neighbours (KNN) and the neighbours lying withiargain distance
(usually two times the standard deviation of the noise issehoas threshold) from the
given pixel value respectively. More recent extensionsese filters, that are made more
adaptive to a local spatio-temporal neighbourhood are tggmotion and detail adaptive
KNN-filter [148] and the multiple class averaging filter [14B49]. Another well-known
single resolution method is the 3D rational filter [22], wiehe filtered output for a pixel
is determined as a rational function of the grey values inadisgiemporal neighbourhood.
Other recent single resolution filters can e.g. be found in M11]. Both filters take into
account pixels from neighbouring frames in the averagimat, are not necessarily the pixels
at the same spatial position, but the estimated correspgrabiject pixels which possibly
have been displaced due to motion between frames.

Later, the wavelet transform, which has proven very effiecin still image denoising
[3, 125], also found its way in the denoising of videos. In41124] a 3D wavelet transform
is applied and the resulting coefficients are denoised bptagathresholding. However,
most wavelet domain filters use a less complex separable &i3form applied on each
frame separately [4, 21, 48, 50, 62, 70, 110, 146, 149, 158]cambine it with time-
recursive filtering, either in the wavelet domain or in thegbidomain.

The most fundamental difference between video and imageisiag is that in video
applications also information from previous frames is de. When working with a
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delay in time even information from future frames can be us&€tle main difficulty in
exploiting this additional info is possible motion. Somésefis simply take into account
pixels at corresponding positions in the previous (andr&)tframes only when no motion
between the successive frames is detected. Such motioctidetélters are for example
[110, 146, 148, 149]. Other more complex filters always take account information from
the previous frames, by filtering along an estimated motiajecttory and are called motion
compensated filters [21, 48, 41, 141, 150]. In [21, 41, 14&]rtfotion is estimated in the
pixel domain, while in [48, 150] the motion vectors are coneolin the wavelet domain.
Most available motion estimation algorithms are desiguoedifleo coding applications [16,
133, 138]. In such applications, the accuracy of the motextars is less important than for
denoising purposes. Recently, in [50, 51], an efficient @ifikering scheme is proposed,
which makes use of motion estimators from video codecs, litht additional filtering of
the motion vectors and with appropriately defined relisibsito estimated motion.

The filter in [41] only filters temporally. Usually howevehe temporal filtering, which
uses information from neighbouring frames, is combinedhwitspatial filtering. When
the spatial and temporal filtering steps are performed séglsy the one after the other or
independently and subsequently combined, we speak of aaddedilter [4, 21, 48, 50,
110, 150]. In [4] e.g., the authors combine their image d&ngimethod from [3] with a
selective wavelet shrinkage method which estimates thed tfvnoise corruption as well
as the amount of motion in the image sequence. Filters thegriate spatial and temporal
filtering in one step, such as [22, 25, 62, 114, 124, 141, 148, 149], are called non-
separable.

The method proposed in this chapter [79, 86] is a fuzzy logseldl improvement of the
multiple class averaging filter (MCA) from [146, 149] for tdenoising of greyscale image
sequences corrupted with additive Gaussian noise. Futzhessry and fuzzy logic offer
us a powerful tool for representing and processing humanvlatge. Binary decisions
are replaced by a gradual transition, which is more appatprrhen dealing with complex
systems. The main differences between the proposed meiiaoithe filter from [146, 149]
are: (i) pixels are not divided into discrete classes andt dethh based on their class index
like in [146, 149], but they are treated individually, whietads to an increased performance;
(i) the complicated heuristic construction of exponelrftiactions to tune the pixel weights
in the method of [146, 149] to the class index and to the detkototion and detail is
replaced by a fuzzy rule containing linguistic values, vithiepresent human knowledge
and which are more natural to work with and to understand. dgeeof fuzzy logic also
provides a more theoretical base; (iii) in the wavelet-basdension of the method, we opt
for an additional time-recursive averaging instead of ariitty of the low-frequency band ;
and (iv) the fuzzy rule used in our method is easy to extend@imtlude new information
in future work.

Experimental results show that our method outperformsrattate-of-the-art filters of
a comparable complexity. The chapter is structured asviistidOur algorithm for the de-
noising of greyscale image sequences is first explainedeipikel domain in Section 3.1
and extended to the wavelet domain in Section 3.2. Sect®h&ndles the choice of the
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3.1 Pixel Based Spatio-temporal Filter for Greyscale Image Sequences & ol

parameter values. Finally, experimental results and csimhs are presented in Section 3.4
and Section 3.5 respectively.

3.1 Pixel Based Spatio-temporal Filter for Greyscale Im-
age Sequences

In this section, we improve the multiple class averagingfiiMCA) from [146, 149] in the
pixel domain by incorporating fuzzy logic. The ideas behihd filter are the following:
(i) to avoid spatio-temporal blur, one should only take iatzount neighbouring pixels
from the current frame in case of detected motion; (ii) tospree the details in the frame
content, the filtering should be less strong when large alpadtivity (e.g. a large variance)
is detected in the current filtering window. As a consequenoee noise will be left, but
large spatial activity corresponds to high spatial freqiesand for these the eye is less
sensitive [6]. In the case of homogeneous areas, strongrfgtshould be performed to
remove as much noise as possible.

The general filtering framework used in the proposed methqatésented in Subsec-
tion 3.1.1. Additionally the crucial weight determinatistep, which is the main novelty
of our greyscale method compared to the MCA filter, is ex@dim Subsection 3.1.2. In
the proposed method we determine the weights in the filtavingow by the use of fuzzy
sets and fuzzy logic instead of a heuristic constructioh wiponential functions as it is the
case in the MCA filter. Subsection 3.1.3 finally, discussesesoomplexity notes.

3.1.1 The General Filtering Framework

In this subsection, the filtering framework used in both th€Aand the proposed filter
is explained. In the following, the noisy input sequence #ral corresponding filtered
sequence are respectively denoted’ pyand/;.

The filtering window used in the framework is3ax 3 x 2 sliding window, consisting
of 3 x 3 pixels in the current frame artlx 3 pixels in the previous frame. As introduced
in [146, 149] we will use the termsurrent windowand previous windowor the window
pixels contained in respectively the current and the pressfcame (Fig. 3.1). This window
is moved through each frame from top left to bottom right,hetime filtering the central
pixel by averaging the noise. The position of this centrakpin the filtering window is
denoted by(r,¢) wherer = (x,y) stands for the spatial position andor the temporal
position. An arbitrary position in thg x 3 x 2 window (this may also be the central pixel
position) is denoted byr' ,¢'), withr' = (z + k,y + 1) (-1 < k,I < 1) andt’ =t or
t'=t—1.

The output of the proposed filter for the central pixel in thiedow is finally determined
as a weighted average (with adaptive weights) of the piXelegin the3 x 3 x 2 window:

1) — Zr Zea WL 0L, )
e a Zr’ Zi’:t—l W(r, vt/a rvt) .
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t current
(rt) window

it

previous
window

Figure 3.1: The3 x 3 x 2 filtering window consisting of the previous and the current window.

3.1.2 Weight Determination

In this subsection, we focus on the fundamental step in ttegifi framework, namely the
determination of the weights. To make the method motion ateildadaptive, we adopt
the difference valué\(r' , ', r, t), the detail valuel(r, t) and the motion valueu(r, ¢) from
[146, 149]:

(i) The absolute difference in grey value between the twelgwsitiongr, t) and(r’ , ')
is denoted by:

APt t) = [I,(0 1) — L(r, t)]. (3.2)

(i) The functiond(r, t) indicating the local amount of detail is calculated as thadard
deviation in the current window:

I(r,t) = éZIn(r' 1),
-

Nl=

d(r,t) = (% > (Ialr ) = L, 0)") (3.3)

-
(iii) The motion indicatonn(r, ¢) finally, is defined as the absolute difference between the

average grey value in the current window and the averagewgileg in the previous
window:

m(r,t) = |[Lap(r,t) — I (r,t —1)] (3.4)
%| SO (L(F 1) = Ly(F = 1)),
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MCA Filter

In the MCA filter [146, 149], the pixels are classified into faliscrete index classes, de-
pending on the\(r', ¢, r, t) value:

A(r,t',r,t) < ko,

ko < A(r,t',r,t) < 2ko,
2ko < A(r,t',r,t) < 3ko,
ko < A(r,t,r,t),

i(r trt) = (3.5)

w N = O

whereo represents the standard deviation of the Gaussian noiseiaradparameter. When
details are detected in a region, higher weights are assigmeixels which are similar
to the pixel being filtered (i.e., pixels from the lower indetasses, which have smallest
A(r,¢',r,t) values) to preserve these details. In homogeneous regioves/er, the differ-
ence in weight compared to pixels from the higher index elassll be smaller and strong
filtering is performed. This is done by determining the wésghy a heuristic composition
of exponential functions that is inversely proportionatite amount of detail, motion and
the class index. In [149] the weights for the pixels in thedaw are defined as:
cap( SRR ) BOm(r,0),¢) ilr tr 1) =0,1,2,

(3.6)
0 i(r,t,r,t) =3,

W(r’,t’,r,t):{

where the function
n(d) = Kyexp(—Kad) + Ksexp(—Kyd),

is used to determine the slope of the exponential functidB.B) andK;, K>, K3 and K,
are parameters. The functigi{m(r,t),t') in (3.6) is chosen to restrict the contribution
(decreasing the weight) of the pixels from the previous wimdéh case of motion:

1 t'=t,

exp(—ym(r,t)) t'=t—1.

ﬁ(m(r7t)7t/) = {

In this equality, the parameteris used to control the sensitivity of the motion detector. In
[146] the functiony(d) is omitted and the weights are then defined as:

exp(i_i(r’ ’t[/(’z’;)d(r’t))B(m(r,t),t’) i(r,trt)=0,1,2,

(3.7)
0 i(r,t'r,t) =3,

W t'rt)= {
whereK; is a parameter.

Proposed Filter

In our fuzzy motion and detail adaptive video filter, we use @bove introduced filtering
framework and the valueA(r' ,t',r,t), m(r,t) andd(r,t¢) (Fig. 3.2). In contrast to the
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Figure 3.2: The general filtering scheme of the proposed filter.

MCA filter we no longer use discrete index classes to expiessimilarity of a pixel to
the central window pixel. Also our determination of the wegin (3.1) differs from the
strategy used in [146, 149]. The artificial constructionxg@ential functions in the MCA
method is replaced by a more natural fuzzy logic framewottk Vimguistic values.

The four index classes are replaced by one fuzzy set [14&j€ldifference” for the
valuesA(r',t’,r,t). The membership degree of a difference in this set is anatidic of
whether the difference is large rather than small. So, a dixg’ ,¢") that would belong
to a low index class in the MCA filter now corresponds to a smrambership degree of
the valueA(r',¢,r,t) in the fuzzy set “large difference”. We will use a linguistialue
“large” not only for the difference\(r’, ¢, r,t), but also for the motion value:(r,¢) and
the detail valuei(r, t) and introduce the fuzzy sets “large motion” and “large detale
will further also use a linguistic value “reliable” to indite whether a given neighbourhood
pixel is reliable to be used in the filtering of the central o pixel, and represent it by
the fuzzy set “reliable neighbourhood pixel”.

In the following the notationga, 114 @andpu,,, are used to denote the membership func-
tions characterizing respectively the fuzzy sets (i) ladifeerence, (ii) large detail and
(iii) large motion. For the sake of simplicity and computatal reasons piecewise linear
functions are used, as shown in Fig. 3.3. As can be seen ir3R&gthe membership func-
tions are completely determined by the parametiers, T, 1>, t; andt,.

Using the introduced fuzzy sets for the crucial weight deteing step, we replace
the heuristic combination of exponential functions in thigioal MCA method by a more
natural fuzzy logic framework with linguistic values. Theeight W (r',¢',r,t) for the
pixel at position { ,t') is now defined as the degree to which it is reliable to bedus the
filtering of the central window pixel, i.e., its membershipgidee in the fuzzy set “reliable
neighbourhood pixel”, which is the activation degree of fuRule 3.1 or 3.2 depending on
whethert’ =tort’ =t — 1.
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Membership degree p,(d(r.t)
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Figure 3.3: (a) The membership function, for the fuzzy set “large detail”, (b) The membership
function ua for the fuzzy set “large difference” and (c) The membership fumctig, for the fuzzy
set “large motion”.
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Fuzzy Rule 3.1. Assigning the membership degree in the fuzzy set “reliadighiourhood
pixel” of the pixel at spatial positiom’ in the current frame# = t) of the window with
central pixel positionft):

IF( the detail valuei(r, t) is LARGE ANBhe difference\(r’,¢,r,t) is

NOT LARGE) OR the detail valuei(r, t) is NOT LARGE)
THEN the pixel at positionr(,t") is a RELIABLE neighbourhood pixel for the filtering of
the central window pixel.

Fuzzy Rule 3.2. Assigning the membership degree in the fuzzy set “reliadighibourhood
pixel” of the pixel at spatial positiom’ in the previous framet{ = ¢ — 1) of the window
with central pixel positionr(t):

IF (( the detail valuel(r, t) is LARGE ANDhe differenceA(r’, ¢/, r,t) is

NOT LARGE) ORthe detail valuei(r,t) is NOT LARGE)
AND the motion valuen(r,t) is NOT LARGE
THEN the pixel at positionr(,t") is a RELIABLE neighbourhood pixel for the filtering of
the central window pixel.

For the AND-, OR- and NOT-operators in the above Fuzzy Rules aBd 3.2, we
have respectively used the algebraic product, the prdbabum and the standard negator
ast-norm,t-conorm and negator. As demonstrated in Subsection 3.4 however see a
comparable performance when using other norms and conorms.

Take now for example Fuzzy Rule 3.1. This rule has an actimadegree (correspond-
ing to the membership degree in the fuzzy set “reliable rwghhood pixel” and thus the
weightW(r' ,t',r,t) in (3.1) for the pixel in the sliding window at positigin’ , ¢')) equal
to:

op-(I—ag)+(1—o)—ar-(1—a2) (1 -o), (3.8)

with a1 = pg(d(r,t)) andas = pa(A(F,t,r,t)). For the activation degree of Fuzzy
Rule 3.2, an extra factdil — a3) (a3 = pm(m(r,t))) needs to be added.

Notice that it is impossible that all weights in (3.1) are alqto zero. In the above
expression (3.8) either; or 1 — «; is always greater than zera( € [0, 1]), and for the
central pixel positionr, we always have that, = 0 (see expression (3.2) and Fig. 3.3 (b)).

The proposed fuzzy rules are very natural to work with simey tirectly express the
underlying ideas put in a formal framework: (i) When larget&daactivity is detected,
one should filter less to preserve the details. This meangtbaneighbouring pixels that
are assigned a considerable weight in (3.1), should beeasindl the central pixel in the
filtering window (d(r, ¢) is large ANDA(r' , ', r, t) is not large). In the opposite case (OR),
i.e., in homogeneous areafI(, ¢) is not large) no extra conditions should be imposed on
the neighbouring pixels. All pixels should get a consid&abeight to perform strong
smoothing. (i) When motion is detected between the curredtthe previous window,
only pixels from the current frame should be taken into aoton the averaging. This
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means that pixels from the previous frame only should getaiderable weight when the
motion detector yields a low value(r, ¢) is not large) (corresponding to the second (AND)
in Fuzzy Rule 3.2).

Apart from being a formal representation of the ideas, teyuules also produce the
desired result. In the case of spatio-temporal structtihesjetail and motion value will be
large and only for neighbouring pixels with a small diffecerin grey value (relative to the
central pixel in the filtering window), the Fuzzy Rules 3.d&h2 will have a considerable
activation degree. In this way fine spatio-temporal detaiéspreserved at the expense of
some noise remaining.

In a spatio-temporal uniform area, the detail and motionesill not be large. So even
for neighbouring pixels with a large difference in grey \aluelative to the central pixel),
the Fuzzy Rules 3.1 and 3.2 will have a considerable aadnategree. Hence, because of
the many considerable weights in (3.1), strong filteringagfgrmed.

Finally, we also propose a recursive scheme of the fuzzyanaind detail adaptive
video filter. In this scheme, we always use the filtered véji€ , t—1) for the neighbouring
pixels in the already filtered previous frame. For pixeldia turrent frame, the noisy values
L,(r ,t—1) are used, except for the determinationdfr’ , ¢’, r, ¢), where the filtered value
is used when already available (i.e., for pixels that havenlfdtered already in a previous
step). In this way, we get a better estimate of whether thel pixposition (' ,t") belongs to
the same object as the pixel at positiont) or not.

3.1.3 Some Notes on the Complexity

Itis clear that the complexity of the proposed filter is lingeterms of the number of pixels
in a frame. Every pixel is filtered by averaging a constant benof neighbourhood pixels,
which are all assigned a weight using a constant number oftipes. The calculation of
the activation degree of the used fuzzy rules has a low cotitpleThe activation degree
of Fuzzy Rule 3.1 is given in expression (3.8). For Fuzzy Ruf an extra multiplication
with (1 — «a3) (s = um(m(r,t))) is needed. To calculate the activation degree of Fuzzy
Rule 3.1, 3 multiplications, 2 sums and 3 subtractions aropaed. For the activation
degree of Fuzzy Rule 3.2 an extra subtraction and multifiioare required. For the MCA
filter, the calculation of the weight in expression (3.6)uiegs 7 multiplications, one di-
vision, and the calculation of 3 exponential functions anapgposites. The alternative in
expression (3.7) can be computed by 4 multiplications, avisidn and the calculation of
2 exponential functions and 2 opposites. The use of fuzzig liogthe weight calculation
is thus not more complex. The proposed individual treatneéribe pixels, however, re-
quires the weight calculation for each individual pixel.the MCA filter, weights are only
calculated for the different index classes, which resuli little lower complexity.

57



F Additive Gaussian Noise in Greyscale Image Sequences

3.2 Wavelet Based Spatio-temporal Filter with Additional
Pixel Based Time-recursive Averaging for Greyscale
Image Sequences

In this section our method is extended to the wavelet donidie. procedure is the follow-
ing: each processed frame is first decomposed using the 2Bletdaxansform [72]. Next,

an adapted version of the proposed method from Section Zfipked on each of the re-
sulting wavelet bands separately. Finally, the inversealeransform is applied, followed
by an additional time-recursive averaging in the pixel donfsee Fig. 3.4).

LH

>
L Filtering of
the -
Input I, Wavelet wavelet [ | Inverse Ig,| Time- I; [Qutput
sequence —| .o ctorm bands wavelet —»| recursive —Psequence
fi HA f fi
rame l»| transform iltering . rame
A
—t |
) » | T

: one frame delay

Figure 3.4: The filtering scheme for the proposed wavelet domain method.

3.2.1 Basic Notions

The wavelet transform of an image results in a representdltiat is very useful for im-
age denoising. The transform compacts image details (ssigfuges and texture) into a
small number of spatially clustered large coefficients,levkmall coefficients correspond
to homogeneous regions in the original image.

We use the notatiop; 4(r, t) for the wavelet coefficient at resolution scaleorienta-
tion d and spatial position in the wavelet decomposition of the noisy frame with tempora
positiont. For the results in this chapter, we have opted for a nonauteid wavelet de-
composition (which is known to give better denoising resthian the decimated one) using
the Haar-wavelet with three orientation subbands, leatbntipree detail images at each
scale, characterized by horizontdl £ LH), vertical (¢ = H L) and diagonald = HH)
directions and a low-frequency band (denoted 1y).

Due to the linearity of the wavelet transform, additive edisthe pixel domain remains
additive after the transformation as well, resulting in:

ys,d(ra t) = Bs,d(rat) + es,d(rat)v

wherey, (r,t) andg; 4(r, t) are respectively the noisy and the noise-free wavelet eoeffi
cient ande; 4(r, t) is the corresponding noise component.
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3.2.2 Fuzzy Motion and Detail Adaptive Averaging in the Wavett Do-
main

The proposed method is now extended to the wavelet domairgeldifferences in grey
value in the pixel domain indicate the occurrence of an edgereserve the edges, pixels
with a large difference in grey value, relative to the pixelry filtered in the current step,
should not be taken into account in the averaging. Only pikelm the same object, i.e.,
belonging to the same side of the edge, should be averagedranekpected to have a
similar grey value. In the wavelet domain, edges resultigdaoefficients. So to preserve
the edges, only the large coefficients, corresponding teetleelges, should be averaged to
filter out the noise. Small coefficients should get small \sgn this case, and vice versa
for homogeneous areas. This also holds for wavelet coeftgi@ the previous window.
When there is no motion, the wavelet coefficients correspanth the same edge in the
previous frame are expected to be of a similar size. Henoglasivalues should result in
large weights and large differences in small weights.

Because the region of wavelet coefficients that are influgtingea given pixel value
expands with increasing scale, an averaging scheme bedeswsand less efficient for
higher scales. Therefore we have used only two scales indkielet decomposition, which
is insufficient to remove all the noise. To overcome this ol in [146, 149], also the
low-frequency band is filtered to obtain a better noise reahon this chapter, we choose
instead for an additional time-recursive filtering in thegdidomain as in [110], but in a
more adaptive fuzzy logic based way.

Filtering of the Wavelet Bands

The filtering of the wavelet bands is adapted in an analog@ysas in [146, 149]:
e We adopt the corresponding definition for the detail val(re ¢) from [146, 149]:

d(r, 1) = (nyﬁd(r’ ,t))é. (3.9)

e For all detail bands the same motion indicator value is uslé;h is computed on the
low-frequency band. This motion value is defined as the albsalifference between
the central coefficient value in the current window and inghevious window of the
low-frequency band.

e The parameters that define the membership funciigns:, andy.,, in Fig. 3.3 need
to be adapted to the specific detail band.

Sincem(r,t), d(r,t) and A(r' ,t’,r,t) are all three defined, Fuzzy Rules 3.1 and 3.2 can
still be used to determine the weights in (3.1). The onlyedéhce is that we are now
working with wavelet coefficients instead of grey values.
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Additional Time-Recursive Filter in the Pixel Domain

Let I, andl; respectively denote the sequence after the filtering of #neslet bands and
the inverse wavelet transform and the sequence after theasdd time-recursive filtering
(see Fig. 3.4).

First, the absolute difference between the pixels in theeciframe after the filtering of
the wavelet bands and the pixel at the corresponding positithe previous frame, which
has already been processed by the additional time-reeuiker, is computed:

TD(r,t) = I, (r,t) — I(r,t —1)]. (3.10)
For each difference, its membership degtee,(T'D(r, t)) in the fuzzy set “large tem-
poral difference” is then calculated. The membership fianct.p of this fuzzy set is

depicted in Fig. 3.5.

Membership degree Wy (TD)

: LARGE TEMPORAL
. DIFFERENCE

o' par, par, D
Figure 3.5: The membership functionrp for the fuzzy set “large temporal difference”.

The final output of the additional time-recursive filter iseyi by

1-— /LTD(TD(rﬂf))
2

1+ MTD(TD(r,t))

If(r,t): 9

If(rvt_1)+ IfW(r,t), (3.11)
where the contribution of ¢ (r, ¢ — 1) is limited to a maximum o% to prevent noise propa-
gation in time.

3.3 Parameter Selection

It is clear that the membership functions in Fig. 3.3 and 3é @mpletely determined
by their respective parameters. These parameter valueshesn experimentally selected
using the “Salesman”, “Trevor”, “Tennis” and “Flower Gardesequences, which all have
their own characteristics. The “Salesman” sequence reptesa standard sequence with
moderate detail (shelfs, books,) and moderate motion (person). The “Trevor” sequence
contains very fast motion (moving arms). In the “Tennis”@ence we deal with a zooming
camera and a detailed background (wall). The “Flower gdrdequence finally, combines
very detailed regions (flower field) with homogeneous regi(sky).
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The parameters have been set in the following way. The pezpowthod was applied
on each of the above sequences, for the different noiseslevet 5, 10,15, 20,25 with
parameters varying over a range of possible values. Afwtipy the optimal parameter
values (in terms of PSNR) for the different sequences angkrleivels, a linear relationship
was found between these optimal parameter values and the leviel. Therefore the pa-
rameters have been determined by the best fit through thevalises. As an illustration,
the optimal values for the paramefgy of the proposed pixel domain method together with
the best fitting line through these points are depicted in &i§. The parameters are thus
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Figure 3.6: Optimal value for the paramet&h of the proposed pixel domain method.

linearly dependent of the noise level. For the results ia thapter, we assume a known
standard deviation of the noise. In most practical casesbherythe standard deviatien

is not known and should be estimated. A commonly used notsmafon method is the
wavelet domain median absolute deviation (MAD) estimat@anoho and Johnstone [37].

The selected parameter values that determine the mempéusktions used in the pixel
domain method are given in Table 3.1.

Table 3.2 presents the selectédt,, 77 and7» values for the different waveletbands in
the wavelet domain method. The parameterand¢, for the membership function,,, and
the parametergar; andpars for the membership functionrp are determined as given in
Table 3.3.
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Table 3.1: Selected parameter values for the pixel domain method.

parameter| selected value
thry 1.360 + 1.2
Ty 0.790 + 0.25
T 5.240 — 15.35
t 0.4650 — 0.625
to 1.7950 + 3.275

Table 3.2: Selectedhry, T1 andT% values for the different detail bands.

Band thry Ty 15

LH, 5.07330 — 14.2667 | 0.88670 — 1.9667 2.940 4+ 2.9
HL, 5.57330 — 14.2667 0.88670 — 1.9667 2.940 4+ 2.9
HH, | 46.62670 — 243.0667 | 0.88670 — 1.9667 2.940 4+ 2.9
LH> 2.75330 — 1.3 2.70670 — 8.2667 | 2.88670 + 0.8333
HL, 2.75330 — 1.3 2.70670 — 8.2667 | 2.88670 + 0.8333
HH, 8.82670 — 26.9333 2.70670 — 8.2667 | 2.88670 + 0.8333

3.4 Experimental Results

In this section we will show some experimental results at@difrom the test sequences
“Salesman”, “Tennis”, “Deadline”, “Trevor”, “Flower gaeh” and “Miss America”. As
mentioned in Subsection 3.2.1 and 3.2.2, for the experisnent wavelet domain algorithm
has been implemented with a non-decimated wavelet transieing the Haar-wavelet and
only two decomposition levels have been used.

In Subsection 3.4.1 we compare our method with other stiatlkesart methods both
in the pixel domain and the wavelet domain. AdditionallySuabsection 3.4.2, the use of
different fuzzy aggregators is tested.

3.4.1 Comparison to Other State-Of-The-Art Methods

In this subsection, we compare our method to other stathesfrt methods. We first com-
pare our pixel domain method to other pixel domain methodsthen do the comparison
for the wavelet domain method.
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Table 3.3: Selected, t2, par: andpars values for the wavelet domain method.

parameter| selected value
t 3.220 + 1.5667
to 36.76670 + 16.5
pary 0.5550 — 0.725
pars 1.360 + 5.1

Pixel Domain

The non-recursive (FMDAF) and recursive (RFMDAF) schemewf fuzzy motion and
detail adaptive filter in the pixel domain have been compéuetie following well-known
filters that also operate in the pixel domain (all with pargen@alues as suggested in the
respective papers):

e the rational filter (Rational) [22],

e the 3D-KNN filter (KNN) [147] as an extension of the 2D-KNN é&ft[27, 89],
e the threshold averaging filter (THR) [61, 147],

¢ the motion and detail adaptive KNN filter (MDA-KNN) [147, 148

e the recursive scheme of the multiple class averaging fiRWICA) [146] (which
performs better than the non-recursive one as shown inJ146]

Fig. 3.7 and Fig. 3.8 give the PSNR results for six test seceeprocessed with the
above mentioned methods and for the noise lewvels 10 ando = 15 respectively. It
can be seen that in terms of PSNR the FMDAF and RFMDAF filtetpextorm the other
pixel domain methods. The MDA-KNN filter gives comparableuks on the “Salesman”
and “Deadline” sequences. Further, we also note that cabferesults are found on the
“Flower garden” sequence for the RMCA and the THR filters. &asisual comparison,
the original “Trevor” sequence, the sequence with addeds&8an noised4 = 10), and the
noisy sequence processed by the different filters can balfonhttp://www.fuzzy.
ugent.be/tmelange/results/greygauss/pixel . From the tests we also found
that our method adapts better to motion than the RMCA methodrig.3.9 a part of the
18th frame of the “Trevor” sequence with added Gaussiarenpis= 10) processed by the
FMDAF method, the RFMDAF method and the RMCA method is giv®ne clearly sees
that our method has given a lower weight to those pixels frieenprevious frame situated
in the fast moving arm.

Finally, we observed that the recursive scheme (RFMDAFhefgroposed filter re-
moves slightly more noise than the non-recursive schemd)@), but this at the expense
of little loss of spatial texture. Fig. 3.10 shows the 18#mie of the “Tennis” sequence
with added Gaussian noise & 20), processed by the FMDAF and by the RFMDAF. The
texture on the wall is best preserved by the FMDAF method. @uthe other hand, by
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(a) “Salesman” (b) “Trevor”
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(a) “Salesman”
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(a) (b)

(c) (d)

Figure 3.9: Part of the 18th frame of the “Trevor” sequence (a) original; (b) widbded Gaussian
noise ¢ = 10); (c) processed by the FMDAF method; (d) processed by the RFM&thod and
(e) processed by the RMCA.
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Figure 3.10: 18th frame of the “Tennis” sequence (a) original; (b) with added Ganswise & =
20); (c) processed by the FMDAF method and (d) processed by the RffMiethod.
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looking carefully at the table, one sees that more noisei®ved by the RFMDAF than by
the FMDAF.

Wavelet Domain

The recursive (WRFMDAF) scheme of our wavelet domain metidddh outperforms the
non-recursive one) has been compared to the following ndstfall with parameter values
as suggested in the respective papers):

e the recursive scheme of the wavelet domain multiple classaging filter (W WRMCA)
[146] (non-decimated transform with the quadratic splirvelet),

e the 3D wavelet transform filter (3DWF) [124] with the signabative threshold from
[125] (3-D dual-tree complex wavelet transform),

e the sequential wavelet domain and temporal filter (SEQWTP]{fhon-decimated
transform with the symmlet-8 wavelet),

e the adaptive spatio-temporal filter (ASTF) [21] (64-tapdstion filter [49]),

e the video filter based on inter-frame statistical modellifighe wavelet coefficients
(FISMW) [70] (decimated transform with the orthogonal syrats wavelet),

e the sparse 3D transform-domain collaborative filter foreadVBM3D) [25] (the
decimated biorthogonal wavelet biorl.5 for the 2D-transf@f the blocks and the
decimated Haar-wavelet for the third dimension in the fitsp ©ind the dct-transform
(2D) and the decimated Haar-wavelet (third dimension) éngécond step).

Fig. 3.11 and 3.12 give the PSNR results for the processetes®an”, “Trevor”,
“Deadline”, “Tennis”, “Miss America” and “Flower Garden’eguences. It can be seen
that our method works best for a still camera filming possibbving objects (“Salesman”,
“Trevor”, “Deadline”, “Miss America”). On such sequencesrgroposed wavelet based
recursive WRFMDAF method clearly outperforms the ASTF mdthé/e also see a better
performance for the WRFMDAF than for the RMCA filter and similesults to those of the
SEQWT filter. Taking into account that the degradations tesiiit from using a decimated
transform instead of a non-decimated one can reach up to 1L8BLL0], we might also
conclude a similar performance for the FISMW filter. Stillpra sophisticated filters like
the VBM3D filter, consisting of two steps in which blocks aregped by spatio-temporal
predictive block-matching and each 3D group is filtered byparansform domain shrink-
age, and the complex 3D wavelet transform method 3DWF shatertressults in terms of
PSNR than our proposed filter. For the “Flower garden” segegthe received results are
worse, because the performance of the additional timerse@filtering in pixels where no
motion is detected, will be reduced for a moving camera.

For a visual comparison, the original “Deadline” sequeribe, sequence with added
Gaussian noises( = 10), and the filtering results obtained by the different coregar
wavelet domain filters are available btip://www.fuzzy.ugent.be/tmelange/
results/greygauss/wavelet . We see that a little less noise is removed by the
WRFMDAF and WRMCA filters than by the SEQWT and FISMW filters, battbe other
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hand details are well preserved and less artefacts aroendddpes are introduced by the
WRFMDAF filter.

It can be concluded that, for sequences obtained by a stileca our method has a
better performance in terms of PSNR than the other multiuéisao filters of a similar com-
plexity, but it is outperformed by some more sophisticatedhads.

3.4.2 The Use of Other Fuzzy Aggregators

In this subsection, we compare the performance of the pezpoethod, implemented with
different triangular norms and conorms. In Table 3.4 theltssn terms of PSNR are given
for different sequences processed with the RWFMDAF filterlemgnted with the sug-
gested product norm and probabilistic sum conorm and othyeulpr triangular norms and
conorms. It can be seen that the performance of all aggnesyaite very comparable. Only
the weak norm and strong conorm seem to perform less goodroa sebthe sequences.
Therefore, we have chosen for the simple intermediate edgeproduct and probabilistic
sum.

Table 3.4: Comparison of the different aggregators.

Sequence PSNR,,
(o = 10) algebraic product/ minimum/ | weak/ | tukasiewicz
probabilistic sum| maximum | strong
“Salesman” 34.37 34.36 34.10 34.36
“Trevor” 36.41 36.42 35.55 36.29
“Deadline” 33.95 33.91 33.74 33.98
“Tennis” 31.44 31.37 31.47 31.55
“Miss America” 37.48 37.48 36.76 37.42
“Flower Garden” 28.27 28.13 28.50 28.44

3.5 Conclusion

In this chapter we have presented a new fuzzy motion andl detaptive video filter in-
tended for the reduction of additive Gaussian noise in @igihage sequences. The pro-
posed method is a fuzzy logic based improvement of the nhelltfass averaging filter
(MCA) from [146, 149]. Pixels are no longer divided into diste classes but are treated
individually and the heuristic construction of exponehtianctions to assign the filtering
weights to the neighbourhood pixels is replaced by a morerétieal underbuilt fuzzy
logic framework in which fuzzy rules, that correspond to itkeas behind the MCA filter,
are used.
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Figure 3.11: Performance comparison for the wavelet domain methods applied toffiwesit test

sequences with added Gaussian noise=(10).
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The proposed algorithm has first been defined in the pixel doarad was additionally
extended to the wavelet domain.

Experimental results show that the introduction of fuzzgidanto the filtering frame-
work improves the filtering results and that our pixel domgieyscale method and the
wavelet domain extension outperform respectively otreesbf-the-art pixel domain filters

and other state-of-the-art wavelet domain filters of a camiga complexity in terms of
PSNR.
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Additive Gaussian Noise in
Colour Image Sequences

Most video filters that exist in literature are designed faygcale sequences corrupted by
additive Gaussian noise, e.g. [4, 21, 50, 70, 79, 110, 129, Hardly no video filters for
colour sequences can be found, since greyscale methodsraghtorwardly be extended
to colour video. For colour image sequences modelled ini6td3 colour space, one can
e.g. filter each of the colour band® G and B separately. This might however result
in the introduction of colour artefacts since the correlatbetween the different colour
bands is neglected. Therefore, the commonly used alteeniatto filter only the luminance
componenty” of the YUV -transform with the given greyscale method, possibly with a
additional averaging of the chrominance componéhendV'.

In this chapter, we introduce two other colour extensiorfs [#] for the greyscale
method outlined in Chapter 3 of this thesis. Both colour esitens consist of two subfilters.

The first subfilter of the first proposed colour filtering framoek [75] is a vector-based
extension of the greyscale video filter in Chapter 3, thaitgeach pixel as a colour vector
and that does not use the components separately. The usell difference and motion
values used in the fuzzy rules are extended from grey vatueslour vectors.

In the first subfilter of the second proposed colour filter [T6¢ greyscale method from
Chapter 3 is extended by adding colour information to theyungic framework. Each
of the colour bands is denoised separately by averagingdise im an analogous way as
in the greyscale method. However, the fuzzy rules that deter the weights assigned to
the pixels considered in the averaging, now also requirinétion from the other colour
bands. Due to this increase in information, we can expectra matiable estimation of the
degree to which a neighbouring pixel is similar to the pikeittis filtered.

To further improve the results, the first subfilter of bothoeolextensions is combined
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with a second subfilter. Especially around edges in the inms@®e colour artefacts might
have appeared because sometimes not enough similar neighten be found to com-
pletely average the noise and it might also happen that é&beiging pixel is wrongly
considered as belonging to the same object (similar). Ih poiposed colour filters, for the
second subfilter, we have used an extension of the secondtesuinfii119]. This subfilter
is based on the simplified assumption that for similar pixleéspixel value differences in
the three different colour components should all three Ipeagmately the same. The pixel
being filtered is estimated from a neighbour by estimatiegifferences in each band equal
to the average over the different colour bands.

The experimental results show that the proposed colounsides perform very well in
terms of PSNR and NCD and form a good alternative foritliél”-approach.

The structure of the chapter is as follows: The two propos#duc video filters are
respectively explained in Section 4.1 and Section 4.2. #althlly, Section 4.3 presents
a comparison between the different colour extensions. llgirisection 4.4 concludes the
chapter.

4.1 First Proposed Colour Filter

The first proposed filtering framework [75] consists of twdlters which are defined in
Subsection 4.1.1 and Subsection 4.1.2 respectively. Ifirdtesubfilter a3 x 3 x 2 sliding
window is used, which is moved through the frame from toptethottom right, each time
filtering the central position in the window. This window ®ists of3 x 3 pixels in the
current frame and x 3 pixels in the previous frame as shown in Fig. 4.1. The central
position in the window is denoted ky, ¢), wherer = (z,y) andt respectively stand for
the spatial and temporal position in the image sequence. rBitrary pixel position in
the sliding window (which may also be the central positiahgenoted by(r',¢), with
r=(x+ky+1),(—1<k/l<1)andt =tort’ =t¢— 1. Further, the second subfilter
uses & x 3 window in the current frame for which similar notations wik used as for the
3 x 3 x 2 window. Finally, the noisy input sequence and the outpuheffirst and second
fuzzy subfilter are respectively denoted By /¢, andy.

y-1 y y+
SUxA o

Figure 4.1: The3 x 3 x 2 filtering window consisting o8 x 3 pixels in the current frame arx 3
pixels in the previous frame.
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4.1 First Proposed Colour Filter

4.1.1 First Subfilter

In this first subfilter, the fuzzy logic filtering frameworktioduced in Chapter 3 is extended
from grey values to colour vectors. In this vector-based@ggh, the colours are handled as
vectors and none of the colour components is used separatejogously to the greyscale
method, the output of this first subfilter is for each pixel defi as a weighted average over
the colour vectors in 8 x 3 x 2 filtering window surrounding the pixel. The filtered colour
vectorIy, (r,t) for the considered central pixel in the window is thus givgn b

Zr’ W(r, 7t - 17 r7t)If(r, at - 1) + Zr’ ( 7ta rat)I”(r, at)
Zr’ Zi’:t—l W(r, 7t/a r t)

where the weight$V (r' , ¢, r,t) correspond to the activation degree of one of the Fuzzy
Rules 4.1 and 4.2 given below. These fuzzy rules are agaediasa detail valué(r,¢), a
difference valueA(r’ , ¢/, r, ¢) and a motion valuen(r,t), that are vector extensions of the
values introduced in Chapter 3 and that were adopted fro®j[14

15 (rit) =

, (4.1)

Detail, Difference and Motion Values

e The detail valuei(r,t) is equal to the standard deviation of thex 3 pixels of the
sliding window belonging to the current frame:

Lo (1, 1) ZI ()
1 : 2%
:(§Z”In(r 7t)_I‘“’(r’t)H2) ’
-

e The difference valué\(r' ,¢’, r, ¢) in the fuzzy rules is defined by
A( 7t7 rvt) - ”In(r, 7t) - In(rvt)HQ )
for pixels in the current frame/(= t) and by
A(r t—=1,r,t) = [[Ip(r,t = 1) = I,(r,t)]|,,

for pixels in the previous frame'(=t — 1).
e The motion valuen(r, t) used for the filtering is finally determined as:

m(r,t) = [[n(r, 1) = Ip(ryt = D5 .

To be able to express whether the above defined values age™lave introduce the
fuzzy sets “large detail value”, “large difference” andrtia motion value”. The member-

ship functions of these three fuzzy sets are respectivetptee by, ua andp,, and
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thr, thr, d(r.t)

Figure 4.2: The membership function, of the fuzzy set “large detail value”.

Membership degree p,(A(r’.t'r.t)
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Figure 4.3: The membership functiopa of the fuzzy set “large difference”.

Membership degree L, (m(r.t))
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Figure 4.4: The membership function,,, of the fuzzy set “large motion value”.
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4.1 First Proposed Colour Filter

are depicted in Fig. 4.2, 4.3 and 4.4. The parameters, thro, 11, Tb, t; andt, that
define the exact form of these functions have been experaityedetermined as explained
in Subsection 4.1.3.

Using the above introduced values and fuzzy sets, the wsigiit’ , ¢',r, ¢) in (4.1) can
now be determined based on a fuzzy rule.

Weight Determination

Depending on whether the window pixel at positigh, t’) lies in the currenty{ = t) or

in the previous# = t — 1) frame, the weight¥(r’ ,¢/,r,¢) in (4.1) is determined as the
activation degree of one of the fuzzy rules given below. Tlles remain the same as in

Chapter 3, but with the adapted detail, difference and mataues and they are now used
to assign weights to colour vectors instead of grey values.

Fuzzy Rule 4.1. Determining the membership degree in the fuzzy set “largghtieof the
weightW (r’, ¢, r,t) for the pixel at position” in the current frame# = t) of the window
with central pixel positior(r, ¢):

IF ( the detail valuei(r, t) isLARGE ANDA(r’,t¢',r,t)isNOT LARGE)
OR (the detail valuei(r,t) isNOT LARGE)

THEN the pixel at positiorr’ is a RELIABLE neigbhourhood pixel for the filtering of
I,(r,t).

Fuzzy Rule 4.2. Determining the membership degree in the fuzzy set “largghweof the
weight W (r’, ¢, r,t) for the pixel at positiorr’ in the previous framet( = ¢ — 1) of the
window with central pixel positiofr, ¢):

IF (( the detail valuel(r,t) isLARGE ANDA(r’;#',r,t) isNOT LARGE)
OR (the detail valuel(r, t) isNOT LARGE)
AND the motion valuen(r,t) isNOT LARGE

THEN the pixel at positiorr’ is a RELIABLE neigbhourhood pixel for the filtering of
I, (r,t).

For the results in this chapter, we have chosen to use theraigeproduct, the prob-
abilistic sum and the standard negabdy for the AND-, OR- and NOT-operators in these
rules. There is however no remarkable difference to theltesbtained by using other
t-norms and-conorms. The weight (r' ,¢',r,t) (corresponding to the activation degree
of one of the two rules or thus the degree to whiglgr' , ¢') is reliable for the filtering of
I,(r,t)) is thus more precisely given by

wrtrt)=w-1-0)+(1-w)—w-(1-0)-(1-w),
for pixel positions in the window belonging to the curreratrfre and by

Wt r,t) = (w~(1—9)+(1—w)7w~(170)~(17w))~(171/)),
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= o &

= pa(AF,T,r,0),
= (

4.1.2 Second Subfilter

Because sometimes not enough similar neighbours can bd fowwompletely average the
noise in the first subfilter and because some pixels might hae@ wrongly considered
similar in the first subfilter, some colour artefacts miglit be present after applying the
first subfilter. To further improve the result, the first subfilis combined with an addi-
tional second subfilter, which is an extension of the secoibilger in [119]. Based on the
simplified assumption that the difference between simiieglp is approximately the same
in all three colour bands, a pixel is estimated from a neiginliyy estimating a difference
in a given colour component equal to the average over alethodbour bands. So a differ-
ence that is larger than the average is made smaller and eisa.vThe final output is a
weighted average over the estimations obtained from tHerdiit neighbours, where the
weight is the degree to which we believe that the neighbolongs to the same object.
The weights are introduced because for neighbours not giglgrio the same object, the
simplified assumption does not hold.

Local Differences and Correction Terms

As mentioned before, for this second subfiltel3 & 3 sliding window is used. In each
step the central pixel in this window, at position ¢) in the image sequence, is filtered.
For each pixel in the sliding window, local differences @jeats) in the three colour bands
(each separately) are calculated. The differences in thegreen and blue neighbourhoods
are respectively denoted byD®, LD and LD? and they are calculated based on the
output of the first subfilter:

LD®(rrt) = If(r,t) — If(rt),
LDE(r vty = IF(r,t) — If(r,t), (4.2)
LDB(r r.t) = If(r,t) — If(r,t).

Next, for each position in the window one correction termagimined using the calcu-
lated local differences. This correction term is definechasaverage of the local difference
in the red, green and blue component at the given position:

_!

e(r,r,t) 3

(LDR(r’ 1, t)+ LDC(r ,r,t)+ LDB(r ,r,t)). (4.3)
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Output of the second subfilter

In [119], the output for each component of the central pigeln average of the correspond-
ing components of the neighbourhood pixels, corrected thighcorresponding correction
term:

if) = s> (e -er.y),
%0t = éZ(I(’I(r’,t)—e(r’,r,t)),
Bt = = (Iﬁ(r’,t)fe(r’,r,t))

However, pixels that belong to another object and that haw¢har colour, have a negative
influence on the output. In homogeneous areas, neighbopiials are expected to be
almost the same, and the local differences to be almost heSoéthod further averages the
remaining differences caused by the noise. For a pixel lgéhgrto another object however,
the assumption that the local differences are expectedequ in all components does not
always hold. Therefore we assign weight&l'(r' , r,¢) to the neighbouring pixels, based
on whether they are expected to belong to the same objecttofToanake this decision,
we use the Euclidian distance between the central pixell@ddnsidered neighbourhood
pixel, given by

5(r,r,t) = (LD®(r ,r,t)> + LD(r ,r,t)* + LDB(r, r,t)Q)%.

The weights themselves are then calculated using the folgpfuzzy rule that expresses
that the value(r’ , ¢, r, ¢) should not be large. Otherwise, the considered pixel is &rge
to belong to another object.

Fuzzy Rule 4.3. Assigning the weight in the second subfilter for the pixelositon (r’, ¢)
in the filtering window:

IF §(r',r,t)is NOT LARGE

THENthe pixel at positior{r’, t) has aLARGE WEIGHWT(r’,r,t) in the second subfil-
ter.

The membership function; that determines the fuzzy set “large Euclidian distance” is
depicted in Fig 4.5. The weights in the filtering are againsgmequal to their membership
degree in the fuzzy set “large weight”, i.8;T(r' ,r,t) = 1 — us(6(r' ,r,1t)).

Finally, if not WT'(r',r,t) = 0 for all neighbouring pixels in thé x 3 window, the
output of the second subfilter for the central pixel in thedaw is determined as follows:

S W, r ) (TR0 ) e 1,1))

If(r,t) =
£(r.t) S WT(r,r,t) ’
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Membership degree ()
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»
>
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Figure 4.5: The membership functiopn; of the fuzzy set “large Euclidian distance”.

S W, r ) (15000 = e r,0))
S WT(r,r,t) ’
S WI(r,r,t) (Iﬁ(r' 1) —e(r ,r,t))

B _
Iy = S WT(r,r,t) ’

If(rt) =

wheree(r', r, t) is the correction term for the components of the neighbawpirel at posi-
tion (r',¢). If the central pixel is so corrupt that all neighbouringgixget a weight equal
to zero, the output is calculated by giving all neigbhourpixgls in the window a weight
equal to 1 and the corrupt central pixel the weight O:

e = 3 (e -drnn),
r#r

g0 = 33 (1800 - ),
r#r

IP(rt) = % (Iﬁ(r’,t)—drﬂr,t)).
r#r

4.1.3 Parameter Selection

The parameters that determine the membership functiortsimbove described filtering
framework have been set as follows. For the respective neisds o = 5,10, 15, 20,
the optimal parameters in terms of the mean PSNR values gecraver the sequences
“Salesman”, “Tennis”, “Flowers” and “Chair” have been detéed by letting them vary
over a range of possible values. As illustrated for the patars7; andpars in Fig. 4.6,
this led to a linear relationship between these optimalasland the noise level. Hence,
the parameters are set as the best fitting line through thenaimons, as shown in Fig. 4.6.
The equations of those straight lines are given in Tablewhgreos stands for the standard
deviation of the Gaussian noise. If this standard deviagaomt known, it can be estimated
e.g. by the wavelet domain median absolute deviation (MAddjreator from [37].
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T1

Figure 4.6: Selection of the parameter values.

Table 4.1: Selected parameter values for the membership functions.

parameter

optimal value

th’l’l
thrg
Ty
Ty
t
to
pary
para

0
0.640 + 0.5
1.040 — 4.5
4.060 — 0.5
3.20 — 18
11.460 — 25.5
0
4.880 4+ 42.5
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4.2 Second Proposed Colour Filter

In this section, the second proposed filtering frameworkcfour video [76] is outlined.
The method is a superposition of two subfilters, presentedspectively Subsection 4.2.1
and Subsection 4.2.2.

Analogously to the first proposed filter, in the first subfie}y x 3 x 2 sliding window
(Fig. 4.1) is used, while for the second subfilter the windsweistricted to th8 x 3 pixels
in the current frame. The notatiofis t) and(r' ,t') (r = (x + k,y +1), (-1 < k,1 < 1)
andt’ = t ort’ = t — 1) again stand for the spatial and temporal position in thegena
sequence of respectively the central and an arbitrary pixéle sliding window.

4.2.1 First Subfilter

The subfilter explained in this subsection, is a non-vebted colour extension of the
filtering framework introduced in Chapter 3.

The filtering is based on averaging the noise using the pisiponent values in the
neighbourhood that are similar to the given pixel componahie and probably belong to
the same object. Each colour band is filtered separatelynkibe filtering of each colour
band, the information from the other colour bands is usedtdien that a neighbouring
pixel does indeed belong to the same object.

In the following the output of the first fuzzy subfilter is deed by, , while the noisy
input sequence is denoted By. The output of the first subfilter for the central pixel in the
window is determined as a weighted mean of the pixel valuéisdf x 3 x 2 window:

t Ry / Ry 4/
. iy A WO ) Lt
I]:E (I’,t) _ Zr Zt =t—1 ( ) ( )’ (44)

Zr‘ Zi’:tfl WR(r, 7t/a r, t)
Zr’ ZE’:t—l WG(r’ 7t/7 ﬂt)]g(l” vt/)
Zr’ Zzts/:t—l WG(r’ vtla r, t) ’
t By 41 By 3/
) i A WEO L ) (0t
IBI (I’,t) _ ZI’ Zt —tftl ( : ) ( ) (46)
' Zr’ Zt/:tfl WB(r ’t/ar’t)

I (r.t) (4.5)

The weightsV E(r' ¢/ r,t), WE(r ,#',r,t) andWB(r ¢ r,t) in the above weighted
means are determined as the activation degree of Fuzzy Réler44.7 (depending on
whethert’ = ¢ ort’ = ¢t — 1). In these fuzzy rules, a detail valdér, ¢), three difference
valuesAL(r ¢/ r t), AG(r,¢',r,t) andAB(r ,#',r,t) (one for each colour band) and a
motion valuem(r,t) are used, which we will discuss first. For the AND-, OR- and NOT
operators, respectively the algebraic product, the priibisum and the standard negator
have been used for the results in this chapter. These opegagided the best results, but
the results obtained by other aggregation operators arpaile.
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4.2 Second Proposed Colour Filter

Detail, Difference and Motion Values

e In our proposed method, only one detail vallig, ¢) is used for all three colour
bands. This detail value depends however on the three galads computed on each
colour band separately. These three detail values are amtlad standard deviation
calculated in the respective colour bands on3he 3 pixels of the filtering window
belonging to the current frame. Therefore, for each col@amdthe average value in
the current frame of the filtering window needs to be compiitst

1
IE(rt) = §§:Ifﬂ’t
IS (rt) = ZIGr t),
IBrt) = }:IB

The three single band detail values are then given by:

e = (53 e - 1))

v

(52t - 150.0)%)

1 2\ 3

an(r.t) = (grz (I8 )~ I5(r,0)%)

(NI

Nl

de(r,t)

For the calculation of the activation degree of Fuzzy Rulésahd 4.7, we will not
need to know the exact value @fr, ). Only the membership degree (d(r,t)) of
d(r,t) in the fuzzy set “large detail value” will be needed. This nbemship degree

is determined by the following fuzzy rule:

Fuzzy Rule 4.4. Assigning the membership degree in the fuzzy set “largeildeta
value” of the detail valuei(r,t) for the pixel at the central positiofr,t) in the
filtering window of the current step:

IF d%(r,t)is LARGE ANRC(r,t)is LARGE ANRZ(r,t)is LARGE
THEN d(r,t) is LARGE

The membership functiop,q of the fuzzy set “large single band detail value” is
given in Fig. 4.7, with the parametetsr, andthr, experimentally selected as ex-
plained in Subsection 4.2.3. The membership deg[ﬁ{d(n t)) is thus given by:

p1a(d(r,t)) = prapa (d(r,t)) - pspa(d9(r 1)) - ppa(d®(r,t)).
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Membership degree LL,(d)

' LARGE DETAIL

A 4

of thr, thr, d
Figure 4.7: The membership functionsq of the fuzzy set “large single band detail value”.

e The three difference values?(r' ¢/ r,t), AG(r ,#',r,t)andAB(r ,#,r,t) that are
used in the fuzzy rules to determine the weights in (4.4))(dre given by:

AR trt)y = |IE(r . t) —IE(r t),
At rt) = |[I9(r,t") —I%(r 1),
AB(r ¢ rt) = |IB(r ) —1B(r 1)

The membership functiona of the fuzzy set “large difference” is given in Fig. 4.8,

Membership degree p,(A)

:LARGE DIFFERENCE

\4

Figure 4.8: The membership functiopa of the fuzzy set “large difference”.

with the parameterg; and 7, experimentally selected as explained in Subsection
4.2.3.

e Analogously to the detail valug(r, t) also only one motion value:(r, t) is used for
the filtering of all three colour bands. This value dependsdwer again on three
values computed for each of the colour bands separatelyseTtieee single band
motion values are:

mi(r,t) = |18 - Imxrtfl)\
— R(p R
= §Zln(r Z[

IS,(r,1) - <r,t—1>\

mG(I'7 t)




4.2 Second Proposed Colour Filter

mB(r,t) =

I{ﬁ)(r7t) 71{5}("7757 1)‘

1 , 1 ,
‘5215@ DU 1)‘.
r r

Just as it was the case for the detail vadife, ¢), we will also not need to know the
exact value ofn(r, ) for the calculation of the activation degree of Fuzzy Ruk 4.
and 4.7. Only the membership degyeg (m(r,t)) of m(r,¢) in the fuzzy set “large
motion value” will be needed. This membership degree isinbthfrom the following
fuzzy rule:
Fuzzy Rule 4.5. Assigning the membership degree in the fuzzy set “largeomoti
value” of the motion valuen(r,t) for the pixel at the central positiofr, ¢) in the
filtering window of the current step:
IF ( mf(r,t) isLARGE ANDn®(r,t)is LARGE) OR

(mP%(r,t) is LARGE ANDnZ(r,t)is LARGE) OR

(r,t) isLARGE ANDn®(r,t)is LARGE)

THEN m(r,t) is LARGE

R
(m&

Membership degree i, (m)

:LARGE MOTION

»
»
m

Figure 4.9: The membership functiopss,, of the fuzzy set “large single band motion value”.
The membership functiop,,, of the fuzzy set “large single band motion value” is

given in Fig 4.9, with the parametets andt, experimentally selected as explained
in Subsection 4.2.3. The membership degrg€m(r,t)) is thus given by:

um(m(r,t))=a+(ﬂ+7—ﬂ-7)—a'(ﬂ+7—ﬁ-’y)7 (47)

with
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Weight Determination

As mentioned above, the weights?(r /. r, ), WE(r ¢ r,t)andWB(r ,#',r,t) in the
weighted means (4.4)-(4.5) are determined as the activdégree of the Fuzzy Rules 4.6
and 4.7, that correspond to the ideas that were adopted fiermultiple class averaging
filter [149]. If large detail is detected, i.e., if a calcwddtdetail value is large, then we
should filter less by averaging only over pixels that areegsimilar, i.e., for which there
is no large difference in the considered colour componedtaso in at least one of the
other components. On the other hand, if there is not muchl deetizcted, i.e., in the case
that the calculated detail value is not large, strong fitigrshould be performed, i.e., we
don’t put a condition on the difference between the consid@nd the filtered pixel in the
considered colour band (the check in the other colour bamsins for the case that the
calculated detail value was not completely reliable). [ent if the pixel for which the
weight is calculated belongs to the previous frame, we om@gtvo give it a large weight if
there is no motion detected in the filtering window, i.e., dadculated motion value is not
large. In the filtering of the red colour band, this resultshia following two fuzzy rules,
depending on whether the pixel lies in the current or theiptes/frame:

Fuzzy Rule 4.6. Assigning the membership degree in the fuzzy set “largetwedf the
weightW £ (r’, ¢, r,t) for the red component value at positionin the current frame#( =
t) of the window with central pixel positiofm, ¢):

IF ((the detail valuel(r, t) is LARGE ANDhe differenceA’(r’, ¢/, r,t) is NOT LARGE
AND (the differenceA“(r’, ¢/, r,t) is NOT LARGE OfRe differenced®(r', ¢, r, )
is NOT LARGE)

OR (( the detail valuel(r, t) is NOT LARGE) ANDthe difference\® (r’, ¢, r,t) is
NOT LARGE OfRe differenceA”(r', ¢/, r,t) is NOT LARGE)
THEN the red component value at positiohis RELIABLE for the filtering of the red
component valué?(r' ¢ r,t).

Fuzzy Rule 4.7. Assigning the membership degree in the fuzzy set “largehwed the
weight WE(r' ¢/ r.t) for the red component value at positiohin the previous frame
(t' =t — 1) of the window with central pixel positiof, ¢):

IF ((the detail valuel(r, t) is LARGE ANBhe differenceAf(r’, ¢/ r,¢) is NOT LARGE
AND (the differenceA(r’,¢',r,t) is NOT LARGE OfRe difference\”(r’, ', 1, t)
is NOT LARGE)

OR (( the detail valuel(r, t) is NOT LARGE) ANDthe difference\“(r’, ¢/, r, ¢) is
NOT LARGE Ote differenceA® (', ¢/, r,t) isNOT LARGE))
AND the motion valuen(r,t) is NOT LARGE

THEN the red component value at positiohis RELIABLE for the filtering of the red
component valuéZ?(r' ¢ r,t).
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4.3 Experimental Results

Similar fuzzy rules, switching the role of the red colour 8amnd the colour band that
needs to be filtered, are used to determine the weldHtgr ¢/, r,¢) andWE(r ;' r,t)
in expressions (4.5)-(4.6) to filter the green and blue adbaund respectively.
Summarized, for pixel positions in the window belonginghe turrent framet( = ¢),
the weightW (r' |/, r,t) in (4.4) is thus given by

WR(r’,t’,r,t):w-9~¢+(1—w)-¢—(w-9~¢)~((1—w)~¢)7
where

w = pq(d(r,t))

0= (1~ UA(AR(r, 't I’,t)))

¢ = (1 - :U'A(AG(r, 7t,7 rvt))) + (1 - MA(AB(I’7 atla rvt)))
— (1= pa(AC(r ,tr 1) - (1= ua(AB(r 1, 1))).

For pixel positions in the window belonging to the previowsnie ¢ = ¢t — 1), an extra
factorl — p,,,(m(r,t)) is needed.

4.2.2 Second Subfilter

Analogously as in the first proposed colour video filter, dlsofirst subfilter of this second
proposed filter is combined with a second subfilter. We haainagsed the extension of the
second subfilter in [119] as described in Subsection 4.1.2.

4.2.3 Parameter Selection

Analogously as for the first proposed filter, the parameteas tietermine the member-
ship functions used in the above described second propdserd fiave been set by de-
termining the optimal values in terms of the mean PSNR vahwesaged over the se-
guences “Salesman”, “Tennis”, “Flowers” and “Chair” andstifor the respective noise
levelso = 5,10, 15,20. This was done by letting the parameter values vary over geran
of possible values. Again a linear relationship betweesdlgptimal values and the noise
level was found, such that the final parameters have beeataélas the best fitting line
through the observations. The selection process is idltexirin Fig. 4.10 for the parameters
thro andTy. The selected parameter values, as a function of the noisk Bre given in
Table 4.2.

4.3 Experimental Results
In this section we present the results of our experimentshich we have used the test se-

guences “Salesman”, “Tennis”, “Deadline”, “Flower Gartiefrroreman” and “Bus”, cor-
rupted by additive Gaussian noise of zero mean and standsiationo = 5, 10, 15, 20, 25.
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Figure 4.10: Optimal parameter values in terms of the PSNR.

Table 4.2: The used parameter values.

Parameter]  Value

th?“l 0
thry 1.520 — 4.5
T 0
Ts 3.140 — 1.0
tq 0.720 — 4.0
to 2.220 — 4.5
pary 1.1o — 7.5
pars 60 + 35
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4.4 Conclusion Ak,

We have compared the two proposed colour filters to the filjespproach that denoises the
Y component of th&” UV transform with the recursive wavelet extension of the oagi
greyscale method outlined in Chapter 3 (which outperforthgrogreyscale methods of a
similar complexity as shown in Chapter 3) combined with adiéohal averagingg x 3
window) of the chrominance componerifsand V. The PSNR and NCD results of this
comparison can be found in Fig. 4.11 and 4.12 respectivehgravthe vector-based first
colour filter, the colour-rule-based second colour filted &me YUV approach are respec-
tively denoted by FMDAF-RGB, FMDAF-CR and FMDAF-YUV. Frorhadse graphs, it can
be concluded that, both in terms of PSNR and NCD, the two megdiltering frameworks
are a better alternative for the usually applied filteringhafy -component.

For a visual comparison, we have made the original and n@ggatlline” ¢ = 15) and
“Salesman” § = 15) sequence and the results after applying the respectigesfétvailable
on http://www.fuzzy.ugent.be/tmelange/results/colourga uss. When look-
ing carefully to e.g. the left side of the phone in the “Salasirsequence (Fig. 4.13), we
see that some red and green shine (colour artefacts) idevimithe result of the FMDAF-
YUV method. This is much less the case in the result of the trep@sed colour filters,
which might explain the better PSNR and NCD values.

We see however also that the wavelet domain method has relmmowoee noise and
produces a smoother result. This smoother result can howevattributed to the use of a
wavelet domain filter. If the original pixel domain greyseahethod would have been used,
we would also have had a little more noise remaining. Remiarkthat the smoother result
also has as a result that the details have been smoothel anldte. For the “Salesman”
sequence, see e.g. the eyes and face in Fig. 4.14. Thisdfadetween noise removal
and detail preservation is one of the main challenges in éveldpment of a noise filter.

Finally, remark also that the two proposed colour filterd Wive a smaller complexity,
since in the YUV-approach, a wavelet transform is appliedisik wavelet bands need to be
filtered instead of three colour bands or one vector band.

4.4 Conclusion

In this chapter we have presented two new fuzzy video fill@rsife removal of Gaussian
noise in colour image sequences. In the first proposed fitterfuzzy logic framework
from Chapter 3 was extended to colour videos through a \waeed approach, while in
the second proposed filter, the framework was extended byiffi¢f each of the colour bands
separately, with information from the other colour bandsezbto the used fuzzy rules. Both
extensions were additionally combined with a refinemenhefdolour restorating subfilter
from [119] to remove possible colour artefacts.

Experimental results show that the proposed methods aredhaternative for the com-
monly usedy” UV -colour extension of the original greyscale method, botikeims of PSNR
and NCD.
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Figure 4.11: PSNR results for the different methods applied on the sequences éajllibe” ¢ =

5%), (b) “Foreman” ¢ = 10%), (c) “Salesman” & = 15%), (d) “Bus” (¢ =

Garden” ¢ = 20%) and (f) “Tennis” ¢ = 25%).
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Figure 4.12: NCD results for the different methods applied on the sequences (adfibe” (o
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Garden” ¢ = 20%) and (f) “Tennis” ¢ = 25%).
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(c) (d) (€)

Figure 4.13: Enlarged part of the phone in the 20-th frame of the “Salesman” sequém) original,
(b) noisy ¢ = 15), (¢) FMDAF — RGB, (d) FMDAF — CRand (€)FMDAF —YUV.
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(@) (b)

Figure 4.14: Enlarged part of the face in the 20-th frame of the “Salesman” segudag original,
(b) noisy ¢ = 15), (¢) FMDAF — RGB, (d) FMDAF — CRand (€)FMDAF —YUV.
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5

Random Impulse Noise in
Greyscale Image Sequences

Most video filters that can be found in literature are desigfte sequences corrupted by
additive Gaussian noise (e.g. [41, 50, 70, 79, 141]). Museh ledeo filters exist for the
removal of impulse noise. However, numerous 2D techniqags been developed for the
denoising of still images and can be applied on each frameeo$¢quence consecutively.
The best known among them are the median based rank-oraées fié.g., [20, 45, 58]),
but also several fuzzy techniques (e.g., [42, 59, 115, 1486, 122, 135, 140]) have already
turned up that performed very well compared to the rank+ooies. A huge drawback
of applying 2D spatial filters on image sequences howevérasthe temporal correlation
between successive frames is neglected. As a consequengmral inconsistencies will
arise. Some examples of 3D impulse noise filtering scherhas,also take into account
pixels from neighbouring frames, can e.g. be found in [22,58 66, 139]. In the 3D
rational filter [22], the filter output for a pixel is deterneid as a rational function of the grey
values in a spatio-temporal neighbourhood. To avoid thahénpresence of fast motion,
pixels from the previous frame would be used wrongly, a maexetdetector is used. In the
case of motion only a spatial filtering is performed, i.eg tlutput is a rational function of
only the spatial neighbouring grey values. In [55], two &ats on the classical median filter
in a 3D neighbourhood are presented: the adaptive 3D mediiendnd the weighted 3D
median filter. The adaptive 3D median filter first detects Wwhet pixel might be noisy and
only the detected pixels are finally filtered. If the numbedefected pixels in the previous
frame are low, stronger conditions are used for this deipaind vice versa. The filtered
output for the detected pixels is determined as the medighar3D neighbourhood of
the considered pixel. The non-detected pixels remain ardit to preserve the details. The
weighted 3D median filter assigns weights to the neighbgusirels used in the calculation
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of the median, i.e., each pixel is added a number of timesr@vie number is equal to the
pixels weight) to the set of pixels of which the median is aidted to serve as the filter
output. The closer a pixel lies to the centre of the neighboaod, the higher its weight. The
LUM (lower-upper-middle) smoother in [66] extends the stard LUM smoothers [45] by
introducing an adaptive smoothing control. Using a fixedsthiog level for a whole image
namely results in excessive smoothing in some given regiadsnsufficient smoothing in
other regions. The peak-and-valley filter, presented i®]1& a genericn-dimensional
filter. It is composed of two conditional rules, independieaipplied one after the other.
The first rule detects pixels that are larger than their n@ghhood (peaks), the second one
detects pixels that are smaller than their neighbourhoaliiefys). Pixels that were detected
are finally filtered as the most similar pixel in their neighbwood. The filter proposed
in [38] finally, is a motion compensated adaptive spatiogeral least mean fourth (LMF)
L-filter in which the filter weights are determined by mininmg the kurtosis.

The main drawback of the above filters is that in their aim tnoee as much noise as
possible, they also filter too many noisefree pixels, rasylin detail loss, or vice versa,
by trying to preserve the details, too many noise pixels atedetected. In this chapter,
we present two algorithms [74, 77, 80] in which the noise imaeed step by step in order
to have a good noise removal and a good detail preservatithe aame time and thus to
minimize the trade-off between noise removal and detaisgmeation. In the successive
filtering steps, the noisy pixels are first detected and dmydetected pixels are filtered in
order to preserve the details. The filtering is performednmcéion compensated way such
that the temporal information is exploited as much as ptessiBurther, the filtering steps
make use of fuzzy set theory. In the first proposed filter [RB]each pixel a degree to which
it is considered noisy is calculated. Pixels having a naw-gegree will be filtered. In the
second proposed method [74, 77], for each pixel both a ddgreich it is considered
noisy and noisefree is calculated. The pixel will now be ffidtkif the noisy degree is larger
than the noisefree degree.

From the experimental results it can be seen that the prdpfdsss combine a good
noise removal with a good detail preservation. They are shtowoutperform other state-
of-the-art random impulse noise filters both in terms of PSR visually.

The chapter is structured as follows: The different filtgrateps of the two proposed
algorithm are discussed one by one in Section 5.1 and 5.2c¢tggly. Next, the two
proposed filters are compared to other state-of-the-aetdiin Section 5.3 and the chapter
is concluded in Section 5.4.

5.1 First Proposed Algorithm

The proposed algorithm [80] consists of different sepanatee detection and filtering steps,
both spatial and temporal as illustrated in Fig. 5.1. Fort ai@ixels, it is obvious that they

will be noisefree because of the clear correspondenceitcsiiegtio-temporal neighbours. It
would be a needless effort to investigate whether suchie noisy. Therefore, in a first
detection (5.1.1) we investigate which pixels can be carsid to be surely noisefree and
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Figure 5.1: Overview of the different steps in the proposed algorithm.
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should not be filtered. If a pixel and some of its neighbouidthe corresponding pixels in
the previous and preprevious frame are all similar, thensgeme that these pixels belong
to the same object and that they are noisefree. Such pixklsovbe investigated or filtered
any further in the algorithm. For other pixels, we start theestigation to determine whether
they are noisy. In the second detection step (5.1.2), patelsletected as noisy if there is a
direction in which the two neighbours have a small diffeetgrey value (and probably
belong to the same object), but are quite different from tixelfhat is investigated. We
however check that the considered pixel does not belong toea Which might be the
reason for this difference in grey value. Next, a first terappfiltering on a spatial basis
is performed (5.1.3). The result of this filtering, denotgdllp , facilitates the detection of
the remaining noisy pixels. Now that a considerable parhefrioise is removed, a next
spatial detection step (5.1.4) is performed in which piaks thought to be noisy if they
have a considerably larger or smaller grey value than atlsighbouring pixels, except one
(to allow a possible second noisy pixel). Additionally, werform a motion compensated
filtering (5.1.5) for all pixels that have been detected yaip to now (y,), followed by

a refinement in homogeneous areas (5.16)( Some random impulses result in a small
difference compared to their neighbours and will not havenbdetected. In homogeneous
areas, small differences, that however are relativelyelamgsuch an area, will now also be
considered as noisy. Up to now, all noise detection was pedd spatially. Some noisy
pixels are however too difficult to detect on a spatial badeer&fore, we use the temporal
information available in sequences to perform a last naéseation (5.1.7). A frame delay is
applied to be able to compare a pixel to its temporal neigtsiourespectively the previous
and next frame and to detect temporal impulses. Remarkhbdatt that the-th frame is
already filtered based on spatial information, makes th@teah detection for theé — 1-th
frame more reliable since the previous and next frame afedatady filtered (the previous
one completely and the next one already based on spatiaimatmn). Pixels that have
been detected in this step, are then filterbd)( again by the help of motion compensation
(5.1.8). Finally, in analogy to the spatial refinement, ageral refinement is performed )

to remove small impulses in non-moving areas (5.1.9). Thelref the successive filtering
steps is illustrated in Fig. 5.2 and 5.3 for the 20-th framthef“Salesman” sequence.

5.1.1 First Detection

The first detection determines whether a pixel valyer, y, t) should be considered noise-
free. We assume that this is the case when this pixel is sitoiltne pixels/, (x,y,t — 1)
andI;(x,y,t—2) atthe corresponding position in respectively the prevangpreprevious
frame and when these pixdlg, (x, y, t—1) andI;(z,y, t—2) are similar too. Two pixels are
considered similar when their absolute difference in gady&is small to some non-zero de-
gree, where the linguistic value “small” is represented liyzay set of which the member-
ship functionug is depicted in Fig. 5.4. The paramejgris selected in Subsection 5.1.10.
Further at least two neighboufs(x + k,y + 1, t) (k,1 € {-1,0,1}, (k,1) # (0,0)) need
to be found, that are similar to the central pixel and for Wwhice same condition holds,
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Figure 5.2: The original 20-th frame of the “Salesman” sequence: (a) the fraoreupmted
by 25% random impulse noise (B)SNR = 14.27dB) and the result after (c) the first spa-
tial filtering (PSNR = 19.48dB) and (d) the first motion compensated filteringSNR =

27.58d B)respectively.
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Figure 5.3: The original 20-th frame of the “Salesman” sequence: the result @jethe spatial
refinement PSN R = 28.45d B), (f) the second motion compensated filteridg{N R = 31.99d B)
and (g) the temporal refinemer® 6 N R = 32.74d B) respectively.

Membership degree LL ¢
1
SMALL ABSOLUTE
DIFFERENCE
ol 2 Al

Figure 5.4: The membership functions of the fuzzy set “small absolute difference”.
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i.e., these neighbours are also similar to the correspgngixels Iy, (« + k,y + [,t — 1)
andIf(z + k,y + [,t — 2) in the previous and the preprevious frame and these pixels
It (x+ k,y+1,t—1)andI;(z + k,y + [,t — 2) are also similar. If this is the case,
the central pixel in the filtering window is assumed noisefr&he other pixels need to be
investigated further to see whether they are noisy or not.

1 if ps(|Ly(z,y,t) — Ip,(z,y,t — 1)) > 0and
ts (| In (@, y,t) = Ip(2,y,t —2)[) > 0and
MS('Ifs(x’%t - 1) - If(wvyat - 2)') >0and
A@"y), (@, y") (", y') # (",y") and
r—1<a,2” <zx+1land
y—1<y,y"<y+land

s ([, y, )—I (z',y',t)]) > 0 and
[noisefree(T, Y, t) = ps([In(z,y,t) — In(z”,y",¢)]) > 0 and

ps ([ In(2'y' 1) — Ip, (2,9, t = 1)]) > 0 and

ps([ (2’ y' 1) — I (2,9, t — 2)]) > 0 and

MS(|If3($ Yt —1) —Ip(2',y',t —2)|) > 0and

s (| In(2” y" ) — Ig, (2", y",t —1)|) > 0 and

us(II( "y t) = Ig(2",y",t = 2)]) > 0 and

s ([ Lgs (2", 9"t = 1) = Iy (2", y", t = 2)]) > 0),

0 else

5.1.2 Second Detection

For those pixels that have not been detected as noisefrém ifirt step, it is needed to
further investigate whether they are really noisy and nedwktfiltered.

The detection of noisy pixels in this step goes as follow# H given direction two op-
posite neighbours, (x+k, y+1,t) andl,, (z—k,y—1,t), (with (k,1) € {(-1,-1),(-1,0),
(—1,1),(0,1)} corresponding to the directiodé— S, NE—SW, E—W andSE - NW),
are similar fus |1, (z+k,y+1,t) — I, (x —k,y—1,t)|) > 0) and each of these two opposite
neighbours has two similar neighbours (and can thus be deresi reliable), then the cen-
tral pixel is considered noisy for this directiorfwith i € dir = {N — S,NE — SW, E —
W,SE — NW}) if the difference in grey value with respect to the centriakpis large
positive or large negative for the two opposite neighbolile membership functions;, 5
andur,p of the fuzzy sets that are used to represent the linguistiahlas “large negative
difference” and “large positive difference” are depictad-ig. 5.5. Further, for the results
in this chapter, the and- and or-operator are translatedéoglgyebraic product and the prob-
abilistic sum respectively. These aggregators are a gooidelfrom a computational point
of view and other aggregation operators resulted in sindaults. The degreB;(x, y, t)
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Membership degree L, Membership degree L, ,
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LARGE NEGATIVE :
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\4

— par, - par; o o par; par,

Figure 5.5: The respective membership functionsx and . p of the fuzzy sets “large negative
difference” and “large positive difference”.

to which I, (x,y,t) is considered noisy in the directidgrthen becomes:

Di(z,y,t) = (Ip1 - Ip2) + (Ing - Ing) — (Ip1 - Ip2) - (Ing - Ing),

with
ipr = prp(In(z,y,t) — Lz +k, y+l t),
lp2 = ,ULP(In<x7y7t) - In( —k Y — ))7
Ing = ,ULN(In(xvyvt)_In(x"_k y+l t)),
ln2 - MLN(In(x7y7t) 7171,(1: ))7

if the two opposite neighbours in this direction each alseehtsvo similar neighbours. If
this is not the case, theB; (x, y,t) = 1. However, we don't want the pixel to be detected
if there is a direction in which the two opposite neighbounspne of the three pixels in
their prolongation, as illustrated in Fig. 5.6, are simitathe central pixel. In this case the
central pixel might belong to a line and should not be consid@&oisy. The occurrence of

a line is saved in a variablB(x,y,t). The variableL(x,y,t) receives the valugue if a

line is detected and the valfi@isein the other case. Finally, the central pixel is assigned a

. o | o 0 . o | e
C C o|o|C|-]|- C
(0] o0 0] . OO
ol0|0 oo Oo|O

Figure 5.6: lllustration of the second detection step. The central window pixel (‘@ghtbelong to a
line if in one of the four directions, two opposite neighbours, or one of treethixels in their prolon-
gation, are similar to the central pixel. This is the case if in one of the fouctibres (corresponding
to the four subfigures) one pixel indicated withdnd one pixel indicated with ‘0’ are similar to the
central pixel.

membership degree,vise,1(z,y,t) = min;eqir(D;i(z,y,t)) In the fuzzy set “noisy” if it
is not noisefreei;,pise rree (7,4, t) = 0, see Subsection 5.1.1) and no line is detected:
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0 if Hnoisefree (-73’ Y, t) =1
finoise.1 (T, Y, ) = or L(z,y,t) = true,
mingeqir(Di(z,y,t)) else

5.1.3 Spatial Filtering

Based onuyeise,1 that was determined in the previous step, a first spatiafifijels per-
formed to facilitate the remaining noise detection. For aegal image (or frameJ, a
general noise membership functiprand a general filtering window of siZ@ - W + 1) x

(2 - W + 1), the spatial filtering framework for the pixel at spatial&ion (z,y) in I is
determined as a weighted sum of the neighbourhood grey sialudeere the weight of a
grey value corresponds to the degree of belief that it is n@yn(where the noisy degree is
given by a function: and where the standard negator is used for the not-operator)

I LW_W LVKW(l—,u(a:+k,y+l))-I(w—Hf,y—H)
SF,u (l’, Y, W) = +W +W
hew 2oie (1= p(z +k,y +1))
If ZLV‘ZW ;;VKW (1 — p(z + k,y + 1)) = 0, which is unlikely to happen in practical

situations, theS ¥} (z,y, W) = medial{ I (z + k,y + 1)| = W < k,l < W}.

In our proposed filter, the current framdg(t), the membership functiop,,sise,1 re-
stricted to the current frame (denoted fy,;s. 1(¢)) and a window of siz¢2 - Wy + 1) x
(2 - Wy + 1) (where the parameté#; is determined in subsection 5.1.10) are used. The
result of the first spatial filtering is then given by

Ip (z,y,t) = S gy ).

noise,1(t)

5.1.4 Third Detection

A considerable part of the noise is already removed by théquie steps, however, there is
still noise left that has to be removed. Therefore, we catithe denoising based on this
first estimatelf, . For the pixels that have not been considered noisefreeifirt detection
(Unoisefree(z,y,t) = 0), but that also have not been detected as noisy in the piviou
step {noise,1(2,y,t) = 0), we further investigate whether they might be noisy. If the
difference in grey value is large positive or large negativmpared to all eight neighbours,
then the central pixel should be considered noisy. If the@nly one neighbour for which
the difference in grey value is not large positive and najdamegative, then it is checked
whether the opposite neighbour or one of the its neighbourme of the pixels in their
prolongation (as illustrated in Fig. 5.7) are similar to tieatral pixel or the neighbour for
which the difference in grey value is not large positive ot laoge negative. If there exist
such a pixel, then the central pixel might belong to a linestmzlild not be detected as noise.
The information about a possible line is stored in the vaeidhl(x, y,t). PL(x,y,t) =
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true indicates that a possible line is detected by the above itbesicdetection method;
PL(z,y,t) = falseindicates there isn’'t such a line.

Figure 5.7: lllustration of the third detection step. If ‘X’ stands for the only neighbamfhich the
difference in grey value compared to the central pixel ‘c’ is not larggtive and not large negative,
then the central pixel is considered noisy, unless one of the opposits pigeated by ** is similar
to ‘c’ orto X'.

Summarized, we get the noise membership fungtipn,. - for this step, given by:

1 if Hnoisefree (37, Y, t) =0 and
(NN(z,y,t) =8 0or NP(x,y,t) =8) or
((NN(z,y,t) =7andNP(z,y,t) = 0) or
N7Lo1ls€,2(xayat) = _ _
(NP(.T,y,t) =7 andNN(xayvt) - 0))

andPL(x,y,t) = false),
Hnoise,1 (:E, Y, t) elsg

whereN N (z, y, t) (respectivelyN P(z, y, t)) denotes the number of neighbours of the pixel
at location(z, y, t) for which the difference in grey value compared to that patdbcation
(z,y,t) is large negative (respectively large positive) to some zeno degree.

5.1.5 First Motion Compensated Temporal Filtering

In this step, all pixels that have been detected as noiseme stegree, i.e., the pixels be-
longing to the support of the fuzzy set “noisy” or thus for @, pisc 2 (2, y,t) > 0, are
filtered temporally based on motion compensation. Thisuishes the pixels that have al-
ready been temporary filtered in 5.1.3. However, in that fipsttial filtering, also pixels
that have only just been detected as noise in the third detecduld have been taken into
account in the averaging, and thus a better filtering is rekedle compensate the motion
between successive frames, we introduce a noise adaptame absolute difference (MAD)
between two blocks of image pixels. In a general notation fanch general block size
(2-W+1) x(2-W+1)itis given by:

MADZ’“(J:, y, 7,8, W) =

T S e+ ky + D)L+ kyy + 1) = L(e +k+ry+ 1+ )]

T S @+ ky 1))

)
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wherel, and; are the two frames between which motion is estimated (usttadl noisy
current and filtered previous frame respectivelyandy indicate the spatial coordinates of
the central pixel of the considered blockiinandr ands respectively stand for the vertical
and horizontal coordinates of the displacement vectorclwhieans that the central pixel
of the block that is considered ify has spatial coordinates: + r,y + s). Further, the
functiony gives the degreg(z, y) to which a pixel(x, ) is considered noisy. The function
® makes it possible to consider only those pixels that have rabmeship degree equal to
zero (or thus to do a reliable motion compensation by onlyntainto account noisefree
pixels):

Lif p(z,y) =0,

0 else

O(p(z,y)) = {

IS S ®(u(e + k,y +1)) = 0 or if not for at least half of the noisefree pixels,
the absolute differencd(z + k,y + 1) — Io(z + k + r,y + [ + s)| is not large positive
(e,pep([i(z+ky+1) — L(z+k+ry+1+s)|) =0), the noise adaptive MAD is
not reliable and is assigned the valuec.

Using this above introduced MAD, the best matchiagW; + 1) x (2- W; + 1) block
in a search region of siz@ - W5 +1) x (2- W5 + 1) (where the parametéV, is determined
in subsection 5.1.10) in the previous frathg (already processed up to step 5.1.6, since
from then on a frame delay will be applied as will be seen latés.1.7) is determined by
the following displacement vector (where in analogy to th&tion(t) for the¢-th frame
in an image sequendg the notatioru(t) stands for the restriction of a general functjon
(e.g., noise membership function) to the pixels of ke frame of the sequence):

(u(z,y,t),v(z,y,t)) = argmin MAD;;(EZTS"”EQQ)(J:,y,r,S,Wl).
—Wa<r,s<W, 3
The minimum value itself is denoted byinmad(z, y, t).

For noisy pixels, the output of the temporal filter is thend¢beresponding motion com-
pensated pixel in the previous frame, if this motion compéets candidate pixel exists.
Otherwise, the spatial filtering framework is used again:

It (z,y,t) = MCFIIf"é((?fI’;“"’“’Z(t) (z,y,u(z,y,t),v(z,y,t), minmad(z, y,t)),
with in a general notation

MCFII;’N(:E» Yy, u,v, minmad) =
Lz +u,y +v) if p(z,y) > 0 andminmad # +o0,
SF (x,y,W1) if p(z,y) > 0 andminmad = +oc,
Ii(z,y) else

where . is again a function that determines the detected noise eéegra pixel and the
variableminmad determines whether the filtering of a pixel, y) in frameI; is performed
temporally by the help of framé, and the displacement vectou, v) or by the spatial
filtering framework.
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5.1.6 Spatial Refinement of Homogeneous Areas

To cope with noisy pixels in homogeneous regions that areeaimilar to their original
value and that are not detected as noise, the following regéné¢ is performed to smooth
these regions. A pixel, that was not determined noisefraddyirst detection method (i.e.,
Hnoise free (T, Y, t) = 0), is adapted if the central pixel in &x 3 neighbourhood is larger or
smaller than all other pixel values in this neighbourhood ame of the following conditions
holds (withM (z,y,t) = max{Is,(z + k,y +1,t)] —1 < k,l < 1, (k,1) # (0,0)} and
m(z,y,t) =min{lp(z+ky+1t)|-1<kI1<1, (k) #(00)}):

o us(M(z,y,t) — m(z,y,t)) > 0 (i.e., the minimum and the maximum value in this
neighbourhood are similar),

o prp(ly,(x,y,t) — M(z,y,t)) > 0 (i.e., the differencelf, (z,y,t) — M(z,y,t)) is
large positive),

o purn(Iy,(x,y,t) — m(z,y,t)) > 0 (i.e., the differencel, (z,y,t) — m(z,y,t)) is
large negative),

o I (x,y,t)—M(x,y,t) > M(x,y,t) —m(z,y,t) (i.e., the differencell, (x,y,t) —
M (z,y,t)) is relatively large),

o m(z,y,t) — I, (x,y,t) > M(z,y,t) — m(x,y,t) (i.e., the differencer(z, y, t) —
Iy, (x,y,t)) is relatively large).

If this is the case, the pixel is filtered &g (z, y,t) = (M (z,y,t)+m(z,y,t))/2, otherwise
the pixel remains unchanged, i.é, (z,y,t) = Iy, (z,y,1).

5.1.7 Temporal Detection

Due to the aim to preserve possible lines and edges, stililhobisy pixels were detected.
Until now, noise was detected based on spatial informaiiond don’t take into account
the detection of noisefree pixels in 5.1.1). To remove timeaiaing noise, in this step, also
the noise detection works temporally. To detect a noisy isgpixel, we compare it to its
temporal neighbours in the previous and next frame resygtiTo have a good detection,
it is needed that this previous and next frame are as noesafr@ossible. To have a more or
less noisefree next frame, we have to do the temporal deteafih a one frame delay, so
that the next frame is already processed up to step 5.1.@sgtdnt and most of the noise
in that frame has already been removed. So the temporal detsetion is performed for
the previous frame. The detection consists of two stagethdiirst stage, each pixel (in
the previous framd, (¢t — 1) as explained above) that is not considered noisefree by the
first detection step, is compared to the corresponding pixethe prepreviousl((t — 2),
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already completely filtered) and current frande, (¢)) as follows:

Uoif ppp(p(2,y,t = 1) = Ip(z,y,t = 2))) > 0
andNLP(|If3(x7yat - 1) - Ifs(xay7t)|) >0
andinoisefree(T,y,t —1) =0,

0 else

Mtemp,l(xvyat - 1) =

This comparison is used to determine in a second stage wteeflieel is considered noisy
on a temporal basis. A pixel is called noisy when it differsnirits temporal neighbours
(ttemp.1(z,y,t) = 1) and also one of the following conditions holds:

(&) The number of pixels within&x 5 neighbourhood (in the considered previous frame)
for which piyemp 1 (x + k,y +1,t — 1) = 1 (with =2 < k,1 < 2) is smaller than or
equal to 2. This number is chosen small enough to avoid thatvénm line would be
detected.

(b) The number of pixels within & x 7 neighbourhood such thats (|17, (z + k,y +
l,t — 1) — I, (z,y,t — 1)|) = 0 is larger than or equal t6 x 7 — 6 (The central
pixel and possible some similar noisy neighbours (but notigh in number to form
a line or object), which have not been detected by the spddiaiction steps in order
to preserve lines and details, differ from the neighboud)o®o summarize:

1 if pempn(z,y,t — 1) = 1and((a) or (b) hold,

. T, ,t—l =
Hnoise,3(T, Y ) {o else

5.1.8 Second Motion Compensated Temporal Filtering

Based on the previous detection step, a second motion caaeetfiltering is performed.
Again, all pixels belonging to the support of the fuzzy seatisy”, i.e., the pixels for which
Hnoise,3(x,y,t — 1) > 0, are filtered (remember that we use a frame delay and thaisin th
step, pixels from the previous frame are filtered). This rigtlude pixels that have already
been filtered temporary in one of the previous steps, but Fachthe filtering result was not
yet sufficient e.g. due to not yet detected noisy neighba@ikestinto account in the filtering.
The displacement vector that determines the best mat¢iig; +1) x (2- Wi +1) block

in a search region of siz€ - W5 + 1) x (2 - Ws + 1) in the filtered preprevious frame
I+(t — 2) to the considered block in the previous frame with centrakpgiven by the
spatial coordinategr, ), is given by:

(U)(.’L‘, Y, t— 1)7 Z(.]Z, Y, t— 1)) = arg min MAD;;??__Q;)Mnoyisewg(t_l) (-’L’, Yy,r,Ss, Wl)

—Wa<r,s<W,

The minimum value itself is denoted byinmads(x,y,t — 1). The noisy central pixel is
then filtered as:
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Iy (z,y,t—1) =

I t—1),lnoise,3(t—1 .
MCF]ff?t(_Q))# o )(I,y,w(x,y,tf1),Z(Ji,y,t71),mznmad2(x7y,t71)).

5.1.9 Temporal Refinement of Non-moving Areas

In a non-moving area, pixel values in a frame correspond ¢opikel values at the cor-
responding spatial position in a previous or next frame.s®tiould make it possible to
easily detect whether a noisy pixel remained noisy in sucbramoving area. Therefore a
temporal detection as in Subsection 5.1.7 is performed:

1t pop(yp(2,y,t = 1) = Ip(z,y,t —2)[) > 0
andurp(|Ip,(z,y,t —1) — I, (x,y,t)]) >0
andinoiseree(z,y,t — 1) =0,

0 else

,U/temp,2(x7yat - 1) =

A (2-W3+1) x (2-W3+1) (where the parameté¥’; is determined in subsection 5.1.10)
region centered around the spatial positieny) is determined as non-moving if

(@) ps(MAD 207D (1 y,0,0,W3)) > 0 and

©) S S @ (pempa(z + oy 1) > 2 Wa - (2 Ws + 1).

A remaining noisy pixel in such a region is then filtered asdabeesponding pixel in
the previous frame:

If(z,y,t —2) if peemp2(z,y,t —1) = 1and (a’) and (b’) hold
It (z,y,t—1) else

If(z,y,t —1) {

5.1.10 Parameter Selection

To determine the parametergr, pare andp;, and thus the membership functions intro-
duced in Fig. 5.5, we have used a pixel neighbourhood ofsize5 (W, = 2), a search
window of 17 x 17 (W5 = 8) pixels for the motion compensation and a window of §izer
(W3 = 3) for the temporal refinement of non-moving areas. We haviaéeparameters run
over a range of possible values and computed the arithme@nrof the PSNR result of the
nine sequences “Salesman”, “Trevor” and “Tennis”, eachugied with respectivel$ %,
15% and25% random impulse noise. The higher the PSNR value, the bateesult. The
arithmetic mean over the nine test sequences reached itemma{or the parameter values
pary = 24, pary = 38, p1 = 11, that we will use for the remaining experiments.

For the determination of the window sizB§ , W, and¥3, we performed the following
experiments. First, for the selection Bf;, we have let this parameter run over the values
0 to 6 and have used the fixed valués = 8 andWs; = 3 for the other window sizes to
process the “Salesman”, “Trevor” and “Tennis” sequenceh earrupted with 15% random
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Table 5.1: Determination of the paramet®; . (Average PSNR (dB) values.)

Wi
Sequencd 0 [ 1 [ 2 [ 3 [ 4[5 ] 6
“Salesman|30.1734.9835.2935.1034.8434.7334.57
“Trevor” [31.3137.8637.6137.2936.9536.4436.18
“Tennis” |25.6225.1425.8425.9625.9325.8325.70

impulse noise. The resulting average PSNR values are giv8iable 5.1. From those
results, we conclude that’; = 2 is a good choice, that we will use for the remaining
experiments.

The used value for the parameték, is determined analogously, by letting it run over
the values 5 to 14, and processing the “Salesman”, “Trevod’‘dennis” sequence, each
corrupted with 15% random impulse noise, for the fixed valdgs= 2 andWs; = 3. The
average PSNR results can be found in Table 5.2. It can be baethe valudi, = 8
that we used up to now was a good choice, that we can continugetéor the remaining
experiments.

Table 5.2: Determination of the paramet@r,. (Average PSNR (dB) values.)

W

Sequencd 5 [ 6 | 7 [ 8 [ 9 [10]11[12] 13 [ 14
“Salesman(f35.2635.2935.2935.2935.2635.2635.2635.2335.2(35.14
“Trevor” |37.4337.5137.6037.6137.6937.7437.7637.7937.7937.77
“Tennis” |25.8425.8225.8225.8425.8425.8325.8225.8225.8125.79

Finally, also the window siz8/5 is determined in an analogous way. For the fixed values
Wy = 2 andW, = 8, we let the parametdil/; take on the values 1 to 9 and process the
sequences “Salesman”, “Trevor” and “Tennis”, each coadptith 15% random impulse
noise. Table 5.3 gives the results of these experiments.théoexperiments in the next
subsection, we will usél/’; = 3.

Table 5.3: Determination of the paramet#rs. (Average PSNR (dB) values.)

W3

Sequencg 1 [ 2 [ 3[4 [5[6 [ 7]8]9
“Salesman[35.2(35.2735.2935.2§35.2535.2435.2(35.1935.17
“Trevor” |37.6437.6737.6137.5737.4937.4537.3737.31/37.24
“Tennis” |25.7725.8025.8425.8525.8525.8425.8425.8325.83
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5.2 Second Proposed Algorithm

In(t) —> First filtering |_lra(t-1) Refinement > l(t-1)
step step
lf(t-2)
llﬂ (t) T ls(t-1) Ijj
Second filtering Third filtering lf(t-2)
step step

: one frame delay

Figure 5.8: Overview of the different steps in the proposed algorithm.

To preserve as much details as possible, in the proposedtgth, 77], the noise is
removed by successive filtering steps as illustrated in%:R}. It might be easier to distin-
guish noise from small details if a considerable part of thisenhas already been removed
in a previous step. The algorithm consists of three filtesitggps and one refinement step. In
the first step (5.2.1), both a degree to which a pixel is careid noisefree and to which it
is considered noisy is calculated. If the noisy degree gelathan the noisefree degree, the
pixel is filtered. A pixel is considered noisefree if its gnealue corresponds to that of the
corresponding pixels in the previous frames or to most apistial neighbours. The pixel
is considered noisy if it differs from its temporal neighbauthe previous frame, and this
does not hold for most of its neighbours (such that the diffee is not caused by motion).
The output sequence of this first step is denoted byrhe second step (5.2.2)(outpiyt)
filters pixels for which the difference in grey value to afl iteighbours is large positive or
large negative. If there is one neighbour for which the déffece is not large positive and not
large negative, it is checked whether the considered pb@lthat neighbour might belong
to a line. If not, the pixel will be filtered also. After thisegt, the remaining noise consists
mostly of clustered noise pixels with a similar grey value.the third step (5.2.3)(output
1,), these small clusters (similar spatial neighbours) ateréti based on temporal infor-
mation. To be able to better detect impulses in time, a fraglaydis applied such that
pixels can be compared to both the corresponding pixel iptéeious and next frame. The
next frame will then have been processed up to the secondstemost of the noise will
have been removed already. Analogously to the first stepjsefnee degree and a noisy
degree are calculated again in this third step. A pixel is@®red noisefree if its grey value
corresponds to that of its temporal neighbours or if ther ieighbour with similar grey
value (that probably belongs to the same object) that qooregs to its temporal neighbours
(the considered pixel might belong to the border of a slightbving object). The pixel
is considered noisy if its grey value does not correspontdbdf its temporal neighbours
and this does not hold for most of its neighbours (but pogdiblds for a small cluster).
The refinement step (5.2.4)(outplyd), finally, is intended to remove small impulses (noise
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5.2 Second Proposed Algorithm i

value similar to the original value) that may not have bedaedated up to now, but that are
relatively large in a homogeneous (spatially) or non-mg\¥iemporally) area. The result of
the successive filtering steps is illustrated in Fig. 5.%er 20-th frame of the “Salesman”
sequence.

5.2.1 First Filtering Step
Detection

In this first detection step, we determine by the help of fuzigs a degree to which a given
pixel is considered noisefree and a degree to which that @x®nsidered noisy. If the
noisy degree is larger than the noisefree degree, thenxbkewil be filtered, otherwise the
pixel will remain unchanged.

A pixel can be considered noisefree if it is similar to thegbixt the same spatial location
in the previous and preprevious frame and has also somesimeiighbours. If the noisefree
situation of the pixel is not confirmed in time, possibly doertotion, we will require more
spatial confirmation (similar neighbours). The noisefregrée is determined as follows:

Fuzzy Rule 5.1.

IF( the absolute differencé$, (z,y,t) — Iy, (z,y,t—1)] AND|L, (z,y,t) —I;(x,y,t —2)]
areNOT LARGE POSITIVE ANihere are two neighbourg + k,y +1,t) (-2 < k,1 < 2
and (k, 1) # (0,0)) for which|I,, (z,y,t) — I,,(x 4+ k,y +1,t)| isNOT LARGE POSITIVE)

ORthere are four neighbourgr + k,y +1,t) (-2 < k,1 < 2and(k,1) # (0, 0)) for which
\I,(z,y,t) — I, (x + k,y + 1,t)] is NOT LARGE POSITIVE

THENthe pixel at positior{z, y, t) is consideredMOISEFREE

The linguistic term “large positive” in this rule can be repented by a fuzzy set of
which the membership function;, p is depicted in Fig. 5.10 (see Section 5.2.5 for the de-
termination of the parameters). Further, for the conjumciAND), disjunction (OR) and
negation (NOT) in the fuzzy rules, in this chapter we will tise product, probabilistic sum
and standard negator, because these yielded the bess r@hdtdifference compared to the
results for another choice of operators is however nedlectThe degree to which the pixel
at position(z, y, t) now belongs to the fuzzy set “noisefree” corresponds to gwrek to
which the antecedent in the fuzzy rule is true. This degrealisulated as follows. The de-
gree to which there are two (respectively four) neighboarsvhich the absolute difference
in grey value is not large positive, denotedrbyizs (z, v, t) (respectivelymazy(x, y, t)), is
determined as the second (respectively fourth) largesteiein the set

{1 - /’LLP(|In(x7yat) - In(.lf =+ k7y + lat)|)| -2< k7l <2 and(k’l) 7é (0,0)}
For the pixel at positiorix, y, t) this results in a noisefree degree
,unoisefree(xa Y, t) = Oél(l‘, Y, t) ' O@(Jja Y, t) : mam2($7 Y, t) + TTI;CL334(.’I), Y, t)_
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() (b)

(©) ———

Figure 5.9: The original 20-th frame of the “Salesman” sequence (a), the framamted by 25%
random impulse noise (SN R = 14.27dB) and the result after the first ()6 N R = 19.48dB),
second (A)PSNR = 26.38dB), third (e)(PSNR = 32.20dB) and refinement step (IRSNR =

33.22d B) respectively.

112



5.2 Second Proposed Algorithm i

Membership degree i, ,

‘LARGE POSITIVE
: DIFFERENCE

»
>

o par; par, 2

Figure 5.10: The membership function,, p of the fuzzy set “large positive difference”.

al(x7y7t) : 012(33, y7t) ! maxg(x,y,t) : maa:4(1:, y7t)a

where

),
)).

A pixel is considered noisy if the difference in grey valuengared to the pixel at the
same spatial location in the previous frame is large p@siivarge negative and if this does
not hold for its neighbours (the difference is thus not cdusgmotion). This should also
be confirmed spatially by the fact that there is a directiowlmich the differences in grey
level between the considered pixel and the two respectigiheurs are both large positive
or large negative and if the difference in grey value of thtvge neighbours is not large
positive (and the pixel is thus an impulse between two pitteds are expected to belong to
the same object).

al(xayat) = (1 - /~LLP(|In(:L'7y7t) - If2(x7yat - 1)
O‘Z("anat) = (1 _MLP(|I7I,(x7yat) —If(I,y,t—2)|

Fuzzy Rule 5.2.

IF(( the differencd,,(z,y,t) — I, (x,y,t — 1) is LARGE POSITIVE AND NOTor five
neighbourgz +k,y+1,t) (-2 < k,1 < 2and(k,l) # (0,0)) the differencd,,(z + k, y +
I,t) — I, (x4 k,y +I,t — 1) is LARGE POSITIVE)

OR (the differencel,, (z,y,t) — I, (x,y,t — 1) is LARGE NEGATIVE AND NQar five
neighbourgz +k,y+1,t) (-2 < k,1 < 2and(k,l) # (0,0)) the differencd, (z + k,y +
I,t) — I, (x4 k,y +1,t — 1) is LARGE NEGATIVE))

AND((in one of the four directions the differencés(x,y,t) — I,(z + k,y + [,t) and
I (z,y,t) — In(x — k,y — I,t) (k,]) € {(-1,-1),(-1,0),(—1,1),(0,1)}) are both
LARGE POSITIVE ORboth LARGE NEGATIVE) ANDhe absolute differencl,, (= +
k,y+1,t)—I,(x—k,y—1,t)isNOT LARGE \verbPOSITIVE?)?

THENthe pixel at positior{z, y, t) is consideredNOISY.
Analogously to the linguistic term “large positive”, aldwetterm “large negative” can
be represented by a fuzzy set with the membership functieengn Fig. 5.11 (see Sec-

tion 5.2.5 for the determination of the parameters). Theeketp which for five neighbours
the differences in grey value compared to the corresporpliais in the previous frame are
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Membership degree 1,

LARGE NEGATIVE :
DIFFERENCE

<
<

z — par, — par; )

Figure 5.11: The membership function;, - of the fuzzy set “large negative difference”.

large positive, denoted ks (=, y, t) is determined as the fifth largest value in the set
{pep(Ln(z+ky+1,t) —Ip(x+ky+1,t—1))—2<k,l<2and(k,1) # (0,0)}.
Analogouslyt,..,(z,y,t) corresponds to the fifth largest value in the set

{puenIn(z +ky+1,t) = I, (x+ky+1,t—1)) —2 <kl <2and(k,l) # (0,0)}.

The degree to which the difference between the pixel at iposit, y, t) and the corre-
sponding pixel in the previous frame is large positive ogéanegative and this is not the
case for five of its neigbhours is then given by

tempimp(z, y,t) =
(’71(x7y’t) : (1 - tpos(z7y7t))) + (72(z7y7t) ! (1 - tneg(xa yvt)))_
(71(-r7y?t) ! (1 - tpos<x7yat))) : (72(33’:%75) : (1 - tneg(x’:%t)))a

where

’71(1',y,t) = [LLP(In(SU,

yvt) - Ifg (:c,y,t - 1))3
VQ(Ivyat) = [LLN(In(I,y,t) -1

f2(z7y7t - 1))

The degree to which there is a direction in which the pixel @ifon (z,y,t) is an
impulse, denoted bypatimp(z,y,t), is determined as the maximum value in the set

{(E%k,l)(xa y,t) + E%k,l)(xvyvt) - Egk,z)(fﬁvyat) 'e?kJ)(xa Yy, 1)) - €?k7l)(xvyat)
|(k7 l) € {(_13 _1)7 (_170)7 (_13 1)7 (07 1)}}7

where
e%k,z)(ff,y,t) = prp(ln(z,y,t) — L(z+ k,y+ 1,t)):
prp(L(z,y,t) — L(x — k,y — 1,1)),
e?k,l)(xvyat) = prn(L(z,y,t) — L(z+ k,y+1,t)):
L (I (fﬂ y, t) = In(z — k,y —1,t)),
en@yt) = 1—pr(l(e+ky+1t) = Iz —ky—1L1)]).
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5.2 Second Proposed Algorithm L4

Combining the above, we get
Hnoisy (T, Y, t) = tempimp(z, y,t) - spatimp(z, y, ).

Filtering

All pixels (z,y,t) for Which neisy (2,Y,t) > pnoisefree(T, y, t) are filtered (denoted by
tunen(x, y,t) = 0), the other pixels remain unchanged (denoted.by., (x, y,t) = 1):

Lhunch (:L’, v, t) _ 0 Hnoisy (x, Y, t) > Mnoisef’ree(m> Y, t),
1 else

The filtering is performed in a motion compensated way. Towdate the correspondence
between two blocks of image pixels of sigz W +1) x (2- W +1) (wherelV is a general
parameter), the following noise adaptive mean absoluterdiice (MAD) is introduced:

MADf,’”(x, y, 18, W) =

TS e+ y D@+ Ry + 1)~ (@ +k+ry+1+5)]
;,iv_w LVKW N(xJFk,erl) ’

wherel andI’ are the two frames between which motion is estimateahdy indicate the
spatial coordinates of the central pixel of the consideitedioin I andr ands respectively
stand for the vertical and horizontal coordinates of th@ldisement vector, i.e., the block
that is considered i1’ has(z + r,y + s) as central pixel.x is a binary function that
indicates whether a pixel at spatial locati@n y) is reliable, i.e., to be usedi(x,y) = 1)
or not (u(z,y) = 0). Using only reliable (noisefree) pixels will result in atteg motion
compensation. 157", S5 (@ + k,y + 1) = 0 or if not for at least half of the
noisefree pixels, the absolute differenééxr + k,y +1) — I'(x + k+r,y + 1+ s)| is not
large positive (i.epurp(|[I(z+k,y+1)—I'(x+k+r,y+1+s)|) = 0), the noise adaptive
MAD is not reliable and is assigned the vakiec.

For the filtering of a pixelx, y, t) in this first step of our algorithm, we determine the
displacement vectdtu(x, y,t), v(x, y, t)) for the best matching2 - W, +1) x (2- W1 +1)
block in a search region of siz@ - W, + 1) x (2 - W3 + 1) in the previous framd,
(see Section 5.2.5 for the determination of the paraméigr&nd 11;) and by using the
restriction Ofzs,,cp, to the current frame (denoted by, .. (¢)) as:

(u(z,y,t),v(z,y,t)) = argmin ]V[AD?‘(?’_”{‘"“’I(O (z,y,7,8 W1).
—Wars<Ws £2(¢=1)
The previous frame has been processed up to step 5.2.2 andhient. As will be seen
later, a frame delay will be applied as from step 5.2.3. Tha&muim value itself is denoted
by minmad(z,y,t). The parameterd’; andV, are determined in section 5.2.5.
A pixel (z,y,t) for which pnen(x,y,t) = 0, is then filtered as the corresponding
motion compensated pixel in the previous frame, if it ex{gt8nmad(x,y,t) # +0o0).

115



T Random Impulse Noise in Greyscale Image Sequences

Otherwise (ifminmad(z,y,t) = +00), a spatial filtering is performed. [f,,cn(z,y,t) =
1, the pixel remains unchanged in this step. Summarized,ut@ubof this first step for a
pixel (z,y,t) is given by:

In (1), hune .
Iy (z,y,t) = MC’FIfQ((tt)_“l) h(t)(x,y,u(x,y,t),U(Jc,y,t)),mmmad(x,y,t)),

with (for general frameg and’, general binary functiop, displacement vectd, v) and
variableminmad)

I'(z+u,y+v) if p(z,y) =0andminmad # 400
MCFII,’”(:uy,u, v, minmad) = SFlf(x,y, wh) if p(x,y) = 0 andminmad = +oo ,
I(x,y) else

where the spatial filtering framework is given by

; e S e+ ky +1) I+ ky +1)
SE, (z,y, W) = e s )
e 2o——w (T iy +1)
1S S (@ 4k, y+1) = 0, which is unlikely to happen in practical situations,

SF!(x,y,W) =mediadI(z+k,y +1)| =W < k,l < W}

5.2.2 Second Filtering Step

In our aim to preserve the details as much as possible, tlse m®removed in successive
steps. In this step the noise is detected based on the otitingt previous stepl(, ).

If for all 8 neighbourqz + &,y +1,t) (-1 < k,I < 1and(k, 1) # (0, 0)) the difference
Iy (x,y,t) — Iy, (x + k,y + 1, t) is large positive to some degree (i.2sp(Iy, (x,y,t) —
It (x+k,y+1,t)) > 0)or for all 8 neighbours this difference is large negativedme
degree, then the pix¢l, y, t) is considered noisy and should be filtered (., (z,y,t) =
0).

If prop(Iy (z,y,t) — Ip, (z+ k,y+1,t)) > 0for 7 neighbours opr v (Iy, (x,y,t) —
Ip (x+ k,y+1,t)) > 0 for 7 neighbours and if for the remaining eighth neighbouthbo
MLP(Ifl (:C?yvt) 7If1 ((L’+k‘,y+l,t)) =0 andNLN(Ifl (Z, yvt) 7If1 (Cﬂ+k,y+l,t)) =0,
then this neighbour and the central pixel y, t) might belong to a corrupted line. Itis then
checked whether for the opposite neighbour or one of thehheigring neighbours or one
of the pixels in their prolongation (as illustrated in Figl®) the difference in grey level
compared to the central pixel or the neighbour for which tifiler@nce in grey value was
not large positive and not large negative, is also not laggitipe and not large negative (i.e.,
has degree zero). If this is the case, then we have detecteskib|e line which is stored as
PL(z,y,t) = trueand the pixel will not be filtered.{,,, ., (z, y,t) = 1). Otherwise no line
is detected PL(z,y,t) = fals§ andy!, .., (z,y,t) = 0. In all other cases, the pixels are
not detected as noisg/(,, ., (x,y, t) = 1).
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Figure 5.12: lllustration of the third detection step. If ‘X’ stands for the only neighbaunfhich the
difference in grey value compared to the central pixel ‘c’ is not larggtjve and not large negative,
then the central pixel is considered noisy, unless if for one of the djepoigels indicated by-' the
difference in grey level compared to ‘c’ or to ‘X’ is not large positivedanot large negative.

Analogously to the first step, the pixels for whigh,, ., (z,y,t) = 0 are again filtered
in a motion compensated way:

(W (2,9, 8),0 (w,y,1)) = argmin  MADY D Hmen® g s ),
—Wa<r,s<Wa Ifz(t 1)

with the minimum value itself denoted byinmad’(z, y,t). The output of this step for the
pixel at position(x, y, t) then becomes

Iy (w,y,t) = MCOF 0O @y, (,y,0),0' (2, y,1), minmad (2, ,1)).

5.2.3 Third Filtering Step

Up to now, most of the noise has been filtered. However, dueita@ion to preserve details
as much as possible, little clusters of similar noisy pixals still present, which we will
try to detect in this third detection step. Since the renmgjmioisy pixels are clustered, we
will detect the impulses based on temporal information. &@ble to detect such temporal
impulses, we will compare a pixel to the corresponding gixelthe previous and the next
frame. The detection will only work well if the next frame is@ more or less noisefree. To
achieve this, a frame delay is applied from this step on, shiahthe next frame is already
processed up to step 5.2.2 and most of the noise has beenagmov

For each pixelz,y,t — 1) a noisefree degree and a noisy degree is calculated again
analogously to the first step (5.2.1). If the noisy degreaiigdr than the noisefree degree,
the pixel needs to be filtered.

We consider a pixe{z,y,t — 1) to be noisefree if its grey value is not very different
from that of both its two temporal neighbouts, y, ¢ — 2) and(z, y, t) and if the pixel has
a similar neighbour (not a large difference in grey valuembich the same holds.

Fuzzy Rule 5.3.
IF(( the absolute differendéy, (z,y,t—1)—I;(x,y,t—2)| iSNOT LARGE POSITIVE)
OR (the absolute differenddy, (z,y,t — 1) — Iy, (x, y,t)| is NOT LARGE POSITIVE))
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AND (there is a neighboufz + &, y+1,t) (—1 < k,I < 1and(k,1) # (0,0)) for which the
absolute differencl ¢, (v, y,t—1)— I, (x+k,y+1,t—1)| isNOT LARGE POSITIVE AND
for which( the absolute differencdy, (z + k,y +1,t —1) = Iy(z + k,y+1,t —2)| isNOT
LARGE POSITIVE) OR (the absolute differendé, (x+k, y+1,t—1)—1Iy, (x+k,y+1,t)|
is NOT LARGE POSITIVE))

THENthe pixel at positior{z, y,t — 1) is consideredNOISEFREE

The degree to which such a neighbour can be found, denotedipytbour(x, y,t — 1),
is determined as the maximum value in the set

{e(k,l)(xayvt - ]-) : Zf)(k,l)(l”?%t - 1)| —1<kil<1 and(kvl) # (070)}7
where
e(kyl)(l‘,y,t - 1) =1- MLP(llfz(mayvt - 1) - If2(x+ kyy+1,t— 1)‘)’
wlk)[)(xayat_ 1) = (1 - MLP(‘I]%(J:_" k7y+lat - 1) - If(x + k’y+ lat_ 2)|))1
w(k7l)(m7yat - 1) = (1 - MLP(‘Ih(x"_ kyy+1,t— 1) - If2($ +ky+ lat)D)!
w(k,l) (3%1% t— 1) = ¢(1;€71)($7y7t - 1) + 17&(2k’l)(x7y7t - 1)_
w(lk-,l) ($7y,t - 1) : w(zhl) (l’,y,t - 1)

The noisefree degree for the pixXel, y, ¢ — 1) is then given by

H“lvioisefree(xﬂ y7t - 1) = w(0,0) (IZ’, Y, t— 1) ! neighbour(:v, Y, [ 1)

On the other hand, a pixel is considered to be noisy if it difia grey value from both
its temporal neighbours and if there are not 7 neighbourg’ir @ neighbourhood that have
a similar neighbour (and are thus more reliable) and th&dif grey value from both their
temporal neighbours. If 7 such neighbours can be found, itted is expected to belong to
a moving object. The number has been chosen small enougb detéct lines and large
enough to detect the small noise clusters.

Fuzzy Rule 5.4.

IF(( the absolute differendd, (z,y,t—1) —I;(x,y,t—2)| is LARGE POSITIVE) AND
(the absolute differenddy, (x,y,t — 1) — Iy, (x,y,t)| is LARGE POSITIVE))

AND(there areNOTseven neighbourhood pixels + &,y + 1,¢) (-3 < k,l < 3 and
(k,1) # (0,0)) that (have a neighboufz + k + i,y +1 + j,t) (-1 < 4,5 < 1 and
(z,7) # (0,0)) for which the absolute differendé, (x + k,y +1,t — 1) — I, (x + k +
i,y +1+j,t — 1) isNOT LARGE POSITIVE) ANDOor which( the absolute difference
s (x+k,y+1,t—1)—Ii(x+k,y+1,t—2)|isLARGE POSITIVE) AND(the absolute
difference|ly, (z + k,y + 1,t — 1) — I, (z + k,y + 1, t)| is LARGE POSITIVE))

THENthe pixel at position{x, y,t — 1) is consideredNOISY.

The degree to which there exist 7 such neighbours is dengtediby; (z, y, ¢t — 1) and
is determined as the seventh largest value in the set

{(1 - wk,l(xayat_ 1)) : (Z)(k,l)(xayat_ 1)| -3 S kvl S 3 and(k?l) 7é (O’O)}a
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where

¢(k,l)(‘r7y7t - 1) =
max{l 7,U'LP(|If2(x+kay+lat7 1) 7If'2($+k+iay+l+jvt* 1)|)

The noisy degree for the pixét, y, ¢ — 1) is then given by

.U’Z,oisy(xay7t - 1) - (1 - ¢(0,0)(I7y7t - 1)) : (1 - max7(:z:,y7t - 1))

Analogously to the first step, pixels for whig{ .. (z,y,t—1) > u” . x,y,t—
L0158y noisefree
1) will be filtered. The others remain unchanged:
‘u// (Jj Yt — 1) _ 0 lu‘;;oisy(l'vyﬂt - 1) > lu‘fr:oisefree(x7y’t - 1) )
unch\*» J» 1 else
The pixels for whichy! . . (z,y,t—1) = 0 are again filtered in a motion compensated way:

u

(' (e,y,1 = 1), 0" (gt = 1)) = argmin MAD e gy s W),
- 23T,8S 2

with the minimum value itself denoted byinmad’ (z,y,t — 1). The output of this step
for the pixel(x,y,t — 1) then becomes

Ip (z,y,t—1) =

MC’FII;ft(f;;)’M”"C’L(t_l)(x,y, ' (x,y,t —1),0"(z,y,t — 1), minmad” (x,y,t — 1)).

5.2.4 Refinement Steps

In these final refinement steps, the result from the previtagsis further refined both tem-
porally and spatially. Some very small impulses might natehlzeen detected by the algo-
rithm. However, such impulses might be relatively large @msmoving and homogeneous
areas.

Since the pixels in non-moving areas will correspond to thelp in a previous or
next frame, remaining isolated noisy pixels can be detecteck easily. We perform the
following temporal detection:

0 if p’LP(|If3(Ivyat71)7If(x7y7t72)‘)>O
/L7L07L77L0U(1‘7y7t - 1) = andﬂLP(|If3 (xayvt - ]-) - Ifz (.’E, yvt)‘) > 07
1 else

A 5 x 5 area centered around the spatial positiony) is determined as non-moving
between frame — 2 and¢ — 1 if
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(NM) 7 5507 5 tnonmon (T + kyy + 1,8 — 1) > 20.
A detected noisy pixel in a non-moving area is then filteretbsws:

If(z,y,t —2)  if fnonmoo(,y,t — 1) = 0 and (NM) holds
It (z,y,t — 1) = andurp(|ly(z,y,t —2) = Ip,(z,y,t)]) =0,
It (x,y,t—1) else

Additionally, also a spatial refinement is performed. A pike vy, ¢ — 1) will be filtered
if itis larger or smaller than all its neighbours and one effibllowing conditions is fulfilled
(whereM (z,y,t — 1) andm(z,y,t — 1) respectively denote the maximum and minimum
grey value of its neighbours (x 3 neighbourhood)):

L4 ULP(If4(xay7t - 1) - M(I,y,t - 1)) > O’
.U’LN(Ile(xa yvt - 1) - m(I7y7t - 1)) > 0'
If4(1‘7y,t - 1) - M(l‘,y,t - 1) > ]\/[(Tvyvt - 1) - m('ray7t - 1)’
m($,y7t - 1) - If4(xayat_ 1) > M(I7y7t - 1) - m(.r,y,t - 1)
If one of the conditions is fulfilled, the final filtering re$dibr the pixel(z,y,t—1) becomes
If(z,y,t—1) = (M(z,y,t—1)+m(z,y,t—1))/2. Otherwise the pixel remains unchanged:
If(.f(:,y, t— 1) = If4($, y7t - 1)

5.2.5 Parameter Selection

The parameterpar, and par, that determine the membership functiomsp and pip v
(Fig. 5.10 and 5.11) are selected as follows. We have fixeditteeof the pixel neighbour-
hood and the search window in the motion compensated fiffex&b x 5 (W; = 2) and
11 x 11 (W5 = 5) respectively and have let the parameters, andpars run over a range
of possible values. For each pair of values ar; andpar, the arithmetic mean of the
PSNR result of the nine sequences “Salesman”, “Trevor” dietifiis”, each corrupted with
respectivelys%, 15% and25% random impulse noise was computed. The parameter val-
ues were then selected as those for which this arithmetic roeer the nine test sequences
reached its maximunyar; = 11, pary = 43. These values will be used in the remaining
experiments.

Next, the window sizéV; was selected by fixing/> = 5 again and by lettingV;
run from 0 to 5. The arithmetic mean of the PSNR values oventhe test sequences, as
discussed above, are given in Table 5.4. It can be conclidedly, = 2 is the best choice.

Table 5.4: Determination of the paramet#r;. (Arithmetic mean of the average PSNR (dB) values.)

011[2713[4[5
[PSNR25.0133.5733.6933.5733.4333.27
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So we will use that value from now on.

Finally, the value for¥; is selected in an analogous way. We have let it run over the
values 4 to 15 for the processing of the nine test sequendes.afithmetic mean of the
PSNR values over the nine test sequences can be found in 3&bldt can be seen that
from the valuel’, = 8 on the PSNR value hardly increases anymore. Therefore we wil
use the valuéV, = 8 in the remaining experiments.

Table 5.5: Determination of the paramet#r,. (Arithmetic mean of the average PSNR (dB) values.)

4[5[6[7[8[97210111[12[13[14[15
[PSNR33.6333.6933.7733.7733.8033.8033.8(033.8133.8333.8433.8533.84

5.3 Experimental Results

The remainder of the section is structured as follows: ins&abion 5.3.1 the proposed
method is compared to other state-of-the-art filters andtiadelly Subsection 5.3.2 dis-
cusses some complexity notes.

5.3.1 Comparison to Other State-of-the-Art Filters

In this subsection, the performance of the proposed methaedmpared to the following
3D filters: the 3D rational filter (RAT) [22], the adaptive 3Dedian filter (A3SDM) and the
weighted 3D median filter (W3DM) [55], the adaptive 3D LUM sntioex (LUM) [66] and
the peak-and-valley filter (PAV) [139]. Further, the propdsnethod is also compared to
the 2D fuzzy random impulse noise reduction method (FRINRIP], as a representative
of the 2D filters, to show that the proposed filter takes reabhathge from the temporal
information. In [122], it is shown that the FRINRM filter odorms all other compared
state-of-the-art 2D methods and is thus a good represantdtihe 2D impulse noise filters.

All methods have been processed on the “Salesman”, “TreV@ehnis”, “Deadline”,
“Miss America” and “Foreman” sequences, for random impulsise levels ranging from
5% 10 30%. The results of these experiments (in terms of PSNR) canuredfm the graphs
in Fig. 5.13. From these graphs, we see that the proposeddhetitperforms all other
methods in terms of PSNR.

For a visual evaluation of the compared methods, the resfilthe different meth-
ods performed on the “Tennis”, “Deadline” and “Salesmarjunces, respectively cor-
rupted with5%, 15% and25% random impulse noise, are made availablehttp://
www.fuzzy.ugent.be/tmelange/results/greyimpulse . Further, Fig. 5.14
and 5.15 and Fig. 5.16 and 5.17 show the original frame, tigyritame and the filtering
result for all of the compared methods for respectively the-th frame of the “Tennis”
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Figure 5.13: PSNR results for the different methods applied on the sequencesgl@st®an” (5%
noise), (b) “Tennis” (10% noise), (c) “Foreman” (15% noise), (Miss America” (20% noise),
(e) “Trevor” (25% noise) and (f) “Deadline” (30% noise)
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sequence and the 20-th frame of the “Deadline” sequenceanlbe seen that the rational
filter results in a moderate detail preservation and alseekea lot of noise. The peak-and-
valley filter succeeds in removing the noise better, but fghér noise levels, little groups
of impulse pixels remain present. Further, also some detslarises due to the filtering of
too many noisefree pixels. This is also the case for both dag@tave and the weighted 3D
median filter and can e.g. be seen at the side lines and tha tiet fTennis” sequence in
Fig. 5.14. On the other hand, both filters have an acceptableising capacity. The LUM-
smoother seems to preserve details quite well, but hasqarablvith moving objects and
fails to remove the noise adequately at higher noise lev@ss.the 2D FRINRM method,
we see the expected drawbacks of only using spatial infeemaTf he filter has very good
PSNR results frame per frame, but when watching the segagadet of temporal incon-
sistencies can be noticed. Further, the filter also perféesssfor sequences with a detailed
background (e.g., “Deadline”, “Salesman”), where addiiotemporal) information could
improve the detail preservation and noise detection anithadso avoid temporal artefacts.
The two proposed filters, finally, combine the best detaifpreation to the best noise re-
moval and have a similar performance. Around the edges, Venwee see a slightly better
denoising and detail restoration by the second proposeldadet

5.3.2 Some Notes on the Complexity

In the previous subsection, it was shown that the proposebads yield the best filtering
results. It should however be mentioned that in the devedsyirof the proposed methods,
we have focused on the performance and not on the complexitgh was more the case in
the compared methods. Because we did not focus on the coityptady a few comments
are given. It should be remarked that the largest compuiaticost of the methods comes
from the motion compensated filtering. Also, the higher thésa level, the more pixels
that need to be filtered and thus the higher the running tinearillustration, Table 5.6
gives the running time for the processing of the “Salesmanugnce corrupted by different
noise levels by the second proposed algorithm. The algontlas implemented in matlab
in combination with the mex-function and executed on anl(RjeXeon(R) CPU X3220
@ 2.40GHz. A faster motion compensation could be acconmgidly using fast motion

Table 5.6: Average running time (seconds per frame) for the processing ofShke$man” sequence.

% random impulse noise
0 5 10 15 20 25 30 35
Running time 0.4792 0.9708 1.4306 1.8692 2.2832 2.6870 3.0697 3|4338

estimation techniques such as those presented in [111144B,Remark further also that in

each of the filtering steps, the detection (respectivelriiig) of a pixel does not depend on
the detection (respectively filtering) of the other pixelshie frame and could be performed
in parallel.
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Figure 5.14: 110-th frame of the “Tennis” sequence: (a) original, (b) noiE}), (c) RAT, (d) PAV,
(e) A3DM and (f) W3DM.
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Figure 5.15: 110-th frame of the “Tennis” sequence: (g) LUM, (h) FRINRM, (i) tirst proposed
algorithm and (j) the second proposed algorithm.
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Figure 5.16: 20-th frame of the “Deadline” sequence: (a) original, (b) noiE}), (c) RAT, (d) PAV,
(e) A3DM and (f) W3DM.
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Figure 5.17: 20-th frame of the “Deadline” sequence: (g) LUM, (h) FRINRM, (i) fivst proposed
algorithm and (j) the second proposed algorithm.
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5.4 Conclusion

In this chapter we have presented two new video filters for¢heoval of random valued
impulse noise in digital greyscale image sequences. Baéndifemove the noise step by
step in order to preserve the details as much as possible.

The noise detection steps of the first proposed method haare dmveloped in a fuzzy
logic framework by assigning to each pixel a degree to whigh noisy, but it should be
mentioned that e.g. by working with the support of a fuzzy setny of the decisions in the
framework are merely binary. The power of fuzzy set theotyaaever more exploited in
the second proposed method. In the different filtering stéfise second proposed method,
fuzzy rules containing linguistic values were used to detee the degree to which a pixel
is considered noisy or noisefree. If the noisy degree islattgan the noisefree degree, the
pixel will be filtered.

The filtering of the detected pixels in both methods is penfed in a motion compen-
sated way in order to exploit the temporal information as Ima possible. The pixels that
are considered noisefree remain unchanged.

From the experimental results it could be concluded thaptbposed methods outper-
form other state-of-the-art methods both in terms of PSN&Rwasually. A good trade-off
between noise removal and detail preservation was found.
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Random Impulse Noise in
Colour Image Sequences

Analogously as in the greyscale case, only few colour vidkersi for the impulse noise
case can be found (e.g. [63, 112]). However, several immdise filters for both greyscale
and colour stillimages exist. The median based rank-oritiersiare the most widely spread
among them (e.qg., [14, 19, 20, 45, 47, 55, 58, 64, 65, 67, 3, I6@ also some fuzzy tech-
nigues can be found [42, 59, 90, 115, 116, 121, 122, 123, 84, As mentioned before,
using a 2D filter on each of the frames of a video successivelyldvhowever result in
temporal inconsistencies due to the neglection of the teahjgorrelation between succes-
sive frames. A better alternative would be to use extendedil&ding windows, in which
also pixels from neighbouring frames are taken into accf2it38, 55, 63, 66, 112, 139].
Further, using a greyscale filter on each of the colour bards amlour image or video
frame separately, will analogously introduce several eotefacts, especially in textured
areas, due to the neglection of the correlation betweeniffezaht colour bands. To in-
corporate this correlation, vector-based methods weredoted. Most of these methods
are based on ordering the vectors in a predefined filteringavin The output for a given
colour pixel is then the pixel in the window around the giverep that has the smallest
accumulated distance (Euclidean distance, angular distan) to all other vectors in the
window [14, 19, 47, 63, 64, 65, 67, 68, 69, 112], or which isnfest similar to all window
pixels [90]. To avoid blurring due to the filtering of noiseér pixels, this filtering frame-
work has been further refined by weighted filtering techng, 58, 65] and switching
schemes where the filter is only used for detected noisy 9ip6d, 64, 68, 69, 90, 112].
The drawback of vector-based methods, however, is that preeformance is highly re-
duced for higher noise levels. Consider for example a neigttiood in which all pixels
have one noisy component, and the other components ardreeis&o, although a lot of
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the components are still noisefree, no noisefree vectdrbgiffound for the output of the
vector-based methods. It would be better to filter the colmnds separately, but by using
information from the other colour bands. However, not muiteraatives for the vector-
based approach can be found in literature. Some exampletoged for still images are
e.g. [121, 122, 123].

In this chapter, we present a filter [73, 78] for the removalafdom impulse noise
in colour image sequences, in which each of the colour compisnis filtered separately
based on fuzzy rules in which information from the other aolbands is integrated. The
filtering is divided into three successive filtering steps preserve the details as much
as possible, the noise is removed step by step. Only pixatshifive been detected to be
noisy in the current step are filtered. This filtering is dogeblbckmatching, a technique
used for video compression that has already been adoptédkia filters for the removal of
Gaussian noise (e.g. [41, 51, 141]), but that has not realind its way to impulse noise
filters yet. The correspondence between blocks is usualtpleded by a mean absolute
distance (MAD), that is heavily subject to noisy impulsekefiefore, we introduce a MAD
measure that is adaptive to detected noisy pixel compon@ntsenefit as much as possible
from the spatial and temporal information available in thguence, the search region for
corresponding blocks contains pixel blocks both from threvigus and current frame. The
experiments show that the proposed method outperforms sthie-of-the-art filters both
visually and in terms of objective quality measures suctha®SNR and NCD.

The chapter is structured as follows: The successive filjesteps of the proposed filter
are discussed in Section 6.1. Values for the used paranstedetermined in Section 6.2
and additionally a comparison to other state-of-the-a#rflis carried out in Section 6.3.
The chapter is finally concluded in Section 6.4.

6.1 The Proposed Algorithm

I (t+1 I,(t+1
l (t+1) l (t+1)
W First filtering | !n(t) | Second filtering | 2(t) | Refinement
n

step > step " step

A A 3

I(t-1) I(t-1) I(t-1) E
: frame backward : frame forward

Figure 6.1: Overview of the different steps in the proposed algorithm.

The proposed filtering framework [73, 78] denoises a noigpeacel,, in three suc-
cessive filtering steps as depicted in Fig. 6.1. By remouiegioise step by step, the details
can be preserved as much as possible. Indeed, if a condelpeabof the noise has already
been removed in a previous step, and more noisefree neightiocompare to are available,
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6.1 The Proposed Algorithm 2 4

it will be easier to distinguish noise from small details the first step (6.1.1) (with output
denoted byly, ), we calculate for each pixel component a degree to whichébisidered
noisefree and a degree to which it is considered noisy. Ihthisefree degree is smaller
than the noisy degree, the pixel component remains unchangeerwise it is filtered. The
determination of both degrees is mainly based on tempdi@irimation (comparison to the
corresponding pixel component in the previous frame). Rkrmawever that only in non-
moving areas large differences can be assigned to noisere&s avhere there is motion,
such differences might also be caused by that motion. As secpuence, and as can be seen
in Fig. 6.2, impulses in moving areas will not always be detédn this step. They can
however be detected in the second step (6.1.2)(output Analogously as to the first step,
again a noisefree degree and a noisy degree are calculabecevelr, the detection is now
mainly based on colour information. A pixel component cars&en as noisy if there is no
similarity to its (spatio-temporal) neighbours in the giveolour, while there is in the other
colour bands. The third step (6.1.3)(outdy), finally, removes the remaining noise and
refines the result by using as well temporal as spatial armlicahformation. For example,
homogeneous areas can be refined by removing small imphiaeare relatively large in
that region, but are not large enough to be detected in ddtaggions and that thus have
not been detected yet by the previous general detectios.stde results of the different
successive filtering steps is illustrated for the 20-th ®anh the “Salesman” sequence in
Fig. 6.2.

6.1.1 First Filtering Step
Detection

In this detection step, we calculate for each of the compisneheach pixel a degree to
which itis considered noisefree and a degree to which iogght to be noisy. A component
for which the noisy degree is larger than the noisefree dgg, that is more likely to be
noisy than noisefree, will be filtered. Other pixel compasesill remain unchanged. The
noisefree degree and noisy degree are determined by fulesyas follows.

We consider a pixel component to be noisefree if it is sintidathe corresponding com-
ponent of the pixel at the same spatial location in the pressmr next frame and to the cor-
responding component of two neighbouring pixels in the siiame. In the case of motion,
the pixels in the previous frames can not be used to deterwireher a pixel component
in the current frame is noisefree. Therefore, more confionaimore similar neighbours
or also similar in the other colour components) is wanteteend. For the noisefree degree
of the red component (and analogously for the other comgshethis is achieved by the
following fuzzy rule:

Fuzzy Rule 6.1.

IF( (|1 (x, y,t) =1 (z,y,t—1)|isNOT LARGE POSITIVE OR }(x, y, t) = I (2, y, t-+
1)| is NOT LARGE POSITIVE ANDthere are two neighbourée + k,y + 1,t) (—2 <
k,l < 2 and(k,1) # (0,0)) for which |IE(x,y,t) — IF(x 4+ k,y + 1,t)| is NOT LARGE

n
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()

Figure 6.2: The original 20-th frame of the “Salesman” sequence (a), the framemted by 20%
random impulse noise (SN R = 15.05d B) and the result after the first (SN R = 23.72dB),
second (d)PSN R = 29.42d B) and refinement step (66N R = 36.78d B) respectively.
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POSITIVE)

OR( there are four neighbourse + k,y + 1,t) (-2 < k,I < 2 and (k,1) # (0,0)) for

which [I2(z,y,t) — IF(x + k,y + [,t)| is NOT LARGE POSITIVE ORthere are two
neighbours(z + k,y + 1,t) (=2 < k,1 < 2 and(k,l) # (0,0)) for which|IZ(z,y,t) —

IB(z+k,y+1,t)| isNOT LARGE POSITIVE ANDIS (2, y,t) — IS (z 4+ k,y +1,t)] OR
\IB(x,y,t) — IB (x + k,y + [, t)| areNOT LARGE POSITIVE)

THENthe red component?(z, y, t) is consideredNOISEFREE

To represent the linguistic value “large positive” in theoab rule, a fuzzy set is used,
with a membership function;, p as depicted in Fig. 6.3 (see Section 6.2 for the determina-
tion of the parameters). For the conjunction (AND), disjimt (OR) and negation (NOT),
in this chapter, we will use the minimum operator, the maxmuaperator and the standard
negator {V;(z) = 1 — z,Vz € [0, 1]) respectively. Those operators are simple in use and
yielded the best results, but the difference compared tosthdts for another choice of op-
erators is neglectible. The outcome of the rule, i.e., thggeketo which the red component

Membership degree i, ,

:LARGE POSITIVE
: DIFFERENCE

o' par par, z
Figure 6.3: The membership function,, p of the fuzzy setarge positive

of the pixel at positiorfx, y, t) is considered noisefree, is determined as the degree ttwwhic
the antecedent in the fuzzy rule is true:

,uﬁmlsefree (SC, Y, t) = maX(min(maX(al(zv Y, t)a Q2 (l’, Y, t))v M, (SE, Y, t))a
HlaX(M4(.’E, Y, t)a M2b(xa Y, t)))a
where
041(3?,1%75) = (1_/-‘LLP(|ITI§($7yat)_I}%(x7yat_1)'))a
a(z,y,t) = (L—prp(|Li(z,y,t) = [z, y,t + 1)),

and whereMs (x, y, t) andMy(x, y, t) respectively denote the degree to which there are two
(respectively four) neighbours for which the absoluteati#hce in the red component value
is not large positive, that is determined as the secondé€ntisply fourth) largest element

in the set

{1 _MLP(|I’rIL{(I7y7t) —I§($+k,y—|—l7t)|)| -2 < lﬂ,l < Zand(k,l) 7& (070)}
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and My, (z, y, t) denotes the degree to which there are two neighbours forrvtheabso-
lute differences in the red component and one of the two calomponents are not large
positive, determined as the second largest element in the se

{min(1 — prp (IR (2, y,t) — IF(x+ k,y +1,1)]),
max(1 — prp (IS (2,y,t) — IS (x + k,y + 1, t)]),

1= prp(| I (2, y,t) = I (x + k,y + 1, 1))
| -2 <k,l<2and(k,l) # (0,0)}.

Analogously, a degree to which the component of a pixel isc®red noisy is calcu-
lated. In this step, we consider a pixel component to be nibiye absolute difference
in that component is large positive compared to the pixdi@isame spatial location in the
previous frame and if not for five of its neighbours the absotlifference in this component
and one of the other two colour bands is large positive coatpsy the pixel at the same
spatial location in the previous frame (which means thatlifierence is not caused by mo-
tion). Further, we also want a confirmation either by the fhat in this colour band, there
is a direction in which the differences between the considigixel and the two respective
neighbours in this direction are both large positive ordanggative and if the absolute dif-
ference between those two neighbours is not large positegthere is an impulse between
two pixels that are expected to belong to the same object) treébfact that there is no large
difference between the considered pixel and the pixel atdinge spatial location in the pre-
vious frame in one of the other two colour bands. For the redpmnent (and analogously
for the other components) this leads to the following fuzze r

Fuzzy Rule 6.2.

IF( | (z,y,t) — If(x,y,t — 1)| is LARGE POSITIVE AND NOTfor five neighbours
(x+ky+1t) (=2 <kl < 2and(k,1) # (0,0)) [[f(zx + ky+1,t) — If(x+k,y+
I,t —1)| is LARGE POSITIVE AND(| IS (z + k,y + 1,t) — I]?(a: +k,y+1,t—1) OR
L2 (x4 k,y +1,t) = I[P (x + k,y +1,t — 1)| is LARGE POSITIVE))

AND ((in one of the four directions (the differencg®(xz,y,t) — I (x + k,y +[,t) AND
IRz, y,t) — IB(x — k,y — 1,t) ((k,1) € {(—1,-1),(~1,0),(~1,1),(0,1)}) are both
LARGE POSITIVE ORboth LARGE NEGATIVEANDthe absolute differencd?(x +
k,y+1,t)— I (z—k,y—1,t)| isNOT LARGE POSITIVEOR( IS (z, y,t)— I (z,y,t—1)|
isNOT LARGE POSITIVE OR? (x,y,t) — IF (x,y,t— 1)| isNOT LARGE POSITIVE)

THENthe red component?(z, y, t) is consideredNOISY.

Analogously to the linguistic term “large positive”, alskafge negative” is represented
by a fuzzy set, characterized by the membership functioengin Fig. 6.4 (see Section 6.2
for the determination of the parameters). The degree towfoicfive neighbours the abso-
lute differences in the red component and one of the othecbmgponents are large positive
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Membership degree 1,

LARGE NEGATIVE :
DIFFERENCE

<
<

z — par, — par; )

Figure 6.4: The membership functionr x of the fuzzy setarge negative

compared to the corresponding pixels in the previous frataeoted by, (z, y, t), is de-
termined as the fifth largest value in the set

{min(urp (|17 (x + k,y +1,t) = I (z + ky + 1t = 1)),
maX(MLP(‘I’r?(x + k;vy + l7t) - I?(LL‘ + k’y + l7t - 1)|)7
prp(IL7 (z + kyy +1,t) — I7 (x + K,y + 1t = 1)])))
| —2<k,l<2and(k,l) # (0,0)}.
The degree to which the absolute difference between thé aixosition(z, y,¢) and the
corresponding pixel in the previous frame is large positind five of its neighbours do not
show motion is then given by
B('Tv Y, t) = mln(,uLP(‘I'r}}(xa Y, t) - I;E(Ia y7t - 1)|)7 1- tpos(xv Y, t))

Further, the degree to which there is no large differencevden the considered pixel
and the pixel at the same spatial location in the previouadra one of the other two colour
bands is given by

6(z,y,t) =
max(l - IULP(|I§(.I', Y, t) - I?([E, y,t— 1)|)7 1 —MLP(|I§(1’, Y, t) _IfB(xv Y, t— 1)|))

Finally, the degree to which there is a direction in whichphe| at position(z, y, t) is

an impulse, denoted by(z, y, t), is determined as the maximum value in the set
{min(max(e%k’l)(ac7 Y, t), E%k,z)($7 y, 1)), e:()’k’l)(ac7 y, 1))

|(k7 l) € {(_17 _1)7 (_170)7 (_17 1)7 (07 1)}}7

where

G%k,l)(x’ y.t) = min(MLP(IrIL%(*Ta Y, t) - 15(37 +ky+1, t)),
/LLP(If(xvyat) - I’r]}(x - kvy - lvt)))*

E%k,l)(xvyvt) - min(:uLN(If(xayat) - Iﬁ(w +ky+ lat))a
NLN(I7?<x7y7t> - I’I’}L%(‘r - kvy - laﬂ))i

e?m)(x,y,t) = 1—pep(IR(x+ky+1t)—IFx—ky—11)).
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Combining the above, we get
:u‘ﬁoisy (x7 y) t) = Inill(ﬁ(x7 y) t)? 5($3 y) t)? PY(:I:? y) t))'

Filtering

In this subsection, we discuss the filtering for the red coband. The filtering of the other
colour bands is analogous. We decide to filter all red pixelgonents that are considered
more likely to be noisy than noisefree, i.e., for whiefl, ., (z,y,t) > 1l o pree (€, 4, 1).
The red components of the other pixels remain unchangedid the filtering of noisefree
pixels (that might have been uncorrectly assigned a lowyrdggree, but for which the high
noisefree degree assures us that it is noisefree) and thaikldes. On the other hand, noisy
pixel components might remain unfiltered due to an uncomégt noisefree degree, but
those pixels can still be detected in a next filtering step.

,lLR ; (QZ y t) _ {0 lj‘goisy(x7y’t) > #goisefree(x’y’t)’

unch ? Y 1 eISe
SO tunch (T, Y5 1) = (1l o1 (.9, 8), 1S, 01, (9, 1), 111,01, (2, 9, 1)) IS @ vector that gives in-
formation whether the respective colour component of thewmixel I, (x, y, t) should be
filtered. Analogously a$, (t) denotes the-th frame ofI,,, zi.n.r (t) denotes the 2D array of
vectors that gives information about the pixel componehtleei-th frame of the sequence
I,,. To exploit the spatial and temporal information in the sme as much as possible,
the filtering is performed by blockmatching. To do this, aseoadaptive mean absolute
difference (MAD) is used to calculate the correspondendedsen the colour components
of two (2- W + 1) x (2- W + 1) blocks of image pixels (wher@” is a general parameter
that determines the block size):

aft,s

R R
T S PR (4 ke y + l)D;R:Z(x +ky+1)

RMAD?Z (z,y,r,8,W) =

Ry
L S PET (4 Ry 4 1)
with n
Plol(@+ky+1)=p @+ ky+1) M +k+ry+1+s),
and

DL (x4 kyy+1) = TR +ky+1) — IRa+ k+ry+ 1+ s)],
and wherel and[ are the two frames (2D colour images) to which the blocksrimglo
andy indicate the spatial coordinates of the central pixel ofdbesidered block id and
r and s respectively stand for the vertical and horizontal coaatis of the displacement
vector, i.e., the block that is consideredlihas(xz + r, y + s) as central pixel. The binary
functionsu.© andp© (¢ € {R, G, B}) indicate whether the pixel componerdt{«, y) and
I¢(x,y) are reliable and should be usee(z,y) = 1, respectivelyii®(x,y) = 1) or not
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(uf(z,y) = 0, respectivelyu©(x,y) = 0). Using only noisefree pixel components allows
us to calculate a more reliable measure to estimate whetleblocks would correspond
in the red component if they were both noisefree. 31" SV B (x + k,y +
)-i®x+k+ry+1+s) =0, the noise adaptive MAD is assigned the valueo.
Further, the noise adaptive MAD is not considered reliableoi for at least half of the
positions in the(2 - W + 1) x (2 - W + 1) blocks, both compared values are reliable
(wf(x +k,y+1) = 1andaf(x + k + r,y + 1 + s) = 1) or not for half of the reliable
positions the absolute differente (z + k,y + 1) — I%(z + k + 7,y + | + s)| is not large
positive (i.e.,urp([I%(z + k,y + 1) — I%(z + k 4+ r,y + 1 + s)|) = 0). Itis also not
considered reliable if both the green and blue componertioténtral pixels are reliable
(e, uC(x,y) =1, uC@@ +ry+s) =1, u8(z,y) = 1andp®(z +r,y +s) = 1) and
their absolute difference is large positive (i.5p(|1¢(z,y) — IC(z +ry + s)|) = 1
andyuyp (|18 (z,y) — IB(x +r,y + s)|) = 1). In these cases, the noise adaptive MAD is
changed to the value co, such that the block will not be used for the filtering.

For the filtering of a red componeidf*(z, y,t) in this first step of our algorithm, we
determine the displacement vect¢igz, y,t), v(z,y,t)) and(u(z, y,t),v(z, y,t)) for the
best matching2 - W, + 1) x (2 - W; + 1) block in a search region of size - Wy + 1) x
(2- W5+ 1) in respectively the previous frandg (¢ — 1) and the current framé, (¢) (due
to large motion, sometimes no corresponding block mightooed in the previous frame,
but the region around the given pixel in the current framehiige similar) as follows (For
the selection of the parametdig andV,, we refer to section 6.2):

(u(z,y,t),v(z,y,t)) = argmin RMAD;?((IML;}‘?(” (x,y,7r, 8 W1).
~Wa<r,s<Wa :
The minimum value itself is denoted byinmad(zx, y,t). We have used the identity func-
tion Id for the binary function corresponding to the previous frasiace this frame has
already been filtered and should be noisefree.

(ﬂ(l‘v Y, f,),ﬁ(l‘, Y, t)) =

. Lo () sptumen (t
arg min "MAD;, Et? A COER LY
—Wa<r,s<Wa,(r,8)#(0,0), unch (z+7,y+s,t)=1 ’

The minimum value itself is denoted byinmad(z,y,t). We have restricted ourselves
here to pixelSz + r,y + s, t), for whichu? , (z +r,y + s,t) = 1, since only noisefree
pixels should be used to replace the noisy pixel compohgft, y,t).

A pixel component/ (x,y,t) for which uf , (z,y,t) = 0, is then filtered as the
noisefree center of the best corresponding block in theckeagion, if it exists (i.e., if it
holds thatnin(minmad(z,y,t), minmad(z,y,t)) < +oc). Otherwise, a spatial filtering
is performed. 1fu? ., (x,y,t) = 1, the pixel component remains unchanged in this step.
Summarized, the output of this first step for the red compbhgi, y, t) is given as fol-
lows.

If pf ., (z,y,t) =1, then
Iﬁ (I,y,t) = If(x,y,t),
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elseifu? . (z,y,t) =0, then

IR@),ul _ _
I (z,y,t) = FILTI;ES((tif) "y, ule,y,t),o(@,y, ), ale, y, ), (z, y, b),

minmad(x,y,t), minmad(z,y,t)),

with (in a general notation)

FILTP (@, y,u,0,0,0,m,m) = § Iz + @,y +0) it M= min(m, i) < +o0 ,

where the spatial filtering framework is given by

; e S e+ ky +1) I+ ky +1)
SE (2,5, W) = W W :
k=—W 2ul=—W p(r +k,y +1)
IF S S (@ +k,y+1) = 0, which is unlikely to happen in practical situations,

I M .
thenSFE, (z,y, W) = mediaf I (z + k,y + )| = W < k,l < W}.

6.1.2 Second Filtering Step

In our aim to preserve the details as much as possible, tlse iI®removed in successive
steps. In this step the noise is detected based on the outihe previous stepl(, ). Also

in this second filtering step, a degree to which a pixel corapbis expected to be noisefree
and a degree to which a pixel component is expected to be,nisiggalculated. In the
calculation of those degrees, we now take into accountnméition from the other colour
bands.

A colour component of a pixel is considered noisefree if tiffeeence between that
pixel and the corresponding pixel in the previous frame,aslarge in the given compo-
nent and also not large in one of the other two colour comptsnelth is also considered
noisefree if there are two neighbours for which the diffeeem the given component and
one of the other two components are not large. So the otheucblnds are used here as a
confirmation for the observations in the considered colamdto make those more reliable.

For the red component (and analogously for the other colmmponents), this gives the
following fuzzy rule.

Fuzzy Rule 6.3.

IF( ‘Iﬁ (I, y7t) - I}j(l’,y,t - 1)| AND (|IJ§1v (I7y7t) - I]g(xaya t— 1)' OR|I]€ (:Cayat) -
If(a:,y,t—l)|) areNOT LARGE POSITIVE)

OR (for two neighbourgz + k,y +1,t) (=1 < k,I < Tand(k,1) # (0,0)) |1 (z,y,t)—
If (z+k,y+1,1)| isNOT LARGE POSITIVE AND|(§ (z,y,t) — I¢ (z + k,y + 1, 1)| is
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NOT LARGE POSITIVE OHﬁ (z,y, t)—Iﬁ (z+k,y+l,t)|isNOT LARGE POSITIVE))
THENthe red componedtﬁ (z,y,t) is consideredOISEFREE

The degree to which the red component of the pixel at position, t) is considered
noisefree is then given by:

N?,noisefree (ZL’, Y, t) = max(((;v, Y, t)a 77(557 Y, t))a

where

C(x7y7t) = mln(l - /J‘LP(|IJ]31 ($7y7t) - Iﬁ(x7yat - 1)|)7
ma‘X(l - N’LP(|IfC;V (l‘,y,t) - I?(J),y,t - 1)‘)7
1- /“LLP(|IfB1 ($,y,t> - IfB(xayvt - 1)|)))

andn(x,y,t) is the second largest element in the set

{min(1 —MLP(\I;?(UU’?/J) —Iﬁ($+k,y+l,t)|),
max(1 — prp(|I§ (z,y,t) — IF (x + k,y + 1,1)]),
1= prp(If (2, y,t) — If (x + k,y + 1,1)])))
| —1<k,l<1land(k,l)# (0,0)}.

A pixel component is considered noisy if there are threehtmgrs that differ largely
in that component, but are similar (not a large differenndghe other two components. It is
also considered noisy if in the considered colour band altseris larger or smaller than the
component values of all its neighbours and this is not the saboth other colour bands.

For the red component of a pixel (and analogously for theratbmponents), this cor-
responds to the following fuzzy rule.

Fuzzy Rule 6.4.

IF( for three neighbouréz + &, y+1,t) (=1 < k,I < 1and(k,1) # (0,0)) |[If (x,y,t)—

IE(x + k,y +1,t)| is LARGE POSITIVE ANDIS (2, y,t) — I§ (x + k,y + 1,t)| isNOT
LARGE POSITIVE ANDZZ (2, y,t) — I (z + k,y + I, t)| isNOT LARGE POSITIVE)

OR((( forall neighbours(z+k,y+1,t) (-1 < k,I < land(k,!l) # (0,0)) I}f (x,y,t)—
If(x+k,y+1,t) is LARGE POSITIVE) OR (for all neighbours(z + k,y +1,t) (—1 <
k.l < 1and(k,1) # (0,0)) IF(z,y,t) — IF (z + k,y + I,t) is LARGE NEGATIVE))
AND NOT ( ((for all neighbours(z + k,y + I,t) (=1 < k,l < 1 and (k,l) # (0,0))
1§ (x,y,t) = I§ (z+k,y+1,t) isLARGE POSITIVE) OR (for all neighbours(z + k, y +
Lt) (=1 < kI < 1and (k1) # (0,0) If (2,y,t) — I (z + k,y + [,t) is LARGE
NEGATIVE )) AND (( for all neighbours(z + k,y + 1,¢) (=1 < k,l < 1 and(k,l) #
(0,0)) If(x,y,t) — If (z + k,y + 1,) is LARGE POSITIVE) OR (for all neighbours
(x+ky+1t) (-1 <kl <land(kl) # (0,0)) If(z,y,t) — I (x+ky+1,t)is
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LARGE NEGATIVE))))
THENthe red componerﬂﬁ (z,y,t) is consideredNOISY.

The noisy degree for the red component of the pixel at pas{tioy, ¢) is then calculated
as follows:

Mg,noisy (1‘7 Y, t) = max(@(x, Y, t)v KJ(.’L‘, Y, t)>7
wheref(x,y, t) is the third largest element in the set

{min(urp(|If (z,y,t) — I (x + K,y +1,1)]),
min(1 — pp(|I (2,9, t) — I (x + k,y + 1,1)]),
1—ppp(F (z,y,t) = If (x + k,y + 1,1)])))
| —1<kI<1and(k,I)# (0,0)},

and

k(,y,t) = min(max(my*(z, y, 1), m3 (z,y,t)),

1 — min(max(m§ (z,y,t), m§ (z,y,1)), max(mf (z,y,t), m& (z,y,1)))),

where
mi(z,y,t) = min{urp(If(z,y,t) = If(x+ky+1t))

| —1<k,l<land(k) #(0,0)},
ms(z,y,t) = min{purn(If(z,y,t) = If(z+ky+1,t))

| —1<k,l<1and(k,l)+# (0,0)},
with ¢ € {R, G, B}.
All red components (and analogously all green and all bluapmments) for which
18 poisy (T, 9, 1) > uﬁmsefm(a:,y,t) are filtered (i, (x,y,t) = 0), the other red
components remain unchanggxﬁgnch(x,y,t) =1):

/JR (:I,' Yy t) = 0 ugnoisy (.Z‘, Ys t) > 'ué%,’noisefree (.I‘, Y, t),
2,unch\*» J» 1 else

Analogously to the first step, for the filtering of the red caments (and analogously

the green and blue components) for whjsjfhmh(% y,t) = 0, we search for the noisefree
center of the best corresponding block in the search regithreicurrent and previous frame.

. I (t)nU« ,unc (t)
(W (x,y,1),0 (z,y,t) = Vgrgginw RMADI?(t_l)fM "Ny, s, Wh).
- 27,85 2

The minimum value itself is denoted byinmad' (z,y, t).
(@ (2,9,1),7'(z,y,1)) =
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. Iy, (1), en (t
arg min RMADIflgt; Z;un :Lgti(z,yﬂ",S,Wl)-
_W2ST,SSWQ7(7"75);6(070),pgunch(r—&-7~7y+s,t):l f1(8)s2,unch

The minimum value itself is denoted bfymmad,(% Y, t).
If 15 ypen (2,9, ) = 0, thenIf (z, y, 1) is filtered as

IR ()15 wnen () _ _
IfR;(xvy7t) :FILT[JJ?@,DZ ! (x,y,g/(x,y,t),y/(ac,y,t),u’(a:,y,t),U/(x,y,t),

minmad' (z,y,t), minmad/(x, y,t)).

Red pixel components that are considered noiseffégrgch(x,y,t) = 1) remain un-
changed:

Ifz (xay7t> = Ifl (:my,t).

6.1.3 Third Filtering Step

The result from the previous steps is further refined basetmiporal, spatial and colour
information. Namely, the red component (and analogougygtteen and blue component)
of a pixel is refined in the following cases:
¢ In non-moving areas, pixels will correspond to the pixelthmprevious frame, which
allows us to detect remaining isolated noisy pixels(fy, ¢) lies in a non-moving
3 x 3 neighbourhood, i.e.,

1 1 C C
Dk 21 2ceiramy Hh (@ Ry +1t) — If(x+ ky+ 1t —1)
24
_ ZCG{R,G,B} |I;2($,y7t) - I;(%Z/:t - 1)‘
24

< pari,

and if|I}Z(m,y,t) —If”(x,y,t— )| > pary and|1f(q;, y,t—1)—IE(z,y,t+1)| <
pary, then the red componenf! (z,y, ) is considered to be noisy{’,,.;, (x,y,t) =
0). The last check is to prevent noise propagation in the dzesethhe pixel in the
previous frame would not have been filtered correctly.

e Very small impulses might not have been detected by the idhgor In homoge-
neous areas however, such impulses might be relativelg langl can be detected
more easily. LetLy(z,y,t) and S¥(z,y,t) respectively denote the second largest
and second smallest red component value among the 8 neighincal x 3 neigh-
bourhood around ! (x, y,t). If L (x,y,t) — S5'(x,y,t) < pary (homogeneous
neighbourhood) and further al$§j (-, y, t) — L§ (x, y, ) > L§(x,y,t)— S5 (x,y,t)
or S5t (x,y,t) — I (x,y,t) > Li(z,y,t) — S3*(x, y, ) (the red component s clearly
larger or smaller than the neighbourhood), then the red omerpﬂg (z,y,t)is con-
sidered to be noisy4,,,,., (, y,t) = 0).
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e Based on colour information, the red componé@(x, y, t) is considered to be noisy
(8 nen (2, y, 1) = 0) ifin @ 3 x 3 neighbourhood two neighboufg’ (z + &, y + 1, 1)
(-1 <k,1<1, (k1) # (0,0)) can be found for whicﬂm[}"; (z,y,t) — Iﬁ (x+Fk,y+
l,t)| > pary and|12(x,y,t) - Iﬁ(a@ +Eky+1t)> |Ig(a:,y,t) - Ig(a: +ky+
L+ 7 (@, y,t) — I (x + k,y + 1, t)].
In all other cases the red component value is considered tmisefree and should not be
adapted anymore:f’ ..., (x,y,t) = 1).
Analogously as in the previous steps, for the filtering of b components for which
118 ymen (2,9, ) = 0, we search for the noisefree center of the best correspgidirck in
the search region in the current and previous frame.

. I (t)7 3,unc (t)
W' (2,9,),2"(z,y,1) = argmin BMAD e @,y s, W),
- 2XT,8xVv2

The minimum value itself is denoted byinmad” (z,y, t).

(@' (z,y,t),0" (z,y,t)) =

. I t k) ,yunch t
arg min RMADIIQE&Z; um:gt;(l‘,yﬂ"v s, W1).
~Wa<r,s<Wa,(1,5)#(0,0),u80 o (x+ry+s,t)=1 2 T

The minimum value itself is denoted bryz’nmad"(x, Y, t).
A red component  (z,y, t) for which &', . . (x,y,t) = 0, is filtered as

Ip(z,y,t) = FILTII;ft(i)l’gLZMh(t) (@, y,u" (2, y,1), 0" (,y,1), 0" (2, y,1), 7" (x,y,1),

minmad” (z,y,t), minmad//(:c, Y, 1)).
Otherwise (i4',,,,., (2, y,t) = 1), it remains unchanged:

I (w,y,t) = I (z,y,1).

6.2 Parameter Selection

In this section, the parameter values for the membershigtifums and the window sizes are
determined.

We first select the parametergr; andpar, that determine the membership functions
prp andpupy in Fig. 6.3 and 6.4. To do this, we have fixed the window si#ésand
Wy of the pixel neighbourhood and the search region in theifigeasi; = 2 (5 x 5
neighbourhood) ant, = 5 (11 x 11 search region) and we have let the parameiers
andpar, run over a range of possible values. The parameter valuestiven determined
as the coupleyary,pars) for which the arithmetic mean of the PSNR result of the nine
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sequences “Salesman”, “Bus” and “Tennis”, each corrupfigid iespectivelys%, 15% and
25% random impulse noise in each of the colour bands, reachethiténum. The obtained
values, which we will also use in the remaining experimeatspari, pars) = (20, 31)
(Table 6.1).

Table 6.1: Determination of the parametepar; andpar,. (Arithmetic mean of the average PSNR
(dB) values around the maximum.)

’parl\parg\ 29 \ 30 \ 31 \ 32 \ 33 ‘
18  [32.3832.3932.4032.3832.37
19 32.3932.4132.4132.4032.39
20 32.3932.4132.4232.4032.39
21 32.3932.4032.4132.4032.39
22 32.3932.4032.4132.4032.39

Next, the window size8l’; andW; are set. For the above selected parameter values for
pary andpars, we now let the parametel; and W, run over a range of possible values.
As can be seen in Table 6.2, from the cou@@lié,, W) = (2, 7) on, the arithmetic mean of
the PSNR values of the nine test sequences hardly increaltesugh we have focused in
this chapter on the noise filtering capability of the filtedarot on its complexity, it should
be mentioned that most of the computation time needed by #ikad goes to the filtering
of detected pixels, i.e., the search for the best matchingkbl The size of a block (the
number of pixels that has to be handled for each block) anditteeof the search region
(the number of blocks to which a given block should be congbaiecreases quadratic
with respect to respectiveli#; andW,. Therefore, we have decided to use the couple
(W1, W3) = (2,7) for the remaining experiments. With respect to the compjemie also
remark that the higher the noise level, the more noisy pixeld thus the more pixels that
need to be filtered, i.e., the more pixels for which the blo@kahing is performed. A first
possibility to reduce the computation time would be to usésiablock matching techniques
such as those presented in [111, 143, 144]. Further, it saba remarked that the detection
(respectively filtering) of a pixel is independent of theeatgiton (respectively filtering) of
the other pixels in the frame and could thus be performed iialigh

6.3 Experimental Results

In this section, the performance of the proposed methodmgpeoed to that of the adaptive
vector median filter (AVMF) from [63, 64], the video adaptivector directional median
filter (VAVDMF) with 3D filtering window from [112] and the 2D Uzzy impulse noise
reduction method for colour images (INRC) from [123].

The adaptive vector median filter [63, 64] orders the pixetddur vectors) in the 3D
filtering window based on increasing accumulated (Euchilelstance to the other pixels
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Table 6.2: Determination of the parametdrg, andWs. (Arithmetic mean of the average PSNR (dB)
values.)

W\Wo] 5 6 ] 7] 8] 9 ]10] 11|
1 [31.4231.4731.4131.3§31.3331.3131.27
2 |32.4432.4932.5732.5732.5532.5532.54
3 |32.4532.5432.6332.6432.6432.6432.64
4
5

32.4632.5632.6532.6732.6732.6732.67
32.3532.4532.5532.5132.57132.5832.5§

in the window. If the Euclidean distance between the cemlisadl in the window and the
mean of a given number of vectors that have the lowest acatetutlistance, is greater than
a given threshold, then the central pixel is filtered as tielpiith the lowest accumulated
distance, otherwise, it remains unchanged.

In the video adaptive vector directional median filter [L1Bg vectors are first ordered
based on increasing angular distance. If the absolutendistbetween the central pixel in
the window and the mean of a given numli€rof vectors that have the lowest accumu-
lated angular distance, is greater than a given threshudd, the central pixel is filtered as
the pixel with the lowest accumulated absolute distancey(itade), otherwise, it remains
unchanged.

To show that the proposed filter takes real advantage frontetimg@oral information,
we have also compared the proposed filter to the 2D fuzzy isepubise reduction method
for colour images. As shown in [123], the INRC filter outperfs all other compared
state-of-the-art 2D methods and can thus be accepted asdargo@sentative for the 2D
impulse noise filters. Further, this filter is also a représtdre of a non-vector-based filter,
in which the colour bands are filtered separately. Howevethé detection of noisy pixel
components, also information from the other componentseasiu

All methods have been processed on the “Salesman”, “Bugnfiis”, “Deadline”,
“Chair” and “Foreman” sequences, for random impulse nasels (in each colour band)
ranging frompr = 5% to pr = 30%. The results of these experiments, in terms of PSNR
and in terms of NCD respectively, are presented in Fig. 6db &6, from which it can
be concluded that the proposed method outperforms all otlethods. Since the objec-
tive measures do not always tell everything, we also did maatisomparison. The results
of the different compared methods performed on the noisyi& (pr = 5%), “Dead-
line” (pr = 15%) and “Salesman”fr = 25%) sequences, can be found btip://
www.fuzzy.ugent.be/tmelange/results/colourimpulse . Fig. 6.7 and 6.8
respectively show for the 110-th frame of the “Tennis” semgeand the 20-th frame of
the “Deadline” sequence, the original frame, the noisy #amnd the result obtained by the
different compared methods.

We see that the VAVDMF removes the noise very well. Howeven too many noise-
free pixels are filtered, which results in both spatial amageral inconsistencies, especially
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around edges. Further, the filter also performs less weliencase of motion (e.g. “Sales-
man” (arms), “Tennis” (ball), “Chair”, “Bus”), due to thedathat the pixels in the filtering
window from the previous and next frame, will then not alwagsrespond to the same
object.

The other vector-based method, i.e., the AVMF, preservesl#tails very well. How-
ever, it fails to remove the noise adequately. Even for loma@se levels, small impulses
remain visible. Analogously as the VAVDMF, it also perforiass well in the case of mo-
tion.

Next, the INRC results in a very good noise removal, even fgh Imoise levels. At
the cost of this, however, too much details get lost (e.ge $ines on the table in “Ten-
nis”) and the images become a little blurry. Further, alsesd temporal inconsistencies
in non-moving areas can be detected, especially when tleegiegailed (e.g., background
“Deadline”, “Salesman”). This is no surprise, since the A@fidoes not benefit from the
available extra temporal information in such non-movinggar

Finally, the proposed fuzzy filter combines a very good dgtaiservation to a very good
noise removal and clearly outperforms all compared filtérke filter benefits very well
from the extra information coming from similar regions in@so-temporal neighbourhood.

6.4 Conclusion

In this chapter, we have presented a new filtering framewarkdlour videos corrupted by
random valued impulse noise. In order to preserve the detaiinuch as possible, the noise
is removed step by step. The detection of noisy colour compisns based on fuzzy rules
in which information from spatial and temporal neighbowss\ell as from the other colour
bands is used. Detected noisy components are filtered basbtbckmatching where a
noise adaptive mean absolute difference is used and whese#nch region contains pixels
blocks from both the previous and current frame.

The experiments showed that the proposed method outpesfotiher state-of-the-art
methods both in terms of objective measures such as PSNR@DBdaNd visually.
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Random Impulse Noise in Colour Image Sequences

@) (b)

34

PSNR(dB)
PSNR(dB)

80 100 120 140

0 5 10 15 20 25 30 35 40 45 0 20 40 60
frame index

frame index

(c) (d)

34 40
38
36
@ @
= S 34
4 =
z H
[ n
4 2
32
30
28 T
0 20 40 60 80 100 120 140 0 5 10 15 20 25 30 35 40 45

frame index frame index

(e) ®

PSNR(dB)
PSNR(dB)

L L L L L L L L 2 L L L L L L L
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35
frame index frame index

40 45

—%#*— INRC —*— AVMF
—&— VAVDMF —— Proposed

Figure 6.5: PSNR results for the different methods applied on the sequencesalasi®an” pr =
5%), (b) “Tennis” pr = 10%), (c) “Bus” (pr = 15%), (d) “Foreman” pr = 20%), (e) “Chair”
(pr = 25%) and (f) “Deadline” pr = 30%).
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Figure 6.6: NCD results for the different methods applied on the sequences (BstBan” pr =
5%), (b) “Tennis” (pr = 10%), (c) “Bus” (pr = 15%), (d) “Foreman” pr = 20%), (e) “Chair”
(pr = 25%) and (f) “Deadline” pr = 30%).
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Figure 6.7: 110-th frame of the “Tennis” sequence: (a) original, (b) noisy £ 5%), (c) INRC,
(d) AVMF, (e) VAVDMF and (f) Proposed.
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6.4 Conclusion

Figure 6.8: 20-th frame of the “Deadline” sequence: (a) original, (b) nojgy £ 25%), (c) INRC,
(d) AVMF, (e) VAVDMF and (f) Proposed.
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From Binary to Interval-valued
Fuzzy Mathematical
Morphology

Many theories have been developed in the domain of imageepsoty to extract specific
information from images such as edges, patternsOne of these theories is mathemathi-
cal morphology, in which an image is transformed into anotimage by a morphological
operator, using a structuring element. The basic morphcdbgperators used for such
transformation are the dilation, erosion, opening andietpsFurther, the structuring el-
ement is usually very small compared to the given image andbeachosen by the user
in function of the desired goal. Mathematical morphologysveaiginally developed for
binary (black-white) images [126], and was later extenaegréyscale images by two dif-
ferent approaches: (i) the threshold approach [126] ahth@ umbra approach [44]. In the
first approach, the structuring element still has to be lyinisr the second approach, also
greyscale structuring elements are allowed. Later, a #ppfoach was introduced, inspired
on the observation that greyscale images and fuzzy setsadeled in the same way (i.e.,
as mappings from a univerggéinto the unit interva[0, 1]): fuzzy mathematical morphology
[29, 113, 132]. Recently, also extensions of fuzzy mathaakmorphology started to get
attention [8, 9, 103, 104]. In this thesis, we concentratamextension based on interval-
valued fuzzy set theory. A pixel is now mapped onto an inteofayrey levels instead of
onto one specific grey level, in this way allowing uncertairggarding the measured grey
levels.

The structure of this chapter is as follows: the differergibanorphological operators
for binary images and structuring elements are introdunéeseiction 7.1. These concepts
are then extended to greyscale images and structuring eteieSection 7.2 by the thresh-
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From Binary to Interval-valued Fuzzy Mathematical Morphology

old approach (7.2.1), the umbra approach (7.2.2) and theyfagproach (7.2.3). Finally,
fuzzy mathematical morphology is further extended to wakvalued fuzzy mathematical
morphology in Section 7.3, where we will also discuss sonrsécharoperties of the mor-
phological operators.

7.1 Binary Mathematical Morphology

The basic morphological operators are the dilation, emsipening and closing. For a
binary imageA C R™ and a binary structuring elemeit C R", they are defined as
follows *:

Definition 7.1. [12§ Let A, B C R™. The binary dilationD(A, B), the binary erosion
E(A, B), the binary closingC(A, B) and the binary openin@ (A, B) are the sets given
by:

D(A,B) = {ylyeR"andT,(B)N A # 0},
E(A,B) = {yly e R"andT,(B) C A},
C(A,B) = E(D(A,B),—B),
O(A,B) = D(E(A,B),—B),
where the translatior?,(B) of B by the vectory € R”™ is defined asl},(B) = {z €
R™|z —y € B}, and the reflection-B of B is given by—B = {—b|b € B}

The definitions of the binary dilation and erosion are iltatd in Fig. 7.1.

AW A
lde\ Z:f\s{ilrrf.l_ \\...//\ \<
N ! TN
: B S N
Ao EAB)
\ )«—\B \\\\A
s
e
~— A D(AB) )

Figure 7.1: Geometrical interpretation of the binary dilation (left) and erosion (righlle Tentre of
the structuring elemer® coincides with the origin of the coordinate system.

The binary closing and opening are combinations of theiditedind erosion. Explicit
expressions for the closing and opening are given as follows

C(A,B) = {yly € R"andT,(-B) C D(A, B)}

1Remark that also another definition for the dilation and clgss frequently used in literature (e.g. [44]). In
those definitions- B is used instead aB.
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7.2 Greyscale Mathematical Morphology

= {ylyeR"and(Vz e R")(z € T,(-B) = T.(B)N A #0)}
= {ylyeR"and(Vz e R")(y € T.(B) = T.(B) N A #0)},
O(A,B) = {ylyeR"andT,(—B)NE(A,B) # 0}
= {yly e R"and(3z € R")(z € T,(—B) andT,(B) C A)}
{yly e R and(3z € R")(y € T,(B) andT,(B) C A)}.

Further, the dilation and erosion can also be written as:

D(A,B) = {ylyeR™and(3be B)(y+bec A)}

= U1

beB
E(A,B) = {ylyeR"and(Vbe B)(y+be A)}

= ﬂ T_4(A)

beB

As an example, the binary dilation and erosion of a binarygienay the structuring ele-

1 1 1
mentB= (1 1 1| (theunderlined element corresponds to the origin in thedinate
1 1 1

system) are depicted in Fig. 7.2. It can be seen that a diletitarges objects in the image
while the erosion reduces them.

For a list of basic properties of the binary morphologicaémgtors, we refer to [93,
126]. One of those properties, that can be deduced from tbeeal that it will always
hold that F(A, B) C D(A, B). As a consequence the imagg A, B) \ E(A, B), that
we call the (binary) morphological gradietit”(A), can serve as an edge image Af
This morphological gradient is illustrated in Fig. 7.3 foetoriginal image and its dilation
and erosion depicted in Fig. 7.2. More examples of practpalications of mathematical
morphology can be found in [127, 129].

7.2 Greyscale Mathematical Morphology

Binary morphology was extended to greyscale images inrdiffeways. The threshold
approach [126] was a first effort, in which the structuringneént still had to be binary.
The umbra approach [44] also allowed greyscale structwliegnents, but had as drawback
that the result of a morphological operation onRih— [0, 1] mapping (such as a greyscale
image) is not always aR"™ — [0, 1] mapping. The third main approach is the fuzzy approach
[29, 113, 132], in which none of the two above mentioned slwonings form a problem
anymore.
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- ‘.

Figure 7.2: The original binary image (top), the binary dilation (bottom left) and the lieaosion
(bottom right) for the given structuring elemefit

Figure 7.3: The binary morphological gradient image of the image in Fig. 7.2.
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7.2 Greyscale Mathematical Morphology

7.2.1 The Threshold Approach

The class of mappings frof®™ onto [0, 1] coincides with the class of fuzzy sets Bff. So
for anR™ — [0, 1] mappingf, we can define a weak-cut analogously as for fuzzy sets as
fa = {z € R*|f(z) > «a}. Then it will also hold thatf(z) = sup{a €]0,1]|z € fa}.
Further, in analogy to the support of a fuzzy set, we wiite= {x € R"|f(x) > 0}.

The binary morphological operators are then extended tgsgate images by applying
the binary operators on each wealcut (« €]0, 1]) of the greyscale image (Fig. 7.4). For a
greyscale imagel and a binary structuring elememtthis becomes:

Figure 7.4: Example of the construction of thtedilation (left) and the-erosion (right) ¢ = 1).

Dy(A,B)(y) = sup{a€]0,1]ly € D(Aq, B)}
= sup{a €]0,1]|3z € B)(y+z € A.)}
= sup{a €]0,1]|(3z € Ty(B))(x € An)}
= sup{a €]0,1]|(3z € Ty(B) Nda)(A(z) > a)}

= sup{A(z)|z € T,(B) Nda},

Ey(A,B)(y) = sup{a€]0,1]|ly € E(Aq, B)}
= sup{a €]0,1]|(Vz € B)(y +x € An)}
= sup{a €]0,1]|(Vz € T, (B))(z € A.)}
= sup{a €]0,1]|(Vz € T,(B))(A(z) > a)}

= inf{A(z)[z € T, (B)},

Definition 7.2. [126 Let A be a greyscale image an8 a binary structuring element.
Thet-dilation D, (A, B), thet-erosionE, (A, B), thet-closingC; (A, B) and thet-opening
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0O,(A, B) are the greyscale images given for ale R™ by:

Di(A, B)(y) = sup  A(x)
z€Ty(B)Nda
Ey(A,B)(y) = weiTrlf(B)A(w)
Ci(A,B)(y) = E«(Di(A,B),—B)(y),
Oi(A,B)(y) = Di(Ei(A, B),—B)(y),

where the translatior¥, (B) of B by the vectory € R" is defined asl,(B) = {z €
R"|x — y € B}, and the reflection-B of B is given by— B = {—b|b € B}.

As an example, thedilation andt-erosion of the greyscale camera image by the struc-

1 1 1
turing elementB = |1 1 1| are depicted in Fig. 7.5. It can be seen that a dilation
1 1 1

brightens objects in the image while the erosion makes trerked
For a list of basic properties of themorphological operators, we refer to [93, 126].

7.2.2 The Umbra Approach

In this approach, the result of the morphological operabor®™ — [0, 1] mappings is not
necessarily arR™ — [0, 1] mapping, but can also be e.g. &t — [—1,1] (as we will
see for the erosion). Therefore, in the umbra-approactysgaée images are modelled
asR” — R mappings’ instead ofR™ — [0, 1] mappings as we usually do. By agreement,
now A(x) = —oo (instead ofA(z) = 0 (see Chapter 2)) for elements= R™ for which the
imageA is originally not defined. So, for the support we gegt= {z € R"|f(z) > —oo}
foranR™ — R mappingy.

Remark that the points below or above the graph ofR4n— R mapping are crisp
subsets ofR™*! (i.e., binaryn + 1-dimensional images). Such subsets are respectively
called umbras (below) and dual umbras (above). For a grieystage A and greyscale
structuring elemenB, thewu-dilation is now defined as the surface of the binary dilatén
the umbra ofA by the dual umbra of3. Analogously, tha:-erosion is the surface of the
binary erosion of the umbra of by the umbra ofB (Fig. 7.6). For more details, we refer
to [44, 93]. The resulting explicit expressions are as fedp

Definition 7.3. [44] Let A be a greyscale image arfél a greyscale structuring element. The
u-dilation D, (A, B), theu-erosionE, (A, B), theu-closingC,, (A, B) and theu-opening
0. (A, B) are the greyscale images given for alE R™ by:

Du(A,B)(y) = sup  A(z) + Bz —y),
zeT, (dp)Nda

E.(A, B = inf A(z)— Bz —y),

(A, B)(y) L (z) = B(z —y)

2The notatiorR here stands foR = R U {—o0, +00}.
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7.2 Greyscale Mathematical Morphology

Figure 7.5: The original camera image (top), thelilation (bottom left) and the-erosion (bottom
right) for the given structuring element.

Du(A,B) B

Figure 7.6: Example of the construction of thedilation (left) and theu-erosion (right) & = 1).
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Cu(A’B)(y) = Eu(Du(AvB)a_B)(y)v
Ou(A,B)(y) = Du(Eu(A,B),—B)(y),

where the translatio, (dg) of B by the vectory € R™ is defined adl},(dg) = {z €
R"|x — y € dp}, and the reflection-B of B is given by(—B)(x) = B(—z), Vz € R".

It can be checked that it and B are bothR™ — [0, 1] functions, thenD, (A, B) and
E.(A, B) are respectivelR™ — [0, 2] andR™ — [—1, 1] functions.
As an example, the (rescaled)dilation andu-erosion of the original camera image
0.86 0.86 0.86
(Fig. 7.5) by the structuring elemet = [ 0.86 1  0.86 | are depicted in Fig. 7.7.
0.86 0.86 0.86
It can be seen that a dilation brightens objects in the imagéewhe erosion makes them
darker.

Figure 7.7: Thewu-dilation (left) and theu-erosion (right) of the camera image for the given structur-
ing elementB.

For a list of basic properties of themorphological operators, we refer to [44, 93].

7.2.3 Fuzzy Mathematical Morphology

Since greyscale images are modelledRSy — [0, 1] mappings, they can be seen as fuzzy
sets onR™. So, to extend the binary operators to greyscale imageditlaey intersection
and inclusion (that are clearly quite important in the défni of the binary operators) can
be extended to a fuzzy intersection and inclusion measung i3 done by fuzzifying the
underlying logical operators, i.e., the conjunction arelithplication on{0, 1}. As we have
seen in Chapter 1, the fuzzification of these operators apeotively given by a conjunctor
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and an implicator on the unit interval*. For a conjuncto€ and an implicatof on [0, 1],
it can be checked that the measufes; and Intc, given for all fuzzy setsA and B in a
universeX by

Inte(A,B) = ngC(A(x),B(w)),

respectively extend the binary inclusion and intersecfiom, for crisp setsd and B,
Incz(A,B) = 1if A C BandIncz(A,B) = 0if A ¢ BandInte(A,B) = 11if
ANB # (andintc(A,B) =0if AnB={().

For A, B € F(R™), we then get:

Dc(A,B)(y) = Inte(T,(B),A)
= IS;lﬂgc(( y(B))(x), A(z))
= ISQHSLC(B(x—y)»A(x))
= sup  C(B(x —y), A(x)),

z€Ty(dp)Nda
and

Er(A,B)y) = Incr(T,(B),A)
=il (T, (B)(x), Alx)
— mien]l{"I(B(I ) (x))
= zeji“?(de)I(B( y), A(x)).

Definition 7.4. [29] LetC be a conjunctor on0, 1], Z an implicator on[0, 1], and A, B €
F(R™). The fuzzy dilatiorD¢ (A, B) and erosiontz( A, B) are the fuzzy sets iR” defined
forall y € R™ by (whereT ), (dg) = {z € R"|x —y € dg} and(—B)(z) = B(—x), Vz €
R™):

DL(A,B)(y) = 2 C(B(z —y), A(x)),

3Remark that this approach is very general and is only baseémerglizing the underlying logical framework.
The resulting dilations and erosions are thus not a priannected. Some authors also require the dilation and
erosion to be dual [11] or to form an adjunction as in the algebframework in [33, 94]. Such connection can
be translated into a connection between the underlyingébgiperators, i.e., the used conjunctor and implicator.
If further also stronger morphological properties such ascibmmutativity and the iterativity of the dilation are
required, the conjunctors will need to be restricted tortamo[10].

4In [96] it is shown that fuzzy mathematical morphology is complativith binary morphology and that fuzzy
mathematical morphology is compatible with greyscale morphobaged on the threshold approach if we restrict
ourselves to semi-norms and border implicators.
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E7(A,B)(y) = xe}n(de) I(B(z — y), A(x)),
Cez(A,B)(y) = Ez(Dc(A,B),-B)(y),
Ocz(A,B)(y) = Dc(Ez(A,B),—B)(y).

Remark that ify ¢ D(da,dg), thenD¢(A, B)(y) = 0.
As an example, the fuzzy dilation and erosion (where the mumn operator and the
Kleene-Dienes operator were used as conjunctor and inbpiicespectively) of the original
0.86 0.86 0.86
camera image (Fig. 7.5) by the structuring elem@nt (0.86 1 0.86) are depicted
0.86 0.86 0.86
in Fig. 7.8. It can be seen that a dilation brightens objetthé image while the erosion
makes them darker.

Figure 7.8: The fuzzy dilation (left) and erosion (right) (where the minimum operatdrthe Kleene-
Dienes operator were used as conjunctor and implicator respectiVellye @amera image for the
given structuring elemeris.

For the basic properties of the morphological operatordis approach, we refer to
[29, 93].

7.3 Interval-valued Fuzzy Mathematical Morphology

Recently, fuzzy mathematical morphology has been furtkiemeled to extensions of fuzzy
sets (-fuzzy sets) by extending the fuzzy logical operatorgonl], <) to £ = (L, <p).

In this work, we will focus on the extension based on intemallied fuzzy set theory.
Before introducing the interval-valued fuzzy morpholaioperators and their basic prop-
erties, we first discuss the interpretation of images thaespond to interval-valued fuzzy
sets [103].
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7.3.1 Interval-valued Images

As discussed in Chapter 2, binary and greyscale images speatvely be seen as crisp
sets and fuzzy sets iIR”. Interval-valued images now have the same representasion a
interval-valued fuzzy sets, which allows us to apply tegaes from interval-valued fuzzy
set theory on them (e.g. to define the interval-valued fuzeypimological operators). For
such images, a pixel in the image domain is no longer mapptedome specific grey value,
but onto an interval of grey values to which the grey valuexjseeted to belong (a closed
subinterval of[0,1]). The grey levels of the pixels in a greyscale image namey =
uncertain. Firstly, in any device, the captured grey lewsts rounded up or down to an
element of a finite set of allowed values. Further, uncetyaimy also arise when several
takes of an image result in different grey levels for somdnefgixels. This is sometimes the
case under identical recording circumstances and canirdgrbee expected under variable
circumstances such as illumination changes due to clowgsiog the sun, .. Also, the
camera or an object in the scenery can slightly shift pasitidbetween takes, which might
result in large differences (uncertainty) in the measunexy devel of pixels. Especially
pixels at the edge of an object will suffer from this. Finallythe context of mathematical
morphology, there might also exist uncertainty regardheydrey levels in the structuring
element that is used. This structuring element can be cHostre user, but in some cases
he might not be completely sure how to estimate the impoetacthus weight that is
assigned to a pixel in this structuring element. In this ceeuse of intervals to which the
value is likely to belong instead of choosing one specific@amight offer a solution.

In Fig. 7.9, three different takes of the camera image scemgigen: a cloudy, a sunny
and a slightly shifted take. Due to different recording girtstances and a shift in position
of the objects in the image, there is uncertainty concerttiegrey values in the image. To
take this uncertainty into account, an interval-valuedgmaan be constructed as follows.
The lower bound (respectively the upper bound) of the iratisrto which the grey value of
a pixel is expected to belong is chosen as the lowest (ra@gplycthe highest) grey level
over the three takes. These lower bound and upper bound iaraggiven in Fig. 7.10
together with a representation of the difference betweerio. The larger this difference
(more white in the difference image), the wider the corresliog interval and the larger the
uncertainty at the considered pixel position.

Remark that also other interpretations are possible. Thg@woes not need to represent
a natural scene, but it can e.g. also represent a degreec¢h whertain property is satisfied
at a certain location. If there is uncertainty concerniraf thegree, intervals can be used.
Remark further that since interval-valued fuzzy set theeeqguivalent to intuitionistic and
bipolar fuzzy set theory, all results of interval-valuedrptwlogy can be translated to the
equivalent morphologies. For an interpretation of bip@lazy images, we refer to [8, 9].

As a side-note, we would like to mention that also in othergmprocessing problems
such as inverse halftoning [13], as well as in the context afelets [12], interval-valued
representations occur in a natural way. They have also ftaubd useful in edge detection
applications [5]. Further, imprecision in grey levels isatonsidered in [108].
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Figure 7.9: Three different takes on the camera image: cloudy (upper), sunitdle) and shifted
(lower).
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Figure 7.10: Lower bound image (upper), upper bound image (middle) and diféeranage (lower)
of the interval-valued camera image.
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7.3.2 The Interval-valued Fuzzy Morphological Operators

The fuzzy morphological operators can be further extendétérval-valued fuzzy sets by
extending the logical operators froji 1] to £7.

Definition 7.5. [8] Let C be a conjunctor onC!, let Z be an implicator ont?, and let
A, B € F,:(R™). The interval-valued fuzzy dilatioR’ (A, B) and erosionEL(A, B) are
the interval-valued fuzzy setsli* defined by (wher&, (dp) = {z € R"|x —y € dp})

D{(A,B)(y) =  sup  C(B(z —y),A(x)),Vy € R", (7.1)
xETy(dB)ﬂdA
and
BHAB)w) = _int  Z(B(o ~ ), Alw). Yy € R (7.2)
€Ty (dp

Remark thatify ¢ D(da,dg), thenD} (A, B)(y) = O 1.

With the reflection— B of an interval-valued fuzzy sd® in R™ defined ag—B)(z) =
B(—x),Vx € R", the definitions of the interval-valued fuzzy closing anddy opening are
then given by:

Definition 7.6. LetC be a conjunctor orC’, let Z be an implicator onC’, and letA, B €
For(R™). The interval-valued fuzzy closin@l(A? B) and interval-valued fuzzy opening

OAI(A, B) are the interval-valued fuzzy setsit given by:

Cé,I(AvB> :Eé(D(IZ(AvB)’_B)a (73)

As discussed in Chapter 2, to process images on a comput@yasther device, in
practice a two-fold sampling of the images is needed: thg@momain is sampled down
from R™ to Z™ and the grey levels are sampled down from the unit intej¥al] to a
finite subchain of it. As a consequence, the greyscale iatemsed for interval-valued
images, will in practice belong to the finite sublattieg, = (L, <,r) of £, with L] , =
{[=%, 2=|k,l € Zand1 < k < randl < [ < s} for given integers- andss (r,s €
N\ {0,1})®. So, in practice interval-valued images can be seen asgiaio the class of
all interval-valued fuzzy sets @™ with membership intervals ih. _, which we will denote

)

by Fr: (Z"). If an interval-valued fuzzy sedl belongs tof.: (Z"), then,Vz € Z",

s

Ai(z) € I, = {==£%|k € Z and1 < k < r}. Analogously the upper bound,(z) € I, =

{#=lllezZandl <1< s}.
Due to the characterization of the supremum and the infimametimes stronger prop-
erties will hold in the practical discrete framework tharihe theoretical continuous frame-

work. This will for example be the case for the decompositiad construction properties

SRemark that usually = s, since the lower and upper bound of the intervals both repiteslowed grey levels
on the same device.
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discussed in Chapters 8 and 9. Therefore we will here givexpkcit discrete definitions of
the interval-valued fuzzy morphological operators Rdathat the definitions of negators,
conjunctors and implicators on the latti¢g , = (L! ,,<;:) are analogous to the corre-
sponding definitions o’ = (L, <, 1) (where nowL! , takes the role of.?). However,
not every operator o’ has a corresponding operatorﬁh The conjunctot, given by
C(x,y) = [x1-y1, @2 - yo] forall z,y € L’, for example, is not defined ofY. , due to the
fact that the interval with as lower and upper bound the pcodé respectlvely the lower
and upper bounds of two elementsidf, does not necessarily belong kg ..

The definitions of the discrete interval-valued fuzzy ddatand erosion can now be
written as follows:

Definition 7.7. Let C be a conjunctor onZ! ,, let Z be an implicator onZ/ _, and let

A,B € Fpi (Z). The discrete interval-valued fuzzy dilatiéi.(4, B) € Frer (Z7) s
forall y € 7" defined by:

D¢(A, B)(y) sup  C(B(z —y), A(z))

IETy(dB)ﬂdA

= [ max C(B(z —y), A(z))1,

z€Ty(dp)Nda

C(B(x —vy),A )
per 8%, CB@ =), Al))]

(For Yy ¢ D(dAa dB)a Dé(Aa B)(y) = O[,I')
The discrete interval-valued fuzzy erosiBh(A, B) € Fer (Z)is forally € Z" defined
by: '

E1(A, B)(y) inf  I(B(z —y),A(z))

z€Ty(dp)
- in Z(B(z —7v),A
[xEIY%I(I}iB) (B(x —y), A(z))1,
in Z(B(z —vy),A .
Lo (B(z —y), A(z))2]

As an example, the interval-valued fuzzy dilation (where¢bnjunctolC,;, was used)
of the original camera image (Fig. 7.10) by the structurilegrnent

0.6,0.8] [0.7,0.9] [0.6,0.8]
([0.7,0.9] (1,1] [0.7,0.9])

(0.6,0.8] [0.7,0.9] [0.6,0.8]

(7.5)

(where the underlined element corresponds to the origid¢jscted in Fig. 7.11. It can be
seen that the dilation brightens objects in the image. Agmlsly, an erosion will darken
them.
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Figure 7.11: Lower bound image (upper), upper bound image (middle) and diféeranage (lower)
of the dilated interval-valued camera image.
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7.3.3 Basic Properties of the Interval-valued Fuzzy Morpholgical Op-
erators

This subsection gives an overview of the basic propertigkeinterval-valued fuzzy mor-
phological operators: monotonicity, expansivity andniestity, interaction with the inter-
section and union of images and structuring elements, tgiuatlijointness and idempotence
[84]. These properties are mostly analogous to those ofubheyfmorphological operators
[29, 93]. However, in some cases stronger conditions anginedjor less strong results are
found. In the following,A, A, A; and B, By, By represent interval-valued fuzzy sets in
the universeR™. A, A;, A, are model for interval-valued imageB, B, B, are model for
interval-valued structuring elements.

Monotonicity

Proposition 7.3.1. LetC;, C be conjunctors and;, Z, implicators onZ’.
(i) If C1 <p1 Co, thenDé’1 (A,B) C Déz (A, B).
(i) If Zy <;: I, thenE] (A, B) C Ef (A, B).

Proof. As an example, we prove (i).

Forally € R”
Dél (A7B>(y) = sup CI(B(x - y),A(J?»
x€Ty(dp)Nda
<p sup  Cao(B(z —y), A())

2€T, (dp)Nda
= D¢, (A B)(y)

O

Proposition 7.3.2. LetC be a conjunctor and be an implicator onZ’. If A, C A, and
By C By, then:

(i) D{(A,Bi) € DL(A By),
Proof. As an example, we prove (i).
For ally € R™
D{(ALB)(y) = sup  C(B(z —y), Ai(x))
xETy(dB)ﬂdAl
<uswp C(Ble —y), Ao(a))

IL‘ETy(dB)ﬂdA2
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= D{(Az B)(y)
O

The above properties say that if an image is brightened (ileen the grey values are
increased), then the dilated and eroded images will be temgld as well. On the other
hand, if we brighten the structuring element, then also tlaed! image will be brightened
but the eroded image will be darkened.

For the interval-valued fuzzy opening and closing the monigity properties w.r.t. the
image follow immediately from those of the dilation and theston. However, due to
the opposite inclusions for the dilation and erosion in thepprties w.r.t. the structuring
element, no such properties hold for the opening and closing

Proposition 7.3.3. LetC be a conjunctor and be an implicator onC’. If A; C A,, then:

() Otz(A1,B) C O} (A, B),
(i) CLz(A1,B) C Cl(4:,B).

Proof. Follows from Proposition 7.3.2. O

Expansivity and Restrictivity

The following proposition shows that, under a very genealdition on the structuring
element, the interval-valued dilation and erosion aregetgey expansive and restrictive.

Proposition 7.3.4. LetC be a semi-norm and be a border implicator orC!. If B(0) =
1,1, then:
FEL(A,B) C AC DL(A, B).

Proof. For ally € R™

Er(A,B)(y) = Leif, LBz —y), A@))

<y I(B(y —y), Av))
= I(lgr, A(y))
=  A(y)

and

D{(A,B)(y) = P C(B(z —y), A(x))

> C(B(y—vy),Ay))
= C(lgr, Aly))
= Ay
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7.3 Interval-valued Fuzzy Mathematical Morphology

As a straightforward consequence, the following propostiolds.

Proposition 7.3.5. LetC be a semi-norm and a border implicator onZ’. If B(0) = 1,1,
then:

(l) D(];’(Av B) = Cé.I(A’ B)v
(i) DLA.B) 2 OL(A-B)
(i) EL(A,B) C Of(AB),
(iV) E%(Av B) - Cé.Z(A’ _B)'

Proof. Follows from Proposition 7.3.4 and 7.3.2 as follows:

() Ct7(A,B) = EL(DL(A, B),—B) C DL(A, B).
(i) Of7(A,—B) = DL(EL(A,~B), B) C D§(A, B).
(iii) Oél(A,B) = DL(FEL(A,B),—B) 2 EL(A, B).
(V) C&7(A,—B) = EL(DL(A,~B), B) 2 EL(A, B).

O
Under given conditions, also the interval-valued fuzzysoig and opening are respec-

tively expansive and restrictive.
Proposition 7.3.6. LetC be a conjunctor and an implicator onZ’.

(i) If (V(a,b) € LT x LY)(b <11 Z(a,C(a,b))), thenA C CéVI(A, B).

(i) If (V(a,b) € LT x L) (C(a,Z(a,b))) <p1 b, thenOé,I(A,B) C A.

Proof.
(i) Forally € R™

Cé,I(A7 B)(y) = Eé(Dé(A,B),—B)(y)

= inf  Z(B(y —z), sup C(B(z—1x),A(?)))
IeTy(_dB) ZETy(dB)ﬂdA

>0 inf ~ Z(B(y—x),C(B(y —x),A(y)))
€Ty (—dB)

> inf A
ot (y)

= Ay

(i) Analogously.
O

The conditions o andZ will for example be satisfied i = Z¢ with C a t-norm on
£ of which the partial mappings are sup-morphisms (see Pitipo4.5.3 and 1.5.4).
Combining Proposition 7.3.5 and 7.3.6 leads to the follgwin

171



From Binary to Interval-valued Fuzzy Mathematical Morphology

Proposition 7.3.7. Let C be a conjunctor and. an implicator onZ!. If B(0) = 1.:
and (V(a,b) € L' x L")(C(a,Z(a,b))) <pr b <pr Z(a,C(a,b))), thenEL(A, B) C
O(IZ,I(AaB) - A < Cé,I(AaB) - D(IZ(A’ B)

Interaction with the Intersection of Images

In this and the following subsections, we study the intéoacof the interval-valued mor-
phological operators with the intersection and union ofgesand structuring elements.

Proposition 7.3.8. LetC be a conjunctor and an implicator onZ’. It holds that:
() DL(A1NAs,B) C  DL(A, B)N DL(As, B),
(i) EL(A1NAy,B) C FEL(A),B)nEL(Ay B).

If in (ii) the second partial mappings @f are meet-morphisms, then it holds that:

EL(A, N Ay, B) = ELX(A, B)n EX(A,, B).

Proof.

(i) From Proposition 7.3.2 (monotonicity w.r.t. the image)d A; N A, C A; and
A1 ﬂAQ - AQ, it follows thatDé(Al ﬂAQ,B) - D(I:(Al, B) andDé(Al OAQ, B) -
DL(A,, B) and consequentlp’(A; N Az, B) C DL (A1, B) N DL(As, B).

(i) Forally € R™:

EL(A1 N Az, B)(y)
— inf  Z(B(z —y), (A1 N A)(x))

z€Ty(dp)
= I(B ) ), A ()
<o _inf Il — ), Ay(0) Z(B( - 1), Ax(o)

—  inf( inf Z(B(z—v), A(z)), inf Z(B(z—vy),A
inf(_inf  Z(B(r ~y). Ax(x). _inf  T(B(x ). Ao(z)

= inf(EL(A1, B)(y), B1(Az2, B)(y))
If the second partial mappings @ are meet-morphisms, then the third transition
becomes an equality.
O

Proposition 7.3.9. LetC be a conjunctor and an implicator onZ’. It holds that:

() Cli(AnAs,B) C Chi(A,B)NCEL(AsB),
(i) Ol (ANA,B) C OL (A, B)NOLL(As,B).
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Proof. Follows from Proposition 7.3.8 and 7.3.2 as follows.

0)
Cé,I(AlmAQaB) = E%(D(IZ(AlmA% )a B)
- ngl)é@4h )rWLb(AQPB)a_E”
C  Ez(D¢(Ar, B),—B) N E7(D¢(As, B), —B)

I
Q

é,I(Ala B)n Cc 7(A2, B)

(i) Analogously.

O

The results in Proposition 7.3.8 and 7.3.9 can be extendébetantersection of an
arbitrary family.

Proposition 7.3.10. LetC be a conjunctor and an implicator onZ’. It holds that:
(i) Dé(_ﬂJAj,B) C ) D4y, B),
€

J jed
(i) EZ(NA4;,B) < N Ez(4;B).
jed je
If in (ii) the second partial mappings df are inf-morphisms, then it holds that:
Ef(() 45, B) = () Ez(4;, B)
JjeJ jeJ
Proof. Analogous to the proof of Proposition 7.3.8. O

Proposition 7.3.11. LetC be a conjunctor and’ an implicator onZ’. It holds that:

(i) Ciz(NA;B) < N Cli(4,B),
. jeJ jeJ
(i) Olz(NA;.B) S ) Ofs(4;,B).
jeJ jeJ
Proof. Analogous to the proof of Proposition 7.3.9. O

The results in Proposition 7.3.8 and 7.3.9 can also be estbinal an arbitraryC’-
intersection, wittC’ a semi-norm.

Proposition 7.3.12. LetC andC’ be conjunctors and an implicator onZ?.
1. (i) If Cis asemi-norm, then

DL(A; ner Ay, B) € DL(A1, B) N D(As, B).
@iy If (Y(u,v,w) € (L)) (C(u,C'(v,w)) <pr C"(C(u,v),C(u,w))), then
DL(A, Ner Ag, B) € DE(A1, B) Ner DE(Az, B).
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2. (i) If Cis asemi-norm, then
EL(Ay Ner Ay, B) € EX(Ay, B) N EL(A,, B).
(i) If (V(u,v,w) € (LT)3)(C'(Z(u,v),Z(u,w)) < Z(u,C'(v,w))), then
EL(Ay, B) Ner EX(Ag, B) € EL(A; Ner Ag, B).

Proof.

1. (i) From Lemma 8.1.1, it follows thatl; Ngs A € A; N A,. Using Propo-
sition 7.3.2 and 7.3.8 then give.(A; Ner Aa, B) € DE(A1 N As, B) C
DE(A1, B)N DL (As, B).

(i) Forally € R™:
D{(A1Ner As, B)(y)
= sup C(B(z —y), (A1 Ner A2)(z))

z€Ty(dp)Nda;n,, Aq

= sup C(B(z = y), (C'(Ai(x), A2(2)))

wETL(dB)ﬂdAlmC,AQ

<pr sup C'(C(B(x —y), Ai(x)),C(B(z — y), Aa(x)))

.tETy(dB)ﬁdAlmc/Az

<pr C'C sup - C(B(x —y), Ai(2)),

zeig(dB)mdAl
sup  C(B(z —y), As()))
z€Ty(dp)Nda,

= C'(D{(Ar, B)(y), DE(Az, B)(y))
= (Di(A1, B)Ne Di(As, B))(y)
In the fourth transition, Lemma 1.5.1 was used.

2. (i) From Lemma 8.1.1, it follows thatl; N¢: As € A; N As. Using Propo-
sition 7.3.2 and 7.3.8 then givesi(A; Ner Aa, B) € EL(A; N A, B) C
EL(Ay, B) N EL(As, B). Remark that i’ = Cpiy, i.€., the infimum-operator,
which is a meet-morphism, then the equality holds.

(i) Forally € R™:
EZ(A1 Ner Az, B)(y)
= inf A r A
L Z(B(z — y), (A1 Ncr A2)(2))
= f B "(A
Lf T(Bw =), € (Ai(2), A42(2)))
zu it CT(B( = y), Au@) (Bl — y), A2()))
2 C( it T(B(r =), @), _inf T(Ble—y), ()
= C'(Bf(A1, B)(y), E7(A2, B)(y ))
= (Bf(A1,B) Ner E1(As, B))(y)
In the fourth transition, Lemma 1.5.1 was used.
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Interaction with the Intersection of Structuring Elements

Proposition 7.3.13. LetC be a conjunctor and an implicator onZ’. It holds that:
()  DL(A, BiN By) C DE(A, Bi) N DL(A, By),
(i)  EL(A,BiNBy) D EL(A,B))UELA, By) D EL(A, By) N EL(A, By).

Proof. Analogous to the proof of Proposition 7.3.8 (i). O

As a consequence of the opposite inclusions in the aboveopitagn, no analogous
interaction properties w.r.t. structuring element candanfl for the interval-valued fuzzy
morphological opening and closing.

The result in Proposition 7.3.13 can be extended to thesat¢ion of an arbitrary fam-
ily.

Proposition 7.3.14. LetC be a conjunctor and’ an implicator onZ’. It holds that:

()  Dé(A, N Bj) S N DA, By,

. jed jed
(i) EZ(A, N Bj) 2 () EL(AB)).
JjeJ jeJ
Proof. Analogous to the proof of Proposition 7.3.13. O

The resultin Proposition 7.3.13 can also be extended tolatmaaty C’-intersection, with
C’ a semi-norm.

Proposition 7.3.15. LetC andC’ be conjunctors and an implicator onZ’.
1. (i) If Cis asemi-norm, then

D{(A, By Ner By) € DE(A, By) N DE(A, By).
(i) 1f (V(u,v,w) € (L3 (C(C (u,v),w) <p: C'(C(u,v),C(u, w))), then
DL(A, By ner Ba) € DE(A, By) Ner DL(A, By).
2. (i) If Cis asemi-norm, then
EL(A, By Ner By) D EL(A, B)) N EL(A, By) D EL(A, B)) ner EL(A, By).
(i) If (V(u,v,w) € (L')?)(C"(Z(u,v),T(u,w)) < Z(C'(u,v),w)), then
EL(A,By)Ner EL(A, By) € EL(A, By ner By).

Proof. Analogous to the proof of Proposition 7.3.12. O
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Interaction with the Union of Images
Proposition 7.3.16. LetC be a conjunctor and an implicator onZ’. It holds that:

(i) DL(AyUA2,B) O DL(A1,B)UDL(As, B),
(i) E:{'(A:[UAQ,B) D E%(Al,B)UE{—(AQ,B).

If in (i) the second partial mappings 6fare join-morphisms, then it holds that:

DL(A, U Ay, B) = DL(A1, B)U Dl (A, B).

Proof.
(i) Analogous to the proof of Proposition 7.3.8 (ii).
(i) Analogous to the proof of Proposition 7.3.8 (i).

O
Proposition 7.3.17. LetC be a conjunctor and an implicator onZ’. It holds that:
0] Cé}I(Al UAy,B) 2 C({’I(Al, B)U CéﬁI(AQ, B),
(ii) Oé’I(Al UAs,B) D Oél(Al, B)U O{jl(AQ, B).
Proof. Analogous to the proof of Proposition 7.3.9. O

The results in Proposition 7.3.16 and 7.3.17 can be extetodib@ union of an arbitrary
family.

Proposition 7.3.18. LetC be a conjunctor and an implicator onZ’. It holds that:

JjeJ jeJ
G EHUA.B) 2 U FELA;B).

JjeJ jeJ
If in (i) the second partial mappings 6fare sup-morphisms, then it holds that:
jeJ jeJ
Proof. Analogous to the proof of Proposition 7.3.16. O

Proposition 7.3.19. LetC be a conjunctor and an implicator onZ’. It holds that:

(i) Cé,z( U AJGB) 2 U Cé,I<Aj7B>’
jeJ jeJ

J
(ii) Oé,z( UAa,B 2 U Oé,I(Aij)-
jedJ jed
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Proof. Analogous to the proof of Proposition 7.3.17. O

The results in Proposition 7.3.16 and 7.3.17 can also ben@gtbto an arbitrarnpD-
union, withD a semi-conorm.

Proposition 7.3.20. LetC be a conjunctorD a disjunctor andZ an implicator onZ’.
1. (i) If Dis asemi-conorm, then

DL(A; Up Ay, B) D DL(Ay, B) U D(As, B).
(i) If (V(u,v,w) € (L)?)(C(u, D(v,w)) <pr D(C(u,v),C(u,w))), then
DE(A1 Up A, B) € D{(A1, B) Up DE(As, B).
2. (i) If Dis a semi-conorm, then
EL(A, Up Ay, B) D EX(A1, B) U EX(A3, B).
(i) If (V(u,v,w) € (L)3)(D(Z(u,v), T(u,w)) < I(u, D(v,w))), then
EX(A1, B) Up EX(As, B) D BL(A; Up Az, B).

Proof. Analogous to the proof of Proposition 7.3.12, where now Lenin®.2 can be used
instead of Lemma 1.5.1. O

Interaction with the Union of Structuring Elements

Proposition 7.3.21. LetC be a conjunctor and an implicator onZ’. It holds that:

0] Dé(A,Bl UBs) D Dé(A,Bl) UDé(A7BQ)7,
(II) E%(A, By U Bz) - E%(A, Bl) n Ej{—(/L BQ) - E%(A, Bl) U Eé(A7 BQ)

Ifin (i) the first partial mappings of are join-morphisms, then it holds that
D¢(A, By U By) = D¢(A, By) U DE(A, By).
If in (i) the first partial mappings of are dual join-morphisms, then it holds that:

FL(A,ByUBy) = ELX(A, B)) N EL(A, By).

Proof. Analogous to the proof of Proposition 7.3.8 (ii). O
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Proposition 7.3.22. Let C be a conjunctor, of which the first partial mappings are join-
morphisms, and le be an implicator onZ’. It holds that:

Oc,z(A,B1 U Bs) € Ocz(A, B1)UOc z(A, By).
If also the first partial mappings df are dual join-morphisms, then

CcyI(A, By U Bz) D) CQI(A, Bl) n CQI(A, Bg)

Proof. Suppose that the first partial mappings(tre join-morphisms. Using Proposi-
tion 7.3.21, 7.3.2 and 7.3.8, we obtain:

Ocz(A,BiUBy) = DA(EL(A, By UBsy),—(B;UBy))
DL(EL(A, B, UBy),—B; U —By)
I
o (B1(
C(EL(

N

DL(EL(A, B)) N EL(A, By), —B, U —By)
DL(EL(A, B)) N EL(A, By), —B))

U D{(EZ(A, By) N EL(A, By), —Bs)

(D{(EL(A, By), —B1) N D¢(EZ(A, Bs), —By))
U (D¢(BEZ(A, By),—Ba) N D¢(BE1(A, Bz), —Ba))
D¢(EZ(A, By), —By) U DL (EL(A, By), —By)
Oc.z(A, B1) UO¢.z(A, By)

N

N

Suppose now also that the first partial mappingg aefre dual join-morphisms. Using
Proposition 7.3.21, 7.3.2 and 7.3.16, we obtain:

Cer(A,BiUBy) = FELDL(A B, UB,),—(B)UBy))
FEL(DL(A, By UBy),—B; U—By)

&(

&

= ELDI(A,B,UB,),—B))NELDL(A, B, UBs),—B>)
= ELDL(A, B)UDL(A, By),—By)

N EL(DE(A, B1)DE(A, Bs), —Bs)

(E1(DE(A, Br), —By) U EL(DE(A, By), —By))

N (BL(D¢(A, Br), —Ba) U EL(DE(A, Ba), —Ba))
(EZ(D(A, Br),—By) N EZ(DE(A, By), —Bs)
Cez(A,By) N Cez(A, By)

1

O

The results in Proposition 7.3.21 and 7.3.22 can be extetodibe union of an arbitrary
family.
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Proposition 7.3.23. LetC be a conjunctor and an implicator onZ’. It holds that:

() DiAUB) 2 U DA B,
jeJ

J jeJ
() Ez(A, U Bj) < ) Ef(A,B)).
G jel

If in (i) the first partial mappings of are sup-morphisms, then it holds that

D(IZ(A7 U Bj) = U Dé(A’ Bj)'

JjeJ JjeJ

If in (i) the first partial mappings of are dual sup-morphisms, then it holds that:

Ef(A, | By) = () E1(A, By).
JjeJ JjeJ

Proof. Analogous to the proof of Proposition 7.3.8 (ii). O

Proposition 7.3.24. Let C be a conjunctor, of which the first partial mappings are sup-
morphisms, and le be an implicator onZ’. It holds that:

Ocz(A, | B)) € | Ocz(A, By).

jeJ jeJ
If also the first partial mappings of are dual sup-morphisms, then

Cez(A, | Bj) 2 () Cez(A, By).

JjeJ jeJ
Proof. Analogous to the proof of Proposition 7.3.22. O

The results in Proposition 7.3.21 and 7.3.22 can also benéeteto an arbitraryD-
union, withD a semi-conorm.

Proposition 7.3.25. LetC be a conjunctorD a disjunctor andZ an implicator onZ’.
1. (i) If Dis asemi-conorm, then

DL(A, By Up Ba) D DL(A, By) U DL(A, By).
(i) If (Y(u,v,w) € (LH)*)(C(D(u,v),w) <pr D(C(u,v),C(u,w))), then
DL(A, By Up By) € DL(A, By) Up DL(A, By).
2. If D is a semi-conorm, then

EL(A, By Up By) € EL(A, By) N EL(A, By) € EL(A, By) Up EX(A, By).
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Proof.

1. Analogous to the proof of Proposition 7.3.12 (1.).
2. SinceB; Up By D By U By, it follows from Proposition 7.3.2 that

EL(A, B, Up By) C EL(A, B, U By).
Combined with Proposition 7.3.21, we get
EL(A, By Up By) C EX(A, B;) N EL(A, By).
Further,

Eé(A?Bl) N E%(A7B2) - E%(Av Bl) U E%(A7BQ) - E%(A7B1) Up E%(A7BQ)
]

Duality

Definition 7.8. Consider a univers& and two unary operator® and @ on F.(X) and
an involutive negatoN' on £. The operators” and Q are called dual w.r.t. toV if and
only if

P =conoQocoy, i, (VA€ Fr(X))(P(A) = con(Q(con(A4)))).
SinceNV is involutive then als@) = coxr o P o copr.

The interval-valued fuzzy dilation and erosion are calledldv.r.t. an involutive negator
N if they are dual for any given structuring element:

Definition 7.9. The interval-valued fuzzy dilatio/ and erosionEL are dual w.rt. an
involutive negator\V' if and only if DX(-, B) is dual to EL(-, B) w.rt. N for everyB €
Fri(R™).

Such duality relation is interesting because it allows usaiestruct interval-valued di-
lations from interval-valued erosions, and vice versa. filewing proposition however
shows that the duality is only guaranteed under a given tiondon the used conjunctor
and implicator.

Proposition 7.3.26. [13( LetC be a conjunctorZ an implicator and\" a negator onZ’.
Then it holds that the interval-valued fuzzy dilatib is dual to the erosior2L w.rt. the
negator\ if and only ifC = Cz nr andZ = Z¢ .

Proof.
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7.3 Interval-valued Fuzzy Mathematical Morphology

«: Suppose that = Cz nr andZ = Z¢ »r. (SinceN is involutive, these two expressions
are equivalent as will be shown in the second part of the prétdthen holdsv A, B €

Frr(R™) andVy € R™ that:
D{(A, B)(y)

and
E1(A, B)(y)

sup C(B(z —y), A(z))
r€R"

sup N(Z(B(x —y),N(A(x))))

zER™

N(inf Z(B(x —y),N(A(x))))

zeRn
(conr(Ez(conr(A), B)))(y)

inf Z(B(x —y), A(x))

zeR™
inf N(C(B(x —y), N (A())))
N (sup C(B(z ~ ) N (A(x)

(con (D (conr(A), B)))(y)

which means thab’ and E£ are dual w.r.t. the negatav'.

: Suppose thaD/ and EL are dual w.r.t. the involutive negatdy’. Choose now

A(z) = aandB(z) = bfor allz € R", witha,b € L!, i.e., constant mappings. Let
y be an arbitrary element &™. Then it holds that

sup C(B(z —vy), A(z))
rzeR™

D¢(A, B)(y)

(con(Ez(con(A), B)))(y)

N(inf T(B(z — 1), N(A())))

N(Z(b, N (a)))

which means thaf = Cz . SinceN is involutive,V(a,b) € (L?)? the following

C(b,a) = N(Z(b,N(a))) & N(C(b,N(a))) = NIN(Z(b,N(N(a))))) = Z(b, a),

=
C(bya) =
equivalence holds:
which means thal = Z¢ .
Adjointness

Definition 7.10. Consider a univers& and two unary operator® and @ on F(

O

X). We

say that the paif@, P) forms an adjunction if and only if
(vAl,AQ S fL(X))(P(Al) - AQ <~ A1 - Q(AQ))
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From Binary to Interval-valued Fuzzy Mathematical Morphology

The interval-valued fuzzy dilatio®/ and erosion1 are called adjoint if they form an
adjunction for every given structuring element:

Definition 7.11. The interval-valued fuzzy dilatioR/ and erosionZ? are called adjoint if
and only if the pair EL(-, —B), DL (-, B)) forms an adjunction for everis € F,:(R").

The adjointness is however only guaranteed under a giveditomm on the used con-
junctor and implicator as the following proposition shows.

Proposition 7.3.27.[130 Let C be a conjunctor andZ an implicator on£’. The pair
(EL, DL) forms an adjunction if and only if the pa(Z, C) satisfies the adjunction principle
(V(z,y,2) € (LN)?*)(C(z,2) <pry & o <pr I(2,y)).
Proof.
<: Suppose thatZ, C) satisfies the adjunction principle:
C(Za (E) <pry e x<p I(Zvy) V(x,y,z) € (LI)?)'
Consider arbitrary;, 4>, B € F.:(R™), then it holds:
DE(A1, B) C Ay Vy € R")(D¢ (A1, B)(y) <p1 Az(y))
R (sup C(B(r = y), 41(2) <pr Ax(y))

(

(Vy

(Va,y € R")(C(B(x —y),Al(m)) <LI Az( )

(Va,y € R")(A1(z) <pr Z(B(z — y), A2(y)))

(Vo € R")(A1(x) <pr mf I(B( ) As(y)))
(Vo € R*)(Av(x) <pr mf Z((=B)(y — =), 42()))
(Vo € R")(A1(z) <pr B7(A2, —B)(x))

Ay C EX(Ay,-B)

te ¢ T T

= Suppose that the pa{tzL, D.) forms an adjunction. Choose no; (z) = ay,
As(z) = ay and B(z) = b for all z € R”, with ay,as,b € LY, i.e., constant
mappings. Ley be an arbitrary element &". Then it holds that

C(b,a1) = sup C(B(z —y), Ai(z)) = D¢(Ar, B)(y),

zERn
and
Z(byas) = Tlenug I(B(y — ), As(x))
— inf T((~B)(x — y). As(a)

Ez(As, =B)(y)-
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7.3 Interval-valued Fuzzy Mathematical Morphology

Thus we have

C(b,al) <pras & Dé(Al,B) - A2 ~ Al - Eé'(AQ, —B) S ay <pr I(b7 ag).

O

A conjunctorC and an implicato on £ will for example satisfy the adjunction prin-
ciple if C is a t-norm onZ? of which the partial mappings are sup-morphisms &nd 7
[30].

Idempotence

Proposition 7.3.28.LetC be a semi-norm and a border implicator onZ’. If B(0) = 1.,
then it holds that:

() DE(A,B) € DL(DE(A, B), B),

(i) EL(EL(A,B),B) C EL(A, B).

Proof. Follows from Proposition 7.3.4. O

Proposition 7.3.29. LetC be a semi-norm o, and letZ be an implicator onz’ of which
the second partial mappings are inf-morphismsB(D) = 1,:, then it holds that:

e If C andZ satisfy(V(a, b, c) € (LY)?)(Z(a,Z(b,c)) > Z(C(a,b),c))), thenit holds
that
E1(E1(A, B), B) 2 Ez(A, B).
e If 7 is also a border implicator, then

Eé(E%(A’ B)vB) = Eé(A7B)'

Proof. For ally € R

EY(EHA,B),B)(y) = inf T(B(z—y), inf T(B(z ), A()))
= infinf T(B(z —y), Z(B(: — 2), A(2))
> inf inf T(C(B(z —y), Bz — 1)), A(2))
> inf Z(swp C(B(r—y). Bz~ ). A(2)
> inf T(C(B(:—y), Bz —2)), A(2))
= inf T(B(z— 1)), A(2))

E1(A, B)(y)
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From Binary to Interval-valued Fuzzy Mathematical Morphology

The successive transitions follow respectively from thigntien of the erosion, the second
partial mapping of being an inf-morphism, the given condition @randC, the first partial
mapping ofZ being decreasing, choosing= z, the fact that’ is a semi-norm an@(0) =
1, and the definition of the erosion with the symmetryif

If Z is a border implicator, then also the reverse inclusion fidlde to Proposition
7.3.28. O

The extra conditions o andZ in the above proposition are for example satisfied if
(Lemma 1.5.5):

e Cisan associative semi-norm g andZ = 7 _»;, where\ is an arbitrary involutive
negator on_/,

e Cis at-normon! of which the partial mappings are sup-morphisms @nd Z¢.
Proposition 7.3.30. Let C be a conjunctor andZ an implicator on£!. If (V(a,b) €
(LH?)(C(a,Z(a,b)) <pr b <pr Z(a,C(a,b))), then it holds that

0} Cé7I(C’é7I(A,B),B) = Cé,I(AvB)i
(if) OéI(Oé’I(A,B),B) = Oé,I(A7B)'
Proof. Under the given conditions, it follows from Proposition B.&hat the interval-valued

fuzzy opening is restrictive and the closing is expansiveg.f@ the opening this means that
0f 7(0f 7(A,B), B) € Of £(A, B). Further,

0% 1(0¢ £(A, B), B) D¢(B1(Ob£(A, B), B), —B)

)

T
= D(Er(Di(EL(A, B),~B),B),~B)
= D{(CL1(E7(A, B),~B), ~B)

Since the closing is expansive, it holds thet - (O/ (A, B), B) 2 D(EZ(A, B), —B) =
OL 1 (A, B). O

The condition orC andZ in the above proposition will for example be satisfied #nd
7 satisfy the adjunction principle. Indeed, in this casepiths that

C(a,Z(a,b)) <pr b= I(a,b) >pr Z(a,b)

and
b <rr I(CL,C(CL, b)) A C(CL, b) >t C(CL, b)

and both right inequalities are always trivially fulfilleds mentioned above, the adjunction
principle will for example hold ifC is a t-norm onZ? of which the partial mappings are
sup-morphisms and = Z; [30].
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7.4 Conclusion

7.4 Conclusion

In this chapter, we have given an overview of the evolutiamfithe original binary math-
ematical morphology for binary images, over greyscale eratitical morphology such as
fuzzy mathematical morphology, to interval-valued fuzzgrphology for interval-valued
images. The (interval-valued) fuzzy extension is basedhenobservation that (interval-
valued) greyscale imags and (interval-valued) fuzzy satsbe modelled in the same way.
As a consequence, binary mathematical morphology can lea@sd by extending the bi-
nary logical framework on which classical set theory is basethe (interval-valued) fuzzy
case, as we have shown. The chapter was then ended with afeavef the basic proper-
ties of the interval-valued fuzzy morphological operators

185






8

Decomposition of
Interval-valued Fuzzy
Morphological Operators

In this chapter, we investigate the decomposition of therirat-valued fuzzy morphological
operators into theil , o ]-cuts [83, 85]. We are interested in the relationships betwke
[a1, az]-cuts of the result of the interval-valued fuzzy dilatiom&on, opening and closing
of an interval-valued image by a given interval-valued &tuting element and the result of
the corresponding binary operators applied on[the «s]-cuts of those arguments. It will
be shown that in some cases, an equality or inclusion (appation) will be found. For the
cases where the equality does not hold, a counterexampbms&tracted.This is first of all
interesting from a theoretical point of view because it jes us a link between interval-
valued fuzzy and binary morphology but secondly also bexzaush conversion into binary
operators is likely to result in a lower complexity for thdadation or approximation of
the [a1, az]-cuts. Moreover, the binary dilation and erosion can beh&rsped up by a
decomposition of the structuring element.

The chapter is organized as follows: The decomposition guts for the different
[, az]-cuts of the interval-valued fuzzy morphological dilatjenosion, opening and clos-
ing are respectively presented in Section 8.1, 8.2 and &l &amfor both the continuous and
the discrete case. Additionally, Section 8.4 discussesllstrates the results. Section 8.5
concludes the chapter.
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Decomposition of Interval-valued Fuzzy Morphological Operators

8.1 Decomposition of the Interval-valued Fuzzy Dilation

Lemma 8.1.1. [57] If C is a semi-norm oit’, then it holds that < Cp.iy, i.€.:

(V(z,y) € (L1)*)(C(z,y) <p1 Crmin(z,y))-
Proof. LetC be a semi-norm o, then it holds for al(z, y) € (L?)? that
o C(z,y) <pr C(z,1,r) = x,
o C(x,y) <pr C(1zr,y) =y,
from which it follows thatC(z, y) <71 Cumin(x,y). O
Note that lemma 8.1.1 does not necessarily holtlig not a semi-norm o’ .

Example 8.1.2. Let C be the conjunctor defined as:

_f Ogr ifinf(z,y) = 0cr g
C(Jf,y) - { 1£I else I \V/(l',y) € (L ) :

One easily verifies thaf is no semi-norm onC! (e.g. C(1.1,[1/4,1/2]) = 1y #
[1/4,1/2]) and thatC £ Cin (€.9.1,1 =C(1,1,[1/4,1/2]) >p1 Copin(1pr,[1/4,1/2]) =
[1/4,1/2]). 5

8.1.1 Decomposition by Strict Sub- and Supercuts

Proposition 8.1.3. Let A, B € F,:(R"), then it holds for respectively all; € [0, 1] and
all as € [0,1] that:

() DL (A B)
() DL (A B

Proof. Let A, B € F,:(R™), and letay, as € [0, 1].
(i)

(o5}
(%)

= D(Aay, Bay),
— D(A%, B2),

Y € Déxnin(A7 B>a Déxnin (A7 B>(y)1 > ai

sup Crin(B(z —y), A(x))1 > o

€Ty (dp)Nda

(Fz € Ty(dp) Nda)(Crnin(B(z — y), A(z))1 > 1)
(Fz € Ty(dp) Nda)(min(By(z — y), Ai(z)) > aq)
(Fx € Ty(dp) Nda)(Bi(z —y) > ag and Ay (z) > o)
(3z € Ty(dp) Nda)(z € Ty(Bay) andzx € Agy)

T, (Bar) 0 Ay # 0

y € D(Aar, Bay)-

t e

—_— — — —

(
(
(
(

tee o0

BN

This proves thaD} (A, B)a;y = D(Aar, Bay).
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8.1 Decomposition of the Interval-valued Fuzzy Dilation

(i) Analogous.

Proposition 8.1.4. Let A, B € F,:(R") and let C be a semi-norm of, then it holds for
respectively alby € [0, 1] and all s € [0, 1] that:
() D¢(A, B)ay € D(Agy, Bay),

A,
(i) DL(A,B)® C D(A%

2, B@)_
Proof.
(i) The proof is completely analogous to the one from Prapmsi8.1.3 (i). We only
have that due to lemma 8.1.1
(Jz € Ty(d) Nda)(C(B(x —y), A(x))1 > a1)

I
(3.13 S Ty(dB) N dA)(Cmin(B('r - y)a A(x))l > 041)

only holds in one direction for an arbitrary semi-norm©h
(i) Analogous.

The reverse inclusion does not hold in general.

Example 8.1.5. Let [, ] = [1/4,1/2], C(r,s) = [r1 - s1,72 - so] for all r,s € L7,
A(xz) =10.3,0.6] for all z € [0,1], A(x) = 0, forall x € R\[0, 1], B(z) = [0.4,0.7] for
all z € [0,1] andB(z) = 0, for all z € R\[0, 1]).

Then on the one hand

0 € D(Aggs, Bygs) = D(A%®, B®%) = [-1,1].
On the other hand however:

D¢(A, B)(0)

sup  C(B(z), A(x))

ZGTo(dB)ﬁdA
—  sup [0.3-0.4,0.6-0.7]
z€][0,1]

= [0.12,0.42]
% [0.25,0.5],

and thus) ¢ %(A, B)@ an@ ¢ Dé (A, B)O'5. SO,Dé (A, B)m ;_ﬁ D(Aﬁ, Bm)
andDL(A, B)'S 2 D(A0S, Bi5),
¢

Further, the following example illustrates that PropasitB.1.4 is restricted to semi-
norms.
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Decomposition of Interval-valued Fuzzy Morphological Operators

Example 8.1.6. Let C be the conjunctor defined in Example 8.1.2 (which is not a semi
norm). Further, letA(z) = [1/4,1/2] for all z € [0,1], A(x) = 0,: for all z € R\[0, 1]
andB(z) = 1, forall x € [0,1], B(z) = 0,: for all z € R\[0,1]. Then for ally €
D(da,dp) = [—1,1] it holds that

DA B)(y) = P C(B(z —y), A(x))

= s C([L1)[1/4,1/2)
mETy(dB)ﬁdA

- sp L]
JZETy(dB)ﬁdA

- 1LIa

and thug € D(A, B)g5z andy € DE(A, B)%5. On the other hand, fromgoz = A%5 =

0 it follows that D(Ag5, Byzs) = 0 and D(A%?, B?) = 0, such thatD/ (A, B)g5 £
l)(AAm7 Bm) andDé (A, B)0'5 g D(140'57 B0'5).
¢

Remark that the decomposition properties for strict sul-supercuts given above re-
main valid in the discrete framework.

8.1.2 Decomposition by Stricfa; , aiz]-cuts
Proposition 8.1.7. Let A, B € F,:(R"), then it holds for alla;, o] € LI\Uy: that:

DL (A, B)g 2 D(Ag, Bg:f).

min

Proof. The proof is analogous to the one from Proposition 8.1.3yOmw we have that

sup  Cmin(B(z — y), Az)) >p1 [on, o]
2€T, (dp)Nda
()

(Jz € Ty(dp) N da)(Crnin(B(z — y), A(x)) > 11 [on, az])
only holds in one direction. O

The reverse inclusion does not hold in general.

Example 8.1.8.Let [ay, as] = [0.3,0.7] and let

[0.1,0.8], z €[0,0.5]
A(r) =< [0.5,0.6], z€[0.5,1]
Opr, else
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8.1 Decomposition of the Interval-valued Fuzzy Dilation

and
[0.2,0.9], x € [0,0.5]

B(z) = ¢ [0.4,0.5], z€[0.5,1].
Ofr, else

It then holds that
Dé(A, B)(0) = sup Crin(B(z), A(z))
wETo(dB)ﬂdA

= sup( sup Cumin(B(2), A(z)), sup Cmin(B(2), A(2)))
z€[0,0.5] xz€[0.5,1]

= sup([min(0.2,0.1), min(0.9, 0.8)], [min(0.4, 0.5), min(0.5, 0.6)])
= sup([0.1,0.8)],[0.4,0.5])
— [0.4,08],

which means thai € D/ (A, B)2-L.

O‘O

On the other hand, sinc4%T = { it holds thatD(A%T, BY-T) = , which means that
0 ¢ D(A%L BY-T). As a consequend®l (A, B)2T ¢ D(AST BOT).
o

The strict[ay, as]-cut of the interval-valued fuzzy dilation based on the cojorC,,;,
can however always be constructed from binary dilation®bawWs.

Proposition 8.1.9. Let A, B € F.: (R"), then it holds for alla,, as] € L'\U,/ that:
Démin (A, B)o‘i2 = (Aal,Bal) N D(Aaz Baz)

o

Proof. Follows from Proposition 8.1.3 and the fact tiizt (A, B)%j =D} (A, B)arn
DL (A, B)™. O

Due to Lemma 8.1.1, Proposition 8.1.7 is restricted to thmaig®rm C,,;,. For an
arbitrary semi-norng there is no relation between the striat , ap]-cuts D/ (A, B)22 and
the binary dilationD (A22 Bo‘z) as the following example illustrates.

o1
Example 8.1.10.To illustrate that, for an arbitrary semi-noiyit does not hold in general
that (V[on, ] € L\UL1)(DE(A, B)a2 2 D(ASZ, B3?)), Example 8.1.8 can be used
again.
For a counterexample of the reverse inclusion we refer taripka 8.1.5, wheré® <

(Ag 2 8;5) [—1,1] and D (A, B)(0) = [0.12,0.42] or thusO ¢ D (A, B)g 2.

The strict[ay, as]-cut of an interval-valued fuzzy dilation based on an asbjtrsemi-
normC can however always be approximated by binary dilations.

Proposition 8.1.11.Let A, B € F,:(R"), then it holds for allay, as] € LI\U; ! that:
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Decomposition of Interval-valued Fuzzy Morphological Operators

D{(A, B)g2 C D(Aay, Bay) N D(A™, B™).

Proof. Follows from Proposition 8.1.4 and the fact thag (A, B)22 = D}(A, B)ar N

(63

DL(A, B)®. O

Remark that the decomposition properties for stfict, as]-cuts given above remain
valid in the discrete framework.

8.1.3 Decomposition by Weak Sub- and Supercuts

For an arbitrary semi-norid, there is no general relation between the weak sub- and-super

cutDL(A, B),, andDL(A, B)*2 and the binary dilation® (A, , B, ) andD(A%2, B22).

Example 8.1.12.To illustrate that the inclusio}(A, B),, € D(A,,, Ba,) does not
hold in general, we can use Example 8.1.8 again. However,amenow also construct a
counterexample based on the fact that for a wegksubcut of an interval-valued fuzzy set
A, the inequality4; (z) > a4, that needs to hold far € R to belong toA,,, , is not strict.
Let [, o] = [1/4,1], A(z) = [x/2,z] forall z € [0, 1], A(x) = 0,: forall z € R\[0, 1],
B(z) =1 1 forall z € [0,1] andB(z) = 0, for all z € R\[0, 1]. LetC be the conjunctor
defined in Example 8.1.5.

It then holds that

D¢(A,B)(0) = sup  C(B(x), A(x))
z€To(dp)Nda

= sup [z/2,z]
z€]0,1]

[1/2,1],

which means thai € D} (A, B)o 5.

On the other hand, however, singg s = 0 also D(Ag5, Bos) = 0 and thusd ¢
D(Ao.5,Bos). As a consequenc®l(A, B)os € D(Aos,Bos). Note that the above
example holds for any semi-nor@h since for any semi-norrd it holds in the example
thatC(B(z), A(z)) = C(1,1, A(z)) = A(x) for all z €]0, 1[. (An analogous example can
be found for weak supercuts. The above results still holdHerweaka,-supercut where
as = 1. Itthen holds thab € D/ (A, B)! andD(A', B') = (.)

In general alsaD} (A, B)a, 2 D(Aa,, Ba,). To illustrate this, we can use Exam-
ple 8.1.5 again (where the strict and weaRk5-subcuts ofA and B coincide). Adapting
that example we get tha&t € D(Ag.25, Boas) and0 ¢ Dé(A, B)g.25, which leads to
DE(A, B)o.25 2 D(Ag.25, Bo.2s). (Analogously for weak supercuts.)

¢

For the semi-norn@ = C,,;,, the following partial result holds.

Proposition 8.1.13. Let A, B € F,:(R™), then it holds for respectively all; €]0,1] and
all a2 €]0, 1] that:
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8.1 Decomposition of the Interval-valued Fuzzy Dilation

(I) Démin (A7 B)Oél 2 D(Aoq ’ B()él)’
(i) Dém (A, B)*2 D D(A%2 B2),

in

Proof. Let A, B € F,:(R™), and letay, as €]0,1].
(i) Analogous to the proof of Proposition 8.1.3. Only, novadids that:

(Bz € Ty(dp) N da)(Cmin(B(z — y), A(2))1 = a1)

4

sup Comin(B(x —y), A(z))1 > aq.
z€Ty(dp)Nda

(i) Analogous.

O

To illustrate that the reverse inclusion does not hold, viertr® Example 8.1.12.

Proposition 8.1.13 remains valid in the discrete framewdvloreover, in the discrete
framework, the result also holds for arbitrary semi-normd &or C,,;, also the reverse
inclusion holds.

Proposition 8.1.14.Let A, B € F,: _(Z"), then it holds for respectively afl; €]0, 1]N I,
and all s €]0,1] N I, that:

() Démin(A7B)061 = D(Aq,, Ba,),
(i) DL (A, B)*2 = D(A%2, B*2).

min

Proof. Analogous to the proof of Proposition 8.1.13, where now andiscrete case also

(3 € Ty(dp) Nda)(Crin(B(z — y), A(x))1 = 1)

0
sup Cimin(B(z —y), A(z))1 > oq.

(L‘ETy(dB)ﬂdA o
O

Proposition 8.1.15.Let A, B € F,: _(Z"), then it holds for respectively al; €]0,1]N 1.
and all s €]0, 1] N I, that:

(I) Dé(AvB)Otl g D(AalvB()t1)’
(i) DL(A B)* C D(A*, B*).

Proof. Analogous to the proof of Proposition 8.1.14, but for antagloy semi-nornC, so
that

D¢, (A, B)(y) = a1
f
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Decomposition of Interval-valued Fuzzy Morphological Operators

D{(A, B)(y)1 > an

)

y € D{(A,B)a

1.

8.1.4 Decomposition by WeaKa;, az]-cuts

In general, there is no relation between the weak a;]-cut D/ (A, B)22 and the binary
dilation D(A32, B5?) for an arbitrary semi-norng. To illustrate this, we can use Exam-
ple 8.1.12 again, where the we@k-supercut and the wedl.5, 1]-cut of A and B coincide
and the results remain valid when using the wigak, 1]-cut.

For the semi-norn@ = C,,;,, the following partial result holds.

Proposition 8.1.16.Let A, B € F,:(R"), then it holds for allay, az] € LI\{0,:} that:

D¢, (A, B)at 2 D(Ag:, Bg:)-

min

Proof. Analogous to the proof of Proposition 8.1.7. O

The reverse inclusio/ (A, B)2> C D(A22,B32) does not hold in general. To
illustrate this, we again refer to Example 8.1.12, wheragishe weak0.5, 1]-cut instead
of the weal).5-subcut doesn't affect the results.

Remark that the decomposition properties for wéak as]-cuts given above remain
valid in the discrete framework. Moreover, the wdak, as]-cut of the discrete interval-
valued fuzzy dilation based on the conjunafgr;,, (respectively semi-norré) can always

be constructed from (respectively approximated by) binklgtions as follows.

Proposition 8.1.17. Let A, B € F,: _(Z"), then it holds for alllay, ] € L]\ {021}
and every semi-nor that: ’

() DL (A,B)22 = D(Aq,, Ba,) N D(A%2, B2),
(i) DZ{A, B)22 C D(Aq,, Ba,) N D(A%2, B2).

Proof. Follows from the fact thaD} (A, B)22 = D(}(A, B)a, N DE(A, B)*2 for every
semi-normC and from Proposition 8.1.14 and 8.1.15. O

8.1.5 Decomposition by Strict-Weak and Weak-Stricfa; , a2]-cuts

For an arbitrary semi-norid}, there is no general relation between the strict-weak arakwe
strict oy, avp]-cuts D¢ (A, B)a2 andD/ (A, B)52 and the binary dilation®(A22, BS2) and
D(AZ2, B?).

To illustrate this, an analogous example as in Example 8.dah be found.
For the semi-nornd@ = C,in, the following partial result holds.
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8.2 Decomposition of the Interval-valued Fuzzy Erosion

Proposition 8.1.18. Let A, B € F,:/(R"). For all [ay,as] € LI\{l,:} and for all
[a1, an] € LI\Uy: it respectively holds that:

() D¢, (A B)sz 2 D(Ag2, B22),
(i) D¢ (A, B)3? 2 D(A32, BS2).

ayp?

min

min

Proof. Analogous to the proof of Proposition 8.1.7. O

As can be illustrated analogously as in Example 8.1.12,elierse inclusion does not
hold.

Remark that the decomposition properties for strict-weaakweak-stricfo;, as]-cuts
given above remain valid in the discrete framework. Moreotle weak-strict and strict-
weak]a, as]-cut of the discrete interval-valued fuzzy dilation basadite conjuncto€,,,
(respectively semi-norrél) can always be constructed from (respectively approxichbyg
binary dilations as follows.

Proposition 8.1.19.Let A, B € Fr1 S(Z") and letC be a semi-norm. For alloy, as] €
L} .\ Uy it holds that:

() DL, (A B)E = D(Aq,, Ba,) N D(A™, B),
(i) Dé(A7 B)g C D(Aa,, Ba,) N D(A%2, B%2),

Forall [y, as] € L, \ {1.:} it holds that:

(I) Démin (A7 B)% = D(Aﬁv Bﬁ) m D(AOCQ ? BOQ)’
(”) Dé(A7 B)g% C D(Amv Bﬁ) N D(AOQzBOQ)'

Proof. Follows from the fact thaD/ (A, B)2? = D}(A, B),, N D}(A, B)** and analo-
gouslyD{ (A, B)22 = D{(A, B)ar N DE(A, B)*2 for every semi-norng and from Propo-
sition 8.1.3, 8.1.4, 8.1.14 and 8.1.15. U

8.2 Decomposition of the Interval-valued Fuzzy Erosion

Remember that every implicat@rinduces a negato¥z defined byNz(z) = Z(z,0.1),
vz € L!. Based on this induced negator, the class of border implisatan be split into
two subclasses.

Definition 8.1. [95] Let Z be a border implicator onZ!. 7 is called an upper border
implicator if Nz > N; Z is called a lower border implicator iNz < V.

Lemma 8.2.1. (95 If Z is an upper border implicator o!, then it holds thaf > Zxxp,
i.e.:

(V($7 y) € (LI)2)(I(1‘7 y) ELI IEKD($7 y) = [ma‘X(l — T2, yl)? ma‘X(l — L1, yQ))}
Proof. Let Z be an upper border implicator a@¥. For all (x,y) € (L!)? it holds that:
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Decomposition of Interval-valued Fuzzy Morphological Operators

o I(xvy) ZLI I(]-Elay) =Y,
o T(x,y) >p1 T(x,0p1) 211 Ny(x),
from which it follows thatZ(x, y) > Zepxp(z,y). O

The previous lemma does not necessarily hold i§ not an upper border implicator.
Also, a lower border implicatdf doesn’t necessarily satis®y/ < Zpx p.

Example 8.2.2. Let Z be the implicator defined as:

1o if inf(a,y) =
T ={ ¥ GV =T ) € @

It is easily verified thaf is a border implicator or’, with induced negatal/z given by:

1 ifx=0
NI(J?) :Z(x,OU) = { 05 eI:e £ y YV € [0, 1]

From

NI(z) = OLI andOLI SLI NS(I) xT 7é Oﬂl,

NI(QE):].EI ZJ\/S(:C) IE:OEI,
it follows that Nz < N and thusT is a lower border implicator. Further, since on the one
hand e.g.1.: = Z([0.2,0.3],[0.4,0.5]) >rr Zexp([0.2,0.3],[0.4,0.5]) = [0.7,0.8], and
on the other han¢D.2,0.3] = Z(]0.4,0.5],[0.2,0.3]) <rr Zrxp([0.4,0.5],]0.2,0.3)) =
[0.5,0.6], it holds that neithe? < Zpxp, NOrZ > Zrkp.

%

8.2.1 Decomposition by Weak Sub- and Supercuts

Proposition 8.2.3. Let A, B € F,:(R™), then it holds for respectively all; €]0, 1] and
all a2 €]0, 1] that:

() EL (A B, E(Aal ,B1-on),
(i) Ef,, (A B)=E(A, Br—).

IEKkD
Proof. Let A, B € F,:(R™), and letay, as €]0,1].
(i) It holds that:

y€ B(A,,,B) & T,(B")C A,
& (Vo eTy(dr))(B ( —y)>1—ag = Ai(x) > )
& (VzeTy(dp))(Ba(x —y) <1—oaq0rAdi(z) > ai)
& (Ve eTy(dp))(l — Ba(z —y) > oy or Ay (z) > aq)
& (Vo e Ty(dp))(max(l — Ba(xz —y), A1(2)) > 1)
& we%il(de)max(l — Ba(x —y), A1(x)) > g
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8.2 Decomposition of the Interval-valued Fuzzy Erosion

& inf Zprxp(B(x—vy),Ax))1 > o
z€Ty(dp)

<:> E%EKD(A?B)l(y) Zal
& yeE] (A B)a,

ThusE~L

Ik D

(i) Analogous.

(A,B)o, = E(A,,, B1™).

O

Proposition 8.2.4. Let A, B € F,:(R") and letZ be an upper border implicator of’,
then it holds for respectively al; €]0,1] and all ay €]0, 1] that:

()  EL(A,B)a, 2 E(A,,, Bm™),

Proof.

(i) The proof is completely analogous to the one from Prajmsi8.2.3 (i). We only
have that due to lemma 8.2.1

inf T By(xz —vy), A >
xe%?(ds) exp(B2(z —y),A1(z))1 >
U

inf Z(B — A >
L (Ba(z —y), A1(x))1 > o

only holds in one direction for an arbitrary upper border licator Z on £/ .
(i) Analogous.

The reverse inclusion does not hold in general.

Example 8.2.5.Let A(z) = [0.3,0.5] for all x € [0,1], B(x) = [0.5,0.7] for all z € [0, 1]
andA(z) = B(z) = 0,: forall z € R\ [0, 1]. LetZ be the following generalisation of the
tukasiewicz implicatorZy, (z,y) = [min(1,1 —z2 +y1), min(1,1 — 21 + y2)], ¥(z,y) €
(L1)2. It can be verified that this implicator is an upper borderliogtor.

It then holds that

BL(AB)0) = il T(Be).Aw)
= inf 7,((0.5,0.7],[0.3,0.5))
z€[0,1]
= [min(1,1—0.7+0.3),min(1,1 — 0.5 + 0.5)]
= [0.6,1],

197



Decomposition of Interval-valued Fuzzy Morphological Operators

and thug) € EZ (A, B)o.4 and0 € E7 (A, B)*S.
On the other handFE(A4g.4, B%) = E(A%S B;;) = E(0,0,1]) = 0 and thus
0 ¢ E(Ags, BOS) and0 ¢ E(A%S, B57), from which it follows thatEL(A, B)o4 €
E(Ag4, B%S) andEL(A, B)*S ¢ E(A%S, By).
¢

Further, Proposition 8.2.4 is also restricted to upper doitiplicators as the following
example shows.

Example 8.2.6. Let [a1, as] = [0.3,0.4], A(z) = [0.4,0.5] for all x € [0,0.5], A(x) =
[0.2,0.3] for all z €]0.5,1], B(z) = [0.7,0.8] for all z € [0,0.5], B(x) = [0.4,0.5] for
all x €]0.5,1] and A(x) = B(xz) = 0,r for all z € R\[0,1]. LetZ be the lower border
implicator from Example 8.2.2 (which is no upper border iioator).

It then holds that

EHAB)0) = _inf T(B(x).A@)
= inf(_inf T(B(x). A(@). inf = I(B(z).Alx))

= inf(Z(]0.7,0.8],[0.4,0.5]), Z([0.4,0.5], [0.2,0.3]))
= inf([0.4,0.5],[0.2,0.3])
= [0.2,0.3]

F.0 [0.3,0.4],

which means that ¢ FL(A, B)o.3 and0 ¢ EL(A, B)%4
On the other hand® (A 3, B%7) = E(A%*, Bys) = E(]0,0.5], [0 0.5]) = {0}. Con-
sequentlyEL(A, B)o.s 2 E(Ags, B%7) andEL(A, B)°* 2 E(A%*, Byg).
¢

Remark that the decomposition properties for weak sub- apersuts given above
remain valid in the discrete framework.

8.2.2 Decomposition by WeaKa;, az]-cuts

In general, for an arbitrary upper border implicaigtthere is no relation between the weak
[a1, az]-cut EZ(A, B)%2 and the binary erosioE(Agf,B1 ‘”) This is illustrated in the
following example.

Example 8.2.7. To illustrate that the inclusioi (A, B)22 C E(Agf,B1 O‘1) does not
always hold, we can use Example 8.2.5 again.[&ras] = [0.4, 0.6], the weak{o 4,0.6]-
cut and the weak.4-subcut and).6-supercut coincide and the results remain valid for the

weak][0.4, 0.6]-cut.

198



8.2 Decomposition of the Interval-valued Fuzzy Erosion

In general alstf(4, B)32 2 E(AS2, BI=22). LetT beTpxp, [a1, as] = [0.3,0.4],
A(z) = [0.4,0.5] for all z € [0,0.5] and A(z) = [0.2,0.3] for all x €]0.5,1], B(z) =
[0.7,0.8] for all z € [0,0.5] and B(z) = [0.4,0.8] for all z €]0.5, 1].

For the binary erosion we find that(A%2, B2=1) = E([0,0.5],[0,0.5]) = {0}. Fur-

a1 T o
ther, it also holds that ’

EL __(A,B)(0) = me%?(f’dB)IEKD(B(x),A(x))

= inf(xei[gf)ﬁ] TIekp(B(x), A(x)),
ot Zpkp(B(z), A(z)))

= inf(Zgkp([0.7,0.8],[0.4,0.5]),
Trwp([0.4,0.8],[0.2,0.3]))

= inf([0.4,0.5],[0.2,0.6])

—  [0.2,0.5]

le [051, Ozg].

As a consequencér, (A, B)3: 2 E(A%:, BI=21).

ayp?

For the upper border implicat@r = Zg k p, the following partial result holds.

Proposition 8.2.8. Let A, B € F,:(R"), then it holds for alla, as] € LI\{0,:} that:

EI

IekD

aq?

(A, B)32 C E(A32, B=22).

Proof. Let A, B € F,r(R™) and[ay, ] € LI\{0,:}. It holds that:

y€ B(A3?, BI=2) & T,(BI=2h) C A%
& (Vo eTy(dn))
((Bi(x —y) >1—azandBy(z —y) > 1 —ay)
= (A1(x) > ag andAz(x) > as))
& (Vo eTy(dn))
(Bi(z —y) <1l—aagorBa(x—y)<1—ay)or
Ai(x) > ap andAy(z) > as))

(
(
& (VzeTy(dg))
(1 =Bi(x—y)>azorl — By(z —y) > aq)or
(A1(z) > ag andAy(z) > as))
<= (VzeTy(dg))
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Decomposition of Interval-valued Fuzzy Morphological Operators

(max(1 — Ba(e — y), A1(2)  a
max(1l — By(z —y), As(x)) > o
(Vz € Ty(dB))(IEKD( (

Y),
A, T (B ). A)

E%EKD (A7 B)(y) >t [Oq, @2]
ye E%EKD (4, B)g?

o1 and

)
A(x)) >p1 a1, az))
>p1 o, o)

t e 02

This proves thafl (A, B)32 C E(AS2 B1 —o). O

a1’

The reverse inclusion does not hold as illustrated in Exar8®.7.
The weak|a, as]-cut of the interval-valued fuzzy erosion based on the iogibr
Tk p can however always be constructed by binary erosions assll

Proposition 8.2.9. Let A, B € F,:(R™), then it holds for alla, as] € LI\{0,:} that:

E}, ., (A B)a? = E(Aa,, BT N E(A°, Br—).
Proof. Follows fromEL (A, B)%2 = EL (A, B)a, N EL__ (A, B)*: and from
Proposition 8.2.3. L

Analogously, an interval-valued fuzzy erosion based on @reu border implicato
can be approximated by binary erosions.

Proposition 8.2.10.Let A, B € F,:(R"), then it holds for allay, az] € LI\ {0,:} that:

E7(A, B)3: 2 E(Aa,, B1™*) N E(A%, Br—).

Proof. Follows from the fact thato;(A, B)22 = EL(A, B)s, N E4(A, B)*> and from
Proposition 8.2.4. O

Remark that the decomposition properties for wéak a]-cuts given above remain
valid in the discrete framework.

8.2.3 Decomposition by Strict Sub- and Supercuts

In general, there is no relation between the strict sub- ambrsutsEL(A, B)s; and
EL(A, B)® and the binary erosion8(Aa;, B1~1) and E(A®2, By _,,) for an arbitrary
upper border implicataf. This is illustrated in the following example.

Example 8.2.11.To show that it does not always hold tha (A, B)sr C E(Asr, B171)
andEL(A, B)* C E(A°2, By_,,) for an arbitrary upper border implicat@; we can use
Example 8.2.5 again, where working with strict sub- and stuygs instead of weak sub- and
supercuts does not affect the results.
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8.2 Decomposition of the Interval-valued Fuzzy Erosion

In general alsadbL (A, B)ar 2 FE(Aar, B1™1) and EL(A, B)™ 2 E(A%2, Bi_,,).
LetZ beZpxp, on = 0.5, A(z) = [245%,1] for all z €]0,1], B(z) = [0.7,0.8] for all
x €]0,1] andA(z) = B(z) = 0. for all z € R\]0, 1]. For the binary erosion we then find
that E(Asy, B'=1) = E(]0,1],]0, 1]) = {0}. Further, it also holds that

Efpp(AB)O) = inf Texp(B(@), A(x))

2—x

= infl IEKD([O’?,OS],[ ,1])

z€]0,1]

2 _
= inf [max(1-03, Tx),max(l —0.7,1)]

2—x
acelﬂ),l][ 2

= [0.5,1],

1]

which means thad ¢ E] (A, B)gsandEf (A, B)ar 2 E(Aar, B' ™).
An analogous example can be found for strgtsupercuts.

For the upper border implicat@r = Zg k p, the following partial result holds.

Proposition 8.2.12. For A, B € F,:(R") it holds for respectively alty; € [0, 1] and all
ay € [0, 1] that:

(@) E%EKD (4, B)E - E(A@,Blfal),
(i) Ef (A, B)™ C E(A™ Bi_g,).
Proof. Let A, B € F,:(R™), and letay, as € [0, 1].
(i) Analogous to the proof of Proposition 8.2.3. Howevemnae only have that for all
y € R™

xé'}“il(f.dg) max(l — Ba(z —y), A1(z)) > oy
I

(Vo € Ty(dp))(max(1l — Ba(z — y), A1(x)) > 1)

(i) Analogous.
O
The reverse inclusion does not hold as illustrated in Exar8®.11.
Proposition 8.2.12 remains valid in the discrete framewdvloreover, in the discrete

framework, the result also holds for arbitrary lower borafeplicators and fofZg xp also
the reverse inclusion holds.
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Proposition 8.2.13.For A, B € F,: (Z") it holds for respectively alk, €]0,1] N I, and
all ay €]0,1] N I, that:

(|) E%EKD (A7B)E - E(AE7B1_Q1),
(i) E%EKD(A, B)*2 = F(A*?  By_,,).
Proof. Analogous to the proof of Proposition 8.2.12, where now andiscrete case also

(Vo € Ty(dp))(max(1 — Ba(z —y), A1(x)) > 1)
0

inf 1-B — A .
xe%zl(dB)maX( 2(r —y), A1(x)) > ax

O

Proposition 8.2.14.For A, B € F,: _(Z") it holds for respectively alt; €]0,1] N 7, and
all ay €]0,1] N I, that:

()  E7(A B)
(i) E7(A,B)

a7 2 B(Aay, B'™),
T; (AE)Blfag)'
Proof. Analogous to the proof of Proposition 8.2.13, but for antaaloy upper border im-
plicatorZ, so that
Efpren (4,

IEKD

Bi(y) >
I
EL(A,B)i(y) >
0

y € EL(A, B)ar

8.2.4 Decomposition by Stricfa, az]-cuts

In general, for an arbitrary upper border implicaigtthere is no relation between the strict
[, az]-cut E%(A,B)g and the binary erosiOIE(Agf,Bl ar). To illustrate this, we
can use Example 8.2.5 and 8.2.7 again, where working wiitt $try , co]-cuts instead of
respectively weak sub- and supercuts and weakas|-cuts does not effect the results.

For the upper border implicat@r = Zg k p, the following partial result holds.
Proposition 8.2.15.Let A, B € F:(R"), then it holds for allay, as] € LI\U;: that:

EI

IekD

(A, B)22 C E(AZZ, B{_%)).

1()/2
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8.2 Decomposition of the Interval-valued Fuzzy Erosion

Proof. Analogous to the proof of Proposition 8.2.8. Only, now itdefor ally € R™ that:

inf  Zeprxp(B(z —y), A(x)) > [ag, az))
€Ty (dp)
4

(Va € T, (dp)) e p (B(x — y), A(x)) > 11 [o1, as))
This however does not change the result. O

To illustrate that the reverse inclusion does not hold, vierr® Example 8.2.7, where
using strictjay , ax]-cuts instead of the wedk;, ao]-cuts does not affect the results.

Remark that the decomposition properties for stfict, as]-cuts given above remain
valid in the discrete framework. Moreover, the stiiief, ao]-cut of the discrete interval-
valued fuzzy erosion based on the implicafgr » (respectively upper border implicatdy
can always be constructed from (respectively approximiaggdbinary erosion as follows.

Proposition 8.2.16.For A, B € F: (Z")itholds for all [a, o] € L, \ Upr and every
upper border implicatofZ that:

() Ep

ZekD

(i) E}EKD(A, B)
Proof. Follows from Proposition 8.2.13 and 8.2.14. O

(Av B)E = E(Aﬂ’ Blial) N E(AE, Blfoéz)!
D E(As, BI7) N E(A%2 By_,,).

|8F)

8.2.5 Decomposition by Weak-Strict and Strict-Weala; , a2]-cuts

In general, for an arbitrary upper border implicafothere is no relation between the weak-
strict and the strict-weaky, , ao]-cuts Ef (4, B)3? and Ef(A, B)22 and the respective bi-

nary erosions?(A3?, Bi:g;) and E(Ag2, Blljé‘:;) respectively. To illustrate this, we can
use Example 8.2.5 and 8.2.7 again, where working with wé@dt-and strict-weako , as]-
cuts instead of respectively weak sub- and supercuts ankl jwgans |-cuts does not effect
the results.

For the upper border implicat@r = Zg i p, the following partial result holds.

Proposition 8.2.17. Let A, B € F,:(R™), then it holds for respectively alky, as] €
LI\U;: and all[ay, ap] € LI\{1,:} that:

() FEL . (A B3 CE(AS, B_S)),

o1 1—as
(i) Bl (A B)%C B(A%, BI=o),

Proof.
(i) Analogous to the proof of Proposition 8.2.8. Only, novadids for ally € R™ that:

inf IEKD(B(’I — y),A(x))l > oy and
wETy(dB)
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inf Zprxp(B(zx—y),A(z))2 > o
z€Ty(dB)
U

(Vl‘ S Ty(dB))(IEKD(B(w — y),A(.’L‘))l > o and
Tekp(B(z —y), A())2 > a2)

This however does not change the result.
(i) Analogous.
O

To illustrate that the reverse inclusion does not hold, Werre Example 8.2.7 again,
where working with weak-strict or strict-wedk , as]-cuts instead of weaky; , a]-cuts
does not affect the results.

Remark that the decomposition properties for weak-stndt strict-weakK o, as]-cuts
given above remain valid in the discrete framework. Moreothe weak-strict and strict-
weak [a1, as]-cut of the discrete interval-valued fuzzy erosion basedhsnimplicator
Irxp (respectively upper border implicatd) can always be constructed from (respec-
tively approximated by) binary erosion as follows.

Proposition 8.2.18.Let A, B € F.; (Z") and letZ be an upper border implicator. For
all [, 0] € LY, \ Uy it holds that:

() EL (A B) =E(A,,, B=) N E(A™, By _,,),

(i) EL(A,B)¥ D E(Aa,, B%) N E(A™, B _,,).

For all [oy, 0] € LL ,\ {1} it holds that:
()  Ez,,,(AB)32=E(Ag,B'~*) N E(A", B—;),

1—@2
(i) EL(A,B)22 D E(Agr, B=®) N E(A2, Br—).

? 1—ao

Proof. Follows from Proposition 8.2.3, 8.2.4, 8.2.13 and 8.2.14. O

8.3 Decomposition of the Interval-valued Fuzzy Closing
and Opening

We first prove the following lemma:

Lemma 8.3.1. Let A € F,/(R") and letjay, az] € L!, then it holds that:
(i) as €]0,0.5] = A% D A% D A,
iy a;€[05,1] = Ag CATToTC Ao,
(i) a2 €0,05] = A" DA _,,,
(iv) a1 €)05,1] = A, C AT,
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8.3 Decomposition of the Interval-valued Fuzzy Closing and Opening

Proof.
(i) az €]0,0.5)
.’L'EA@ ~ A1($)>1—042
= Ag(x) > A1(2) > 1—ag > ay (e, € A™?)
= Ay(z) > ag (i.e.x € A™?)
(i) a1 €[0.5,1]
€ Asr & Ai(x) >
= Ay(z) > Ai(x) > a1 >1—ay (ie,ze A7)
= AQ(SE) >1— o (lel‘ S Alial)
(i) ag €[0,0.5]

€A _o, & Allx)>1-—ay
= Ay(z) > Ai(z) > 1—ag > ay (i.e.,r € A®?)

(iv) a; €]0.5,1]

r€Ay & Aillr)>o

= Ay(z) > Ai(x) > a1 >1—ay i€,z e A7)

8.3.1 Decomposition by Weak Sub- and Supercuts

Proposition 8.3.2. LetZ be an upper border implicator of’ and letA, B € F,:(R"),
then it holds for alle; €]0, 1] that:

(l) Cémin,I(A> B)Oél
(i) Of,,, z(A B)a,

and for allaz €]0, 1] that:

(i) CL (A B)* 2 E(D(A%, B*),~Bi—s
(V) OL (A B)* 2 D(E(A°, Bi—),—
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Proof. As an example we provg). LetZ be an upper border implicator &, let A, B €
Frr(R™) and letay, ay €]0,1]. From respectively Proposition 8.2.3, Proposition 8.1.13
and because the binary erosion is increasing in its firstmaeg, we have that:

Cémh,,I(/L B)Oq

Eé(Démm(Aa B)7 _B)oq
E(D} (A B)q,,—B'"™™)
E(D(Aocl 9 Ba1)7 *Blial).

U v

(i), (#i7) and(iv) follow analogously from Proposition 8.1.13, Propositia2.8, and
because the binary dilation and the binary erosion areasang in their first argument. ™

The previous result allows us to derive, under the resbrictf o €]0,0.5], a lower
bound for the weakv,-supercut of the interval-valued fuzzy closing and operiimgerms
of the binary closing and opening.

Proposition 8.3.3. LetZ be an upper border implicator o8’ and letA, B € F,:(R"),
then it holds for alls €]0, 0.5] that:

(i) CL (A B)* D C(A%, B*2),

Cmitn
(i) CL,, (A, B)* 2 C(A*, Bi—r),
and:
(i) OL = 7(A,B)*> 2 O(A*, B*),
(V) Of,. 7(A B)™ 2 0(A%, B—).

Proof. As an example, we prov@). LetZ be an upper border implicator aif, let A, B €
Frr(R™) and letay €]0,0.5]. From Proposition 8.3.2, lemma 8.3.1 and the fact that the
binary erosion is decreasing in its second argument, ividlthat:

C¢, (A, B)™ E(D(A",B*?), —B1—;)
E(D(AQQ7BQ2)7 _Bag)

C(A%2, Bo2).

min;

U 1y

(i), (ii4) and(iv) follow in an analogous way from Proposition 8.3.2, lemmaBahd
the fact that the binary dilation is increasing in both itglanents and the binary erosion is
increasing in its first argument and decreasing in its seeogament. O

The above results for weak sub- and supercuts remain vattieidiscrete framework.
Since we had found a new relationship for the decompositiowdmak sub- and supercuts
of the interval-valued fuzzy dilation in the discrete framoek compared to the continuous
framework, also a new relationship can be found for the Vfalevalued fuzzy closing and
opening.

Proposition 8.3.4. LetC be a semi-norm o/, andZ an upper border implicator o] ,
and letA, B € ]-"L{“S(Z"), then it holds for ally €]0, 1] N I, that:
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(i) CL.. 1pwxn(ABlay, = E(D(As,,Ba,),—B'™),
(i) Cémin,I(A7B)(x1 D> E(D(A4,,Ba,), 7B1*al),
iy  Cl;,. (A B, C E(D(Aa,,Ba,),~B""),
(iv) Of . 1,.p(ABlay = D(E(Aa,, B'™*),—By,,),
(v) 0L 7(A,B)ay, 2 D(E(Aa,,B™%),~B,,),
(vi) Ot 1p0p(AB)ay S D(E(Aa,, B'™°%),~B,,),
and for allaz €]0,1] N I, that
() b zon(AB)® = B(D(A% B%) —Br—),
() CL,rAB)™ 2 E(D(A,B),~Brg),
(i) Clr,(AB)™ C B(D(A™ B™),~Bi—),
V) OC,,, zpicp (A B)** = D(E(A°, By—), = B*),
(v) OI,U,H,I(A»B)O‘Z D D(E(A*2, Bi—;),—B™),
V) Obz,,(AB)™ C D(E(A™ Br=),~B).

Proof. Follows in an analogous way as in the proof of Proposition28fBom Proposi-
tion 8.1.14, Proposition 8.1.15, Proposition 8.2.3, Psitan 8.2.4 and the fact that the
binary dilation is increasing in its first and second arguneed that the binary erosion is
increasing in its first argument and decreasing in its seeogadment. O

The previous result allows us to derive, under the resbrictf o; €]0.5,1] N I, an
upper bound for the weak subcut of the interval-valued fuZaging and opening in terms
of the binary closing and opening.

Proposition 8.3.5. LetC be a semi-norm o] _ and let4, B € Frr (ZM), then it holds
for all oy €]0.5,1] N I, that:

) Clzonn(ABlay & C(Aa, )
()l zinn(ABlay S C(Aa,, B,
i)  Cly,,(AB) C O(Am o)
(IV) Cé,IEKD(‘LLB)Cn g O(A(XUB o )
V)  Oh L (AB)ay C O(Aa,,Ba,),
W) O .. . (AB) C O(A,B—),
wi)  Olz, . (AB)a C O(Aa, Ba,),
(viii) Oé,IEKD(A,B)O,1 C O(A,,,Bt7),

Proof. Follows in an analogous way as in the proof of Proposition3fBom Proposi-
tion 8.3.4 and lemma 8.3.1 and the fact that the binary ditai$ increasing in its first and
second argument and that the binary erosion is increasiitg finst argument and decreas-
ing in its second argument. O

The result also allows us to derive, under the restrictionf]0, 0.5] N I, a lower
bound for the weak supercut of the interval-valued fuzziclg and opening in terms of
the binary closing and opening.
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Decomposition of Interval-valued Fuzzy Morphological Operators

Proposition 8.3.6. Let Z be an upper border implicator oﬁﬁyS and A, B € ]—'[;T{_S(Z”),
then it holds for allos, €]0,0.5] N I, that: '

) Gl zonn(A B 2 C(A™ B,
(") Cémin,IEKD (A7 B)az 2 C(Aaz ’ Bl—a2 )’
(i) Ch  L(A,B)*> 2 C(A%, B%),
(iv) Cl 2(A,B)*2 D C(A%, B—r),
v)  OL ;. . (AB)* 2 O(A*, B*),
W) Ob, 2pn(AB)™ D O(A%, Br—r),
(vii) OL 1(A,B)* 2 O(A*,B*),
(viii) Of...:z(A,B)* D O(A*, Br—)

Proof. Follows in an analogous way as in the proof of Proposition38fBom Proposi-
tion 8.3.4 and lemma 8.3.1 and the fact that the binary ditai§ increasing in its first and
second argument and that the binary erosion is increasiitg finst argument and decreas-
ing in its second argument. O

8.3.2 Decomposition by WeaKa;, az]-cuts

For the conjunctot,,,;,, and the implicatoZ gk p, the weak|a;, as]-cuts of the discrete
interval-valued fuzzy closing and opening can be obtairseal @mbination of binary dila-
tions and erosions. For an arbitrary semi-natrand an arbitrary upper border implicator
7 analogous approximations exist.

Proposition 8.3.7. LetC be a semi-norm o/, andZ an upper border implicator o/,
and letA, B € F,r _(Z"), then it holds for alla;, o] € L} \{0zr} that:

(I) Cémin,IEKD (A7 B)g? = E(D(AQUBOQ)? _Bl_al) N
E(D(Aaz , B(m)7 _Blfoq)'

(ii) CL2(AB)2 2 E(D(Aa,,Ba,),—B'"*)N
E(D(A%2, B*?), —By—5),

(iii) Cé,IEKD(AB)gf C E(D(A4,,Ba,),—B'7™1)n
E(D(A%2, B*?), —Br—),

(V) Ol 7uoxn(AB)2 = D(E(Aa,, B7%),=Ba,) N
 D(E(A**, Bi—;),—B*),

(V) Oé,,,i,,,z(A’B)gf D D(E(A.,,B'™%1),—B,,) N
_ D(E(A™, B—;), —-B®),

(vi) Oé’IEKD(A,B)gf C D(E(Aa,,B'™),—B,,)N
D( (Aaszl—aQ)v_BOQ)
Proof. Follows from Proposition 8.3.4. O
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8.3 Decomposition of the Interval-valued Fuzzy Closing and Opening

8.3.3 Decomposition by Strict Sub- and Supercuts

Proposition 8.3.8. LetC be a semi-norm o! and letA, B € F,:(R"), then it holds for
all a; € [0,1] that:

() C¢ 1,00 (A Blar
(i) Of 7, ., (A Bar

and for allaz € [0, 1] that:

- E(D(Aﬁa BTI)’ _Blial)v
C D(E(Agy, B'™*), = Bay),

=

E(D(A%,B%2), —B1_4,),

(i) Cfz,,., (A, B C = o
g D(E(Aaz, Bl—()é2)7 7Ba2)'

(iv) Oé7ZEKD (A, B)*2

Proof. Follows in an analogous way as in the proof of Proposition28fBom Proposi-

tion 8.2.12 and Proposition 8.1.4 and the fact that the lidéation is increasing in its
first and second argument and that the binary erosion isasurg in its first argument and
decreasing in its second argument. O

The previous result allows us to derive, under the restiictif oy € [0.5, 1], an upper
bound for the stricty; -subcut of the interval-valued fuzzy closing and openintgims of
the binary closing and opening.

Proposition 8.3.9. LetC be a semi-norm o’ and letA, B € F,:(R"), then it holds for
all a; € [0.5,1] that:
0 ¢ (A, B)ar

C,ZgkpD

ccC
(i)  C¢1,.p, (A Blar € C(Agy, B'™),
and:

@iy  Of 1., (A B)ar € O(Aar, Bay),
(V)  Of1,,., (A B)ar € O(Agr, B'=1).

Proof. Follows in an analogous way as in the proof of Proposition3fBom Proposi-
tion 8.3.8 and lemma 8.3.1 and the fact that the binary diteits increasing in its first and
second argument and that the binary erosion is increasiitg finst argument and decreas-
ing in its second argument. O

The above results for strict sub- and supercuts remain iralide discrete framework.
Since we had found a new relationship for the decompositiostiict sub- and supercuts
of the interval-valued fuzzy erosion in the discrete frarmgcompared to the continuous
framework, also a new relationship can be found for the valevalued fuzzy closing and
opening.

Proposition 8.3.10. Let C be a semi-norm onﬁ{.,s andZ an upper border implicator on
L] andletA, B € Fr (Z"), then it holds for allv, € [0, 1[N, that:
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Decomposition of Interval-valued Fuzzy Morphological Operators

(I) Cémm,IEKD (A7B)a = E(D<Aiv BOT)v _Blial)v
(if) Ct...7(A,B)ar 2  E(D(Aay, Bay), —B'™),
(iii) Ct2prn A Blar  C  E(D(Aar, Bar), —B'™),
(IV) Oémm,IEKD (A7B)a = D(E<Aﬂa Bl_al)v _BKL
(V) Obonz(ABlar 2 D(E(Agr, B, —Bay),
(vi) Ot 1pyn(ABlar  C  D(E(Asy, B'™*'), —Bay),
and for all s € [0, 1[N1; that:
0} Cémm IEKD (A>B)? = E(D(A?a B?)a _Blfaz)v
(i) Coin (A B)*? 2 E(D(A%,B%?), —Bi_a,),
(iii) CC Terp (A B)*?  C E(D(A%,B*?), =Bi_,,),
(iv) Ocmm Toxcn (A,B)*2 = D(E(A°2,B;_,,),—B%),
(v) e (A, B)*? D D(E(A%?, By_,), —B%),
(vi) OC Torp (A B)*?  C D(E(A%, Bi_q,), —B").

Proof. Follows in an analogous way as in the proof of Proposition28fBom Proposi-
tion 8.1.3, Proposition 8.1.4, Proposition 8.2.13, Prpws 8.2.14 and the fact that the
binary dilation is increasing in its first and second argun@etd that the binary erosion is
increasing in its first argument and decreasing in its seaogament. O

The previous result allows us to derive, under the resbrictf oy € [0.5,1[NI,, an
upper bound for the strict subcut of the interval-valuedzfuelosing and opening in terms
of the binary closing and opening.

Proposition 8.3.11. LetC be a semi-norm o, , and letA, B € F,: (Z"), then it holds
for all o € [0.5, 1[N, that:

0} Cloinzurn A B)ar  ©  C(Aar, Bay),
(i) Cl..zwen(ABlar S C(Aar, Bl “),
(iii) Cétprn(ABlar S C(Aar, Bay),
(iv) CétprnABlar S C(Aar, Bl o),
V) O Tuwn (A B)ar  © O(Aar, Bay),
Vi) O Tuen(ABlar  © O(Aar, Bl “),
(vii) Oé Trxo (A,B)ar C O(Aay, Bay),
(viii) OC Trxb (A,B)ar C O(Ags, BI™),

Proof. Follows in an analogous way as in the proof of Proposition38fBom Proposi-
tion 8.3.10 and lemma 8.3.1 and the fact that the binaryidilas increasing in its first and
second argument and that the binary erosion is increasiitg finst argument and decreas-
ing in its second argument. O

The result also allows us to derive, under the restrictioh gfas < 0.5, a lower bound
for the strict supercut of the interval-valued fuzzy clasénd opening in terms of the binary
closing and opening.
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8.3 Decomposition of the Interval-valued Fuzzy Closing and Opening

Proposition 8.3.12.Let A, B € F,: (Z") and letZ be an upper border implicator on

L', then it holds for alkx, € [0,0.5[N/; that:
(I) Cémm,IEKD (A’ B)? 2 C(Af’ B@)’
(") C(I:'miu,IEKD (A’ B)aj = C(AO‘:, Bl;OQ )’
(i) CCImm,I(Av B)*2 O (C(A*2, B*),
)  CLUUABT o C(AT. B,
(V.) O(IfmimIEKD (4, B)a: 2 O(Aa:’ B%),
V) O 2own (A B 2 O(A™, Bi_y,),
(V") Oémin,I(A7 B)a2 :—) O(Aa27 Ba2)’
(viii) Oén)itnz(A7 B D O(A°2,By_,,)

Proof. Follows in an analogous way as in the proof of Proposition3fBom Proposi-
tion 8.3.10 and lemma 8.3.1 and the fact that the binaryidilas increasing in its first and
second argument and that the binary erosion is increasiitg finst argument and decreas-
ing in its second argument. O

8.3.4 Decomposition by Stricfa, az]-cuts

For the conjunctoC,,,;,, and the implicatoZ gk p, the strict[ay, as]-cuts of the discrete
interval-valued fuzzy closing and opening can be found asabination of binary dilations
and erosions. For an arbitrary semi-noérand an arbitrary upper border implicatér

analogous approximations exist.

Proposition 8.3.13. Let C be a semi-norm onﬁ,{,s andZ an upper border implicator on
Ll andletd, B e Fer (Z"), then it holds for allfa, o] € L\ Uy that:

() Cf. 1..,(AB2 = E(D(Ass, Bsr),—B*™1)n
E(D(A™,B%), =Bi_q,),

(ii) C¢..7(A B2 D E(D(Asy, Bar),—B'™™1) N
E(D(A%2,B%2), By _,,),

(iii) Cl1,., (A B2 C E(D(Asr,Bar),—B'™*)n
7 E(D(A™, B¥), —By_.,),

(IV) O({’mm,IEKD (A’ B)Z::? = D(E(Aﬁv Bl_al)? _871) n
D(E(A™ By_,,), —B®),

(v) Ot 7(AB)22 2O D(E(Ag, B'™*),—Bgy) N
D(E(A™ By_,,), —B®),

(vi) Ot zprn(A B2 C  D(E(Agr, B'™*1), —Bg;) N
D(E(A%2,By_,,), —B%?)

Proof. Follows from Proposition 8.3.10. O
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Decomposition of Interval-valued Fuzzy Morphological Operators

8.3.5 Decomposition by Weak-Strict and Strict-Weala; , a]-cuts

For the conjunctoC,,;, and the implicatoZ gk p, the strict[ay, as]-cuts of the discrete
interval-valued fuzzy closing and opening can be obtairgeal @mbination of binary dila-
tions and erosions. For an arbitrary semi-nafrand an arbitrary upper border implicator
7 analogous approximations exist.

Proposition 8.3.14. Let C be a semi-norm onﬁq{?s andZ an upper border implicator on
Ll andletA, B € Fpr (Z"). Forall [a, as] € L]\ Upr it holds that:

) Clptonn A B2 = E(D(Aay,Bay),—B'"*)nN
E(D(Aa27BQQ) Bl ozz)
(i) Oémml(A,B)% D E(D(A4,,Ba,),—B'7@1)n
E(D(A*2, B*2), —B1_,,),
(iii) CélEKD(A,B)g? C E(D(A4,,Ba,),—B'~)n
E(D(A®2, B°2), —By_,,),
vy OL 1  (AB)2 = D(BE(Aa,B"1),—Ba,)N
D( (A@731*a2)7_3@)1
(v) OémimI(A,B)g? D D(E(A.,,B'™%1),—B,,) N
_D( (A%2,By_,,),—B%?),
(vi) OAIEKD(A,B)Z? C D(E(A.,,B'71),—B,,) N
D(E(A°%2,By_,,),—B%).
Forall a1, as] € L, \ {11} it holds that:
() ClpzonnAB)ar = E(D(Aar, Bay), —B'~*) N
E(D(A%?, B*?), = Br=5;),
(i) CémimI(A,B)j% D E(D(Aa;,Bsy),—B'™*1)n
E(D(A*, B*), —=Bi=5;),
(iii) CéIEKD(A,B);Lj C E(D(As:, Bsy),—B'7@1)n

E(D(Aa27Ba2)7 *B@),

(|V) OémimIEKD (A, B)g—? - D(E(Aa, Bl_al), _BT) n
D(E(A*?, Bi—;), —B*),
(V) Oémimz(A, B)gz 2 D(E(Asr, Bl=1) —Bz-) N
D(E(A%%, Br—;), —B*?),
i)  Obz, ,(AB)22 C D(E(Ag,B'"),~Ba)n
D(E(A%2, Bi—;), —B*?).
Proof. Follows from Proposition 8.3.4 and 8.3.10. O

8.4 Discussion

The conversion of théy, a]-cut of an interval-valued fuzzy morphological operatdpin
binary operations on thlev;, a2]-cuts of the image and structuring element may result in a
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reduction of the time needed to compute s{ieh a»]-cut. For example, in the calculation
of the binary dilation of a binary imagé by a binary structuring elemeft, an elemeny €

R™ can be considered to belong to this dilation as soon as onmeealénT), (B) also belongs

to A. The other elements iy, (B) don’'t need to be checked anymore. For the calculation
of the interval-valued fuzzy dilation, all elementsZij)(B) need to be considered to find the
supremum over those elements. Additionally, the binargtidih (respectively erosion) of
an image can be further sped up by a decomposition of thetsting element [109, 145],
which is especially useful for image processing systemsaraiogous reasoning holds for
the erosion.

As was shown in the previous sections, we only had equafitiethe conjunctoC,yiy,
and the implicatoZg i p. For arbitrary semi-norms and upper border implicatorsy onl
approximations that are not necessarily equalities coeltbbnd. As an example, we will
illustrate the approximation in Proposition 8.1.17 on thenera image in Fig. 7.10 and the
interval-valued structuring element

(0.6,0.8] [0.7,0.9] [0.6,0.8]
B= 07,09 [1,1] [0.7,09]|, (8.1)
0.6,0.8] [0.7,0.9] [0.6,0.8]

where the underlined element corresponds to the origin.Ider bound image, the upper
bound image and the difference image of the interval-vafuedy dilation (based on the
conjunctorC(x, y) = [max(0, z1+y; —1), max(0, z2+y2 —1)], Vo, y € Z™) of the camera
image by the above structuring element are then given ir8-g.The weak0.4, 0.6]-cut of
this dilation and the binary approximation determined ing@sition 8.1.17 (ii) are finally
given in Fig.8.2. We see that we get a rather rough approiomat

8.5 Conclusion

In this chapter we have revealed the relationships betweerdifferent[a;, «s]-cuts of

the interval-valued fuzzy morphological operators anddtesponding binary operators
both in the general continuous case and the discrete catiee practical discrete case, the
[, ag]-cuts of the interval-valued fuzzy dilation based on theg@octorC,,,;,, the erosion
based on the implicatéfz x p, and the opening and closing based on those two can always
be written in terms of binary operators. For other semi-reoamd upper border implicators,
we found an approximation in terms of binary operators. Téeodhposition properties
not only provide us an interesting theoretical link betwegarval-valued fuzzy and binary
morphology; they may also be useful to reduce the time neéatetie calculation of the

[, an]-cuts of the interval-valued fuzzy morphological operator
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Figure 8.1: Lower bound image (upper), upper bound image (middle) and difterémage (lower)
of the dilated interval-valued camera image.
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l“‘
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Figure 8.2: Weak[0.4, 0.6]-cut of the dilated interval-valued camera image (upper) and binary ap-
proximation (lower).
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Construction of
Interval-valued Fuzzy
Morphological Operators

In the previous chapter, the interval-valued fuzzy morpbual operators were decom-
posed into theirfa;, as]-cuts and the relationship to the original binary morphalab
operators was investigated. In this chapter, we tackle ¢herse problem [81, 82]: we
study the construction of an interval-valued fuzzy set fitsfv, , ao]-cuts or more general
from an arbitrary family of nested crisp sets. We searchHerdonditions under which the
[, ag]-cuts coincide with the given crisp sets and illustrate ¢hogh examples and coun-
terexamples. The obtained results are then used to exterehsing binary operators to
interval-valued fuzzy operators by constructing the refsam the applicaion of the binary
operator on théu;, as]-cuts of the argument. This allows us to compute the intevahled
fuzzy operators by combining the results of several binpegrators or to approximate them
by a finite number of binary operators. The constructiongipile is additionally worked
out more in detail for the increasing morphological dilatievhich will provide us a nice
theoretical link between binary and interval-valued furzgthematical morphology.

In this chapter, we restrict the universe of the intervdited fuzzy sets t®R™ (Z™ in the
discrete case), corresponding to the image domain of arvaitealued image. Properties
that do not specifically concern mathematical morphology éwever also hold for a
general universe.

The chapter is organized as follows. Section 9.1 studiesdhstruction of the interval-
valued fuzzy morphological operators based on weak, stiiedk-strict and strict-weak
[, ag]-cuts in a continuous framework while section 9.2 deals withconstruction in a
discrete framework. Section 9.3 concludes the chapter.
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Construction of Interval-valued Fuzzy Morphological Operators

9.1 Continuous Case

9.1.1 Construction Based on Weaka, az]-cuts
Introduction

Definition 9.1. The product of an interval;, ] € L and a crisp seC € P(R"), is
defined as the interval-valued fuzzy ket, a2|C' given by:

([, 2] C) () =

if
{[0‘1’0‘2] TreC ypern, (9.1)

Opr else

By means of such products, an interval-valued fuzzy4sean be reconstructed from its
weak|ag, as]-cuts.

Lemma9.1.1. Let A € F,:(R™), then it holds that

A= U lonoa)a,

[r,az]€eLI\{0, 1}
i.e., forallz € R™
Alz) = sup ([, 2] A3? ) (2)
[ar,a2]€LIN{0, 1}

= sup{[a1,a0] | [a1,a2] € LT\ {0,:} andz € A2},

Proof. For allz € R™ andA € F,:(R"), it holds that

( U a1, o] AGY) (2)
[or,02]€LIN{O 1 }
= sup{([on, 2] A22)(2) | [a1, 0] € L'\ {021 }}
= sup{[a1, a2]Ag?)(z) | [a1, as] € rng(A) \ {01 }} (rng(A) = {A(z) |z € R™})
= sup{[a1, a2]Ag?) (@) | [, aa] € Tng(A) \ {Oz: } andA(z) > 11 [ar, ao]}
= sup{[ar, o] | [a1, 2] € rng(A) \ {0z:} andA(x) 211 [ar, ao]}
Az)

O

If we now consider a famile[ahaQ])[a17a2]€L1\{0U} of crisp subsets oR™ that is
decreasing((v1, az] <pr [a3, 4] = Pla, as] 2 Plas,q,) @nd we define the interval-valued
fuzzy setR in R™ for all z € R™ as

R(I) = sup ([051, a2]P[a1,o¢2])(x) (92)
[a1,c2]€LIN{0 1 }
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9.1 Continuous Case

= sup{[aq,as] | [a1,a3] € L' \ {0zr} andz € Py, a0}

then we might wonder whether it holds thafov, as] € L7\ {021 })(R2? = Pl as))- IN
any case, the following inclusion always holds:

Proposition 9.1.2. For a decreasing famil;(P[ahM])[alm]ey\{ou} of crisp subsets of
R™ and the interval-valued fuzzy sBtdefined in (9.2), it holds that:

(V[en, 2] € LT\ {021 }) (Play a0) € RE3)-

Proof. Let 8y, 32] € L'\ {0.:} and letz € Pyg, 4,). It then holds that:

xT € P[ﬁlﬁﬂ < [61752] S {[O[l,ag] | [al,ag] S LI \ {OLI} andz € P[Oél’aﬂ}

= sup{[a1,as] | [on, az] € L'\ {0z} andx € Py, 001} =11 [B1, B2
& R(z) >p1 [Br, 2]
5
< weRS.
As a consequencés, 5, C Ry’ O

However, we do not necessarily have an equality.

Example 9.1.3.Let P, o, =] — 1+ a1, 1 — ay[ for all [ag,a0] € LY\ {0.:}. For
[B1, B2] <1 [a1, az) we havethat-14+-51 < —1+a; < 1—as < 1—pFzorthus—1+a; €
Pig, g, @andl — ap € Pig, 5,). As a consequencB(—1 + o) = sup {[B1, B2]|[B1, 2] €
L'\ {0z} and — 1+ a1 € P, g,1} = [ou, a] and analogous?(1 — ag) = [y, az],
thus—1 + oy € R3? andl — ap € R52, what means thak$? # P, o,

1

&

The reverse inclusion (and thus the equality) only holdseurértain conditions. To
formulate these conditions, we define thedetas

dp ={z |z € R"and(3[ay, as] € L'\ {02:})(2 € Pla, 00 }- (9.3)
Further, for a fixed point: € dp, we introduce the sef,, given by
Sy = {[on, o] | o1, 2] € L1\ {0zr} andz € P, a0}, (9.4)
and we denote the supremum of this sesby= [s, 1, s,.2]:
Sy = sup Sy. (9.5)

Remark thatS,, # (.
The conditions under which the equality holds, are giveméfollowing Proposition:
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Construction of Interval-valued Fuzzy Morphological Operators

Proposition 9.1.4. For a decreasing famil)(P[oq,az])[al,ag]eLI\{()£1} of crisp subsets of
R™, the interval-valued fuzzy sé& defined in (9.2) and the sefls and S, and the supre-
mums,, of the latter set, respectively defined in expressions{®.3), it holds that:

(V[al,ag] S Lt \ {0£I})(P[aha2] = Rgf) = (Vl‘ S dp)(Sg; S Sg;)

Proof.

<: Follows from the proof of Proposition 9.1.2. Singg(= sup S,) € S, it now also
holds thasup S, >rr 61, 82] = [B1, 2] € Sa.

=1 SupposeV[ai, as] € L'\ {021})(Pa, s = RS2), or equivalently,(V[ay, as] €
L'\ {021 })(x € Play 0y © Sz = R(z) 211 [, a2]). Forallz € dp, choosing
[a1,00) = 55 = [S2,1,50,2) € L'\ {0z1} impliesz € P, |, .}, and thuss, €
{[Oél,OZQ] ‘ [al,ag] S L’ \ {OLI} andz € P[ahcm]} = Sz

O

The above condition is however not efficient in practice. eled, for a given family
(P[m’az])[alm]ey\{ou} it would be needed to calculate the sgtfor all x € dp and to
check whethes, € S,. To avoid this work, a necessary condition on the $&fs ,,; can
be used.

Proposition 9.1.5. For a decreasing famil)(P[alya,z])[al,az]ey\{ou} of crisp subsets of
R™, the interval-valued fuzzy sé& defined in (9.2) and the sefls and S, and the supre-
mums, of the latter set, respectively defined in expressions{®.3)), it holds that:

(Vx 6 dP)(Sx 6 Sg;) :> (V[O[17OZQ] 6 LI \ {Ocl})(P[Oél,aQ] — m P[ﬁl,ﬂg])
[B1,B2]< 1 [, 2]

Proof. Let [y, as] € LT\ {0,:}. Forallx € N Py, p,) it holds that:
[B1,B2]< 1 [ovn 2]

e N P, g < (V[B1,B2] € L'\ {0z:})
[51,,52]<<L1[O¢1,a2]

([B1, Be] <pr1 o, 2] = x € P, p,))
& (V[B1, Ba] € L'\ {01 })([B1, B2) <pr [, 0] =
[ﬂlaﬁQ] € {[71372] € LI \ {OLI} | US P[ﬁlﬁﬂ})

(V[B1, Bo] € L'\ {021 })([B1, Ba] <1 [c1, 0] =
(x € dp and|By, 2] € Sy)).

=

Since it is given that, € S,, it follows from [y, as] <1 s, that[a;, as] € S,, or thus
r € P, a,)- As a consequence N Pig, 8] € Play,as]-
[B1,B82]< 1 [, 2]
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9.1 Continuous Case

On the other hand, since the famﬂﬁmm])[ahaz]eu\{ou} is a decreasing family,

we have thatV[3;, 82] € LY\ {02:})([B1, B2) <rr [0, 2] = Pig, g 2 Play as)) @nd
thus N Pig, o) 2 Plar,as)- O
[B1,B2]< 1 [a1,az2]

Example 9.1.6.The results in Example 9.1.3 could also have been obtairind thee above
proposition. Lefay, as] € LT\ {01}, then it holds that:

(V[B1, Ba] € L'\ {01 })
([B1, Bo] <p1 1, 00] = =14+ < =1+ frandl —as < 1— )

= (V[B1,B2] € LI\ {02 )([B1, Bo) < i [, 0] =
(V [—1-1—0(1,1—042])(1‘61351 B2] —]—1+51,1—ﬁ2[))

= (Vzel[-14+a1,1—a])(ze N Py a)-

[B1,82]< 1 [a1,a2]
So,e.g.1 —ay € N Pig, g,), butl — ap & Py, a,), @nd thusPy,, o, #
[B1,82]< 1 [a1,a2]
N Pg, p,)-

[B1,82]< 1 [o1, 2]

&

The condition in Proposition 9.1.5 is however not a suffit@ndition as the following
example illustrates.

Example 9.1.7. Let Py, o,] = [*£22,1] for all [a1,az] € L'\ {0z}, It holds that
Ve, ag) € LI\ {021 })(Pray 0] = N Py, 5,])- However, it does not hold
[B1,82]< 1 |1, 2]

that (Vx € dp)(s, € S.). Consider for example the s} 5. [0.5,0.5] € Sy 5 and for all
[a1, a2], o1 can not be greater than 0.5 since teég<2 > 0.5. Further alsd0, 1] € So.s,
so we can conclude thatip S 5 = [0.5,1] & Sp 5.

As a consequence it does not hold thaf, ., = RS2 for all [oq, 0] € LT\ {041}
Indeed,R(0.5) = so.5 = [0.5,1] and thus0.5 € R} ; at one hand, but on the other hand
0.5 ¢ P51y = [0.75,1]. .

The given condition is not a sufficient condition becauseadssdnot necessarily hold
that (V[B1, B2] € LI\ {0, })([B1, B2] <pr sz = [B1,82] € Sz)). In the above example,
So.5 = supSps = [0.5, 1]. So, e.g. [03,08] LI S0.5, but [03,08] 5? So.5 since
0.5 ¢ Plo.3,0.8 = [0.55,1].

Fig. 9.1 gives a graphical representation of four possiels S,. In the first three
examples, it does not hold that an intergak s, belongs to the sef,. In these examples,
there can be found am € S, for which it holds that if we keep increasing or as, o will
no longer belong t&,. at some point, but stitk < s,.. However, if we then keep decreasing
the other boundd(s or «; respectively) at some poiat will again belong to the sef,. If
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Construction of Interval-valued Fuzzy Morphological Operators

[0,1] [1.1] [0,1]‘ [1.1]

[0,0] [0,0]

[0,1] [1.1] [0,1]‘ [1.1]

[0,0] [0,0]

Figure 9.1: A graphical representation of some possible $gts

we want that every intervael < s, belongs taS,,, S, needs to have the form of the fourth
example. In that example, for an arbitrarye S,, we see that if we keep increasing

or as, a will no longer belong taS,. at some point (or reach its maximum possible value).
This time howeverr « s, then and decreasing the other bound 6r «; respectively)

will not result ina belonging to the set, again anymore. This special case leads us to the
following lemma.

Lemma 9.1.8. For a decreasing family Pa, a,)) o, .az]err\{0,,} Of Crisp subsets dr™,
the interval-valued fuzzy sé& defined in (9.2) and the setls> and .S, and the supremum
s, of the latter set, respectively defined in expressions{9.3), we have that

(Vo € dp)(Vt € LI\ {01 })(t <pr s, =1 € Sy)
(i
[SCT : (Fln, as] € L1\ {0zr}) (V2 € RY) (2 & Py 01 =
((V[B1,B2] € L' \ {021 })((B1 < q and B2 > ap) = = & Pig, p,])) OF
((V[81, 82] € L\ {021 )((81 > a1 and s < a2) = 7 & B, 5))) )
Proof.

= Suppose that [SC] would not be true and thus (rﬁbq, as] € LT\ {OU}> (Hx €
]R”) (m € Ploy.ow @d ((3[B1,82) € LT\ {0 })((B1 < ay andB, > as) and
z € P, p,)) and ((3[y1,72] € LT\ {02:})((11 > a1 andvye < az) andz €
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9.1 Continuous Case

thz]))) This would mean tha¢, ; > v, ands, » > 2. Further,jo, as] <1
[v1, B2] <pr s, and thugay, as] € S, andz € P, o, and hence a contradiction.

<: Suppose that the condition [SC] is fulfilled. Let L’ \ {0,:}, so thatt < s,.
We have to prove thdte S.,.

Suppose that ¢ S,. Sincet < s,, we have that; < s, ;. As a consequence,
t1 is no upperbound for the set of lower bounds of the elemenss pfvhich implies
that (3y €]t1,5:1])(3z € [y, 1))([y, 2] € Si). If z > 5 then we would get a
contradiction since then € P, .; C Py, ,,; and hence € S,. Soz < t; and thus
(Aly, 2] € L' \{02:})(y >ty andz < ¢, andz € P, .)).

Analogously, since <;: s;, we have that, < s;2. As a consequences is

no upperbound for the set of lower bounds of the elementS.ofwhich implies
that (32" €lte, s.2])(3Y" € [0,2])([v/, 2] € Si). If ¥ > t; then we would get a
contradiction since them € P, .y C Py, ¢, 1-€.,t € Sy Soy’ < t; and thus
Ay, 2] € L'\ {02:}) (¢ < t1 andz’ > t; andx € Py ).

If we combine the above results, then we find that it would btz ¢ P, 4,
and(3y,z] € L' \ {0z:})(y > t1andz < t;andz € Py, ;) and (3[y, 2] €
L'\ {02 })(y < tyandz’ > ty andz € Py, .) and hence a contradiction. So
tesS,.

O

The family defined in Example 9.1.3 fulfils the condition [S®fore general, a decreas-
ing family (Pa,,a,))[a;,az)e21\{0,,} fOr which P, ,,) is an interval with lower bound
f(aq) and upper bound(as), where the functiong andg are respectively increasing and
decreasing ovei0, 1] and f(81) < g(B2) for all [31, B2] € LI, is an example of a family
that fulfils condition [SC]. An analogous example of a fanttat fulfils condition [SC] is
e.g. the family(Po, a,))(a;,az)eLr\{0,,} fOr which P, ,,) is aninterval with lower bound
h(ag) and upper bound(a ), where the functiong andi are respectively increasing and
decreasing oveld, 1] andh(B2) < i(3;) for all 81, 32] € L. For families for which [SC]
holds, Proposition 9.1.5 is now also a sufficient condition.

Proposition 9.1.9. For a decreasing famil)(P[alyaﬂ)[al,az]ey\{ou} of crisp subsets of
R™ that fulfils the condition [SC], the interval-valued fuzat 8 defined in (9.2) and the
setsdp and S, and the supremurs,. of the latter set, respectively defined in expressions
(9.3)-(9.5), it holds that:

(V2 € dp)(ss € 52) & (V[an, 2] € Lt \ {Oﬁl})(P[al,az] = ﬂ Pig, 6,1)-
[B1,B82]< 1 [a1,a2]

Proof.
=-: Follows from Proposition 9.1.5.
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Construction of Interval-valued Fuzzy Morphological Operators

«<: Letz € dp. Since the family(P[ah(m])[myaﬂey\{oc[} fulfils condition [SC], we
can use Lemma 9.1.8 and obtain successively:

(V[B1, B2] € L' \ {02 })([B1, Bo] K1 50 = [B1, B2] € Sz))
& (V[B1,B2] € L'\ {02 })([B1, Bo] <t 50 = (¢ € Pig, ,)))

< TE ﬂ P[ﬂlaﬁz]
[B1,82]< 1 5

{EGP[

3

Se,1,5,2]

Sy € SJ; = {[Oq,ag] | [(11,042] S LI \ {Oﬁl} andz € P[al,ozg]}-

¢

O

Remark that if a decreasing famiy’,, a.]) oy as)e L1\ {0, } dOes not fulfil condition
[SC], then it does not hold thadt/[av1, o] € L\ {021 })(Pla, 0z = RS?) anyway. Indeed,
due to Lemma 9.1.8 it does not hold thatr € dp)(Vt € L1\ {01 })(t <pr sz =t €
S.). As a consequendglz € dp)(Ft € L1\ {0,:})(t <1 s, andt € S,). This implies
thatz ¢ Py, 4, 2 P jorthuss, & .S,.

52,1,52,2

Example 9.1.10. The family (P[al,az])[al,az]eu\{oﬂf} of crisp subsets oR™, given by
Proyas] = [-1+ 1,1 — ag] forall [ag, an] € L\ {01}, is an example of a family for
which (V]o, aa] € LT\ {021 })(Pa, a0 = RS2), with the interval-valued fuzzy seét as
defined in (9.2).

o

The Construction Principle

Based on the results from the introduction of this subse¢ti@ might extend an increasing
operatorp onP(R"™) (i.e., the set of all crisp subsets&f*) to an operato® on F . (R™)
as follows:

D(A) = U [o1, 2] p(AG?), forall A € Fpr(R™).
[al,QQ]ELl\{Ocj}

Operators having two or more arguments can be extendedgmelly. We illustrate this
for an increasing operatar on P(R™) x P(R"™) (like the binary dilation):
U(A,B) = U [o1, ] (A2, BS2), forall A, B € Fpi(R™).
[ar,a2]€LIN{O,r}

As discussed in the introduction of this subsection, foraperatorsb andW it does not
necessarily hold that:

(Vlaw, a] € LT\ {021 H(R(A)32 = 6(A32))
(V[on, o] € LI\ {021 (U (A, B)g2 = v(A32, B3?)).

@y
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9.1 Continuous Case

The only binary morphological operator that is increasisthe binary dilation. We will
now extend this operator to interval-valued fuzzy sets leyhelp of the above introduced
construction principle.

Let A, B € F.:(R"). Using the construction principle, we define the extend&tidn

D/(Z,/B) of A by B as follows:

D(A,B) = U [, @] D(AZ2, B32). (9.6)
[al,az]GLl\{OLI}

Proposition 9.1.11.Let A, B € F,:(R™), then for ally € R™ it holds that:

D(A,B)(y)=  sup  Cuin(B(z —y), Ax)) = D¢, (A, B)(y).
€T, (dp)Nda

Proof. Let A, B € F.:(R"), and lety € R™. From the definition of the binary dilation,

1 ifye D(AS2, BS?)
0 else

)

D(ASS Bat)(y) = {

it follows that:

D(A,B)(y) = sup (la1, 2] D(AGT, BG?)) (y)
[al,ozz GLI\{Oaj}

]
= sup{|a1, o] | [, 0] € LT\ {0,:} andy € D(A3?, B3?)}
= sup{[a,az] | [a1, az] € LT\ {0,r} andT, (B3?) N AZ2 # 0}
= sup{[ar, s | [, 0] € LT\ {0,r} and
(Fz € Ty(dp) Nda)(x € T, (B5?) andx € A3?)}
= sup{[a1, 9] | [a1, 0] € LI\ {0z:} and(3z € T, (dg) Nda)
((Bi(x —y) > oy and A (z) > «y) and
(Ba(z —y) > ag andAs(z) > as))}
= sup{[ar,as] | a1, 2] € LT\ {0,r} and(3z € T, (dp) Nda)
(Coin(B(z —y), A(z)) =1 [a1, 02])}
= (x).
We have to prove thdk) is equal to
sUp {Cmin (B(x — y), A(x)) |z € T,(dp) Nda} = (*x).
e It holds that:

(x) = sup{[a,aq]|[a1, 0] € LT\ {01} and(3z € T, (dp) Nda)
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Construction of Interval-valued Fuzzy Morphological Operators

(lon, 2] <pr Conin (B2 — y), A(2)))}
<yt sup{[on, as] | [ar,a] € L'\ {0,:} and

([on, o] <pr sup Crnin(B(z —y), A(7))) }
€T, (dp)Nd

= sup Cmin (B(I - y)a A(a:)))
z€Ty(dp)Nda

= ()

e On the other hand alge) <: (x). If T,,(dg) Nda = 0, then(xx) = 0, and thus
(xx) <pr (x). Otherwise, consider an arbitrary> 0. Then it holds that:

(*x)1 — € is no upper bound for the set of lower bounds of the intervals
in the se{Cuin(B(z — y), A(z)) | x € Ty(dp) Nda} and(xx)y — € is NO
upper bound for the set of upper bounds of the intervals irséte
{Conin(B(x — y), A(2)) | x € T, (dp) N da}

(Fz € Ty(dr) Nda)((x%)1 — € < Cmin(B(z — y), A(z))1) and

(32’ € T,(dp) N da)((+%)2 — € < Coin(B(2' — y), A(z'))2)

(#%)1 — € € {a1 | Bag € [a1,1] such thafay, as] € L1\ {0,:}) and
(3z € T, (dp) N da)(for, az] <pr Coin(B(z — 1), A(x)))} and

(¥%)2 — € € {aa | (B € [0, az] such thafay, as] € L1\ {0,:}) and
(Fz € Ty(dp) Nda)([a1, 2] <pr Crin(B(z —y), A(x)))}

(#%)1 — € < sup{ay | (3az € [a1,1] such thafa,, as] € L\ {0,:}) and
(3z € T, (dp) N da)(for, az] <pr Coin(B(z — 1), A(x)))} and

(¥%)2 — € < sup{az | (3a; € [0, s such thafay, az) € L1\ {0,:}) and
(Bz € Ty (d) Nda)([ar, ag] <pr Coin(B(z —y), A()))}
[(6)1 = €, (+5)2 — €] <1 sup{[ar, az] € LT\ {01} |
( A(

Jz € Ty(dp) Nda)([on, o] <pr Coin(B(z —y), A(x)))}

Takinge — 0 gives the result.

O

Since the binary erosion is not increasing in both its argusewe cannot use the
construction principle to extend this morphological opardao an interval-valued fuzzy

morphological operator. Such interval-valued fuzzy esnsian however be constructed by

duality properties.

Once the interval valued fuzzy dilationg

sionEXL

IeKxD

(A, B) can be derived. If we however want a constructiortgf (A, B)in

terms of binary erosions, the duality can be worked out as:

1
EIEKD (A?

B)(y) = (con.(D,,, (con.(A), B)))(y)
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9.1 Continuous Case

= (con.( U [ar, 2] D((con, A)aT, Bay)))(y)
[Oél,OlQ]GLI\{Ol:I}

= N U lanaa]Dl(con, A2, B2)()

lan,a2]eLIN{0 .1}

= N sup ([ar, a2] D((con, A)az. Ba?))(y))
[a1,a2]€LIN{0 1}

= N sup ([, az]eo(E(co((con, A)33), Ba3))) ()
[ar,c2]€eLIN{0, 1}

The interval-valued fuzzy opening and closing can then Instrocted as a combination
of the interval-valued fuzzy dilation and erosion.

9.1.2 Construction Based on Stric{fa;, as]-cuts
Introduction

Analogously as in Subsection 9.1.1, an interval-valuedyisetA can also be reconstructed
from its strict[ay, aa]-cuts.

Lemma9.1.12.Let A € F,:(R™), then it holds that

A= U [0417012]14%7

[al,ag]ELl\UL[
i.e., forallz € R™
A(z) = sup ([061,042]14%)(1))
[al,az]GLI\ULI

= sup{[ai, o] | [a1, 2] € L'\ U anda € Ag}
Proof. For allz € R™ andA € F,.:(R"), it holds that

( U [ov1, aQ]Agif) ()
[ar,ce]eLI\{1,.}

= sup{([o1, 2] AZ) (2) | [a1, 0] € LI\ Ups}

= sup{([al,ag]Ag:f)(:r) | [on, 0] € LI\ Upr andA(z) 11 [, az]}
= sup{[oq, ]| [a1, 0] € LT\ Upr andA(z) > 11 [, o]}

= Afz)

227



Construction of Interval-valued Fuzzy Morphological Operators

If we now consider a famiI)(Q[(,haQ])[QI,QZ]GLI\ULI of crisp subsets oR™ that is
decreasing [(vi, as] <pr [a3,04] = Qlay,as] 2 Qlas,aq]) @nd we define the interval-
valued fuzzy seV in R” for all z € R™ as

Viz) = sup — ([an, a2]Qpay a0)) () (9.7)
[al,ag]ELl\ULI

= sup{|ai, @] | [, a0] € LI\ Uy andz € Qlay,a0] )5

then we might wonder whether it holds thatay, as] € L1\ ULI)(VC%? = Qlay,az])- IN
contrast to the case of wedd , az]-cuts, there is no inclusion that always holds.

Example 9.1.13.Let Q(a, a,) = [*522,1] for all [y, 0] € LT\ Up:. Consider e.qg.
r = 0.4. x € Qo.4,0.4 @nda; can not be greater than 0.4 since ti?éqﬂ > 0.4. Further,
0.4 € Q[o,a,), forallas < 0.8. S0,V (0.4) = [0.4,0.8] and thusD.4 € Vg at one hand,
but on the other hand.4 ¢ Qo.3,0.71 = [0.5,1]. As a consequence, it does not hold for all
[, az] € Lt \ Urr thatQ[ahaz] 2 VO%Z.

Neither does it hold for ally, ] € LT\ Upr that Qpa,.a,) © V2. For every
(a1, a0] € LT\ Upr, we have for[fy, Ba] < i [a,as) that 2582 < aates or thus
artee e Qg 5, As aconsequencl (41522) = sup {[B1, B2] € LT\ Upr | ©522
Qsr.pa)} = lon,an] or thus@dez ¢ V22 On the other hand®$2 € Q4,00 =
[@1F22 1] which means that’2? 2 Qa, .-

m

o

The equality holds however under certain conditions. Tonfdate these conditions, we
define the set as

do ={z |z € R"and(J[ar, as] € L'\ Up:)(z € Qjay,as))}- (9.8)
Further, for a fixed point: € dg, we introduce the séft,, given by
T, = {[a1, as] | [o1, ] € LT\ Upr andz € Qlay,a0] ) (9.9)
and we denote the supremum of this setby= [t, 1, t, 2]
ty =supTy,. (9.10)

Remark thaff}, # 0.
The following Proposition gives a necessary condition ghelthe equality holds:

Proposition 9.1.14. For a decreasing familyQ[a, a,]) oy as)err\v, , Of Crisp subsets of
R™, the interval-valued fuzzy sét defined in (9.7) and the setig) and7’, and the supre-
mumt,, of the latter set, respectively defined in expressions+{®.8)0), it holds that:

(Yo, a2] € L'NUL1)(Qay 00) = Vag) = (V& € d@)(V[B1, B2] € T )(te > 11 [Br, Ba])-
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9.1 Continuous Case

Proof. SupposeV[ay, 2] € L'\ Ui })(Qay,a0) = Vai?), or equivalently,(V[as, as] €
LI\ Upr)(z € Qlay,a0) € ta = V() >p1 o, a2]). Itis impossible then that there
would exist anx € dg, so that there exists @1, 52] € T, for which [0y, 82] €11 ts.
Indeed,[31, 52] € T, means that € Q, g,), Which is equivalent té, >>r [51, 52]. O

We would like to mention here that the conditione € dg)(V[51, B2] € Tu)(ts >p11
[B1,B2]) = t. € T, is a necessary and sufficient condition such fdi;, o] € L7\
U P(Qay ,az) € Va2) would hold.

Proposition 9.1.15. For a decreasing familyQ(a, a,]) oy az)err\v, , Of Crisp subsets of
R™, the interval-valued fuzzy st defined in (9.7) and the setlg) and 7, and the supre-
mumt,. of the latter set, respectively defined in expressions+{®.8)), it holds that:

(Vor, 2] € L'\UL1)(Qlay,a0) € Va2) & (Vo € d@)(V[B1, Ba] € To)(ta > 11 [B1, B2)).

Proof.
<! Let[og, 0] € LY\ Upr and letz € Q[ a,)- It then holds that:

S Q[al,oq]
& Jar, a9] € {[B1, Ba] | [B1, B2] € L\ Upr andz € Qug, 4,1}
= sup{[B1,B] | [B1,B2) € L'\ Upr andz € Q18,,8,)} >11 o, o]
& V(z)>pr o, o)
& oz € Vai?.

Thus,Q[a, 0, C Vaz.

= SupposgVa,as] € L'\ Uri})(Qlay,ax € Vaz2), or equivalently,(V[ay, o] €
L'\UL) (@ € Qlay,a0] = to = V(2) >11 [a1, a2]). Itisimpossible then that there
would exist an: € dg, so that there exists[&1, 82] € T, for which 31, 82] €11 ty.
Indeed,[31, B2] € T, means that € Qg, g,), which implies that, > [, B2].

O

The condition in Proposition 9.1.14 is however not a suffit@ndition for the equality
to hold as the following example illustrates.

Example 9.1.16.Let Qo, o, =522, 1] for all [oy, ] € L'\ Upr. Thendg =0, 1].
Forz € dg, itholds that 3y, Bs] € T, < o €]2:522 1], which is equivalent t&*£72 < 2.

So [31,61] € T, forall 51 < z. Itis impossible thap3; > x for any [51, 5] € Tu,
since thenﬁlg—ﬁ2 > z. So the first component of each elementfis less than the first
component of the supremum @, (= z). Further, alsdo0,y] € T, for all y such that

y < 2z andy < 1. Itis impossible thafls > 2x or 8 > 1 for any[81, 2] € T, since
then respectivelyﬁlér—ﬂ2 > xand[By, B2] ¢ LT \ Ur:. So the second component of each
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Construction of Interval-valued Fuzzy Morphological Operators

element ofT}, is less than the second component of the supremui). ¢&= min(2z, 1)).
We conclude thatvz € dg)(V[51, B2] € To)(te >1r [B1, B2)).

It does however not hold th&t/[c, o] € L'\ Up1)(Qay,a0] = Va2 ). Consider e.g.
r=04. 7 € Q[ ,a, forall a; < 0.4 anda; can not be greater or equal to 0.4 since then
afer > (.4. Further,0.4 € Qoq,), for all az < 0.8. So,V(0.4) = [0.4,0.8] and thus
04 € Vg at one hand, but on the other hand ¢ Qo 3,0.7] =]0.5, 1]. As a consequence,
it does not hold for alfovy, avg] € LT\ Ups thatQ(a, 0, = V22,

(5}

¢
The given condition is not a sufficient condition becauseoksinot necessarily hold
that (V[B1, B2] € LI\ Upr)([B1, B2] <p1 te = [B1,32] € Ti)). In the above example,
toy = supTps = [0.4,0.8]. So, e.g.[0.3,0.7] <1 to4, but[0.3,0.7] & Ty4 since

0.4 € Qpo.3,0.7 =]0.5,1].
Analogously to Lemma 9.1.8 the propefty[31, 32] € L' \ Up:)([81, B2] <1ty =
[81, 2] € T.)) does however hold in the following special case:

Lemma 9.1.17. For a decreasing familyQa, a,]) o as)err\v, , Of Crisp subsets dr™,
the interval-valued fuzzy sét defined in (9.7) and the seffg) and 7, and the supremum
t, of the latter set, respectively defined in expressions{9.8)0), we have that

(Vo € dg)(Vr € LI\ Upi)(r <pi ty = 1 € Ty)
)
[SC'] : (V[al,az] € L'\ ULI) (Vx € R”) <x Z Qlay 00 =
((V[,Bl,ﬁg} S LI \ ULI)((Bl < a1 andﬁg > (12) =T ¢ Q[Bhﬁz])) or
(V181,82 € LI\ Upo)((B1 > a1 and Bz < a3) = 2 ¢ Qi 6)) )

Proof. Analogous to the proof of Lemma 9.1.8. O

Remark that if a decreasing famil@) (o, a,]) (a1 .az]eL1\v, , Of Crisp subsets dk™ does
not satisfy condition [SC’], then it will also not hold thét[c;, as] € LI\ULI)(Q[%QQ] =
VZ2). Indeed, if [SC'] does not hold, thef[o, ao] € LT\ Upr)(Fz € R™) (2 & Qo a0)
and (3[By, B2) € L' \ Upr)(B1 < arandBy > asandz € Qg p,1) and(3[y1,72] €
L'\ Upr) (71 > g andy, < ap andz € Qy,, ,1))- This would mean thalt; (z) = ¢, ; >
v > ar andVia(x) = t, 2 > P2 > as. As a consequence, € Vai? andz & Q(a,,as)-

In what follows we will therefore concentrate on families fehich [SC'] holds.

For a decreasing famiIW[al,QQ])[al,az]eLI\ULI of crisp subsets dR™ for which con-
dition [SC’] does hold, the necessary condition in Proposi®.1.14 becomes a sufficient
condition.

Proposition 9.1.18. For a decreasing familyQ(a, a.]) (a1 ,az)err\v, , Of Crisp subsets of
R™ that fulfils condition [SC’], the interval-valued fuzzy détdefined in (9.7) and the sets
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dg andT;, and the supremurt, of the latter set, respectively defined in expressions{9.8)
(9.10), it holds that:

(Yo, 02] € L'NUL)(Qay a0) = Vaz) & (V& € d@)(V[B1, Bo] € T2)(te > 11 [Br, Ba])-

Proof.
«: Since condition [SC'] is fulfilled, Lemma 9.1.17 can be usddlz € dg)(Vr €
LI\Upi)(r <pr t, = r € T,). Further, it is given thatvz € dg)(V[31, B2] €
Ty)(te >pr [Br, B2]). Let[By, B2] € LT\ Upr and letz € Qg, 5,). We have that:

z € Q[Bhﬁﬂ
& B, Ba] € {[an, as] | [a1,a2) € LT\ UL andz € Qlay,a0]}
& sup{[ai,as] | [o1,a] € LT\ Ups andz € Q(ay a0} > 11 [B1, B2
& V(x) > [Br, B
& e Vﬁﬁf.

As a consequence)g, g,] = Vﬁﬁj.
=-: Follows from Proposition 9.1.14.
O
The condition in Proposition 9.1.18 is however not alwaygieiht in practice. For a
family (Q[al’aﬂ)[%aﬂeywu that satisfies condition [SC'], it would be needed to calcu-

late the sefl’, for all z € dg and to check whether, > ;1 (31, 82 for all [81, B2] € T,.
To facilitate this work, an equivalent condition on the s@{s, .. can be used.

Proposition 9.1.19. For a decreasing famil;(Q[al7a2])[a17a2]€L1\ULI of crisp subsets of
R™ that satisfies condition [SC’], the sedg andT, and the supremur), of the latter set,
respectively defined in expressions (9.8)-(9.10), it htiid&

(Vo € dg)(V[B1, B2] € Ti)(te >r1 B, B2])
(3

(V[ar, 0] € L'\ Upr)(Qlaya0] = U Q5y.5))-
[B1,82]> 11, a2]

Proof.
= Let[o, ] € L'\ Ups. Forallz € Qq, 4, it holds that:

xr € Q[al,az]
& [y, an) €T,
& o, ) Lt ty
& (3B, Bo] € L'\ Upt)(te >p1 [B1, Ba] >11 [an, a2])
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Construction of Interval-valued Fuzzy Morphological Operators

(381, B2) € LT\ Upt)([B1, Ba] > 11 [a1, 2] and[By, Ba] € Ty)
(3[B1, Ba2] € L'\ Upt)([B1, B2] > 1 [01, o] and

(81, B2) € {[71,72] | [v1,72] € L'\ Upr andz € Qpy, 401}
& (3[B1,B2] € L'\ Upt)([B1, B] > 11 [on, ) anda € Qs1,62))
< T E U Q[ﬁlﬁz]'

[B1,82]> 11, 2]

4
-~

«: Letx € dg. We first prove that, ¢ T,. Indeed, suppose that € 7,. This
would mean that € Qy, , ¢, ,)- On the other hand, sin¢g = sup T, it holds that

(V[B1, B))([B1, Bo] >p1 to = x & Qs p,)) OF thusz ¢ U Q,,5,) and
[B1:82]> rta

hence a contradiction. S@ ¢ T.,..
We now prove thafV|[51, 52] € Ty)(t. >1r [51,02]). Suppose that this would not

be true and that there would exist@, 2] € T, for whicht, %1 [51,52]. Since
t, € Ty, this would mean that eithet ; = 5, ort, » = 32, but not both.

We consider the case that; = 51 andt, 2 > B2, S0z € Qp, , 5,] = Qs,,6.)

Sincetr = SupTI! (ﬂ[’ha’m] € LI)([71772] > [tr,hﬂQ] andr € Q[’Y1772]) or

equivalentlyz ¢ U Q[ ,4,) and thus U Qi) 7
[(v1,v2]> 1 [te,1,082] [(v1,v2]> 1 [te,1,82]

Q1. 1.,)» I-€., @gain a contradiction.

The case, » = (2 andt, ; > (3 leads to a contradiction in an analogous way. We

conclude thatV[5, 82] € Ty)(tz >rr [51, B2])-

O

Example 9.1.20. The family (Q[%a?])[al,QZ]ELz\UU of crisp subsets oR™, given by
Qlar,a0] = [-1+ a1, 1 —ay] forall [a, as] € LT\ U1, is an example of a family that sat-
isfies condition [SC’], but for which it does not hold th&f o, ] € LI\ULI)(Q[QIM] =
Vai?), with the interval-valued fuzzy sét as defined in (9.7). Indeed, 1&t;, as] €
L'\ Uy, then it holds thatV[s:, o] € L' \ Upr)([B1, B2] > 11 [ar, 0] = —1+ 51 >
-1+ oy andl — ag >1— ﬂg) or thUS(V[ﬁl,ﬁg] S ! \ ULI)([ﬂl,ﬁg] > [041,(12] =
1+ a1 € Q, 5, @NdL — a2 € Q3 3,)). On the other hane-1 + a; € Qq, o, and

1—as € Q[al,az]. So U Q[51,52] # Q[mm].
[B1,B2]> 1 a1,a2]

¢
Example 9.1.21. The family (Q[mm])[amz]eywﬁ of crisp subsets oR™, given by
Qlar,a0) =] — 1+ a1, 1 — ay[ for all [ag, as] € L'\ U1, is an example of a family for

which (V[o, ao] € LT\ Upr)(Qfay,as) = Va2), with the interval-valued fuzzy sét as
defined in (9.7).
¢

232



9.1 Continuous Case

The Construction Principle

Based on the results from the introduction of this subsectiad analogous to the construc-
tion principle based on weaky;, as]-cuts, we might extend an increasing operatasn
P(R™) to an operato® on F,: (R") as follows:

o(A)= U o1, 00)6(A%), forall A € Fpi(R?),
[al,az]GLl\ULI

Operators having two or more arguments can be extendedgmelly. We illustrate this
for an increasing operater on P(R") x P(R"™) (like the binary dilation):

U(A,B) = U [a1, ot (AZ2, B22), for all A, B € Fri(R™).
[al,az]GLl\ULI

As discussed in the introduction of this subsection, foraperatorsb andW it does not
necessarily hold that:
(Vlar, az] € LI\ Upr)(9(A)52 = $(AZ2))

1

(V[ar, @2] € LT\ Upi)(¥(A, B)Z = (A%, B2)).

[e3%

We now extend the increasing binary dilation to intervdliea fuzzy sets by the help
of the above introduced construction principle as follows:
/

Let A, B € F.:(R™). The extended dilatio® (A, B) of A by B is then given by:

D(A,B) = U a1, 2] D(AZZ, B22). (9.11)

ay’?
[al,az]GLl\ULI

Proposition 9.1.22. Let A, B € F,:(R™), then for ally € R™ it holds that:

!

D(A,B) (y) <pr sup  Coin(B(z — ), A(x)) = D¢, (A, B)(y).
x€Ty,(dp)Nda

If A(x) >pr 0pr, Vo € da andB(x) > 0p1, Vo € dp, then

/!

D(A,B) (y)=  sup  Cuin(B(z —y), A(z)) = D¢, (A, B)(y)-
€Ty (dp)Nda

Proof. Let A, B € F,:(R"), and lety € R™. From the definition of the binary dilation,

1 ify € D(Ag2, B3?)

D(AT, BE)(y) = {O e

it follows that:

D(A,B) (y) = sup ([, a2 D(AZZ, BE2))(y)
[al,(xz]ELl\ULI
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2}
= # 0}

= sup {[a1, ] | [a, 0] € LT\ Upr andy € D( 3:
= sup{[a1, 9] | [a1, 0] € L'\ U, andT, y( Z:)
= sup{[o1, ] | [, 0] € LI\ Uyr and

(3x € T,(dp) Nda)(z € T,(B32) andx € AZ2)}
= sup{[a1, @] | [, 0] € LT\ Upr and(3z € T,(dp)Nda)

((Bi(x —y) > oy and A, (z) > «y) and

(Ba(x —y) > ag and Ay (z) > as))}
= sup{[a1, o] € L'\ Up: | (3z € T,,(dp) Nda)
(Crnin(B(z — y), A(x)) > 11 [a1, a2])}

= (x).

We have to prove thdk) is less than or equal to

sup {Cmin(B(z — y), A(x)) | 2 € Ty(dg) Nda} = (¥x).

@\Q\ sz

It holds that:

(*) = sup{la,as]|[a1, ] € LT\ Upr and(3z € T, (dp) Nda)
(lar, ag] <pr Coin(B(x = y), A(2)))}
<pr sup{fai,a) | [or, ) € LY\ Upr and

([011, Oéz] L 1 sup Cmin(B(x - y)> A(J’J)))}
xETy(dB)ﬂdA

= sup len(B(x - y)’ A(l‘)))
€Ty (dp)Nda

= (x%)

If A(x) > 0pr, Vo € dg andB(x) > 01, Vo € dp, then alsq(xx) <pr (x), as
we will now prove.

If T,(dg) Nda = 0, then(xx) = 0,r and thug(xx) <r (x). Otherwise, consider an
arbitrarye > 0. It holds that:

(xx)1 — € is no upper bound for the set of lower bounds of the intervatbé set
{Conin(B(z — y), A(z)) |z € Ty(dp) Nda} and(xx*), — € is no upper bound for
the set of upper bounds of the intervals in the{gkt;,, (B(x — y), A(z)) |
reT,(dp)Nda}

= Bz eTy(dp)Nda)((*x)1 — € < Cmin(B(z —y), A(z))1) and
(32" € Ty (dp) N da)((+#)2 — € < Conin(B(2" — y), A(z"))2).

For such element from the first part of the above consequent, for whigh); — e <
(Crin (B(z — ), A(x)))1, we can chooses = (xx); — € < (Cin(B(x —y), A(x))); <
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(Conin(B(z — ), A()))2 such that

(#%)1 —¢ € {o1 | (Bag € [y, 1] suchthafa,,as] € L'\ U, r) and
(Fz € Ty(dp) Nda)([ar, o] Lp1 Coin(B(x —y), A(x))) }

SinceA(x) > Ozr, Vo € dy andB(x) > 0,1, Va € dp, for the second part of the
consequent, we can choase = 0 < (Cmin(B(z' —y), A(2")))1, such that

(#x)s —e € {az | (3aq € [0, az] such thafay, as] € LY\ Up:r) and
(3z € T, (dp) Nda) (a1, 2] Kpt Cnin(B(z — y), A(z)))}

It thus follows that:

(#%)1 — € € {a1 | By € [a1,1[ such thafaq, as] € LI\ Uyr) and
(Fz € T, (dp) Nda)([a1, ) < pr Coin(B(z —y), A(z)))} and
(¥%)2 — € € {aa | (3 € [0, az] such thafay, as] € L1\ Uyr) and
(B € Ty(dp) Nda)([ar, o] Kpr Cuin(B(z —y), A(x)))}

=  (#%); — e < sup{ay | (3ay € [a1, 1] such thafa,, as] € L1\ U,r) and
(Fz € T, (dp) Nda)([a1, 2] K pr Coin(B(z —y), A(z)))} and
(¥%)2 — € < sup{az | (3a; € [0, as] such thafay, az) € L\ Uyr) and
(3 € Ty(dp) Nda)([ar, o] Kpr Cuin(B(z —y), A(x)))}
[(%)1 — €, (x)2 — €] <1 sup{[an, as] | [a1, a2] € LT\ Uyr and
Gz € Ty(dp) Nda)([ar, 2] K Coin(B(z — ), A(2)))} = (%)

Takinge — 0 gives the result. O

The following example illustrates that if ndt(xz:) > 0,1, Vo € d4 ornotB(x) >:
Ogr, Vo € dp, then(x) is not necessarily equal {ex).

Example 9.1.23.Let A(0) = [0,0.7] and A(z) = [0.3, ] Vo €]0,1] and letB(z) =
[0.2,0.6], Vz € [0,0.5]. Lety = 0, thenTy(dg)Nda = [0,0.5]. Vo €]0,0.5], Cuin(B(z—
0), A(z)) = [0.2,0.5]. Forz = 0, Cpnin(B(0), A(0)) = [0,0.6]. Thussup{Cuin(B(z —
y),A(z)) |z € T,(dp) Nda} = sup{[0,0.6],[0.2,0.5]} = [0 2,0.6]. On the other hand,
(Pl az] € LY ([a, az] <1 [0,0.6]) and (¥ [al,az] €L’ )([al,ag] <rr [0.2,0.5] =
(Fz € To(dp) Nda)([ar,az] <pr Cmin(B(z — y), A(x)))), from which it follows that
?up{[oq],ag] € L' | Bz € To(d) Nda)(jar, ] <pr Cmin(B(z — 9), A(2)))} =
0.2,0.5).

Remark that ifA(0) would have been less than or equa|d0.5], then we would have
had an equality.

&
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The construction principle can not be used to extend therpiesion to an interval-
valued fuzzy morphological operator, since it is not insieg in both its arguments. Anal-
ogously as for weakuy, az]-cuts, it can however be constructed by duality properties.

Bfpn(AB)y) = (con (D¢, (con.(A), B))(y)
<o (ol U Lo aalD((con, A BEN)()
[al,QQ]ELI\ULI
= N U a1, ao] D((con, A2, BE2))(y))
[al,az]ELl\ULI

= No( sup (a1, a2 D((con, A)32 BZ2))(y))
[(11 ,(XQ]ELI\ULI

= No( sup  ([a,az)eo(B(co((con, A)2), BE2))) ()
[al,az]ELI\ULI

If A(z)>p1 0z, Vo € dsandB(x) > 0.1, Vo € dp, then we have an equality.
The interval-valued fuzzy opening and closing can then Instracted as a combination
of the interval-valued fuzzy dilation and erosion.

9.1.3 Construction Based on Weak-Strict and Strict-Weak[a;, ao]-
cuts

Introduction

Analogously as in Subsection 9.1.1and 9.1.2, an interalled fuzzy setd can also be
reconstructed from its weak-strict and strict-wéak, a]-cuts.

Lemma 9.1.24.Let A € F,.:(R"), then it holds that

0}
A= U [, ] AS2,
[al,az]GLl\ULI
i.e., forallz € R",
Alz) = sup ([o1, ] AG?) ()
[al,az]ELl\ULI
= sup{[ag,as] | [a1, 2] € L' \Urr andz € Ag? ,
(i)

A= U [Oél,O(Q]Ag—i,

[ar,az]€LIN{1 .1}
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i.e., forallz € R",
Alz) = sup ([a1, o] AZ2) ()
[ar )€ LIN{1 1}

= sup{[o, o] | [o1, 0] € LY\ {121} andz € A2}

Proof.
() Forallz €e R® andA € F.:(R™), it holds that

( U (o1, 2] AZ?) (@)
[ar,a2]€LINU 1
= sup{([on, 2] AT (2) | a1, 2] € LT\ Upr}
= sup{([a1,a2]A5%)(2) | [ar, @0] € LT\ U and
Aq(z) > ag andAz(x) > s}
= sup{[a, 2] | [a1, 0] € LY\ Upr and A, (z) > a; and Ay (x) > as}
A(z)

(i) Analogously.
O

If we now consider families{M[%az])[alm]eLz\UU and (N[alm])[al,QQ]ELz\{ld}
of crisp subsets dR™ that are decreasingo(i, o] <pr |3, 4] = Mo, 0] 2 Mag,a4]
andlai, az] <p1 [as,as] = Nia, a.] 2 Nag,a,)) @nd we define the interval-valued fuzzy
setsiW and X in R” for all z € R™ respectively as,

Wi(x) = sup ([, o] Mg, a0)) () (9.12)
lon,00]€ LINU, 1

sup{[al,ag] | [041,042] S Lt \ Upr andzx € M[Otl,oéz]}7

X(x) = sup ([a1, @2] Nja, as) () (9.13)
[Otl,OéQ]eLI\{ll:I}

= sup{[a,az] | [a1, 0] € LT\ {11} andz € Nig, a,},
then we might wonder whether it holds thafay, o] € LY\ Up1 ) (W32 = M, o,)) and

(Vlan, ag] € LT\ {121 })(XS2 = Nja,,a,))- Similar to the case of stridty;, a;]-cuts and
in contrast to the case of wedk;, as]-cuts, there is no inclusion that always holds.

Example 9.1.25.Let M, o,] =]—1+a1,1—ag]forall [a;, as] € L'\ Uy:. Consider e.g.
x = —0.4. Thenitholds thatv[3:, B2] € L'\UL:)((81 < 0.6 = & € Mg, 5,) and (B, >
0.6 ==z ¢ M[ﬂl,ﬁz]))' SOW(—O4) = sup{[ﬁl,ﬁg] (S LI \ ULI | - 04 ¢ M[ﬂl,ﬁz]} =
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[0.6,1]. As a consequence it holds for example tha@t4 ¢ M 0.6 and—0.4 € W{¢
which means that it does not hold for &ll;, cp] € L'\ Up: thatWg? C My, a,)-
Neither does it always hold thzwf D Mg, o) forall [ag, as] € LI\ Up:. Con-
sider now e.g.z = 0.4. Then it holds thatV[3;, 82] € L' \ Upr)((B2 < 0.6 = z €
M[Bl»Bz}) and(ﬁg >0.6==x ¢ M[ﬁlﬁz]))' SOW(O4) = sup {[Bla 62] € LI\ULI | 04 €
Mg, g,1} = [0.6,0.6]. As a consequence it holds for example that € M ¢ 0.6 and

04 ¢ W% . Analogous examples can be given for strict-wgak as]-cuts.

&

The equality however holds under certain conditions. Tomfdate these conditions, we
define the setd;; anddy as

dy = {.Z‘ | r € R" and(EI[ozl,ag} S LI \ ULI)(JZ‘ S M[al,az])}- (914)

dy = {.13 | r € R" and(EI[al,ag] S LI \ {151})(1‘ S N[a1,a2])}- (915)

Further, for a fixed point € dj; (respectivelyr € dy), we introduce the sét, (respec-
tively Z,.), given by

Y, = {[on, o] | [, 0] € LT\ Upr anda € Mg, a0}, (9.16)

(respectivelyZ, = {[a1, o] | [a1, 2] € L'\ {121} andz € Nig, a1 }), (9.17)

and we denote the supremum of this seyby= [y.1, ¥z 2] (respectivelyz, = [z,.1, 222]):
Yo = sup Yy, (9.18)

(respectivelyz,, = sup Z,) (9.19)

Remark that, # () andZ, # 0.
The following Proposition gives a necessary condition fiar ¢quality to hold:

Proposition 9.1.26.

(i) For a decreasing famin(M[ahaz])[alm]eLz\ULI of crisp subsets of the universe
R™, the interval-valued fuzzy sBf defined in (9.12) and the setg, andY,. and the
supremumy,. of the latter set, respectively defined in expressions [49.46) and
(9.18), it holds that:

(V[a, as] € L’ \ ULI)(M[QMQZ] = WE)
(8
(Vo € dar)(V[B1, B2 € Ya)(Ye,1 = S @andy, o > fa).

(i) For a decreasing family(Na, a,]) (a1 ,a2]enr\{1,.,} Of Crisp subsets of the universe
R™, the interval-valued fuzzy sat defined in (9.13) and the sefs; and 7, and the
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supremun,, of the latter set, respectively defined in expressions [49.%7) and
(9.19), it holds that:

(V[er, o] € LT\ {121 }) (N 0] = X52)
(8
(Vo € dn)(V[B1, B2] € Zy)(2e1 > B1@andzy o > Ba).

Proof.

(i) Suppose(V[ay,az] € L'\ Upi})(Mja, o, = WS2), or equivalently,(V[ay, as] €
L'\ Up)(z € Mo, as] € Yor = Wi(z) > a1 andy, 2 = Wa(z) > as. Itis
impossible then that there would existarE dy, so that there exists[&;, f2] € Y,
for which 81 £ y,1 0r B2 £ y. 2. Indeed,[31, f2] € Y, means thak € Mg, 5,
which is equivalent tg, ; > 31 andy, 2 > Ss.

(i) Analogously.

v O

We would like to mention here that the conditiétc € das)(Y[51, 52] € Ya) (Yo
b1 andy, 2 > Ba) (respectively(Ve € dn)(V[B1, B2] € Zy)(zs1 > B1andzy o > f2)) 1
a necessary and sufficient condition such Vaitv, ap] € LY\ Upir)(Miq, 0y € W52
(respectively(V[a1, o] € L\ {121})(Njay,0,) € X52)) would hold.

(%]

~—

Proposition 9.1.27.

(i) For a decreasing famin(M[ahaz])[al,QQ]ELI\ULI of crisp subsets of the universe
R™, the interval-valued fuzzy sBt defined in (9.12) and the sefg; andY, and the
supremumy,. of the latter set, respectively defined in expressions {49.46) and
(9.18), it holds that:

(V[a17042] el \ ULI)(M[Oél,OQ] - Wf)

)
(Vo € dar)(V[B1, B2] € Ya)(Yz,1 > Brandy, 2 > Ba),

(i) For a decreasing family(N[al@2]){&1@2]@1\{%1} of crisp subsets ofthe universe
R™, the interval-valued fuzzy sé&t defined in (9.13) and the sels; and Z, and the
supremuny, of the latter set, respectively defined in expressions J49.27) and
(9.19), it holds that:

(Var, a] € LT\ {121 }) (Njay a0) € X52)
(i
(V(E S dN)(v[Bl,BQ} S Zm)(zx,l > 51 andzm > 52)

Proof.
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Construction of Interval-valued Fuzzy Morphological Operators

(i) < Let[ow,as] € LT\ Upr and letr € Mj,, o, It then holds that:

T € M[al,a2]

[011,042] S {[ﬁl,ﬂﬂ ‘ [ﬁhﬂﬂ S LI \ ULI andz € M[ﬁhﬁﬂ}
Yz,1 > oy andy%g > (o

Wl(x) > o andWQ(x) > g

T € Wf

re L

ThUS,M[al’az] - Wf

=1 Suppose thatV[ay, as] € LY\ Upi}) (M, 0y € W5?), i€, (V]on, 2] €
LI\Up)(z € Mo, ,00) = Wi(x) = Yop > arandWa(z) = yr2 > az).
It is impossible then that there would exist anc d,;, so that there exists a

[B1, B2) € Y, for which 81 £ y,.1 0r B2 £ vy, 2. Indeed,[1, 32] € Y, means
thatz € Mg, s,), which implies that, , > 81 andy, > > fs.

(i) Analogously.
O

An analogous example to the one in Example 9.1.16 can be os#dstrate that the
condition in Proposition 9.1.26 is not sufficient for the aliy M., ., = WS> (respec-
tively Nia,,a,) = Xg2) to hold for all [ay, ] € LT\ Up: (respectivelyL’ \ {1.:}).
The given condition is not a sufficient condition becauseogsinot necessarily hold that
(V[B1,B2) € LE\Up1)(B1 < o @andBs < yo 2 = [B1,52] € Y,) (and respectively also
not that(V[Bl, ,62] eL! \ ULI)(,Bl < Yz,1 andgy < Yz,2 = [ﬂl,ﬁg] S Zx))

These properties do however hold in the following speciakca

Lemma 9.1.28. For a decreasing famile[al7a2])[a1,ag]€Lz\ULI of crisp subsets dR",
the interval-valued fuzzy s8t defined in (9.12) and the setg; andY, and the supremum
y. Of the latter set, respectively defined in expressions [{9.46) and (9.18), we have that

(Vo € dpr)(Vr € LI\ Upr)((r1 < yeq andry < yg2) =17 € Yy)
(;
[SC"a] - (V[al,az} e L\ ULI) (Vx € R”) (af & Mia, 00) =
((V[B1,B2] € LY \Up1)((Br < o @and By > ap) = = & Mg, 5,1)) OF
((V[B1,B2) € LI\ UL )(Br > oy and sy < az) = @ ¢ M[ﬁlm)))

and(V[og, ) € L'\ Upi)(a1 > 0= (Ve e R")(z € (| Mg, a0 =
B1€[0,a1]

(LE S M[oq,az] or (V[ﬁl,ﬂz] € LI \ ULI)(BQ > o =T € M[ﬂlﬁz])))

Proof.
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= Suppose thaézl[al,ozg} € LI\{OLI}> (Elx € R”) (x & Mo, o, and((3[B1, B2] €

LI\{OL:I})(B]_ < o and,é’z > (o andz € M[Bhﬁﬂ)) and((ﬂ['yl,vg} S LI\{O[:I})
((71 > ap andvy, < ag) andzx € Mhlm]))). This would mean that, 1 > 7

ands, o > [a. Further,jon, as] <1 [y1,52] <pr s, and thusjaq, as] € S, or
x € M4, q,), Which gives us a contradiction.

Further, suppose that it holds tH@fa:, as] € LI\ULr)(aq > 0 and(3z € R™)(z €
N Mg, .a,) @andz & Mo, o,  and(3[B1, B2] € L'\ Upr)(B2 > as andz €

B1E[0,a1 [

M[31;52]))' Sincez € 5 EQ [M[BI;OCQ]’ it holds that(VBl S [0,0&1[)(33 S M[,31,a2])’

which implies thay,.; > ;. Further, sincé3[31, 2] € LI\Up:1)(B2 > az andz €

Mg, s,), it also holds thaty, » > ay. This implies thatla:, as] € Y, which

contradicts the assumption that? M, .-

< Suppose that the condition [SC"a] is fulfilled. e L’ \ U.r, and lett; < y, 1
andty < y, 2. We have to prove thdte Y.
Analogous to the proof of Lemma 9.1.8 it can be shown thatc dy/)(vr € L\
Up)(r <pr Yo = r € Yy).
Sincet, < yg 2, t2 iIs no upperbound for the set of upper bounds of the elements in
Y, and thug3s €lt2, y,.2]) (s’ € [0, s])([¢, 5] € V).
Suppose that; = 0. It then holds thaft, o] <,r [s',s], and thuse € My, C
M[tl,tg] or thust S YI

Suppose now thag > 0. Sincety < y, 2, it holds that(vr € [0, t1])([r, t2] <pr ys)

or thus(vVr € [0,t1])([r,t2] € Yz). Sox € () M.y, This implies thatr €
rel0,t1[

Mg, 41 OF (V[B1, B2] € L'\ Upr)(B2 > t2 = o & Mg, 1,)). As mentioned above
(3s €]ta, y2,2])(3s" € [0,5])([s', 5] € Y;) so that we can conclude thate M, 4,
ie,teY,.

O

Lemma 9.1.29. For a decreasing family N4, a,)(a, an]eLIN{1,5} of crisp subsets dR"™,
the interval-valued fuzzy sét defined in (9.13) and the sels, and Z,, and the supremum
z, of the latter set, respectively defined in expressions J49.47) and (9.19), we have that

(Vo e dy)(Vr e LI\ {12 })((r1 < zp1andry < z,0) =17 € Z,;)
(;
[SC"] - (V[al,ag] e L\ {10}) (Vm € IR") (x ¢ Nio.an] =
((V[ﬂl,BQ] e LI \ {]-LI})((ﬂl < o1 andBQ > 012) = X ¢ N[ﬁlﬁz])) or
(7181, 82) € L\ {12 ))((Br > o APy < a2) = 2 & Nis, 1))
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Construction of Interval-valued Fuzzy Morphological Operators

and (V[ay, as] € LI\ {121 }) (a2 > 0= (Vo € R")(x € N Noawg] =

Ba€lar,as

(% € Niay.a0) OF (V[B1, B2) € LT\ {121})(B1 > a1 = © & Nig, 5,])))-
Proof. Analogous to the proof of Lemma 9.1.28. O

Remark that if a decreasing family/(o, .a,))(a, ,az)e L1\, , OF Crisp subsets ak™ does
not fulfil [SC"a], then it will also not hold thatV[a1, as] € L'\ Up1)(Mia, 0, = WE?).
Indeed, condition [SC”a] not being fulfilled, would meantth@]a;, as] € LI\ Up:)(3z €
R™) (2 & Mia, 0, @and(3[B1, B2] € L'\ Urr)(B1 < oq andfy > ag andz € Mg, 3,))
and (3[y1,72) € L'\ Upr)(m > a1 andys < azandz € My, .,))) or Glas, as] €
L'\Upi)(ar >0and(Fz e R")(z € () Mg, a, @aNdz & M, o, and(3[B1, B2] €

B1€[0,a1]
LY\ Upr)(B2 > az andz € Mg, g,))). Suppose that3[ay, ap] € LT\ Upr)(3z €
R™) (2 & Mia, .0, and(3[B1, B2) € LT\ Urr)(B1 < oy @ndfy > ap andz € Mg, 3,))
and (3[y1,72] € LY\ Upt)(y1 > a5 andy, < ay andz € M, ,1))- This would mean
that Wy (z) = yy1 > 71 > aq andWa(z) = y,2 > B2 > as. As a consequence,
x € Wi2 andz & M, o, Inthe case tha3[oy, as] € L'\ Upr)(ar > 0and(3z €
R")(ze () My, a, andz & My, o, @nd(3[By, B2] € LI \Up1)(B2 > az andz €
B1€[0,a1 |

Mg, 5,))), we would have thaltV(z) = y, 2 > B2 > as and sincgV[By, 32] € L' \Upr)
(B1 € [0,01[= x € Mg, a,)) @lsSOW1(2) = y,1 > 1. As a consequence,c WS> and
T ¢ M[(n,az]' )

An analogous remark holds for a decreasing fartNy,, a,))a,,as]eL/\{1,.,}-

In what follows we will therefore concentrate on families ¥ehich [SC"a] (respectively
[SC”b]) holds. For such families, the necessary conditioRiioposition 9.1.26 becomes a
sufficient condition.

Proposition 9.1.30.

(i) For a decreasing famil)(M[alm])[ahaz]eLz\ULl of crisp subsets dR" that fulfils
[SC"a], the interval-valued fuzzy sét” defined in (9.12) and the setg; andY,. and
the supremuny, of the latter set, respectively defined in expressions [{9.46)
and (9.18), it holds that:

(V[Ofl,OéQ} c L’ \ ULI)(M[al,O(g] = WE)
(i

(Vx € dJVf)(v[ﬁh/B?] € Y:v)(ya:,l > 61 andym,Q > ﬁ?)v

(ii) For a decreasing family{Niq, a.])[a1,as]e\{1,,} Of Crisp subsets dk™ that fulfils
[SC"b], the interval-valued fuzzy set defined’in (9.13) and the setg and Z,, and
the supremunz,, of the latter set, respectively defined in expressions [49.37)
and (9.19), it holds that:

(Vlaw, a] € LT\ {121 ) (Njay 00) = X52)
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9.1 Continuous Case

I
(Vo € dn)(V[B1, B2] € Zy)(2e1 > B1 @andzy o > Ba).

Proof.

(i) = Follows from Proposition 9.1.26.
<«: Since condition [SC"a] is satisfied, Lemma 9.1.28 can bel @s®l thug Ve €
dy)(Vr € LT\ Upr)((r1 < yz1andry < y.2) = r € Y,). Further, it
is given that(Vz € dar)(V[51,B2] € Ya)(ys1 > Brandy,o > B2). Let
[B1,B2] € L'\ Upr and letx € Mg, 5,. We have that:

x € Mig, p,]

(81, B2] € {[o1, ] | [o1, 0] € LT\ Upr andz € Mo, a0}
Yo,1 = B1andy, o > fo

Wi (z) > 51 andWay(z) > o

T € WE

t ¢ 00

As a consequencé/(s, s,] = Wﬁﬁ?'
(i) Analogously.
]

The condition in Proposition 9.1.30 is not always efficiempractice. For a decreas-
ing family (M[alm])[ahaﬂey\%[ (respectiveI)(N[al,02])[041,&2}@1\{1“}), that satisfies
[SC"a] (respectively [SC"h]), it would be needed to caldalthe set,, (respectivelyZ,.)
for all # € dys (respectivelydy) and to check whethey, ; > 1 andy, » > B, for all
[B1, B2] € Y, (respectivelyz, 1 > 81 andz, » > (5 for all [y, 52] € Z,). To avoid this
work, an equivalent condition on the sét§,,, . (respectivelyNV|,, .,)) can be used.

Proposition 9.1.31.

(i) For a decreasing famil;(M[alm])[ahaz]eLz\ULI of crisp subsets dR™ that fulfills
[SCrq], the interval-valued fuzzy sét defined in (9.12) and the sets; andY, and
the supremuny,. of the latter set, respectively defined in expressions }994.48), it
holds that:

(Vz € dar)(V[B1, 2] € Ya)(Yz,1 > 81 @andyy o > F2)
(3

(View, 2] € LI\ Up1)(Miay 0] = U Mg, p,))-
[81,B2],81>a1,B2> a2

I r a decreasing fami .ol )l asle LT\{1 of crisp subsets that fulfills
(ii) Forad ing family Nia, o)) [0y ,a0)err\ {1, OF CIi b dr™ that fulfill
[SC"b], the interval-valued fuzzy seét defined in (9.13) and the sels; and 7, and
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Construction of Interval-valued Fuzzy Morphological Operators

the supremum,, of the latter set, respectively defined in expressions J94.39), it

holds that:
(Vz € dn)(V[B1, B2] € Zz) (221 > B andz, o > fa)
(;
(V[ar, ag] € LT\ {121 })(Niay a0] = U Nig, 62))-
[B1,B2],81>a1,B2> 0
Proof.

(i) =: Letoy,az] € L'\ Ups. Forallz € Mj,, ,,) it holds that:

T € M[al,ag]

(a1, 0] €Y,

Yo,1 > a1 aNdyg o >

(3[B1,B2] € L'\ Upr)(ar < B1 < yp1 andas < B2 < ya2)
(3[B1, Bo] € LI\ Urr)(aq < By anday < By and[By, Ba] € Yz)
(3[B1, B2) € L'\ Upt)(en < B1 andas < B andz € Mg, 5,])

T U M[Bl;ﬁz]'
[B1,82],81 > a1,B2>a2

t st Q

<: Letx € dy. Sincey, = supY,, it holds that(V[51, B2] € Y2) (51 < y.,1 and
B2 < Yz.2)-
We now prove thatV[5, f2] € Y2)(81 < yz1 andfz < y, o). Suppose that
this would not be true and that there would exisi3a, 3] € Y, for which
51 § Yr,1 andﬂg = Yz,2- Sozx € M[,Bhym,z] = M[ﬁlﬁz]' Sinceym = sup YI,
(Flv1,72] € LY\ Upi) (i > B1 andy, > y, 0 andz € My, .,1) Of thusz &
M, ~,)- Consequently, U My, o) 7

(1727128172 >Ya 2 o 17271 281,72 >Ya 2
Mg, 4. ,) and hence a contradiction.

We conclude thatv[5;, B2] € Y2) (81 < Y1 andBs < Y 2).
(i) Analogously.
]

Example 9.1.32.The family (M, a,)){a;.az)err\v,, Of Crisp subsets oR", given by
Mo, 0s) = [-1 4 a1,1 — ag] for all [ay,a2] € L' \ Uy, is an example of a fam-
ily that satisfies condition [SC”a], but for which it does raild that(V[a;, as] € L1\
Upt) (Mo, a,) = WE?), with the interval-valued fuzzy sét as defined in (9.12). Indeed,
let [y, 0] € LY\ Uy, then it holds thatV[3, 2] € LT\ Up:)(B1 > a5 andBy >
as = —1+a; < —1+pandl — B2 < 1 — az) orthus(V[B1, B2] € LI\ Up:) (B >
arandfBy > as = 1 —as & Mg, 3,1). On the other hand — ay € My, 4,. SO

U M[ﬁl,ﬁg] # M[Oél,ag]'
[B1,82],81>a1,B2>a2
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An analogous example can be found for strict-wgak as]-cuts.

Example 9.1.33. The family (M[ahaz])[m7a2]€L1\ULI of crisp subsets oR", given by
Mo, a,) = [-14a1,1 — ag[ for all [ay, as] € L'\ Uy, is an example of a family for
which it holds that(V[ay, az] € LT\ Upr)(Mja, 0, = WE?), with the interval-valued
fuzzy setlV as defined in (9.12).

An analogous example can be found for strict-weak «s]-cuts.

The Construction Principle

Based on the results from the introduction of this subsedaiad analogous to the construc-
tion principle based on weak and stifiat , a5]-cuts, we might extend an increasing operator
¢ onP(R™) to an operato® on F,: (R™) in two ways as follows. For alll € F,:(R"),

?1(4) = U [041,042}417(14%)7
[ar,a0]€ LINU 1
y(A) = U [, o] P(AZ2).

[al,az]GLl\{lﬂl}

Operators having two or more arguments can be extendedgmelly. We illustrate this
for an increasing operatar on P(R™) x P(R") (like the binary dilation). For all, B €
Frr(R™),

\Ifl(A,B) = U [auO@W(AEv Bf)
[ar,a2]€e LINU, 1
Uy(A,B) = U [, o] (A2, BR2).

lar,a2]e LIN{1 1}

As discussed in the introduction of this subsection, forgperatorsb andW it does not
necessarily hold that:

(V[on, 0] € LT\ Upr)(21(A)32 = 6(A52))

a1

(Ve, ag) € LI\ Upr ) (W1(A, B)22 = (A%2, B32))

(Vlen, az] € LT\ {121 })(D2(A)52 = 6(AZ2))
(Vlon, ao] € LT\ {121 })(P2(A, B)g2 = (A2, Bg2)).

We now extend the increasing binary dilation to intervdliea fuzzy sets using the
above introduced construction principle as follows:
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11

—_~— ! —_—~— /
Let A, B € F,:(R™). The extended dilation®(A, B) andD(A,B) of Aby B are
then given by:

D(A,B) = U [a1, as) D(AS2, BSZ), (9.20)

1
[al,aﬂELl\ULI

D(A,B) = U (a1, a) D(AZ2, B22). (9.21)
[a1,a2]€LIN{1 1}

Proposition 9.1.34. Let A, B € F,:(R™), then for ally € R™ it holds that:
0)

—
D(A’ B) (y) = sup Cmin(B(x - y)7 A(‘T)) = D(Ifmin (A’ B) (y)
:CETy(dB)ﬁdA

(ii)
—_—— !
D(A,B) (y) <yt sup  Cain(B(z —y), A(z)) = D¢, (A, B)(y).
(L’GTy(dB)ﬂdA
If A(x) >pr 0pr, Vo € daandB(x) > 0g1, Vo € dp, then

"
D(A,B) (y)= sup  Cuin(B(z —y),A(z)) = D}
2€T, (dp)Nda

(4, B)(y)-

Proof.
() Let A, B € F,:(R™), and lety € R™. From the definition of the binary dilation,
D(AG2, B3?)(y) =

TR )

1 ifye D(AE, BE)
0 else

it follows that:

P

D(A,B) (y) = sup (lar, a2] D(AGZ, BS?))(y)
[04170¢2]€L1\UL1

= sup{[ai, ] |[a1,as] € LI\ ULr andy € D(AS2, B3?)}
sup {[on, ag] | [, a0) € LE\ Upr andT,(B3?) N A% # 0}
= sup{|ai, s | [ou, 9] € L' \ UL and(3z € Ty (dp) N da)
(r € Ty(B3?) andz € A3?)}
= sup{[og, s | [a1,a0] € L'\ Upr and(3z € Ty(dp) Nda)
((B1(z —y) > apandA;(x) > «7) and
(Ba(z —y) > ag and Ay (z) > a2))}
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9.1 Continuous Case H

= sup{[o, s | [a1, 0] € L'\ Upr and(3z € Ty(dg) Nda)
((Coin (B(z — y), A(2)))1 > o1 and
(Comin (B(z —y), A(x)))2 > a2])}
= (%).

First, we will prove tha(x) is less than or equal to

sup {Cmin(B(z —y), A(x)) |z € Ty(dg) Nda} = (¥x).

It holds that:

(%)

= sup{[o,aq] | [a1,a0] € L'\ Upr and(3z € T, (dp) Nda)
((Conin (B(z — y), A(2)))1 > a1 and
(Conin(B(z — y), A(x)))2 > a2])}
<pr sup{[a1, a9] | [a1,a0] € LY\ U.r and

a1 <( sup  Cuin(B(z —y), Az))): and
wE]L(dB)ﬁdA

ag < (  sup  Cuin(B(z —y), A(r)))2}
xE]L(dB)ﬁdA

= sup len(B(x - y)? A(l‘)))
x€Ty,(dp)Nda

()

It also holds thai(xx) <p: (x). If T,(dg) Nda = 0, then(xx) = 0,: and thus
(xx) <pr (x). Otherwise, consider an arbitrary> 0. We have that:

(xx)1 — e is no upper bound for the set of lower bounds of the intervals i
the set{Crin(B(z — y), A(z)) | © € Ty(dp) Nda}and(xx)s — eis no
upper bound for the set of upper bounds of the intervals irséte
{Coin(B(x —y), A(x)) | z € Ty(dp) Nda}

(Fz € Ty(dp) Nda)((xx)1 — € < Crin(B(z — y), A(z)
(32" € Ty(dp) Nda)((x%)2 — € < Conin(B(z" — y), A2

1) an
)2 )

For such element from the first part of the above consequent, for whieh); — e <
Cmin(B(x—y), A(x))1, we can choosas = (xx); —€ < (Cpin(B(z—y), A(x)))1 <
(Crin (B(z — y), A(2)))2, such that

(#%); — € € {a1 | Bag € a1, 1[such thafay, as] € LY\ Uyr) and

(ELI € Ty(dB) N dA)(Oél < (Cmin(B(x - y)aA(x)))l
anday < (Cin(B(z — ), A(x)))2)}-
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H Construction of Interval-valued Fuzzy Morphological Operators

For the second part of the consequent, we can chagse: 0 < (Cpin(B(2' —
y), A(z')))1, such that

(#%)2 — € € {aa | (3aq € [0, az] such thafay, as] € LY\ Uy:) and
(3z e T, (dp)Nda)(ar < (Coin(B(z — ), A(2)))1
andas < (Cmin(B(z —y), A(z)))2)}

It thus follows that:

(xx); — € € {a1 | Gay € [a1,1))([a1, az] € LT\ Upr) and
(Fz € Ty(dp) Nda)(a1r < (Cmin(B(z —y), A(x)))1 and
a2 < (Cmin(B(z — y), A(z)))2))} and
(x%)s — € € {as | Baq € [0, a2))([a1,a2] € LT\ Upr) and
(Fz e T,(dp) Nda)(cq < (Cin(B(z —y), A(z))), and
a2 < (Cin(B(z — y), A(x)))2))}

=  (#%); — e < sup{ay | Bay € [a1,1])([a1,as] € LT\ UL:r) and
(Fz e T,(dp) Nda)(cn < (Cin(B(z —y), A(z)))1 and
a2 < (Cmin(B(z — y), A(z)))2))} and
(#%)2 — € < sup{az | (3a; € [0, a2])([a1, ] € LI\ Upr) and
(Fz e Ty(dp) Nda)(o < (Coin(B(z —y), A(z))):, and
a2 < (Cuin(B(z — y), A(2)))2))}

= [(#%)1 — €, (%%)3 — €] <pr sup{[aq, as] | [a1,as] € LT\ UL and
(Fz e Ty(dp) Nda)(a1r < (Comin(B(z —y), A(x)))1 and
a2 < (Comin(B(z — y), A(2)))2)} = (%)

Takinge — 0 gives the result.
(ii) The proofis analogous to the proof of (i). Only now,

(%) = sup{Cmin(B(z — v), A(2)) |z € Ty(dp) Nda} <p:
sup{[a1, az] | [a1, 0] € LT\ {121} and(3z € T, (dp) Nda)
((Conin (B(z — y), A(z)))1 > a1 and
(Coin(B(z —y), A(2)))2 = a2)} = (%)
will not always hold, but it is however guaranteed4ifz) > 0., Vz € d4 and

B(z) >1r 0z1, Yo € dg. Then we can always choosg = 0 < (Cuin(B(2' —
y), A(z")))1, such that

(#%)2 — € € {aa | (B € [0, az] such thafay, as] € L1\ {1,:}) and

248



9.1 Continuous Case H

(3z € Ty(dp) Nda)(on < (Conin(B(z — y), A(z)))1
andOéQ < (Cmin(B(ac - y)7A(x)))2)}’

analogously to the proof of (i).
O

Example 9.1.23 can be used again to illustrate that if4at) >;: 0,1, Vo € d4 or
notB(z) >r: 0.1, Yo € dp, then not necessarily

sUp{Cmin(B(z — y), A(z)) | x € Ty(dp) Nda} <1
sup{[a, ] € LI\ Uy | 3z € Ty (dp) Nda)
((Coin(B(z — y), A(2)))1 > a1 and
(Comin(B(z —y), A(z)))2 2 az])}-
The construction principle can not be used to extend therpi@ansion to an interval-
valued fuzzy morphological operator, since it is not insieg in both its arguments. Anal-

ogously as for weak and strift;, as]-cuts, it can however be constructed by duality prop-
erties.

Ef,.,(AB)y) = (con, (D¢, (con,(4),B)))(y)
= (con( U (o1, ao] D((con. A)32, Ba?))) (v)
[0t17042]€LI\ULI
- MU o1, a2] D((con, A)a2, Ba?)) (y))
[o1,a2]€LINU, 1

= No( sup  ([ar, 2] D((con, A)32. B3?2))(y))
[al,uz]ELl\ULI

= N sup  ([o, az]eo(E(co((con, A)g?), B32) (1))
[al,az]ELl\ULI

Bt (A B)y) = (con.(Dg,,,(con.(A), B)))(y)

<pr  (con,( U [, 2] D((con, A)2 B53))) ()
[ar,a2]€LINU, 1
N (( U [a1, 2] D((con, A)GT, Ba3)) (y))
[(11 ,CKQ]ELI\UL[

= N sup ([, 2] D((con, A)GE, B32)) ()
[al,az]GLl\ULI

= No( sup  ([on, az]eo(E(co((con, A)D), B5))) ()
[al,az]ELl\ULI

If A(x) >p10p1, Vo € dg andB(x) > 0,1, Va € dp, then the equality holds.
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Construction of Interval-valued Fuzzy Morphological Operators

The interval-valued fuzzy opening and closing can then Instrocted as a combination
of the interval-valued fuzzy dilation and erosion.

9.1.4 Sub- and Supercuts

There is no construction principle based on weak and suitwt and supercuts, since these
sets only give information about the lower or the upper bauwfdhe intervals on which an
interval-valued fuzzy set maps the elements of the universe

Example 9.1.35.Let A(xz) = [0.3,0.5] for all z € [0,1]. For example, foiz = 0.5, we
know that it belongs tod,,, for all a; €]0,0.3], but this does not give us any information
about the upper bound of the interv&(z) = [0.3,0.5].

¢

9.2 Discrete Case

We will now investigate the construction of interval-valuieizzy morphological operators
from the corresponding binary operators in the discretaémaork. It will be seen that the
characterization of the supremum in the discrete case hasaasequence that some of
the difficulties from the continuous case don'’t arise anyandtoreover, also some stronger
relationships will hold.

9.2.1 Construction Based on WeaKa, az]-cuts

Lemma 9.2.1. LetA € Fp; (Z"), then it holds thatd = U o el 42,
8 [a1,a2]€L£,s\{OLI}

i.e.,Vo e 2™
Alx) = sup ([0, a2] AG?) (2)
[ar,az]e Ll \{0,r}
= sup{[aq,as] | [a1, 2] € Lis \ {0zr}andx € A3?}
= [max{as | Bz € [a1, 1]\ {021 })([en, 2] € Ly, andz € A32)},
max{as | (o € [0, aa])([a1, 2] € Li’s andz € A3?)}].
Proof. Similar to the proof of Lemma 9.1.1. O

If we now consider a family P, a,]) a1 ,as)eLt \{0,,} Of Crisp subsets o™ that is
decreasing and we define the interval-valued fuzzyset Z"™ for all = € Z™ as

R(z) = sup (o, 2] Prayy as)) () (9.22)
[ar,az]e Ll \{0,r}

sup {[a1, as] | [aq, as] € Lis \ {0zr}andz € P, a0},
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9.2 Discrete Case

then we might wonder whether it holds thafa:, as] € LL \ {021 })(RS2 = P, a.))-
Just as in the continuous case, the following inclusion géields:

Proposition 9.2.2. For a decreasing family P, o)) (a1 ,as]eL! MO} of crisp subsets of
7™ and the interval-valued fuzzy sBtdefined in (9.22), it holds that:

(V]ar, az] € LT\ {021 }) (Play a0) € B22).
Proof. Analogous to the proof of Proposition 9.1.2. O

The following lemma gives us a condition such that the revémslusion would also
hold.

Lemma 9.2.3. For a decreasing familyPo, a,])[ay,as)eL! MO} of crisp subsets di”,
it holds that ’
(Var, a] € L\ {0zr}) (Vo € Z7)
([041,0[2] € {[ﬂlaﬁﬂ | [ﬁlﬂBQ] € Lf“.,s \ {O.CI} andz € P[ﬁlﬁz]} ~
sup {[B1, B2] | [B1, Ba] € LE \{0zr} anda € Py, 3,1} > 11 [, )
(i
[/S\é] : (V[oq, as] € L,I_,s \ {Ogr }) (Vx € Z") (m € Py, =
((V[B1, Ba] € Li s\ {021 })((Br < e @and Bz > ag) = & & Py, p,))) OF
(81, o) € LEN\ A0 )(Br > v and s < a2) = = & Pig, ) )

Proof.

= Suppose that it holds tha(tﬂ[al,ag} e L, \ {OLI}) (Hx € Z”) (x € Pia,,as]
and ((3[B1,B2] € L, \ {01 })((f1 < a1 @and By > az) andz € Py, 5,))) and
((31,72] € LEN\{02r}) (71 > a1 andy, < az) andz € thﬂ)))- This means
thatsup {[61, B2] | [B1. B2] € L%, \ {021} anda € Pig, 5,1} =11 [, Ba). Further,
thenalsda, az] <pr [11, 82] and thugas, as] € {[B1, o] | [B1, Ba] € Ly \ {021}
andx € Pg, 3,1}, what gives us a contradiction.

«: Suppose that the conditio (] is fulfilled. Let [o,as] € L]\ {0z}, It holds

that (Vo € Z")([o1, 2] € {[B1, B2] | [B1, B2] € L\ {0,:} andz € P, p,} =
sup {[B1, B2] | [B1, B2] € L], \ {0z:} andx € Pig, 5,1} > 11 o, az]). We have to
prove that also the reverse implication holds.

Suppose that this would not be true, i€y € Z™)(sup {[S1, B2] | [51,P=] € Lf’s \

{0z1} anda € Pig, g,)} =11 (a1, o) @andan, ao] & {[B1, B2] | [B1, B2] € LI\
{0z1} andx € Py, g,1}). This would mean thatdy € [a1,1])(3z € [y, 1])(z €
Py .1). If 2 > ay then we would get a contradiction since theag Py, . € Po, a.]-
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n Construction of Interval-valued Fuzzy Morphological Operators

Soz < az and thus(3fy, z] € L.\ {0zr)(y > en andz < ap andz € Py ).
Further, also(32" € [ao,1])(Fy' € [0,2'])(x € Py .q). If ¢/ > a1 then we
would get a contradiction since thenc Py, .1 C Py, a,- S0y < a; and thus
(3ly', 2] € LE N\ {0:})(y < arandz’ > ap andz € Py ).
If we combine the above results, then we find that it would btz ¢ P, o,
and(3[y,z] € Ll \{0z:})(y > ey andz < ap andz € Py, ;) and(3[y’, 2'] €
LI N\ {0z })(y < arandz’ > ay andz € Py, ./), what is contradictory to what
is given. So(Vaz € Z")([a1, az] € {[B1,B2] |[B1,B2] € L\ {0.:} anda €
Pig, g1} < sup {[B1, Bo] | [B1, Bo] € Ly, \ {0c1} andax € Py, g,1} > 11 [an, ).
O

The following proposition is a straightforward consequein the above lemma and
Proposition 9.2.2.

Proposition 9.2.4. For a decreasing familyPo, a,))[a1,as)eL! MO} of crisp subsets of
7™ that satisfies@?] and the interval-valued fuzzy s&tdefined in (9.22), it holds that:

(Vlar, 2] € L\ {021 })(Play az) = 132)-
Proof. Follows from the proof of Proposition 9.2.2 by using Lemmz2.3. O

Remark that if the decreasing fami(ﬁaha?])[ahaz]euys\{oﬁ]} does not satisfy the
condition [SC], it will not hold that (V[ay, as] € LIN{021})(Pa, a0 = RS2), with the set
R as defined in (9.22). Indeed, i§{] does not hold, thet8[a, as] € LI \{0z:})(3x €
Z™)(x & Play,ap) @nd(3[B1, B2] € L\ {021})(B1 < on @and By > ap andx € Pig, 5,1)
and (3[v1,72] € LL,\ {0z1}) (1 > o andye < ap andz € Py, .,)). This would
mean thatR; (z) > v1 > oy andRy(z) > B2 > ao. As a consequence, € R3? and

x € P[Otl,oéz]'
The constructions made in the continuous case can also bk@rped in the discrete
case with the same results. Some remarks need however tedve gi

Proposition 9.2.5. Let A, B € F: (Z"), then for ally € Z™ it holds that:

D(A7 B)(y) = sup Cmin(B(aj - y)a A(Qf)) = Dé
z€Ty(dp)Nda

(4, B)(y)-

min

Proof. The proof is similar to the one of Proposition 9.1.11, wheiais to be shown that
() = (*x), with (x) and(xx) given by:

(x) = sup{laq,as]|[a1,a2] € L7I‘,s \ {0z} and(3z € Ty (dp) Nda)
(Cunin(B(x = y), A(x)) Zpr [, a2])},
(xx) = sup  Coin(B(z —y), A(2))).

€Ty (dB)ﬂdA
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9.2 Discrete Case n

The proof of (x) < (xx) is analogous to the proof of Proposition 9.1.11. The proof of
(xx) < (*) however is much simpler in the discrete framework, since aetchave to
make use of the characterization of the supremurfl, (fl5) N da = 0, then(xx) = 0.:
and thug(xx) <;: (x). Otherwise, in the discrete case, it immediately follovesi(xx) =

sup  Cuin(B(z — ), A(z))) that
IETy(dB)ﬂdA

(#%)1 € {a1 | Baq € [a1,1])([or, ] € L7 s\ {0z} and

(Jz € Ty(dp) Nda)([en, 2] <pr Coin(B(z — y), A(2))))} and
(%) € {aa | Bag € [0, as])([ar, as] € LI <\ {0,r}and

(Fz € Ty(dp) Nda)([on, 2] <pr mm(B(ﬂﬂ —y),A(2))))}
[(+%)1, (#5)2] <pr sup{[[oa, aa] | [on, o] € L, \ {0z} and
(Fz € Ty(dp) Nda)([on, 2] <pr Coin(B(x — y), A(z)))} = (*).

O

Analogously to the continuous case we find the following tatsion of the interval-

valued fuzzy erosiorE%EKD forally € Z™:

Bf e (A, B)(y) = Ny( sup ([a1, az]eo(E(co((con, A)a?), Ba?))) (y))-
lon,as]e L \ {01}

The interval-valued fuzzy opening and closing can then Instrocted as a combination
of the interval-valued fuzzy dilation and erosion.

9.2.2 Construction Based on Stric{fa;, a]-cuts

Recall thatL! , = {[a1,as] |y € I, anday € I} (Subsection 7.3.2). We determine
the umte7 (respecnvelyes) of the flnlte chainl, = {0, % e PR 1,1} (respectively

I, = {0, 2 e PRI 1, 1}) ase, = _1 (respectivelye, = 5_1). We assume that. = e,
which is usually the case in practléeFurther, the sum of (respectively difference between)
the intervalgxy, z5] and[e,, es] is given by[z1 +e,., zo+€;] (respectivelyfz, —e,., xo—es]).
The assumption, = e, is needed if we warts; + e,., z2 + 5] and[z; —e,., x5 — e5] to be
intervals. Additionally, we define the sét,. ; by G, s = {[a1, 2] | (a1 = —e, anday €

(I, \ {1}) U{—es}))}. Remark that7,. , N Lf . = (. Finally, we extend the order relation
<pron Lﬁs to L{w U G, s in a straightforward manner and for this reason, we will inge t
same notatior< 1 :

r<pry<x <y andzs <y, Vr,y € LLS UG- (9.23)

10n the same device and for the same image, the number of bits ustfkfstorage of a grey value (and
consequently the number of allowed grey values) is usuathgtamt and will thus be the same for the grey values
that respectively serve as lower and upper upper bound ofitbevals

253



1
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Also the order relatiorg ;: is extended analogously. The infimum and supremum of an
arbitrary subse$' of Lﬁﬁs U G, s are then respectively given by:

inf S = [inf f 9] = [mi i 9.24

inf § = [inf 1. inf 2] = [min oy, min . (9.2

sup S = [sup z1, sup x3] = [max z, max s|. (9.25)
zES z€S €S €S

We can now formulate the following lemma that resembles Len®1i.12, but does
differ from it.

Lemma9.2.6.LetA € F: (Z"), thenit holdsvz € Z" that:

A(z) = [max{ay | (Faz € [aq, 1])([a1, as] € (L,is \Up:) UG, s andA;(z) > as
and As(x) > aw)}, max{as | (3o € [0, as])([ar, ] € (Li)s \Up:) UGy s
and A, (z) > oy and Az (z) > az)}] + [er, es].

Proof.
max{c | (Jaz € (o1, 1[)(Jon, ] € (L, \ Upr) UG, s and Ay (z) > oy

andAs(x) > az)}, max{as | (3aq € [0, as])([ar, as] € (Lﬁs \ Upr) UG, and
Aq(z) > a; andAy(z) > a2)}] = [A1(z) — e, As(z) — e5] = A(z) — [er, €5].

O

As a consequence, we have to take into account the interval | also for the construc-
tion of interval-valued fuzzy sets. For a decreasing farfdy,, M])[a17a2]€(L5_S\ULI)UGm
of crisp subsets df™ and the interval-valued fuzzy sktin Z" defined for allz: € Z™ as

V(z) = sup {[a1, az] | [a1, 2] € (Li)S\ULz)UGnS andz € Q[a; .1} +er, €5], (9.26)

we might now wonder whether it holds th@t[a, ao] € L\ Up) (V2 = Qlay aa))-
Remark that nonetheless the fact thais for all z € Z™ constructed as the supremum of a
setin(L]  \ Upr) UG, s, V() will always belongL! ..

In contrast to the continuous case, the inclusipp, 5,; < VE always holds.
1

Proposition 9.2.7. For a decreasing familyQ,, , ag])[ahaz]e(y \U,1)uG,.. Of crisp sub-
sets ofZ™ and the interval-valued fuzzy sétdefined in (9.26), it holds that:

(v[ah 0[2] € La{,s \ ULI)(Q[OQ,OQ] - Vaif)

Proof. Let [$1, 2] € L], \ U and letr € Q[g, ,). It then holds that:
S Q[ﬂlﬁz]
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& B, B2] € {[an, as] | [a1, 2] € (LﬁS \Ur)UG, s andz € Q[ a.]}
= sup{|a1, @] | [a1, 0] € (Lis \Ur)UG, s andx € Qa, a0} + [€r, €5]
> 1 [Br, Ba)

54 V(CE) > [ﬂl,ﬁg}
Ba
& oz e VE'

B2
As a consequence€) s, g,] © VBTQ' 0O

The following lemma gives us a condition such that the revémslusion would also
hold.

Lemma 9.2.8. For a decreasing familyQ(a, a.))[a; ,az]e (2! \U, r)uG,.. Of Crisp subsets
of Z", it holds that ’
(V[Oél, CYQ] € (Li,s \ ULI) U Gm)(V;U S Zn)
(lon, a) € {[B1, Ba] | [B1, Ba) € (LE N\ Upr) UG, s andx € Qp, 5,1} <
sup {[ﬂla 52] | [ﬂla 52] € (L{“,s \ ULI) U GT,S andx € Q[ﬁ1,,32]} ZLI [alv 0[2])
(i
1SC] - (V[al,ag] € (L1, \Upi) U G) (\m e zn) (x ¢ Qpor.on] =
((V[ﬁhﬁz] € (Lf,s \Ur)UG,s)((f1 < arandfs > az) = = & Q[Bl.ﬂﬂ)) or
(7181, B2] € (LL\ Upt) UG )(By > a1 andBs < a) = o & Qp,. o)) )

Proof. Analogous to the proof of Lemma 9.2.3. O

The following proposition is a straightforward consequeiof the above lemma and
Proposition 9.2.7.

Proposition 9.2.9. For a decreasing familyQa, ,a,]) (a1 as)e (L1 \U, 1)uG,.. Of Crisp sub-

sets ofZ™ that satisfies{§\0/’] and the interval-valued fuzzy sétdefined in (9.26), it holds
that:

(V[O‘lvO‘Q] € L7I~,s \ UL’)(Q[al,az] = Vo%z)

Proof. Follows from the proof of Proposition 9.2.7 and Lemma 9.28e, for all[31, 82] €
Lﬁ’S\ULz, sup {[a1, as] | [a1, 2] € (Li,s\ULI) UG, s andz € Qa, s} +[er, €5] >11
[B1, 2] implies thatsup {[a1, as] | [a1, ] € (Lf’S \Ur) UG, andz € Qa, a4} >17
(81, B2] and thus(y, B2] € {[a1, as] | [a1, as] € (L \ Upr) UG, s andz € Q[a, a,)}-

O
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Remark that if a decreasing famiqyg[al702])[%,&2]6(@ AU, 1)UG . of crisp subsets of
Z" does not fulfil [5C"], then it will also not hold that¥[a, az] € L\ Upi)(Qay 0z =
V22). Indeed, if [SC'] does not hold, therf3[ay, o] € (LI, \Up) UG, ) (3
Z™)(x & Qay,az) @NA(3[B1, Ba] € (LL \Upr) UG, )(B1 < oy andfy > ap andz €
Q1,5.]) @nd(I[y1,72] € (LE N\ Upr) UG ) (1 > aq andys < az andz € Qpy, +,]))-
This would mean that; (z) > v + e, > a1 andVa(x) > B2 + e5 > ag. Sincey, < as
andfy < a1, [on, 0] € G, but|ag, as] € L,{,S. As a consequence; € Vaif and
x ¢ Q[a1,az]' ) ) . . .

For the construction of the interval-valued fuzzy dilatlonstrict[a, «s]-cuts, we find
a stronger result in the discrete case than in the contincesss. We first need to extend the
definition of strict[cv;, as]-cuts from(L] , \ Up:) to (L], \ Upr) U G, s as follows. For
A€ Fpr (Z27) and[an, as] € Gy,

m

aq

AT Z" o1 = —e, andag = —e,
A% o = —e, anday # —e,

—_— /

We defineD(A, B) forall xz € Z™ as

/

D(A,B) (z) =
sup {[a1, az] | [a1, ao] € (L,,I.,s \Up:) UG, s andz € D(A22 Bng)} + [er, 5]

a1’

—_~ !/
Remark thatD(A, B) (z) € L] , forall z € Z".

—~—

!
The following proposition states that the above constdicliéation D(A, B) equals
the dilationD{ .

Proposition 9.2.10.Let A, B € F.: (Z"), then for ally € Z" it holds that:

D(A,B) (y)=  sup  Cuin(B(z —y),A(z)) = D¢, (A, B)(y).
z€T, (dp)Nda

Proof. Let A, B € F,: (Z"), and lety € Z". It holds that:

D(4; B) (y)

sup {[a1, as] | [, as] € (L7I‘,s \Up:) UG, s and
y € D(AZZ, BE2)} + ler, e

= sup{[aq,as] | [a1, 2] € (Li’s \ Ur:) UG, s and
T, (BE) N AZZ # 0} + [er, €]

sup {[a1, as] | [a1,as] € (Li’s \Upr)UG, s and

(3z € Ty(d) Nda)(zx € T,(BS2) andx € A22)} + [e,, e
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sup {[a1, as] | [a1,as] € (Li’s \Urr)UG, s and
(Fz € Ty(dp) Nda)((Bi(z —y) > a1 andA; (z) > aq) and
(Ba(x —y) > ag andAx(z) > a2))} + [er, es]
sup {[a1, @z | [a1, 0] € (Li’s \Ur:) UG, s and
(32 € T (dp) N1 da) Corin (B(z — 1), A(2)) 311 [as,2])}

+ler, es]
= (%).
We have to prove thdk) is equal to
sUp {Cmin (B(x — y), A(x)) |z € T,(dp) Nda} = (*x).
It holds that:
(x) = sup{lay, o] |[on,a2] € (LL,\ Upr) UG, s and(3z € Ty(dp) Nd.a)

(lon, a2] <pr Cin(B(z — y), A(2)))} + [er, €]
<pr sup{[ag,az] | a1, az] € (Lf:,s \Ups)U G, s and

([ar, 0] < sup  Cuin(B(z —y), A(2)))} + [er, €]
2€T,(dp)Nda

= ( sup Cunin(B(z —y), A(x))) — [er, es]) + [er, €]
€Ty (dp)Nda

= (xx)
The proof of(xx) < (x) however is much simpler in the discrete framework, since we
don’t have to make use of the characterization of the supmentiuZ’, (dz) N d4 = 0, then

(xx) = 0,r and thus(xx) < (x). Otherwise, in the discrete case, it immediately follows
from (%) = sup  Cmin(B(z — ), A(x))) that

z€Ty(dp)Nda
**)1 S {a1 | (30[2 S [0517 ])([al,ag] (Li’s \ ULI) U GT’S and
Jz € Ty(dp) Nda)([ar, a2] <pr Coin(B(x —y), A(z))))} and
xx)g € {ag | (Fag € [0, a])([ar, o] € (Lis \ Upr) UG, and
dx € Ty(dB) n dA)([a17 2] <LI mm(B(x - y)7A(‘T))))}
1)
]
)

(

(

(

(
= (#%)1 € {1 | Bag € [, 1])([a1, 0] € (LL,\ Upr) UG, and

(Fz € Ty(dp) Nda)([on, 2] <pr Crnin(B (Z —y),A(z)) + ler, e]))} and

(#%)2 € {2 | Baq € [0, aa]) ([, az] € (LE s \Upr)UG, s and

(Fz € Ty(dp) Nda)(on, oo] < mm(B( y), A(@)) + [er, €s]))}
= [(x%)1, (#%)2] <pr sup{[ar, o] | [a1, 2] € (L7 \ ULr) UG, s and

(Fz € Ty(dp) Nda)([on, 2] <pr Crnin(B(x — y), A(2)) + [er, es])}
= [(#0)1, (+%)2] <pr sup{[an, ag] | [a1,00] € (L], \ Upr) UG, and
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(3z € T,)(dp) Nda)([ar, ae] Lpt Cin(B(x — y), A(x)))} + [er, es] = (%)
O

Analogously to the continuous case we find the following tesion of the interval-
valued fuzzy erosiod’] . Forally € Z",

By (A, B)(y) =

./\/S( Sup ([al’ a2]CO(E(CO((CONs A)g)r B%))) (y) + [67"7 65]).
[on,02]€(LL \ULI)UGr s

The interval-valued fuzzy opening and closing can then Instrocted as a combination
of the interval-valued fuzzy dilation and erosion.

9.2.3 Construction Based on Weak-Strict and Strict-Weak[a;, as]-
cuts

The following lemma for strict-wealu; , ao]-cuts resembles Lemma 9.1.24, but does differ
from it. The notationH,. ; stands for the sell, ; = {[a1, 2] | a1 = —e, anday € I, }.
Remark thatH,., N L, = (. We further also extend the order relatien : on L/ _ to
H, U L} in a straightforward manner and for this reason, we will iigesame notation
<rr:

r<pry<x <y andzs <y, Vr,y € Lis UH, . (9.27)

Also the order relationr< ;. is extended analogously. The infimum and supremum of an
arbitrary subse$ of Li)s U H, , are then respectively given by:

inf S = [inf z1, inf xo] = [mi i 9.28

S =g Jobeal = by pig el ©28)

sup S = [sup 21, sup x3] = [max x, max 3. (9.29)
zeS  z€S zeS zeS

Lemma9.2.11.LetA € F,: (Z"), then it holdsvz € Z" that:

A(z) = [max{ay | (Fas € I)([a1, 2] € (Li.’s \{1.:}) UH,and
Ai(x) > ap and Az () > a9)} + e, max{as | 3oy € (I \ {1}) U {—e.})
([0417012} S (L7I",s \ {1[/1}) U Hr,s andAl(I) > o andAQ(SC) > OéQ)}].
Proof.
The result follows from the fact that

max{a, | (o € I;)([a1, a9 € (L{n’S \{l1})UH, sandA;(z) > oy
andA;(z) > az)} = Ai(z) —er,
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and

max{az | Gar € (I \ {1}) U {—e,})([a1, 2] € (L7 \ {1er}) U Hys
andAl(SU) > andAz(x) > CVQ)} = AQ(I’)

O

For the weak-strickoy, as]-cuts, an analogous result exists if we extend the 4etto
the setl!

51

the setL{,,s, we will nonetheless use the interval notati(llT;S ={lon, ] |1 € I, g €

I, U{—es} andas + e; > «q}. We further also extend the order relatighn : on L{",s to

of which the elements don’t need to be intervals. Becauskeo$imilarity to

LI in a straightforward manner and for this reason, we will irgesame notatiof 1

v <pry<r <y andry <yo, Va,y € L. (9.30)

Also the order relatior< ;,r is extended analogously. The infimum and supremum of an
arbitrary subse$' of L}I’s U H, s are then respectively given by:

inf S' = [inf inf = |mi i 9.31

mfs=[af o Jobed = lnigon pig el ©-31

sup S = [sup x1, sup z3] = [max z, max zs|. (9.32)
zeS  wxeS zeS zeS

Lemma9.2.12.LetA € F.: (Z"), then it holdsvz € Z" that:

A(w) = [max{as | (Jaz € (I, \ {1}) U{~€,})([an, 0] € LI\ Ups
and A, (z) > oy and Az (z) > as2)}, max{as | (3oy € 1)

([ar, ] € Lﬁﬁs \Urr andA;(z) > a; and Ax(x) > as))} + e

Proof.
Analogous to the proof of Lemma 9.2.11. O

For given families(M[ahaz])[m’az]e(iiswﬂ) and(Nia,,as))[ar,as)€(LL \{1 41 })UH, ..
of crisp subsets df” that are decreasing and the interval-valued fuzzy ¥easd Z in Z"
respectively defined for alt € Z™ as

Y () = sup {[ou, ] | [ar, 0] € (LL, \ Upr) andz € Mo, oy} + [0,6,],  (9.33)
and
Z(z) = sup {[a1, @] | [a1, ] € (Li,s\{lﬁz})UHm andz € Niq, a,}+er, 0], (9.34)

we might now wonder whether it holds th@ta, as] € LI\ Upr) (Y32 = Mg, y)),
respectively whether it holds thét[ay, as] € L\ {1.1})(Z52 = Nja,,0,)). Remark
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Construction of Interval-valued Fuzzy Morphological Operators

that nonetheless the fact thatandZ are for allz € Z™ constructed as the supremum of a
set |nLI \Uprand(L] \{1.:})U H, , respectivelyy (x) andZ(x) will always belong
L.

In contrast to the continuous case, the inclusidfis, .,) € Y2 andNjg, . € Zo2
always hold.

Proposition 9.2.13.
(i) For a decreasing famil;(M[awz])[a Je(ET AU, 1) of crisp subsets o™ and the
1,02 T8 L
interval-valued fuzzy séf defined in (9.33), it holds that:
(V[Oél, (12] c LI \ ULI)(M[al,ag] - Yaz)

(i) Foradecreasing family Nio, a.))(a;, a2]€(L1 \ {11 DUH, . of crisp subsets ¢f™ and
the interval-valued fuzzy sétdefined in (9. 34) it holds that:

(Vlan, as] € LE N\ {121})(Njay a0) € 252).
Proof.
(i) Let[B1,532] € L]\ Upr and letz € Mg, g,). It then holds that:
z € Mis, 6]
& (81,82l € {lan.aa] | [, @] € (L, \ Upr) anda € Mo, o}
= (sup {[a1, 2] | [a1, 0] € (LL, \ Upr) andz € Mia, ,})1 > 1 and

(sup {[a1, ] | [an, as] € (fﬁ: \Urr) andz € Mo, ay)})2 + €5 > [
<~ Yl((E) > 61 andYQ(.’ﬂ) > 52

Bz
= zGYﬂl.

As a consequencé{ s, g,] € YE.
(i) Analogously.
O
The following lemmata give us a condition such that the regénclusion would also
hold.
Lemma 9.2.14. For a decreasing family{M,, a,])
7™, it holds that

[ o] €(LT U, 1) of crisp subsets of

(V[ar, aa) € (LL,\ Upr)(Vx € Z7)
([ar, aa] € {[Br, 8] | [B1, Ba) € (LI, \Upr) anda € Mg, 45, } <
sup {[81, B2] | [B1, B2] € ([Z \Upr)andx € Mg, g,1} > 11 [0, a2))
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9.2 Discrete Case

)
[SC"a] : (V[al,ag] € ((ITZ/S \ ULI)) (Vx € Z”) (x & Mo, 0, =
((V[B1, B2] € (LL\UL))((B1 < a1 and Bz > az) = @ & Mis, 4,)) OF
(781, o) € (LL A\ UL))((Br > a1 and B < az) = 2 & Mis, 5,) ).

Proof. Analogous to the proof of Lemma 9.2.3. O

Lemma 9.2.15.For a decreasing familyN o, a,]) a1, az]e(L! N1, )UH, . of crisp subsets
of Z™, it holds that ) '
(Var, ao] € (Li \ {1zr}) U Hy ) (Ve € Z7)
([, @] € {[B1. Bo] | [Br, Bo] € (L] s\ {1£1}) U Hy s anda € Nig, 5,1} &
sup {[B1, B2] | [B1, Ba] € (L] s\ {1z1}) UH, sandx € Nig, g1} >pr [, az])
()
[SC78]: (Vlar,as] € (LEN 1) U Hyy ) (Vo € 27) (@ Nigy 001 =
((V[B1, Ba] € (LE N\ {12 }) U Hp s)((Br < en @andfy > ag) = & & Nig, 3,])) OF
((V[B1, B2) € (L N\A{1zr}) UH, o) ((B1 > c @and By < o) = a ¢ N[Bl,ﬁz])))-

Proof. Analogous to the proof of Lemma 9.2.3. O

The following proposition is a straightforward consequept the above lemmata and
Proposition 9.2.13.
Proposition 9.2.16.
(i) For a decreasing famil;(M[amz])[alﬂﬂamwu) of crisp subsets dL™ that sat-
isfies[SC" a] and the interval-valued fuzzy sgtdefined in (9.33), it holds that:

(Vlar, az) € LE N\ Upt) (Mo, 00 = Y2?).

(i) For a decreasing famin(N[alm])[m’a2]€(qs\{lu})UHT,S of crisp subsets of"
that satisfiedSC”'b] and the interval-valued fuzzy sg&tdefined in (9.34), it holds
that:

(Vlan, ag] € LE N\ {121})(Njay 0] = 252).

Proof.

(i) Follows from the proof of Proposition 9.2.13 and Lemma.sgélvsince it follows for
all [81,82] € LL,\ Upr from (sup {[a, o] | [a1, 2] € (LI, \ Upr) andz €
M[Oq,oéz]})l 2 61 and(sup{[al’aﬂ € (L£,s \ ULI) | UANS M[al,az]})Q +es > 62
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Construction of Interval-valued Fuzzy Morphological Operators

thatsup {[a, as] | [a, 2] € (IEJS \Upr)andz € Mo, a,} =11 [B1, 8] and thus

(81, B2] € {[an, 2] | [a1, az] € (LE \ Upr) andz € My, q,)}-
(i) Follows analogously from the proof of Proposition 42.and Lemma 9.2.15

O

Remark that if a decreasing famiy/(,, «.,)) of crisp subsets oZ™

[a1,a2]€lz\ULI
does not fulfil [FC"a], then it will also not hold thatV[o, ao] € LY\ Upt)(Mia, . =
Y2). Indeed, if 5C"a] does not hold, theri3a, as] € LI, \ Upi)(Ge € Z")(z ¢
Mo, ap) @nd (3[B1,B2] € LE N\ Upt)(B1 < ap andfy > ag andx € Mg, 5,)) and
(3v1,72) € LE N\ Upr)(m > o andy, < ap andz € My, .,1)). This would mean that
Yi(xz) > v > oy andYa(z) > Ba + es > ag. Sincey; > «a; andys < as, it follows
thatay < v < 72+ es < ay and thugay, as] € Lﬁﬁs. As a consequence, € Yf and
T € M[al,az]- o

An analogous remark holds for strict-weflk , a2]-cuts and condition§C"b].

For the construction of the interval-valued fuzzy dilation weak-strict[a , ao]-cuts,
we first need to extend the definition of weak-stfiet, oo ]-cuts from(L] \Upr) to (L] ,\

Upr). ForA € Fpr (Z7) and[aq, ag] € L\ Uy,

A% ={z |z € Z", Ai(z) > oy andAy(z) > as}.

—_—— /!

The dilationD(A, B) is then for allz € Z™ defined as

"

D(A,B) (z) = sup {[a1, as] | [a1, 0] € ([Z \ Urr) andz € D(AS?, B3?)} + [0, e4].

@)
For the construction by strict-weak, «s]-cuts, we need to extend the definition from
(L N\{1zr}) to(LE \{1.:})UH, ., as follows. Ford € F,r (Z") and[oy, o] € H, s,

AP = A" ={z |2z € Z" andAy(z) > as}.

—_—— !

We then defindD(A, B) forallz € Z" as

"

D(A,B) (z) =
sup {[a1, aso] | [a1, 2] € (Lﬁs \{lzr})UH,  andz € D(A22, B32)} + e, 0].

ay’?

P e "

Remark thatD(A, B) (x) € L, andD(A,B) (x) € L] forall z € Z".

The following proposition states that the above constdidtations are equal tﬁ)émm-
Remark that for the strict-wedk; , az]-cuts, this is a stronger result than in the continuous
case.
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9.3 Conclusion

Proposition 9.2.17.Let A, B € F.: _(Z"), then for ally € Z" it holds that:
0)

—_—

D(A,B) (y)= sup  Cwin(B(z —y),A(x)) = D¢, (A, B)(y).
z€Ty(dp)Nda
(i)
"
D(A,B) (y)=  sup  Con(B(z —y),Ax)) = D¢, (A, B)(y).
aZETy(dB)ﬂdA
Proof. Analogous to the proof of Proposition 9.2.10. O

Analogously to the continuous case we find the following ¢artsions of the interval-
valued fuzzy erosiotz; . Forally € Z", it holds that

Ef (A B)(y) =
Na( s ([, asleo(B(cof(con AVEE), BE) () + [0,e4]),

lar,az2]eLL \U. 1

and

B, (A B) ) =

Ni( sup ([on1, az]eo(E(col(con, A)g2), BE2)))(y) + [er, 0)).
lar,az]e(LL \{1,r})UH, 5

The interval-valued fuzzy opening and closing can then Imstracted as a combination
of the interval-valued fuzzy dilation and erosion.

9.2.4 Sub- and Supercuts

Also in the discrete framework, there is no constructiomgigle based on weak and strict
sub- and supercuts, since these sets only give informationtahe lower or the upper
bounds of the intervals on which an interval-valued fuzzyyreaps the elements of the
universe.

9.3 Conclusion

In this chapter we have studied the construction of increpsiterval-valued fuzzy oper-
ators from their corresponding binary counterparts in ggnend more in detail for the
morphological operators. This construction was investiddoth in the general continu-
ous case and the practical discrete case. In the discretewasvork with interval-valued
fuzzy sets fromF.: (Z") instead ofF,:(R") since in practice, both the image domain
and the range of grey values are sampled due to technic#htionis. It was shown that in
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Construction of Interval-valued Fuzzy Morphological Operators

both cases the constructed interval-valued fuzzy dilatamnesponds to the interval-valued
fuzzy dilationD/, , that is dual to the erosiof'z,, ,,, which allows us to construct the
other basic morphological operators. Further, we foundlmaitthe characterization of the
supremum in the discrete case has as a consequence that fsthraalidficulties from the

continuous case don't arise anymore. Moreover, also sorapggr relationships hold in
this practical case.
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Conclusion

The contents of this thesis were divided into three mainspantthe first part, an introduc-
tion to fuzzy set theory and image processing was given irp@nd and 2 respectively.

After this introduction, we presented several fuzzy logasdd video filters in Part II.
Chapter 3 and 4 concentrated on removing additive Gaussiee from greyscale and
colour image sequences respectively, while the greyscalecalour filters in respectively
Chapter 5 and 6 were developed for the random impulse nosge ca

The greyscale filter proposed in Chapter 3 [79, 86] can be asenfuzzy logic based
improvement of the multiple class averaging filter (MCA)rfrg146, 149]. Pixels are no
longer divided into discrete classes based on their alesditference in grey value to the
central window pixel, but are treated individually by indieing a fuzzy set to represent
to which degree this absolute difference is large. Furtiherheuristic construction of ex-
ponential functions to assign the filtering weights to thgghlourhood pixels is replaced
by a more theoretically underbuilt fuzzy logic frameworkwhich fuzzy rules, that corre-
spond to the ideas behind the MCA filter, are used. Such fureg can easily be extended
by including new information as can e.g. be seen in the secoluir extension in Chap-
ter 4. Analogously to the MCA filter, the proposed pixel doméitering framework was
extended to the wavelet domain. Contrary to the MCA filter &éesv, we opted for an ad-
ditional pixel domain time-recursive averaging insteaddiitering of the low-frequency
band. The experimental results showed that the proposed gomain method outper-
forms all other compared state-of-the-art pixel domaierf#ltin terms of PSNR and that the
wavelet domain extension competes with other state-eithevavelet domain filters of a
comparable complexity and outperforms them on sequendasel by a still camera. The
filter is however outperformed by higher complexity methtigg use motion compensation
or a 3D-transform.

Additionally, in Chapter 4 the filtering framework from Cltap 3 was extended to
colour videos. More precisely, we introduced two alteneti[75, 76] for the usually ap-
plied filtering of theY -component of thé& UV -transform of the frames with the original
greyscale method. In the first proposed filter [75], the \@eis used in the filtering frame-
work are extended from grey values to colour vectors. Ineistor based approach the
pixel colours are seen as vectors of which the different momepts should not be used sep-
arately in order to preserve the correlation between tHereifit colour bands. The second
proposed approach [76] filters each of the colour bands aggwrbut to exploit the corre-
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lation between the different colour bands, the fuzzy rutee filtering framework are now
extended by incorporating information from the other colbands. Both approaches are
additionally also combined with a refinement of the secorifiker from [119]. From the
experimental results, it could be seen that the proposemicektensions result in a better
colour and detail preservation than t1ié/ V' approach.

In Chapter 5 two greyscale video filters [77, 74, 80] for th@ogal of random impulse
noise are introduced. Both filters consist of successiveendetection and filtering steps.
In this way, details can be better preserved because nobaké meeds to be filtered in
one drastic denoising step that will inevitably also remdetails then. On the other hand,
also the remaining noise might be easier to detect if a ceraladle part of the noise has
already been filtered in a previous step. Indeed, more teliabighbours are available
for comparison. In the noise detection steps of the firstguiesl algorithm [80], for each
pixel a degree is calculated to which it is considered noisy @l pixels that have a non-
zero degree are filtered. In the successive steps of the dgroposed method [77, 74],
fuzzy rules containing linguistic values are used to deteenboth a degree to which a
pixel is considered noisy and a degree to which it is consil@nisefree. Pixels are now
filtered if the noisy degree is larger than the noisefree egrThe filtering of detected
pixels is performed in a motion compensated way. The motiwnpensation technique has
originally been developed for video compression applicati Although it has already been
adopted for the filtering of videos corrupted by additive &aan noise, it has not really
found its way to impulse noise video filters yet. The corregfence between two pixel
blocks in successive frames is usually calculated as thenrabaolute distance (MAD)
between those blocks. To reduce the influence of noisy inepuda this measure in order to
use it in our filters, we have introduced a noise adaptive naéanlute distance. From the
experimental results it can be seen that the proposed fiketst in a very good trade-off
between noise removal and detail preservation. They atleefiualso shown to outperform
all other compared state-of-the-art random impulse ndigedi

Analogous to the greyscale methods in Chapter 5, also tli®naimpulse noise colour
video filter [78, 73] in Chapter 6 removes the noise step by gtecombine a good noise
removal to a good detail preservation. Each of the coloudbéfiltered separately. How-
ever, the fuzzy rules that are used to determine the degoeehith a pixel component
is considered noisy and noisefree in each step do now notreglyire information from
a spatio-temporal neighbourhood in the same colour bandexploit also the extra in-
formation that is available from the other colour bands.ePeomponents for which the
noisy degree is larger than the noisefree degree are filtdmdhis, we again applied the
noise adaptive block matching technique used in the motiwnpensation for the filters
in the previous chapter. To exploit besides the temporakinétion also the spatial infor-
mation available in the sequence as much as possible, weefudeveloped the technique
by spreading the search region for corresponding blockstmté the previous and current
frame. The experiments show that the proposed method dotpes other state-of-the-art
filters both visually and in terms of objective quality measusuch as the PSNR and NCD.

The third part of the thesis is more theoretical of nature deals with interval-valued
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fuzzy mathematical morphology.

In Chapter 7, we started with an overview of the evolutiomfrbinary mathematical
morphology to interval-valued fuzzy mathematical morplgyl and additionally investi-
gated the basic properties of the interval-valued fuzzyphological operators [84].

Next, in Chapter 8 we studied the decomposition of the iratlevalued fuzzy morpho-
logical operators in theifoy , an]-cuts [83, 85]. We were interested in the relationship be-
tween the[ay, as]-cut of the result of such operator applied on an intervilked image
and structuring element and the result of the corresporiimayy operator applied on the
[, an]-cut of the image and structuring element. We found that énpfactical discrete
case, thgay, as]-cuts of the interval-valued fuzzy dilation based on thejeoctor C,,, .,
the erosion based on the implicafbt i p, and the opening and closing based on those two
can always be written in terms of binary operators. For asleeni-norms and upper border
implicators, we found an approximation in terms of binargigtors. In the continuous case,
the relationships are sometimes less strong. If no equadis/found, a counterexample was
constructed. The decomposition results are first of alf@ging from a theoretical point of
view since they provide us a link between interval-valuexzfumathematical morphology
and binary mathematical morphology, but secondly, a cawerinto binary operators also
reduces the computation time needed for the calculationaf g, , as]-cut.

Finally, in Chapter 9, we also investigated the reverselprobi.e., the construction of
interval-valued morphological operators from the binang®[81, 82]. Inspired by the con-
struction of an interval-valued fuzzy set from jts;, as]-cuts, we studied the construction
of an interval-valued fuzzy set from a general nested fawiilgrisp sets and under which
conditions thga, aa]-cuts of the constructed interval-valued fuzzy set comwas to the
crisp sets in the family used for the construction. Usingséheesults, increasing binary
operators could be extended to interval-valued fuzzy dpesdy defining the result of the
interval-valued fuzzy operator as the interval-valuedzfuzet that is constructed from the
family that arises by applying the binary operator onthe «-]-cuts of its arguments. This
allows us to compute the interval-valued fuzzy operatorsdiybining the results of several
binary operators or to approximate them by a finite numbeiirwdry operators. Applying
the construction principle on the increasing binary motpbical dilation, we obtained the
interval-valued fuzzy dilation based on the conjuncigr,, which again provides us a nice
theoretical link between interval-valued fuzzy and binargthematical morphology.
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