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Beeldsequenties spelen een belangrijke rol in de hedendaagse wereld. Ze kunnen ons
namelijk veel informatie verschaffen. Video’s worden onder meer gebruikt voor verkeers-
observaties, bewakingssystemen, autonome navigatie, . . .Door een slechte beeldverwer-
ving, -transmissie of -opname zijn de sequenties echter gewoonlijk onderhevig aan ruis.
Hierdoor zal het resultaat van beeldverwerkingstechnieken soms sterk gereduceerd wor-
den en is het vooraf filteren van de beelden dikwijls noodzakelijk. De meest voorkomende
ruistypes zijn impulsruis, additieve ruis en multiplicatieve ruis. In het geval van impulsruis
is een bepaald percentage van de pixels aangetast en is hun grijswaarde of́eén of meerdere
van de kleurcomponenten vervangen door een ruiswaarde. Deze ruiswaarde kańeén waarde
uit een beperkte reeks vaste waarden zijn (meestal de minimaal of maximaal toegelaten
waarde: zout-en-peper-ruis) of kan een willekeurige waarde uit een bepaalde verdeling zijn
(gewoonlijk is dit een uniforme verdeling). Bij een beeld dat aangetast is door additieve
ruis, is bij iedere grijswaarde of kleurcomponent van iedere pixel een ruiswaarde opgeteld
die het resultaat is van een toevalsproces (bijvoorbeeld een willekeurige waarde uit een
Gaussische verdeling). Multiplicatieve ruis tenslotte, wordt gekenmerkt door het feit dat
de ruiswaarde die aan iedere grijswaarde of kleurcomponentwordt toegevoegd afhankelijk
is van die grijswaarde of kleurcomponent zelf. Spikkelruisis een voorbeeld van dit laatste
type.

Nadat in de twee hoofdstukken van het inleidende deel van de thesis de basisbegrippen
betreffende vaagverzamelingleer en beeldverwerking behandeld zijn, worden in het tweede
deel van de thesis verschillende videoruisfilters voorgesteld. In het ontwerp van deze fil-
ters zullen vaaglogica en vaagverzamelingenleer gebruiktworden. Vaagverzamelingenleer
is een veralgemening van de klassieke scherpe verzamelingenleer. Terwijl scherpe verza-
melingen in een universumX gemodelleerd worden alsX − {0, 1} afbeeldingen, worden
vaagverzamelingen gekarakteriseerd alsX − [0, 1] afbeeldingen. In de klassieke verzame-
lingenleer behoort een element uit het universum dus steedsofwel tot de verzameling ofwel
niet. In de vaagverzamelingenleer zijn ook lidmaatschapsgraden tussen 0 en 1 mogelijk, wat
een meer graduele overgang tussen behoren tot en niet behoren tot toelaat. Dergelijke gradu-
ele overgang maakt vaagverzamelingen zeer geschikt voor het verwerken van menselijke
kennis waarin vaak linguı̈stische waarden (zoals groot, klein, . . . ) worden gebruikt. Door
het gebruik van vaagverzamelingen is een verschil in grijswaarde tussen twee pixels niet
noodzakelijk groot of niet groot, maar kan het ook in een bepaalde mate groot zijn. Vaagver-
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zamelingenleer heeft zijn nut al meermaals bewezen in het beeldverwerkingsdomein zoals
bijvoorbeeld gëıllustreerd wordt in [54].

De eerste filter die we voorstellen, in hoofdstuk 3, is bedoeld voor grijswaardevideo’s
die onderhevig zijn aan additieve Gaussische ruis. De filterkan gezien worden als een vaag-
logische verbetering van de filter gepresenteerd in [146, 149]. De ideëen achter deze filter
werden vertaald in een vaaglogisch systeem gebaseerd op vaagregels. Éen van de voorde-
len van een vaagregel is dat nieuwe informatie eenvoudig kantoegevoegd worden, zoals
bijvoorbeeld gëıllustreerd wordt in de tweede kleuruitbreiding die beschreven wordt in het
volgende hoofdstuk. Net zoals in [146, 149] wordt de filter ook uitgebreid van het pixel-
domein naar het wavelet-domein. De wavelettransformatie transformeert een gegeven beeld
in een beeld dat relatief weinig niet-verwaarloosbare coefficiënten bevat. Deze coefficiënten
corresponderen met de details die aanwezig waren in het oorspronkelijke beeld, zodat het
onderscheiden van ruis en details tijdens het ontruisingsproces eenvoudiger wordt. Experi-
mentele resultaten tonen aan dat de voorgestelde pixel-domein methode de overige state-of-
the-art pixel-domein methoden overtreft in performantie en dat de wavelet-domein methode
kan concurreren met state-of-the-art wavelet-domein methoden van een gelijkaardige com-
plexiteit en die zelfs overtreft op het gebied van PSNR (peak-signal-to-noise ratio) voor
beeldsequenties bekomen met een stilstaande camera zonderzoom. De gepresenteerde
wavelet filter wordt echter overtroffen door filters van een hogere complexiteit die bewe-
gingsschatting en 3D-transformaties gebruiken.

In tegenstelling tot voor grijswaardevideo’s, kunnen in deliteratuur slechts weinig filters
gevonden worden voor kleurenvideo’s die aangetast werden door additieve Gaussische ruis.
De reden hiervoor is dat grijswaardefilters op een rechtstreekse manier uitgebreid kunnen
worden tot kleurensequenties. De grijswaardefilter kan namelijk toegepast worden op elk
van de kleurbanden apart of op de helderheidscomponentY van deY UV -transformatie
van de beelden. In hoofdstuk 4 bieden we twee alternatieve kleuruitbreidingen voor de
grijswaardefilter uit hoofdstuk 3. De eerste kleurenfilter is een vector-gebaseerde techniek
die iedere kleurenpixel alśeén geheel beschouwt, waarvan de componenten niet afzonderlijk
gebruikt mogen worden. De variabelen die gebruikt werden inhet grijswaardefiltersysteem
uit hoofdstuk 3 worden desgevallend uitgebreid van grijswaarden naar kleurvectors. In
de tweede voorgestelde kleurenaanpak worden de verschillende kleurbanden afzonderlijk
gefilterd met het grijswaardesysteem, dat echter uitgebreid wordt door het toevoegen van
informatie uit de overige kleurbanden aan de vaagregels. Beide kleuruitbreidingen proberen
dus zoveel mogelijk gebruik te maken van de correlatie tussen de verschillende kleurbanden
om een zo optimaal mogelijk kleur- en detailbehoud te bekomen. De experimenten tonen
aan dat de filters inderdaad beter in dit opzet slagen dan de gewoonlijk toegepasteY UV -
aanpak.

Na de reductie van additieve Gaussische ruis in hoofdstuk 3 and 4, concentreren we
ons in de volgende twee hoofdstukken op willekeurig verdeelde impulsruis. In hoofdstuk 5
ontwikkelen we twee grijswaardefilters voor dit ruistype. Om een zo goed mogelijk balans
te vinden tussen ruisverwijdering en detailbehoud, wordt in beide filters de ruis in ver-
schillende opeenvolgende filterstappen verwijderd. De details zullen gemakkelijker kunnen
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behouden worden doordat niet alle ruis verwijderd moet worden in één drastische stap,
wat onvermijdelijk gepaard zou gaan met detailverlies. Langs de andere kant zullen ook
overgebleven ruispixels gemakkelijker gedetecteerd kunnen worden daar er, door het reeds
gefilterd zijn van enkel buren in een vorige stap, meer betrouwbare buren zijn om de pixel
mee te vergelijken. In de eerst beschreven methode wordt in elk van de filterstappen voor
iedere pixel een graad berekend tot de welke hij als ruis wordt beschouwd. Iedere pixel die
een niet-nul graad krijgt, wordt gefilterd. In de tweede voorgestelde ruisfilter wordt voor
elke pixel nu zowel een graad tot de welke hij als ruis en tot dewelke hij als ruisvrij gezien
wordt. Pixels worden nu gefilterd als hun ruisgraad in die stap groter is dan hun ruisvrije
graad. De filtering zelf gebeurt in beide algoritmes aan de hand van bewegingscompensatie.
Deze techniek vindt zijn oorsprong in de compressie van video en werd reeds overgenomen
in verschillende filters voor additieve Gaussische ruis. Detechniek heeft echter nog niet
echt zijn intrede gedaan bij impulsruisfilters. De gelijkenis van twee pixelblokken in twee
opeenvolgende frames is gewoonlijk berekend aan de hand vaneen gemiddelde absolute
afstand, een maat die nogal onderhevig is aan impulsen. Daarom stellen we een aanpassing
van deze maat voor die rekening houdt met gedetecteerde ruis. Uit de experimenten kan
men besluiten dat beide beschreven impulsruisfilters resulteren in een zeer goede balans
tussen ontruiskracht en detailbehoud en alle andere vergeleken methoden overtreffen.

Als laatste filter, introduceren we ook een kleurenfilter voor het willekeurig verdeelde
impulsruistype. Analoog als in het vorige hoofdstuk wordt de ruis opnieuw stap per stap
verwijderd zodat een goede ruisverwijdering gecombineerdkan worden met een goed de-
tailbehoud. De beschreven methode ontruist elk van de kleurbanden afzonderlijk, maar de
vaagregels die de graad bepalen tot de welke een pixelcomponent als ruis of als ruisvrij
beschouwd wordt, houden nu rekening met de extra informatiedie beschikbaar is in de an-
dere kleurbanden. Pixelcomponenten die een grotere ruisgraad dan ruisvrije graad hebben
in een gegeven stap, worden opnieuw gefilterd. Hiertoe hebben we de bewegingsgecom-
penseerde techniek die toegepast werd in het vorige hoofdstuk verder uitgewerkt door de
zoekruimte voor het vinden van een gelijkaardige pixelblokuit te breiden en ook blokken in
het huidige frame te onderzoeken en zo naast de temporele informatie ook zoveel mogelijk
de beschikbare spatiale informatie uit te buiten. Soms kan immers geen vergelijkbare blok
gevonden worden in het vorige frame door bijvoorbeeld snelle beweging die groter is dan de
zoekruimte. De experimenten tonen aan dat de voorgestelde kleurenfilter andere state-of-
the-art methoden duidelijk overtreft zowel in termen van objectieve kwaliteitsmaten zoals
de PSNR en het genormaliseerd kleurverschil (NCD) als visueel.

In tegenstelling tot het tweede deel van de thesis dat handelt over ruisverwijdering en
eerder praktisch gericht is, is het derde deel van de thesis eerder theoretisch van aard. In
dit derde deel bestuderen we de intervalwaardige wiskundige vaagmorfologie. Wiskundige
morfologie is een theorie die ontwikkeld werd voor het analyseren van ruimtelijke structuren
[127, 129] en die onder andere toegepast wordt in beeldverwerkingstechnieken zoals rand-
detectie, objectherkenning, patroonherkenning, beeldsegmentatie, beeldvergroting, . . . De
benaming ‘morfologie’ komt voort uit het feit dat de theorietot doel heeft de vorm van
objecten te analyseren. Het bijvoeglijk naamwoord ‘wiskundig’ is te wijten aan het ge-
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bruik van onder andere verzamelingenleer, topologie en tralie-algebra tijdens deze analyse.
De theorie werd gëıntroduceerd in de jaren zestig door G. Matheron en J. Serra en spruit
voort uit de studie naar de geometrie van poreuze media. Dergelijke media kunnen binair
gëınterpreteerd worden in de zin dat een punt van een poreus medium ofwel tot een porie
zal behoren ofwel tot de grondmassa rond de poriën. Daarom ontwikkelden G. Matheron
en J. Serra een verzamelingenformalisme om binaire (zwart-wit) beelden te analyseren. De
matrix rond de porïen kan dan gezien worden als de verzameling van voorwerppunten, ter-
wijl de poriën zelf samen het complement van deze verzameling vormen. Beeldvoorwerpen
kunnen dus verwerkt worden met behulp van eenvoudige verzamelingenbewerkingen zoals
doorsnedes, unies, complementering en verschuivingen. Opbasis van deze bewerkingen
worden de morfologische basisoperatoren dilatatie en erosie en opening en sluiting als een
combinatie van de eerste twee gedefiniëerd die een gegeven beeld omvormen met behulp
van een structuurelement om op die manier meer informatie (grootte, vorm, . . . ) over de
voorwerpen uit het beeld te verkrijgen. De binaire theorie werd in een later stadium uitge-
breid naar grijswaardebeelden. Bekende aanpakken hiervoor zijn de umbrabenadering en de
schijfjesbenadering, alsook een derde aanpak die steunt ophet gegeven datn-dimensionale
grijswaardebeelden en vaagverzamelingen inRn op eenzelfde manier gemodelleerd kunnen
worden, namelijk alsRn− [0, 1] afbeeldingen. Bijgevolg kunnen vaagverzamelingenbewer-
kingen toegepast worden op grijsbeelden. Recent werd deze laatste aanpak nog verder uitge-
breid op basis van uitbreidingen van de vaagverzamelingenleer. In deze thesis concentreren
we ons op intervalwaardige vaagverzamelingen en de daarmeegepaard gaande interval-
waardige wiskundige vaagmorfologie. Zoals scherpe verzamelingen en vaagverzamelingen
respectievelijk overeenstemmen met binaire en grijswaardebeelden, stemmen intervalwaar-
dige vaagverzamelingen nu overeen met intervalwaardige beelden. Dit zijn beelden waarbij
de beeldpunten niet langer opéén specifieke grijswaarde worden afgebeeld, maar op een
gesloten interval van grijswaarden, zodat onzekerheid omtrent de grijswaarde in rekening
gebracht kan worden.

In hoofdstuk 7 geven we eerst een overzicht van de verschillende stappen in de evolu-
tie van binaire wiskundige morfologie via de grijswaardemorfologiën naar intervalwaardige
vaagmorfologie en bespreken we het intervalwaardige beeldmodel meer in detail. Vervol-
gens onderzoeken we de basiseigenschappen van de intervalwaardige vaagmorfologische
operatoren.

Hoofdstuk 8 handelt over de decompositie van de intervalwaardige vaagmorfologische
operatoren. Meer precies gaan we op zoek naar het verband tussen enerzijds de[α1, α2]-
niveauverzameling van het resultaat van een morfologischeoperator op een intervalwaardig
beeld voor een gegeven intervalwaardig structuurelement en anderzijds het resultaat van
de corresponderende binaire operator op de[α1, α2]-niveauverzamelingen van het interval-
waardig beeld en structuurelement. In sommige gevallen vonden we een gelijkheid, in an-
dere slechts een benadering. De bekomen resultaten zijn eerst en vooral interessant omdat ze
ons een theoretisch verband verschaffen tussen intervalwaardige wiskundige vaagmorfolo-
gie en binaire wiskundige morfologie. Verder zal een omvorming in binaire operatoren ook
de rekentijd die nodig is voor het berekenen van een dergelijke [α1, α2]-niveauverzameling
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reduceren.
In hoofdstuk 9 tenslotte, wordt het omgekeerde vraagstuk onderzocht, namelijk de con-

structie van intervalwaardige morfologische operatoren uit de binaire morfologische ope-
ratoren. We vertrekken vanuit een meer algemeen standpunt en onderzoeken eerst de con-
structie van een intervalwaardige vaagverzameling uit eengenestelde familie scherpe verza-
melingen naar analogie met de constructie van een intervalwaardige vaagverzameling uit
zijn [α1, α2]-niveauverzamelingen. Deze resultaten worden dan vervolgens gebruikt om
stijgende binaire operatoren uit te breiden tot intervalwaardige vaagoperatoren door de
uitkomst van deze laatste te definiëren als de intervalwaardige vaagverzameling die gecon-
strueerd wordt uit de familie die ontstaat door het toepassen van de binaire operator op de
[α1, α2]-niveauverzamelingen van de argumenten. Wanneer we dit toepassen op de binaire
dilatatie, vinden we de intervalwaardige vaagdilatatie gebaseerd op de infimumoperator.
Dit geeft ons opnieuw een mooi theoretisch verband tussen intervalwaardige wiskundige
vaagmorfologie en binaire wiskundige morfologie.

De resultaten in deze thesis werden gepubliceerd in internationale tijdschriften [73, 74,
79, 80, 81, 85] en werden gepresenteerd op internationale conferenties [75, 76, 77, 78,
82, 83, 84, 86]. Ook bijdragen tot andermans werk werden gepubliceerd in internationale
tijdschriften [101, 106, 130], in een hoofdstuk in een boek [31] en in de proceedings van
internationale conferenties [91, 97, 98, 99, 100, 102, 103,104, 105, 107, 120, 131].
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Preface

Image sequences play an important role in today’s world. They provide us a lot of informa-
tion. Videos are for example used for traffic observations, surveillance systems, autonomous
navigation and so on. Due to bad acquisition, transmission or recording, the sequences are
however usually corrupted by noise, which hampers the functioning of many image process-
ing techniques. A preprocessing module to denoise the images often becomes necessary.
The most common noise types that can be distinguished are impulse noise, additive noise
and multiplicative noise. In the case of impulse noise, a certain percentage of the pixel grey
values or colour components is replaced by noise values. Such noise value can be fixed
(usually as the minimum or maximum allowed value: salt and pepper noise) or the result of
a random process (usually with a uniform distribution). If an image is corrupted by additive
noise, then a random value from a given distribution (e.g. a Gaussian distribution) has been
added to each pixel. In the multiplicative noise type, finally, the intensity of the noise value
added to a pixel depends on the intensity of the pixel grey value or colour component itself
(e.g. speckle noise).

After a short overview of the basic concepts in fuzzy set theory and image processing,
respectively given in the two chapters of the introductionary first part of this thesis, we
introduce several algorithms for the denoising of image sequences in Part II. In those video
filters, fuzzy logic and fuzzy set theory is used. Fuzzy set theory [142] is a generalisation of
classical crisp set theory. Where crisp sets in a universeX can be modelled byX − {0, 1}
mappings, fuzzy sets are characterized asX − [0, 1] mappings (membership functions). In
classical set theory an elementx ∈ X belongs to a set or doesn’t belong to it. In fuzzy set
theory also membership degrees between zero and one and thusa more gradual transition
between belonging to and not belonging to is allowed. This makes fuzzy sets very useful
for the processing of human knowledge, where linguistic values (e.g. large, small,. . . ) are
used. For example, a difference in grey level is not necessarily large or not large, but can be
large to some degree. Fuzzy set theory has already shown to bevery effective in the domain
of image processing as illustrated e.g. in [54].

The first proposed filter, discussed in Chapter 3, is intendedfor greyscale image se-
quences corrupted by additive Gaussian noise. It can be seenas a fuzzy logic based im-
provement of the multiple class averaging filter (MCA) from [146, 149]. We took the ideas
behind the MCA filter and translated those in a fuzzy logic framework containing fuzzy
rules. One of the advantages of such fuzzy rule is that it is easy to include new infor-
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mation as is e.g. illustrated in the second colour extensionpresented in the next chapter.
Analogously to the MCA filter, the proposed filtering framework was first developed in the
pixel domain and additionally extended to the wavelet domain. The wavelet transform of
an image results in a sparse representation of its content. The transformed image contains
relatively few non-negligible coefficients that correspond to the details in the image, which
facilitates the denoising process.

Only few filters for colour videos corrupted by Gaussian noise can be found in literature.
Greyscale methods can be extended to colour sequences in a straightforward way by apply-
ing them on each of the colour bands separately or by applyingthem on theY -component
of theY UV -transform of the frames. In Chapter 4, we present two alternative colour exten-
sions of the greyscale method introduced in Chapter 3. The first alternative is a vector-based
approach in which the colour vectors are treated as entitiesof which the different colour
components are not used separately. The used variables in the filtering framework are ac-
cordingly extended from grey values to colour vectors. In the second alternative, each of the
colour bands is filtered separately by the filtering framework from the previous chapter, in
which the fuzzy rules are now extended by integrating colourinformation, i.e., information
from the other colour bands. Both extensions thus try to exploit the correlation between the
different colour bands.

In the next two chapters, we concentrate on image sequences corrupted by random im-
pulse noise. In Chapter 5 two greyscale filters for this noisetype are developed. To find
a good trade-off between noise removal and detail preservation, in both filters the noise is
removed step by step. Details are better preserved because not all noise needs to be filtered
in one drastic denoising step and remaining noise pixels will be easier to detect if some
of its neighbours have already been filtered and more reliable neighbours are available for
comparison. In the first presented algorithm, in each of the successive steps, for each pixel
a degree is calculate to which it is considered noisy. All pixels that are noisy to some de-
gree will be filtered in this step. The second presented algorithm calculates in each step
for each pixel both a degree to which it is considered noisy and noisefree. Pixels are now
filtered if their noisy degree is larger than their noisefreedegree in this step. For the filtering
of the pixels, we apply motion compensation, a technique used in video compression, that
is already adopted in video filters for additive Gaussian noise, but has not really found its
way to impulse noise video filters yet. For the calculation ofthe correspondence between
two pixel blocks in successive frames, we have made the commonly used mean absolute
distance (MAD) adaptive to the impulse noise.

Next, in Chapter 6, an impulse noise filter for colour sequences is introduced. Anal-
ogously as in the previous chapter, the noise is again removed step by step to combine a
good noise removal to a good detail preservation. The filter denoises each of the colour
bands separately. However, the fuzzy rules that are used to determine the degrees to which
a pixel component is considered noisy and noisefree now benefit from the extra information
that is available from the other colour bands. Pixel components for which the noisy degree
is larger than the noisefree degree are filtered in the considered step. For this filtering, we
further develop the motion compensated technique from the previous chapter by searching
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for a similar block not only in the previous frame, but also inthe current frame. In the case
that, e.g. due to motion, no similar block can be found in the previous frame, there is still a
probability that a similar block can be found in the current frame.

Where Part II that introduces fuzzy techniques for the removal of noise in video is more
practical, Part III of the thesis is more theoretical. In this part we study interval-valued
fuzzy mathematical morphology. Mathematical morphology is a theory intended for the
analysis of spatial structures [127, 129] that has found application in e.g. edge detection,
object recognition, pattern recognition, image segmentation, image magnification, . . . The
term ‘morphology’ reflects to the fact that the theory aims atanalysing the shape of objects.
The adjective ‘mathematical’ results from the use of set theory, topology, lattice algebra
and so on in this analysis. The theory was introduced in the sixties by G. Matheron and J.
Serra and arises from the study of the geometry of porous media. Since a point of a porous
medium either belongs to a pore or to the matrix surrounding the pores, porous media can
be looked at in a binary way. Inspired by this study, G. Matheron and J. Serra introduced a
set formalism to analyse binary (black-and-white) images.In the above, the matrix can be
considered as the set of object points, while the pores constitute the complement of this set.
Image objects can thus be processed by simple operations as unions, intersections, comple-
mentation and translations. Using these set operations, the basic morphological operators
dilation and erosion and the opening and closing, as a combination of the former two, are
defined to transform a given image by the help of a structuringelement in order to obtain
information (size, shape, . . . ) about the image objects. Binary mathematical morphology
was later extended to greyscale images by the threshold and umbra approach as well as by
a fuzzy approach that is based on the observation that fuzzy sets in the universeRn and
n-dimensional greyscale images can be modelled in the same way, i.e., as mapping from
Rn into the unit interval[0, 1]. This allows us to apply fuzzy set operations on greyscale
images. Recently, fuzzy mathematical morphology has been further extended based on
extensions of fuzzy set theory. In this thesis we concentrate on the extension based on
interval-valued fuzzy sets, called interval-valued fuzzymathematical morphology. Where
classical crisp sets and fuzzy sets respectively corresponded to binary and greyscale images,
interval-valued fuzzy sets now correspond to interval-valued images, where an image ele-
ment is not longer mapped onto one specific grey value, but onto an interval of grey values,
such that uncertainty concerning the grey value is allowed.

In Chapter 7, we give an overview of the evolution from binarymathematical morphol-
ogy over the different greyscale morphology theories to interval-valued fuzzy mathematical
morphology and the interval-valued image model and we investigate the basic properties of
the interval-valued fuzzy morphological operators.

Chapter 8 deals with the decomposition of the interval-valued fuzzy morphological oper-
ators. We investigate the relationship between the[α1, α2]-cut of the result of such operator
applied on an interval-valued image and structuring element and the result of the corre-
sponding binary operator applied on the[α1, α2]-cut of the image and structuring element.
Sometimes an equality can be found and sometimes only an approximation can be found.
These results are first of all interesting because they provide a link between interval-valued
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fuzzy mathematical morphology and binary mathematical morphology, but such conversion
into binary operators also reduces the computation time needed for the calculation of such
[α1, α2]-cut.

In Chapter 9, the reverse problem is tackled, i.e., the construction of interval-valued mor-
phological operators from the binary ones. We start from a more general perspective and
investigate the construction of an interval-valued fuzzy set from a nested family of crisp sets
in analogy to the construction of an interval-valued fuzzy set from its[α1, α2]-cuts. These
results are then additionally used to extend increasing binary operators to interval-valued
fuzzy operators by defining the result as the interval-valued fuzzy set that is constructed
from the family that arises by applying the binary operator on the[α1, α2]-cuts of its argu-
ments. Application on the binary dilation results in the interval-valued fuzzy dilation based
on a specifict-norm (the infimum operator), which again provides us a nice theoretical link
between interval-valued fuzzy and binary mathematical morphology.

The results in this thesis have been published in international journals [73, 74, 79, 80, 81,
85] and have been presented on international conferences [75, 76, 77, 78, 82, 83, 84, 86].
Also contributions to other people’s work have been published in international journals
[101, 106, 130], in a book chapter [31] and in the proceedingsof international conferences
[91, 97, 98, 99, 100, 102, 103, 104, 105, 107, 120, 131].
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1
Introduction to Fuzzy Set

Theory

In this chapter, we introduce the basic concepts of fuzzy settheory, which will be needed
for a good comprehension of the remainder of this thesis. Fora more extensive study, we
refer the interested reader to [53].

1.1 Fuzzy Sets

1.1.1 Characterization

In classical set theory, a setA in a universeX divides the universe into two parts: the
elements that belong toA (and thus satisfy a given defining property) and the elementsthat
do not belong toA (and do not satisfy the defining property). As a consequence,a classical
set (or crisp set)A in a universeX can be represented by the functionχA given by

χA : X → {0, 1}
x→ 1, if x ∈ A,
x→ 0, if x 6∈ A,

which we call the characteristic function ofA. The class of all crisp sets in a universeX is
denoted byP(X).

However, in real life situations, an object often satisfies aproperty to some degree, i.e.,
it does not completely satisfy the property, but also does not completely not satisfy the
property. For example, when do we call a persontall? We can not say that a man of1m80
is not tall at all. However, there are still a lot of people that are taller. E.g., a man of2m
satisfies the propertytall to a higher degree. It is clear that classical crisp sets are not able
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to represent the propertytall. In that case, we would have to choose one value, e.g.1m80,
and all lengths greater or equal to this value are called talland all other lengths are called
not tall. So two persons of e.g.1m60 and1m79, that differ a considerable number of
centimeters in length, are both called not tall. However, a person of1m80, who is only1cm
taller than a person of1m79, would suddenly be called tall. To overcome this problem,
Zadeh introduced the concept of a fuzzy set [142] by extending the characteristic functions
to membership functions and in this way allowing a gradual transition between satisfying a
property (belonging to a set) or not. An element can now also have a membership degree
between0 and1. The more an object belongs to the set (e.g. the taller a person), the higher
its membership degree. Summarized, a fuzzy setA in a universeX is characterized by the
functionχA given by

χA : X → [0, 1]
x→ χA(x),

which we call the membership function ofA. For the ease of notation, in the remainder of
this thesis, we will use the name of the set for its membershipfunction, i.e., we will write
A(x) instead ofχA(x). Further, the class of all fuzzy sets in a universeX is denoted by
F(X).

1.1.2 Basic Concepts

In this subsection, we give some basic concepts concerning fuzzy sets that will return in the
remainder of this work.

Definition 1.1. LetA ∈ F(X). The supportdA ofA is defined as1:

dA = {x ∈ X|A(x) > 0}.

Definition 1.2. LetA ∈ F(X). The kernelkA ofA is defined as2:

kA = {x ∈ X|A(x) = 1}.

Definition 1.3. LetA ∈ F(X) and letα ∈]0, 1]. The weakα-cutAα ofA is defined as:

Aα = {x ∈ X|A(x) ≥ α}.

Remark that the choiceα = 0 would not yield new information (because it would result
in the universeX). Further, in a lot of properties this special case would need to be excluded.
Therefore, this case is usually also excluded from the definition.

Definition 1.4. LetA ∈ F(X) and letα ∈ [0, 1[. The strongα-cutAα ofA is defined as:

Aα = {x ∈ X|A(x) > α}.
1Also the notationsupp A is often used.
2Also the notationker A is often used.

8



1.2 Fuzzy Logical Operators

Remark that the choiceα = 1 would not yield new information (because it would result
in the empty set∅). Further, in a lot of properties this special case would need to be excluded.
Therefore, this case is usually also excluded from the definition.

Definition 1.5. LetA ∈ F(X). A is called normalized if

(∃x ∈ X)(A(x) = 1).

Definition 1.6. LetA ∈ F(X). A is called pseudo-normalized if

sup
x∈X

A(x) = 1.

Definition 1.7. LetA ∈ F(X). The heighth(A) ofA is defined as3:

h(A) = sup
x∈X

A(x).

Definition 1.8. LetA ∈ F(X). The plinthp(A) ofA is defined as4:

p(A) = inf
x∈X

A(x).

1.2 Fuzzy Logical Operators

Analogous to the extension of a crisp set to a fuzzy set, the binary Boolean logic is extended
to fuzzy logic by also allowing truth values between zero andone. The Boolean negation
(¬), conjunction (∧), disjunction (∨) and implication (→) on{0, 1} are respectively gener-
alized by negators, conjunctors, disjunctors and implicators on[0, 1] [137].

1.2.1 Definitions

Definition 1.9.

• A negatorN on [0, 1] is a decreasing[0, 1] − [0, 1] mapping that coincides with the
Boolean negation on{0, 1}, i.e.,N (0) = 1 andN (1) = 0.

• A negatorN is an involutive negator on[0, 1] if (∀x ∈ [0, 1])(N (N (x)) = x).

The best known involutive negator is Zadeh’s standard negator Ns, given byNs(x) =
1− x for all x ∈ [0, 1].

Definition 1.10.

• A conjunctorC on[0, 1] is an increasing[0, 1]2−[0, 1] mapping that coincides with the
Boolean conjunction on{0, 1}2, i.e.,C(0, 0) = C(0, 1) = C(1, 0) = 0 andC(1, 1) =
1.

3Also the notationhgt A is often used.
4Also the notationplt A is often used.
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• A conjunctorC is a semi-norm on[0, 1] if (∀x ∈ [0, 1])(C(1, x) = C(x, 1) = x).

• A semi-normC is a triangular norm (t-norm) on[0, 1] if it is commutative and asso-
ciative.

Well-known triangular norms are e.g. the minimum operatorCM , the productCP , the
Łukasiewicz t-normCW and the drastic t-normCZ :

CM (x, y) = min(x, y),

CP (x, y) = x · y,
CW (x, y) = max(0, x+ y − 1),

CZ(x, y) =

{
min(x, y) if max(x, y) = 1

0 else
,

with (x, y) ∈ [0, 1]2.

Definition 1.11.

• A disjunctorD on [0, 1] is an increasing[0, 1]2 − [0, 1] mapping that coincides with
the Boolean disjunction on{0, 1}2, i.e., D(1, 1) = D(0, 1) = D(1, 0) = 1 and
D(0, 0) = 0.

• A disjunctorD is a semi-conorm on[0, 1] if (∀x ∈ [0, 1])(D(0, x) = D(x, 0) = x).

• A semi-conormD is a triangular conorm (t-conorm) on[0, 1] if it is commutative and
associative.

Well-known triangular conorms are e.g. the maximum operator DM , the probabilistic
sumDP , the Łukasiewicz t-conormDW and the drastic t-conormDZ :

DM (x, y) = max(x, y),

DP (x, y) = x+ y − x · y,
DW (x, y) = min(1, x+ y),

DZ(x, y) =

{
max(x, y) if min(x, y) = 0

1 else
,

with (x, y) ∈ [0, 1]2.

Definition 1.12.

• An implicatorI on [0, 1] is a hybrid monotonic[0, 1]2 − [0, 1] mapping (i.e., de-
creasing in the first argument and increasing in the second argument) that coincides
with the Boolean implication on{0, 1}2, i.e., I(0, 0) = I(0, 1) = I(1, 1) = 1
and I(1, 0) = 0. Every implicatorI induces a negatorNI defined byNI(x) =
I(x, 0), ∀x ∈ [0, 1].

• An implicatorI is a border implicator on[0, 1] if (∀x ∈ [0, 1])(I(1, x) = x).

10
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• A border implicatorI is a model implicator on[0, 1] if it is contrapositive w.r.t. its in-
duced negator, i.e.,(∀(x, y) ∈ [0, 1]2)(I(x, y) = I(NI(y),NI(x))), and if it fulfills
the exchange principle, i.e.,(∀(x, y, z) ∈ [0, 1]3)(I(x, I(y, z)) = I(y, I(x, z))).

Well-known model implicators are e.g. the Kleene-Dienes implicator IKD, the Re-
ichenbach implicatorIR and the Łukasiewicz implicatorIW :

IKD(x, y) = max(1− x, y),

IR(x, y) = 1− x+ x · y,
IW (x, y) = min(1, 1− x+ y),

with (x, y) ∈ [0, 1]2.

1.2.2 Fuzzy If-Then Rules

The fuzzy logical operators are e.g. used to calculate the activation degree of a fuzzy if-
then rule. Such fuzzy rules will constitute the basis of the noise filters for video sequences
developed in Part II of this thesis. Consider for example thefollowing fuzzy rule:

Fuzzy Rule 1.1.
IF ( a isA ORb isB) AND c is NOTC

THENd isD.

In this ruleA ∈ F(X1), a ∈ X1, B ∈ F(X2), b ∈ X2, C ∈ F(X3), c ∈ X3 and
D ∈ F(X4), d ∈ X4 (where (some of) the universesX1, X2, X3 andX4 may coincide).
The degreeD(d) to whichd isD (belongs toD), i.e., the degree to which the consequent
of the rule is true, equals the activation degree of the rule,i.e., the degree to which the
antecedent of the rule is true. So, if we use a conjunctorC, a disjunctorD and a negatorN
for the AND-, OR- and NOT-operator respectively, the degreeD(d) is then given by

D(d) = C(D(A(a), B(b)),N (C(c))).

1.3 Fuzzy Set Operations

1.3.1 Complement, Intersection and Union of Fuzzy Sets

The definition of the complement, intersection and union of crisp sets is based on the
Boolean logical operators. Indeed, letA,B ∈ P(X), then

co(A) = {x ∈ X|¬(x ∈ A)},
A ∩B = {x ∈ X|(x ∈ A) ∧ (x ∈ B)},
A ∪B = {x ∈ X|(x ∈ A) ∨ (x ∈ B)}.

So, to extend the crisp set operations to fuzzy sets, fuzzy logical operators are used.

11
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Definition 1.13. LetA,B ∈ F(X). If N is a negator on[0, 1], then theN -complement
coN (A) ofA is defined as the fuzzy set inX given by:

(coN (A))(x) = N (A(x)), ∀x ∈ X.

If C is a conjunctor on[0, 1], then theC-intersectionA ∩C B of A andB is defined as the
fuzzy set inX given by:

(A ∩C B)(x) = C(A(x), B(x)), ∀x ∈ X.

If D is a disjunctor on[0, 1], then theD-unionA ∪D B ofA andB is defined as the fuzzy
set inX given by:

(A ∪D B)(x) = D(A(x), B(x)), ∀x ∈ X.

If C (respectivelyD) is the operatorCM (respectively the operatorDM ), then the inter-
section (respectively union) is called the Zadeh-intersection (respectively Zadeh-union) and
the notation∩C is simplified to∩ (respectively∪D to∪).

If C andD are commutative and associative (in particular if they are at-norm and a
t-conorm), then the above definitions can be extended to the intersection and union of an
arbitrary finite family of fuzzy sets. If further the conjunctor C and the disjunctorD can also
be extended to an infinite number of arguments, then also an extension to infinite families
is possible. For the Zadeh-intersection and Zadeh-union and an arbitrary (infinite) family
(Aj)j∈J in F(X), this becomes:

(∩j∈JAj)(x) = inf
j∈J

Aj(x), ∀x ∈ X,

(∪j∈JAj)(x) = sup
j∈J

Aj(x), ∀x ∈ X.

1.3.2 Inclusion of Fuzzy Sets

The inclusion of two fuzzy sets is defined as follows:

Definition 1.14. LetA,B ∈ F(X), then

A ⊆ B ⇔ (∀x ∈ X)(A(x) ≤ B(x)).

1.4 L-Fuzzy Sets

In some cases, the interval[0, 1] does not suffice as an evaluation space. Therefore, Goguen
generalized the fuzzy sets introduced by Zadeh toL-fuzzy sets [40], whereL is a complete
lattice.

12
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1.4.1 Lattice Theory

To give the definition of a complete lattice [7], we have to start from that of a partially
ordered set.

Definition 1.15. A partially ordered set (poset) is a couple(P,≤P ), whereP is a non-empty
set and≤P is a binary relation (ordering)5 onP that satisfies:

• (∀x ∈ P )(x ≤P x) (reflexivity),

• (∀(x, y) ∈ P 2)(x ≤P y andy ≤P x⇒ x = y) (anti-symmetry),

• (∀(x, y, z) ∈ P 3)(x ≤P y andy ≤P z ⇒ x ≤P z) (transitivity).

If further also each two elements in the partially ordered set (P,≤P ) are comparable (i.e.,
(∀(x, y) ∈ P 2)(x ≤P y or y ≤P x)), then(P,≤P ) is called a totally ordered set or chain.

Some important concepts that are defined in a poset are the following:

Definition 1.16. Let (P,≤P ) be a poset,A ⊆ P andb ∈ P .

• b is an upper bound ofA⇔ (∀a ∈ A)(a ≤P b),

• b is a lower bound ofA⇔ (∀a ∈ A)(b ≤P a),

• A is bounded above in(P,≤P ) ⇔ (∃b ∈ P )(b is an upper bound ofA),

• A is bounded below in(P,≤P ) ⇔ (∃b ∈ P )(b is a lower bound ofA),

• A is bounded in(P,≤P ) ⇔ A is bounded above andA is bounded below,

• b is the greatest element ofA⇔ b ∈ A andb is an upper bound ofA,

• b is the least element ofA⇔ b ∈ A andb is a lower bound ofA,

• b is the supremum ofA (b = supA) ⇔ b is the least upper bound ofA,

• b is the infimum ofA (b = inf A) ⇔ b is the greatest lower bound ofA.

By the help of those concepts, the definition of a complete lattice can be given.

Definition 1.17. A poset(P,≤P ) is called a lattice if every doubleton inP has a supremum
and infimum.

Definition 1.18. A lattice(L,≤L) is called bounded ifL has a greatest and a least element.
A lattice (L,≤L) is called complete if every non-empty subset ofL has a supremum and
infimum.

Remark that a complete lattice is also bounded. The greatestand least element of a
bounded latticeL = (L,≤L) are unique and will be denoted by1L and0L respectively.

To end this subsection, we introduce the different lattice-morphisms.

Definition 1.19. [7, 28] LetL = (L,≤L) be a complete lattice andf anL − L mapping.
If for all (x, y) ∈ L2 it holds that

5The binary relation≤P puts an ordering on the elements ofP and should be read as “is less than or equal to”.

13
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• f(inf(x, y)) = inf(f(x), f(y)), thenf is a meet-morphism,

• f(sup(x, y)) = sup(f(x), f(y)), thenf is a join-morphism,

• f(inf(x, y)) = sup(f(x), f(y)), thenf is a dual meet-morphism,

• f(sup(x, y)) = inf(f(x), f(y)), thenf is a dual join-morphism.

If for each family(xj)j∈J in L, whereJ is an arbitrary index family, it holds that

• f( inf
j∈J

xj) = inf
j∈J

f(xj), thenf is an inf-morphism,

• f(sup
j∈J

xj) = sup
j∈J

f(xj), thenf is a sup-morphism,

• f( inf
j∈J

xj) = sup
j∈J

f(xj), thenf is a dual inf-morphism,

• f(sup
j∈J

xj) = inf
j∈J

f(xj), thenf is a dual sup-morphism.

1.4.2 Characterization

For a complete latticeL = (L,≤L), anL-fuzzy setA in a universeX is characterised by
its membership functionχA:

χA : X → L
x→ χA(x).

Analogously as for fuzzy sets, we will simplify the notationχA(x) to A(x) for the mem-
bership degree of an elementx ∈ X in theL-fuzzy setA. The higher this degree (w.r.t.
≤L), the more the element belongs to the set. The class of allL-fuzzy sets in a universeX
is denoted byFL(X).

Remark that([0, 1],≤) forms a complete lattice and that fuzzy sets as introduced by
Zadeh are a special case ofL-fuzzy sets.

1.5 L-Fuzzy Logical Operators

1.5.1 Definitions

The fuzzy logical operators on[0, 1] can be extended to operators onL = (L,≤L) as
follows.

Definition 1.20.

• A negatorN onL is a decreasingL−L mapping (w.r.t.≤L) that satisfiesN (0L) =
1L andN (1L) = 0L.

• A negatorN is an involutive negator onL if (∀x ∈ L)(N (N (x)) = x).

14
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Definition 1.21.

• A conjunctorC on L is an increasingL2 − L mapping (w.r.t. ≤L) that satisfies
C(0L, 0L) = C(0L, 1L) = C(1L, 0L) = 0L andC(1L, 1L) = 1L.

• A conjunctorC is a semi-norm onL if it satisfies(∀x ∈ L)(C(1L, x) = C(x, 1L) =
x).

• A semi-normC is a t-norm onL if it is commutative and associative.

Definition 1.22.

• A disjunctorD on L is an increasingL2 − L mapping (w.r.t. ≤L) that satisfies
D(1L, 1L) = D(0L, 1L) = D(1L, 0L) = 1L andD(0L, 0L) = 0L.

• A disjunctorD is a semi-conorm onL if it satisfies(∀x ∈ L)(D(0L, x) = D(x, 0L) =
x).

• A semi-conormD is a t-conorm onL if it is commutative and associative.

Definition 1.23.

• An implicatorI onL is a hybrid monotonicL2 − L mapping (i.e., decreasing in the
first argument (w.r.t.≤L) and increasing in the second argument (w.r.t.≤L)) that
satisfiesI(0L, 0L) = I(0L, 1L) = I(1L, 1L) = 1L and I(1L, 0L) = 0L. Every
implicatorI induces a negatorNI defined byNI(x) = I(x, 0L), ∀x ∈ L.

• An implicatorI is a border implicator onL if it satisfies(∀x ∈ L)(I(1L, x) = x).

• A border implicatorI is a model implicator onL if it is contrapositive w.r.t. its
induced negator, i.e.,(∀(x, y) ∈ L2)(I(x, y) = I(NI(y),NI(x))), and if it fulfills
the exchange principle, i.e.,(∀(x, y, z) ∈ L3)(I(x, I(y, z)) = I(y, I(x, z))).

In the above definition, it is already mentioned that every implicator I on L induces
a negatorNI on L given byNI(x) = I(x, 0L), ∀x ∈ L. Further, also conjunctors and
implicators can be induced by other logical operators.

Let N andC be respectively a negator and a conjunctor onL. Then the operatorDC,N
given byDC,N (x, y) = N (C(N (x),N (y))), ∀(x, y) ∈ L2 is a disjunctor onL. Analo-
gously, ifN andD are respectively a negator and a disjunctor onL, then the operatorCD,N
given byCD,N (x, y) = N (D(N (x),N (y))), ∀(x, y) ∈ L2 is a conjunctor onL. If N is
an involutive negator, then a conjunctorC and a disjunctorD are called dual with respect to
N if and only if C = CD,N andD = DC,N .

Let N andI be respectively a negator and an implicator onL. Then the operatorCI,N
given byCI,N (x, y) = N (I(x,N (y))), ∀(x, y) ∈ L2 is a conjunctor onL and it is called
the conjunctor induced byI andN .

Let N andC be respectively a negator and a conjunctor onL. Then the operatorIC,N
given byIC,N (x, y) = N (C(x,N (y))), ∀(x, y) ∈ L2 is an implicator onL and it is called
the implicator induced byC andN .

Let N andD be respectively a negator and a disjunctor onL. Then the operatorID,N
given byID,N (x, y) = (D(N (x), y)), ∀(x, y) ∈ L2 is an implicator onL and it is called
the implicator induced byD andN .
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LetC be a conjunctor onL that satisfies(∀x ∈ L)(C(1L, x) = 0L ⇒ x = 0L). Then the
operatorIC given byIC(x, y) = sup{z ∈ L|C(x, z) ≤L y}, ∀(x, y) ∈ L2 is an implicator
onL and it is called the residual implicator ofC [32].

Further, the order relation≤L on the latticeL can be extended to the logical operators
as follows:

Definition 1.24. LetN1 andN2 be two negators onL, then

N1 ≤L N2 ⇔ (∀x ∈ L)(N1(x) ≤L N2(x)).

LetC1 andC2 be two conjunctors onL, then

C1 ≤L C2 ⇔ (∀(x, y) ∈ L2)(C1(x, y) ≤L C2(x, y)).

LetD1 andD2 be two disjunctors onL, then

D1 ≤L D2 ⇔ (∀(x, y) ∈ L2)(D1(x, y) ≤L D2(x, y)).

LetI1 andI2 be two implicators onL, then

I1 ≤L I2 ⇔ (∀(x, y) ∈ L2)(I1(x, y) ≤L I2(x, y)).

1.5.2 Some Properties

In this subsection, we will give some properties concerningtheL-fuzzy logical operators,
that will be used in the remainder of this thesis.

Lemma 1.5.1. Let C be a conjunctor onL and let(aj)j∈J and (bj)j∈J be families inL,
with J an arbitrary index family. It holds that:

(i) sup
j∈J

C(aj , bj) ≤L C
(
sup
j∈J

aj , sup
j∈J

bj

)
,

(ii) inf
j∈J

C(aj , bj) ≥L C
(
inf
j∈J

aj , inf
j∈J

bj

)
.

Proof. (i) Since the partial mappings ofC are increasing it follows that

C(ai, bi) ≤L C
(
sup
j∈J

aj , sup
j∈J

bj

)
,

for all couples(ai, bi) (with i ∈ J). As a consequence,C
(
sup
j∈J

aj , sup
j∈J

bj

)
is an

upper bound for the set{C(ai, bi)|i ∈ J}, and thus

sup
j∈J

C(aj , bj) ≤L C
(
sup
j∈J

aj , sup
j∈J

bj

)
.
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(ii) Analogous.

Lemma 1.5.2. LetD be a disjunctor onL, and let(aj)j∈J and (bj)j∈J be families inL,
with J an arbitrary index family. It holds that:

(i) sup
j∈J

D(aj , bj) ≤L D
(
sup
j∈J

aj , sup
j∈J

bj

)
,

(ii) inf
j∈J

D(aj , bj) ≥L D
(
inf
j∈J

aj , inf
j∈J

bj

)
.

Proof. Analogous to the proof of Lemma 1.5.1.

Lemma 1.5.3. [28] If I = IC with C a conjunctor onL for which (∀x ∈ L)(C(1L, x) =
0L ⇒ x = 0L), then

(∀(a, b) ∈ L2)(b ≤L IC(a, C(a, b))).

Proof. For all (a, b) ∈ L2:

IC(a, C(a, b)) = sup{δ ∈ L|C(a, δ) ≤L C(a, b)}
≥L b.

Lemma 1.5.4. [28] If I = IC with C t-norm onL, of which the partial mappings are
sup-morphisms, then

(∀(a, b) ∈ L2)(C(a, IC(a, b)) ≤L b).

Proof. For all (a, b) ∈ L2:

C(a, IC(a, b)) = C(a, sup{δ ∈ L|C(a, δ) ≤L b})
= sup{C(a, δ)|δ ∈ L andC(a, δ) ≤L b}
≤L b.

Lemma 1.5.5. [93, 28]

1. If I = IC,N with C an associative conjunctor onL andN an involutive negator on
L, then it holds that:

(∀(a, b, c) ∈ L3)(I(a, I(b, c)) = I(C(a, b), c)).
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2. If I = IC with C a t-norm onL, then it holds that:

(∀(a, b, c) ∈ L3)(I(a, I(b, c)) ≤L I(C(a, b), c)).
If the partial mappings ofC are sup-morphisms, then

(∀(a, b, c) ∈ L3)(I(a, I(b, c)) = I(C(a, b), c)).

Proof.

1. Suppose thatI = IC,N with C an associative conjunctor onL andN an involutive
negator onL. For all(a, b, c) ∈ L3:

I(a, I(b, c)) = N [C(a,N (I(b, c)))]
= N [C(a,N (N [C(b,N (c))]))]

= N [C(a, C(b,N (c)))]

= N [C(C(a, b),N (c))]

= I(C(a, b), c)

2. Suppose now thatI = IC with C a t-norm onL. For all(a, b, c, d) ∈ L4 it holds that

C(b, C(a, d)) ≤L c⇒ C(a, d) ≤L IC(b, c).
Indeed, ifC(b, C(a, d)) ≤L c, then

C(a, d) ∈ {ε ∈ L|C(b, ε) ≤L c}
and thus

C(a, d) ≤L sup{ε ∈ L|C(b, ε) ≤L c} = IC(b, c).
Due to the associativity and commutativity ofC, it follows that for all(a, b, c) ∈ L3:

IC(a, IC(b, c)) = sup{δ ∈ L|C(a, δ) ≤L IC(b, c)}
≤L sup{δ ∈ L|C(b, C(a, δ)) ≤L c}
= sup{δ ∈ L|C(C(a, b), δ) ≤L c}
= IC(C(a, b), c).

If the partial mappings ofC are sup-morphisms, then it also holds for all(a, b, c, d) ∈
L4 that

C(b, C(a, d)) ≤L c⇐ C(a, d) ≤L IC(b, c).
Indeed, since the partial mappingC(b, .) is increasing, it follows fromC(a, d) ≤L

IC(b, c) that
C(b, C(a, d)) ≤L C(b, IC(b, c)).

Applying Lemma 1.5.4 results inC(b, C(a, d)) ≤L c. As a consequence

sup{δ ∈ L|C(a, δ) ≤L IC(b, c)} = sup{δ ∈ L|C(b, C(a, δ)) ≤L c}.
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1.6 L-Fuzzy Set Operations

1.6.1 Complement, Intersection and Union ofL-Fuzzy Sets

TheL-fuzzy logical operators can be used to define the complement, intersection and union
of L-fuzzy sets:

Definition 1.25. Let A,B ∈ FL(X). If N is a negator onL, then theN -complement
coN (A) ofA is defined as theL-fuzzy set inX given by:

(coN (A))(x) = N (A(x)), ∀x ∈ X.

If C is a conjunctor onL, then theC-intersectionA ∩C B of A andB is defined as the
L-fuzzy set inX given by:

(A ∩C B)(x) = C(A(x), B(x)), ∀x ∈ X.

If D is a disjunctor onL, then theD-unionA ∪D B of A andB is defined as theL-fuzzy
set inX given by:

(A ∪D B)(x) = D(A(x), B(x)), ∀x ∈ X.

If C (respectivelyD) is the infimum operator (respectively the supremum operator), then
the intersection (respectively union) is called the Zadeh-intersection (respectively Zadeh-
union) and the notation∩C is simplified to∩ (respectively∪D to∪).

If C andD are commutative and associative (in particular if they are at-norm and a
t-conorm), then the above definitions can be extended to the intersection and union of an
arbitrary finite family ofL-fuzzy sets. If further the conjunctorC and the disjunctorD
can also be extended to an infinite number of arguments, then also an extension to infinite
families is possible. For the Zadeh-intersection and Zadeh-union and an arbitrary (infinite)
family (Aj)j∈J in FL(X), this becomes:

(∩j∈JAj)(x) = inf
j∈J

Aj(x), ∀x ∈ X,

(∪j∈JAj)(x) = sup
j∈J

Aj(x), ∀x ∈ X.

1.6.2 Inclusion ofL-Fuzzy Sets

Definition 1.26. LetA,B ∈ FL(X), then

A ⊆ B ⇔ (∀x ∈ X)(A(x) ≤L B(x)).

1.7 Interval-valued Fuzzy Sets

In Part III, we will focus on a special case ofL-fuzzy sets, namely the interval-valued fuzzy
sets.
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1.7.1 Characterization

Interval-valued fuzzy sets [117] areL-fuzzy sets where the complete latticeL is given by
LI = (LI ,≤LI ). LI here stands for the set of all closed subintervals of the unitinterval
[0, 1], i.e.

LI = {[x1, x2]|[x1, x2] ⊆ [0, 1]}.
We will denote the lower and upper bound of an elementx of LI by respectivelyx1 andx2:
x = [x1, x2] (Fig. 1.1). Further, the partial ordering≤LI onLI is defined by

x

[1,1][0,1]

[0,0] X1

X2

Figure 1.1: Graphical representation ofLI .

x ≤LI y ⇔ x1 ≤ y1 andx2 ≤ y2, ∀x, y ∈ LI .

The infimum and supremum of an arbitrary subsetS of LI are then respectively given by:

inf S = [ inf
x∈S

x1, inf
x∈S

x2],

supS = [sup
x∈S

x1, sup
x∈S

x2].

We use the notations0LI for inf LI = [0, 0] and1LI for supLI = [1, 1].
Related orderings onLI that we wil also use in this thesis are(∀x, y ∈ LI):

x <LI y ⇔ x ≤LI y andx 6= y,

x�LI y ⇔ x1 < y1 andx2 < y2,

x ≥LI y ⇔ y ≤LI x,

x >LI y ⇔ y <LI x,

x�LI y ⇔ y �LI x.

Summarized, an interval-valued fuzzy setA in a universeX is characterised by the
mapping

A : X → LI

x→ A(x) = [A1(x), A2(x)]
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So, an interval-valued fuzzy set can also be seen as an extension of a classical fuzzy set,
where now uncertainty concerning the membership degree is allowed. Instead of mapping
an element in the universe onto one specific membership valuein [0, 1], it is now mapped
onto a subinterval of[0, 1].

Finally, in the remainder, we will denote the class of all interval-valued sets in the uni-
verseX byFLI (X).

1.7.2 Basic Concepts

The basic concepts concerning fuzzy sets as introduced in Subsection 1.1.2, can be extended
to interval-valued fuzzy sets in a straightforward way. In particular, we give the definitions
for the support and the[α1, α2]-cuts of interval-valued fuzzy sets.

Definition 1.27. LetA ∈ FLI (X). The supportdA ofA is defined as:

dA = {x ∈ X|A(x) 6= 0LI} = {x ∈ X|A2(x) > 0}.

For the definitions of the different[α1, α2]-cuts of an interval-valued fuzzy set, we need
to introduce the notationULI = {[x1, x2] ∈ LI |x2 = 1}.

Definition 1.28. [135] LetA ∈ FLI (X).
For [α1, α2] ∈ LI\{0LI}, the weak[α1, α2]-cutAα2

α1
ofA is defined as:

Aα2

α1
= {x|x ∈ X, A1(x) ≥ α1 andA2(x) ≥ α2}
= {x|x ∈ X andA(x) ≥LI [α1, α2]}.

For [α1, α2] ∈ LI\ULI , the strict[α1, α2]-cutAα2

α1
ofA is defined as:

Aα2

α1
= {x|x ∈ X, A1(x) > α1 andA2(x) > α2}
= {x|x ∈ X andA(x) �LI [α1, α2]}.

The cases[α1, α2] = 0LI and [α1, α2] ∈ ULI are excluded for respectively the weak
and the strict[α1, α2]-cut. Since{x|x ∈ X, A1(x) ≥ 0 andA2(x) ≥ 0} = X and
{x|x ∈ X andA2(x) > 1} = ∅, these cases don’t yield new information.

Also cuts based only on the lower or upper bound can be defined.

Definition 1.29. LetA ∈ FLI (X).
For α1 ∈]0, 1], the weakα1-subcutAα1

ofA is defined as:

Aα1
= {x|x ∈ X andA1(x) ≥ α1}.

For α2 ∈]0, 1], the weakα2-supercutAα2 ofA is defined as:

Aα2 = {x|x ∈ X andA2(x) ≥ α2}.
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For α1 ∈ [0, 1[, the strictα1-subcutAα1
ofA is defined as:

Aα1
= {x|x ∈ X andA1(x) > α1}.

For α2 ∈ [0, 1[, the strictα2-supercutAα2 ofA is defined as:

Aα2 = {x|x ∈ X andA2(x) > α2}.

The casesα1 = 0 andα1 = 1 are excluded for respectively the weak and the strict
α1-subcut. Since{x|x ∈ X andA1(x) ≥ 0} = X and{x|x ∈ X andA1(x) > 1} = ∅,
these cases don’t yield new information. An analogous reasoning holds for the weak and
strictα2-supercut.

Finally, also a combination of weak and strong bounds is possible.

Definition 1.30. LetA ∈ FLI (X).
For [α1, α2] ∈ LI\ULI , the weak-strict[α1, α2]-cutAα2

α1
ofA is defined as:

Aα2

α1
= {x|x ∈ X, A1(x) ≥ α1 andA2(x) > α2}.

For [α1, α2] ∈ LI\{1LI}, the strict-weak[α1, α2]-cutAα2

α1
ofA is defined as:

Aα2

α1
= {x|x ∈ X, A1(x) > α1 andA2(x) ≥ α2}.

The cases[α1, α2] ∈ ULI and[α1, α2] = 1LI are excluded for respectively the weak-
strict and strict-weak[α1, α2]-cut. Since{x|x ∈ X andA2(x) > 1} = ∅ and{x|x ∈
X andA1(x) > 1} = ∅, these cases don’t yield new information.

1.7.3 Construction of Interval-valued Fuzzy Logical Operators

Interval-valued fuzzy logical operators can be constructed using fuzzy logical operators
defined on[0, 1] in a straighforward way.

Proposition 1.7.1. Let (x, y) ∈ (LI)2.

• If N is a negator on[0, 1], then the operator̃N , given by

Ñ (x) = [N (x2),N (x1)], ∀x ∈ LI ,

is a negator onLI .

• If C is a conjunctor on[0, 1], then the operator̃C, given by

C̃(x, y) = [C(x1, y1), C(x2, y2)], ∀(x, y) ∈ (LI)2,

is a conjunctor onLI .
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• If D is a disjunctor on[0, 1], then the operator̃D, given by

D̃(x, y) = [D(x1, y1),D(x2, y2)], ∀(x, y) ∈ (LI)2,

is a disjunctor onLI .

• If I is an implicator on[0, 1], then the operator̃I, given by

Ĩ(x, y) = [I(x2, y1), I(x1, y2)], ∀(x, y) ∈ (LI)2,

is an implicator onLI .

For example, the (extended) standard negatorNs, given by

Ns(x) = [1− x2, 1− x1], ∀x ∈ LI ,

is an involutive negator onLI .
The conjunctorCmin, based on the minimumt-normCM , i.e.,

Cmin(x, y) = [min(x1, y1),min(x2, y2)], ∀(x, y) ∈ (LI)2,

is a t-norm onLI .
The disjunctorDmax, that extends the maximumt-conormDM , i.e.,

Dmax(x, y) = [max(x1, y1),max(x2, y2)], ∀(x, y) ∈ (LI)2,

is at-conorm onLI .
The extended Kleene-Dienes implicatorIEKD, given by

IEKD(x, y) = [max(1− x2, y1),max(1− x1, y2)], ∀(x, y) ∈ (LI)2,

is a model implicator onLI . Remark thatIEKD = ICmin,Ns
= IDmax,Ns

.

Also other ways of constructing interval-valued fuzzy logical operators from fuzzy ones
exist. For a more thorough study, we refer the interested reader to [34].

1.8 Intuitionistic and Bipolar Fuzzy Sets

Although being different semantically, intuitionistic [2] and bipolar fuzzy sets [8, 9] are
formally equivalent. They namely areL-fuzzy sets where the complete latticeL is given by
L∗ = (L∗,≤L∗), with

L∗ = {(x1, x2)|(x1, x2) ∈ [0, 1]2 andx1 + x2 ≤ 1},

and
(x1, x2) ≤L∗ (y1, y2) ⇔ x1 ≤ y1 andx2 ≥ y2, ∀(x1, x2), (y1, y2) ∈ L∗.

So, an intuitionistic (respectively bipolar) fuzzy setA in a universeX is characterised by
the mapping
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A : X → L∗

x→ A(x) = (A1(x), A2(x)).

For an intuitionistic fuzzy setA in X, A1(x) defines for each elementx ∈ X the degree
to whichx belongs toA (membership degree) andA2(x) the degree to whichx does not
belong toA (non-membership degree). The degree of indetermination orhesitation is then
given by1−A1(x)−A2(x). Bipolar fuzzy sets on their turn, are used to represent bipolar
information. For a bipolar fuzzy setA inX,A1(x) denotes the degree to whichx satisfies a
given property (positive information) andA2(x) (negative information) denotes the degree
to whichx satisfies the opposite property. Bipolar information is e.g. ’to the left of-to the
right of’ and ’close to-far from’. Remark that such oppositerelations don’t need to be each
others complement and some indetermination is possible. The main thing is that bipolar
fuzzy sets don’t need to represent one physical object, but rather more complex information,
possibly coming from different sources.

The infimum and supremum of an arbitrary subsetS of L∗ are respectively given by:

inf S = ( inf
x∈S

x1, sup
x∈S

x2),

supS = (sup
x∈S

x1, inf
x∈S

x2).

The notations0L∗ and1L∗ respectively stand forinf L∗ = (0, 1) andsupL∗ = (1, 0). Fur-
ther, the class of all intuitionistic and bipolar fuzzy setsover the universeX are respectively
denoted byIFS(X) andBFS(X).

Finally, intuitionistic and bipolar fuzzy set theory are isomorphic to interval-valued
fuzzy set theory as shown in [35]. The isomorphismΦ : FLI (X) → IFS(X) is given
as follows: for allA ∈ FLI (X) and allx ∈ X it holds that ifA mapsx ontoA(x) =
[A1(x), A2(x)], then the intuitionistic fuzzy setΦ(A) mapsx onto the coupleΦ(A)(x) =
(A1(x), 1 − A2(x)) (and analogously for bipolar fuzzy sets). So all definitionsand results
in interval-valued fuzzy set theory can be translated to theintuitionistic or bipolar case. This
holds in particular for the results concerning interval-valued mathematical morphology that
are discussed in Part III of this thesis.
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2
Introduction to Image

Processing

In this chapter, we give a short overview of some basic image processing concepts that will
be used in this thesis. Section 2.1 discusses the representation of images and videos (images
sequences) and introduces the notations. Next, the different noise types by which images
can be degraded are listed in Section 2.2. Section 2.3 presents some objective measures to
determine the similarity between two images (e.g., a filtered image and the original image
that the filtered one tries to approximate/restore). In Section 2.4 finally, the basic concepts
of the discrete wavelet transform are given.

2.1 Representation of Images and Videos

2.1.1 Binary Images

An n-dimensional1 binary (or black-and-white) image can be modelled by anRn − {0, 1}
mapping, that maps each image point onto black (0) or white (1). The set of all image
points (that is a subset ofRn), is called the image domain. If we agree to map the points
that do not belong to the image onto0 (i.e., black), the image domain can be generalised to
Rn. For the case of simplicity, some devices (such as fax machines) are restricted to binary
images, i.e., the most simple kind of images. However, binary images can also arise as the
output of a binary decision on the image points (e.g., segmentation into two classes, edge
detection,. . . ).

1n ∈ N \ {0}.
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Remark that anRn − {0, 1} mapping can also be seen as the characteristic function of
a crisp set inRn. A binary imageA can thus be seen as a crisp subset ofRn. An element
x ∈ Rn then belongs to the (foreground of) imageA, if it corresponds to a white point in
the image. Ifx corresponds to a black point, thenx doesn’t belong to the image (belongs to
the background).

It is well known that the universeRn contains an infinite number of elements. Therefore,
it is technically impossible to store an image onto a computer or any other device without
sampling the image domain. To do this, the image domain is divided by a raster of a finite
number ofn-dimensional regions (called image elements2) and the image can be stored as
ann-dimensional matrix. Each image element is then assigned the value (0 or 1) that is
the most prominent in that region. The image is thus modelledas anZn − {0, 1} mapping
then and we call it a digital image. For an imageA, the colour (black or white) of the
image element at locationx ∈ Zn in the raster, is denoted byA(x). As an example, a
(digital) binary Lena image (as the result of Canny edge detection on the greyscale Lena
image in Fig. 2.2) is given in Fig. 2.1 (a). In the enlarged crop of the right eye in that image
(Fig. 2.1 (b)) the pixels are clearly visible.

(a) (b)

Figure 2.1: (a) The binary Lena image. (b) Enlarged crop of the right eye in the binary Lena image.

2.1.2 Greyscale Images

A n-dimensional greyscale (or monochrome) image is represented by anRn − [0, 1] map-
ping. Image points are not longer only mapped onto black (0) or white (1), but can also be
mapped onto a grey value (or grey level) in between those two.The darker an image point,
the lower its grey value.

2If n = 2, we call them picture elements (pixels); ifn = 3 the term volume elements (voxels) is used.
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Analogously to the remark that a binary image could be seen asa crisp set inRn, we
can now remark that a greyscale image can also be considered as a fuzzy set inRn, where
theRn − [0, 1] mapping corresponds to the membership function. The membership degree
of an image point can then e.g. be seen as the degree to which itis bright.

Further, analogously to the storage of a binary image, also for the storage of a greyscale
image the image domain needs to be sampled fromRn to Zn. However, since also the
interval[0, 1] contains an infinite number of values, now also the set of allowed grey values
needs to be sampled to a finite subchainIr = {0, 1

r−1 , . . . ,
r−2
r−1 , 1} (r ∈ N\{0, 1}) of [0, 1].

If m bits are used for the storage of a grey value, then2m grey values are possible. To work
with integer values, the interval[0, 1] is then sometimes rescaled to the interval[0, 2m − 1].
A greyscale image that is the result of such sampling, is called a digital greyscale image.
For an imageA, the grey value of the image element at locationx ∈ Zn, is, analogously
as for binary images, denoted byA(x). As an example, a (digital) greyscale Lena image is
given in Fig. 2.2 (a). In the enlarged crop of the right eye in that image (Fig. 2.2 (b)) the
pixels are again clearly visible.

(a) (b)

Figure 2.2: (a) The greyscale Lena image. (b) Enlarged crop of the right eye in thegreyscale Lena
image.

2.1.3 Colour Images

In a colour image, an element from the image domain is now not longer mapped onto a
grey value, but onto a colour. The representation of a colourdepends on the used colour
model. A colour model is an abstract mathematical model to represent colours by tuples3

of numbers. All colours that can be represented in this colour model then form the colour

3Usually 3- or 4-tuples are used.
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space4. The best known colour model is theRGB model, in which colours are obtained
by mixing the three primary colours red, green and blue together in different proportions5.
Colours can then be represented by a 3-tuple, i.e., a vector containing three components,
where the first component represents the amount of red, the second component the amount
of green and the third component the amount of blue that is needed to obtain the colour.
If these proportions are given by values in the interval[0, 1], a colour image modelled in
the RGB colour model, can then be represented by anRn − [0, 1]3 mapping. The vectors
(1, 0, 0), (0, 1, 0) and(0, 0, 1) then respectively correspond to red, green and blue. Vectors
for which the three components are equal, correspond to greyvalues. In particalur,(0, 0, 0)
corresponds to black and(1, 1, 1) to white (Fig. 2.3). All red (respectively green and blue)
component values of the images points together form the red (respectively green and blue)
colour band. Such colour band can thus actually be modelled in the same way as a greyscale
image, i.e., as anRn− [0, 1] mapping. For an imageA, we will denote the red (respectively
green and blue) colour band byAR (respectivelyAG andAB).

gre
y

va
lu

es

red (1,0,0)

black (0,0,0)

yellow (1,1,0)

green (0,1,0)

blue (0,0,1)

magenta (1,0,1)

cyan (0,1,1)

white (1,1,1)

Figure 2.3: Graphical representation of the RGB colour model.

To obtain a digital colour image, i.e., a colour image that can be stored on a device, the
image domain again needs to be sampled fromRn toZn and analogously to the grey values
of a greyscale image, also the colour component values need to be sampled. Ifm bits are
used for the storage of a colour component, i.e.,2m values are possible, the interval[0, 1]
can again be rescaled to the interval[0, 2m−1] to work with integers. Analogously to binary
and greyscale images, for an imageA, A(x) = (AR(x), AG(x), AB(x)) now denotes the
RGB colour vector at locationx ∈ Zn. As an example, a (digital) colour Lena image is
given in Fig. 2.4 (a). In the enlarged crop of the right eye in that image (Fig. 2.4 (b)) the
pixels are again clearly visible.

4Remark that usually not all colours that can be seen by the humaneye, can be represented in a given colour
model.

5The colours red, green and blue can be explicitly defined by their wavelength.
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(a) (b)

Figure 2.4: (a) The colour Lena image. (b) Enlarged crop of the right eye in the colour Lena image.

Apart from the RGB model, several other colour models exists(e.g., the YUV, YCbCr,
YIQ, HSV, HSL, CMY, CMYK, XYZ, L∗a∗b∗, L∗u∗v∗ models). For more information on
these models, we refer to [118, 128]. We will only give a few remarks here.

The YUV, YCbCr and YIQ colour models (used for colour television broadcasting) are
based on the fact that the human eye is more sensitive to changes in brightness6 than to
changes in hue7 and saturation8. TheY -component in these models (that is identical to
theY -component in the XYZ colour model) contains the information on the brightness of a
colour. The other components contain the colour information (i.e., hue and saturation). As a
consequence, by omitting the colour information and only using theY -component, we can
obtain a greyscale image from a colour image (e.g., the greyscale Lena image in Fig. 2.2
corresponds to theY -component obtained from the colour Lena image in Fig. 2.4).

Further, theL∗a∗b∗ andL∗u∗v∗ colour models have been designed to obtain a linear
colour model, i.e., a model in which equal geometric distances correspond to roughly equal
perceived colour differences. In the RGB colour model for example, a small difference in
one of the colour components might in some cases result in a visually very different colour
and in other cases in a colour for which the difference to the original colour can hardly be
detected by the human eye. TheL∗a∗b∗ andL∗u∗v∗ colour models are consequently good
models to determine the colour preservation after the processing of an image.

6Brightness is the human visual sensation to which an area appears to emit more or less light, to which an area
seems to be more or less clear.

7Hue is the attribute of a visual sensation according to whichan area appears to be similar to one or to the
proportions of two of the perceived (opponent) colours red,yellow, green and blue. E.g., purple can be seen as
lying somewhere between red and blue, orange between red and yellow, . . .

8The saturation of a colour, sometimes called colour intensity, indicates how much white light is present in the
colour. The lower the saturation, the more dull the colour. E.g., red and pink are two different saturations of the
colour hue red.
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2.1.4 Videos

A video (or image sequence) is a sequence of images (frames),that show the evolution of
a scenery over time. The successive frames of a video are thushighly correlated (unless
there is a scene switch between them). If the image sequence is denoted byI, then the
notationI(t) stands for thet-th frame ofI. In this thesis we will only consider videos of
which the frames are digital2D images. If(x, y, t) denotes the pixel in thex-th row and the
y-th column (where the counting starts from the upper left corner) of thet-th frame in the
sequence, then for a greyscale video (respectively colour video)I(x, y, t) denotes the grey
value (respectively the colour vector(IR(x, y, t), IG(x, y, t), IB(x, y, t))) at that location.
In the remainder of this thesis, we will also sometimes combine the spatial coordinates of a
pixel in a vectorr = (x, y), i.e.,(r , t) = (x, y, t).

2.1.5 Image Models Used in This Thesis

In Part II of this thesis, we will assume the greyscale and colour video frames to be digital
images where we work with integer grey values and colour component values for which
m = 8 bits are used to store them (i.e., grey values and colour component values belong to
[0, 255]∩Z). Further, colour images are assumed to be modelled in the RGB colour model.
In Part III of this thesis, grey values are assumed to belong to the interval[0, 1], such that
greyscale images can be seen as fuzzy sets, which allows us toapply techniques from fuzzy
set theory on them. Further, in Part III, we will also consider both the theoretical continuous
case (unsampled images and thus a continuous image domainRn and grey values belonging
to [0, 1]) and the practical discrete case (digital images and thus a discrete image domainZn

and grey values belonging to the discrete subsetIr of [0, 1]).

2.2 Noise Types

Images contain a lot of information. However, they are usually degraded by noise that was
introduced during the image capturing, the transmission orthe recording [92]. This can
e.g. be caused by dust sitting on the lense, by the detector itself that is not working as
it should be, by the fact that the electronics convert radiant energy to an electrical signal
or by electromagnetic distortions during transmission. The three main categories of noise
that can be distinguished are impulse noise, additive noiseand multiplicative noise. In
their introduction below as well as in the remainder of this thesis, we will use the notations
Io andIn for the original noisefree image sequence and the sequence corrupted by noise
respectively. We will define the noise types for greyscale sequences. For colour images, the
definitions remain valid by applying them on each of the colour bands separately. We will
illustrate the different noise types on the 10-th frame of the greyscale and colour “Salesman”
sequence (Fig. 2.5).
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(a) (b)

Figure 2.5: 10-th frame of the original noisefree greyscale (a) and colour (b) “Salesman” sequence.

2.2.1 Impulse Noise

Impulse noise is characterized by the fact that only part of the image pixels are affected,
while the others remain unchanged. Further, a changed grey value of a noisy pixel, is not
related the original noisefree value. Two types of impulse noise can be found in literature:

• Fixed (valued) impulse noise: the grey level of a corrupted pixel is always replaced
by one ofk fixed grey valuesn1 . . . nk:

In(x, y, t) =





n1, with probabilitypr1,

n2, with probabilitypr2,

. . . ,

nk, with probabilityprk,

Io(x, y, t), with probability1−∑k
i=1 pri.

The best known example of this type of noise is salt-and-pepper noise, where there are
only two noise valuesn1 andn2, given by the minimum and maximum allowed grey
level (i.e.,n1 = 0 (black) andn2 = 2m−1 (white) if we work with integer grey values
stored bym bits). As an example, Fig. 2.6 shows the 10-th frame of respectively the
greyscale and colour “Salesman” sequence, corrupted by salt-and-pepper noise with
pr1 = pr2 = 2.5%.

• Random (valued) impulse noise: in contrary to the fixed valued impulse noise case,
the grey level of an affected pixel is now replaced by a randomgrey value instead of
one of a few fixed values:

In(x, y, t) =

{
Io(x, y, t), with probability1− pr,

η(x, y, t), with probabilitypr,
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(a) (b)

Figure 2.6: 10-th frame of the greyscale (a) and colour (b) “Salesman” sequence corrupted by salt-
and-pepper noise (pr1 = pr2 = 2.5%).

wherepr ∈ [0, 1] denotes the probability that a grey value is corrupted and replaced
by a random grey valueη(x, y, t) coming from a given distribution. Corresponding
to the literature [1, 17], we will consider the uniform distribution in this thesis. As
an example, Fig. 2.7 shows the 10-th frame of respectively the greyscale and colour
“Salesman” sequence, corrupted by random impulse noise with pr = 5%.

(a) (b)

Figure 2.7: 10-th frame of the greyscale (a) and colour (b) “Salesman” sequence corrupted by random
impulse noise (pr = 5%).

32



2.2 Noise Types

2.2.2 Additive Noise

In the case of additive noise, a random noise value is added tothe grey value of each pixel:

In(x, y, t) = Io(x, y, t) + η(x, y, t),

whereη(x, y, t) is a random noise value coming from a given distribution. Several distri-
butions can be found in literature such as a Gaussian distribution, a Poisson distribution,
a Laplacian distribution, a Cauchy distribution, . . . The most studied among them is the
Gaussian distribution of which the probability density function is given by:

fN (x;µ, σ) =
1

σ
√
2π
e−

1

2
( x−µ

σ
)2 ,

for x ∈ R and whereµ andσ respectively denote the mean and standard deviation of the
noise. Usuallyµ = 0, an assumption that we will adopt in this thesis.As an example, Fig. 2.8
shows the 10-th frame of respectively the greyscale and colour “Salesman” sequence, cor-
rupted by Gaussian noise withσ = 20. The Gaussian noise model is a very good approx-

(a) (b)

Figure 2.8: 10-th frame of the greyscale (a) and colour (b) “Salesman” sequence corrupted by Gaus-
sian noise (σ = 20).

imation of the noise that is present in many imaging systems.However, to model noise
with a more impulsive behavior, a distribution with heaviertails is needed. In this case,
anα-stable distribution [39, 43, 88], that is a generalizationof the Gaussian model, might
result in a better approximation. For mostα values, there is no closed-form expression for
the probability density function of theα-stable distribution, but its characteristic functionφ
is given by

φ(t) =

{
exp(iλt− γ|t|α(1 + iβsgn(t) tan απ

2 )) α 6= 1

exp(iλt− γ|t|(1 + iβsgn(t) 2π log |t|)) α = 1
,
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wheret ∈ R, i =
√
−1 is the complex unit,

sgn(t) =





1 t > 0

0 t = 0

−1 t < 0

,

the characteristic componentα ∈]0, 2] controls the heaviness of the tails (the lowerα, the
heavier the tails and the more impulsive the noise), the location parameterλ ∈ R corre-
sponds to the mean (α ∈]1, 2]) or median (α ∈]0, 1]), the dispersion parameterγ determines
the spread of the density aroundλ and the skewness parameterβ ∈ [−1, 1] is an index for
the symmetry of the distribution (β = 0 means that the distribution is symmetric). The
casesα = 2, β = 0 andα = 1, β = 0 respectively correspond to the Gaussian and Cauchy
distribution.

2.2.3 Multiplicative Noise

If an image is corrupted by multiplicative noise, then to each grey value, a noise value is
added that is a random multiple of the original grey value:

In(x, y, t) = Io(x, y, t) + η(x, y, t) · Io(x, y, t),

whereη(x, y, t) is a random noise value coming from a given distribution. Forexample
speckle noise, that e.g. occurs in satellite images (SAR images), medical images (ultrasound
images) and in television environments, is usually modelled this way, withη(x, y, t) coming
from a uniform distribution, given by:

fU (x;σ) =

{
1

2σ
√
3

|x| ≤
√
3σ

0 else
,

for x ∈ R and whereσ denotes the standard deviation of the noise. The higher thisstandard
deviation, the higher the noise level. As an example, Fig. 2.9 shows the 10-th frame of
respectively the greyscale and colour “Salesman” sequence, corrupted by speckle noise with
σ = 25.

2.3 Similarity Measures

To be able to judge the performance of image and video filtering methods, such as the ones
developed in Part II of this thesis, objective measures of similarity and dissimilarity between
a filtered frame (image)If (t) and the original oneIo(t) are needed. Some well-known
measures are:
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2.3 Similarity Measures

(a) (b)

Figure 2.9: 10-th frame of the greyscale (a) and colour (b) “Salesman” sequence corrupted by speckle
noise (σ = 25).

• The mean squared error (MSE), defined as

MSE(Io(t), If (t)) =

M∑

x=1

N∑

y=1

(Io(x, y, t)− If (x, y, t))
2

N ·M ,

whereIo(t) andIf (t) respectively denote an original and a filtered greyscale frame,
each containingM rows andN columns of pixels. IfIo(t) and If (t) are colour
frames, then the average is taken over the three colour bands:

MSE(Io(t), If (t)) =

∑

c∈{R,G,B}

M∑

x=1

N∑

y=1

(Ico(x, y, t)− Icf (x, y, y))
2

3 ·M ·N .

The higher the MSE, the more dissimilar (less similar) the framesIo(t) andIf (t). Re-
mark however, that the interpretation of the MSE is highly dependent on the number
of bitsm that is used for the storage of a grey value or colour component value. The
visual difference between two successive grey values or colour component values is
larger if there are less allowed values, i.e., for a smallerm. So an average difference
of 10 grey levels, i.e, an MSE equal to 100, will e.g. look better form = 10 than for
m = 8.

Finally, several variants on the MSE have been developed, such as the mean absolute
difference (MAD), where the absolute difference between two values is used instead
of the squared difference, and the root mean squared error (RMSE), that is given by
the square root of the MSE.
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• The peak signal to noise ratio (PSNR), defined as

PSNR(Io(t), If (t)) = 10 · log10
(2m − 1)2

MSE(Io(t), If (t))
,

whereIo(t) and If (t) respectively denote an original and a filtered (greyscale or
colour) frame, each containingM rows andN columns of pixels and wherem de-
notes the number of bits used for the storage of a grey value orcolour component
value. The higher the PSNR value, the more similar (less dissimilar) the images.
Since the maximal possible grey value or colour component value (2m − 1) is taken
into account, the interpretation of the PSNR no longer depends onm. Further, the
logarithmic decibel scale is used, because many signals (the PSNR/MSE does not
need to be restricted to images) have a wide dynamic range.

• The normalized colour difference (NCD), defined as

NCD(Io(t), If (t)) =

M∑

x=1

N∑

y=1

∥∥ILAB
o (x, y, t)− ILAB

f (x, y, t)
∥∥
2

M∑

x=1

N∑

y=1

∥∥ILAB
o (x, y, t)

∥∥
2

,

where‖·‖2 is the Euclidean norm andILAB
o (x, y, t) andILAB

f (x, y, t) respectively
denote theL∗a∗b∗-transform of the original and the filtered colour frameIo(t) and
If (t), each containingM rows andN columns of pixels. The lower the NCD value,
the more similar (less dissimilar) the images. Since theL∗a∗b∗ colour model is linear,
i.e., approaches the human perception, the NCD is a good measure to evaluate the
quality and colour preservation of processed images intended for human inspection.

2.4 The Discrete Wavelet Transform

In this section, the discrete wavelet transform is introduced. Since this transform is only
used in Subsection 3.2.2 of this thesis, only a basic understanding of the transform is aimed
here. For a broader background we e.g. refer to [24, 26, 72, 87, 134]. More recently, also
other new wavelet-like decompositions with better orientation selectivity can be found in
literature (e.g., complex wavelets [56], steerable pyramids [52], curvelets [15], contourlets
[36], shearlets [60], . . . ).

The main idea behind the use of wavelets, is to analyze a signal at different scales, i.e.,
looking at it from various distances. At a coarser scale, therude structure of the signal
is unfolded, while at a finer scale, the finer details can be studied. A classical example
in this context is that of a picture showing a forest. Coarse-scale, medium-scale and fine-
scale approximations then respectively approximate the trees, the leaves and the lice that
are eating those leaves.
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2.4 The Discrete Wavelet Transform

2.4.1 Multiresolution Analysis

Multiresolution analysis [24] is a sequence of approximation subspaces{Vj}j∈Z of L2(R)
that satisfy:9

1. TheVj are generated by a scaling functionφ ∈ L2(R) (called the father wavelet) in
the sense that for each fixedj, the family

φj,k(t) = 2j/2φ(2jt− k), k ∈ Z

constitutes a Riesz basis forVj .

2. The family{Vj}j∈Z is increasing:Vj ⊂ Vj+1, ∀j ∈ Z.

3. For allf ∈ L2(R), the orthogonal projectionsPjf ontoVj satisfy lim
j→+∞

Pjf = f

and lim
j→−∞

Pjf = 0.

From the above, it follows thatf ∈ Vj is equivalent to the functioñf ∈ Vj+1 for which
(∀x ∈ R)(f̃(x) = f(2x)) and thatVj is invariant under translation over2−j . FromVj ⊂
Vj+1 it also follows thatφ is the solution of a two-scale equation

φ(t) =
√
2
∑

n∈Z

h[n]φ(2t− n).

In the case where the integer translates ofφ are orthonormal, the orthogonal projection
corresponds to the best approximationAjf of f in the approximation spaceVj (i.e., at the
scale2j):

Ajf =
∑

k∈Z

〈f, φj,k〉φj,k.

If the integer translates ofφ only constitute a Riesz basis (but are not orthonormal), a dual

scaling functioñφ can be constructed such that
〈
φ̃, φ0,k

〉
= δ0,k and the best approximation

becomes
Ajf =

∑

k∈Z

〈
f, φ̃j,k

〉
φj,k.

The scalar products
〈
f, φ̃j,k

〉
are denoted bysj,k and are called the scaling coefficients.

Also the dual scaling functioñφ satisfies a scaling equation10

φ̃(t) =
√
2
∑

n∈Z

h̃[n]φ̃(2t− n). (2.1)

9L2(R) is the Hilbert space of square integrable functions, i.e., theR − R functionsf such that‖f‖2 =∫+∞

−∞
|f(t)|2dt < +∞, with the scalar product of two such functionsf and g defined as〈f, g〉 =

∫+∞

−∞
f(t)g∗(t)dt, whereg∗ denotes the complex conjugate ofg.

10For the duality to hold it is necessary that2
∑

n∈Z
h̃[n]h∗[n+2k] = δk,0, whereh∗ is the complex conjugate

of h. Under some additional technical assumptions, this condition becomes sufficient [26, 23].
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If we now define

g[n] = (−1)nh̃[1− n],

g̃[n] = (−1)nh[1− n],

the waveletsψ (called the mother wavelet) and̃ψ are derived as

ψ(t) =
√
2
∑

n∈Z

g[n]φ(2t− n), ψ̃(t) =
√
2
∑

n∈Z

g̃[n]φ̃(2t− n). (2.2)

As an example, the scaling function and corresponding wavelet function for the orthogonal
Daubechies waveletdb2 is depicted in Fig. 2.10. Remark that in the orthonormal case,
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Scaling function φ
Wavelet function ψ

Figure 2.10: The scaling function and corresponding wavelet function for the orthogonal Daubechies
waveletdb2.

φ = φ̃, h[n] = h̃[n], g[n] = g̃[n] andψ = ψ̃. If we defineψj,k (j, k ∈ Z) asψj,k(t) =

2j/2ψ(2jt− k), ∀t ∈ R (and analogously for̃ψ), then a direct computation now shows that
[24]

Aj+1f −Ajf =
∑

k∈Z

〈
f, ψ̃j,k

〉
ψj,k.

The scalar products
〈
f, ψ̃j,k

〉
are denoted bywj,k and are called the wavelet coefficients.

It holds that the family{ψj,k}k∈Z constitutes a Riesz basis for a detail spaceWj that is
the complement ofVj in Vj+1 (i.e., Vj+1 = Vj ⊕Wj) and thus contains the detail infor-
mation needed to go from an approximation at scale2j to an approximation at scale2j+1.
Moreover, it holds that 〈

ψj,k, ψ̃j′,k′

〉
= δj,j′δk,k′

and{ψj,k}j,k∈Z constitutes a Riesz basis ofL2(R) [23]. For anyj1, it is thus possible
to obtainAj1f from a coarser approximationAj0f (j0 < j1) by adding a combination of
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2.4 The Discrete Wavelet Transform

wavelets at intermediate scales:

Aj1f = Aj0f +

j1−1∑

j=j0

∑

k∈Z

wj,kψj,k =
∑

k∈Z

sj0,kφj0,k +

j1−1∑

j=j0

∑

k∈Z

wj,kψj,k.

By taking limitsj1 → +∞ andj0 → −∞, we obtain

f =
∑

k∈Z

sj0,kφj0,k +
+∞∑

j=j0

∑

k∈Z

wj,kψj,k =
∑

j,k∈Z

wj,kψj,k.

2.4.2 The Discrete Wavelet Transform

For the computation of the wavelet coefficients in the wavelet representation Mallat has
introduced a fast filter bank algorithm [71] that is in literature usually referred to as the
discrete wavelet transform. This algorithm goes as follows. We assume that the multires-
olution analysis axioms hold and we start with a functionf in Vj . From formula (2.1) we
derive

φ̃j,k(t) = 2j/2φ(2jt− k)

= 2(j+1)/2
∑

n∈Z

h̃[n]φ(2j+1t− 2k − n)

=
∑

l∈Z

h̃[l − 2k]φ̃j+1,k(t).

As a consequence

sj,k =
〈
f, φ̃j,k

〉
=

〈
f,
∑

l∈Z

h̃[l − 2k]φ̃j+1,k

〉
=

∑

l∈Z

ĥ[2k − l]sj+1,l,

wherêh[k] = h̃[−k] for all k ∈ Z. The scaling coefficients at the scale2j are thus computed
by convolving11 the scaling coefficients from the scale2j+1 with the filterĥ and downsam-
pling by 2. The filterĥ is a low-pass filter, i.e., only the lower frequencies of the signal
(corresponding to the rude signal features) are passed, which results in a kind of averaging
or blurring. Analogously, we find that

wj,k =
〈
f, ψ̃j,k

〉
=

∑

l∈Z

ĝ[2k − l]sj+1,l,

where ĝ[k] = g̃[−k] for all k ∈ Z. The filter ĝ is a high-pass filter, that passes only
the higher frequencies of the signal (corresponding to the finer signal features). The filter
bank thus separates the signal into averages (smooth parts)and differences (rough parts).
Fig. 2.11 illustrates the decomposition into three levels of a one-dimensional signalf(x).

11The convolutionu∗v of two discrete one-dimensional signalsu andv is for allk ∈ Z defined as(u∗v)(k) =∑+∞

l=−∞
u(l)v(k − l).
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Figure 2.11: A three-level one-dimensional wavelet decomposition. The coefficient subscripts denote
the decomposition level to which the coefficients belong.

For the reconstruction, it can be derived from expressions (2.1) and (2.2) that

sj+1,k =
∑

l∈Z

h[k − 2l]sj,l +
∑

l∈Z

g[k − 2l]wj,l.

The scaling coefficients at the scale2j can thus be computed by taking the sum of the con-
volution of the upsampled (by inserting a zero between each two coefficients) scaling and
wavelet coefficients from the scale2j+1 with the filter h andg respectively. The recon-
struction of the original signalf(x) from the wavelet coefficients is illustrated in Fig. 2.12.
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Figure 2.12: A three-level one-dimensional wavelet reconstruction. The coefficient subscripts denote
the decomposition level to which the coefficients belong.

2.4.3 Extension to Images

The multiresolution analysis from Subsection 2.4.1 can be extended to images (i.e, to the
2D case12) in a separable and non-separable manner. In this thesis, wewill only consider

12And more general to then-dimensional case.
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the separable case [71] in which the detail spaces are spanned by shifts and dilations of
the wavelet functionsΨLH(x, y) = φ(x)ψ(y), ΨHL(x, y) = ψ(x)φ(y) andΨHH(x, y) =
ψ(x)ψ(y) and the approximation spaces by shifts and dilations ofΦLL(x, y) = φ(x)φ(y).
The 2D discrete wavelet transform algorithm is then a straightforward extension of the 1-
dimensional one. The scaling coefficients that serve as the input for the first decomposition
step are approximated by the image grey levels. Each row of the image is then first filtered
by the low-pass filter̂h or the high-pass filter̂g of the filter bank. For anM ×N image, this
results in 2M ×N/2 images. Additionally each of the columns is again filtered byĥ or ĝ
resulting in 3M/2×N/2 detail images (the rows or the columns have been filtered byĝ) and
oneM/2×N/2 approximation image (both the rows and columns were filteredby ĥ). This
2-dimensional decomposition is shown in Fig. 2.13, in whichthe wavelet coefficients in the
detail bands at scale2j+1 are denoted bywLH

j+1,wHL
j+1 andwHH

j+1 and respectively correspond
to horizontal, vertical and diagonal oriented image structures. The scaling coefficients of the
approximation band at scale2j+1 are denoted bysj+1. This band roughly corresponds to
averaging the approximation band at the previous scale2j+2 and can be further decomposed
into the next scale2j . The usual representation of the obtained frequency subbands is given
in Fig. 2.14 and illustrated for the Lena image in Fig. 2.15. From Fig. 2.15 it can be seen

2

2

2

2

2

2

low-pass

high-pass

horizontal

filtering

vertical

filtering

Figure 2.13: A decomposition level in the two-dimensional discrete wavelet transform.

that the discrete wavelet transform has an edge detection property, meaning that the large
wavelet coefficients correspond to image edges. Further, itcan also be noticed that only few
large coefficients appear in the detail images. This sparsity makes the wavelet transform
very useful for image coding and compression and usually also facilitates the denoising of
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Figure 2.14: Usual representation of the frequency subbands in the two-dimensional discrete wavelet
transform.

the image.
In an analogous way as for the decomposition, also the reconstruction algorithm can be

extended from the 1-dimensional case.

2.4.4 The Non-decimated Discrete Wavelet Transform

A disadvantage of the discrete wavelet transfrom, is that itis not invariant under translation,
which leads to numerous artefacts when an image is reconstructed after modification of
its wavelet coefficients. Therefore, for denoising applications, usually a redundant non-
decimated wavelet transform is used, that approaches translation invariance and is therefore
called the stationary wavelet transform. In this transform, the representation of a signal
has an equal number of wavelet coefficients in each scale. Thesignal is decomposed into
a family of wavelets{ψ′

j,k}j,k∈Z, with ψ′
j,k(x) = 2j/2ψ(2j(x − k)), that are no longer

linearly independent and thus don’t constitute a basis anymore:

f =
∑

j,k∈Z

〈
f, ψ̃′

j,k

〉
ψ′
j,k.

The transform is computed as follows, where the filter that arises by inserting2j − 1 zeros
between each two coefficients of a filterh is denoted byhj :

sj,k =
∑

l∈Z

ĥj [k − l]sj+1,l, wj,k =
∑

l∈Z

ĝj [k − l]sj+1,l,

sj+1,k =
1

2

(∑

l∈Z

hj [k − l]sj,l +
∑

l∈Z

gj [k − l]wj,l

)
.
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2.4 The Discrete Wavelet Transform

(a)

(b)

Figure 2.15: A three-level wavelet decomposition (b) of the Lena image (a) based onthe ‘db2’
wavelet.
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This algorithm is called thèa trous algorithm [46, 72] and is illustrated on an example image
in Fig. 2.16. For the non-decimated transform to be a consistent extension of the decimated
discrete wavelet transform from Subsection 2.4.2, all the coefficients of the latter transform
should reappear in the new transform. This will be the case, since by inserting the zeros
between the filter coefficients, the extra coefficients in theredundant representation will be
skipped before applying the convolution.
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2.4 The Discrete Wavelet Transform

Figure 2.16: The LL, LH, HL and HH band (up to down) of the first (left) and second (right) undeci-
mated wavelet decomposition level (based on the ‘db2’ wavelet) of the image in Fig. 2.15 (a).
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Fuzzy Techniques for Noise
Removal in Image Sequences
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3
Additive Gaussian Noise in

Greyscale Image Sequences

The first filters for video denoising were single resolution filters. These were often some
well-known 2D filters extended to a spatio-temporal (3D) neighbourhood that also contains
pixels from neighbouring frames. Some examples are the 3D KNN-filter [27, 89, 147] and
the 3D threshold averaging filter [61, 147], which try to preserve the details by averaging
only over thek nearest neighbours (KNN) and the neighbours lying within a certain distance
(usually two times the standard deviation of the noise is chosen as threshold) from the
given pixel value respectively. More recent extensions of these filters, that are made more
adaptive to a local spatio-temporal neighbourhood are e.g.the motion and detail adaptive
KNN-filter [148] and the multiple class averaging filter [146, 149]. Another well-known
single resolution method is the 3D rational filter [22], where the filtered output for a pixel
is determined as a rational function of the grey values in a spatio-temporal neighbourhood.
Other recent single resolution filters can e.g. be found in [41, 141]. Both filters take into
account pixels from neighbouring frames in the averaging, that are not necessarily the pixels
at the same spatial position, but the estimated corresponding object pixels which possibly
have been displaced due to motion between frames.

Later, the wavelet transform, which has proven very effective in still image denoising
[3, 125], also found its way in the denoising of videos. In [114, 124] a 3D wavelet transform
is applied and the resulting coefficients are denoised by adaptive thresholding. However,
most wavelet domain filters use a less complex separable 2D transform applied on each
frame separately [4, 21, 48, 50, 62, 70, 110, 146, 149, 150] and combine it with time-
recursive filtering, either in the wavelet domain or in the pixel domain.

The most fundamental difference between video and image denoising is that in video
applications also information from previous frames is available. When working with a
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delay in time even information from future frames can be used. The main difficulty in
exploiting this additional info is possible motion. Some filters simply take into account
pixels at corresponding positions in the previous (and future) frames only when no motion
between the successive frames is detected. Such motion detection filters are for example
[110, 146, 148, 149]. Other more complex filters always take into account information from
the previous frames, by filtering along an estimated motion trajectory and are called motion
compensated filters [21, 48, 41, 141, 150]. In [21, 41, 141] the motion is estimated in the
pixel domain, while in [48, 150] the motion vectors are computed in the wavelet domain.
Most available motion estimation algorithms are designed for video coding applications [16,
133, 138]. In such applications, the accuracy of the motion vectors is less important than for
denoising purposes. Recently, in [50, 51], an efficient video filtering scheme is proposed,
which makes use of motion estimators from video codecs, but with additional filtering of
the motion vectors and with appropriately defined reliabilities to estimated motion.

The filter in [41] only filters temporally. Usually however, the temporal filtering, which
uses information from neighbouring frames, is combined with a spatial filtering. When
the spatial and temporal filtering steps are performed separately, the one after the other or
independently and subsequently combined, we speak of a separable filter [4, 21, 48, 50,
110, 150]. In [4] e.g., the authors combine their image denoising method from [3] with a
selective wavelet shrinkage method which estimates the level of noise corruption as well
as the amount of motion in the image sequence. Filters that integrate spatial and temporal
filtering in one step, such as [22, 25, 62, 114, 124, 141, 146, 148, 149], are called non-
separable.

The method proposed in this chapter [79, 86] is a fuzzy logic based improvement of the
multiple class averaging filter (MCA) from [146, 149] for thedenoising of greyscale image
sequences corrupted with additive Gaussian noise. Fuzzy set theory and fuzzy logic offer
us a powerful tool for representing and processing human knowledge. Binary decisions
are replaced by a gradual transition, which is more appropriate when dealing with complex
systems. The main differences between the proposed method and the filter from [146, 149]
are: (i) pixels are not divided into discrete classes and dealt with based on their class index
like in [146, 149], but they are treated individually, whichleads to an increased performance;
(ii) the complicated heuristic construction of exponential functions to tune the pixel weights
in the method of [146, 149] to the class index and to the detected motion and detail is
replaced by a fuzzy rule containing linguistic values, which represent human knowledge
and which are more natural to work with and to understand. Theuse of fuzzy logic also
provides a more theoretical base; (iii) in the wavelet-based extension of the method, we opt
for an additional time-recursive averaging instead of a filtering of the low-frequency band ;
and (iv) the fuzzy rule used in our method is easy to extend andto include new information
in future work.

Experimental results show that our method outperforms other state-of-the-art filters of
a comparable complexity. The chapter is structured as follows: Our algorithm for the de-
noising of greyscale image sequences is first explained in the pixel domain in Section 3.1
and extended to the wavelet domain in Section 3.2. Section 3.3 handles the choice of the
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parameter values. Finally, experimental results and conclusions are presented in Section 3.4
and Section 3.5 respectively.

3.1 Pixel Based Spatio-temporal Filter for Greyscale Im-
age Sequences

In this section, we improve the multiple class averaging filter (MCA) from [146, 149] in the
pixel domain by incorporating fuzzy logic. The ideas behindthe filter are the following:
(i) to avoid spatio-temporal blur, one should only take intoaccount neighbouring pixels
from the current frame in case of detected motion; (ii) to preserve the details in the frame
content, the filtering should be less strong when large spatial activity (e.g. a large variance)
is detected in the current filtering window. As a consequencemore noise will be left, but
large spatial activity corresponds to high spatial frequencies and for these the eye is less
sensitive [6]. In the case of homogeneous areas, strong filtering should be performed to
remove as much noise as possible.

The general filtering framework used in the proposed method is presented in Subsec-
tion 3.1.1. Additionally the crucial weight determinationstep, which is the main novelty
of our greyscale method compared to the MCA filter, is explained in Subsection 3.1.2. In
the proposed method we determine the weights in the filteringwindow by the use of fuzzy
sets and fuzzy logic instead of a heuristic construction with exponential functions as it is the
case in the MCA filter. Subsection 3.1.3 finally, discusses some complexity notes.

3.1.1 The General Filtering Framework

In this subsection, the filtering framework used in both the MCA and the proposed filter
is explained. In the following, the noisy input sequence andthe corresponding filtered
sequence are respectively denoted byIn andIf .

The filtering window used in the framework is a3 × 3 × 2 sliding window, consisting
of 3 × 3 pixels in the current frame and3 × 3 pixels in the previous frame. As introduced
in [146, 149] we will use the termscurrent windowandprevious windowfor the window
pixels contained in respectively the current and the previous frame (Fig. 3.1). This window
is moved through each frame from top left to bottom right, each time filtering the central
pixel by averaging the noise. The position of this central pixel in the filtering window is
denoted by(r , t) wherer = (x, y) stands for the spatial position andt for the temporal
position. An arbitrary position in the3 × 3 × 2 window (this may also be the central pixel
position) is denoted by(r’ , t′), with r’ = (x + k, y + l) (−1 ≤ k, l ≤ 1) andt′ = t or
t′ = t− 1.

The output of the proposed filter for the central pixel in the window is finally determined
as a weighted average (with adaptive weights) of the pixel values in the3× 3× 2 window:

If (r , t) =

∑
r’

∑t
t′=t−1W (r’ , t′, r , t)In(r’ , t′)∑
r’

∑t
t′=t−1W (r’ , t′, r , t)

. (3.1)
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Figure 3.1: The3× 3× 2 filtering window consisting of the previous and the current window.

3.1.2 Weight Determination

In this subsection, we focus on the fundamental step in the filtering framework, namely the
determination of the weights. To make the method motion and detail adaptive, we adopt
the difference value∆(r’ , t′, r , t), the detail valued(r , t) and the motion valuem(r , t) from
[146, 149]:

(i) The absolute difference in grey value between the two pixel positions(r , t) and(r’ , t′)
is denoted by:

∆(r’ , t′, r , t) = |In(r’ , t′)− In(r , t)|. (3.2)

(ii) The functiond(r , t) indicating the local amount of detail is calculated as the standard
deviation in the current window:

Iav(r , t) =
1

9

∑

r’

In(r’ , t) ,

d(r , t) =
(1
9

∑

r’

(
In(r’ , t)− Iav(r , t)

)2) 1

2

. (3.3)

(iii) The motion indicatorm(r , t) finally, is defined as the absolute difference between the
average grey value in the current window and the average greyvalue in the previous
window:

m(r , t) = |Iav(r , t)− Iav(r , t− 1)| (3.4)

=
1

9
|
∑

r’

(
In(r’ , t)− In(r’ , t− 1)

)
|.
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MCA Filter

In the MCA filter [146, 149], the pixels are classified into four discrete index classes, de-
pending on the∆(r’ , t′, r , t) value:

i(r’ , t′, r , t) =





0 ∆(r’ , t′, r , t) ≤ kσ,

1 kσ < ∆(r’ , t′, r , t) ≤ 2kσ,

2 2kσ < ∆(r’ , t′, r , t) ≤ 3kσ,

3 3kσ < ∆(r’ , t′, r , t),

(3.5)

whereσ represents the standard deviation of the Gaussian noise andk is a parameter. When
details are detected in a region, higher weights are assigned to pixels which are similar
to the pixel being filtered (i.e., pixels from the lower indexclasses, which have smallest
∆(r’ , t′, r , t) values) to preserve these details. In homogeneous regions however, the differ-
ence in weight compared to pixels from the higher index classes will be smaller and strong
filtering is performed. This is done by determining the weights by a heuristic composition
of exponential functions that is inversely proportional tothe amount of detail, motion and
the class index. In [149] the weights for the pixels in the window are defined as:

W (r’ , t′, r , t) =

{
exp

(
−i(r’ ,t′,r ,t)
η(d(r ,t))σ

)
β(m(r , t), t′) i(r’ , t′, r , t) = 0, 1, 2,

0 i(r’ , t′, r , t) = 3,
(3.6)

where the function
η(d) = K1exp(−K2d) +K3exp(−K4d),

is used to determine the slope of the exponential function in(3.6) andK1, K2, K3 andK4

are parameters. The functionβ(m(r , t), t′) in (3.6) is chosen to restrict the contribution
(decreasing the weight) of the pixels from the previous window in case of motion:

β(m(r , t), t′) =

{
1 t′ = t,

exp(−γm(r , t)) t′ = t− 1.

In this equality, the parameterγ is used to control the sensitivity of the motion detector. In
[146] the functionη(d) is omitted and the weights are then defined as:

W (r’ , t′, r , t) =

{
exp

(
−i(r’ ,t′,r ,t)d(r ,t)

Kdσ

)
β(m(r , t), t′) i(r’ , t′, r , t) = 0, 1, 2,

0 i(r’ , t′, r , t) = 3,
(3.7)

whereKd is a parameter.

Proposed Filter

In our fuzzy motion and detail adaptive video filter, we use the above introduced filtering
framework and the values∆(r’ , t′, r , t), m(r , t) andd(r , t) (Fig. 3.2). In contrast to the
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Figure 3.2: The general filtering scheme of the proposed filter.

MCA filter we no longer use discrete index classes to express the similarity of a pixel to
the central window pixel. Also our determination of the weights in (3.1) differs from the
strategy used in [146, 149]. The artificial construction of exponential functions in the MCA
method is replaced by a more natural fuzzy logic framework with linguistic values.

The four index classes are replaced by one fuzzy set [142] “large difference” for the
values∆(r’ , t′, r , t). The membership degree of a difference in this set is an indication of
whether the difference is large rather than small. So, a pixel In(r’ , t′) that would belong
to a low index class in the MCA filter now corresponds to a smallmembership degree of
the value∆(r’ , t′, r , t) in the fuzzy set “large difference”. We will use a linguisticvalue
“large” not only for the difference∆(r’ , t′, r , t), but also for the motion valuem(r , t) and
the detail valued(r , t) and introduce the fuzzy sets “large motion” and “large detail”. We
will further also use a linguistic value “reliable” to indicate whether a given neighbourhood
pixel is reliable to be used in the filtering of the central window pixel, and represent it by
the fuzzy set “reliable neighbourhood pixel”.

In the following the notationsµ∆, µd andµm are used to denote the membership func-
tions characterizing respectively the fuzzy sets (i) largedifference, (ii) large detail and
(iii) large motion. For the sake of simplicity and computational reasons piecewise linear
functions are used, as shown in Fig. 3.3. As can be seen in Fig.3.3, the membership func-
tions are completely determined by the parametersthr1, T1, T2, t1 andt2.

Using the introduced fuzzy sets for the crucial weight determining step, we replace
the heuristic combination of exponential functions in the original MCA method by a more
natural fuzzy logic framework with linguistic values. The weightW (r’ , t′, r , t) for the
pixel at position (r’ ,t’) is now defined as the degree to which it is reliable to be used in the
filtering of the central window pixel, i.e., its membership degree in the fuzzy set “reliable
neighbourhood pixel”, which is the activation degree of Fuzzy Rule 3.1 or 3.2 depending on
whethert′ = t or t′ = t− 1.
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Figure 3.3: (a) The membership functionµd for the fuzzy set “large detail”, (b) The membership
functionµ∆ for the fuzzy set “large difference” and (c) The membership function µm for the fuzzy
set “large motion”.
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Fuzzy Rule 3.1.Assigning the membership degree in the fuzzy set “reliable neighbourhood
pixel” of the pixel at spatial positionr’ in the current frame (t′ = t) of the window with
central pixel position (r,t):
IF( the detail valued(r, t) is LARGE ANDthe difference∆(r’, t′, r, t) is

NOT LARGE) OR (the detail valued(r, t) is NOT LARGE)

THEN the pixel at position (r’,t’) is a RELIABLE neighbourhood pixel for the filtering of

the central window pixel.

Fuzzy Rule 3.2.Assigning the membership degree in the fuzzy set “reliable neighbourhood
pixel” of the pixel at spatial positionr’ in the previous frame (t′ = t − 1) of the window
with central pixel position (r,t):
IF

(
( the detail valued(r, t) is LARGE ANDthe difference∆(r’, t′, r, t) is

NOT LARGE) OR (the detail valued(r, t) is NOT LARGE)
)

AND the motion valuem(r, t) is NOT LARGE

THEN the pixel at position (r’,t’) is a RELIABLE neighbourhood pixel for the filtering of

the central window pixel.

For the AND-, OR- and NOT-operators in the above Fuzzy Rules 3.1 and 3.2, we
have respectively used the algebraic product, the probabilistic sum and the standard negator
ast-norm, t-conorm and negator. As demonstrated in Subsection 3.4.2, we however see a
comparable performance when using other norms and conorms.

Take now for example Fuzzy Rule 3.1. This rule has an activation degree (correspond-
ing to the membership degree in the fuzzy set “reliable neighbourhood pixel” and thus the
weightW (r’ , t′, r , t) in (3.1) for the pixel in the sliding window at position(r’ , t′)) equal
to:

α1 · (1− α2) + (1− α1)− α1 · (1− α2) · (1− α1), (3.8)

with α1 = µd(d(r , t)) andα2 = µ∆(∆(r’ , t′, r , t)). For the activation degree of Fuzzy
Rule 3.2, an extra factor(1− α3) (α3 = µm(m(r , t))) needs to be added.

Notice that it is impossible that all weights in (3.1) are equal to zero. In the above
expression (3.8) eitherα1 or 1 − α1 is always greater than zero (α1 ∈ [0, 1]), and for the
central pixel positionr , we always have thatα2 = 0 (see expression (3.2) and Fig. 3.3 (b)).

The proposed fuzzy rules are very natural to work with since they directly express the
underlying ideas put in a formal framework: (i) When large spatial activity is detected,
one should filter less to preserve the details. This means that the neighbouring pixels that
are assigned a considerable weight in (3.1), should be similar to the central pixel in the
filtering window (d(r , t) is large AND∆(r’ , t′, r , t) is not large). In the opposite case (OR),
i.e., in homogeneous areas (d(r , t) is not large) no extra conditions should be imposed on
the neighbouring pixels. All pixels should get a considerable weight to perform strong
smoothing. (ii) When motion is detected between the current and the previous window,
only pixels from the current frame should be taken into account in the averaging. This
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3.1 Pixel Based Spatio-temporal Filter for Greyscale Image Sequences

means that pixels from the previous frame only should get a considerable weight when the
motion detector yields a low value (m(r , t) is not large) (corresponding to the second (AND)
in Fuzzy Rule 3.2).

Apart from being a formal representation of the ideas, the fuzzy rules also produce the
desired result. In the case of spatio-temporal structures,the detail and motion value will be
large and only for neighbouring pixels with a small difference in grey value (relative to the
central pixel in the filtering window), the Fuzzy Rules 3.1 and 3.2 will have a considerable
activation degree. In this way fine spatio-temporal detailsare preserved at the expense of
some noise remaining.

In a spatio-temporal uniform area, the detail and motion values will not be large. So even
for neighbouring pixels with a large difference in grey value (relative to the central pixel),
the Fuzzy Rules 3.1 and 3.2 will have a considerable activation degree. Hence, because of
the many considerable weights in (3.1), strong filtering is performed.

Finally, we also propose a recursive scheme of the fuzzy motion and detail adaptive
video filter. In this scheme, we always use the filtered valueIf (r’ , t−1) for the neighbouring
pixels in the already filtered previous frame. For pixels in the current frame, the noisy values
In(r’ , t−1) are used, except for the determination of∆(r’ , t′, r , t), where the filtered value
is used when already available (i.e., for pixels that have been filtered already in a previous
step). In this way, we get a better estimate of whether the pixel at position (r’ ,t’) belongs to
the same object as the pixel at position(r , t) or not.

3.1.3 Some Notes on the Complexity

It is clear that the complexity of the proposed filter is linear in terms of the number of pixels
in a frame. Every pixel is filtered by averaging a constant number of neighbourhood pixels,
which are all assigned a weight using a constant number of operations. The calculation of
the activation degree of the used fuzzy rules has a low complexity. The activation degree
of Fuzzy Rule 3.1 is given in expression (3.8). For Fuzzy Rule3.2, an extra multiplication
with (1 − α3) (α3 = µm(m(r , t))) is needed. To calculate the activation degree of Fuzzy
Rule 3.1, 3 multiplications, 2 sums and 3 subtractions are performed. For the activation
degree of Fuzzy Rule 3.2 an extra subtraction and multiplication are required. For the MCA
filter, the calculation of the weight in expression (3.6) requires 7 multiplications, one di-
vision, and the calculation of 3 exponential functions and 4opposites. The alternative in
expression (3.7) can be computed by 4 multiplications, one division and the calculation of
2 exponential functions and 2 opposites. The use of fuzzy logic in the weight calculation
is thus not more complex. The proposed individual treatmentof the pixels, however, re-
quires the weight calculation for each individual pixel. Inthe MCA filter, weights are only
calculated for the different index classes, which results in a little lower complexity.
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3.2 Wavelet Based Spatio-temporal Filter with Additional
Pixel Based Time-recursive Averaging for Greyscale
Image Sequences

In this section our method is extended to the wavelet domain.The procedure is the follow-
ing: each processed frame is first decomposed using the 2D wavelet transform [72]. Next,
an adapted version of the proposed method from Section 3.1 isapplied on each of the re-
sulting wavelet bands separately. Finally, the inverse wavelet transform is applied, followed
by an additional time-recursive averaging in the pixel domain (see Fig. 3.4).
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Figure 3.4: The filtering scheme for the proposed wavelet domain method.

3.2.1 Basic Notions

The wavelet transform of an image results in a representation that is very useful for im-
age denoising. The transform compacts image details (such as edges and texture) into a
small number of spatially clustered large coefficients, while small coefficients correspond
to homogeneous regions in the original image.

We use the notationys,d(r , t) for the wavelet coefficient at resolution scales, orienta-
tion d and spatial positionr in the wavelet decomposition of the noisy frame with temporal
positiont. For the results in this chapter, we have opted for a non-decimated wavelet de-
composition (which is known to give better denoising results than the decimated one) using
the Haar-wavelet with three orientation subbands, leadingto three detail images at each
scale, characterized by horizontal (d = LH), vertical (d = HL) and diagonal (d = HH)
directions and a low-frequency band (denoted byLL).

Due to the linearity of the wavelet transform, additive noise in the pixel domain remains
additive after the transformation as well, resulting in:

ys,d(r , t) = βs,d(r , t) + εs,d(r , t),

whereys,d(r , t) andβs,d(r , t) are respectively the noisy and the noise-free wavelet coeffi-
cient andεs,d(r , t) is the corresponding noise component.
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Time-recursive Averaging for Greyscale Image Sequences

3.2.2 Fuzzy Motion and Detail Adaptive Averaging in the Wavelet Do-
main

The proposed method is now extended to the wavelet domain. Large differences in grey
value in the pixel domain indicate the occurrence of an edge.To preserve the edges, pixels
with a large difference in grey value, relative to the pixel being filtered in the current step,
should not be taken into account in the averaging. Only pixels from the same object, i.e.,
belonging to the same side of the edge, should be averaged andare expected to have a
similar grey value. In the wavelet domain, edges result in large coefficients. So to preserve
the edges, only the large coefficients, corresponding to these edges, should be averaged to
filter out the noise. Small coefficients should get small weights in this case, and vice versa
for homogeneous areas. This also holds for wavelet coefficients in the previous window.
When there is no motion, the wavelet coefficients corresponding to the same edge in the
previous frame are expected to be of a similar size. Hence, similar values should result in
large weights and large differences in small weights.

Because the region of wavelet coefficients that are influenced by a given pixel value
expands with increasing scale, an averaging scheme becomesless and less efficient for
higher scales. Therefore we have used only two scales in the wavelet decomposition, which
is insufficient to remove all the noise. To overcome this problem, in [146, 149], also the
low-frequency band is filtered to obtain a better noise removal. In this chapter, we choose
instead for an additional time-recursive filtering in the pixel domain as in [110], but in a
more adaptive fuzzy logic based way.

Filtering of the Wavelet Bands

The filtering of the wavelet bands is adapted in an analogous way as in [146, 149]:

• We adopt the corresponding definition for the detail valued(r , t) from [146, 149]:

d(r , t) =
(∑

r’

y2s,d(r’ , t)
) 1

2

. (3.9)

• For all detail bands the same motion indicator value is used,which is computed on the
low-frequency band. This motion value is defined as the absolute difference between
the central coefficient value in the current window and in theprevious window of the
low-frequency band.

• The parameters that define the membership functionsµ∆, µd andµm in Fig. 3.3 need
to be adapted to the specific detail band.

Sincem(r , t), d(r , t) and∆(r’ , t′, r , t) are all three defined, Fuzzy Rules 3.1 and 3.2 can
still be used to determine the weights in (3.1). The only difference is that we are now
working with wavelet coefficients instead of grey values.
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Additional Time-Recursive Filter in the Pixel Domain

Let IfW andIf respectively denote the sequence after the filtering of the wavelet bands and
the inverse wavelet transform and the sequence after the additional time-recursive filtering
(see Fig. 3.4).

First, the absolute difference between the pixels in the current frame after the filtering of
the wavelet bands and the pixel at the corresponding position in the previous frame, which
has already been processed by the additional time-recursive filter, is computed:

TD(r , t) = |IfW (r , t)− If (r , t− 1)|. (3.10)

For each difference, its membership degreeµTD(TD(r , t)) in the fuzzy set “large tem-
poral difference” is then calculated. The membership function µTD of this fuzzy set is
depicted in Fig. 3.5.

LARGE TEMPORAL
DIFFERENCE

0

1

Membership degree

TD

(TD)

Figure 3.5: The membership functionµTD for the fuzzy set “large temporal difference”.

The final output of the additional time-recursive filter is given by

If (r , t) =
1− µTD(TD(r , t))

2
If (r , t− 1) +

1 + µTD(TD(r , t))
2

IfW (r , t), (3.11)

where the contribution ofIf (r , t− 1) is limited to a maximum of12 to prevent noise propa-
gation in time.

3.3 Parameter Selection

It is clear that the membership functions in Fig. 3.3 and 3.5 are completely determined
by their respective parameters. These parameter values have been experimentally selected
using the “Salesman”, “Trevor”, “Tennis” and “Flower Garden” sequences, which all have
their own characteristics. The “Salesman” sequence represents a standard sequence with
moderate detail (shelfs, books,. . .) and moderate motion (person). The “Trevor” sequence
contains very fast motion (moving arms). In the “Tennis” sequence we deal with a zooming
camera and a detailed background (wall). The “Flower garden” sequence finally, combines
very detailed regions (flower field) with homogeneous regions (sky).
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3.3 Parameter Selection

The parameters have been set in the following way. The proposed method was applied
on each of the above sequences, for the different noise levels σ = 5, 10, 15, 20, 25 with
parameters varying over a range of possible values. After plotting the optimal parameter
values (in terms of PSNR) for the different sequences and noise levels, a linear relationship
was found between these optimal parameter values and the noise level. Therefore the pa-
rameters have been determined by the best fit through the observations. As an illustration,
the optimal values for the parameterT2 of the proposed pixel domain method together with
the best fitting line through these points are depicted in Fig. 3.6. The parameters are thus
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Figure 3.6: Optimal value for the parameterT2 of the proposed pixel domain method.

linearly dependent of the noise level. For the results in this chapter, we assume a known
standard deviation of the noise. In most practical cases however, the standard deviationσ
is not known and should be estimated. A commonly used noise estimation method is the
wavelet domain median absolute deviation (MAD) estimator of Donoho and Johnstone [37].

The selected parameter values that determine the membership functions used in the pixel
domain method are given in Table 3.1.

Table 3.2 presents the selectedthr1, T1 andT2 values for the different waveletbands in
the wavelet domain method. The parameterst1 andt2 for the membership functionµm and
the parameterspar1 andpar2 for the membership functionµTD are determined as given in
Table 3.3.
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Table 3.1: Selected parameter values for the pixel domain method.

parameter selected value
thr1 1.36σ + 1.2
T1 0.79σ + 0.25
T2 5.24σ − 15.35
t1 0.465σ − 0.625
t2 1.795σ + 3.275

Table 3.2: Selectedthr1, T1 andT2 values for the different detail bands.

Band thr1 T1 T2
LH1 5.5733σ − 14.2667 0.8867σ − 1.9667 2.94σ + 2.9
HL1 5.5733σ − 14.2667 0.8867σ − 1.9667 2.94σ + 2.9
HH1 46.6267σ − 243.0667 0.8867σ − 1.9667 2.94σ + 2.9
LH2 2.7533σ − 1.3 2.7067σ − 8.2667 2.8867σ + 0.8333
HL2 2.7533σ − 1.3 2.7067σ − 8.2667 2.8867σ + 0.8333
HH2 8.8267σ − 26.9333 2.7067σ − 8.2667 2.8867σ + 0.8333

3.4 Experimental Results

In this section we will show some experimental results obtained from the test sequences
“Salesman”, “Tennis”, “Deadline”, “Trevor”, “Flower garden” and “Miss America”. As
mentioned in Subsection 3.2.1 and 3.2.2, for the experiments, our wavelet domain algorithm
has been implemented with a non-decimated wavelet transform using the Haar-wavelet and
only two decomposition levels have been used.

In Subsection 3.4.1 we compare our method with other state-of-the-art methods both
in the pixel domain and the wavelet domain. Additionally, inSubsection 3.4.2, the use of
different fuzzy aggregators is tested.

3.4.1 Comparison to Other State-Of-The-Art Methods

In this subsection, we compare our method to other state-of-the-art methods. We first com-
pare our pixel domain method to other pixel domain methods and then do the comparison
for the wavelet domain method.
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Table 3.3: Selectedt1, t2, par1 andpar2 values for the wavelet domain method.

parameter selected value
t1 3.22σ + 1.5667
t2 36.7667σ + 16.5
par1 0.555σ − 0.725
par2 1.36σ + 5.1

Pixel Domain

The non-recursive (FMDAF) and recursive (RFMDAF) scheme ofour fuzzy motion and
detail adaptive filter in the pixel domain have been comparedto the following well-known
filters that also operate in the pixel domain (all with parameter values as suggested in the
respective papers):

• the rational filter (Rational) [22],

• the 3D-KNN filter (KNN) [147] as an extension of the 2D-KNN filter [27, 89],

• the threshold averaging filter (THR) [61, 147],

• the motion and detail adaptive KNN filter (MDA-KNN) [147, 148],

• the recursive scheme of the multiple class averaging filter (RMCA) [146] (which
performs better than the non-recursive one as shown in [146]).

Fig. 3.7 and Fig. 3.8 give the PSNR results for six test sequences processed with the
above mentioned methods and for the noise levelsσ = 10 andσ = 15 respectively. It
can be seen that in terms of PSNR the FMDAF and RFMDAF filters outperform the other
pixel domain methods. The MDA-KNN filter gives comparable results on the “Salesman”
and “Deadline” sequences. Further, we also note that comparable results are found on the
“Flower garden” sequence for the RMCA and the THR filters. Fora visual comparison,
the original “Trevor” sequence, the sequence with added Gaussian noise (σ = 10), and the
noisy sequence processed by the different filters can be found onhttp://www.fuzzy.
ugent.be/tmelange/results/greygauss/pixel . From the tests we also found
that our method adapts better to motion than the RMCA method.In Fig.3.9 a part of the
18th frame of the “Trevor” sequence with added Gaussian noise (σ = 10) processed by the
FMDAF method, the RFMDAF method and the RMCA method is given.One clearly sees
that our method has given a lower weight to those pixels from the previous frame situated
in the fast moving arm.

Finally, we observed that the recursive scheme (RFMDAF) of the proposed filter re-
moves slightly more noise than the non-recursive scheme (FMDAF), but this at the expense
of little loss of spatial texture. Fig. 3.10 shows the 18th frame of the “Tennis” sequence
with added Gaussian noise (σ = 20), processed by the FMDAF and by the RFMDAF. The
texture on the wall is best preserved by the FMDAF method. Buton the other hand, by
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Figure 3.7: Performance comparison for the pixel domain methods applied to the different test se-
quences with added Gaussian noise (σ = 10).
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Figure 3.8: Performance comparison for the pixel domain methods applied to the different test se-
quences with added Gaussian noise (σ = 15).
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(a) (b)

(c) (d)

(e)

Figure 3.9: Part of the 18th frame of the “Trevor” sequence (a) original; (b) with added Gaussian
noise (σ = 10); (c) processed by the FMDAF method; (d) processed by the RFMDAFmethod and
(e) processed by the RMCA.
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(a) (b)

(c) (d)

Figure 3.10: 18th frame of the “Tennis” sequence (a) original; (b) with added Gaussian noise (σ =
20); (c) processed by the FMDAF method and (d) processed by the RFMDAF method.
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looking carefully at the table, one sees that more noise is removed by the RFMDAF than by
the FMDAF.

Wavelet Domain

The recursive (WRFMDAF) scheme of our wavelet domain method (which outperforms the
non-recursive one) has been compared to the following methods (all with parameter values
as suggested in the respective papers):

• the recursive scheme of the wavelet domain multiple class averaging filter (WRMCA)
[146] (non-decimated transform with the quadratic spline wavelet),

• the 3D wavelet transform filter (3DWF) [124] with the signal adaptive threshold from
[125] (3-D dual-tree complex wavelet transform),

• the sequential wavelet domain and temporal filter (SEQWT) [110] (non-decimated
transform with the symmlet-8 wavelet),

• the adaptive spatio-temporal filter (ASTF) [21] (64-tap Johnston filter [49]),

• the video filter based on inter-frame statistical modellingof the wavelet coefficients
(FISMW) [70] (decimated transform with the orthogonal symmlet-8 wavelet),

• the sparse 3D transform-domain collaborative filter for video (VBM3D) [25] (the
decimated biorthogonal wavelet bior1.5 for the 2D-transform of the blocks and the
decimated Haar-wavelet for the third dimension in the first step and the dct-transform
(2D) and the decimated Haar-wavelet (third dimension) in the second step).

Fig. 3.11 and 3.12 give the PSNR results for the processed “Salesman”, “Trevor”,
“Deadline”, “Tennis”, “Miss America” and “Flower Garden” sequences. It can be seen
that our method works best for a still camera filming possiblymoving objects (“Salesman”,
“Trevor”, “Deadline”, “Miss America”). On such sequences our proposed wavelet based
recursive WRFMDAF method clearly outperforms the ASTF method. We also see a better
performance for the WRFMDAF than for the RMCA filter and similar results to those of the
SEQWT filter. Taking into account that the degradations that result from using a decimated
transform instead of a non-decimated one can reach up to 1 dB [18, 110], we might also
conclude a similar performance for the FISMW filter. Still, more sophisticated filters like
the VBM3D filter, consisting of two steps in which blocks are grouped by spatio-temporal
predictive block-matching and each 3D group is filtered by a 3D transform domain shrink-
age, and the complex 3D wavelet transform method 3DWF show better results in terms of
PSNR than our proposed filter. For the “Flower garden” sequence, the received results are
worse, because the performance of the additional time-recursive filtering in pixels where no
motion is detected, will be reduced for a moving camera.

For a visual comparison, the original “Deadline” sequence,the sequence with added
Gaussian noise (σ = 10), and the filtering results obtained by the different compared
wavelet domain filters are available onhttp://www.fuzzy.ugent.be/tmelange/
results/greygauss/wavelet . We see that a little less noise is removed by the
WRFMDAF and WRMCA filters than by the SEQWT and FISMW filters, but on the other
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hand details are well preserved and less artefacts around the edges are introduced by the
WRFMDAF filter.

It can be concluded that, for sequences obtained by a still camera, our method has a
better performance in terms of PSNR than the other multiresolution filters of a similar com-
plexity, but it is outperformed by some more sophisticated methods.

3.4.2 The Use of Other Fuzzy Aggregators

In this subsection, we compare the performance of the proposed method, implemented with
different triangular norms and conorms. In Table 3.4 the results in terms of PSNR are given
for different sequences processed with the RWFMDAF filter implemented with the sug-
gested product norm and probabilistic sum conorm and other popular triangular norms and
conorms. It can be seen that the performance of all aggregators are very comparable. Only
the weak norm and strong conorm seem to perform less good on some of the sequences.
Therefore, we have chosen for the simple intermediate algebraic product and probabilistic
sum.

Table 3.4: Comparison of the different aggregators.

Sequence PSNRav

(σ = 10) algebraic product/ minimum/ weak/ Łukasiewicz
probabilistic sum maximum strong

“Salesman” 34.37 34.36 34.10 34.36
“Trevor” 36.41 36.42 35.55 36.29

“Deadline” 33.95 33.91 33.74 33.98
“Tennis” 31.44 31.37 31.47 31.55

“Miss America” 37.48 37.48 36.76 37.42
“Flower Garden” 28.27 28.13 28.50 28.44

3.5 Conclusion

In this chapter we have presented a new fuzzy motion and detail adaptive video filter in-
tended for the reduction of additive Gaussian noise in digital image sequences. The pro-
posed method is a fuzzy logic based improvement of the multiple class averaging filter
(MCA) from [146, 149]. Pixels are no longer divided into discrete classes but are treated
individually and the heuristic construction of exponential functions to assign the filtering
weights to the neighbourhood pixels is replaced by a more theoretical underbuilt fuzzy
logic framework in which fuzzy rules, that correspond to theideas behind the MCA filter,
are used.

69



Additive Gaussian Noise in Greyscale Image Sequences
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Figure 3.11: Performance comparison for the wavelet domain methods applied to the different test
sequences with added Gaussian noise (σ = 10).
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Figure 3.12: Performance comparison for the wavelet domain methods applied to the different test
sequences with added Gaussian noise (σ = 15).
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The proposed algorithm has first been defined in the pixel domain and was additionally
extended to the wavelet domain.

Experimental results show that the introduction of fuzzy logic into the filtering frame-
work improves the filtering results and that our pixel domaingreyscale method and the
wavelet domain extension outperform respectively other state-of-the-art pixel domain filters
and other state-of-the-art wavelet domain filters of a comparable complexity in terms of
PSNR.
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4
Additive Gaussian Noise in

Colour Image Sequences

Most video filters that exist in literature are designed for greyscale sequences corrupted by
additive Gaussian noise, e.g. [4, 21, 50, 70, 79, 110, 124, 149]. Hardly no video filters for
colour sequences can be found, since greyscale methods can straightforwardly be extended
to colour video. For colour image sequences modelled in theRGB colour space, one can
e.g. filter each of the colour bandsR, G andB separately. This might however result
in the introduction of colour artefacts since the correlation between the different colour
bands is neglected. Therefore, the commonly used alternative is to filter only the luminance
componentY of the Y UV -transform with the given greyscale method, possibly with an
additional averaging of the chrominance componentsU andV .

In this chapter, we introduce two other colour extensions [75, 76] for the greyscale
method outlined in Chapter 3 of this thesis. Both colour extensions consist of two subfilters.

The first subfilter of the first proposed colour filtering framework [75] is a vector-based
extension of the greyscale video filter in Chapter 3, that treats each pixel as a colour vector
and that does not use the components separately. The used detail, difference and motion
values used in the fuzzy rules are extended from grey values to colour vectors.

In the first subfilter of the second proposed colour filter [76], the greyscale method from
Chapter 3 is extended by adding colour information to the fuzzy logic framework. Each
of the colour bands is denoised separately by averaging the noise in an analogous way as
in the greyscale method. However, the fuzzy rules that determine the weights assigned to
the pixels considered in the averaging, now also require information from the other colour
bands. Due to this increase in information, we can expect a more reliable estimation of the
degree to which a neighbouring pixel is similar to the pixel that is filtered.

To further improve the results, the first subfilter of both colour extensions is combined

73



Additive Gaussian Noise in Colour Image Sequences

with a second subfilter. Especially around edges in the image, some colour artefacts might
have appeared because sometimes not enough similar neighbours can be found to com-
pletely average the noise and it might also happen that a neighbouring pixel is wrongly
considered as belonging to the same object (similar). In both proposed colour filters, for the
second subfilter, we have used an extension of the second subfilter in [119]. This subfilter
is based on the simplified assumption that for similar pixelsthe pixel value differences in
the three different colour components should all three be approximately the same. The pixel
being filtered is estimated from a neighbour by estimating the differences in each band equal
to the average over the different colour bands.

The experimental results show that the proposed colour extensions perform very well in
terms of PSNR and NCD and form a good alternative for theY UV -approach.

The structure of the chapter is as follows: The two proposed colour video filters are
respectively explained in Section 4.1 and Section 4.2. Additionally, Section 4.3 presents
a comparison between the different colour extensions. Finally, Section 4.4 concludes the
chapter.

4.1 First Proposed Colour Filter

The first proposed filtering framework [75] consists of two subfilters which are defined in
Subsection 4.1.1 and Subsection 4.1.2 respectively. In thefirst subfilter a3× 3× 2 sliding
window is used, which is moved through the frame from top leftto bottom right, each time
filtering the central position in the window. This window consists of3 × 3 pixels in the
current frame and3 × 3 pixels in the previous frame as shown in Fig. 4.1. The central
position in the window is denoted by(r , t), wherer = (x, y) andt respectively stand for
the spatial and temporal position in the image sequence. An arbitrary pixel position in
the sliding window (which may also be the central position) is denoted by(r’ , t′), with
r’ = (x+ k, y + l), (−1 ≤ k, l ≤ 1) andt′ = t or t′ = t− 1. Further, the second subfilter
uses a3× 3 window in the current frame for which similar notations willbe used as for the
3 × 3 × 2 window. Finally, the noisy input sequence and the output of the first and second
fuzzy subfilter are respectively denoted byIn, If1 andIf .

( ,t)r

t

t-1

x+1

x

x-1

x
x-1

x+1

y-1

y-1

y

y

y+1

y+1

Figure 4.1: The3× 3× 2 filtering window consisting of3× 3 pixels in the current frame and3× 3
pixels in the previous frame.

74



4.1 First Proposed Colour Filter

4.1.1 First Subfilter

In this first subfilter, the fuzzy logic filtering framework introduced in Chapter 3 is extended
from grey values to colour vectors. In this vector-based approach, the colours are handled as
vectors and none of the colour components is used separately. Analogously to the greyscale
method, the output of this first subfilter is for each pixel defined as a weighted average over
the colour vectors in a3× 3× 2 filtering window surrounding the pixel. The filtered colour
vectorIf1(r , t) for the considered central pixel in the window is thus given by:

If1(r , t) =
∑

r’ W (r’ , t− 1, r , t)If (r’ , t− 1) +
∑

r’ W (r’ , t, r , t)In(r’ , t)∑
r’

∑t
t′=t−1W (r’ , t′, r , t)

, (4.1)

where the weightsW (r’ , t′, r , t) correspond to the activation degree of one of the Fuzzy
Rules 4.1 and 4.2 given below. These fuzzy rules are again based on a detail valued(r , t), a
difference value∆(r’ , t′, r , t) and a motion valuem(r , t), that are vector extensions of the
values introduced in Chapter 3 and that were adopted from [149].

Detail, Difference and Motion Values

• The detail valued(r , t) is equal to the standard deviation of the3 × 3 pixels of the
sliding window belonging to the current frame:

Iav(r , t) =
1

9

∑

r’

In(r’ , t).

d(r , t) =
(1
9

∑

r’

‖In(r’ , t)− Iav(r , t)‖22
) 1

2 .

• The difference value∆(r’ , t′, r , t) in the fuzzy rules is defined by

∆(r’ , t, r , t) = ‖In(r’ , t)− In(r , t)‖2 ,

for pixels in the current frame (t′ = t) and by

∆(r’ , t− 1, r , t) = ‖If (r’ , t− 1)− In(r , t)‖2 ,

for pixels in the previous frame (t′ = t− 1).

• The motion valuem(r , t) used for the filtering is finally determined as:

m(r , t) = ‖In(r , t)− If (r , t− 1)‖2 .

To be able to express whether the above defined values are “large”, we introduce the
fuzzy sets “large detail value”, “large difference” and “large motion value”. The member-
ship functions of these three fuzzy sets are respectively denoted byµd, µ∆ andµm and
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Figure 4.2: The membership functionµd of the fuzzy set “large detail value”.
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Figure 4.3: The membership functionµ∆ of the fuzzy set “large difference”.
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Figure 4.4: The membership functionµm of the fuzzy set “large motion value”.
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4.1 First Proposed Colour Filter

are depicted in Fig. 4.2, 4.3 and 4.4. The parametersthr1, thr2, T1, T2, t1 and t2 that
define the exact form of these functions have been experimentally determined as explained
in Subsection 4.1.3.

Using the above introduced values and fuzzy sets, the weightsW (r’ , t′, r , t) in (4.1) can
now be determined based on a fuzzy rule.

Weight Determination

Depending on whether the window pixel at position(r’ , t′) lies in the current (t′ = t) or
in the previous (t′ = t − 1) frame, the weightW (r’ , t′, r , t) in (4.1) is determined as the
activation degree of one of the fuzzy rules given below. The rules remain the same as in
Chapter 3, but with the adapted detail, difference and motion values and they are now used
to assign weights to colour vectors instead of grey values.

Fuzzy Rule 4.1. Determining the membership degree in the fuzzy set “large weight” of the
weightW (r’, t′, r, t) for the pixel at positionr’ in the current frame (t′ = t) of the window
with central pixel position(r, t):

IF ( the detail valued(r, t) is LARGE AND∆(r’, t′, r, t) is NOT LARGE)

OR (the detail valued(r, t) is NOT LARGE)

THEN the pixel at positionr’ is a RELIABLE neigbhourhood pixel for the filtering of
In(r, t).

Fuzzy Rule 4.2. Determining the membership degree in the fuzzy set “large weight” of the
weightW (r’, t′, r, t) for the pixel at positionr’ in the previous frame (t′ = t − 1) of the
window with central pixel position(r, t):

IF
(
( the detail valued(r, t) is LARGE AND∆(r’, t′, r, t) is NOT LARGE)

OR (the detail valued(r, t) is NOT LARGE)
)

AND the motion valuem(r, t) is NOT LARGE

THEN the pixel at positionr’ is a RELIABLE neigbhourhood pixel for the filtering of
In(r, t).

For the results in this chapter, we have chosen to use the algebraic product, the prob-
abilistic sum and the standard negatorNs for the AND-, OR- and NOT-operators in these
rules. There is however no remarkable difference to the results obtained by using other
t-norms andt-conorms. The weightW (r’ , t′, r , t) (corresponding to the activation degree
of one of the two rules or thus the degree to whichIn(r’ , t′) is reliable for the filtering of
In(r , t)) is thus more precisely given by

W (r’ , t′, r , t) = ω · (1− θ) + (1− ω)− ω · (1− θ) · (1− ω),

for pixel positions in the window belonging to the current frame and by

W (r’ , t′, r , t) =
(
ω · (1− θ) + (1− ω)− ω · (1− θ) · (1− ω)

)
· (1− ψ),
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for pixel positions in the window belonging to the previous frame, where

ω = µd(d(r , t)),

θ = µ∆(∆(r’ , t′, r , t)),

ψ = µm(m(r , t)).

4.1.2 Second Subfilter

Because sometimes not enough similar neighbours can be found to completely average the
noise in the first subfilter and because some pixels might havebeen wrongly considered
similar in the first subfilter, some colour artefacts might still be present after applying the
first subfilter. To further improve the result, the first subfilter is combined with an addi-
tional second subfilter, which is an extension of the second subfilter in [119]. Based on the
simplified assumption that the difference between similar pixels is approximately the same
in all three colour bands, a pixel is estimated from a neighbour by estimating a difference
in a given colour component equal to the average over all three colour bands. So a differ-
ence that is larger than the average is made smaller and vice versa. The final output is a
weighted average over the estimations obtained from the different neighbours, where the
weight is the degree to which we believe that the neighbour belongs to the same object.
The weights are introduced because for neighbours not belonging to the same object, the
simplified assumption does not hold.

Local Differences and Correction Terms

As mentioned before, for this second subfilter, a3 × 3 sliding window is used. In each
step the central pixel in this window, at position(r , t) in the image sequence, is filtered.
For each pixel in the sliding window, local differences (gradients) in the three colour bands
(each separately) are calculated. The differences in the red, green and blue neighbourhoods
are respectively denoted byLDR, LDG andLDB and they are calculated based on the
output of the first subfilter:

LDR(r’ , r , t) = IRf1(r’ , t) − IRf1(r , t),

LDG(r’ , r , t) = IGf1(r’ , t) − IGf1(r , t), (4.2)

LDB(r’ , r , t) = IBf1(r’ , t) − IBf1(r , t).

Next, for each position in the window one correction term is determined using the calcu-
lated local differences. This correction term is defined as the average of the local difference
in the red, green and blue component at the given position:

ε(r’ , r , t) =
1

3

(
LDR(r’ , r , t) + LDG(r’ , r , t) + LDB(r’ , r , t)

)
. (4.3)
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Output of the second subfilter

In [119], the output for each component of the central pixel is an average of the correspond-
ing components of the neighbourhood pixels, corrected withthe corresponding correction
term:

IRf (r , t) =
1

9

∑

r’

(
IRf1(r’ , t)− ε(r’ , r , t)

)
,

IGf (r , t) =
1

9

∑

r’

(
IGf1(r’ , t)− ε(r’ , r , t)

)
,

IBf (r , t) =
1

9

∑

r’

(
IBf1(r’ , t)− ε(r’ , r , t)

)
.

However, pixels that belong to another object and that have another colour, have a negative
influence on the output. In homogeneous areas, neighbouringpixels are expected to be
almost the same, and the local differences to be almost 0. So the method further averages the
remaining differences caused by the noise. For a pixel belonging to another object however,
the assumption that the local differences are expected to beequal in all components does not
always hold. Therefore we assign weightsWT (r’ , r , t) to the neighbouring pixels, based
on whether they are expected to belong to the same object or not. To make this decision,
we use the Euclidian distance between the central pixel and the considered neighbourhood
pixel, given by

δ(r’ , r , t) =
(
LDR(r’ , r , t)2 + LDG(r’ , r , t)2 + LDB(r’ , r , t)2

) 1

2 .

The weights themselves are then calculated using the following fuzzy rule that expresses
that the valueδ(r’ , t, r , t) should not be large. Otherwise, the considered pixel is expected
to belong to another object.

Fuzzy Rule 4.3. Assigning the weight in the second subfilter for the pixel at position(r’, t)
in the filtering window:

IF δ(r’, r, t) is NOT LARGE

THENthe pixel at position(r’, t) has aLARGE WEIGHTWT (r’, r, t) in the second subfil-
ter.

The membership functionµδ that determines the fuzzy set “large Euclidian distance” is
depicted in Fig 4.5. The weights in the filtering are again chosen equal to their membership
degree in the fuzzy set “large weight”, i.e.,WT (r’ , r , t) = 1− µδ(δ(r’ , r , t)).

Finally, if not WT (r’ , r , t) = 0 for all neighbouring pixels in the3 × 3 window, the
output of the second subfilter for the central pixel in the window is determined as follows:

IRf (r , t) =

∑
r’ WT (r’ , r , t)

(
IRf1(r’ , t)− ε(r’ , r , t)

)

∑
r’ WT (r’ , r , t)

,
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Figure 4.5: The membership functionµδ of the fuzzy set “large Euclidian distance”.

IGf (r , t) =

∑
r’ WT (r’ , r , t)

(
IGf1(r’ , t)− ε(r’ , r , t)

)

∑
r’ WT (r’ , r , t)

,

IBf (r , t) =

∑
r’ WT (r’ , r , t)

(
IBf1(r’ , t)− ε(r’ , r , t)

)

∑
r’ WT (r’ , r , t)

,

whereε(r’ , r , t) is the correction term for the components of the neighbouring pixel at posi-
tion (r’ , t). If the central pixel is so corrupt that all neighbouring pixels get a weight equal
to zero, the output is calculated by giving all neigbhouringpixels in the window a weight
equal to 1 and the corrupt central pixel the weight 0:

IRf (r , t) =
1

8

∑

r’ 6=r

(
IRf1(r’ , t)− ε(r’ , r , t)

)
,

IGf (r , t) =
1

8

∑

r’ 6=r

(
IGf1(r’ , t)− ε(r’ , r , t)

)
,

IBf (r , t) =
1

8

∑

r’ 6=r

(
IBf1(r’ , t)− ε(r’ , r , t)

)
.

4.1.3 Parameter Selection

The parameters that determine the membership functions in the above described filtering
framework have been set as follows. For the respective noiselevelsσ = 5, 10, 15, 20,
the optimal parameters in terms of the mean PSNR values averaged over the sequences
“Salesman”, “Tennis”, “Flowers” and “Chair” have been determined by letting them vary
over a range of possible values. As illustrated for the parametersT1 andpar2 in Fig. 4.6,
this led to a linear relationship between these optimal values and the noise level. Hence,
the parameters are set as the best fitting line through the observations, as shown in Fig. 4.6.
The equations of those straight lines are given in Table 4.1,whereσ stands for the standard
deviation of the Gaussian noise. If this standard deviationis not known, it can be estimated
e.g. by the wavelet domain median absolute deviation (MAD) estimator from [37].
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Figure 4.6: Selection of the parameter values.

Table 4.1: Selected parameter values for the membership functions.

parameter optimal value
thr1 0
thr2 0.64σ + 0.5
T1 1.04σ − 4.5
T2 4.06σ − 0.5
t1 3.2σ − 18
t2 11.46σ − 25.5
par1 0
par2 4.88σ + 42.5
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4.2 Second Proposed Colour Filter

In this section, the second proposed filtering framework forcolour video [76] is outlined.
The method is a superposition of two subfilters, presented inrespectively Subsection 4.2.1
and Subsection 4.2.2.

Analogously to the first proposed filter, in the first subfiltera3× 3× 2 sliding window
(Fig. 4.1) is used, while for the second subfilter the window is restricted to the3× 3 pixels
in the current frame. The notations(r , t) and(r’ , t′) (r’ = (x+ k, y + l), (−1 ≤ k, l ≤ 1)
and t′ = t or t′ = t − 1) again stand for the spatial and temporal position in the image
sequence of respectively the central and an arbitrary pixelin the sliding window.

4.2.1 First Subfilter

The subfilter explained in this subsection, is a non-vector-based colour extension of the
filtering framework introduced in Chapter 3.

The filtering is based on averaging the noise using the pixel component values in the
neighbourhood that are similar to the given pixel componentvalue and probably belong to
the same object. Each colour band is filtered separately, butin the filtering of each colour
band, the information from the other colour bands is used to confirm that a neighbouring
pixel does indeed belong to the same object.

In the following the output of the first fuzzy subfilter is denoted byIf1 , while the noisy
input sequence is denoted byIn. The output of the first subfilter for the central pixel in the
window is determined as a weighted mean of the pixel values inthe3× 3× 2 window:

IRf1(r , t) =

∑
r’

∑t
t′=t−1W

R(r’ , t′, r , t)IRn (r’ , t′)
∑

r’

∑t
t′=t−1W

R(r’ , t′, r , t)
, (4.4)

IGf1(r , t) =

∑
r’

∑t
t′=t−1W

G(r’ , t′, r , t)IGn (r’ , t′)
∑

r’

∑t
t′=t−1W

G(r’ , t′, r , t)
, (4.5)

IBf1(r , t) =

∑
r’

∑t
t′=t−1W

B(r’ , t′, r , t)IBn (r’ , t′)
∑

r’

∑t
t′=t−1W

B(r’ , t′, r , t)
. (4.6)

The weightsWR(r’ , t′, r , t),WG(r’ , t′, r , t) andWB(r’ , t′, r , t) in the above weighted
means are determined as the activation degree of Fuzzy Rule 4.6 or 4.7 (depending on
whethert′ = t or t′ = t − 1). In these fuzzy rules, a detail valued(r , t), three difference
values∆R(r’ , t′, r , t), ∆G(r’ , t′, r , t) and∆B(r’ , t′, r , t) (one for each colour band) and a
motion valuem(r , t) are used, which we will discuss first. For the AND-, OR- and NOT-
operators, respectively the algebraic product, the probabilistic sum and the standard negator
have been used for the results in this chapter. These operators yielded the best results, but
the results obtained by other aggregation operators are comparable.
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4.2 Second Proposed Colour Filter

Detail, Difference and Motion Values

• In our proposed method, only one detail valued(r , t) is used for all three colour
bands. This detail value depends however on the three detailvalues computed on each
colour band separately. These three detail values are equalto the standard deviation
calculated in the respective colour bands on the3 × 3 pixels of the filtering window
belonging to the current frame. Therefore, for each colour band the average value in
the current frame of the filtering window needs to be computedfirst:

IRav(r , t) =
1

9

∑

r’

IRn (r’ , t),

IGav(r , t) =
1

9

∑

r’

IGn (r’ , t),

IBav(r , t) =
1

9

∑

r’

IBn (r’ , t).

The three single band detail values are then given by:

dR(r , t) =
(1
9

∑

r’

(
IRn (r’ , t)− IRav(r , t)

)2) 1

2

.

dG(r , t) =
(1
9

∑

r’

(
IGn (r’ , t)− IGav(r , t)

)2) 1

2

,

dB(r , t) =
(1
9

∑

r’

(
IBn (r’ , t)− IBav(r , t)

)2) 1

2

.

For the calculation of the activation degree of Fuzzy Rules 4.6 and 4.7, we will not
need to know the exact value ofd(r , t). Only the membership degreeµd

(
d(r , t)

)
of

d(r , t) in the fuzzy set “large detail value” will be needed. This membership degree
is determined by the following fuzzy rule:

Fuzzy Rule 4.4. Assigning the membership degree in the fuzzy set “large detail
value” of the detail valued(r, t) for the pixel at the central position(r, t) in the
filtering window of the current step:

IF dR(r, t) is LARGE ANDdG(r, t) is LARGE ANDdB(r, t) is LARGE

THEN d(r, t) is LARGE.

The membership functionµsbd of the fuzzy set “large single band detail value” is
given in Fig. 4.7, with the parametersthr1 andthr2 experimentally selected as ex-
plained in Subsection 4.2.3. The membership degreeµd

(
d(r , t)

)
is thus given by:

µd

(
d(r , t)

)
= µsbd

(
dR(r , t)

)
· µsbd

(
dG(r , t)

)
· µsbd

(
dB(r , t)

)
.
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Figure 4.7: The membership functionµsbd of the fuzzy set “large single band detail value”.

• The three difference values∆R(r’ , t′, r , t),∆G(r’ , t′, r , t) and∆B(r’ , t′, r , t) that are
used in the fuzzy rules to determine the weights in (4.4)-(4.5) are given by:

∆R(r’ , t′, r , t) = |IRn (r’ , t′)− IRn (r , t)|,
∆G(r’ , t′, r , t) = |IGn (r’ , t′)− IGn (r , t)|,
∆B(r’ , t′, r , t) = |IBn (r’ , t′)− IBn (r , t)|.

The membership functionµ∆ of the fuzzy set “large difference” is given in Fig. 4.8,

LARGE DIFFERENCE

0

1

Membership degree Dm D(

D

)

1T
2T

Figure 4.8: The membership functionµ∆ of the fuzzy set “large difference”.

with the parametersT1 andT2 experimentally selected as explained in Subsection
4.2.3.

• Analogously to the detail valued(r , t) also only one motion valuem(r , t) is used for
the filtering of all three colour bands. This value depends however again on three
values computed for each of the colour bands separately. These three single band
motion values are:

mR(r , t) =
∣∣∣IRav(r , t)− IRav(r , t− 1)

∣∣∣

=
∣∣∣1
9

∑

r’

IRn (r’ , t)− 1

9

∑

r’

IRf (r’ , t− 1)
∣∣∣,

mG(r , t) =
∣∣∣IGav(r , t)− IGav(r , t− 1)

∣∣∣

=
∣∣∣1
9

∑

r’

IGn (r’ , t)− 1

9

∑

r’

IGf (r’ , t− 1)
∣∣∣,
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mB(r , t) =
∣∣∣IBav(r , t)− IBav(r , t− 1)

∣∣∣

=
∣∣∣1
9

∑

r’

IBn (r’ , t)− 1

9

∑

r’

IBf (r’ , t− 1)
∣∣∣.

Just as it was the case for the detail valued(r , t), we will also not need to know the
exact value ofm(r , t) for the calculation of the activation degree of Fuzzy Rule 4.6
and 4.7. Only the membership degreeµm

(
m(r , t)

)
of m(r , t) in the fuzzy set “large

motion value” will be needed. This membership degree is obtained from the following
fuzzy rule:

Fuzzy Rule 4.5. Assigning the membership degree in the fuzzy set “large motion
value” of the motion valuem(r, t) for the pixel at the central position(r, t) in the
filtering window of the current step:

IF ( mR(r, t) is LARGE ANDmG(r, t) is LARGE) OR

( mR(r, t) is LARGE ANDmB(r, t) is LARGE) OR

( mG(r, t) is LARGE ANDmB(r, t) is LARGE)

THEN m(r, t) is LARGE.

LARGE MOTION

0

1

Membership degree

m

sbmm (m)

1t 2t

Figure 4.9: The membership functionµsbm of the fuzzy set “large single band motion value”.

The membership functionµsbm of the fuzzy set “large single band motion value” is
given in Fig 4.9, with the parameterst1 andt2 experimentally selected as explained
in Subsection 4.2.3. The membership degreeµm

(
m(r , t)

)
is thus given by:

µm

(
m(r , t)

)
= α+ (β + γ − β · γ)− α · (β + γ − β · γ), (4.7)

with

α = µsbm

(
mR(r , t)

)
· µsbm(mG

(
r , t)

)
,

β = µsbm

(
mR(r , t)

)
· µsbm

(
mB(r , t)

)
,

γ = µsbm

(
mG(r , t)

)
· µsbm

(
mB(r , t)

)
.
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Weight Determination

As mentioned above, the weightsWR(r’ , t′, r , t),WG(r’ , t′, r , t) andWB(r’ , t′, r , t) in the
weighted means (4.4)-(4.5) are determined as the activation degree of the Fuzzy Rules 4.6
and 4.7, that correspond to the ideas that were adopted from the multiple class averaging
filter [149]. If large detail is detected, i.e., if a calculated detail value is large, then we
should filter less by averaging only over pixels that are quite similar, i.e., for which there
is no large difference in the considered colour component and also in at least one of the
other components. On the other hand, if there is not much detail detected, i.e., in the case
that the calculated detail value is not large, strong filtering should be performed, i.e., we
don’t put a condition on the difference between the considered and the filtered pixel in the
considered colour band (the check in the other colour bands remains for the case that the
calculated detail value was not completely reliable). Further, if the pixel for which the
weight is calculated belongs to the previous frame, we only want to give it a large weight if
there is no motion detected in the filtering window, i.e., if acalculated motion value is not
large. In the filtering of the red colour band, this results inthe following two fuzzy rules,
depending on whether the pixel lies in the current or the previous frame:

Fuzzy Rule 4.6. Assigning the membership degree in the fuzzy set “large weight” of the
weightWR(r’, t′, r, t) for the red component value at positionr’ in the current frame (t′ =
t) of the window with central pixel position(r, t):

IF
((

the detail valued(r, t) is LARGE ANDthe difference∆R(r’, t′, r, t) is NOT LARGE

AND (the difference∆G(r’, t′, r, t) is NOT LARGE ORthe difference∆B(r’, t′, r, t)

is NOT LARGE)
)

OR
(
( the detail valued(r, t) is NOT LARGE) AND (the difference∆G(r’, t′, r, t) is

NOT LARGE ORthe difference∆B(r’, t′, r, t) is NOT LARGE)
))

THEN the red component value at positionr’ is RELIABLE for the filtering of the red
component valueIRn (r’, t′, r, t).

Fuzzy Rule 4.7. Assigning the membership degree in the fuzzy set “large weight” of the
weightWR(r’, t′, r, t) for the red component value at positionr’ in the previous frame
(t′ = t− 1) of the window with central pixel position(r, t):

IF
((

the detail valued(r, t) is LARGE ANDthe difference∆R(r’, t′, r, t) is NOT LARGE

AND (the difference∆G(r’, t′, r, t) is NOT LARGE ORthe difference∆B(r’, t′, r, t)

is NOT LARGE)
)

OR
(
( the detail valued(r, t) is NOT LARGE) AND (the difference∆G(r’, t′, r, t) is

NOT LARGE ORthe difference∆B(r’, t′, r, t) is NOT LARGE)
))

AND the motion valuem(r, t) is NOT LARGE

THEN the red component value at positionr’ is RELIABLE for the filtering of the red
component valueIRn (r’, t′, r, t).
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4.3 Experimental Results

Similar fuzzy rules, switching the role of the red colour band and the colour band that
needs to be filtered, are used to determine the weightsWG(r’ , t′, r , t) andWB(r’ , t′, r , t)
in expressions (4.5)-(4.6) to filter the green and blue colour band respectively.

Summarized, for pixel positions in the window belonging to the current frame (t′ = t),
the weightWR(r’ , t′, r , t) in (4.4) is thus given by

WR(r’ , t′, r , t) = ω · θ · φ+ (1− ω) · φ− (ω · θ · φ) · ((1− ω) · φ),

where

ω = µd(d(r , t))

θ = (1− µ∆(∆
R(r’ , t′, r , t)))

φ = (1− µ∆(∆
G(r’ , t′, r , t))) + (1− µ∆(∆

B(r’ , t′, r , t)))

− (1− µ∆(∆
G(r’ , t′, r , t))) · (1− µ∆(∆

B(r’ , t′, r , t))).

For pixel positions in the window belonging to the previous frame (t′ = t − 1), an extra
factor1− µm(m(r , t)) is needed.

4.2.2 Second Subfilter

Analogously as in the first proposed colour video filter, alsothe first subfilter of this second
proposed filter is combined with a second subfilter. We have again used the extension of the
second subfilter in [119] as described in Subsection 4.1.2.

4.2.3 Parameter Selection

Analogously as for the first proposed filter, the parameters that determine the member-
ship functions used in the above described second proposed filter, have been set by de-
termining the optimal values in terms of the mean PSNR valuesaveraged over the se-
quences “Salesman”, “Tennis”, “Flowers” and “Chair” and this for the respective noise
levelsσ = 5, 10, 15, 20. This was done by letting the parameter values vary over a range
of possible values. Again a linear relationship between these optimal values and the noise
level was found, such that the final parameters have been selected as the best fitting line
through the observations. The selection process is illustrated in Fig. 4.10 for the parameters
thr2 andT2. The selected parameter values, as a function of the noise level, are given in
Table 4.2.

4.3 Experimental Results

In this section we present the results of our experiments, inwhich we have used the test se-
quences “Salesman”, “Tennis”, “Deadline”, “Flower Garden”, “Foreman” and “Bus”, cor-
rupted by additive Gaussian noise of zero mean and standard deviationσ = 5, 10, 15, 20, 25.
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Figure 4.10: Optimal parameter values in terms of the PSNR.

Table 4.2: The used parameter values.

Parameter Value

thr1 0
thr2 1.52σ − 4.5
T1 0
T2 3.14σ − 1.0
t1 0.72σ − 4.0
t2 2.22σ − 4.5
par1 1.1σ − 7.5
par2 6σ + 35
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4.4 Conclusion

We have compared the two proposed colour filters to the filtering approach that denoises the
Y component of theY UV transform with the recursive wavelet extension of the original
greyscale method outlined in Chapter 3 (which outperforms other greyscale methods of a
similar complexity as shown in Chapter 3) combined with an additional averaging (3 × 3
window) of the chrominance componentsU andV . The PSNR and NCD results of this
comparison can be found in Fig. 4.11 and 4.12 respectively, where the vector-based first
colour filter, the colour-rule-based second colour filter and the YUV approach are respec-
tively denoted by FMDAF-RGB, FMDAF-CR and FMDAF-YUV. From those graphs, it can
be concluded that, both in terms of PSNR and NCD, the two proposed filtering frameworks
are a better alternative for the usually applied filtering oftheY -component.

For a visual comparison, we have made the original and noisy “Deadline” (σ = 15) and
“Salesman” (σ = 15) sequence and the results after applying the respective filters available
on http://www.fuzzy.ugent.be/tmelange/results/colourga uss . When look-
ing carefully to e.g. the left side of the phone in the “Salesman” sequence (Fig. 4.13), we
see that some red and green shine (colour artefacts) is visible in the result of the FMDAF-
YUV method. This is much less the case in the result of the two proposed colour filters,
which might explain the better PSNR and NCD values.

We see however also that the wavelet domain method has removed more noise and
produces a smoother result. This smoother result can however be attributed to the use of a
wavelet domain filter. If the original pixel domain greyscale method would have been used,
we would also have had a little more noise remaining. Remark also that the smoother result
also has as a result that the details have been smoothed a little more. For the “Salesman”
sequence, see e.g. the eyes and face in Fig. 4.14. This trade-off between noise removal
and detail preservation is one of the main challenges in the development of a noise filter.
Finally, remark also that the two proposed colour filters will have a smaller complexity,

since in the YUV-approach, a wavelet transform is applied and six wavelet bands need to be
filtered instead of three colour bands or one vector band.

4.4 Conclusion

In this chapter we have presented two new fuzzy video filters for the removal of Gaussian
noise in colour image sequences. In the first proposed filter,the fuzzy logic framework
from Chapter 3 was extended to colour videos through a vector-based approach, while in
the second proposed filter, the framework was extended by filtering each of the colour bands
separately, with information from the other colour bands added to the used fuzzy rules. Both
extensions were additionally combined with a refinement of the colour restorating subfilter
from [119] to remove possible colour artefacts.

Experimental results show that the proposed methods are a good alternative for the com-
monly usedY UV -colour extension of the original greyscale method, both interms of PSNR
and NCD.
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Figure 4.11: PSNR results for the different methods applied on the sequences (a) “Deadline” (σ =
5%), (b) “Foreman” (σ = 10%), (c) “Salesman” (σ = 15%), (d) “Bus” (σ = 15%), (e) “Flower
Garden” (σ = 20%) and (f) “Tennis” (σ = 25%).
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Figure 4.12: NCD results for the different methods applied on the sequences (a) “Deadline” (σ =
5%), (b) “Foreman” (σ = 10%), (c) “Salesman” (σ = 15%), (d) “Bus” (σ = 15%), (e) “Flower
Garden” (σ = 20%) and (f) “Tennis” (σ = 25%).
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(a) (b)

(c) (d) (e)

Figure 4.13: Enlarged part of the phone in the 20-th frame of the “Salesman” sequence: (a) original,
(b) noisy (σ = 15), (c)FMDAF −RGB, (d)FMDAF − CR and (e)FMDAF − Y UV .
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(a) (b)

(c) (d) (e)

Figure 4.14: Enlarged part of the face in the 20-th frame of the “Salesman” sequence: (a) original,
(b) noisy (σ = 15), (c)FMDAF −RGB, (d)FMDAF − CR and (e)FMDAF − Y UV .
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5
Random Impulse Noise in

Greyscale Image Sequences

Most video filters that can be found in literature are designed for sequences corrupted by
additive Gaussian noise (e.g. [41, 50, 70, 79, 141]). Much less video filters exist for the
removal of impulse noise. However, numerous 2D techniques have been developed for the
denoising of still images and can be applied on each frame of the sequence consecutively.
The best known among them are the median based rank-order filters (e.g., [20, 45, 58]),
but also several fuzzy techniques (e.g., [42, 59, 115, 116, 121, 122, 135, 140]) have already
turned up that performed very well compared to the rank-order ones. A huge drawback
of applying 2D spatial filters on image sequences however is that the temporal correlation
between successive frames is neglected. As a consequence, temporal inconsistencies will
arise. Some examples of 3D impulse noise filtering schemes, that also take into account
pixels from neighbouring frames, can e.g. be found in [22, 38, 55, 66, 139]. In the 3D
rational filter [22], the filter output for a pixel is determined as a rational function of the grey
values in a spatio-temporal neighbourhood. To avoid that inthe presence of fast motion,
pixels from the previous frame would be used wrongly, a movement detector is used. In the
case of motion only a spatial filtering is performed, i.e., the output is a rational function of
only the spatial neighbouring grey values. In [55], two variants on the classical median filter
in a 3D neighbourhood are presented: the adaptive 3D median filter and the weighted 3D
median filter. The adaptive 3D median filter first detects whether a pixel might be noisy and
only the detected pixels are finally filtered. If the number ofdetected pixels in the previous
frame are low, stronger conditions are used for this detection and vice versa. The filtered
output for the detected pixels is determined as the median inthe 3D neighbourhood of
the considered pixel. The non-detected pixels remain unfiltered to preserve the details. The
weighted 3D median filter assigns weights to the neighbouring pixels used in the calculation
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of the median, i.e., each pixel is added a number of times (where the number is equal to the
pixels weight) to the set of pixels of which the median is calculated to serve as the filter
output. The closer a pixel lies to the centre of the neighbourhood, the higher its weight. The
LUM (lower-upper-middle) smoother in [66] extends the standard LUM smoothers [45] by
introducing an adaptive smoothing control. Using a fixed smoothing level for a whole image
namely results in excessive smoothing in some given regionsand insufficient smoothing in
other regions. The peak-and-valley filter, presented in [139], is a genericn-dimensional
filter. It is composed of two conditional rules, independently applied one after the other.
The first rule detects pixels that are larger than their neighbourhood (peaks), the second one
detects pixels that are smaller than their neighbourhood (valleys). Pixels that were detected
are finally filtered as the most similar pixel in their neighbourhood. The filter proposed
in [38] finally, is a motion compensated adaptive spatio-temporal least mean fourth (LMF)
L-filter in which the filter weights are determined by minimizing the kurtosis.

The main drawback of the above filters is that in their aim to remove as much noise as
possible, they also filter too many noisefree pixels, resulting in detail loss, or vice versa,
by trying to preserve the details, too many noise pixels are not detected. In this chapter,
we present two algorithms [74, 77, 80] in which the noise is removed step by step in order
to have a good noise removal and a good detail preservation atthe same time and thus to
minimize the trade-off between noise removal and detail preservation. In the successive
filtering steps, the noisy pixels are first detected and only the detected pixels are filtered in
order to preserve the details. The filtering is performed in amotion compensated way such
that the temporal information is exploited as much as possible. Further, the filtering steps
make use of fuzzy set theory. In the first proposed filter [80],for each pixel a degree to which
it is considered noisy is calculated. Pixels having a non-zero degree will be filtered. In the
second proposed method [74, 77], for each pixel both a degreeto which it is considered
noisy and noisefree is calculated. The pixel will now be filtered if the noisy degree is larger
than the noisefree degree.

From the experimental results it can be seen that the proposed filters combine a good
noise removal with a good detail preservation. They are shown to outperform other state-
of-the-art random impulse noise filters both in terms of PSNRand visually.

The chapter is structured as follows: The different filtering steps of the two proposed
algorithm are discussed one by one in Section 5.1 and 5.2 respectively. Next, the two
proposed filters are compared to other state-of-the-art filters in Section 5.3 and the chapter
is concluded in Section 5.4.

5.1 First Proposed Algorithm

The proposed algorithm [80] consists of different separatenoise detection and filtering steps,
both spatial and temporal as illustrated in Fig. 5.1. For a lot of pixels, it is obvious that they
will be noisefree because of the clear correspondence to their spatio-temporal neighbours. It
would be a needless effort to investigate whether such pixels are noisy. Therefore, in a first
detection (5.1.1) we investigate which pixels can be considered to be surely noisefree and
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Figure 5.1: Overview of the different steps in the proposed algorithm.

97



Random Impulse Noise in Greyscale Image Sequences

should not be filtered. If a pixel and some of its neighbours and the corresponding pixels in
the previous and preprevious frame are all similar, then we assume that these pixels belong
to the same object and that they are noisefree. Such pixels will not be investigated or filtered
any further in the algorithm. For other pixels, we start the investigation to determine whether
they are noisy. In the second detection step (5.1.2), pixelsare detected as noisy if there is a
direction in which the two neighbours have a small difference in grey value (and probably
belong to the same object), but are quite different from the pixel that is investigated. We
however check that the considered pixel does not belong to a line, which might be the
reason for this difference in grey value. Next, a first temporary filtering on a spatial basis
is performed (5.1.3). The result of this filtering, denoted by If1 , facilitates the detection of
the remaining noisy pixels. Now that a considerable part of the noise is removed, a next
spatial detection step (5.1.4) is performed in which pixelsare thought to be noisy if they
have a considerably larger or smaller grey value than all itsneighbouring pixels, except one
(to allow a possible second noisy pixel). Additionally, we perform a motion compensated
filtering (5.1.5) for all pixels that have been detected noisy up to now (If2 ), followed by
a refinement in homogeneous areas (5.1.6)(If3). Some random impulses result in a small
difference compared to their neighbours and will not have been detected. In homogeneous
areas, small differences, that however are relatively large in such an area, will now also be
considered as noisy. Up to now, all noise detection was performed spatially. Some noisy
pixels are however too difficult to detect on a spatial base. Therefore, we use the temporal
information available in sequences to perform a last noise detection (5.1.7). A frame delay is
applied to be able to compare a pixel to its temporal neighbours in respectively the previous
and next frame and to detect temporal impulses. Remark that the fact that thet-th frame is
already filtered based on spatial information, makes the temporal detection for thet − 1-th
frame more reliable since the previous and next frame are both already filtered (the previous
one completely and the next one already based on spatial information). Pixels that have
been detected in this step, are then filtered (If4), again by the help of motion compensation
(5.1.8). Finally, in analogy to the spatial refinement, a temporal refinement is performed (If )
to remove small impulses in non-moving areas (5.1.9). The result of the successive filtering
steps is illustrated in Fig. 5.2 and 5.3 for the 20-th frame ofthe “Salesman” sequence.

5.1.1 First Detection

The first detection determines whether a pixel valueIn(x, y, t) should be considered noise-
free. We assume that this is the case when this pixel is similar to the pixelsIf3(x, y, t− 1)
andIf (x, y, t−2) at the corresponding position in respectively the previousand preprevious
frame and when these pixelsIf3(x, y, t−1) andIf (x, y, t−2) are similar too. Two pixels are
considered similar when their absolute difference in grey value is small to some non-zero de-
gree, where the linguistic value “small” is represented by afuzzy set of which the member-
ship functionµS is depicted in Fig. 5.4. The parameterp1 is selected in Subsection 5.1.10.
Further at least two neighboursIn(x + k, y + l, t) (k, l ∈ {−1, 0, 1}, (k, l) 6= (0, 0)) need
to be found, that are similar to the central pixel and for which the same condition holds,
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(a) (b)

(c) (d)

Figure 5.2: The original 20-th frame of the “Salesman” sequence: (a) the frame corrupted
by 25% random impulse noise (b)(PSNR = 14.27dB) and the result after (c) the first spa-
tial filtering (PSNR = 19.48dB) and (d) the first motion compensated filtering (PSNR =
27.58dB)respectively.
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(e) (f)

(g)

Figure 5.3: The original 20-th frame of the “Salesman” sequence: the result after(e) the spatial
refinement (PSNR = 28.45dB), (f) the second motion compensated filtering (PSNR = 31.99dB)
and (g) the temporal refinement (PSNR = 32.74dB) respectively.

SMALL ABSOLUTE
DIFFERENCE

0

1

Membership degree

Figure 5.4: The membership functionµS of the fuzzy set “small absolute difference”.
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i.e., these neighbours are also similar to the corresponding pixelsIf3(x + k, y + l, t − 1)
and If (x + k, y + l, t − 2) in the previous and the preprevious frame and these pixels
If3(x + k, y + l, t − 1) andIf (x + k, y + l, t − 2) are also similar. If this is the case,
the central pixel in the filtering window is assumed noisefree. The other pixels need to be
investigated further to see whether they are noisy or not.

µnoisefree(x, y, t) =





1 if µS(|In(x, y, t)− If3(x, y, t− 1)|) > 0 and

µS(|In(x, y, t)− If (x, y, t− 2)|) > 0 and

µS(|If3(x, y, t− 1)− If (x, y, t− 2)|) > 0 and

(∃(x′, y′), (x′′, y′′))((x′, y′) 6= (x′′, y′′) and

x− 1 ≤ x′, x′′ ≤ x+ 1 and

y − 1 ≤ y′, y′′ ≤ y + 1 and

µS(|In(x, y, t)− In(x
′, y′, t)|) > 0 and

µS(|In(x, y, t)− In(x
′′, y′′, t)|) > 0 and

µS(|In(x′, y′, t)− If3(x
′, y′, t− 1)|) > 0 and

µS(|In(x′, y′, t)− If (x
′, y′, t− 2)|) > 0 and

µS(|If3(x′, y′, t− 1)− If (x
′, y′, t− 2)|) > 0 and

µS(|In(x′′, y′′, t)− If3(x
′′, y′′, t− 1)|) > 0 and

µS(|In(x′′, y′′, t)− If (x
′′, y′′, t− 2)|) > 0 and

µS(|If3(x′′, y′′, t− 1)− If (x
′′, y′′, t− 2)|) > 0),

0 else.

5.1.2 Second Detection

For those pixels that have not been detected as noisefree in the first step, it is needed to
further investigate whether they are really noisy and need to be filtered.

The detection of noisy pixels in this step goes as follows. Ifin a given direction two op-
posite neighboursIn(x+k, y+l, t) andIn(x−k, y−l, t), (with (k, l) ∈ {(−1,−1), (−1, 0),
(−1, 1), (0, 1)} corresponding to the directionsN−S,NE−SW ,E−W andSE−NW ),
are similar (µS |In(x+k, y+ l, t)−In(x−k, y− l, t)|) > 0) and each of these two opposite
neighbours has two similar neighbours (and can thus be considered reliable), then the cen-
tral pixel is considered noisy for this directioni (with i ∈ dir = {N − S,NE − SW,E −
W,SE − NW}) if the difference in grey value with respect to the central pixel is large
positive or large negative for the two opposite neighbours.The membership functionsµLN

andµLP of the fuzzy sets that are used to represent the linguistic variables “large negative
difference” and “large positive difference” are depicted in Fig. 5.5. Further, for the results
in this chapter, the and- and or-operator are translated by the algebraic product and the prob-
abilistic sum respectively. These aggregators are a good choice from a computational point
of view and other aggregation operators resulted in similarresults. The degreeDi(x, y, t)
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Figure 5.5: The respective membership functionsµLN andµLP of the fuzzy sets “large negative
difference” and “large positive difference”.

to whichIn(x, y, t) is considered noisy in the directioni then becomes:

Di(x, y, t) = (lp1 · lp2) + (ln1 · ln2)− (lp1 · lp2) · (ln1 · ln2),
with

lp1 = µLP (In(x, y, t)− In(x+ k, y + l, t)),

lp2 = µLP (In(x, y, t)− In(x− k, y − l, t)),

ln1 = µLN (In(x, y, t)− In(x+ k, y + l, t)),

ln2 = µLN (In(x, y, t)− In(x− k, y − l, t)),

if the two opposite neighbours in this direction each also have two similar neighbours. If
this is not the case, thenDi(x, y, t) = 1. However, we don’t want the pixel to be detected
if there is a direction in which the two opposite neighbours,or one of the three pixels in
their prolongation, as illustrated in Fig. 5.6, are similarto the central pixel. In this case the
central pixel might belong to a line and should not be considered noisy. The occurrence of
a line is saved in a variableL(x, y, t). The variableL(x, y, t) receives the valuetrue if a
line is detected and the valuefalsein the other case. Finally, the central pixel is assigned a

o

o o o

c cc c

oo

o o
o o
o o

o

o

o

o

Figure 5.6: Illustration of the second detection step. The central window pixel (‘c’) might belong to a
line if in one of the four directions, two opposite neighbours, or one of the three pixels in their prolon-
gation, are similar to the central pixel. This is the case if in one of the four directions (corresponding
to the four subfigures) one pixel indicated with ‘·’ and one pixel indicated with ‘o’ are similar to the
central pixel.

membership degreeµnoise,1(x, y, t) = mini∈dir(Di(x, y, t)) in the fuzzy set “noisy” if it
is not noisefree (µnoisefree(x, y, t) = 0, see Subsection 5.1.1) and no line is detected:
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µnoise,1(x, y, t) =





0 if µnoisefree(x, y, t) = 1

orL(x, y, t) = true,

mini∈dir(Di(x, y, t)) else.

5.1.3 Spatial Filtering

Based onµnoise,1 that was determined in the previous step, a first spatial filtering is per-
formed to facilitate the remaining noise detection. For a general image (or frame)I, a
general noise membership functionµ and a general filtering window of size(2 ·W + 1)×
(2 ·W + 1), the spatial filtering framework for the pixel at spatial location (x, y) in I is
determined as a weighted sum of the neighbourhood grey values, where the weight of a
grey value corresponds to the degree of belief that it is not noisy (where the noisy degree is
given by a functionµ and where the standard negator is used for the not-operator):

SF I
µ(x, y,W ) =

∑+W
k=−W

∑+W
l=−W

(
1− µ(x+ k, y + l)

)
· I(x+ k, y + l)

∑+W
k=−W

∑+W
l=−W

(
1− µ(x+ k, y + l)

)

If
∑+W

k=−W

∑+W
l=−W

(
1 − µ(x + k, y + l)

)
= 0, which is unlikely to happen in practical

situations, thenSF I
µ(x, y,W ) = median{I(x+ k, y + l)| −W ≤ k, l ≤W}.

In our proposed filter, the current frameIn(t), the membership functionµnoise,1 re-
stricted to the current frame (denoted byµnoise,1(t)) and a window of size(2 ·W1 + 1) ×
(2 ·W1 + 1) (where the parameterW1 is determined in subsection 5.1.10) are used. The
result of the first spatial filtering is then given by

If1(x, y, t) = SF
In(t)
µnoise,1(t)

(x, y,W1).

5.1.4 Third Detection

A considerable part of the noise is already removed by the previous steps, however, there is
still noise left that has to be removed. Therefore, we continue the denoising based on this
first estimateIf1 . For the pixels that have not been considered noisefree in the first detection
(µnoisefree(x, y, t) = 0), but that also have not been detected as noisy in the previous
step (µnoise,1(x, y, t) = 0), we further investigate whether they might be noisy. If the
difference in grey value is large positive or large negativecompared to all eight neighbours,
then the central pixel should be considered noisy. If there is only one neighbour for which
the difference in grey value is not large positive and not large negative, then it is checked
whether the opposite neighbour or one of the its neighbours or one of the pixels in their
prolongation (as illustrated in Fig. 5.7) are similar to thecentral pixel or the neighbour for
which the difference in grey value is not large positive or not large negative. If there exist
such a pixel, then the central pixel might belong to a line andshould not be detected as noise.
The information about a possible line is stored in the variable PL(x, y, t). PL(x, y, t) =
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true indicates that a possible line is detected by the above described detection method;
PL(x, y, t) = falseindicates there isn’t such a line.

X cc

X

Figure 5.7: Illustration of the third detection step. If ‘X’ stands for the only neighbour for which the
difference in grey value compared to the central pixel ‘c’ is not large positive and not large negative,
then the central pixel is considered noisy, unless one of the opposite pixels indicated by ‘·’ is similar
to ‘c’ or to ‘X’.

Summarized, we get the noise membership functionµnoise,2 for this step, given by:

µnoise,2(x, y, t) =





1 if µnoisefree(x, y, t) = 0 and

((NN(x, y, t) = 8 orNP (x, y, t) = 8) or

(((NN(x, y, t) = 7 andNP (x, y, t) = 0) or

(NP (x, y, t) = 7 andNN(x, y, t) = 0))

andPL(x, y, t) = false),

µnoise,1(x, y, t) else,

whereNN(x, y, t) (respectivelyNP (x, y, t)) denotes the number of neighbours of the pixel
at location(x, y, t) for which the difference in grey value compared to that pixelat location
(x, y, t) is large negative (respectively large positive) to some non-zero degree.

5.1.5 First Motion Compensated Temporal Filtering

In this step, all pixels that have been detected as noise to some degree, i.e., the pixels be-
longing to the support of the fuzzy set “noisy” or thus for whichµnoise,2(x, y, t) > 0, are
filtered temporally based on motion compensation. This includes the pixels that have al-
ready been temporary filtered in 5.1.3. However, in that firstspatial filtering, also pixels
that have only just been detected as noise in the third detection could have been taken into
account in the averaging, and thus a better filtering is needed. To compensate the motion
between successive frames, we introduce a noise adaptive mean absolute difference (MAD)
between two blocks of image pixels. In a general notation andfor a general block size
(2 ·W + 1)× (2 ·W + 1) it is given by:

MADI1,µ
I2

(x, y, r, s,W ) =
∑+W

k=−W

∑+W
l=−W Φ(µ(x+ k, y + l))|I1(x+ k, y + l)− I2(x+ k + r, y + l + s)|

∑+W
k=−W

∑+W
l=−W Φ(µ(x+ k, y + l))

,
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whereI1 andI2 are the two frames between which motion is estimated (usually the noisy
current and filtered previous frame respectively),x andy indicate the spatial coordinates of
the central pixel of the considered block inI1 andr ands respectively stand for the vertical
and horizontal coordinates of the displacement vector, which means that the central pixel
of the block that is considered inI2 has spatial coordinates(x + r, y + s). Further, the
functionµ gives the degreeµ(x, y) to which a pixel(x, y) is considered noisy. The function
Φ makes it possible to consider only those pixels that have a membership degree equal to
zero (or thus to do a reliable motion compensation by only taking into account noisefree
pixels):

Φ(µ(x, y)) =

{
1 if µ(x, y) = 0,

0 else.

If
∑+W

k=−W

∑+W
l=−W Φ(µ(x+k, y+ l)) = 0 or if not for at least half of the noisefree pixels,

the absolute difference|I1(x + k, y + l) − I2(x + k + r, y + l + s)| is not large positive
(i.e.,µLP (|I1(x+ k, y + l)− I2(x+ k + r, y + l + s)|) = 0), the noise adaptive MAD is
not reliable and is assigned the value+∞.

Using this above introduced MAD, the best matching(2 ·W1 +1)× (2 ·W1 +1) block
in a search region of size(2 ·W2+1)× (2 ·W2+1) (where the parameterW2 is determined
in subsection 5.1.10) in the previous frameIf3 (already processed up to step 5.1.6, since
from then on a frame delay will be applied as will be seen laterin 5.1.7) is determined by
the following displacement vector (where in analogy to the notationI(t) for thet-th frame
in an image sequenceI, the notationµ(t) stands for the restriction of a general functionµ
(e.g., noise membership function) to the pixels of thet-th frame of the sequence):

(u(x, y, t), v(x, y, t)) = argmin
−W2≤r,s≤W2

MAD
In(t),µnoise,2(t)

If3 (t−1) (x, y, r, s,W1).

The minimum value itself is denoted byminmad(x, y, t).
For noisy pixels, the output of the temporal filter is then thecorresponding motion com-

pensated pixel in the previous frame, if this motion compensated candidate pixel exists.
Otherwise, the spatial filtering framework is used again:

If2(x, y, t) =MCF
In(t),µnoise,2(t)

If3 (t−1) (x, y, u(x, y, t), v(x, y, t),minmad(x, y, t)),

with in a general notation

MCF I1,µ
I2

(x, y, u, v,minmad) =




I2(x+ u, y + v) if µ(x, y) > 0 andminmad 6= +∞,

SF I1
µ (x, y,W1) if µ(x, y) > 0 andminmad = +∞,

I1(x, y) else,

whereµ is again a function that determines the detected noise degree of a pixel and the
variableminmad determines whether the filtering of a pixel(x, y) in frameI1 is performed
temporally by the help of frameI2 and the displacement vector(u, v) or by the spatial
filtering framework.
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5.1.6 Spatial Refinement of Homogeneous Areas

To cope with noisy pixels in homogeneous regions that are quite similar to their original
value and that are not detected as noise, the following refinement is performed to smooth
these regions. A pixel, that was not determined noisefree bythe first detection method (i.e.,
µnoisefree(x, y, t) = 0), is adapted if the central pixel in an3×3 neighbourhood is larger or
smaller than all other pixel values in this neighbourhood and one of the following conditions
holds (withM(x, y, t) = max{If2(x + k, y + l, t)| − 1 ≤ k, l ≤ 1, (k, l) 6= (0, 0)} and
m(x, y, t) = min{If2(x+ k, y + l, t)| − 1 ≤ k, l ≤ 1, (k, l) 6= (0, 0)}):

• µS(M(x, y, t) −m(x, y, t)) > 0 (i.e., the minimum and the maximum value in this
neighbourhood are similar),

• µLP (If2(x, y, t) −M(x, y, t)) > 0 (i.e., the difference (If2(x, y, t) −M(x, y, t)) is
large positive),

• µLN (If2(x, y, t) −m(x, y, t)) > 0 (i.e., the difference (If2(x, y, t) −m(x, y, t)) is
large negative),

• If2(x, y, t)−M(x, y, t) > M(x, y, t)−m(x, y, t) (i.e., the difference (If2(x, y, t)−
M(x, y, t)) is relatively large),

• m(x, y, t)− If2(x, y, t) > M(x, y, t) −m(x, y, t) (i.e., the difference (m(x, y, t)−
If2(x, y, t)) is relatively large).

If this is the case, the pixel is filtered asIf3(x, y, t) = (M(x, y, t)+m(x, y, t))/2, otherwise
the pixel remains unchanged, i.e.,If3(x, y, t) = If2(x, y, t).

5.1.7 Temporal Detection

Due to the aim to preserve possible lines and edges, still notall noisy pixels were detected.
Until now, noise was detected based on spatial information (if we don’t take into account
the detection of noisefree pixels in 5.1.1). To remove the remaining noise, in this step, also
the noise detection works temporally. To detect a noisy impulse pixel, we compare it to its
temporal neighbours in the previous and next frame respectively. To have a good detection,
it is needed that this previous and next frame are as noisefree as possible. To have a more or
less noisefree next frame, we have to do the temporal detection with a one frame delay, so
that the next frame is already processed up to step 5.1.6 at this point and most of the noise
in that frame has already been removed. So the temporal noisedetection is performed for
the previous frame. The detection consists of two stages. Inthe first stage, each pixel (in
the previous frameIf3(t − 1) as explained above) that is not considered noisefree by the
first detection step, is compared to the corresponding pixels in the preprevious (If (t − 2),
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already completely filtered) and current frame (If3(t)) as follows:

µtemp,1(x, y, t− 1) =





1 if µLP (|If3(x, y, t− 1)− If (x, y, t− 2)|) > 0

andµLP (|If3(x, y, t− 1)− If3(x, y, t)|) > 0

andµnoisefree(x, y, t− 1) = 0,

0 else.

This comparison is used to determine in a second stage whether a pixel is considered noisy
on a temporal basis. A pixel is called noisy when it differs from its temporal neighbours
(µtemp,1(x, y, t) = 1) and also one of the following conditions holds:

(a) The number of pixels within a5×5 neighbourhood (in the considered previous frame)
for whichµtemp,1(x + k, y + l, t − 1) = 1 (with −2 ≤ k, l ≤ 2) is smaller than or
equal to 2. This number is chosen small enough to avoid that a moving line would be
detected.

(b) The number of pixels within a7 × 7 neighbourhood such thatµS(|If3(x + k, y +
l, t − 1) − If3(x, y, t − 1)|) = 0 is larger than or equal to7 × 7 − 6 (The central
pixel and possible some similar noisy neighbours (but not enough in number to form
a line or object), which have not been detected by the spatialdetection steps in order
to preserve lines and details, differ from the neighbourhood). To summarize:

µnoise,3(x, y, t− 1) =

{
1 if µtemp,1(x, y, t− 1) = 1 and

(
(a) or (b)

)
hold,

0 else.

5.1.8 Second Motion Compensated Temporal Filtering

Based on the previous detection step, a second motion compensated filtering is performed.
Again, all pixels belonging to the support of the fuzzy set “noisy”, i.e., the pixels for which
µnoise,3(x, y, t − 1) > 0, are filtered (remember that we use a frame delay and that in this
step, pixels from the previous frame are filtered). This might include pixels that have already
been filtered temporary in one of the previous steps, but for which the filtering result was not
yet sufficient e.g. due to not yet detected noisy neighbours taken into account in the filtering.
The displacement vector that determines the best matching(2 ·W1+1)× (2 ·W1+1) block
in a search region of size(2 · W2 + 1) × (2 · W2 + 1) in the filtered preprevious frame
If (t − 2) to the considered block in the previous frame with central pixel given by the
spatial coordinates(x, y), is given by:

(w(x, y, t− 1), z(x, y, t− 1)) = argmin
−W2≤r,s≤W2

MAD
If3 (t−1),µnoise,3(t−1)

If (t−2) (x, y, r, s,W1).

The minimum value itself is denoted byminmad2(x, y, t − 1). The noisy central pixel is
then filtered as:
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If4(x, y, t− 1) =

MCF
If3 (t−1),µnoise,3(t−1)

If (t−2) (x, y, w(x, y, t− 1), z(x, y, t− 1),minmad2(x, y, t− 1)).

5.1.9 Temporal Refinement of Non-moving Areas

In a non-moving area, pixel values in a frame correspond to the pixel values at the cor-
responding spatial position in a previous or next frame. This should make it possible to
easily detect whether a noisy pixel remained noisy in such a non-moving area. Therefore a
temporal detection as in Subsection 5.1.7 is performed:

µtemp,2(x, y, t− 1) =





1 if µLP (|If4(x, y, t− 1)− If (x, y, t− 2)|) > 0

andµLP (|If4(x, y, t− 1)− If3(x, y, t)|) > 0

andµnoisefree(x, y, t− 1) = 0,

0 else.

A (2·W3+1)×(2·W3+1) (where the parameterW3 is determined in subsection 5.1.10)
region centered around the spatial position(x, y) is determined as non-moving if

(a’) µS(MAD
If4 (t−1),µtemp,2(t−1)

If (t−2) (x, y, 0, 0,W3)) > 0 and

(b’)
∑+W3

k=−W3

∑+W3

l=−W3
Φ(µtemp,2(x+ k, y + l)) > 2 ·W3 · (2 ·W3 + 1).

A remaining noisy pixel in such a region is then filtered as thecorresponding pixel in
the previous frame:

If (x, y, t− 1) =

{
If (x, y, t− 2) if µtemp,2(x, y, t− 1) = 1 and (a’) and (b’) hold,

If4(x, y, t− 1) else.

5.1.10 Parameter Selection

To determine the parameterspar1, par2 andp1, and thus the membership functions intro-
duced in Fig. 5.5, we have used a pixel neighbourhood of size5 × 5 (W1 = 2), a search
window of17×17 (W2 = 8) pixels for the motion compensation and a window of size7×7
(W3 = 3) for the temporal refinement of non-moving areas. We have letthe parameters run
over a range of possible values and computed the arithmetic mean of the PSNR result of the
nine sequences “Salesman”, “Trevor” and “Tennis”, each corrupted with respectively5%,
15% and25% random impulse noise. The higher the PSNR value, the better the result. The
arithmetic mean over the nine test sequences reached its maximum for the parameter values
par1 = 24, par2 = 38, p1 = 11, that we will use for the remaining experiments.

For the determination of the window sizesW1,W2 andW3, we performed the following
experiments. First, for the selection ofW1, we have let this parameter run over the values
0 to 6 and have used the fixed valuesW2 = 8 andW3 = 3 for the other window sizes to
process the “Salesman”, “Trevor” and “Tennis” sequence, each corrupted with 15% random
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Table 5.1: Determination of the parameterW1. (Average PSNR (dB) values.)

W1

Sequence 0 1 2 3 4 5 6

“Salesman”30.1734.9835.2935.1034.8434.7334.57
“Trevor” 31.3137.8637.6137.2936.9536.4436.18
“Tennis” 25.6225.1425.8425.9625.9325.8325.70

impulse noise. The resulting average PSNR values are given in Table 5.1. From those
results, we conclude thatW1 = 2 is a good choice, that we will use for the remaining
experiments.

The used value for the parameterW2 is determined analogously, by letting it run over
the values 5 to 14, and processing the “Salesman”, “Trevor” and “Tennis” sequence, each
corrupted with 15% random impulse noise, for the fixed valuesW1 = 2 andW3 = 3. The
average PSNR results can be found in Table 5.2. It can be seen that the valueW2 = 8
that we used up to now was a good choice, that we can continue touse for the remaining
experiments.

Table 5.2: Determination of the parameterW2. (Average PSNR (dB) values.)

W2

Sequence 5 6 7 8 9 10 11 12 13 14

“Salesman”35.2635.2935.2935.2935.2835.2635.2635.2335.2035.14
“Trevor” 37.4337.5137.6037.6137.6937.7437.7637.7937.7937.77
“Tennis” 25.8425.8225.8225.8425.8425.8325.8225.8225.8125.78

Finally, also the window sizeW3 is determined in an analogous way. For the fixed values
W1 = 2 andW2 = 8, we let the parameterW3 take on the values 1 to 9 and process the
sequences “Salesman”, “Trevor” and “Tennis”, each corrupted with 15% random impulse
noise. Table 5.3 gives the results of these experiments. Forthe experiments in the next
subsection, we will useW3 = 3.

Table 5.3: Determination of the parameterW3. (Average PSNR (dB) values.)

W3

Sequence 1 2 3 4 5 6 7 8 9

“Salesman”35.2035.2735.2935.2835.2535.2435.2035.1935.17
“Trevor” 37.6437.6737.6137.5737.4937.4537.3737.3137.24
“Tennis” 25.7725.8025.8425.8525.8525.8425.8425.8325.83
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5.2 Second Proposed Algorithm
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Figure 5.8: Overview of the different steps in the proposed algorithm.

To preserve as much details as possible, in the proposed method [74, 77], the noise is
removed by successive filtering steps as illustrated in Fig.5.8. It might be easier to distin-
guish noise from small details if a considerable part of the noise has already been removed
in a previous step. The algorithm consists of three filteringsteps and one refinement step. In
the first step (5.2.1), both a degree to which a pixel is considered noisefree and to which it
is considered noisy is calculated. If the noisy degree is larger than the noisefree degree, the
pixel is filtered. A pixel is considered noisefree if its greyvalue corresponds to that of the
corresponding pixels in the previous frames or to most of itsspatial neighbours. The pixel
is considered noisy if it differs from its temporal neighbour in the previous frame, and this
does not hold for most of its neighbours (such that the difference is not caused by motion).
The output sequence of this first step is denoted byIf1 .The second step (5.2.2)(outputIf2 )
filters pixels for which the difference in grey value to all its neighbours is large positive or
large negative. If there is one neighbour for which the difference is not large positive and not
large negative, it is checked whether the considered pixel and that neighbour might belong
to a line. If not, the pixel will be filtered also. After this step, the remaining noise consists
mostly of clustered noise pixels with a similar grey value. In the third step (5.2.3)(output
If3 ), these small clusters (similar spatial neighbours) are filtered based on temporal infor-
mation. To be able to better detect impulses in time, a frame delay is applied such that
pixels can be compared to both the corresponding pixel in theprevious and next frame. The
next frame will then have been processed up to the second stepand most of the noise will
have been removed already. Analogously to the first step, a noisefree degree and a noisy
degree are calculated again in this third step. A pixel is considered noisefree if its grey value
corresponds to that of its temporal neighbours or if there isa neighbour with similar grey
value (that probably belongs to the same object) that corresponds to its temporal neighbours
(the considered pixel might belong to the border of a slightly moving object). The pixel
is considered noisy if its grey value does not correspond to that of its temporal neighbours
and this does not hold for most of its neighbours (but possibly holds for a small cluster).
The refinement step (5.2.4)(outputIf ), finally, is intended to remove small impulses (noise
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value similar to the original value) that may not have been detected up to now, but that are
relatively large in a homogeneous (spatially) or non-moving (temporally) area. The result of
the successive filtering steps is illustrated in Fig. 5.9 forthe 20-th frame of the “Salesman”
sequence.

5.2.1 First Filtering Step

Detection

In this first detection step, we determine by the help of fuzzyrules a degree to which a given
pixel is considered noisefree and a degree to which that pixel is considered noisy. If the
noisy degree is larger than the noisefree degree, then the pixel will be filtered, otherwise the
pixel will remain unchanged.

A pixel can be considered noisefree if it is similar to the pixel at the same spatial location
in the previous and preprevious frame and has also some similar neighbours. If the noisefree
situation of the pixel is not confirmed in time, possibly due to motion, we will require more
spatial confirmation (similar neighbours). The noisefree degree is determined as follows:

Fuzzy Rule 5.1.
IF( the absolute differences|In(x, y, t)−If2(x, y, t−1)| AND|In(x, y, t)−If (x, y, t−2)|
areNOT LARGE POSITIVE ANDthere are two neighbours(x+k, y+ l, t) (−2 ≤ k, l ≤ 2
and(k, l) 6= (0, 0)) for which|In(x, y, t)−In(x+k, y+ l, t)| is NOT LARGE POSITIVE)

ORthere are four neighbours(x+ k, y+ l, t) (−2 ≤ k, l ≤ 2 and(k, l) 6= (0, 0)) for which
|In(x, y, t)− In(x+ k, y + l, t)| is NOT LARGE POSITIVE

THENthe pixel at position(x, y, t) is consideredNOISEFREE.

The linguistic term “large positive” in this rule can be represented by a fuzzy set of
which the membership functionµLP is depicted in Fig. 5.10 (see Section 5.2.5 for the de-
termination of the parameters). Further, for the conjunction (AND), disjunction (OR) and
negation (NOT) in the fuzzy rules, in this chapter we will usethe product, probabilistic sum
and standard negator, because these yielded the best results. The difference compared to the
results for another choice of operators is however neglectible. The degree to which the pixel
at position(x, y, t) now belongs to the fuzzy set “noisefree” corresponds to the degree to
which the antecedent in the fuzzy rule is true. This degree iscalculated as follows. The de-
gree to which there are two (respectively four) neighbours for which the absolute difference
in grey value is not large positive, denoted bymax2(x, y, t) (respectivelymax4(x, y, t)), is
determined as the second (respectively fourth) largest element in the set

{1− µLP (|In(x, y, t)− In(x+ k, y + l, t)|)| − 2 ≤ k, l ≤ 2 and(k, l) 6= (0, 0)}.

For the pixel at position(x, y, t) this results in a noisefree degree

µnoisefree(x, y, t) = α1(x, y, t) · α2(x, y, t) ·max2(x, y, t) +max4(x, y, t)−
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(a) (b)

(c) (d)

(e) (f)

Figure 5.9: The original 20-th frame of the “Salesman” sequence (a), the frame corrupted by 25%
random impulse noise (b)(PSNR = 14.27dB) and the result after the first (c)(PSNR = 19.48dB),
second (d)(PSNR = 26.38dB), third (e)(PSNR = 32.20dB) and refinement step (f)(PSNR =
33.22dB) respectively.

112



5.2 Second Proposed Algorithm

LARGE POSITIVE
DIFFERENCE

0

1

Membership degree

Figure 5.10: The membership functionµLP of the fuzzy set “large positive difference”.

α1(x, y, t) · α2(x, y, t) ·max2(x, y, t) ·max4(x, y, t),

where

α1(x, y, t) = (1− µLP (|In(x, y, t)− If2(x, y, t− 1)|)),
α2(x, y, t) = (1− µLP (|In(x, y, t)− If (x, y, t− 2)|)).

A pixel is considered noisy if the difference in grey value compared to the pixel at the
same spatial location in the previous frame is large positive or large negative and if this does
not hold for its neighbours (the difference is thus not caused by motion). This should also
be confirmed spatially by the fact that there is a direction inwhich the differences in grey
level between the considered pixel and the two respective neighbours are both large positive
or large negative and if the difference in grey value of thosetwo neighbours is not large
positive (and the pixel is thus an impulse between two pixelsthat are expected to belong to
the same object).

Fuzzy Rule 5.2.
IF(( the differenceIn(x, y, t) − If2(x, y, t − 1) is LARGE POSITIVE AND NOTfor five
neighbours(x+k, y+ l, t) (−2 ≤ k, l ≤ 2 and(k, l) 6= (0, 0)) the differenceIn(x+k, y+
l, t)− If2(x+ k, y + l, t− 1) is LARGE POSITIVE)
OR (the differenceIn(x, y, t) − If2(x, y, t − 1) is LARGE NEGATIVE AND NOTfor five
neighbours(x+k, y+ l, t) (−2 ≤ k, l ≤ 2 and(k, l) 6= (0, 0)) the differenceIn(x+k, y+
l, t)− If2(x+ k, y + l, t− 1) is LARGE NEGATIVE))

AND(( in one of the four directions the differencesIn(x, y, t) − In(x + k, y + l, t) and
In(x, y, t) − In(x − k, y − l, t) ((k, l) ∈ {(−1,−1), (−1, 0), (−1, 1), (0, 1)}) are both
LARGE POSITIVE ORboth LARGE NEGATIVE) ANDthe absolute difference|In(x +
k, y + l, t)− In(x− k, y − l, t)| is NOT LARGE \verbPOSITIVE?)?

THENthe pixel at position(x, y, t) is consideredNOISY.

Analogously to the linguistic term “large positive”, also the term “large negative” can
be represented by a fuzzy set with the membership function given in Fig. 5.11 (see Sec-
tion 5.2.5 for the determination of the parameters). The degree to which for five neighbours
the differences in grey value compared to the correspondingpixels in the previous frame are
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LARGE NEGATIVE
DIFFERENCE

0

1

Membership degree

Figure 5.11: The membership functionµLN of the fuzzy set “large negative difference”.

large positive, denoted bytpos(x, y, t) is determined as the fifth largest value in the set

{µLP (In(x+ k, y + l, t)− If2(x+ k, y + l, t− 1))| − 2 ≤ k, l ≤ 2 and(k, l) 6= (0, 0)}.

Analogously,tneg(x, y, t) corresponds to the fifth largest value in the set

{µLN (In(x+ k, y + l, t)− If2(x+ k, y + l, t− 1))| − 2 ≤ k, l ≤ 2 and(k, l) 6= (0, 0)}.

The degree to which the difference between the pixel at position (x, y, t) and the corre-
sponding pixel in the previous frame is large positive or large negative and this is not the
case for five of its neigbhours is then given by

tempimp(x, y, t) =

(γ1(x, y, t) · (1− tpos(x, y, t))) + (γ2(x, y, t) · (1− tneg(x, y, t)))−
(γ1(x, y, t) · (1− tpos(x, y, t))) · (γ2(x, y, t) · (1− tneg(x, y, t))),

where

γ1(x, y, t) = µLP (In(x, y, t)− If2(x, y, t− 1)),

γ2(x, y, t) = µLN (In(x, y, t)− If2(x, y, t− 1)).

The degree to which there is a direction in which the pixel at position (x, y, t) is an
impulse, denoted byspatimp(x, y, t), is determined as the maximum value in the set

{(ε1(k,l)(x, y, t) + ε2(k,l)(x, y, t)− ε1(k,l)(x, y, t) · ε2(k,l)(x, y, t)) · ε3(k,l)(x, y, t)
|(k, l) ∈ {(−1,−1), (−1, 0), (−1, 1), (0, 1)}},

where

ε1(k,l)(x, y, t) = µLP (In(x, y, t)− In(x+ k, y + l, t))·
µLP (In(x, y, t)− In(x− k, y − l, t)),

ε2(k,l)(x, y, t) = µLN (In(x, y, t)− In(x+ k, y + l, t))·
µLN (In(x, y, t)− In(x− k, y − l, t)),

ε3(k,l)(x, y, t) = 1− µL(|In(x+ k, y + l, t)− In(x− k, y − l, t)|).
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Combining the above, we get

µnoisy(x, y, t) = tempimp(x, y, t) · spatimp(x, y, t).

Filtering

All pixels (x, y, t) for which µnoisy(x, y, t) > µnoisefree(x, y, t) are filtered (denoted by
µunch(x, y, t) = 0), the other pixels remain unchanged (denoted byµunch(x, y, t) = 1):

µunch(x, y, t) =

{
0 µnoisy(x, y, t) > µnoisefree(x, y, t),

1 else.

The filtering is performed in a motion compensated way. To calculate the correspondence
between two blocks of image pixels of size(2 ·W +1)× (2 ·W +1) (whereW is a general
parameter), the following noise adaptive mean absolute difference (MAD) is introduced:

MADI,µ
I′ (x, y, r, s,W ) =
∑+W

k=−W

∑+W
l=−W µ(x+ k, y + l)|I(x+ k, y + l)− I ′(x+ k + r, y + l + s)|

∑+W
k=−W

∑+W
l=−W µ(x+ k, y + l)

,

whereI andI ′ are the two frames between which motion is estimated,x andy indicate the
spatial coordinates of the central pixel of the considered block in I andr ands respectively
stand for the vertical and horizontal coordinates of the displacement vector, i.e., the block
that is considered inI ′ has(x + r, y + s) as central pixel.µ is a binary function that
indicates whether a pixel at spatial location(x, y) is reliable, i.e., to be used (µ(x, y) = 1)
or not (µ(x, y) = 0). Using only reliable (noisefree) pixels will result in a better motion
compensation. If

∑+W
k=−W

∑+W
l=−W µ(x + k, y + l) = 0 or if not for at least half of the

noisefree pixels, the absolute difference|I(x+ k, y + l)− I ′(x+ k + r, y + l + s)| is not
large positive (i.e.,µLP (|I(x+k, y+ l)− I ′(x+k+r, y+ l+s)|) = 0), the noise adaptive
MAD is not reliable and is assigned the value+∞.

For the filtering of a pixel(x, y, t) in this first step of our algorithm, we determine the
displacement vector(u(x, y, t), v(x, y, t)) for the best matching(2 ·W1+1)× (2 ·W1+1)
block in a search region of size(2 · W2 + 1) × (2 · W2 + 1) in the previous frameIf2
(see Section 5.2.5 for the determination of the parametersW1 andW2) and by using the
restriction ofµunch to the current frame (denoted byµunch(t)) as:

(u(x, y, t), v(x, y, t)) = argmin
−W2≤r,s≤W2

MAD
In(t),µunch(t)
If2 (t−1) (x, y, r, s,W1).

The previous frame has been processed up to step 5.2.2 at thismoment. As will be seen
later, a frame delay will be applied as from step 5.2.3. The minimum value itself is denoted
byminmad(x, y, t). The parametersW1 andW2 are determined in section 5.2.5.

A pixel (x, y, t) for which µunch(x, y, t) = 0, is then filtered as the corresponding
motion compensated pixel in the previous frame, if it exists(minmad(x, y, t) 6= +∞).

115



Random Impulse Noise in Greyscale Image Sequences

Otherwise (ifminmad(x, y, t) = +∞), a spatial filtering is performed. Ifµunch(x, y, t) =
1, the pixel remains unchanged in this step. Summarized, the output of this first step for a
pixel (x, y, t) is given by:

If1(x, y, t) = MCF
In(t),µunch(t)
If2 (t−1) (x, y, u(x, y, t), v(x, y, t)),minmad(x, y, t)),

with (for general framesI andI ′, general binary functionµ, displacement vector(u, v) and
variableminmad)

MCF I,µ
I′ (x, y, u, v,minmad) =





I ′(x+ u, y + v) if µ(x, y) = 0 andminmad 6= +∞
SF I

µ(x, y,W1) if µ(x, y) = 0 andminmad = +∞
I(x, y) else

,

where the spatial filtering framework is given by

SF I
µ(x, y,W ) =

∑+W
k=−W

∑+W
l=−W µ(x+ k, y + l) · I(x+ k, y + l)

∑+W
k=−W

∑+W
l=−W µ(x+ k, y + l)

.

If
∑+W

k=−W

∑+W
l=−W µ(x+k, y+ l) = 0, which is unlikely to happen in practical situations,

SF I
µ(x, y,W ) = median{I(x+ k, y + l)| −W ≤ k, l ≤W}.

5.2.2 Second Filtering Step

In our aim to preserve the details as much as possible, the noise is removed in successive
steps. In this step the noise is detected based on the output of the previous step (If1 ).

If for all 8 neighbours(x+k, y+ l, t) (−1 ≤ k, l ≤ 1 and(k, l) 6= (0, 0)) the difference
If1(x, y, t) − If1(x + k, y + l, t) is large positive to some degree (i.e.,µLP (If1(x, y, t) −
If1(x + k, y + l, t)) > 0) or for all 8 neighbours this difference is large negative tosome
degree, then the pixel(x, y, t) is considered noisy and should be filtered (µ′

unch(x, y, t) =
0).

If µLP (If1(x, y, t) − If1(x + k, y + l, t)) > 0 for 7 neighbours orµLN (If1(x, y, t) −
If1(x + k, y + l, t)) > 0 for 7 neighbours and if for the remaining eighth neighbour both
µLP (If1(x, y, t)−If1(x+k, y+ l, t)) = 0 andµLN (If1(x, y, t)−If1(x+k, y+ l, t)) = 0,
then this neighbour and the central pixel(x, y, t) might belong to a corrupted line. It is then
checked whether for the opposite neighbour or one of the neighbouring neighbours or one
of the pixels in their prolongation (as illustrated in Fig. 5.12) the difference in grey level
compared to the central pixel or the neighbour for which the difference in grey value was
not large positive and not large negative, is also not large positive and not large negative (i.e.,
has degree zero). If this is the case, then we have detected a possible line which is stored as
PL(x, y, t) = trueand the pixel will not be filtered (µ′

unch(x, y, t) = 1). Otherwise no line
is detected (PL(x, y, t) = false) andµ′

unch(x, y, t) = 0. In all other cases, the pixels are
not detected as noise (µ′

unch(x, y, t) = 1).
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X cc

X

Figure 5.12: Illustration of the third detection step. If ‘X’ stands for the only neighbour for which the
difference in grey value compared to the central pixel ‘c’ is not large positive and not large negative,
then the central pixel is considered noisy, unless if for one of the opposite pixels indicated by ‘·’ the
difference in grey level compared to ‘c’ or to ‘X’ is not large positive and not large negative.

Analogously to the first step, the pixels for whichµ′
unch(x, y, t) = 0 are again filtered

in a motion compensated way:

(u′(x, y, t), v′(x, y, t)) = argmin
−W2≤r,s≤W2

MAD
If1 (t),µ

′

unch(t)

If2 (t−1) (x, y, r, s,W1),

with the minimum value itself denoted byminmad′(x, y, t). The output of this step for the
pixel at position(x, y, t) then becomes

If2(x, y, t) = MCF
If1 (t),µ

′

unch(t)

If2 (t−1) (x, y, u′(x, y, t), v′(x, y, t),minmad′(x, y, t)).

5.2.3 Third Filtering Step

Up to now, most of the noise has been filtered. However, due to our aim to preserve details
as much as possible, little clusters of similar noisy pixelsare still present, which we will
try to detect in this third detection step. Since the remaining noisy pixels are clustered, we
will detect the impulses based on temporal information. To be able to detect such temporal
impulses, we will compare a pixel to the corresponding pixels in the previous and the next
frame. The detection will only work well if the next frame is also more or less noisefree. To
achieve this, a frame delay is applied from this step on, suchthat the next frame is already
processed up to step 5.2.2 and most of the noise has been removed.

For each pixel(x, y, t − 1) a noisefree degree and a noisy degree is calculated again
analogously to the first step (5.2.1). If the noisy degree is larger than the noisefree degree,
the pixel needs to be filtered.

We consider a pixel(x, y, t − 1) to be noisefree if its grey value is not very different
from that of both its two temporal neighbours(x, y, t− 2) and(x, y, t) and if the pixel has
a similar neighbour (not a large difference in grey value) for which the same holds.

Fuzzy Rule 5.3.
IF(( the absolute difference|If2(x, y, t−1)−If (x, y, t−2)| is NOT LARGE POSITIVE)
OR (the absolute difference|If2(x, y, t− 1)− If2(x, y, t)| is NOT LARGE POSITIVE))
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AND (there is a neighbour(x+k, y+ l, t) (−1 ≤ k, l ≤ 1 and(k, l) 6= (0, 0)) for which the
absolute difference|If2(x, y, t−1)−If2(x+k, y+l, t−1)| is NOT LARGE POSITIVE AND
for which( the absolute difference|If2(x+ k, y+ l, t− 1)− If (x+ k, y+ l, t− 2)| is NOT
LARGE POSITIVE) OR (the absolute difference|If2(x+k, y+l, t−1)−If2(x+k, y+l, t)|
is NOT LARGE POSITIVE))

THENthe pixel at position(x, y, t− 1) is consideredNOISEFREE.

The degree to which such a neighbour can be found, denoted byneighbour(x, y, t−1),
is determined as the maximum value in the set

{θ(k,l)(x, y, t− 1) · ψ(k,l)(x, y, t− 1)| − 1 ≤ k, l ≤ 1 and(k, l) 6= (0, 0)},

where

θ(k,l)(x, y, t− 1) = 1− µLP (|If2(x, y, t− 1)− If2(x+ k, y + l, t− 1)|),
ψ1
(k,l)(x, y, t− 1) = (1− µLP (|If2(x+ k, y + l, t− 1)− If (x+ k, y + l, t− 2)|)),

ψ2
(k,l)(x, y, t− 1) = (1− µLP (|If2(x+ k, y + l, t− 1)− If2(x+ k, y + l, t)|)),

ψ(k,l)(x, y, t− 1) = ψ1
(k,l)(x, y, t− 1) + ψ2

(k,l)(x, y, t− 1)−
ψ1
(k,l)(x, y, t− 1) · ψ2

(k,l)(x, y, t− 1).

The noisefree degree for the pixel(x, y, t− 1) is then given by

µ′′
noisefree(x, y, t− 1) = ψ(0,0)(x, y, t− 1) · neighbour(x, y, t− 1).

On the other hand, a pixel is considered to be noisy if it differs in grey value from both
its temporal neighbours and if there are not 7 neighbours in a7×7 neighbourhood that have
a similar neighbour (and are thus more reliable) and that differ in grey value from both their
temporal neighbours. If 7 such neighbours can be found, the pixel is expected to belong to
a moving object. The number has been chosen small enough not to detect lines and large
enough to detect the small noise clusters.

Fuzzy Rule 5.4.
IF(( the absolute difference|If2(x, y, t−1)−If (x, y, t−2)| is LARGE POSITIVE) AND
( the absolute difference|If2(x, y, t− 1)− If2(x, y, t)| is LARGE POSITIVE))

AND(there areNOTseven neighbourhood pixels(x + k, y + l, t) (−3 ≤ k, l ≤ 3 and
(k, l) 6= (0, 0)) that ( have a neighbour(x + k + i, y + l + j, t) (−1 ≤ i, j ≤ 1 and
(i, j) 6= (0, 0)) for which the absolute difference|If2(x + k, y + l, t − 1) − If2(x + k +
i, y + l + j, t − 1)| is NOT LARGE POSITIVE) ANDfor which ( the absolute difference
|If2(x+k, y+ l, t−1)− If (x+k, y+ l, t−2)| is LARGE POSITIVE) AND(the absolute
difference|If2(x+ k, y + l, t− 1)− If2(x+ k, y + l, t)| is LARGE POSITIVE))

THENthe pixel at position(x, y, t− 1) is consideredNOISY.

The degree to which there exist 7 such neighbours is denoted by max7(x, y, t− 1) and
is determined as the seventh largest value in the set

{(1− ψk,l(x, y, t− 1)) · φ(k,l)(x, y, t− 1)| − 3 ≤ k, l ≤ 3 and(k, l) 6= (0, 0)},
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where

φ(k,l)(x, y, t− 1) =

max{1− µLP (|If2(x+ k, y + l, t− 1)− If2(x+ k + i, y + l + j, t− 1)|)
| − 1 ≤ i, j ≤ 1 and(i, j) 6= (0, 0)}.

The noisy degree for the pixel(x, y, t− 1) is then given by

µ′′
noisy(x, y, t− 1) = (1− ψ(0,0)(x, y, t− 1)) · (1−max7(x, y, t− 1)).

Analogously to the first step, pixels for whichµ′′
noisy(x, y, t− 1) > µ′′

noisefree(x, y, t−
1) will be filtered. The others remain unchanged:

µ′′
unch(x, y, t− 1) =

{
0 µ′′

noisy(x, y, t− 1) > µ′′
noisefree(x, y, t− 1)

1 else
.

The pixels for whichµ′′
unch(x, y, t−1) = 0 are again filtered in a motion compensated way:

(u′′(x, y, t− 1), v′′(x, y, t− 1)) = argmin
−W2≤r,s≤W2

MAD
If2 (t−1),µ′′

unch(t)

If (t−2) (x, y, r, s,W1),

with the minimum value itself denoted byminmad′′(x, y, t − 1). The output of this step
for the pixel(x, y, t− 1) then becomes

If3(x, y, t− 1) =

MCF
If2 (t−1),µ′′

unch(t−1)

If (t−2) (x, y, u′′(x, y, t− 1), v′′(x, y, t− 1),minmad′′(x, y, t− 1)).

5.2.4 Refinement Steps

In these final refinement steps, the result from the previous step is further refined both tem-
porally and spatially. Some very small impulses might not have been detected by the algo-
rithm. However, such impulses might be relatively large in non-moving and homogeneous
areas.

Since the pixels in non-moving areas will correspond to the pixels in a previous or
next frame, remaining isolated noisy pixels can be detectedmore easily. We perform the
following temporal detection:

µnonmov(x, y, t− 1) =





0 if µLP (|If3(x, y, t− 1)− If (x, y, t− 2)|) > 0

andµLP (|If3(x, y, t− 1)− If2(x, y, t)|) > 0,

1 else.

A 5 × 5 area centered around the spatial position(x, y) is determined as non-moving
between framet− 2 andt− 1 if
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(NM)
∑2

k=−2

∑2
l=−2 µnonmov(x+ k, y + l, t− 1) > 20.

A detected noisy pixel in a non-moving area is then filtered asfollows:

If4(x, y, t− 1) =





If (x, y, t− 2) if µnonmov(x, y, t− 1) = 0 and (NM) holds

andµLP (|If (x, y, t− 2)− If2(x, y, t)|) = 0,

If3(x, y, t− 1) else.

Additionally, also a spatial refinement is performed. A pixel (x, y, t− 1) will be filtered
if it is larger or smaller than all its neighbours and one of the following conditions is fulfilled
(whereM(x, y, t − 1) andm(x, y, t − 1) respectively denote the maximum and minimum
grey value of its neighbours (3× 3 neighbourhood)):

• µLP (If4(x, y, t− 1)−M(x, y, t− 1)) > 0,

• µLN (If4(x, y, t− 1)−m(x, y, t− 1)) > 0,

• If4(x, y, t− 1)−M(x, y, t− 1) > M(x, y, t− 1)−m(x, y, t− 1),

• m(x, y, t− 1)− If4(x, y, t− 1) > M(x, y, t− 1)−m(x, y, t− 1).

If one of the conditions is fulfilled, the final filtering result for the pixel(x, y, t−1) becomes
If (x, y, t−1) = (M(x, y, t−1)+m(x, y, t−1))/2. Otherwise the pixel remains unchanged:
If (x, y, t− 1) = If4(x, y, t− 1).

5.2.5 Parameter Selection

The parameterspar1 and par2 that determine the membership functionsµLP andµLN

(Fig. 5.10 and 5.11) are selected as follows. We have fixed thesize of the pixel neighbour-
hood and the search window in the motion compensated filtering as5 × 5 (W1 = 2) and
11× 11 (W2 = 5) respectively and have let the parameterspar1 andpar2 run over a range
of possible values. For each pair of values forpar1 andpar2 the arithmetic mean of the
PSNR result of the nine sequences “Salesman”, “Trevor” and “Tennis”, each corrupted with
respectively5%, 15% and25% random impulse noise was computed. The parameter val-
ues were then selected as those for which this arithmetic mean over the nine test sequences
reached its maximum:par1 = 11, par2 = 43. These values will be used in the remaining
experiments.

Next, the window sizeW1 was selected by fixingW2 = 5 again and by lettingW1

run from 0 to 5. The arithmetic mean of the PSNR values over thenine test sequences, as
discussed above, are given in Table 5.4. It can be concluded thatW1 = 2 is the best choice.

Table 5.4: Determination of the parameterW1. (Arithmetic mean of the average PSNR (dB) values.)

W1

0 1 2 3 4 5

PSNR25.0133.5733.6933.5733.4333.27

120



5.3 Experimental Results

So we will use that value from now on.
Finally, the value forW2 is selected in an analogous way. We have let it run over the

values 4 to 15 for the processing of the nine test sequences. The arithmetic mean of the
PSNR values over the nine test sequences can be found in Table5.5. It can be seen that
from the valueW2 = 8 on the PSNR value hardly increases anymore. Therefore we will
use the valueW2 = 8 in the remaining experiments.

Table 5.5: Determination of the parameterW2. (Arithmetic mean of the average PSNR (dB) values.)

W2

4 5 6 7 8 9 10 11 12 13 14 15

PSNR33.6333.6933.7233.7733.8033.8033.8033.8133.8333.8433.8533.84

5.3 Experimental Results

The remainder of the section is structured as follows: in Subsection 5.3.1 the proposed
method is compared to other state-of-the-art filters and additionally Subsection 5.3.2 dis-
cusses some complexity notes.

5.3.1 Comparison to Other State-of-the-Art Filters

In this subsection, the performance of the proposed method is compared to the following
3D filters: the 3D rational filter (RAT) [22], the adaptive 3D median filter (A3DM) and the
weighted 3D median filter (W3DM) [55], the adaptive 3D LUM smoother (LUM) [66] and
the peak-and-valley filter (PAV) [139]. Further, the proposed method is also compared to
the 2D fuzzy random impulse noise reduction method (FRINRM)[122], as a representative
of the 2D filters, to show that the proposed filter takes real advantage from the temporal
information. In [122], it is shown that the FRINRM filter outperforms all other compared
state-of-the-art 2D methods and is thus a good representative of the 2D impulse noise filters.

All methods have been processed on the “Salesman”, “Trevor”, “Tennis”, “Deadline”,
“Miss America” and “Foreman” sequences, for random impulsenoise levels ranging from
5% to 30%. The results of these experiments (in terms of PSNR) can be found in the graphs
in Fig. 5.13. From these graphs, we see that the proposed method outperforms all other
methods in terms of PSNR.

For a visual evaluation of the compared methods, the resultsof the different meth-
ods performed on the “Tennis”, “Deadline” and “Salesman” sequences, respectively cor-
rupted with5%, 15% and25% random impulse noise, are made available onhttp://
www.fuzzy.ugent.be/tmelange/results/greyimpulse . Further, Fig. 5.14
and 5.15 and Fig. 5.16 and 5.17 show the original frame, the noisy frame and the filtering
result for all of the compared methods for respectively the 110-th frame of the “Tennis”
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Figure 5.13: PSNR results for the different methods applied on the sequences (a) “Salesman” (5%
noise), (b) “Tennis” (10% noise), (c) “Foreman” (15% noise), (d)“Miss America” (20% noise),
(e) “Trevor” (25% noise) and (f) “Deadline” (30% noise)
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5.3 Experimental Results

sequence and the 20-th frame of the “Deadline” sequence. It can be seen that the rational
filter results in a moderate detail preservation and also leaves a lot of noise. The peak-and-
valley filter succeeds in removing the noise better, but for higher noise levels, little groups
of impulse pixels remain present. Further, also some detailloss arises due to the filtering of
too many noisefree pixels. This is also the case for both the adaptive and the weighted 3D
median filter and can e.g. be seen at the side lines and the net in the “Tennis” sequence in
Fig. 5.14. On the other hand, both filters have an acceptable denoising capacity. The LUM-
smoother seems to preserve details quite well, but has problems with moving objects and
fails to remove the noise adequately at higher noise levels.For the 2D FRINRM method,
we see the expected drawbacks of only using spatial information. The filter has very good
PSNR results frame per frame, but when watching the sequences, a lot of temporal incon-
sistencies can be noticed. Further, the filter also performsless for sequences with a detailed
background (e.g., “Deadline”, “Salesman”), where additional (temporal) information could
improve the detail preservation and noise detection and again also avoid temporal artefacts.
The two proposed filters, finally, combine the best detail preservation to the best noise re-
moval and have a similar performance. Around the edges, however, we see a slightly better
denoising and detail restoration by the second proposed method.

5.3.2 Some Notes on the Complexity

In the previous subsection, it was shown that the proposed methods yield the best filtering
results. It should however be mentioned that in the development of the proposed methods,
we have focused on the performance and not on the complexity,which was more the case in
the compared methods. Because we did not focus on the complexity, only a few comments
are given. It should be remarked that the largest computational cost of the methods comes
from the motion compensated filtering. Also, the higher the noise level, the more pixels
that need to be filtered and thus the higher the running time. As an illustration, Table 5.6
gives the running time for the processing of the “Salesman” sequence corrupted by different
noise levels by the second proposed algorithm. The algorithm was implemented in matlab
in combination with the mex-function and executed on an Intel(R) Xeon(R) CPU X3220
@ 2.40GHz. A faster motion compensation could be accomplished by using fast motion

Table 5.6: Average running time (seconds per frame) for the processing of the “Salesman” sequence.

% random impulse noise
0 5 10 15 20 25 30 35

Running time 0.4792 0.9708 1.4306 1.8692 2.2832 2.6870 3.0697 3.4338

estimation techniques such as those presented in [111, 143,144]. Remark further also that in
each of the filtering steps, the detection (respectively filtering) of a pixel does not depend on
the detection (respectively filtering) of the other pixels in the frame and could be performed
in parallel.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.14: 110-th frame of the “Tennis” sequence: (a) original, (b) noisy (5%), (c) RAT, (d) PAV,
(e) A3DM and (f) W3DM.
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(g) (h)

(i) (j)

Figure 5.15: 110-th frame of the “Tennis” sequence: (g) LUM, (h) FRINRM, (i) thefirst proposed
algorithm and (j) the second proposed algorithm.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.16: 20-th frame of the “Deadline” sequence: (a) original, (b) noisy (5%), (c) RAT, (d) PAV,
(e) A3DM and (f) W3DM.
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(g) (h)

(i) (j)

Figure 5.17: 20-th frame of the “Deadline” sequence: (g) LUM, (h) FRINRM, (i) thefirst proposed
algorithm and (j) the second proposed algorithm.
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5.4 Conclusion

In this chapter we have presented two new video filters for theremoval of random valued
impulse noise in digital greyscale image sequences. Both filters remove the noise step by
step in order to preserve the details as much as possible.

The noise detection steps of the first proposed method have been developed in a fuzzy
logic framework by assigning to each pixel a degree to which it is noisy, but it should be
mentioned that e.g. by working with the support of a fuzzy set, many of the decisions in the
framework are merely binary. The power of fuzzy set theory ishowever more exploited in
the second proposed method. In the different filtering stepsof the second proposed method,
fuzzy rules containing linguistic values were used to determine the degree to which a pixel
is considered noisy or noisefree. If the noisy degree is larger than the noisefree degree, the
pixel will be filtered.

The filtering of the detected pixels in both methods is performed in a motion compen-
sated way in order to exploit the temporal information as much as possible. The pixels that
are considered noisefree remain unchanged.

From the experimental results it could be concluded that theproposed methods outper-
form other state-of-the-art methods both in terms of PSNR and visually. A good trade-off
between noise removal and detail preservation was found.
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6
Random Impulse Noise in
Colour Image Sequences

Analogously as in the greyscale case, only few colour video filters for the impulse noise
case can be found (e.g. [63, 112]). However, several impulsenoise filters for both greyscale
and colour still images exist. The median based rank-order filters are the most widely spread
among them (e.g., [14, 19, 20, 45, 47, 55, 58, 64, 65, 67, 68, 69]), but also some fuzzy tech-
niques can be found [42, 59, 90, 115, 116, 121, 122, 123, 136, 140]. As mentioned before,
using a 2D filter on each of the frames of a video successively would however result in
temporal inconsistencies due to the neglection of the temporal correlation between succes-
sive frames. A better alternative would be to use extended 3Dfiltering windows, in which
also pixels from neighbouring frames are taken into account[22, 38, 55, 63, 66, 112, 139].
Further, using a greyscale filter on each of the colour bands of a colour image or video
frame separately, will analogously introduce several colour artefacts, especially in textured
areas, due to the neglection of the correlation between the different colour bands. To in-
corporate this correlation, vector-based methods were introduced. Most of these methods
are based on ordering the vectors in a predefined filtering window. The output for a given
colour pixel is then the pixel in the window around the given pixel, that has the smallest
accumulated distance (Euclidean distance, angular distance,. . . ) to all other vectors in the
window [14, 19, 47, 63, 64, 65, 67, 68, 69, 112], or which is themost similar to all window
pixels [90]. To avoid blurring due to the filtering of noisefree pixels, this filtering frame-
work has been further refined by weighted filtering techniques [55, 58, 65] and switching
schemes where the filter is only used for detected noisy pixels [63, 64, 68, 69, 90, 112].
The drawback of vector-based methods, however, is that their performance is highly re-
duced for higher noise levels. Consider for example a neighbourhood in which all pixels
have one noisy component, and the other components are noisefree. So, although a lot of
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the components are still noisefree, no noisefree vector will be found for the output of the
vector-based methods. It would be better to filter the colourbands separately, but by using
information from the other colour bands. However, not much alternatives for the vector-
based approach can be found in literature. Some examples developed for still images are
e.g. [121, 122, 123].

In this chapter, we present a filter [73, 78] for the removal ofrandom impulse noise
in colour image sequences, in which each of the colour components is filtered separately
based on fuzzy rules in which information from the other colour bands is integrated. The
filtering is divided into three successive filtering steps. To preserve the details as much
as possible, the noise is removed step by step. Only pixels that have been detected to be
noisy in the current step are filtered. This filtering is done by blockmatching, a technique
used for video compression that has already been adopted in video filters for the removal of
Gaussian noise (e.g. [41, 51, 141]), but that has not really found its way to impulse noise
filters yet. The correspondence between blocks is usually calculated by a mean absolute
distance (MAD), that is heavily subject to noisy impulses. Therefore, we introduce a MAD
measure that is adaptive to detected noisy pixel components. To benefit as much as possible
from the spatial and temporal information available in the sequence, the search region for
corresponding blocks contains pixel blocks both from the previous and current frame. The
experiments show that the proposed method outperforms other state-of-the-art filters both
visually and in terms of objective quality measures such as the PSNR and NCD.

The chapter is structured as follows: The successive filtering steps of the proposed filter
are discussed in Section 6.1. Values for the used parametersare determined in Section 6.2
and additionally a comparison to other state-of-the-art filters is carried out in Section 6.3.
The chapter is finally concluded in Section 6.4.

6.1 The Proposed Algorithm

: frame backwardB

B

In(t)
If1(t) If2(t)

If(t)
First filtering

step

Second filtering
step

Refinement
step

: frame forwardF

F
I (t+1)n

I (t+1)n

I (t-1)f I (t-1)f
I (t-1)f

Figure 6.1: Overview of the different steps in the proposed algorithm.

The proposed filtering framework [73, 78] denoises a noisy sequenceIn in three suc-
cessive filtering steps as depicted in Fig. 6.1. By removing the noise step by step, the details
can be preserved as much as possible. Indeed, if a considerable part of the noise has already
been removed in a previous step, and more noisefree neighbours to compare to are available,
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it will be easier to distinguish noise from small details. Inthe first step (6.1.1) (with output
denoted byIf1 ), we calculate for each pixel component a degree to which it is considered
noisefree and a degree to which it is considered noisy. If thenoisefree degree is smaller
than the noisy degree, the pixel component remains unchanged, otherwise it is filtered. The
determination of both degrees is mainly based on temporal information (comparison to the
corresponding pixel component in the previous frame). Remark however that only in non-
moving areas large differences can be assigned to noise. In areas where there is motion,
such differences might also be caused by that motion. As a consequence, and as can be seen
in Fig. 6.2, impulses in moving areas will not always be detected in this step. They can
however be detected in the second step (6.1.2)(outputIf2 ). Analogously as to the first step,
again a noisefree degree and a noisy degree are calculated. However, the detection is now
mainly based on colour information. A pixel component can beseen as noisy if there is no
similarity to its (spatio-temporal) neighbours in the given colour, while there is in the other
colour bands. The third step (6.1.3)(outputIf ), finally, removes the remaining noise and
refines the result by using as well temporal as spatial and colour information. For example,
homogeneous areas can be refined by removing small impulses that are relatively large in
that region, but are not large enough to be detected in detailed regions and that thus have
not been detected yet by the previous general detection steps. The results of the different
successive filtering steps is illustrated for the 20-th frame of the “Salesman” sequence in
Fig. 6.2.

6.1.1 First Filtering Step

Detection

In this detection step, we calculate for each of the components of each pixel a degree to
which it is considered noisefree and a degree to which it is thought to be noisy. A component
for which the noisy degree is larger than the noisefree degree, i.e., that is more likely to be
noisy than noisefree, will be filtered. Other pixel components will remain unchanged. The
noisefree degree and noisy degree are determined by fuzzy rules as follows.

We consider a pixel component to be noisefree if it is similarto the corresponding com-
ponent of the pixel at the same spatial location in the previous or next frame and to the cor-
responding component of two neighbouring pixels in the sameframe. In the case of motion,
the pixels in the previous frames can not be used to determinewhether a pixel component
in the current frame is noisefree. Therefore, more confirmation (more similar neighbours
or also similar in the other colour components) is wanted instead. For the noisefree degree
of the red component (and analogously for the other components), this is achieved by the
following fuzzy rule:

Fuzzy Rule 6.1.
IF( (|IRn (x, y, t)−IRf (x, y, t−1)| is NOT LARGE POSITIVE OR|IRn (x, y, t)−IRn (x, y, t+
1)| is NOT LARGE POSITIVE) ANDthere are two neighbours(x + k, y + l, t) (−2 ≤
k, l ≤ 2 and (k, l) 6= (0, 0)) for which |IRn (x, y, t) − IRn (x + k, y + l, t)| is NOT LARGE
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(a) (b)

(c) (d)

(e)

Figure 6.2: The original 20-th frame of the “Salesman” sequence (a), the frame corrupted by 20%
random impulse noise (b)(PSNR = 15.05dB) and the result after the first (c)(PSNR = 23.72dB),
second (d)(PSNR = 29.42dB) and refinement step (e)(PSNR = 36.78dB) respectively.
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POSITIVE)

OR( there are four neighbours(x + k, y + l, t) (−2 ≤ k, l ≤ 2 and (k, l) 6= (0, 0)) for
which |IRn (x, y, t) − IRn (x + k, y + l, t)| is NOT LARGE POSITIVE OR(there are two
neighbours(x + k, y + l, t) (−2 ≤ k, l ≤ 2 and (k, l) 6= (0, 0)) for which |IRn (x, y, t) −
IRn (x+ k, y+ l, t)| is NOT LARGE POSITIVE AND(|IGn (x, y, t)− IGn (x+ k, y+ l, t)| OR
|IBn (x, y, t)− IBn (x+ k, y + l, t)| areNOT LARGE POSITIVE)))

THENthe red componentIRn (x, y, t) is consideredNOISEFREE.

To represent the linguistic value “large positive” in the above rule, a fuzzy set is used,
with a membership functionµLP as depicted in Fig. 6.3 (see Section 6.2 for the determina-
tion of the parameters). For the conjunction (AND), disjunction (OR) and negation (NOT),
in this chapter, we will use the minimum operator, the maximum operator and the standard
negator (Ns(x) = 1 − x, ∀x ∈ [0, 1]) respectively. Those operators are simple in use and
yielded the best results, but the difference compared to theresults for another choice of op-
erators is neglectible. The outcome of the rule, i.e., the degree to which the red component

LARGE POSITIVE
DIFFERENCE

0

1

Membership degree

Figure 6.3: The membership functionµLP of the fuzzy setlarge positive.

of the pixel at position(x, y, t) is considered noisefree, is determined as the degree to which
the antecedent in the fuzzy rule is true:

µR
noisefree(x, y, t) = max(min(max(α1(x, y, t), α2(x, y, t)),M2(x, y, t)),

max(M4(x, y, t),M2b(x, y, t))),

where

α1(x, y, t) = (1− µLP (|IRn (x, y, t)− IRf (x, y, t− 1)|)),
α2(x, y, t) = (1− µLP (|IRn (x, y, t)− IRn (x, y, t+ 1)|)),

and whereM2(x, y, t) andM4(x, y, t) respectively denote the degree to which there are two
(respectively four) neighbours for which the absolute difference in the red component value
is not large positive, that is determined as the second (respectively fourth) largest element
in the set

{1− µLP (|IRn (x, y, t)− IRn (x+ k, y + l, t)|)| − 2 ≤ k, l ≤ 2 and(k, l) 6= (0, 0)}
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andM2b(x, y, t) denotes the degree to which there are two neighbours for which the abso-
lute differences in the red component and one of the two colour components are not large
positive, determined as the second largest element in the set

{min(1− µLP (|IRn (x, y, t)− IRn (x+ k, y + l, t)|),
max(1− µLP (|IGn (x, y, t)− IGn (x+ k, y + l, t)|),

1− µLP (|IBn (x, y, t)− IBn (x+ k, y + l, t)|)))
| − 2 ≤ k, l ≤ 2 and(k, l) 6= (0, 0)}.

Analogously, a degree to which the component of a pixel is considered noisy is calcu-
lated. In this step, we consider a pixel component to be noisyif the absolute difference
in that component is large positive compared to the pixel at the same spatial location in the
previous frame and if not for five of its neighbours the absolute difference in this component
and one of the other two colour bands is large positive compared to the pixel at the same
spatial location in the previous frame (which means that thedifference is not caused by mo-
tion). Further, we also want a confirmation either by the factthat in this colour band, there
is a direction in which the differences between the considered pixel and the two respective
neighbours in this direction are both large positive or large negative and if the absolute dif-
ference between those two neighbours is not large positive (i.e., there is an impulse between
two pixels that are expected to belong to the same object) or by the fact that there is no large
difference between the considered pixel and the pixel at thesame spatial location in the pre-
vious frame in one of the other two colour bands. For the red component (and analogously
for the other components) this leads to the following fuzzy rule.

Fuzzy Rule 6.2.
IF( |IRn (x, y, t) − IRf (x, y, t − 1)| is LARGE POSITIVE AND NOT(for five neighbours
(x + k, y + l, t) (−2 ≤ k, l ≤ 2 and(k, l) 6= (0, 0)) |IRn (x + k, y + l, t) − IRf (x + k, y +

l, t − 1)| is LARGE POSITIVE AND(|IGn (x + k, y + l, t) − IGf (x + k, y + l, t − 1)| OR

|IBn (x+ k, y + l, t)− IBf (x+ k, y + l, t− 1)| is LARGE POSITIVE)))

AND ((in one of the four directions (the differencesIRn (x, y, t)− IRn (x+ k, y + l, t) AND
IRn (x, y, t) − IRn (x − k, y − l, t) ((k, l) ∈ {(−1,−1), (−1, 0), (−1, 1), (0, 1)}) are both
LARGE POSITIVE ORboth LARGE NEGATIVE) ANDthe absolute difference|IRn (x +
k, y+l, t)−IRn (x−k, y−l, t)| is NOT LARGE POSITIVE) OR(|IGn (x, y, t)−IGf (x, y, t−1)|
is NOT LARGE POSITIVE OR|IBn (x, y, t)−IBf (x, y, t−1)| is NOT LARGE POSITIVE))

THENthe red componentIRn (x, y, t) is consideredNOISY.

Analogously to the linguistic term “large positive”, also “large negative” is represented
by a fuzzy set, characterized by the membership function given in Fig. 6.4 (see Section 6.2
for the determination of the parameters). The degree to which for five neighbours the abso-
lute differences in the red component and one of the other twocomponents are large positive
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LARGE NEGATIVE
DIFFERENCE

0

1

Membership degree

Figure 6.4: The membership functionµLN of the fuzzy setlarge negative.

compared to the corresponding pixels in the previous frame,denoted bytpos(x, y, t), is de-
termined as the fifth largest value in the set

{min(µLP (|IRn (x+ k, y + l, t)− IRf (x+ k, y + l, t− 1)|),
max(µLP (|IGn (x+ k, y + l, t)− IGf (x+ k, y + l, t− 1)|),
µLP (|IBn (x+ k, y + l, t)− IBf (x+ k, y + l, t− 1)|)))

| − 2 ≤ k, l ≤ 2 and(k, l) 6= (0, 0)}.

The degree to which the absolute difference between the pixel at position(x, y, t) and the
corresponding pixel in the previous frame is large positiveand five of its neighbours do not
show motion is then given by

β(x, y, t) = min(µLP (|IRn (x, y, t)− IRf (x, y, t− 1)|), 1− tpos(x, y, t)).

Further, the degree to which there is no large difference between the considered pixel
and the pixel at the same spatial location in the previous frame in one of the other two colour
bands is given by

δ(x, y, t) =

max(1−µLP (|IGn (x, y, t)− IGf (x, y, t−1)|), 1−µLP (|IBn (x, y, t)− IBf (x, y, t−1)|)).

Finally, the degree to which there is a direction in which thepixel at position(x, y, t) is
an impulse, denoted byγ(x, y, t), is determined as the maximum value in the set

{min(max(ε1(k,l)(x, y, t), ε
2
(k,l)(x, y, t)), ε

3
(k,l)(x, y, t))

|(k, l) ∈ {(−1,−1), (−1, 0), (−1, 1), (0, 1)}},

where
ε1(k,l)(x, y, t) = min(µLP (I

R
n (x, y, t)− IRn (x+ k, y + l, t)),

µLP (I
R
n (x, y, t)− IRn (x− k, y − l, t))),

ε2(k,l)(x, y, t) = min(µLN (IRn (x, y, t)− IRn (x+ k, y + l, t)),

µLN (IRn (x, y, t)− IRn (x− k, y − l, t))),
ε3(k,l)(x, y, t) = 1− µLP (|IRn (x+ k, y + l, t)− IRn (x− k, y − l, t)|).
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Combining the above, we get

µR
noisy(x, y, t) = min(β(x, y, t), δ(x, y, t), γ(x, y, t)).

Filtering

In this subsection, we discuss the filtering for the red colour band. The filtering of the other
colour bands is analogous. We decide to filter all red pixel components that are considered
more likely to be noisy than noisefree, i.e., for whichµR

noisy(x, y, t) > µR
noisefree(x, y, t).

The red components of the other pixels remain unchanged to avoid the filtering of noisefree
pixels (that might have been uncorrectly assigned a low noisy degree, but for which the high
noisefree degree assures us that it is noisefree) and thus detail loss. On the other hand, noisy
pixel components might remain unfiltered due to an uncorrecthigh noisefree degree, but
those pixels can still be detected in a next filtering step.

µR
unch(x, y, t) =

{
0 µR

noisy(x, y, t) > µR
noisefree(x, y, t),

1 else.

Soµunch(x, y, t) = (µR
unch(x, y, t), µ

G
unch(x, y, t), µ

B
unch(x, y, t)) is a vector that gives in-

formation whether the respective colour component of the colour pixelIn(x, y, t) should be
filtered. Analogously asIn(t) denotes thet-th frame ofIn, µunch(t) denotes the 2D array of
vectors that gives information about the pixel components of the t-th frame of the sequence
In. To exploit the spatial and temporal information in the sequence as much as possible,
the filtering is performed by blockmatching. To do this, a noise adaptive mean absolute
difference (MAD) is used to calculate the correspondence between the colour components
of two (2 ·W + 1)× (2 ·W + 1) blocks of image pixels (whereW is a general parameter
that determines the block size):

RMADI,µ

Ĩ,µ̃
(x, y, r, s,W ) =

∑+W
k=−W

∑+W
l=−W PµR,r

µ̃R,s
(x+ k, y + l)DIR,r

ĨR,s
(x+ k, y + l)

∑+W
k=−W

∑+W
l=−W PµR,r

µ̃R,s
(x+ k, y + l)

,

with
PµR,r
µ̃R,s

(x+ k, y + l) = µR(x+ k, y + l) · µ̃R(x+ k + r, y + l + s),

and
DIR,r

ĨR,s
(x+ k, y + l) = |IR(x+ k, y + l)− ĨR(x+ k + r, y + l + s)|,

and whereI and Ĩ are the two frames (2D colour images) to which the blocks belong, x
andy indicate the spatial coordinates of the central pixel of theconsidered block inI and
r ands respectively stand for the vertical and horizontal coordinates of the displacement
vector, i.e., the block that is considered inĨ has(x + r, y + s) as central pixel. The binary
functionsµc andµ̃c (c ∈ {R,G,B}) indicate whether the pixel componentsIc(x, y) and
Ĩc(x, y) are reliable and should be used (µc(x, y) = 1, respectivelỹµc(x, y) = 1) or not

136



6.1 The Proposed Algorithm

(µc(x, y) = 0, respectivelỹµc(x, y) = 0). Using only noisefree pixel components allows
us to calculate a more reliable measure to estimate whether two blocks would correspond
in the red component if they were both noisefree. If

∑+W
k=−W

∑+W
l=−W µR(x + k, y +

l) · µ̃R(x + k + r, y + l + s) = 0, the noise adaptive MAD is assigned the value+∞.
Further, the noise adaptive MAD is not considered reliable if not for at least half of the
positions in the(2 · W + 1) × (2 · W + 1) blocks, both compared values are reliable
(µR(x + k, y + l) = 1 andµ̃R(x + k + r, y + l + s) = 1) or not for half of the reliable
positions the absolute difference|IR(x+ k, y + l)− ĨR(x+ k + r, y + l+ s)| is not large
positive (i.e.,µLP (|IR(x + k, y + l) − ĨR(x + k + r, y + l + s)|) = 0). It is also not
considered reliable if both the green and blue component of the central pixels are reliable
(i.e.,µG(x, y) = 1, µG(x + r, y + s) = 1, µB(x, y) = 1 andµB(x + r, y + s) = 1) and
their absolute difference is large positive (i.e.,µLP (|IG(x, y) − ĨG(x + r, y + s)|) = 1

andµLP (|IB(x, y) − ĨB(x + r, y + s)|) = 1). In these cases, the noise adaptive MAD is
changed to the value+∞, such that the block will not be used for the filtering.

For the filtering of a red componentIRn (x, y, t) in this first step of our algorithm, we
determine the displacement vectors(u(x, y, t), v(x, y, t)) and(u(x, y, t), v(x, y, t)) for the
best matching(2 ·W1 + 1)× (2 ·W1 + 1) block in a search region of size(2 ·W2 + 1)×
(2 ·W2 + 1) in respectively the previous frameIf (t− 1) and the current frameIn(t) (due
to large motion, sometimes no corresponding block might be found in the previous frame,
but the region around the given pixel in the current frame might be similar) as follows (For
the selection of the parametersW1 andW2, we refer to section 6.2):

(u(x, y, t), v(x, y, t)) = argmin
−W2≤r,s≤W2

RMAD
In(t),µunch(t)
If (t−1),Id (x, y, r, s,W1).

The minimum value itself is denoted byminmad(x, y, t). We have used the identity func-
tion Id for the binary function corresponding to the previous frame, since this frame has
already been filtered and should be noisefree.

(u(x, y, t), v(x, y, t)) =

argmin
−W2≤r,s≤W2,(r,s) 6=(0,0),µunch(x+r,y+s,t)=1

RMAD
In(t),µunch(t)
In(t),µunch

(x, y, r, s,W1).

The minimum value itself is denoted byminmad(x, y, t). We have restricted ourselves
here to pixels(x + r, y + s, t), for whichµR

unch(x + r, y + s, t) = 1, since only noisefree
pixels should be used to replace the noisy pixel componentIRn (x, y, t).

A pixel componentIRn (x, y, t) for which µR
unch(x, y, t) = 0, is then filtered as the

noisefree center of the best corresponding block in the search region, if it exists (i.e., if it
holds thatmin(minmad(x, y, t),minmad(x, y, t)) < +∞). Otherwise, a spatial filtering
is performed. IfµR

unch(x, y, t) = 1, the pixel component remains unchanged in this step.
Summarized, the output of this first step for the red component IRn (x, y, t) is given as fol-
lows.
If µR

unch(x, y, t) = 1, then
IRf1(x, y, t) = IRn (x, y, t),
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else ifµR
unch(x, y, t) = 0, then

IRf1(x, y, t) = FILT
IR
n (t),µR

unch(t)

IR
f
(t−1)

(x, y, u(x, y, t), v(x, y, t), u(x, y, t), v(x, y, t),

minmad(x, y, t),minmad(x, y, t)),

with (in a general notation)

FILT I,µ

Ĩ
(x, y, u, v, ũ, ṽ,m, m̃) =





I(x+ u, y + v) if m = min(m, m̃) < +∞
Ĩ(x+ ũ, y + ṽ) if m̃ = min(m, m̃) < +∞
SF I

µ(x, y,W1) if m = m̃ = +∞
,

where the spatial filtering framework is given by

SF I
µ(x, y,W ) =

∑+W
k=−W

∑+W
l=−W µ(x+ k, y + l) · I(x+ k, y + l)

∑+W
k=−W

∑+W
l=−W µ(x+ k, y + l)

.

If
∑+W

k=−W

∑+W
l=−W µ(x+k, y+ l) = 0, which is unlikely to happen in practical situations,

thenSF I
µ(x, y,W ) = median{I(x+ k, y + l)| −W ≤ k, l ≤W}.

6.1.2 Second Filtering Step

In our aim to preserve the details as much as possible, the noise is removed in successive
steps. In this step the noise is detected based on the output of the previous step (If1). Also
in this second filtering step, a degree to which a pixel component is expected to be noisefree
and a degree to which a pixel component is expected to be noisy, is calculated. In the
calculation of those degrees, we now take into account information from the other colour
bands.

A colour component of a pixel is considered noisefree if the difference between that
pixel and the corresponding pixel in the previous frame, is not large in the given compo-
nent and also not large in one of the other two colour components. It is also considered
noisefree if there are two neighbours for which the difference in the given component and
one of the other two components are not large. So the other colour bands are used here as a
confirmation for the observations in the considered colour band to make those more reliable.

For the red component (and analogously for the other colour components), this gives the
following fuzzy rule.

Fuzzy Rule 6.3.
IF( |IRf1(x, y, t)− IRf (x, y, t− 1)| AND (|IGf1(x, y, t)− IGf (x, y, t− 1)| OR|IBf1(x, y, t)−
IBf (x, y, t− 1)|) areNOT LARGE POSITIVE)

OR (for two neighbours(x+k, y+ l, t) ( −1 ≤ k, l ≤ 1 and(k, l) 6= (0, 0)) |IRf1(x, y, t)−
IRf1(x+ k, y+ l, t)| is NOT LARGE POSITIVE AND (|IGf1(x, y, t)− IGf1(x+ k, y+ l, t)| is
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NOT LARGE POSITIVE OR|IBf1(x, y, t)−IBf1(x+k, y+l, t)| isNOT LARGE POSITIVE))

THENthe red componentIRf1(x, y, t) is consideredNOISEFREE.

The degree to which the red component of the pixel at position(x, y, t) is considered
noisefree is then given by:

µR
2,noisefree(x, y, t) = max(ζ(x, y, t), η(x, y, t)),

where

ζ(x, y, t) = min(1− µLP (|IRf1(x, y, t)− IRf (x, y, t− 1)|),
max(1− µLP (|IGf1(x, y, t)− IGf (x, y, t− 1)|),

1− µLP (|IBf1(x, y, t)− IBf (x, y, t− 1)|)))

andη(x, y, t) is the second largest element in the set

{min(1− µLP (|IRf1(x, y, t)− IRf1(x+ k, y + l, t)|),
max(1− µLP (|IGf1(x, y, t)− IGf1(x+ k, y + l, t)|),

1− µLP (|IBf1(x, y, t)− IBf1(x+ k, y + l, t)|)))
| − 1 ≤ k, l ≤ 1 and(k, l) 6= (0, 0)}.

A pixel component is considered noisy if there are three neighbours that differ largely
in that component, but are similar (not a large difference) in the other two components. It is
also considered noisy if in the considered colour band, its value is larger or smaller than the
component values of all its neighbours and this is not the case in both other colour bands.

For the red component of a pixel (and analogously for the other components), this cor-
responds to the following fuzzy rule.

Fuzzy Rule 6.4.
IF( for three neighbours(x+k, y+l, t) ( −1 ≤ k, l ≤ 1 and(k, l) 6= (0, 0)) |IRf1(x, y, t)−
IRf1(x+ k, y + l, t)| is LARGE POSITIVE AND|IGf1(x, y, t)− IGf1(x+ k, y + l, t)| is NOT

LARGE POSITIVE AND|IBf1(x, y, t)− IBf1(x+ k, y + l, t)| is NOT LARGE POSITIVE)

OR((( for all neighbours(x+k, y+l, t) ( −1 ≤ k, l ≤ 1 and(k, l) 6= (0, 0)) IRf1(x, y, t)−
IRf1(x+ k, y+ l, t) is LARGE POSITIVE) OR (for all neighbours(x+ k, y+ l, t) ( −1 ≤
k, l ≤ 1 and (k, l) 6= (0, 0)) IRf1(x, y, t) − IRf1(x + k, y + l, t) is LARGE NEGATIVE))
AND NOT ( (( for all neighbours(x + k, y + l, t) ( −1 ≤ k, l ≤ 1 and (k, l) 6= (0, 0))
IGf1(x, y, t)−IGf1(x+k, y+ l, t) is LARGE POSITIVE) OR (for all neighbours(x+k, y+
l, t) ( −1 ≤ k, l ≤ 1 and (k, l) 6= (0, 0)) IGf1(x, y, t) − IGf1(x + k, y + l, t) is LARGE
NEGATIVE )) AND (( for all neighbours(x + k, y + l, t) ( −1 ≤ k, l ≤ 1 and (k, l) 6=
(0, 0)) IBf1(x, y, t) − IBf1(x + k, y + l, t) is LARGE POSITIVE) OR (for all neighbours
(x + k, y + l, t) ( −1 ≤ k, l ≤ 1 and(k, l) 6= (0, 0)) IBf1(x, y, t) − IBf1(x + k, y + l, t) is
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LARGE NEGATIVE))))

THENthe red componentIRf1(x, y, t) is consideredNOISY.

The noisy degree for the red component of the pixel at position (x, y, t) is then calculated
as follows:

µR
2,noisy(x, y, t) = max(θ(x, y, t), κ(x, y, t)),

whereθ(x, y, t) is the third largest element in the set

{min(µLP (|IRf1(x, y, t)− IRf1(x+ k, y + l, t)|),
min(1− µLP (|IGf1(x, y, t)− IGf1(x+ k, y + l, t)|),

1− µLP (|IBf1(x, y, t)− IBf1(x+ k, y + l, t)|)))
| − 1 ≤ k, l ≤ 1 and(k, l) 6= (0, 0)},

and

κ(x, y, t) = min(max(mR
1 (x, y, t),m

R
2 (x, y, t)),

1−min(max(mG
1 (x, y, t),m

G
2 (x, y, t)),max(mB

1 (x, y, t),m
B
2 (x, y, t)))),

where
mc

1(x, y, t) = min{µLP (I
R
f1
(x, y, t)− IRf1(x+ k, y + l, t))

| − 1 ≤ k, l ≤ 1 and(k, l) 6= (0, 0)},
mc

2(x, y, t) = min{µLN (IRf1(x, y, t)− IRf1(x+ k, y + l, t))

| − 1 ≤ k, l ≤ 1 and(k, l) 6= (0, 0)},
with c ∈ {R,G,B}.

All red components (and analogously all green and all blue components) for which
µR
2,noisy(x, y, t) > µR

2,noisefree(x, y, t) are filtered (µR
2,unch(x, y, t) = 0), the other red

components remain unchanged (µR
2,unch(x, y, t) = 1):

µR
2,unch(x, y, t) =

{
0 µR

2,noisy(x, y, t) > µR
2,noisefree(x, y, t),

1 else.

Analogously to the first step, for the filtering of the red components (and analogously
the green and blue components) for whichµR

2,unch(x, y, t) = 0, we search for the noisefree
center of the best corresponding block in the search region in the current and previous frame.

(u′(x, y, t), v′(x, y, t)) = argmin
−W2≤r,s≤W2

RMAD
If1 (t),µ2,unch(t)

If (t−1),Id (x, y, r, s,W1).

The minimum value itself is denoted byminmad′(x, y, t).

(u′(x, y, t), v′(x, y, t)) =
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argmin
−W2≤r,s≤W2,(r,s) 6=(0,0),µR

2,unch
(x+r,y+s,t)=1

RMAD
If1 (t),µ2,unch(t)

If1 (t),µ2,unch(t)
(x, y, r, s,W1).

The minimum value itself is denoted byminmad
′
(x, y, t).

If µR
2,unch(x, y, t) = 0, thenIRf1(x, y, t) is filtered as

IRf2(x, y, t) = FILT
IR
f1

(t),µR
2,unch(t)

IR
f
(t−1)

(x, y, u′(x, y, t), v′(x, y, t), u′(x, y, t), v′(x, y, t),

minmad′(x, y, t),minmad
′
(x, y, t)).

Red pixel components that are considered noisefree (µR
2,unch(x, y, t) = 1) remain un-

changed:
If2(x, y, t) = If1(x, y, t).

6.1.3 Third Filtering Step

The result from the previous steps is further refined based ontemporal, spatial and colour
information. Namely, the red component (and analogously the green and blue component)
of a pixel is refined in the following cases:

• In non-moving areas, pixels will correspond to the pixels inthe previous frame, which
allows us to detect remaining isolated noisy pixels. If(x, y, t) lies in a non-moving
3× 3 neighbourhood, i.e.,

∑1
k=−1

∑1
l=−1

∑
c∈{R,G,B} |Icf2(x+ k, y + l, t)− Icf (x+ k, y + l, t− 1)|

24

−
∑

c∈{R,G,B} |Icf2(x, y, t)− Icf (x, y, t− 1)|
24

< par1,

and if |IRf2(x, y, t)− IRf (x, y, t−1)| > par2 and|IRf (x, y, t−1)− IRn (x, y, t+1)| <
par1, then the red componentIRf2(x, y, t) is considered to be noisy (µR

3,unch(x, y, t) =
0). The last check is to prevent noise propagation in the case that the pixel in the
previous frame would not have been filtered correctly.

• Very small impulses might not have been detected by the algorithm. In homoge-
neous areas however, such impulses might be relatively large and can be detected
more easily. LetLR

2 (x, y, t) andSR
2 (x, y, t) respectively denote the second largest

and second smallest red component value among the 8 neighbours in a3 × 3 neigh-
bourhood aroundIRf2(x, y, t). If LR

2 (x, y, t) − SR
2 (x, y, t) < par2 (homogeneous

neighbourhood) and further alsoIRf2(x, y, t)−LR
2 (x, y, t) > LR

2 (x, y, t)−SR
2 (x, y, t)

orSR
2 (x, y, t)−IRf2(x, y, t) > LR

2 (x, y, t)−SR
2 (x, y, t) (the red component is clearly

larger or smaller than the neighbourhood), then the red componentIRf2(x, y, t) is con-
sidered to be noisy (µR

3,unch(x, y, t) = 0).
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• Based on colour information, the red componentIRf2(x, y, t) is considered to be noisy
(µR

3,unch(x, y, t) = 0) if in a 3× 3 neighbourhood two neighboursIRf2(x+ k, y+ l, t)
(−1 ≤ k, l ≤ 1, (k, l) 6= (0, 0)) can be found for which|IRf2(x, y, t)− IRf2(x+ k, y+

l, t)| > par2 and|IRf2(x, y, t)− IRf2(x+ k, y + l, t)| > |IGf2(x, y, t)− IGf2(x+ k, y +

l, t)|+ |IBf2(x, y, t)− IBf2(x+ k, y + l, t)|.
In all other cases the red component value is considered to benoisefree and should not be
adapted anymore (µR

3,unch(x, y, t) = 1).
Analogously as in the previous steps, for the filtering of thered components for which

µR
3,unch(x, y, t) = 0, we search for the noisefree center of the best corresponding block in

the search region in the current and previous frame.

(u′′(x, y, t), v′′(x, y, t)) = argmin
−W2≤r,s≤W2

RMAD
If2 (t),µ3,unch(t)

If (t−1),Id (x, y, r, s,W1).

The minimum value itself is denoted byminmad′′(x, y, t).

(u′′(x, y, t), v′′(x, y, t)) =

argmin
−W2≤r,s≤W2,(r,s) 6=(0,0),µR

3,unch
(x+r,y+s,t)=1

RMAD
If2 (t),µ3,unch(t)

If2 (t),µ3,unch(t)
(x, y, r, s,W1).

The minimum value itself is denoted byminmad
′′
(x, y, t).

A red componentIRf2(x, y, t) for whichµR
3,unch(x, y, t) = 0, is filtered as

If (x, y, t) = FILT
If2 (t),µ

′′

unch(t)

If (t−1) (x, y, u′′(x, y, t), v′′(x, y, t), u′′(x, y, t), v′′(x, y, t),

minmad′′(x, y, t),minmad
′′
(x, y, t)).

Otherwise (µR
3,unch(x, y, t) = 1), it remains unchanged:

IRf (x, y, t) = IRf2(x, y, t).

6.2 Parameter Selection

In this section, the parameter values for the membership functions and the window sizes are
determined.

We first select the parameterspar1 andpar2 that determine the membership functions
µLP andµLN in Fig. 6.3 and 6.4. To do this, we have fixed the window sizesW1 and
W2 of the pixel neighbourhood and the search region in the filtering asW1 = 2 (5 × 5
neighbourhood) andW2 = 5 (11 × 11 search region) and we have let the parameterspar1
andpar2 run over a range of possible values. The parameter values were then determined
as the couple (par1,par2) for which the arithmetic mean of the PSNR result of the nine
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sequences “Salesman”, “Bus” and “Tennis”, each corrupted with respectively5%, 15% and
25% random impulse noise in each of the colour bands, reached itsmaximum. The obtained
values, which we will also use in the remaining experiments,are(par1, par2) = (20, 31)
(Table 6.1).

Table 6.1: Determination of the parameterspar1 andpar2. (Arithmetic mean of the average PSNR
(dB) values around the maximum.)

par1\par2 29 30 31 32 33

18 32.3832.3932.4032.3832.37
19 32.3932.4132.4132.4032.39
20 32.3932.4132.4232.4032.39
21 32.3932.4032.4132.4032.39
22 32.3932.4032.4132.4032.39

Next, the window sizesW1 andW2 are set. For the above selected parameter values for
par1 andpar2, we now let the parametersW1 andW2 run over a range of possible values.
As can be seen in Table 6.2, from the couple(W1,W2) = (2, 7) on, the arithmetic mean of
the PSNR values of the nine test sequences hardly increases.Although we have focused in
this chapter on the noise filtering capability of the filter and not on its complexity, it should
be mentioned that most of the computation time needed by the method goes to the filtering
of detected pixels, i.e., the search for the best matching block. The size of a block (the
number of pixels that has to be handled for each block) and thesize of the search region
(the number of blocks to which a given block should be compared) increases quadratic
with respect to respectivelyW1 andW2. Therefore, we have decided to use the couple
(W1,W2) = (2, 7) for the remaining experiments. With respect to the complexity, we also
remark that the higher the noise level, the more noisy pixels, and thus the more pixels that
need to be filtered, i.e., the more pixels for which the block matching is performed. A first
possibility to reduce the computation time would be to use faster block matching techniques
such as those presented in [111, 143, 144]. Further, it can also be remarked that the detection
(respectively filtering) of a pixel is independent of the detection (respectively filtering) of
the other pixels in the frame and could thus be performed in parallel.

6.3 Experimental Results

In this section, the performance of the proposed method is compared to that of the adaptive
vector median filter (AVMF) from [63, 64], the video adaptivevector directional median
filter (VAVDMF) with 3D filtering window from [112] and the 2D fuzzy impulse noise
reduction method for colour images (INRC) from [123].

The adaptive vector median filter [63, 64] orders the pixels (colour vectors) in the 3D
filtering window based on increasing accumulated (Euclidean) distance to the other pixels
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Table 6.2: Determination of the parametersW1 andW2. (Arithmetic mean of the average PSNR (dB)
values.)

W1\W2 5 6 7 8 9 10 11

1 31.4231.4231.4131.3831.3331.3131.27
2 32.4232.4932.5732.5732.5532.5532.54
3 32.4532.5432.6332.6432.6432.6432.64
4 32.4632.5632.6532.6732.6732.6732.67
5 32.3532.4532.5532.5732.5732.5832.58

in the window. If the Euclidean distance between the centralpixel in the window and the
mean of a given number of vectors that have the lowest accumulated distance, is greater than
a given threshold, then the central pixel is filtered as the pixel with the lowest accumulated
distance, otherwise, it remains unchanged.

In the video adaptive vector directional median filter [112], the vectors are first ordered
based on increasing angular distance. If the absolute distance between the central pixel in
the window and the mean of a given numberK of vectors that have the lowest accumu-
lated angular distance, is greater than a given threshold, then the central pixel is filtered as
the pixel with the lowest accumulated absolute distance (magnitude), otherwise, it remains
unchanged.

To show that the proposed filter takes real advantage from thetemporal information,
we have also compared the proposed filter to the 2D fuzzy impulse noise reduction method
for colour images. As shown in [123], the INRC filter outperforms all other compared
state-of-the-art 2D methods and can thus be accepted as a good representative for the 2D
impulse noise filters. Further, this filter is also a representative of a non-vector-based filter,
in which the colour bands are filtered separately. However, in the detection of noisy pixel
components, also information from the other components is used.

All methods have been processed on the “Salesman”, “Bus”, “Tennis”, “Deadline”,
“Chair” and “Foreman” sequences, for random impulse noise levels (in each colour band)
ranging frompr = 5% to pr = 30%. The results of these experiments, in terms of PSNR
and in terms of NCD respectively, are presented in Fig. 6.5 and 6.6, from which it can
be concluded that the proposed method outperforms all othermethods. Since the objec-
tive measures do not always tell everything, we also did a visual comparison. The results
of the different compared methods performed on the noisy “Tennis” (pr = 5%), “Dead-
line” (pr = 15%) and “Salesman” (pr = 25%) sequences, can be found onhttp://
www.fuzzy.ugent.be/tmelange/results/colourimpulse . Fig. 6.7 and 6.8
respectively show for the 110-th frame of the “Tennis” sequence and the 20-th frame of
the “Deadline” sequence, the original frame, the noisy frame and the result obtained by the
different compared methods.

We see that the VAVDMF removes the noise very well. However, also too many noise-
free pixels are filtered, which results in both spatial and temporal inconsistencies, especially
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around edges. Further, the filter also performs less well in the case of motion (e.g. “Sales-
man” (arms), “Tennis” (ball), “Chair”, “Bus”), due to the fact that the pixels in the filtering
window from the previous and next frame, will then not alwayscorrespond to the same
object.

The other vector-based method, i.e., the AVMF, preserves the details very well. How-
ever, it fails to remove the noise adequately. Even for lowernoise levels, small impulses
remain visible. Analogously as the VAVDMF, it also performsless well in the case of mo-
tion.

Next, the INRC results in a very good noise removal, even for high noise levels. At
the cost of this, however, too much details get lost (e.g., side lines on the table in “Ten-
nis”) and the images become a little blurry. Further, also several temporal inconsistencies
in non-moving areas can be detected, especially when they are detailed (e.g., background
“Deadline”, “Salesman”). This is no surprise, since the 2D filter does not benefit from the
available extra temporal information in such non-moving area.

Finally, the proposed fuzzy filter combines a very good detail preservation to a very good
noise removal and clearly outperforms all compared filters.The filter benefits very well
from the extra information coming from similar regions in a spatio-temporal neighbourhood.

6.4 Conclusion

In this chapter, we have presented a new filtering framework for colour videos corrupted by
random valued impulse noise. In order to preserve the details as much as possible, the noise
is removed step by step. The detection of noisy colour components is based on fuzzy rules
in which information from spatial and temporal neighbours as well as from the other colour
bands is used. Detected noisy components are filtered based on blockmatching where a
noise adaptive mean absolute difference is used and where the search region contains pixels
blocks from both the previous and current frame.

The experiments showed that the proposed method outperforms other state-of-the-art
methods both in terms of objective measures such as PSNR and NCD and visually.
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Figure 6.5: PSNR results for the different methods applied on the sequences (a) “Salesman” (pr =
5%), (b) “Tennis” (pr = 10%), (c) “Bus” (pr = 15%), (d) “Foreman” (pr = 20%), (e) “Chair”
(pr = 25%) and (f) “Deadline” (pr = 30%).
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Figure 6.6: NCD results for the different methods applied on the sequences (a) “Salesman” (pr =
5%), (b) “Tennis” (pr = 10%), (c) “Bus” (pr = 15%), (d) “Foreman” (pr = 20%), (e) “Chair”
(pr = 25%) and (f) “Deadline” (pr = 30%).
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(a) (b)

(c) (d)

(e) (f)

Figure 6.7: 110-th frame of the “Tennis” sequence: (a) original, (b) noisy (pr = 5%), (c) INRC,
(d) AVMF, (e) VAVDMF and (f) Proposed.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.8: 20-th frame of the “Deadline” sequence: (a) original, (b) noisy (pr = 25%), (c) INRC,
(d) AVMF, (e) VAVDMF and (f) Proposed.
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Part III

Interval-valued Fuzzy
Mathematical Morphology
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7
From Binary to Interval-valued

Fuzzy Mathematical
Morphology

Many theories have been developed in the domain of image processing to extract specific
information from images such as edges, patterns,. . . One of these theories is mathemathi-
cal morphology, in which an image is transformed into another image by a morphological
operator, using a structuring element. The basic morphological operators used for such
transformation are the dilation, erosion, opening and closing. Further, the structuring el-
ement is usually very small compared to the given image and can be chosen by the user
in function of the desired goal. Mathematical morphology was originally developed for
binary (black-white) images [126], and was later extended to greyscale images by two dif-
ferent approaches: (i) the threshold approach [126] and (ii) the umbra approach [44]. In the
first approach, the structuring element still has to be binary; in the second approach, also
greyscale structuring elements are allowed. Later, a thirdapproach was introduced, inspired
on the observation that greyscale images and fuzzy sets are modeled in the same way (i.e.,
as mappings from a universeU into the unit interval[0, 1]): fuzzy mathematical morphology
[29, 113, 132]. Recently, also extensions of fuzzy mathematical morphology started to get
attention [8, 9, 103, 104]. In this thesis, we concentrate onan extension based on interval-
valued fuzzy set theory. A pixel is now mapped onto an interval of grey levels instead of
onto one specific grey level, in this way allowing uncertainty regarding the measured grey
levels.

The structure of this chapter is as follows: the different basic morphological operators
for binary images and structuring elements are introduced in Section 7.1. These concepts
are then extended to greyscale images and structuring elements in Section 7.2 by the thresh-
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old approach (7.2.1), the umbra approach (7.2.2) and the fuzzy approach (7.2.3). Finally,
fuzzy mathematical morphology is further extended to interval-valued fuzzy mathematical
morphology in Section 7.3, where we will also discuss some basic properties of the mor-
phological operators.

7.1 Binary Mathematical Morphology

The basic morphological operators are the dilation, erosion, opening and closing. For a
binary imageA ⊆ Rn and a binary structuring elementB ⊆ Rn, they are defined as
follows 1:

Definition 7.1. [126] Let A,B ⊆ Rn. The binary dilationD(A,B), the binary erosion
E(A,B), the binary closingC(A,B) and the binary openingO(A,B) are the sets given
by:

D(A,B) = {y|y ∈ Rn andTy(B) ∩A 6= ∅},
E(A,B) = {y|y ∈ Rn andTy(B) ⊆ A},
C(A,B) = E(D(A,B),−B),

O(A,B) = D(E(A,B),−B),

where the translationTy(B) of B by the vectory ∈ Rn is defined asTy(B) = {x ∈
Rn|x− y ∈ B}, and the reflection−B ofB is given by−B = {−b|b ∈ B}.

The definitions of the binary dilation and erosion are illustrated in Fig. 7.1.

Figure 7.1: Geometrical interpretation of the binary dilation (left) and erosion (right). The centre of
the structuring elementB coincides with the origin of the coordinate system.

The binary closing and opening are combinations of the dilation and erosion. Explicit
expressions for the closing and opening are given as follows:

C(A,B) = {y|y ∈ Rn andTy(−B) ⊆ D(A,B)}
1Remark that also another definition for the dilation and closing is frequently used in literature (e.g. [44]). In

those definitions−B is used instead ofB.
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7.2 Greyscale Mathematical Morphology

= {y|y ∈ Rn and(∀z ∈ Rn)(z ∈ Ty(−B) ⇒ Tz(B) ∩A 6= ∅)}
= {y|y ∈ Rn and(∀z ∈ Rn)(y ∈ Tz(B) ⇒ Tz(B) ∩A 6= ∅)},

O(A,B) = {y|y ∈ Rn andTy(−B) ∩ E(A,B) 6= ∅}
= {y|y ∈ Rn and(∃z ∈ Rn)(z ∈ Ty(−B) andTz(B) ⊆ A)}
= {y|y ∈ Rn and(∃z ∈ Rn)(y ∈ Tz(B) andTz(B) ⊆ A)}.

Further, the dilation and erosion can also be written as:

D(A,B) = {y|y ∈ Rn and(∃b ∈ B)(y + b ∈ A)}
=

⋃

b∈B

T−b(A),

E(A,B) = {y|y ∈ Rn and(∀b ∈ B)(y + b ∈ A)}
=

⋂

b∈B

T−b(A).

As an example, the binary dilation and erosion of a binary image by the structuring ele-

mentB =



1 1 1
1 1 1
1 1 1


 (the underlined element corresponds to the origin in the coordinate

system) are depicted in Fig. 7.2. It can be seen that a dilation enlarges objects in the image
while the erosion reduces them.

For a list of basic properties of the binary morphological operators, we refer to [93,
126]. One of those properties, that can be deduced from the above is that it will always
hold thatE(A,B) ⊆ D(A,B). As a consequence the imageD(A,B) \ E(A,B), that
we call the (binary) morphological gradientGB(A), can serve as an edge image ofA.
This morphological gradient is illustrated in Fig. 7.3 for the original image and its dilation
and erosion depicted in Fig. 7.2. More examples of practicalapplications of mathematical
morphology can be found in [127, 129].

7.2 Greyscale Mathematical Morphology

Binary morphology was extended to greyscale images in different ways. The threshold
approach [126] was a first effort, in which the structuring element still had to be binary.
The umbra approach [44] also allowed greyscale structuringelements, but had as drawback
that the result of a morphological operation on anRn − [0, 1] mapping (such as a greyscale
image) is not always anRn− [0, 1] mapping. The third main approach is the fuzzy approach
[29, 113, 132], in which none of the two above mentioned shortcomings form a problem
anymore.
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Figure 7.2: The original binary image (top), the binary dilation (bottom left) and the binary erosion
(bottom right) for the given structuring elementB.

Figure 7.3: The binary morphological gradient image of the image in Fig. 7.2.
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7.2.1 The Threshold Approach

The class of mappings fromRn onto [0, 1] coincides with the class of fuzzy sets onRn. So
for anRn − [0, 1] mappingf , we can define a weakα-cut analogously as for fuzzy sets as
fα = {x ∈ Rn|f(x) ≥ α}. Then it will also hold thatf(x) = sup{α ∈]0, 1]|x ∈ fα}.
Further, in analogy to the support of a fuzzy set, we writedf = {x ∈ Rn|f(x) > 0}.

The binary morphological operators are then extended to greyscale images by applying
the binary operators on each weakα-cut (α ∈]0, 1]) of the greyscale image (Fig. 7.4). For a
greyscale imageA and a binary structuring elementB this becomes:

Figure 7.4: Example of the construction of thet-dilation (left) and thet-erosion (right) (n = 1).

Dt(A,B)(y) = sup{α ∈]0, 1]|y ∈ D(Aα, B)}
= sup{α ∈]0, 1]|(∃x ∈ B)(y + x ∈ Aα)}
= sup{α ∈]0, 1]|(∃x ∈ Ty(B))(x ∈ Aα)}
= sup{α ∈]0, 1]|(∃x ∈ Ty(B) ∩ dA)(A(x) ≥ α)}
= sup{A(x)|x ∈ Ty(B) ∩ dA},

Et(A,B)(y) = sup{α ∈]0, 1]|y ∈ E(Aα, B)}
= sup{α ∈]0, 1]|(∀x ∈ B)(y + x ∈ Aα)}
= sup{α ∈]0, 1]|(∀x ∈ Ty(B))(x ∈ Aα)}
= sup{α ∈]0, 1]|(∀x ∈ Ty(B))(A(x) ≥ α)}
= inf{A(x)|x ∈ Ty(B)},

Definition 7.2. [126] Let A be a greyscale image andB a binary structuring element.
Thet-dilationDt(A,B), thet-erosionEt(A,B), thet-closingCt(A,B) and thet-opening
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Ot(A,B) are the greyscale images given for ally ∈ Rn by:

Dt(A,B)(y) = sup
x∈Ty(B)∩dA

A(x)

Et(A,B)(y) = inf
x∈Ty(B)

A(x)

Ct(A,B)(y) = Et(Dt(A,B),−B)(y),

Ot(A,B)(y) = Dt(Et(A,B),−B)(y),

where the translationTy(B) of B by the vectory ∈ Rn is defined asTy(B) = {x ∈
Rn|x− y ∈ B}, and the reflection−B ofB is given by−B = {−b|b ∈ B}.

As an example, thet-dilation andt-erosion of the greyscale camera image by the struc-

turing elementB =



1 1 1
1 1 1
1 1 1


 are depicted in Fig. 7.5. It can be seen that a dilation

brightens objects in the image while the erosion makes them darker.
For a list of basic properties of thet-morphological operators, we refer to [93, 126].

7.2.2 The Umbra Approach

In this approach, the result of the morphological operatorsonRn − [0, 1] mappings is not
necessarily anRn − [0, 1] mapping, but can also be e.g. anRn − [−1, 1] (as we will
see for the erosion). Therefore, in the umbra-approach, greyscale images are modelled
asRn − R mappings2 instead ofRn − [0, 1] mappings as we usually do. By agreement,
nowA(x) = −∞ (instead ofA(x) = 0 (see Chapter 2)) for elementsx ∈ Rn for which the
imageA is originally not defined. So, for the support we getdf = {x ∈ Rn|f(x) > −∞}
for anRn − R mappingf .

Remark that the points below or above the graph of anRn − R mapping are crisp
subsets ofRn+1 (i.e., binaryn + 1-dimensional images). Such subsets are respectively
called umbras (below) and dual umbras (above). For a greyscale imageA and greyscale
structuring elementB, theu-dilation is now defined as the surface of the binary dilationof
the umbra ofA by the dual umbra ofB. Analogously, theu-erosion is the surface of the
binary erosion of the umbra ofA by the umbra ofB (Fig. 7.6). For more details, we refer
to [44, 93]. The resulting explicit expressions are as follows:

Definition 7.3. [44] LetA be a greyscale image andB a greyscale structuring element. The
u-dilationDu(A,B), theu-erosionEu(A,B), theu-closingCu(A,B) and theu-opening
Ou(A,B) are the greyscale images given for ally ∈ Rn by:

Du(A,B)(y) = sup
x∈Ty(dB)∩dA

A(x) +B(x− y),

Eu(A,B)(y) = inf
x∈Ty(dB)

A(x)−B(x− y),

2The notationR here stands forR = R ∪ {−∞,+∞}.
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Figure 7.5: The original camera image (top), thet-dilation (bottom left) and thet-erosion (bottom
right) for the given structuring elementB.

Figure 7.6: Example of the construction of theu-dilation (left) and theu-erosion (right) (n = 1).
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Cu(A,B)(y) = Eu(Du(A,B),−B)(y),

Ou(A,B)(y) = Du(Eu(A,B),−B)(y),

where the translationTy(dB) of B by the vectory ∈ Rn is defined asTy(dB) = {x ∈
Rn|x− y ∈ dB}, and the reflection−B ofB is given by(−B)(x) = B(−x), ∀x ∈ Rn.

It can be checked that ifA andB are bothRn − [0, 1] functions, thenDu(A,B) and
Eu(A,B) are respectivelyRn − [0, 2] andRn − [−1, 1] functions.

As an example, the (rescaled)u-dilation andu-erosion of the original camera image

(Fig. 7.5) by the structuring elementB =



0.86 0.86 0.86
0.86 1 0.86
0.86 0.86 0.86


 are depicted in Fig. 7.7.

It can be seen that a dilation brightens objects in the image while the erosion makes them
darker.

Figure 7.7: Theu-dilation (left) and theu-erosion (right) of the camera image for the given structur-
ing elementB.

For a list of basic properties of theu-morphological operators, we refer to [44, 93].

7.2.3 Fuzzy Mathematical Morphology

Since greyscale images are modelled byRn − [0, 1] mappings, they can be seen as fuzzy
sets onRn. So, to extend the binary operators to greyscale images, thebinary intersection
and inclusion (that are clearly quite important in the definition of the binary operators) can
be extended to a fuzzy intersection and inclusion measure. This is done by fuzzifying the
underlying logical operators, i.e., the conjunction and the implication on{0, 1}. As we have
seen in Chapter 1, the fuzzification of these operators are respectively given by a conjunctor
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and an implicator on the unit interval3 4. For a conjunctorC and an implicatorI on [0, 1],
it can be checked that the measuresIncI andIntC , given for all fuzzy setsA andB in a
universeX by

IncI(A,B) = inf
x∈X

I(A(x), B(x)),

IntC(A,B) = sup
x∈X

C(A(x), B(x)),

respectively extend the binary inclusion and intersection(i.e., for crisp setsA andB,
IncI(A,B) = 1 if A ⊆ B and IncI(A,B) = 0 if A 6⊆ B and IntC(A,B) = 1 if
A ∩B 6= ∅ andIntC(A,B) = 0 if A ∩B = ∅).

ForA,B ∈ F(Rn), we then get:

DC(A,B)(y) = IntC(Ty(B), A)

= sup
x∈Rn

C((Ty(B))(x), A(x))

= sup
x∈Rn

C(B(x− y), A(x))

= sup
x∈Ty(dB)∩dA

C(B(x− y), A(x)),

and

EI(A,B)(y) = IncI(Ty(B), A)

= inf
x∈Rn

I((Ty(B))(x), A(x))

= inf
x∈Rn

I(B(x− y), A(x))

= inf
x∈Ty(dB)

I(B(x− y), A(x)).

Definition 7.4. [29] Let C be a conjunctor on[0, 1], I an implicator on[0, 1], andA,B ∈
F(Rn). The fuzzy dilationDC(A,B) and erosionEI(A,B) are the fuzzy sets inRn defined
for all y ∈ Rn by (whereTy(dB) = {x ∈ Rn|x− y ∈ dB} and(−B)(x) = B(−x), ∀x ∈
Rn):

DI
C(A,B)(y) = sup

x∈Ty(dB)∩dA

C(B(x− y), A(x)),

3Remark that this approach is very general and is only based on generalizing the underlying logical framework.
The resulting dilations and erosions are thus not a priori connected. Some authors also require the dilation and
erosion to be dual [11] or to form an adjunction as in the algebraic framework in [33, 94]. Such connection can
be translated into a connection between the underlying logical operators, i.e., the used conjunctor and implicator.
If further also stronger morphological properties such as the commutativity and the iterativity of the dilation are
required, the conjunctors will need to be restricted to t-norms [10].

4In [96] it is shown that fuzzy mathematical morphology is compatible with binary morphology and that fuzzy
mathematical morphology is compatible with greyscale morphology based on the threshold approach if we restrict
ourselves to semi-norms and border implicators.
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EI
I(A,B)(y) = inf

x∈Ty(dB)
I(B(x− y), A(x)),

CC,I(A,B)(y) = EI(DC(A,B),−B)(y),

OC,I(A,B)(y) = DC(EI(A,B),−B)(y).

Remark that ify 6∈ D(dA, dB), thenDC(A,B)(y) = 0.
As an example, the fuzzy dilation and erosion (where the minimum operator and the

Kleene-Dienes operator were used as conjunctor and implicator respectively) of the original

camera image (Fig. 7.5) by the structuring elementB =



0.86 0.86 0.86
0.86 1 0.86
0.86 0.86 0.86


 are depicted

in Fig. 7.8. It can be seen that a dilation brightens objects in the image while the erosion
makes them darker.

Figure 7.8: The fuzzy dilation (left) and erosion (right) (where the minimum operator and the Kleene-
Dienes operator were used as conjunctor and implicator respectively) of the camera image for the
given structuring elementB.

For the basic properties of the morphological operators in this approach, we refer to
[29, 93].

7.3 Interval-valued Fuzzy Mathematical Morphology

Recently, fuzzy mathematical morphology has been further extended to extensions of fuzzy
sets (L-fuzzy sets) by extending the fuzzy logical operators on([0, 1],≤) to L = (L,≤L).
In this work, we will focus on the extension based on interval-valued fuzzy set theory.
Before introducing the interval-valued fuzzy morphological operators and their basic prop-
erties, we first discuss the interpretation of images that correspond to interval-valued fuzzy
sets [103].
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7.3.1 Interval-valued Images

As discussed in Chapter 2, binary and greyscale images can respectively be seen as crisp
sets and fuzzy sets inRn. Interval-valued images now have the same representation as
interval-valued fuzzy sets, which allows us to apply techniques from interval-valued fuzzy
set theory on them (e.g. to define the interval-valued fuzzy morphological operators). For
such images, a pixel in the image domain is no longer mapped onto one specific grey value,
but onto an interval of grey values to which the grey value is expected to belong (a closed
subinterval of[0, 1]). The grey levels of the pixels in a greyscale image namely can be
uncertain. Firstly, in any device, the captured grey levelsare rounded up or down to an
element of a finite set of allowed values. Further, uncertainty may also arise when several
takes of an image result in different grey levels for some of the pixels. This is sometimes the
case under identical recording circumstances and can certainly be expected under variable
circumstances such as illumination changes due to clouds covering the sun,. . . Also, the
camera or an object in the scenery can slightly shift position in between takes, which might
result in large differences (uncertainty) in the measured grey level of pixels. Especially
pixels at the edge of an object will suffer from this. Finally, in the context of mathematical
morphology, there might also exist uncertainty regarding the grey levels in the structuring
element that is used. This structuring element can be chosenby the user, but in some cases
he might not be completely sure how to estimate the importance or thus weight that is
assigned to a pixel in this structuring element. In this case, the use of intervals to which the
value is likely to belong instead of choosing one specific value, might offer a solution.

In Fig. 7.9, three different takes of the camera image scene are given: a cloudy, a sunny
and a slightly shifted take. Due to different recording circumstances and a shift in position
of the objects in the image, there is uncertainty concerningthe grey values in the image. To
take this uncertainty into account, an interval-valued image can be constructed as follows.
The lower bound (respectively the upper bound) of the intervals to which the grey value of
a pixel is expected to belong is chosen as the lowest (respectively the highest) grey level
over the three takes. These lower bound and upper bound imageare given in Fig. 7.10
together with a representation of the difference between the two. The larger this difference
(more white in the difference image), the wider the corresponding interval and the larger the
uncertainty at the considered pixel position.

Remark that also other interpretations are possible. The image does not need to represent
a natural scene, but it can e.g. also represent a degree to which a certain property is satisfied
at a certain location. If there is uncertainty concerning that degree, intervals can be used.
Remark further that since interval-valued fuzzy set theoryis equivalent to intuitionistic and
bipolar fuzzy set theory, all results of interval-valued morphology can be translated to the
equivalent morphologies. For an interpretation of bipolarfuzzy images, we refer to [8, 9].

As a side-note, we would like to mention that also in other image processing problems
such as inverse halftoning [13], as well as in the context of wavelets [12], interval-valued
representations occur in a natural way. They have also foundto be useful in edge detection
applications [5]. Further, imprecision in grey levels is also considered in [108].
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Figure 7.9: Three different takes on the camera image: cloudy (upper), sunny (middle) and shifted
(lower).
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Figure 7.10: Lower bound image (upper), upper bound image (middle) and difference image (lower)
of the interval-valued camera image.
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7.3.2 The Interval-valued Fuzzy Morphological Operators

The fuzzy morphological operators can be further extended to interval-valued fuzzy sets by
extending the logical operators from[0, 1] toLI .

Definition 7.5. [8] Let C be a conjunctor onLI , let I be an implicator onLI , and let
A,B ∈ FLI (Rn). The interval-valued fuzzy dilationDI

C(A,B) and erosionEI
I(A,B) are

the interval-valued fuzzy sets inRn defined by (whereTy(dB) = {x ∈ Rn|x− y ∈ dB})

DI
C(A,B)(y) = sup

x∈Ty(dB)∩dA

C(B(x− y), A(x)), ∀y ∈ Rn, (7.1)

and
EI

I(A,B)(y) = inf
x∈Ty(dB)

I(B(x− y), A(x)), ∀y ∈ Rn. (7.2)

Remark that ify 6∈ D(dA, dB), thenDI
C(A,B)(y) = 0LI .

With the reflection−B of an interval-valued fuzzy setB in Rn defined as(−B)(x) =
B(−x), ∀x ∈ Rn, the definitions of the interval-valued fuzzy closing and fuzzy opening are
then given by:

Definition 7.6. LetC be a conjunctor onLI , let I be an implicator onLI , and letA,B ∈
FLI (Rn). The interval-valued fuzzy closingCI

C,I(A,B) and interval-valued fuzzy opening
OI

C,I(A,B) are the interval-valued fuzzy sets inRn given by:

CI
C,I(A,B) = EI

I(D
I
C(A,B),−B), (7.3)

OI
C,I(A,B) = DI

C(E
I
I(A,B),−B). (7.4)

As discussed in Chapter 2, to process images on a computer or any other device, in
practice a two-fold sampling of the images is needed: the image domain is sampled down
from Rn to Zn and the grey levels are sampled down from the unit interval[0, 1] to a
finite subchain of it. As a consequence, the greyscale intervals used for interval-valued
images, will in practice belong to the finite sublatticeLI

r,s = (LI
r,s,≤LI ) of LI , withLI

r,s =

{[ r−k
r−1 ,

s−l
s−1 ]|k, l ∈ Z and1 ≤ k ≤ r and1 ≤ l ≤ s} for given integersr ands (r, s ∈

N \ {0, 1})5. So, in practice interval-valued images can be seen as belonging to the class of
all interval-valued fuzzy sets inZn with membership intervals inLI

r,s, which we will denote
by FLI

r,s
(Zn). If an interval-valued fuzzy setA belongs toFLI

r,s
(Zn), then,∀x ∈ Zn,

A1(x) ∈ Ir = { r−k
r−1 |k ∈ Z and1 ≤ k ≤ r}. Analogously the upper boundA2(x) ∈ Is =

{ s−l
s−1 |l ∈ Z and1 ≤ l ≤ s}.

Due to the characterization of the supremum and the infimum, sometimes stronger prop-
erties will hold in the practical discrete framework than inthe theoretical continuous frame-
work. This will for example be the case for the decompositionand construction properties

5Remark that usuallyr = s, since the lower and upper bound of the intervals both represent allowed grey levels
on the same device.
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discussed in Chapters 8 and 9. Therefore we will here give theexplicit discrete definitions of
the interval-valued fuzzy morphological operators. Remark that the definitions of negators,
conjunctors and implicators on the latticeLI

r,s = (LI
r,s,≤LI ) are analogous to the corre-

sponding definitions onLI = (LI ,≤LI ) (where nowLI
r,s takes the role ofLI ). However,

not every operator onLI has a corresponding operator onLI
r,s. The conjunctorC, given by

C(x, y) = [x1 · y1, x2 · y2] for all x, y ∈ LI , for example, is not defined onLI
r,s due to the

fact that the interval with as lower and upper bound the product of respectively the lower
and upper bounds of two elements ofLI

r,s does not necessarily belong toLI
r,s.

The definitions of the discrete interval-valued fuzzy dilation and erosion can now be
written as follows:

Definition 7.7. Let C be a conjunctor onLI
r,s, let I be an implicator onLI

r,s, and let
A,B ∈ FLI

r,s
(Zn). The discrete interval-valued fuzzy dilationDI

C(A,B) ∈ FLI
r,s
(Zn) is

for all y ∈ Zn defined by:

DI
C(A,B)(y) = sup

x∈Ty(dB)∩dA

C(B(x− y), A(x))

= [ max
x∈Ty(dB)∩dA

C(B(x− y), A(x))1,

max
x∈Ty(dB)∩dA

C(B(x− y), A(x))2].

(For y 6∈ D(dA, dB), D
I
C(A,B)(y) = 0LI .)

The discrete interval-valued fuzzy erosionEI
I(A,B) ∈ FLI

r,s
(Zn) is for all y ∈ Zn defined

by:

EI
I(A,B)(y) = inf

x∈Ty(dB)
I(B(x− y), A(x))

= [ min
x∈Ty(dB)

I(B(x− y), A(x))1,

min
x∈Ty(dB)

I(B(x− y), A(x))2].

As an example, the interval-valued fuzzy dilation (where the conjunctorCmin was used)
of the original camera image (Fig. 7.10) by the structuring element

B =



[0.6, 0.8] [0.7, 0.9] [0.6, 0.8]
[0.7, 0.9] [1, 1] [0.7, 0.9]

[0.6, 0.8] [0.7, 0.9] [0.6, 0.8]


 , (7.5)

(where the underlined element corresponds to the origin) isdepicted in Fig. 7.11. It can be
seen that the dilation brightens objects in the image. Analogously, an erosion will darken
them.
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Figure 7.11: Lower bound image (upper), upper bound image (middle) and difference image (lower)
of the dilated interval-valued camera image.
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7.3.3 Basic Properties of the Interval-valued Fuzzy Morphological Op-
erators

This subsection gives an overview of the basic properties ofthe interval-valued fuzzy mor-
phological operators: monotonicity, expansivity and restrictivity, interaction with the inter-
section and union of images and structuring elements, duality, adjointness and idempotence
[84]. These properties are mostly analogous to those of the fuzzy morphological operators
[29, 93]. However, in some cases stronger conditions are required or less strong results are
found. In the following,A,A1, A2 andB,B1, B2 represent interval-valued fuzzy sets in
the universeRn. A,A1, A2 are model for interval-valued images,B,B1, B2 are model for
interval-valued structuring elements.

Monotonicity

Proposition 7.3.1. LetC1, C2 be conjunctors andI1, I2 implicators onLI .

(i) If C1 ≤LI C2, thenDI
C1
(A,B) ⊆ DI

C2
(A,B).

(ii) If I1 ≤LI I2, thenEI
I1
(A,B) ⊆ EI

I2
(A,B).

Proof. As an example, we prove (i).
For ally ∈ Rn

DI
C1
(A,B)(y) = sup

x∈Ty(dB)∩dA

C1(B(x− y), A(x))

≤LI sup
x∈Ty(dB)∩dA

C2(B(x− y), A(x))

= DI
C2
(A,B)(y)

Proposition 7.3.2. Let C be a conjunctor andI be an implicator onLI . If A1 ⊆ A2 and
B1 ⊆ B2, then:

(i) DI
C(A1, B) ⊆ DI

C(A2, B),
(ii) EI

I(A1, B) ⊆ EI
I(A2, B),

(iii) DI
C(A,B1) ⊆ DI

C(A,B2),
(iv) EI

I(A,B1) ⊇ EI
I(A,B2).

Proof. As an example, we prove (i).
For ally ∈ Rn

DI
C(A1, B)(y) = sup

x∈Ty(dB)∩dA1

C(B(x− y), A1(x))

≤LI sup
x∈Ty(dB)∩dA2

C(B(x− y), A2(x))
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= DI
C(A2, B)(y)

The above properties say that if an image is brightened (i.e., when the grey values are
increased), then the dilated and eroded images will be brightened as well. On the other
hand, if we brighten the structuring element, then also the dilated image will be brightened
but the eroded image will be darkened.

For the interval-valued fuzzy opening and closing the monotonicity properties w.r.t. the
image follow immediately from those of the dilation and the erosion. However, due to
the opposite inclusions for the dilation and erosion in the properties w.r.t. the structuring
element, no such properties hold for the opening and closing.

Proposition 7.3.3. LetC be a conjunctor andI be an implicator onLI . If A1 ⊆ A2, then:

(i) OI
C,I(A1, B) ⊆ OI

C,I(A2, B),
(ii) CI

C,I(A1, B) ⊆ CI
C,I(A2, B).

Proof. Follows from Proposition 7.3.2.

Expansivity and Restrictivity

The following proposition shows that, under a very general condition on the structuring
element, the interval-valued dilation and erosion are respectivley expansive and restrictive.

Proposition 7.3.4. Let C be a semi-norm andI be a border implicator onLI . If B(0) =
1LI , then:

EI
I(A,B) ⊆ A ⊆ DI

C(A,B).

Proof. For ally ∈ Rn

EI
I(A,B)(y) = inf

x∈Ty(dB)
I(B(x− y), A(x))

≤LI I(B(y − y), A(y))

= I(1LI , A(y))

= A(y)

and

DI
C(A,B)(y) = sup

x∈Ty(dB)∩dA

C(B(x− y), A(x))

≥LI C(B(y − y), A(y))

= C(1LI , A(y))

= A(y)
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As a straightforward consequence, the following propostion holds.

Proposition 7.3.5. LetC be a semi-norm andI a border implicator onLI . If B(0) = 1LI ,
then:

(i) DI
C(A,B) ⊇ CI

C,I(A,B),
(ii) DI

C(A,B) ⊇ OI
C,I(A,−B),

(iii) EI
I(A,B) ⊆ OI

C,I(A,B),
(iv) EI

I(A,B) ⊆ CI
C,I(A,−B).

Proof. Follows from Proposition 7.3.4 and 7.3.2 as follows:

(i) CI
C,I(A,B) = EI

I(D
I
C(A,B),−B) ⊆ DI

C(A,B).

(ii) OI
C,I(A,−B) = DI

C(E
I
I(A,−B), B) ⊆ DI

C(A,B).

(iii) OI
C,I(A,B) = DI

C(E
I
I(A,B),−B) ⊇ EI

I(A,B).

(iv) CI
C,I(A,−B) = EI

I(D
I
C(A,−B), B) ⊇ EI

I(A,B).

Under given conditions, also the interval-valued fuzzy closing and opening are respec-
tively expansive and restrictive.

Proposition 7.3.6. LetC be a conjunctor andI an implicator onLI .

(i) If (∀(a, b) ∈ LI × LI)(b ≤LI I(a, C(a, b))), thenA ⊆ CI
C,I(A,B).

(ii) If (∀(a, b) ∈ LI × LI)(C(a, I(a, b))) ≤LI b, thenOI
C,I(A,B) ⊆ A.

Proof.

(i) For all y ∈ Rn

CI
C,I(A,B)(y) = EI

I(D
I
C(A,B),−B)(y)

= inf
x∈Ty(−dB)

I(B(y − x), sup
z∈Ty(dB)∩dA

C(B(z − x), A(z)))

≥LI inf
x∈Ty(−dB)

I(B(y − x), C(B(y − x), A(y)))

≥LI inf
x∈Ty(−dB)

A(y)

= A(y)

(ii) Analogously.

The conditions onC andI will for example be satisfied ifI = IC with C a t-norm on
LI of which the partial mappings are sup-morphisms (see Proposition 1.5.3 and 1.5.4).

Combining Proposition 7.3.5 and 7.3.6 leads to the following.
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Proposition 7.3.7. Let C be a conjunctor andI an implicator onLI . If B(0) = 1LI

and (∀(a, b) ∈ LI × LI)(C(a, I(a, b))) ≤LI b ≤LI I(a, C(a, b))), thenEI
I(A,B) ⊆

OI
C,I(A,B) ⊆ A ⊆ CI

C,I(A,B) ⊆ DI
C(A,B).

Interaction with the Intersection of Images

In this and the following subsections, we study the interaction of the interval-valued mor-
phological operators with the intersection and union of images and structuring elements.

Proposition 7.3.8. LetC be a conjunctor andI an implicator onLI . It holds that:

(i) DI
C(A1 ∩A2, B) ⊆ DI

C(A1, B) ∩DI
C(A2, B),

(ii) EI
I(A1 ∩A2, B) ⊆ EI

I(A1, B) ∩ EI
I(A2, B).

If in (ii) the second partial mappings ofI are meet-morphisms, then it holds that:

EI
I(A1 ∩A2, B) = EI

I(A1, B) ∩ EI
I(A2, B).

Proof.

(i) From Proposition 7.3.2 (monotonicity w.r.t. the image)andA1 ∩ A2 ⊆ A1 and
A1∩A2 ⊆ A2, it follows thatDI

C(A1∩A2, B) ⊆ DI
C(A1, B) andDI

C(A1∩A2, B) ⊆
DI

C(A2, B) and consequentlyDI
C(A1 ∩A2, B) ⊆ DI

C(A1, B) ∩DI
C(A2, B).

(ii) For all y ∈ Rn:

EI
I(A1 ∩A2, B)(y)

= inf
x∈Ty(dB)

I(B(x− y), (A1 ∩A2)(x))

= inf
x∈Ty(dB)

I(B(x− y), inf(A1(x), A2(x)))

≤LI inf
x∈Ty(dB)

inf(I(B(x− y), A1(x)), I(B(x− y), A2(x)))

= inf( inf
x∈Ty(dB)

I(B(x− y), A1(x)), inf
x∈Ty(dB)

I(B(x− y), A2(x)))

= inf(EI
I(A1, B)(y), EI

I(A2, B)(y))

= (EI
I(A1, B) ∩ EI

I(A2, B))(y)

If the second partial mappings ofI are meet-morphisms, then the third transition
becomes an equality.

Proposition 7.3.9. LetC be a conjunctor andI an implicator onLI . It holds that:

(i) CI
C,I(A1 ∩A2, B) ⊆ CI

C,I(A1, B) ∩ CI
C,I(A2, B),

(ii) OI
C,I(A1 ∩A2, B) ⊆ OI

C,I(A1, B) ∩OI
C,I(A2, B).
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Proof. Follows from Proposition 7.3.8 and 7.3.2 as follows.

(i)

CI
C,I(A1 ∩A2, B) = EI

I(D
I
C(A1 ∩A2, B),−B)

⊆ EI
I(D

I
C(A1, B) ∩DI

C(A2, B),−B)

⊆ EI
I(D

I
C(A1, B),−B) ∩ EI

I(D
I
C(A2, B),−B)

= CI
C,I(A1, B) ∩ CI

C,I(A2, B)

(ii) Analogously.

The results in Proposition 7.3.8 and 7.3.9 can be extended tothe intersection of an
arbitrary family.

Proposition 7.3.10.LetC be a conjunctor andI an implicator onLI . It holds that:

(i) DI
C(

⋂
j∈J

Aj , B) ⊆ ⋂
j∈J

DI
C(Aj , B),

(ii) EI
I(

⋂
j∈J

Aj , B) ⊆ ⋂
j∈J

EI
I(Aj , B).

If in (ii) the second partial mappings ofI are inf-morphisms, then it holds that:

EI
I(

⋂

j∈J

Aj , B) =
⋂

j∈J

EI
I(Aj , B).

Proof. Analogous to the proof of Proposition 7.3.8.

Proposition 7.3.11.LetC be a conjunctor andI an implicator onLI . It holds that:

(i) CI
C,I(

⋂
j∈J

Aj , B) ⊆ ⋂
j∈J

CI
C,I(Aj , B),

(ii) OI
C,I(

⋂
j∈J

Aj , B) ⊆ ⋂
j∈J

OI
C,I(Aj , B).

Proof. Analogous to the proof of Proposition 7.3.9.

The results in Proposition 7.3.8 and 7.3.9 can also be extended to an arbitraryC′-
intersection, withC′ a semi-norm.

Proposition 7.3.12.LetC andC′ be conjunctors andI an implicator onLI .

1. (i) If C’ is a semi-norm, then

DI
C(A1 ∩C′ A2, B) ⊆ DI

C(A1, B) ∩DI
C(A2, B).

(ii) If (∀(u, v, w) ∈ (LI)3)(C(u, C′(v, w)) ≤LI C′(C(u, v), C(u,w))), then

DI
C(A1 ∩C′ A2, B) ⊆ DI

C(A1, B) ∩C′ DI
C(A2, B).
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2. (i) If C’ is a semi-norm, then

EI
I(A1 ∩C′ A2, B) ⊆ EI

I(A1, B) ∩ EI
I(A2, B).

(ii) If (∀(u, v, w) ∈ (LI)3)(C′(I(u, v), I(u,w)) ≤ I(u, C′(v, w))), then

EI
I(A1, B) ∩C′ EI

I(A2, B) ⊆ EI
I(A1 ∩C′ A2, B).

Proof.

1. (i) From Lemma 8.1.1, it follows thatA1 ∩C′ A2 ⊆ A1 ∩ A2. Using Propo-
sition 7.3.2 and 7.3.8 then givesDI

C(A1 ∩C′ A2, B) ⊆ DI
C(A1 ∩ A2, B) ⊆

DI
C(A1, B) ∩DI

C(A2, B).
(ii) For all y ∈ Rn:

DI
C(A1 ∩C′ A2, B)(y)

= sup
x∈Ty(dB)∩dA1∩

C′A2

C(B(x− y), (A1 ∩C′ A2)(x))

= sup
x∈Ty(dB)∩dA1∩

C′A2

C(B(x− y), (C′(A1(x), A2(x)))

≤LI sup
x∈Ty(dB)∩dA1∩

C′A2

C′(C(B(x− y), A1(x)), C(B(x− y), A2(x)))

≤LI C′( sup
x∈Ty(dB)∩dA1

C(B(x− y), A1(x)),

sup
x∈Ty(dB)∩dA2

C(B(x− y), A2(x)))

= C′(DI
C(A1, B)(y), DI

C(A2, B)(y))
= (DI

C(A1, B) ∩C′ DI
C(A2, B))(y)

In the fourth transition, Lemma 1.5.1 was used.

2. (i) From Lemma 8.1.1, it follows thatA1 ∩C′ A2 ⊆ A1 ∩ A2. Using Propo-
sition 7.3.2 and 7.3.8 then givesEI

I(A1 ∩C′ A2, B) ⊆ EI
I(A1 ∩ A2, B) ⊆

EI
I(A1, B) ∩EI

I(A2, B). Remark that ifC′ = Cmin, i.e., the infimum-operator,
which is a meet-morphism, then the equality holds.

(ii) For all y ∈ Rn:
EI

I(A1 ∩C′ A2, B)(y)
= inf

x∈Ty(dB)
I(B(x− y), (A1 ∩C′ A2)(x))

= inf
x∈Ty(dB)

I(B(x− y), C′(A1(x), A2(x)))

≥LI inf
x∈Ty(dB)

C′(I(B(x− y), A1(x)), I(B(x− y), A2(x)))

≥LI C′( inf
x∈Ty(dB)

I(B(x− y), A1(x)), inf
x∈Ty(dB)

I(B(x− y), A2(x)))

= C′(EI
I(A1, B)(y), EI

I(A2, B)(y))
= (EI

I(A1, B) ∩C′ EI
I(A2, B))(y)

In the fourth transition, Lemma 1.5.1 was used.
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Interaction with the Intersection of Structuring Elements

Proposition 7.3.13.LetC be a conjunctor andI an implicator onLI . It holds that:

(i) DI
C(A,B1 ∩B2) ⊆ DI

C(A,B1) ∩DI
C(A,B2),

(ii) EI
I(A,B1 ∩B2) ⊇ EI

I(A,B1) ∪ EI
I(A,B2) ⊇ EI

I(A,B1) ∩ EI
I(A,B2).

Proof. Analogous to the proof of Proposition 7.3.8 (i).

As a consequence of the opposite inclusions in the above proposition, no analogous
interaction properties w.r.t. structuring element can be found for the interval-valued fuzzy
morphological opening and closing.

The result in Proposition 7.3.13 can be extended to the intersection of an arbitrary fam-
ily.

Proposition 7.3.14.LetC be a conjunctor andI an implicator onLI . It holds that:

(i) DI
C(A,

⋂
j∈J

Bj) ⊆ ⋂
j∈J

DI
C(A,Bj),

(ii) EI
I(A,

⋂
j∈J

Bj) ⊇ ⋂
j∈J

EI
I(A,Bj).

Proof. Analogous to the proof of Proposition 7.3.13.

The result in Proposition 7.3.13 can also be extended to an arbitraryC′-intersection, with
C′ a semi-norm.

Proposition 7.3.15.LetC andC′ be conjunctors andI an implicator onLI .

1. (i) If C’ is a semi-norm, then

DI
C(A,B1 ∩C′ B2) ⊆ DI

C(A,B1) ∩DI
C(A,B2).

(ii) If (∀(u, v, w) ∈ (LI)3)(C(C′(u, v), w) ≤LI C′(C(u, v), C(u,w))), then

DI
C(A,B1 ∩C′ B2) ⊆ DI

C(A,B1) ∩C′ DI
C(A,B2).

2. (i) If C’ is a semi-norm, then

EI
I(A,B1 ∩C′ B2) ⊇ EI

I(A,B1) ∩ EI
I(A,B2) ⊇ EI

I(A,B1) ∩C′ EI
I(A,B2).

(ii) If (∀(u, v, w) ∈ (LI)3)(C′(I(u, v), I(u,w)) ≤ I(C′(u, v), w)), then

EI
I(A,B1) ∩C′ EI

I(A,B2) ⊆ EI
I(A,B1 ∩C′ B2).

Proof. Analogous to the proof of Proposition 7.3.12.
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Interaction with the Union of Images

Proposition 7.3.16.LetC be a conjunctor andI an implicator onLI . It holds that:

(i) DI
C(A1 ∪A2, B) ⊇ DI

C(A1, B) ∪DI
C(A2, B),

(ii) EI
I(A1 ∪A2, B) ⊇ EI

I(A1, B) ∪ EI
I(A2, B).

If in (i) the second partial mappings ofC are join-morphisms, then it holds that:

DI
C(A1 ∪A2, B) = DI

C(A1, B) ∪DI
C(A2, B).

Proof.

(i) Analogous to the proof of Proposition 7.3.8 (ii).

(ii) Analogous to the proof of Proposition 7.3.8 (i).

Proposition 7.3.17.LetC be a conjunctor andI an implicator onLI . It holds that:

(i) CI
C,I(A1 ∪A2, B) ⊇ CI

C,I(A1, B) ∪ CI
C,I(A2, B),

(ii) OI
C,I(A1 ∪A2, B) ⊇ OI

C,I(A1, B) ∪OI
C,I(A2, B).

Proof. Analogous to the proof of Proposition 7.3.9.

The results in Proposition 7.3.16 and 7.3.17 can be extendedto the union of an arbitrary
family.

Proposition 7.3.18.LetC be a conjunctor andI an implicator onLI . It holds that:

(i) DI
C(

⋃
j∈J

Aj , B) ⊇ ⋃
j∈J

DI
C(Aj , B),

(ii) EI
I(

⋃
j∈J

Aj , B) ⊇ ⋃
j∈J

EI
I(Aj , B).

If in (i) the second partial mappings ofC are sup-morphisms, then it holds that:

DI
C(

⋃

j∈J

Aj , B) =
⋃

j∈J

DI
C(Aj , B).

Proof. Analogous to the proof of Proposition 7.3.16.

Proposition 7.3.19.LetC be a conjunctor andI an implicator onLI . It holds that:

(i) CI
C,I(

⋃
j∈J

Aj , B) ⊇ ⋃
j∈J

CI
C,I(Aj , B),

(ii) OI
C,I(

⋃
j∈J

Aj , B) ⊇ ⋃
j∈J

OI
C,I(Aj , B).
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Proof. Analogous to the proof of Proposition 7.3.17.

The results in Proposition 7.3.16 and 7.3.17 can also be extended to an arbitraryD-
union, withD a semi-conorm.

Proposition 7.3.20.LetC be a conjunctor,D a disjunctor andI an implicator onLI .

1. (i) If D is a semi-conorm, then

DI
C(A1 ∪D A2, B) ⊇ DI

C(A1, B) ∪DI
C(A2, B).

(ii) If (∀(u, v, w) ∈ (LI)3)(C(u,D(v, w)) ≤LI D(C(u, v), C(u,w))), then

DI
C(A1 ∪D A2, B) ⊆ DI

C(A1, B) ∪D DI
C(A2, B).

2. (i) If D is a semi-conorm, then

EI
I(A1 ∪D A2, B) ⊇ EI

I(A1, B) ∪ EI
I(A2, B).

(ii) If (∀(u, v, w) ∈ (LI)3)(D(I(u, v), I(u,w)) ≤ I(u,D(v, w))), then

EI
I(A1, B) ∪D EI

I(A2, B) ⊇ EI
I(A1 ∪D A2, B).

Proof. Analogous to the proof of Proposition 7.3.12, where now Lemma 1.5.2 can be used
instead of Lemma 1.5.1.

Interaction with the Union of Structuring Elements

Proposition 7.3.21.LetC be a conjunctor andI an implicator onLI . It holds that:

(i) DI
C(A,B1 ∪B2) ⊇ DI

C(A,B1) ∪DI
C(A,B2),,

(ii) EI
I(A,B1 ∪B2) ⊆ EI

I(A,B1) ∩ EI
I(A,B2) ⊆ EI

I(A,B1) ∪ EI
I(A,B2).

If in (i) the first partial mappings ofC are join-morphisms, then it holds that

DI
C(A,B1 ∪B2) = DI

C(A,B1) ∪DI
C(A,B2).

If in (ii) the first partial mappings ofI are dual join-morphisms, then it holds that:

EI
I(A,B1 ∪B2) = EI

I(A,B1) ∩ EI
I(A,B2).

Proof. Analogous to the proof of Proposition 7.3.8 (ii).
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Proposition 7.3.22. Let C be a conjunctor, of which the first partial mappings are join-
morphisms, and letI be an implicator onLI . It holds that:

OC,I(A,B1 ∪B2) ⊆ OC,I(A,B1) ∪OC,I(A,B2).

If also the first partial mappings ofI are dual join-morphisms, then

CC,I(A,B1 ∪B2) ⊇ CC,I(A,B1) ∩ CC,I(A,B2).

Proof. Suppose that the first partial mappings ofC are join-morphisms. Using Proposi-
tion 7.3.21, 7.3.2 and 7.3.8, we obtain:

OC,I(A,B1 ∪B2) = DI
C(E

I
I(A,B1 ∪B2),−(B1 ∪B2))

= DI
C(E

I
I(A,B1 ∪B2),−B1 ∪ −B2)

⊆ DI
C(E

I
I(A,B1) ∩ EI

I(A,B2),−B1 ∪ −B2)

= DI
C(E

I
I(A,B1) ∩ EI

I(A,B2),−B1)

∪ DI
C(E

I
I(A,B1) ∩ EI

I(A,B2),−B2)

⊆ (DI
C(E

I
I(A,B1),−B1) ∩DI

C(E
I
I(A,B2),−B1))

∪ (DI
C(E

I
I(A,B1),−B2) ∩DI

C(E
I
I(A,B2),−B2))

⊆ DI
C(E

I
I(A,B1),−B1) ∪DI

C(E
I
I(A,B2),−B2)

= OC,I(A,B1) ∪OC,I(A,B2)

Suppose now also that the first partial mappings ofI are dual join-morphisms. Using
Proposition 7.3.21, 7.3.2 and 7.3.16, we obtain:

CC,I(A,B1 ∪B2) = EI
I(D

I
C(A,B1 ∪B2),−(B1 ∪B2))

= EI
I(D

I
C(A,B1 ∪B2),−B1 ∪ −B2)

= EI
I(D

I
C(A,B1 ∪B2),−B1) ∩ EI

I(D
I
C(A,B1 ∪B2),−B2)

= EI
I(D

I
C(A,B1) ∪DI

C(A,B2),−B1)

∩ EI
I(D

I
C(A,B1)D

I
C(A,B2),−B2)

⊇ (EI
I(D

I
C(A,B1),−B1) ∪ EI

I(D
I
C(A,B2),−B1))

∩ (EI
I(D

I
C(A,B1),−B2) ∪ EI

I(D
I
C(A,B2),−B2))

⊇ (EI
I(D

I
C(A,B1),−B1) ∩ EI

I(D
I
C(A,B2),−B2)

= CC,I(A,B1) ∩ CC,I(A,B2)

The results in Proposition 7.3.21 and 7.3.22 can be extendedto the union of an arbitrary
family.
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Proposition 7.3.23.LetC be a conjunctor andI an implicator onLI . It holds that:

(i) DI
C(A,

⋃
j∈J

Bj) ⊇ ⋃
j∈J

DI
C(A,Bj),

(ii) EI
I(A,

⋃
j∈J

Bj) ⊆ ⋂
j∈J

EI
I(A,Bj).

If in (i) the first partial mappings ofC are sup-morphisms, then it holds that

DI
C(A,

⋃

j∈J

Bj) =
⋃

j∈J

DI
C(A,Bj).

If in (ii) the first partial mappings ofI are dual sup-morphisms, then it holds that:

EI
I(A,

⋃

j∈J

Bj) =
⋂

j∈J

EI
I(A,Bj).

Proof. Analogous to the proof of Proposition 7.3.8 (ii).

Proposition 7.3.24. Let C be a conjunctor, of which the first partial mappings are sup-
morphisms, and letI be an implicator onLI . It holds that:

OC,I(A,
⋃

j∈J

Bj) ⊆
⋃

j∈J

OC,I(A,Bj).

If also the first partial mappings ofI are dual sup-morphisms, then

CC,I(A,
⋃

j∈J

Bj) ⊇
⋂

j∈J

CC,I(A,Bj).

Proof. Analogous to the proof of Proposition 7.3.22.

The results in Proposition 7.3.21 and 7.3.22 can also be extended to an arbitraryD-
union, withD a semi-conorm.

Proposition 7.3.25.LetC be a conjunctor,D a disjunctor andI an implicator onLI .

1. (i) If D is a semi-conorm, then

DI
C(A,B1 ∪D B2) ⊇ DI

C(A,B1) ∪DI
C(A,B2).

(ii) If (∀(u, v, w) ∈ (LI)3)(C(D(u, v), w) ≤LI D(C(u, v), C(u,w))), then

DI
C(A,B1 ∪D B2) ⊆ DI

C(A,B1) ∪D DI
C(A,B2).

2. If D is a semi-conorm, then

EI
I(A,B1 ∪D B2) ⊆ EI

I(A,B1) ∩ EI
I(A,B2) ⊆ EI

I(A,B1) ∪D EI
I(A,B2).
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Proof.

1. Analogous to the proof of Proposition 7.3.12 (1.).

2. SinceB1 ∪D B2 ⊇ B1 ∪B2, it follows from Proposition 7.3.2 that

EI
I(A,B1 ∪D B2) ⊆ EI

I(A,B1 ∪B2).

Combined with Proposition 7.3.21, we get

EI
I(A,B1 ∪D B2) ⊆ EI

I(A,B1) ∩ EI
I(A,B2).

Further,

EI
I(A,B1) ∩ EI

I(A,B2) ⊆ EI
I(A,B1) ∪ EI

I(A,B2) ⊆ EI
I(A,B1) ∪D EI

I(A,B2).

Duality

Definition 7.8. Consider a universeX and two unary operatorsP andQ onFL(X) and
an involutive negatorN on L. The operatorsP andQ are called dual w.r.t. toN if and
only if

P = coN ◦Q ◦ coN , i.e., (∀A ∈ FL(X))(P (A) = coN (Q(coN (A)))).

SinceN is involutive then alsoQ = coN ◦ P ◦ coN .

The interval-valued fuzzy dilation and erosion are called dual w.r.t. an involutive negator
N if they are dual for any given structuring element:

Definition 7.9. The interval-valued fuzzy dilationDI
C and erosionEI

I are dual w.r.t. an
involutive negatorN if and only ifDI

C(·, B) is dual toEI
I(·, B) w.r.t. N for everyB ∈

FLI (Rn).

Such duality relation is interesting because it allows us toconstruct interval-valued di-
lations from interval-valued erosions, and vice versa. Thefollowing proposition however
shows that the duality is only guaranteed under a given condition on the used conjunctor
and implicator.

Proposition 7.3.26. [130] Let C be a conjunctor,I an implicator andN a negator onLI .
Then it holds that the interval-valued fuzzy dilationDI

C is dual to the erosionEI
I w.r.t. the

negatorN if and only ifC = CI,N andI = IC,N .

Proof.
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⇐: Suppose thatC = CI,N andI = IC,N . (SinceN is involutive, these two expressions
are equivalent as will be shown in the second part of the proof.) It then holds∀A,B ∈
FLI (Rn) and∀y ∈ Rn that:

DI
C(A,B)(y) = sup

x∈Rn

C(B(x− y), A(x))

= sup
x∈Rn

N (I(B(x− y),N (A(x))))

= N ( inf
x∈Rn

I(B(x− y),N (A(x))))

= (coN (EI
I(coN (A), B)))(y)

and

EI
I(A,B)(y) = inf

x∈Rn
I(B(x− y), A(x))

= inf
x∈Rn

N (C(B(x− y),N (A(x))))

= N ( sup
x∈Rn

C(B(x− y),N (A(x))))

= (coN (DI
C(coN (A), B)))(y)

which means thatDI
C andEI

I are dual w.r.t. the negatorN .

⇒: Suppose thatDI
C andEI

I are dual w.r.t. the involutive negatorN . Choose now
A(x) = a andB(x) = b for all x ∈ Rn, with a, b ∈ LI , i.e., constant mappings. Let
y be an arbitrary element ofRn. Then it holds that

C(b, a) = sup
x∈Rn

C(B(x− y), A(x))

= DI
C(A,B)(y)

= (coN (EI
I(coN (A), B)))(y)

= N ( inf
x∈Rn

I(B(x− y),N (A(x))))

= N (I(b,N (a)))

which means thatC = CI,N . SinceN is involutive,∀(a, b) ∈ (LI)2 the following
equivalence holds:

C(b, a) = N (I(b,N (a))) ⇔ N (C(b,N (a))) = N (N (I(b,N (N (a))))) = I(b, a),
which means thatI = IC,N .

Adjointness

Definition 7.10. Consider a universeX and two unary operatorsP andQ onFL(X). We
say that the pair(Q,P ) forms an adjunction if and only if

(∀A1, A2 ∈ FL(X))(P (A1) ⊆ A2 ⇔ A1 ⊆ Q(A2)).
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The interval-valued fuzzy dilationDI
C and erosionEI

I are called adjoint if they form an
adjunction for every given structuring element:

Definition 7.11. The interval-valued fuzzy dilationDI
C and erosionEI

I are called adjoint if
and only if the pair(EI

I(·,−B), DI
C(·, B)) forms an adjunction for everyB ∈ FLI (Rn).

The adjointness is however only guaranteed under a given condition on the used con-
junctor and implicator as the following proposition shows.

Proposition 7.3.27. [130] Let C be a conjunctor andI an implicator onLI . The pair
(EI

I , D
I
C) forms an adjunction if and only if the pair(I, C) satisfies the adjunction principle

(∀(x, y, z) ∈ (LI)3)(C(z, x) ≤LI y ⇔ x ≤LI I(z, y)).

Proof.

⇐: Suppose that(I, C) satisfies the adjunction principle:

C(z, x) ≤LI y ⇔ x ≤LI I(z, y) ∀(x, y, z) ∈ (LI)3.

Consider arbitraryA1, A2, B ∈ FLI (Rn), then it holds:

DI
C(A1, B) ⊆ A2 ⇔ (∀y ∈ Rn)(DI

C(A1, B)(y) ≤LI A2(y))

⇔ (∀y ∈ Rn)( sup
x∈Rn

C(B(x− y), A1(x)) ≤LI A2(y))

⇔ (∀x, y ∈ Rn)(C(B(x− y), A1(x)) ≤LI A2(y))

⇔ (∀x, y ∈ Rn)(A1(x) ≤LI I(B(x− y), A2(y)))

⇔ (∀x ∈ Rn)(A1(x) ≤LI inf
y∈Rn

I(B(x− y), A2(y)))

⇔ (∀x ∈ Rn)(A1(x) ≤LI inf
y∈Rn

I((−B)(y − x), A2(y)))

⇔ (∀x ∈ Rn)(A1(x) ≤LI EI
I(A2,−B)(x))

⇔ A1 ⊆ EI
I(A2,−B)

⇒: Suppose that the pair(EI
I , D

I
C) forms an adjunction. Choose nowA1(x) = a1,

A2(x) = a2 andB(x) = b for all x ∈ Rn, with a1, a2, b ∈ LI , i.e., constant
mappings. Lety be an arbitrary element ofRn. Then it holds that

C(b, a1) = sup
x∈Rn

C(B(x− y), A1(x)) = DI
C(A1, B)(y),

and

I(b, a2) = inf
x∈Rn

I(B(y − x), A2(x))

= inf
x∈Rn

I((−B)(x− y), A2(x))

= EI
I(A2,−B)(y).
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Thus we have

C(b, a1) ≤LI a2 ⇔ DI
C(A1, B) ⊆ A2 ⇔ A1 ⊆ EI

I(A2,−B) ⇔ a1 ≤LI I(b, a2).

A conjunctorC and an implicatorI onLI will for example satisfy the adjunction prin-
ciple if C is a t-norm onLI of which the partial mappings are sup-morphisms andI = IC
[30].

Idempotence

Proposition 7.3.28.LetC be a semi-norm andI a border implicator onLI . If B(0) = 1LI ,
then it holds that:

(i) DI
C(A,B) ⊆ DI

C(D
I
C(A,B), B),

(ii) EI
I(E

I
I(A,B), B) ⊆ EI

I(A,B).

Proof. Follows from Proposition 7.3.4.

Proposition 7.3.29.LetC be a semi-norm onLI , and letI be an implicator onLI of which
the second partial mappings are inf-morphisms. IfB(0) = 1LI , then it holds that:

• If C andI satisfy(∀(a, b, c) ∈ (LI)3)(I(a, I(b, c)) ≥LI I(C(a, b), c))), then it holds
that

EI
I(E

I
I(A,B), B) ⊇ EI

I(A,B).

• If I is also a border implicator, then

EI
I(E

I
I(A,B), B) = EI

I(A,B).

Proof. For ally ∈ Rn

EI
I(E

I
I(A,B), B)(y) = inf

x∈Rn
I(B(x− y), inf

z∈Rn
I(B(z − x), A(z)))

= inf
x∈Rn

inf
z∈Rn

I(B(x− y), I(B(z − x), A(z)))

≥ inf
z∈Rn

inf
x∈Rn

I(C(B(x− y), B(z − x)), A(z))

≥ inf
z∈Rn

I( sup
x∈Rn

C(B(x− y), B(z − x)), A(z))

≥ inf
z∈Rn

I(C(B(z − y), B(z − z)), A(z))

= inf
z∈Rn

I(B(z − y)), A(z))

= EI
I(A,B)(y)
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The successive transitions follow respectively from the defintion of the erosion, the second
partial mapping ofI being an inf-morphism, the given condition onI andC, the first partial
mapping ofI being decreasing, choosingx = z, the fact thatC is a semi-norm andB(0) =
1LI and the definition of the erosion with the symmetry ofB.

If I is a border implicator, then also the reverse inclusion holds due to Proposition
7.3.28.

The extra conditions onC andI in the above proposition are for example satisfied if
(Lemma 1.5.5):

• C is an associative semi-norm onLI andI = IC,N , whereN is an arbitrary involutive
negator onLI ,

• C is a t-norm onLI of which the partial mappings are sup-morphisms andI = IC .

Proposition 7.3.30. Let C be a conjunctor andI an implicator onLI . If (∀(a, b) ∈
(LI)2)(C(a, I(a, b)) ≤LI b ≤LI I(a, C(a, b))), then it holds that

(i) CI
C,I(C

I
C,I(A,B), B) = CI

C,I(A,B),

(ii) OI
C,I(O

I
C,I(A,B), B) = OI

C,I(A,B).

Proof. Under the given conditions, it follows from Proposition 7.3.6 that the interval-valued
fuzzy opening is restrictive and the closing is expansive. So, for the opening this means that
OI

C,I(O
I
C,I(A,B), B) ⊆ OI

C,I(A,B). Further,

OI
C,I(O

I
C,I(A,B), B) = DI

C(E
I
I(O

I
C,I(A,B), B),−B)

= DI
C(E

I
I(D

I
C(E

I
I(A,B),−B), B),−B)

= DI
C(C

I
C,I(E

I
I(A,B),−B),−B)

Since the closing is expansive, it holds thatOI
C,I(O

I
C,I(A,B), B) ⊇ DI

C(E
I
I(A,B),−B) =

OI
C,I(A,B).

The condition onC andI in the above proposition will for example be satisfied ifC and
I satisfy the adjunction principle. Indeed, in this case, it holds that

C(a, I(a, b)) ≤LI b⇔ I(a, b) ≥LI I(a, b)

and

b ≤LI I(a, C(a, b)) ⇔ C(a, b) ≥LI C(a, b)

and both right inequalities are always trivially fulfilled.As mentioned above, the adjunction
principle will for example hold ifC is a t-norm onLI of which the partial mappings are
sup-morphisms andI = IC [30].
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7.4 Conclusion

In this chapter, we have given an overview of the evolution from the original binary math-
ematical morphology for binary images, over greyscale mathematical morphology such as
fuzzy mathematical morphology, to interval-valued fuzzy morphology for interval-valued
images. The (interval-valued) fuzzy extension is based on the observation that (interval-
valued) greyscale imags and (interval-valued) fuzzy sets can be modelled in the same way.
As a consequence, binary mathematical morphology can be extended by extending the bi-
nary logical framework on which classical set theory is based to the (interval-valued) fuzzy
case, as we have shown. The chapter was then ended with an overview of the basic proper-
ties of the interval-valued fuzzy morphological operators.
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8
Decomposition of

Interval-valued Fuzzy
Morphological Operators

In this chapter, we investigate the decomposition of the interval-valued fuzzy morphological
operators into their[α1, α2]-cuts [83, 85]. We are interested in the relationships between the
[α1, α2]-cuts of the result of the interval-valued fuzzy dilation, erosion, opening and closing
of an interval-valued image by a given interval-valued structuring element and the result of
the corresponding binary operators applied on the[α1, α2]-cuts of those arguments. It will
be shown that in some cases, an equality or inclusion (approximation) will be found. For the
cases where the equality does not hold, a counterexample is constructed.This is first of all
interesting from a theoretical point of view because it provides us a link between interval-
valued fuzzy and binary morphology but secondly also because such conversion into binary
operators is likely to result in a lower complexity for the calculation or approximation of
the [α1, α2]-cuts. Moreover, the binary dilation and erosion can be further sped up by a
decomposition of the structuring element.

The chapter is organized as follows: The decomposition properties for the different
[α1, α2]-cuts of the interval-valued fuzzy morphological dilation, erosion, opening and clos-
ing are respectively presented in Section 8.1, 8.2 and 8.3 and this for both the continuous and
the discrete case. Additionally, Section 8.4 discusses andillustrates the results. Section 8.5
concludes the chapter.
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8.1 Decomposition of the Interval-valued Fuzzy Dilation

Lemma 8.1.1. [57] If C is a semi-norm onLI , then it holds thatC ≤ Cmin, i.e.:

(∀(x, y) ∈ (LI)2)(C(x, y) ≤LI Cmin(x, y)).

Proof. Let C be a semi-norm onLI , then it holds for all(x, y) ∈ (LI)2 that

• C(x, y) ≤LI C(x, 1LI ) = x,

• C(x, y) ≤LI C(1LI , y) = y,

from which it follows thatC(x, y) ≤LI Cmin(x, y).

Note that lemma 8.1.1 does not necessarily hold ifC is not a semi-norm onLI .

Example 8.1.2.Let C be the conjunctor defined as:

C(x, y) =
{

0LI if inf(x, y) = 0LI

1LI else
, ∀(x, y) ∈ (LI)2.

One easily verifies thatC is no semi-norm onLI (e.g. C(1LI , [1/4, 1/2]) = 1LI 6=
[1/4, 1/2]) and thatC 6≤ Cmin (e.g.1LI = C(1LI , [1/4, 1/2]) >LI Cmin(1LI , [1/4, 1/2]) =
[1/4, 1/2]).

♦

8.1.1 Decomposition by Strict Sub- and Supercuts

Proposition 8.1.3. LetA,B ∈ FLI (Rn), then it holds for respectively allα1 ∈ [0, 1[ and
all α2 ∈ [0, 1[ that:

(i) DI
Cmin

(A,B)α1
= D(Aα1

, Bα1
),

(ii) DI
Cmin

(A,B)α2 = D(Aα2 , Bα2).

Proof. LetA,B ∈ FLI (Rn), and letα1, α2 ∈ [0, 1[.

(i)

y ∈ DI
Cmin

(A,B)α1
⇔ DI

Cmin
(A,B)(y)1 > α1

⇔ sup
x∈Ty(dB)∩dA

Cmin(B(x− y), A(x))1 > α1

⇔ (∃x ∈ Ty(dB) ∩ dA)(Cmin(B(x− y), A(x))1 > α1)

⇔ (∃x ∈ Ty(dB) ∩ dA)(min(B1(x− y), A1(x)) > α1)

⇔ (∃x ∈ Ty(dB) ∩ dA)(B1(x− y) > α1 andA1(x) > α1)

⇔ (∃x ∈ Ty(dB) ∩ dA)(x ∈ Ty(Bα1
) andx ∈ Aα1

)

⇔ Ty(Bα1
) ∩Aα1

6= ∅
⇔ y ∈ D(Aα1

, Bα1
).

This proves thatDI
Cmin

(A,B)α1
= D(Aα1

, Bα1
).
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(ii) Analogous.

Proposition 8.1.4. LetA,B ∈ FLI (Rn) and let C be a semi-norm onLI , then it holds for
respectively allα1 ∈ [0, 1[ and allα2 ∈ [0, 1[ that:

(i) DI
C(A,B)α1

⊆ D(Aα1
, Bα1

),
(ii) DI

C(A,B)α2 ⊆ D(Aα2 , Bα2).

Proof.

(i) The proof is completely analogous to the one from Proposition 8.1.3 (i). We only
have that due to lemma 8.1.1

(∃x ∈ Ty(dB) ∩ dA)(C(B(x− y), A(x))1 > α1)

⇓
(∃x ∈ Ty(dB) ∩ dA)(Cmin(B(x− y), A(x))1 > α1)

only holds in one direction for an arbitrary semi-norm onLI .

(ii) Analogous.

The reverse inclusion does not hold in general.

Example 8.1.5. Let [α1, α2] = [1/4, 1/2], C(r, s) = [r1 · s1, r2 · s2] for all r, s ∈ LI ,
A(x) = [0.3, 0.6] for all x ∈ [0, 1], A(x) = 0LI for all x ∈ R\[0, 1], B(x) = [0.4, 0.7] for
all x ∈ [0, 1] andB(x) = 0LI for all x ∈ R\[0, 1]).

Then on the one hand

0 ∈ D(A0.25, B0.25) = D(A0.5, B0.5) = [−1, 1].

On the other hand however:

DI
C(A,B)(0) = sup

x∈T0(dB)∩dA

C(B(x), A(x))

= sup
x∈[0,1]

[0.3 · 0.4, 0.6 · 0.7]

= [0.12, 0.42]

6�LI [0.25, 0.5],

and thus0 6∈ DI
C(A,B)0.25 and0 6∈ DI

C(A,B)0.5. So,DI
C(A,B)0.25 6⊇ D(A0.25, B0.25)

andDI
C(A,B)0.5 6⊇ D(A0.5, B0.5).

♦
Further, the following example illustrates that Proposition 8.1.4 is restricted to semi-

norms.
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Example 8.1.6. Let C be the conjunctor defined in Example 8.1.2 (which is not a semi-
norm). Further, letA(x) = [1/4, 1/2] for all x ∈ [0, 1], A(x) = 0LI for all x ∈ R\[0, 1]
andB(x) = 1LI for all x ∈ [0, 1], B(x) = 0LI for all x ∈ R\[0, 1]. Then for ally ∈
D(dA, dB) = [−1, 1] it holds that

DI
C(A,B)(y) = sup

x∈Ty(dB)∩dA

C(B(x− y), A(x))

= sup
x∈Ty(dB)∩dA

C([1, 1], [1/4, 1/2])

= sup
x∈Ty(dB)∩dA

[1, 1]

= 1LI ,

and thusy ∈ DI
C(A,B)0.25 andy ∈ DI

C(A,B)0.5. On the other hand, fromA0.25 = A0.5 =

∅ it follows thatD(A0.25, B0.25) = ∅ andD(A0.5, B0.5) = ∅, such thatDI
C(A,B)0.25 6⊆

D(A0.25, B0.25) andDI
C(A,B)0.5 6⊆ D(A0.5, B0.5).

♦

Remark that the decomposition properties for strict sub- and supercuts given above re-
main valid in the discrete framework.

8.1.2 Decomposition by Strict[α1, α2]-cuts

Proposition 8.1.7. LetA,B ∈ FLI (Rn), then it holds for all[α1, α2] ∈ LI\ULI that:

DI
Cmin

(A,B)α2

α1
⊇ D(Aα2

α1
, Bα2

α1
).

Proof. The proof is analogous to the one from Proposition 8.1.3. Only, now we have that

sup
x∈Ty(dB)∩dA

Cmin(B(x− y), A(x)) �LI [α1, α2]

⇑
(∃x ∈ Ty(dB) ∩ dA)(Cmin(B(x− y), A(x)) �LI [α1, α2])

only holds in one direction.

The reverse inclusion does not hold in general.

Example 8.1.8.Let [α1, α2] = [0.3, 0.7] and let

A(x) =





[0.1, 0.8], x ∈ [0, 0.5[

[0.5, 0.6], x ∈ [0.5, 1]

0LI , else
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and

B(x) =





[0.2, 0.9], x ∈ [0, 0.5[

[0.4, 0.5], x ∈ [0.5, 1]

0LI , else

.

It then holds that

DI
C(A,B)(0) = sup

x∈T0(dB)∩dA

Cmin(B(x), A(x))

= sup( sup
x∈[0,0.5[

Cmin(B(x), A(x)), sup
x∈[0.5,1]

Cmin(B(x), A(x)))

= sup([min(0.2, 0.1),min(0.9, 0.8)], [min(0.4, 0.5),min(0.5, 0.6)])

= sup([0.1, 0.8)], [0.4, 0.5])

= [0.4, 0.8],

which means that0 ∈ DI
C(A,B)0.7

0.3
.

On the other hand, sinceA0.7
0.3

= ∅ it holds thatD(A0.7
0.3
, B0.7

0.3
) = ∅, which means that

0 6∈ D(A0.7
0.3
, B0.7

0.3
). As a consequenceDI

C(A,B)0.7
0.3

6⊆ D(A0.7
0.3
, B0.7

0.3
).

♦

The strict[α1, α2]-cut of the interval-valued fuzzy dilation based on the conjunctorCmin

can however always be constructed from binary dilations as follows.

Proposition 8.1.9. LetA,B ∈ FLI (Rn), then it holds for all[α1, α2] ∈ LI\ULI that:

DI
Cmin

(A,B)α2

α1
= D(Aα1

, Bα1
) ∩D(Aα2 , Bα2).

Proof. Follows from Proposition 8.1.3 and the fact thatDI
Cmin

(A,B)α2

α1
= DI

Cmin
(A,B)α1

∩
DI

Cmin
(A,B)α2 .

Due to Lemma 8.1.1, Proposition 8.1.7 is restricted to the semi-norm Cmin. For an
arbitrary semi-normC there is no relation between the strict[α1, α2]-cutsDI

C(A,B)α2

α1
and

the binary dilationD(Aα2

α1
, Bα2

α1
) as the following example illustrates.

Example 8.1.10.To illustrate that, for an arbitrary semi-normC, it does not hold in general
that (∀[α1, α2] ∈ LI\ULI )(DI

C(A,B)α2

α1
⊇ D(Aα2

α1
, Bα2

α1
)), Example 8.1.8 can be used

again.
For a counterexample of the reverse inclusion we refer to Example 8.1.5, where0 ∈

D(A0.5
0.25

, B0.5
0.25

) = [−1, 1] andDI
C(A,B)(0) = [0.12, 0.42] or thus0 6∈ DI

C(A,B)0.5
0.25

.
♦

The strict[α1, α2]-cut of an interval-valued fuzzy dilation based on an arbitrary semi-
normC can however always be approximated by binary dilations.

Proposition 8.1.11.LetA,B ∈ FLI (Rn), then it holds for all[α1, α2] ∈ LI\ULI that:
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DI
C(A,B)α2

α1
⊆ D(Aα1

, Bα1
) ∩D(Aα2 , Bα2).

Proof. Follows from Proposition 8.1.4 and the fact thatDI
C(A,B)α2

α1
= DI

C(A,B)α1
∩

DI
C(A,B)α2 .

Remark that the decomposition properties for strict[α1, α2]-cuts given above remain
valid in the discrete framework.

8.1.3 Decomposition by Weak Sub- and Supercuts

For an arbitrary semi-normC, there is no general relation between the weak sub- and super-
cutDI

C(A,B)α1
andDI

C(A,B)α2 and the binary dilationsD(Aα1
, Bα1

) andD(Aα2 , Bα2).

Example 8.1.12. To illustrate that the inclusionDI
C(A,B)α1

⊆ D(Aα1
, Bα1

) does not
hold in general, we can use Example 8.1.8 again. However, we can now also construct a
counterexample based on the fact that for a weakα1-subcut of an interval-valued fuzzy set
A, the inequalityA1(x) ≥ α1, that needs to hold forx ∈ R to belong toAα1

, is not strict.
Let [α1, α2] = [1/4, 1],A(x) = [x/2, x] for all x ∈ [0, 1[,A(x) = 0LI for all x ∈ R\[0, 1[,
B(x) = 1LI for all x ∈ [0, 1] andB(x) = 0LI for all x ∈ R\[0, 1]. Let C be the conjunctor
defined in Example 8.1.5.

It then holds that

DI
C(A,B)(0) = sup

x∈T0(dB)∩dA

C(B(x), A(x))

= sup
x∈]0,1[

[x/2, x]

= [1/2, 1],

which means that0 ∈ DI
C(A,B)0.5.

On the other hand, however, sinceA0.5 = ∅ alsoD(A0.5, B0.5) = ∅ and thus0 6∈
D(A0.5, B0.5). As a consequenceDI

C(A,B)0.5 6⊆ D(A0.5, B0.5). Note that the above
example holds for any semi-normC, since for any semi-normC it holds in the example
thatC(B(x), A(x)) = C(1LI , A(x)) = A(x) for all x ∈]0, 1[. (An analogous example can
be found for weak supercuts. The above results still hold forthe weakα2-supercut where
α2 = 1. It then holds that0 ∈ DI

C(A,B)1 andD(A1, B1) = ∅.)
In general alsoDI

C(A,B)α1
6⊇ D(Aα1

, Bα1
). To illustrate this, we can use Exam-

ple 8.1.5 again (where the strict and weak0.25-subcuts ofA andB coincide). Adapting
that example we get that0 ∈ D(A0.25, B0.25) and 0 6∈ DI

C(A,B)0.25, which leads to
DI

C(A,B)0.25 6⊇ D(A0.25, B0.25). (Analogously for weak supercuts.)
♦

For the semi-normC = Cmin, the following partial result holds.

Proposition 8.1.13. LetA,B ∈ FLI (Rn), then it holds for respectively allα1 ∈]0, 1] and
all α2 ∈]0, 1] that:
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(i) DI
Cmin

(A,B)α1
⊇ D(Aα1

, Bα1
),

(ii) DI
Cmin

(A,B)α2 ⊇ D(Aα2 , Bα2).

Proof. LetA,B ∈ FLI (Rn), and letα1, α2 ∈]0, 1].
(i) Analogous to the proof of Proposition 8.1.3. Only, now itholds that:

(∃x ∈ Ty(dB) ∩ dA)(Cmin(B(x− y), A(x))1 ≥ α1)

⇓
sup

x∈Ty(dB)∩dA

Cmin(B(x− y), A(x))1 ≥ α1.

(ii) Analogous.

To illustrate that the reverse inclusion does not hold, we refer to Example 8.1.12.
Proposition 8.1.13 remains valid in the discrete framework. Moreover, in the discrete

framework, the result also holds for arbitrary semi-norms and for Cmin also the reverse
inclusion holds.

Proposition 8.1.14.LetA,B ∈ FLI
r,s
(Zn), then it holds for respectively allα1 ∈]0, 1]∩ Ir

and allα2 ∈]0, 1] ∩ Is that:

(i) DI
Cmin

(A,B)α1
= D(Aα1

, Bα1
),

(ii) DI
Cmin

(A,B)α2 = D(Aα2 , Bα2).

Proof. Analogous to the proof of Proposition 8.1.13, where now in the discrete case also

(∃x ∈ Ty(dB) ∩ dA)(Cmin(B(x− y), A(x))1 ≥ α1)

m
sup

x∈Ty(dB)∩dA

Cmin(B(x− y), A(x))1 ≥ α1.

Proposition 8.1.15.LetA,B ∈ FLI
r,s
(Zn), then it holds for respectively allα1 ∈]0, 1]∩ Ir

and allα2 ∈]0, 1] ∩ Is that:

(i) DI
C(A,B)α1

⊆ D(Aα1
, Bα1

),
(ii) DI

C(A,B)α2 ⊆ D(Aα2 , Bα2).

Proof. Analogous to the proof of Proposition 8.1.14, but for an arbitrary semi-normC, so
that

DI
Cmin

(A,B)(y)1 ≥ α1

⇑
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DI
C(A,B)(y)1 ≥ α1

m
y ∈ DI

C(A,B)α1
.

8.1.4 Decomposition by Weak[α1, α2]-cuts

In general, there is no relation between the weak[α1, α2]-cutDI
C(A,B)α2

α1
and the binary

dilationD(Aα2

α1
, Bα2

α1
) for an arbitrary semi-normC. To illustrate this, we can use Exam-

ple 8.1.12 again, where the weak0.5-supercut and the weak[0.5, 1]-cut ofA andB coincide
and the results remain valid when using the weak[0.5, 1]-cut.

For the semi-normC = Cmin, the following partial result holds.

Proposition 8.1.16.LetA,B ∈ FLI (Rn), then it holds for all[α1, α2] ∈ LI\{0LI} that:

DI
Cmin

(A,B)α2

α1
⊇ D(Aα2

α1
, Bα2

α1
).

Proof. Analogous to the proof of Proposition 8.1.7.

The reverse inclusionDI
Cmin

(A,B)α2

α1
⊆ D(Aα2

α1
, Bα2

α1
) does not hold in general. To

illustrate this, we again refer to Example 8.1.12, where using the weak[0.5, 1]-cut instead
of the weak0.5-subcut doesn’t affect the results.

Remark that the decomposition properties for weak[α1, α2]-cuts given above remain
valid in the discrete framework. Moreover, the weak[α1, α2]-cut of the discrete interval-
valued fuzzy dilation based on the conjunctorCmin (respectively semi-normC) can always
be constructed from (respectively approximated by) binarydilations as follows.

Proposition 8.1.17. LetA,B ∈ FLI
r,s
(Zn), then it holds for all[α1, α2] ∈ LI

r,s \ {0LI}
and every semi-normC that:

(i) DI
Cmin

(A,B)α2

α1
= D(Aα1

, Bα1
) ∩D(Aα2 , Bα2),

(ii) DI
C(A,B)α2

α1
⊆ D(Aα1

, Bα1
) ∩D(Aα2 , Bα2).

Proof. Follows from the fact thatDI
C(A,B)α2

α1
= DI

C(A,B)α1
∩ DI

C(A,B)α2 for every
semi-normC and from Proposition 8.1.14 and 8.1.15.

8.1.5 Decomposition by Strict-Weak and Weak-Strict[α1, α2]-cuts

For an arbitrary semi-normC, there is no general relation between the strict-weak and weak-
strict [α1, α2]-cutsDI

C(A,B)α2

α1
andDI

C(A,B)α2

α1
and the binary dilationsD(Aα2

α1
, Bα2

α1
) and

D(Aα2

α1
, Bα2

α1
).

To illustrate this, an analogous example as in Example 8.1.12 can be found.
For the semi-normC = Cmin, the following partial result holds.
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Proposition 8.1.18. Let A,B ∈ FLI (Rn). For all [α1, α2] ∈ LI\{1LI} and for all
[α1, α2] ∈ LI\ULI it respectively holds that:

(i) DI
Cmin

(A,B)α2

α1
⊇ D(Aα2

α1
, Bα2

α1
),

(ii) DI
Cmin

(A,B)α2

α1
⊇ D(Aα2

α1
, Bα2

α1
).

Proof. Analogous to the proof of Proposition 8.1.7.

As can be illustrated analogously as in Example 8.1.12, the reverse inclusion does not
hold.

Remark that the decomposition properties for strict-weak and weak-strict[α1, α2]-cuts
given above remain valid in the discrete framework. Moreover, the weak-strict and strict-
weak[α1, α2]-cut of the discrete interval-valued fuzzy dilation based on the conjunctorCmin

(respectively semi-normC) can always be constructed from (respectively approximated by)
binary dilations as follows.

Proposition 8.1.19. LetA,B ∈ FLI
r,s
(Zn) and letC be a semi-norm. For all[α1, α2] ∈

LI
r,s \ ULI it holds that:

(i) DI
Cmin

(A,B)α2

α1
= D(Aα1

, Bα1
) ∩D(Aα2 , Bα2),

(ii) DI
C(A,B)α2

α1
⊆ D(Aα1

, Bα1
) ∩D(Aα2 , Bα2).

For all [α1, α2] ∈ LI
r,s \ {1LI} it holds that:

(i) DI
Cmin

(A,B)α2

α1
= D(Aα1

, Bα1
) ∩D(Aα2 , Bα2),

(ii) DI
C(A,B)α2

α1
⊆ D(Aα1

, Bα1
) ∩D(Aα2 , Bα2).

Proof. Follows from the fact thatDI
C(A,B)α2

α1
= DI

C(A,B)α1
∩ DI

C(A,B)α2 and analo-
gouslyDI

C(A,B)α2

α1
= DI

C(A,B)α1
∩DI

C(A,B)α2 for every semi-normC and from Propo-
sition 8.1.3, 8.1.4, 8.1.14 and 8.1.15.

8.2 Decomposition of the Interval-valued Fuzzy Erosion

Remember that every implicatorI induces a negatorNI defined byNI(x) = I(x, 0LI ),
∀x ∈ LI . Based on this induced negator, the class of border implicators can be split into
two subclasses.

Definition 8.1. [95] Let I be a border implicator onLI . I is called an upper border
implicator ifNI ≥ Ns; I is called a lower border implicator ifNI ≤ Ns.

Lemma 8.2.1. [95] If I is an upper border implicator onLI , then it holds thatI ≥ IEKD,
i.e.:

(∀(x, y) ∈ (LI)2)(I(x, y) ≥LI IEKD(x, y) = [max(1− x2, y1),max(1− x1, y2))].

Proof. Let I be an upper border implicator onLI . For all(x, y) ∈ (LI)2 it holds that:
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• I(x, y) ≥LI I(1LI , y) = y,

• I(x, y) ≥LI I(x, 0LI ) ≥LI Ns(x),

from which it follows thatI(x, y) ≥LI IEKD(x, y).

The previous lemma does not necessarily hold ifI is not an upper border implicator.
Also, a lower border implicatorI doesn’t necessarily satisfyI ≤ IEKD.

Example 8.2.2.Let I be the implicator defined as:

I(x, y) =
{

1LI if inf(x, y) = x
y else

, ∀(x, y) ∈ (LI)2.

It is easily verified thatI is a border implicator onLI , with induced negatorNI given by:

NI(x) = I(x, 0LI ) =

{
1LI if x = 0LI

0LI else
, ∀x ∈ [0, 1].

From {
NI(x) = 0LI and0LI ≤LI Ns(x) x 6= 0LI ,

NI(x) = 1LI = Ns(x) x = 0LI ,

it follows thatNI ≤ Ns and thusI is a lower border implicator. Further, since on the one
hand e.g.1LI = I([0.2, 0.3], [0.4, 0.5]) >LI IEKD([0.2, 0.3], [0.4, 0.5]) = [0.7, 0.8], and
on the other hand[0.2, 0.3] = I([0.4, 0.5], [0.2, 0.3]) <LI IEKD([0.4, 0.5], [0.2, 0.3]) =
[0.5, 0.6], it holds that neitherI ≤ IEKD, norI ≥ IEKD.

♦

8.2.1 Decomposition by Weak Sub- and Supercuts

Proposition 8.2.3. LetA,B ∈ FLI (Rn), then it holds for respectively allα1 ∈]0, 1] and
all α2 ∈]0, 1] that:

(i) EI
IEKD

(A,B)α1
= E(Aα1

, B1−α1),
(ii) EI

IEKD
(A,B)α2 = E(Aα2 , B1−α2

).

Proof. LetA,B ∈ FLI (Rn), and letα1, α2 ∈]0, 1].
(i) It holds that:

y ∈ E(Aα1
, B1−α1) ⇔ Ty(B

1−α1) ⊆ Aα1

⇔ (∀x ∈ Ty(dB))(B2(x− y) > 1− α1 ⇒ A1(x) ≥ α1)

⇔ (∀x ∈ Ty(dB))(B2(x− y) ≤ 1− α1 orA1(x) ≥ α1)

⇔ (∀x ∈ Ty(dB))(1−B2(x− y) ≥ α1 orA1(x) ≥ α1)

⇔ (∀x ∈ Ty(dB))(max(1−B2(x− y), A1(x)) ≥ α1)

⇔ inf
x∈Ty(dB)

max(1−B2(x− y), A1(x)) ≥ α1
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⇔ inf
x∈Ty(dB)

IEKD(B(x− y), A(x))1 ≥ α1

⇔ EI
IEKD

(A,B)1(y) ≥ α1

⇔ y ∈ EI
IEKD

(A,B)α1

ThusEI
IEKD

(A,B)α1
= E(Aα1

, B1−α1).

(ii) Analogous.

Proposition 8.2.4. LetA,B ∈ FLI (Rn) and letI be an upper border implicator onLI ,
then it holds for respectively allα1 ∈]0, 1] and allα2 ∈]0, 1] that:

(i) EI
I(A,B)α1

⊇ E(Aα1
, B1−α1),

(ii) EI
I(A,B)α2 ⊇ E(Aα2 , B1−α2

).

Proof.

(i) The proof is completely analogous to the one from Proposition 8.2.3 (i). We only
have that due to lemma 8.2.1

inf
x∈Ty(dB)

IEKD(B2(x− y), A1(x))1 ≥ α1

⇓
inf

x∈Ty(dB)
I(B2(x− y), A1(x))1 ≥ α1

only holds in one direction for an arbitrary upper border implicatorI onLI .

(ii) Analogous.

The reverse inclusion does not hold in general.

Example 8.2.5.LetA(x) = [0.3, 0.5] for all x ∈ [0, 1], B(x) = [0.5, 0.7] for all x ∈ [0, 1]
andA(x) = B(x) = 0LI for all x ∈ R\[0, 1]. Let I be the following generalisation of the
Łukasiewicz implicator:IL(x, y) = [min(1, 1−x2 + y1),min(1, 1−x1 + y2)], ∀(x, y) ∈
(LI)2. It can be verified that this implicator is an upper border implicator.

It then holds that

EI
IL

(A,B)(0) = inf
x∈T0(dB)

IL(B(x), A(x))

= inf
x∈[0,1]

IL([0.5, 0.7], [0.3, 0.5])

= [min(1, 1− 0.7 + 0.3),min(1, 1− 0.5 + 0.5)]

= [0.6, 1],
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and thus0 ∈ EI
IL

(A,B)0.4 and0 ∈ EI
IL

(A,B)0.6.

On the other hand,E(A0.4, B
0.6) = E(A0.6, B0.4) = E(∅, [0, 1]) = ∅ and thus

0 6∈ E(A0.4, B
0.6) and 0 6∈ E(A0.6, B0.4), from which it follows thatEI

I(A,B)0.4 6⊆
E(A0.4, B

0.6) andEI
I(A,B)0.6 6⊆ E(A0.6, B0.4).

♦

Further, Proposition 8.2.4 is also restricted to upper border implicators as the following
example shows.

Example 8.2.6. Let [α1, α2] = [0.3, 0.4], A(x) = [0.4, 0.5] for all x ∈ [0, 0.5], A(x) =
[0.2, 0.3] for all x ∈]0.5, 1], B(x) = [0.7, 0.8] for all x ∈ [0, 0.5], B(x) = [0.4, 0.5] for
all x ∈]0.5, 1] andA(x) = B(x) = 0LI for all x ∈ R\[0, 1]. Let I be the lower border
implicator from Example 8.2.2 (which is no upper border implicator).

It then holds that

EI
I(A,B)(0) = inf

x∈T0(dB)
I(B(x), A(x))

= inf( inf
x∈[0,0.5]

I(B(x), A(x)), inf
x∈]0.5,1]

I(B(x), A(x)))

= inf(I([0.7, 0.8], [0.4, 0.5]), I([0.4, 0.5], [0.2, 0.3]))
= inf([0.4, 0.5], [0.2, 0.3])

= [0.2, 0.3]

6≥LI [0.3, 0.4],

which means that0 6∈ EI
I(A,B)0.3 and0 6∈ EI

I(A,B)0.4.

On the other hand,E(A0.3, B
0.7) = E(A0.4, B0.6) = E([0, 0.5], [0, 0.5]) = {0}. Con-

sequentlyEI
I(A,B)0.3 6⊇ E(A0.3, B

0.7) andEI
I(A,B)0.4 6⊇ E(A0.4, B0.6).

♦

Remark that the decomposition properties for weak sub- and supercuts given above
remain valid in the discrete framework.

8.2.2 Decomposition by Weak[α1, α2]-cuts

In general, for an arbitrary upper border implicatorI, there is no relation between the weak
[α1, α2]-cutEI

I(A,B)α2

α1
and the binary erosionE(Aα2

α1
, B1−α1

1−α2

). This is illustrated in the
following example.

Example 8.2.7. To illustrate that the inclusionEI
I(A,B)α2

α1
⊆ E(Aα2

α1
, B1−α1

1−α2

) does not
always hold, we can use Example 8.2.5 again. For[α1, α2] = [0.4, 0.6], the weak[0.4, 0.6]-
cut and the weak0.4-subcut and0.6-supercut coincide and the results remain valid for the
weak[0.4, 0.6]-cut.
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8.2 Decomposition of the Interval-valued Fuzzy Erosion

In general alsoEI
I(A,B)α2

α1
6⊇ E(Aα2

α1
, B1−α1

1−α2

). Let I beIEKD, [α1, α2] = [0.3, 0.4],
A(x) = [0.4, 0.5] for all x ∈ [0, 0.5] andA(x) = [0.2, 0.3] for all x ∈]0.5, 1], B(x) =
[0.7, 0.8] for all x ∈ [0, 0.5] andB(x) = [0.4, 0.8] for all x ∈]0.5, 1].

For the binary erosion we find thatE(Aα2

α1
, B1−α1

1−α2

) = E([0, 0.5], [0, 0.5]) = {0}. Fur-
ther, it also holds that

EI
IEKD

(A,B)(0) = inf
x∈T0(dB)

IEKD(B(x), A(x))

= inf( inf
x∈[0,0.5]

IEKD(B(x), A(x)),

inf
x∈]0.5,1]

IEKD(B(x), A(x)))

= inf(IEKD([0.7, 0.8], [0.4, 0.5]),

IEKD([0.4, 0.8], [0.2, 0.3]))

= inf([0.4, 0.5], [0.2, 0.6])

= [0.2, 0.5]

6≥LI [α1, α2].

As a consequence,EI
IEKD

(A,B)α2

α1
6⊇ E(Aα2

α1
, B1−α1

1−α2

).
♦

For the upper border implicatorI = IEKD, the following partial result holds.

Proposition 8.2.8. LetA,B ∈ FLI (Rn), then it holds for all[α1, α2] ∈ LI\{0LI} that:

EI
IEKD

(A,B)α2

α1
⊆ E(Aα2

α1
, B1−α1

1−α2

).

Proof. LetA,B ∈ FLI (Rn) and[α1, α2] ∈ LI\{0LI}. It holds that:

y ∈ E(Aα2

α1
, B1−α1

1−α2

) ⇔ Ty(B
1−α1

1−α2

) ⊆ Aα2

α1

⇔ (∀x ∈ Ty(dB))

((B1(x− y) > 1− α2 andB2(x− y) > 1− α1)

⇒ (A1(x) ≥ α1 andA2(x) ≥ α2))

⇔ (∀x ∈ Ty(dB))

((B1(x− y) ≤ 1− α2 orB2(x− y) ≤ 1− α1) or

(A1(x) ≥ α1 andA2(x) ≥ α2))

⇔ (∀x ∈ Ty(dB))

((1−B1(x− y) ≥ α2 or 1−B2(x− y) ≥ α1) or

(A1(x) ≥ α1 andA2(x) ≥ α2))

⇐ (∀x ∈ Ty(dB))
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Decomposition of Interval-valued Fuzzy Morphological Operators

(max(1−B2(x− y), A1(x)) ≥ α1 and

max(1−B1(x− y), A2(x)) ≥ α2)

⇔ (∀x ∈ Ty(dB))(IEKD(B(x− y), A(x)) ≥LI [α1, α2])

⇔ inf
x∈Ty(dB)

IEKD(B(x− y), A(x)) ≥LI [α1, α2]

⇔ EI
IEKD

(A,B)(y) ≥LI [α1, α2]

⇔ y ∈ EI
IEKD

(A,B)α2

α1

This proves thatEI
IEKD

(A,B)α2

α1
⊆ E(Aα2

α1
, B1−α1

1−α2

).

The reverse inclusion does not hold as illustrated in Example 8.2.7.
The weak[α1, α2]-cut of the interval-valued fuzzy erosion based on the implicator

IEKD can however always be constructed by binary erosions as follows.

Proposition 8.2.9. LetA,B ∈ FLI (Rn), then it holds for all[α1, α2] ∈ LI\{0LI} that:

EI
IEKD

(A,B)α2

α1
= E(Aα1

, B1−α1) ∩ E(Aα2 , B1−α2
).

Proof. Follows fromEI
IEKD

(A,B)α2

α1
= EI

IEKD
(A,B)α1

∩ EI
IEKD

(A,B)α2 and from
Proposition 8.2.3.

Analogously, an interval-valued fuzzy erosion based on an upper border implicatorI
can be approximated by binary erosions.

Proposition 8.2.10.LetA,B ∈ FLI (Rn), then it holds for all[α1, α2] ∈ LI\{0LI} that:

EI
I(A,B)α2

α1
⊇ E(Aα1

, B1−α1) ∩ E(Aα2 , B1−α2
).

Proof. Follows from the fact thatEI
I(A,B)α2

α1
= EI

I(A,B)α1
∩ EI

I(A,B)α2 and from
Proposition 8.2.4.

Remark that the decomposition properties for weak[α1, α2]-cuts given above remain
valid in the discrete framework.

8.2.3 Decomposition by Strict Sub- and Supercuts

In general, there is no relation between the strict sub- and supercutsEI
I(A,B)α1

and
EI

I(A,B)α2 and the binary erosionsE(Aα1
, B1−α1) andE(Aα2 , B1−α2

) for an arbitrary
upper border implicatorI. This is illustrated in the following example.

Example 8.2.11.To show that it does not always hold thatEI
I(A,B)α1

⊆ E(Aα1
, B1−α1)

andEI
I(A,B)α2 ⊆ E(Aα2 , B1−α2

) for an arbitrary upper border implicatorI, we can use
Example 8.2.5 again, where working with strict sub- and supercuts instead of weak sub- and
supercuts does not affect the results.
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8.2 Decomposition of the Interval-valued Fuzzy Erosion

In general alsoEI
I(A,B)α1

6⊇ E(Aα1
, B1−α1) andEI

I(A,B)α2 6⊇ E(Aα2 , B1−α2
).

Let I be IEKD, α1 = 0.5, A(x) = [ 2−x
2 , 1] for all x ∈]0, 1], B(x) = [0.7, 0.8] for all

x ∈]0, 1] andA(x) = B(x) = 0LI for all x ∈ R\]0, 1]. For the binary erosion we then find
thatE(Aα1

, B1−α1) = E(]0, 1], ]0, 1]) = {0}. Further, it also holds that

EI
IEKD

(A,B)(0) = inf
x∈T0(dB)

IEKD(B(x), A(x))

= inf
x∈]0,1]

IEKD([0.7, 0.8], [
2− x

2
, 1])

= inf
x∈]0,1]

[max(1− 0.8,
2− x

2
),max(1− 0.7, 1)]

= inf
x∈]0,1]

[
2− x

2
, 1]

= [0.5, 1],

which means that0 6∈ EI
IEKD

(A,B)0.5 andEI
IEKD

(A,B)α1
6⊇ E(Aα1

, B1−α1).
An analogous example can be found for strictα2-supercuts.

♦

For the upper border implicatorI = IEKD, the following partial result holds.

Proposition 8.2.12. For A,B ∈ FLI (Rn) it holds for respectively allα1 ∈ [0, 1[ and all
α2 ∈ [0, 1[ that:

(i) EI
IEKD

(A,B)α1
⊆ E(Aα1

, B1−α1),
(ii) EI

IEKD
(A,B)α2 ⊆ E(Aα2 , B1−α2

).

Proof. LetA,B ∈ FLI (Rn), and letα1, α2 ∈ [0, 1[.

(i) Analogous to the proof of Proposition 8.2.3. However, now we only have that for all
y ∈ Rn:

inf
x∈Ty(dB)

max(1−B2(x− y), A1(x)) > α1

⇓
(∀x ∈ Ty(dB))(max(1−B2(x− y), A1(x)) > α1)

(ii) Analogous.

The reverse inclusion does not hold as illustrated in Example 8.2.11.
Proposition 8.2.12 remains valid in the discrete framework. Moreover, in the discrete

framework, the result also holds for arbitrary lower borderimplicators and forIEKD also
the reverse inclusion holds.
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Decomposition of Interval-valued Fuzzy Morphological Operators

Proposition 8.2.13.For A,B ∈ FLI
r,s
(Zn) it holds for respectively allα1 ∈]0, 1] ∩ Ir and

all α2 ∈]0, 1] ∩ Is that:

(i) EI
IEKD

(A,B)α1
= E(Aα1

, B1−α1),
(ii) EI

IEKD
(A,B)α2 = E(Aα2 , B1−α2

).

Proof. Analogous to the proof of Proposition 8.2.12, where now in the discrete case also

(∀x ∈ Ty(dB))(max(1−B2(x− y), A1(x)) > α1)

m
inf

x∈Ty(dB)
max(1−B2(x− y), A1(x)) > α1.

Proposition 8.2.14.For A,B ∈ FLI
r,s
(Zn) it holds for respectively allα1 ∈]0, 1] ∩ Ir and

all α2 ∈]0, 1] ∩ Is that:

(i) EI
I(A,B)α1

⊇ E(Aα1
, B1−α1),

(ii) EI
I(A,B)α2 ⊇ E(Aα2 , B1−α2

).

Proof. Analogous to the proof of Proposition 8.2.13, but for an arbitrary upper border im-
plicatorI, so that

EI
IEKD

(A,B)1(y) > α1

⇓
EI

I(A,B)1(y) > α1

m
y ∈ EI

I(A,B)α1
.

8.2.4 Decomposition by Strict[α1, α2]-cuts

In general, for an arbitrary upper border implicatorI, there is no relation between the strict
[α1, α2]-cut EI

I(A,B)α2

α1
and the binary erosionE(Aα2

α1
, B1−α1

1−α2
). To illustrate this, we

can use Example 8.2.5 and 8.2.7 again, where working with strict [α1, α2]-cuts instead of
respectively weak sub- and supercuts and weak[α1, α2]-cuts does not effect the results.

For the upper border implicatorI = IEKD, the following partial result holds.

Proposition 8.2.15.LetA,B ∈ FLI (Rn), then it holds for all[α1, α2] ∈ LI\ULI that:

EI
IEKD

(A,B)α2

α1
⊆ E(Aα2

α1
, B1−α1

1−α2
).
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8.2 Decomposition of the Interval-valued Fuzzy Erosion

Proof. Analogous to the proof of Proposition 8.2.8. Only, now it holds for ally ∈ Rn that:

inf
x∈Ty(dB)

IEKD(B(x− y), A(x)) �LI [α1, α2])

⇓
(∀x ∈ Ty(dB))(IEKD(B(x− y), A(x)) �LI [α1, α2])

This however does not change the result.

To illustrate that the reverse inclusion does not hold, we refer to Example 8.2.7, where
using strict[α1, α2]-cuts instead of the weak[α1, α2]-cuts does not affect the results.

Remark that the decomposition properties for strict[α1, α2]-cuts given above remain
valid in the discrete framework. Moreover, the strict[α1, α2]-cut of the discrete interval-
valued fuzzy erosion based on the implicatorIEKD (respectively upper border implicatorI)
can always be constructed from (respectively approximatedby) binary erosion as follows.

Proposition 8.2.16.For A,B ∈ FLI
r,s
(Zn) it holds for all [α1, α2] ∈ LI

r,s \ULI and every
upper border implicatorI that:

(i) EI
IEKD

(A,B)α2

α1
= E(Aα1

, B1−α1) ∩ E(Aα2 , B1−α2
),

(ii) EI
IEKD

(A,B)α2

α1
⊇ E(Aα1

, B1−α1) ∩ E(Aα2 , B1−α2
).

Proof. Follows from Proposition 8.2.13 and 8.2.14.

8.2.5 Decomposition by Weak-Strict and Strict-Weak[α1, α2]-cuts

In general, for an arbitrary upper border implicatorI, there is no relation between the weak-
strict and the strict-weak[α1, α2]-cutsEI

I(A,B)α2

α1
andEI

I(A,B)α2

α1
and the respective bi-

nary erosionsE(Aα2

α1
, B1−α1

1−α2
) andE(Aα2

α1
, B1−α1

1−α2

) respectively. To illustrate this, we can
use Example 8.2.5 and 8.2.7 again, where working with weak-strict and strict-weak[α1, α2]-
cuts instead of respectively weak sub- and supercuts and weak [α1, α2]-cuts does not effect
the results.

For the upper border implicatorI = IEKD, the following partial result holds.

Proposition 8.2.17. Let A,B ∈ FLI (Rn), then it holds for respectively all[α1, α2] ∈
LI\ULI and all [α1, α2] ∈ LI\{1LI} that:

(i) EI
IEKD

(A,B)α2

α1
⊆ E(Aα2

α1
, B1−α1

1−α2
),

(ii) EI
IEKD

(A,B)α2

α1
⊆ E(Aα2

α1
, B1−α1

1−α2

).

Proof.

(i) Analogous to the proof of Proposition 8.2.8. Only, now itholds for ally ∈ Rn that:

inf
x∈Ty(dB)

IEKD(B(x− y), A(x))1 ≥ α1 and
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Decomposition of Interval-valued Fuzzy Morphological Operators

inf
x∈Ty(dB)

IEKD(B(x− y), A(x))2 > α2

⇓
(∀x ∈ Ty(dB))(IEKD(B(x− y), A(x))1 ≥ α1 and

IEKD(B(x− y), A(x))2 > α2)

This however does not change the result.

(ii) Analogous.

To illustrate that the reverse inclusion does not hold, we refer to Example 8.2.7 again,
where working with weak-strict or strict-weak[α1, α2]-cuts instead of weak[α1, α2]-cuts
does not affect the results.

Remark that the decomposition properties for weak-strict and strict-weak[α1, α2]-cuts
given above remain valid in the discrete framework. Moreover, the weak-strict and strict-
weak [α1, α2]-cut of the discrete interval-valued fuzzy erosion based onthe implicator
IEKD (respectively upper border implicatorI) can always be constructed from (respec-
tively approximated by) binary erosion as follows.

Proposition 8.2.18. LetA,B ∈ FLI
r,s
(Zn) and letI be an upper border implicator. For

all [α1, α2] ∈ LI
r,s \ ULI it holds that:

(i) EI
IEKD

(A,B)α2

α1
= E(Aα1

, B1−α1) ∩ E(Aα2 , B1−α2
),

(ii) EI
I(A,B)α2

α1
⊇ E(Aα1

, B1−α1) ∩ E(Aα2 , B1−α2
).

For all [α1, α2] ∈ LI
r,s \ {1LI} it holds that:

(i) EI
IEKD

(A,B)α2

α1
= E(Aα1

, B1−α1) ∩ E(Aα2 , B1−α2
),

(ii) EI
I(A,B)α2

α1
⊇ E(Aα1

, B1−α1) ∩ E(Aα2 , B1−α2
).

Proof. Follows from Proposition 8.2.3, 8.2.4, 8.2.13 and 8.2.14.

8.3 Decomposition of the Interval-valued Fuzzy Closing
and Opening

We first prove the following lemma:

Lemma 8.3.1. LetA ∈ FLI (Rn) and let[α1, α2] ∈ LI , then it holds that:
(i) α2 ∈]0, 0.5] ⇒ Aα2 ⊇ Aα2 ⊇ A1−α2

,
(ii) α1 ∈ [0.5, 1[ ⇒ Aα1

⊆ A1−α1 ⊆ A1−α1 ,
(iii) α2 ∈ [0, 0.5[ ⇒ Aα2 ⊇ A1−α2

,
(iv) α1 ∈]0.5, 1] ⇒ Aα1

⊆ A1−α1 .
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8.3 Decomposition of the Interval-valued Fuzzy Closing and Opening

Proof.

(i) α2 ∈]0, 0.5]

x ∈ A1−α2
⇔ A1(x) > 1− α2

⇒ A2(x) ≥ A1(x) > 1− α2 ≥ α2 (i.e.,x ∈ Aα2)

⇒ A2(x) ≥ α2 (i.e.x ∈ Aα2)

(ii) α1 ∈ [0.5, 1[

x ∈ Aα1
⇔ A1(x) > α1

⇒ A2(x) ≥ A1(x) > α1 ≥ 1− α1 (i.e.,x ∈ A1−α1)

⇒ A2(x) ≥ 1− α1 (i.e.x ∈ A1−α1)

(iii) α2 ∈ [0, 0.5[

x ∈ A1−α2
⇔ A1(x) ≥ 1− α2

⇒ A2(x) ≥ A1(x) ≥ 1− α2 > α2 (i.e.,x ∈ Aα2)

(iv) α1 ∈]0.5, 1]

x ∈ Aα1
⇔ A1(x) ≥ α1

⇒ A2(x) ≥ A1(x) ≥ α1 > 1− α1 (i.e.,x ∈ A1−α1)

8.3.1 Decomposition by Weak Sub- and Supercuts

Proposition 8.3.2. Let I be an upper border implicator onLI and letA,B ∈ FLI (Rn),
then it holds for allα1 ∈]0, 1] that:

(i) CI
Cmin,I(A,B)α1

⊇ E(D(Aα1
, Bα1

),−B1−α1),

(ii) OI
Cmin,I(A,B)α1

⊇ D(E(Aα1
, B1−α1),−Bα1

),

and for allα2 ∈]0, 1] that:

(iii) CI
Cmin,I(A,B)α2 ⊇ E(D(Aα2 , Bα2),−B1−α2

),
(iv) OI

Cmin,I(A,B)α2 ⊇ D(E(Aα2 , B1−α2
),−Bα2).
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Proof. As an example we prove(i). Let I be an upper border implicator onLI , letA,B ∈
FLI (Rn) and letα1, α2 ∈]0, 1]. From respectively Proposition 8.2.3, Proposition 8.1.13,
and because the binary erosion is increasing in its first argument, we have that:

CI
Cmin,I(A,B)α1

= EI
I(D

I
Cmin

(A,B),−B)α1

⊇ E(DI
Cmin

(A,B)α1
,−B1−α1)

⊇ E(D(Aα1
, Bα1

),−B1−α1).

(ii), (iii) and(iv) follow analogously from Proposition 8.1.13, Proposition 8.2.3, and
because the binary dilation and the binary erosion are increasing in their first argument.

The previous result allows us to derive, under the restriction of α2 ∈]0, 0.5], a lower
bound for the weakα2-supercut of the interval-valued fuzzy closing and openingin terms
of the binary closing and opening.

Proposition 8.3.3. Let I be an upper border implicator onLI and letA,B ∈ FLI (Rn),
then it holds for allα2 ∈]0, 0.5] that:

(i) CI
Cmin,I(A,B)α2 ⊇ C(Aα2 , Bα2),

(ii) CI
Cmin,I(A,B)α2 ⊇ C(Aα2 , B1−α2

),

and:

(iii) OI
Cmin,I(A,B)α2 ⊇ O(Aα2 , Bα2),

(iv) OI
Cmin,I(A,B)α2 ⊇ O(Aα2 , B1−α2

).

Proof. As an example, we prove(i). LetI be an upper border implicator onLI , letA,B ∈
FLI (Rn) and letα2 ∈]0, 0.5]. From Proposition 8.3.2, lemma 8.3.1 and the fact that the
binary erosion is decreasing in its second argument, it follows that:

CI
Cmin,I(A,B)α2 ⊇ E(D(Aα2 , Bα2),−B1−α2

)

⊇ E(D(Aα2 , Bα2),−Bα2)

= C(Aα2 , Bα2).

(ii), (iii) and(iv) follow in an analogous way from Proposition 8.3.2, lemma 8.3.1 and
the fact that the binary dilation is increasing in both its arguments and the binary erosion is
increasing in its first argument and decreasing in its secondargument.

The above results for weak sub- and supercuts remain valid inthe discrete framework.
Since we had found a new relationship for the decomposition by weak sub- and supercuts
of the interval-valued fuzzy dilation in the discrete framework compared to the continuous
framework, also a new relationship can be found for the interval-valued fuzzy closing and
opening.

Proposition 8.3.4. LetC be a semi-norm onLI
r,s andI an upper border implicator onLI

r,s

and letA,B ∈ FLI
r,s
(Zn), then it holds for allα1 ∈]0, 1] ∩ Ir that:
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8.3 Decomposition of the Interval-valued Fuzzy Closing and Opening

(i) CI
Cmin,IEKD

(A,B)α1
= E(D(Aα1

, Bα1
),−B1−α1),

(ii) CI
Cmin,I(A,B)α1

⊇ E(D(Aα1
, Bα1

),−B1−α1),

(iii) CI
C,IEKD

(A,B)α1
⊆ E(D(Aα1

, Bα1
),−B1−α1),

(iv) OI
Cmin,IEKD

(A,B)α1
= D(E(Aα1

, B1−α1),−Bα1
),

(v) OI
Cmin,I(A,B)α1

⊇ D(E(Aα1
, B1−α1),−Bα1

),

(vi) OI
C,IEKD

(A,B)α1
⊆ D(E(Aα1

, B1−α1),−Bα1
),

and for allα2 ∈]0, 1] ∩ Is that:

(i) CI
Cmin,IEKD

(A,B)α2 = E(D(Aα2 , Bα2),−B1−α2
),

(ii) CI
Cmin,I(A,B)α2 ⊇ E(D(Aα2 , Bα2),−B1−α2

),
(iii) CI

C,IEKD
(A,B)α2 ⊆ E(D(Aα2 , Bα2),−B1−α2

),
(iv) OI

Cmin,IEKD
(A,B)α2 = D(E(Aα2 , B1−α2

),−Bα2),
(v) OI

Cmin,I(A,B)α2 ⊇ D(E(Aα2 , B1−α2
),−Bα2),

(vi) OI
C,IEKD

(A,B)α2 ⊆ D(E(Aα2 , B1−α2
),−Bα2).

Proof. Follows in an analogous way as in the proof of Proposition 8.3.2 from Proposi-
tion 8.1.14, Proposition 8.1.15, Proposition 8.2.3, Proposition 8.2.4 and the fact that the
binary dilation is increasing in its first and second argument and that the binary erosion is
increasing in its first argument and decreasing in its secondargument.

The previous result allows us to derive, under the restriction of α1 ∈]0.5, 1] ∩ Ir, an
upper bound for the weak subcut of the interval-valued fuzzyclosing and opening in terms
of the binary closing and opening.

Proposition 8.3.5. Let C be a semi-norm onLI
r,s and letA,B ∈ FLI

r,s
(Zn), then it holds

for all α1 ∈]0.5, 1] ∩ Ir that:

(i) CI
Cmin,IEKD

(A,B)α1
⊆ C(Aα1

, Bα1
),

(ii) CI
Cmin,IEKD

(A,B)α1
⊆ C(Aα1

, B1−α1),
(iii) CI

C,IEKD
(A,B)α1

⊆ C(Aα1
, Bα1

),

(iv) CI
C,IEKD

(A,B)α1
⊆ C(Aα1

, B1−α1),
(v) OI

Cmin,IEKD
(A,B)α1

⊆ O(Aα1
, Bα1

),

(vi) OI
Cmin,IEKD

(A,B)α1
⊆ O(Aα1

, B1−α1),
(vii) OI

C,IEKD
(A,B)α1

⊆ O(Aα1
, Bα1

),

(viii) OI
C,IEKD

(A,B)α1
⊆ O(Aα1

, B1−α1),

Proof. Follows in an analogous way as in the proof of Proposition 8.3.3 from Proposi-
tion 8.3.4 and lemma 8.3.1 and the fact that the binary dilation is increasing in its first and
second argument and that the binary erosion is increasing inits first argument and decreas-
ing in its second argument.

The result also allows us to derive, under the restriction ofα2 ∈]0, 0.5] ∩ Is, a lower
bound for the weak supercut of the interval-valued fuzzy closing and opening in terms of
the binary closing and opening.
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Proposition 8.3.6. Let I be an upper border implicator onLI
r,s andA,B ∈ FLI

r,s
(Zn),

then it holds for allα2 ∈]0, 0.5] ∩ Is that:

(i) CI
Cmin,IEKD

(A,B)α2 ⊇ C(Aα2 , Bα2),
(ii) CI

Cmin,IEKD
(A,B)α2 ⊇ C(Aα2 , B1−α2

),
(iii) CI

Cmin,I(A,B)α2 ⊇ C(Aα2 , Bα2),
(iv) CI

Cmin,I(A,B)α2 ⊇ C(Aα2 , B1−α2
),

(v) OI
Cmin,IEKD

(A,B)α2 ⊇ O(Aα2 , Bα2),
(vi) OI

Cmin,IEKD
(A,B)α2 ⊇ O(Aα2 , B1−α2

),
(vii) OI

Cmin,I(A,B)α2 ⊇ O(Aα2 , Bα2),
(viii) OI

Cmin,I(A,B)α2 ⊇ O(Aα2 , B1−α2
).

Proof. Follows in an analogous way as in the proof of Proposition 8.3.3 from Proposi-
tion 8.3.4 and lemma 8.3.1 and the fact that the binary dilation is increasing in its first and
second argument and that the binary erosion is increasing inits first argument and decreas-
ing in its second argument.

8.3.2 Decomposition by Weak[α1, α2]-cuts

For the conjunctorCmin and the implicatorIEKD, the weak[α1, α2]-cuts of the discrete
interval-valued fuzzy closing and opening can be obtained as a combination of binary dila-
tions and erosions. For an arbitrary semi-normC and an arbitrary upper border implicator
I analogous approximations exist.

Proposition 8.3.7. LetC be a semi-norm onLI
r,s andI an upper border implicator onLI

r,s

and letA,B ∈ FLI
r,s
(Zn), then it holds for all[α1, α2] ∈ LI

r,s \ {0LI} that:

(i) CI
Cmin,IEKD

(A,B)α2

α1
= E(D(Aα1

, Bα1
),−B1−α1) ∩

E(D(Aα2 , Bα2),−B1−α2
),

(ii) CI
Cmin,I(A,B)α2

α1
⊇ E(D(Aα1

, Bα1
),−B1−α1) ∩

E(D(Aα2 , Bα2),−B1−α2
),

(iii) CI
C,IEKD

(A,B)α2

α1
⊆ E(D(Aα1

, Bα1
),−B1−α1) ∩

E(D(Aα2 , Bα2),−B1−α2
),

(iv) OI
Cmin,IEKD

(A,B)α2

α1
= D(E(Aα1

, B1−α1),−Bα1
) ∩

D(E(Aα2 , B1−α2
),−Bα2),

(v) OI
Cmin,I(A,B)α2

α1
⊇ D(E(Aα1

, B1−α1),−Bα1
) ∩

D(E(Aα2 , B1−α2
),−Bα2),

(vi) OI
C,IEKD

(A,B)α2

α1
⊆ D(E(Aα1

, B1−α1),−Bα1
) ∩

D(E(Aα2 , B1−α2
),−Bα2).

Proof. Follows from Proposition 8.3.4.
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8.3.3 Decomposition by Strict Sub- and Supercuts

Proposition 8.3.8. LetC be a semi-norm onLI and letA,B ∈ FLI (Rn), then it holds for
all α1 ∈ [0, 1[ that:

(i) CI
C,IEKD

(A,B)α1
⊆ E(D(Aα1

, Bα1
),−B1−α1),

(ii) OI
C,IEKD

(A,B)α1
⊆ D(E(Aα1

, B1−α1),−Bα1
),

and for allα2 ∈ [0, 1[ that:

(iii) CI
C,IEKD

(A,B)α2 ⊆ E(D(Aα2 , Bα2),−B1−α2
),

(iv) OI
C,IEKD

(A,B)α2 ⊆ D(E(Aα2 , B1−α2
),−Bα2).

Proof. Follows in an analogous way as in the proof of Proposition 8.3.2 from Proposi-
tion 8.2.12 and Proposition 8.1.4 and the fact that the binary dilation is increasing in its
first and second argument and that the binary erosion is increasing in its first argument and
decreasing in its second argument.

The previous result allows us to derive, under the restriction ofα1 ∈ [0.5, 1[, an upper
bound for the strictα1-subcut of the interval-valued fuzzy closing and opening interms of
the binary closing and opening.

Proposition 8.3.9. LetC be a semi-norm onLI and letA,B ∈ FLI (Rn), then it holds for
all α1 ∈ [0.5, 1[ that:

(i) CI
C,IEKD

(A,B)α1
⊆ C(Aα1

, Bα1
),

(ii) CI
C,IEKD

(A,B)α1
⊆ C(Aα1

, B1−α1),

and:

(iii) OI
C,IEKD

(A,B)α1
⊆ O(Aα1

, Bα1
),

(iv) OI
C,IEKD

(A,B)α1
⊆ O(Aα1

, B1−α1).

Proof. Follows in an analogous way as in the proof of Proposition 8.3.3 from Proposi-
tion 8.3.8 and lemma 8.3.1 and the fact that the binary dilation is increasing in its first and
second argument and that the binary erosion is increasing inits first argument and decreas-
ing in its second argument.

The above results for strict sub- and supercuts remain validin the discrete framework.
Since we had found a new relationship for the decomposition by strict sub- and supercuts
of the interval-valued fuzzy erosion in the discrete framework compared to the continuous
framework, also a new relationship can be found for the interval-valued fuzzy closing and
opening.

Proposition 8.3.10. Let C be a semi-norm onLI
r,s andI an upper border implicator on

LI
r,s and letA,B ∈ FLI

r,s
(Zn), then it holds for allα1 ∈ [0, 1[∩Ir that:
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(i) CI
Cmin,IEKD

(A,B)α1
= E(D(Aα1

, Bα1
),−B1−α1),

(ii) CI
Cmin,I(A,B)α1

⊇ E(D(Aα1
, Bα1

),−B1−α1),
(iii) CI

C,IEKD
(A,B)α1

⊆ E(D(Aα1
, Bα1

),−B1−α1),
(iv) OI

Cmin,IEKD
(A,B)α1

= D(E(Aα1
, B1−α1),−Bα1

),
(v) OI

Cmin,I(A,B)α1
⊇ D(E(Aα1

, B1−α1),−Bα1
),

(vi) OI
C,IEKD

(A,B)α1
⊆ D(E(Aα1

, B1−α1),−Bα1
),

and for allα2 ∈ [0, 1[∩Is that:

(i) CI
Cmin,IEKD

(A,B)α2 = E(D(Aα2 , Bα2),−B1−α2
),

(ii) CI
Cmin,I(A,B)α2 ⊇ E(D(Aα2 , Bα2),−B1−α2

),
(iii) CI

C,IEKD
(A,B)α2 ⊆ E(D(Aα2 , Bα2),−B1−α2

),
(iv) OI

Cmin,IEKD
(A,B)α2 = D(E(Aα2 , B1−α2

),−Bα2),
(v) OI

Cmin,I(A,B)α2 ⊇ D(E(Aα2 , B1−α2
),−Bα2),

(vi) OI
C,IEKD

(A,B)α2 ⊆ D(E(Aα2 , B1−α2
),−Bα2).

Proof. Follows in an analogous way as in the proof of Proposition 8.3.2 from Proposi-
tion 8.1.3, Proposition 8.1.4, Proposition 8.2.13, Proposition 8.2.14 and the fact that the
binary dilation is increasing in its first and second argument and that the binary erosion is
increasing in its first argument and decreasing in its secondargument.

The previous result allows us to derive, under the restriction of α1 ∈ [0.5, 1[∩Ir, an
upper bound for the strict subcut of the interval-valued fuzzy closing and opening in terms
of the binary closing and opening.

Proposition 8.3.11.LetC be a semi-norm onLI
r,s and letA,B ∈ FLI

r,s
(Zn), then it holds

for all α1 ∈ [0.5, 1[∩Ir that:

(i) CI
Cmin,IEKD

(A,B)α1
⊆ C(Aα1

, Bα1
),

(ii) CI
Cmin,IEKD

(A,B)α1
⊆ C(Aα1

, B1−α1),
(iii) CI

C,IEKD
(A,B)α1

⊆ C(Aα1
, Bα1

),
(iv) CI

C,IEKD
(A,B)α1

⊆ C(Aα1
, B1−α1),

(v) OI
Cmin,IEKD

(A,B)α1
⊆ O(Aα1

, Bα1
),

(vi) OI
Cmin,IEKD

(A,B)α1
⊆ O(Aα1

, B1−α1),
(vii) OI

C,IEKD
(A,B)α1

⊆ O(Aα1
, Bα1

),
(viii) OI

C,IEKD
(A,B)α1

⊆ O(Aα1
, B1−α1),

Proof. Follows in an analogous way as in the proof of Proposition 8.3.3 from Proposi-
tion 8.3.10 and lemma 8.3.1 and the fact that the binary dilation is increasing in its first and
second argument and that the binary erosion is increasing inits first argument and decreas-
ing in its second argument.

The result also allows us to derive, under the restriction of0 ≤ α2 < 0.5, a lower bound
for the strict supercut of the interval-valued fuzzy closing and opening in terms of the binary
closing and opening.
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Proposition 8.3.12. Let A,B ∈ FLI
r,s
(Zn) and letI be an upper border implicator on

LI
r,s, then it holds for allα2 ∈ [0, 0.5[∩Is that:

(i) CI
Cmin,IEKD

(A,B)α2 ⊇ C(Aα2 , Bα2),
(ii) CI

Cmin,IEKD
(A,B)α2 ⊇ C(Aα2 , B1−α2

),
(iii) CI

Cmin,I(A,B)α2 ⊇ C(Aα2 , Bα2),
(iv) CI

Cmin,I(A,B)α2 ⊇ C(Aα2 , B1−α2
),

(v) OI
Cmin,IEKD

(A,B)α2 ⊇ O(Aα2 , Bα2),
(vi) OI

Cmin,IEKD
(A,B)α2 ⊇ O(Aα2 , B1−α2

),
(vii) OI

Cmin,I(A,B)α2 ⊇ O(Aα2 , Bα2),
(viii) OI

Cmin,I(A,B)α2 ⊇ O(Aα2 , B1−α2
).

Proof. Follows in an analogous way as in the proof of Proposition 8.3.3 from Proposi-
tion 8.3.10 and lemma 8.3.1 and the fact that the binary dilation is increasing in its first and
second argument and that the binary erosion is increasing inits first argument and decreas-
ing in its second argument.

8.3.4 Decomposition by Strict[α1, α2]-cuts

For the conjunctorCmin and the implicatorIEKD, the strict[α1, α2]-cuts of the discrete
interval-valued fuzzy closing and opening can be found as a combination of binary dilations
and erosions. For an arbitrary semi-normC and an arbitrary upper border implicatorI
analogous approximations exist.

Proposition 8.3.13. Let C be a semi-norm onLI
r,s andI an upper border implicator on

LI
r,s and letA,B ∈ FLI

r,s
(Zn), then it holds for all[α1, α2] ∈ LI

r,s \ ULI that:

(i) CI
Cmin,IEKD

(A,B)α2

α1
= E(D(Aα1

, Bα1
),−B1−α1) ∩

E(D(Aα2 , Bα2),−B1−α2
),

(ii) CI
Cmin,I(A,B)α2

α1
⊇ E(D(Aα1

, Bα1
),−B1−α1) ∩

E(D(Aα2 , Bα2),−B1−α2
),

(iii) CI
C,IEKD

(A,B)α2

α1
⊆ E(D(Aα1

, Bα1
),−B1−α1) ∩

E(D(Aα2 , Bα2),−B1−α2
),

(iv) OI
Cmin,IEKD

(A,B)α2

α1
= D(E(Aα1

, B1−α1),−Bα1
) ∩

D(E(Aα2 , B1−α2
),−Bα2),

(v) OI
Cmin,I(A,B)α2

α1
⊇ D(E(Aα1

, B1−α1),−Bα1
) ∩

D(E(Aα2 , B1−α2
),−Bα2),

(vi) OI
C,IEKD

(A,B)α2

α1
⊆ D(E(Aα1

, B1−α1),−Bα1
) ∩

D(E(Aα2 , B1−α2
),−Bα2).

Proof. Follows from Proposition 8.3.10.
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8.3.5 Decomposition by Weak-Strict and Strict-Weak[α1, α2]-cuts

For the conjunctorCmin and the implicatorIEKD, the strict[α1, α2]-cuts of the discrete
interval-valued fuzzy closing and opening can be obtained as a combination of binary dila-
tions and erosions. For an arbitrary semi-normC and an arbitrary upper border implicator
I analogous approximations exist.

Proposition 8.3.14. Let C be a semi-norm onLI
r,s andI an upper border implicator on

LI
r,s and letA,B ∈ FLI

r,s
(Zn). For all [α1, α2] ∈ LI

r,s \ ULI it holds that:

(i) CI
Cmin,IEKD

(A,B)α2

α1
= E(D(Aα1

, Bα1
),−B1−α1) ∩

E(D(Aα2 , Bα2),−B1−α2
),

(ii) CI
Cmin,I(A,B)α2

α1
⊇ E(D(Aα1

, Bα1
),−B1−α1) ∩

E(D(Aα2 , Bα2),−B1−α2
),

(iii) CI
C,IEKD

(A,B)α2

α1
⊆ E(D(Aα1

, Bα1
),−B1−α1) ∩

E(D(Aα2 , Bα2),−B1−α2
),

(iv) OI
Cmin,IEKD

(A,B)α2

α1
= D(E(Aα1

, B1−α1),−Bα1
) ∩

D(E(Aα2 , B1−α2
),−Bα2),

(v) OI
Cmin,I(A,B)α2

α1
⊇ D(E(Aα1

, B1−α1),−Bα1
) ∩

D(E(Aα2 , B1−α2
),−Bα2),

(vi) OI
C,IEKD

(A,B)α2

α1
⊆ D(E(Aα1

, B1−α1),−Bα1
) ∩

D(E(Aα2 , B1−α2
),−Bα2).

For all [α1, α2] ∈ LI
r,s \ {1LI} it holds that:

(i) CI
Cmin,IEKD

(A,B)α2

α1
= E(D(Aα1

, Bα1
),−B1−α1) ∩

E(D(Aα2 , Bα2),−B1−α2
),

(ii) CI
Cmin,I(A,B)α2

α1
⊇ E(D(Aα1

, Bα1
),−B1−α1) ∩

E(D(Aα2 , Bα2),−B1−α2
),

(iii) CI
C,IEKD

(A,B)α2

α1
⊆ E(D(Aα1

, Bα1
),−B1−α1) ∩

E(D(Aα2 , Bα2),−B1−α2
),

(iv) OI
Cmin,IEKD

(A,B)α2

α1
= D(E(Aα1

, B1−α1),−Bα1
) ∩

D(E(Aα2 , B1−α2
),−Bα2),

(v) OI
Cmin,I(A,B)α2

α1
⊇ D(E(Aα1

, B1−α1),−Bα1
) ∩

D(E(Aα2 , B1−α2
),−Bα2),

(vi) OI
C,IEKD

(A,B)α2

α1
⊆ D(E(Aα1

, B1−α1),−Bα1
) ∩

D(E(Aα2 , B1−α2
),−Bα2).

Proof. Follows from Proposition 8.3.4 and 8.3.10.

8.4 Discussion

The conversion of the[α1, α2]-cut of an interval-valued fuzzy morphological operator into
binary operations on the[α1, α2]-cuts of the image and structuring element may result in a
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reduction of the time needed to compute such[α1, α2]-cut. For example, in the calculation
of the binary dilation of a binary imageA by a binary structuring elementB, an elementy ∈
Rn can be considered to belong to this dilation as soon as one element inTy(B) also belongs
toA. The other elements inTy(B) don’t need to be checked anymore. For the calculation
of the interval-valued fuzzy dilation, all elements inTy(B) need to be considered to find the
supremum over those elements. Additionally, the binary dilation (respectively erosion) of
an image can be further sped up by a decomposition of the structuring element [109, 145],
which is especially useful for image processing systems. Ananalogous reasoning holds for
the erosion.

As was shown in the previous sections, we only had equalitiesfor the conjunctorCmin

and the implicatorIEKD. For arbitrary semi-norms and upper border implicators only
approximations that are not necessarily equalities could be found. As an example, we will
illustrate the approximation in Proposition 8.1.17 on the camera image in Fig. 7.10 and the
interval-valued structuring element

B =



[0.6, 0.8] [0.7, 0.9] [0.6, 0.8]
[0.7, 0.9] [1, 1] [0.7, 0.9]

[0.6, 0.8] [0.7, 0.9] [0.6, 0.8]


 , (8.1)

where the underlined element corresponds to the origin. Thelower bound image, the upper
bound image and the difference image of the interval-valuedfuzzy dilation (based on the
conjunctorC(x, y) = [max(0, x1+y1−1),max(0, x2+y2−1)], ∀x, y ∈ Zn) of the camera
image by the above structuring element are then given in Fig.8.1. The weak[0.4, 0.6]-cut of
this dilation and the binary approximation determined in Proposition 8.1.17 (ii) are finally
given in Fig.8.2. We see that we get a rather rough approximation.

8.5 Conclusion

In this chapter we have revealed the relationships between the different[α1, α2]-cuts of
the interval-valued fuzzy morphological operators and thecorresponding binary operators
both in the general continuous case and the discrete case. Inthe practical discrete case, the
[α1, α2]-cuts of the interval-valued fuzzy dilation based on the conjunctorCmin, the erosion
based on the implicatorIEKD, and the opening and closing based on those two can always
be written in terms of binary operators. For other semi-norms and upper border implicators,
we found an approximation in terms of binary operators. The decomposition properties
not only provide us an interesting theoretical link betweeninterval-valued fuzzy and binary
morphology; they may also be useful to reduce the time neededfor the calculation of the
[α1, α2]-cuts of the interval-valued fuzzy morphological operators.
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Figure 8.1: Lower bound image (upper), upper bound image (middle) and difference image (lower)
of the dilated interval-valued camera image.
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Figure 8.2: Weak [0.4, 0.6]-cut of the dilated interval-valued camera image (upper) and binary ap-
proximation (lower).
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9
Construction of

Interval-valued Fuzzy
Morphological Operators

In the previous chapter, the interval-valued fuzzy morphological operators were decom-
posed into their[α1, α2]-cuts and the relationship to the original binary morphological
operators was investigated. In this chapter, we tackle the reverse problem [81, 82]: we
study the construction of an interval-valued fuzzy set fromits [α1, α2]-cuts or more general
from an arbitrary family of nested crisp sets. We search for the conditions under which the
[α1, α2]-cuts coincide with the given crisp sets and illustrate those with examples and coun-
terexamples. The obtained results are then used to extend increasing binary operators to
interval-valued fuzzy operators by constructing the result from the applicaion of the binary
operator on the[α1, α2]-cuts of the argument. This allows us to compute the interval-valued
fuzzy operators by combining the results of several binary operators or to approximate them
by a finite number of binary operators. The construction principle is additionally worked
out more in detail for the increasing morphological dilation, which will provide us a nice
theoretical link between binary and interval-valued fuzzymathematical morphology.

In this chapter, we restrict the universe of the interval-valued fuzzy sets toRn (Zn in the
discrete case), corresponding to the image domain of an interval-valued image. Properties
that do not specifically concern mathematical morphology will however also hold for a
general universe.

The chapter is organized as follows. Section 9.1 studies theconstruction of the interval-
valued fuzzy morphological operators based on weak, strict,weak-strict and strict-weak
[α1, α2]-cuts in a continuous framework while section 9.2 deals withthe construction in a
discrete framework. Section 9.3 concludes the chapter.
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9.1 Continuous Case

9.1.1 Construction Based on Weak[α1, α2]-cuts

Introduction

Definition 9.1. The product of an interval[α1, α2] ∈ LI and a crisp setC ∈ P(Rn), is
defined as the interval-valued fuzzy set[α1, α2]C given by:

([α1, α2]C)(x) =

{
[α1, α2] if x ∈ C

0LI else
, ∀x ∈ Rn. (9.1)

By means of such products, an interval-valued fuzzy setA can be reconstructed from its
weak[α1, α2]-cuts.

Lemma 9.1.1. LetA ∈ FLI (Rn), then it holds that

A =
⋃

[α1,α2]∈LI\{0
LI }

[α1, α2]A
α2

α1
,

i.e., for allx ∈ Rn

A(x) = sup
[α1,α2]∈LI\{0

LI }
([α1, α2]A

α2

α1
)(x)

= sup {[α1, α2] | [α1, α2] ∈ LI \ {0LI} andx ∈ Aα2

α1
}.

Proof. For allx ∈ Rn andA ∈ FLI (Rn), it holds that

(
⋃

[α1,α2]∈LI\{0
LI }

[α1, α2]A
α2

α1
)(x)

= sup{([α1, α2]A
α2

α1
)(x) | [α1, α2] ∈ LI \ {0LI}}

= sup{[α1, α2]A
α2

α1
)(x) | [α1, α2] ∈ rng(A) \ {0LI}} (rng(A) = {A(x) | x ∈ Rn})

= sup{[α1, α2]A
α2

α1
)(x) | [α1, α2] ∈ rng(A) \ {0LI} andA(x) ≥LI [α1, α2]}

= sup{[α1, α2] | [α1, α2] ∈ rng(A) \ {0LI} andA(x) ≥LI [α1, α2]}
= A(x)

If we now consider a family(P[α1,α2])[α1,α2]∈LI\{0
LI } of crisp subsets ofRn that is

decreasing ([α1, α2] ≤LI [α3, α4] ⇒ P[α1,α2] ⊇ P[α3,α4]) and we define the interval-valued
fuzzy setR in Rn for all x ∈ Rn as

R(x) = sup
[α1,α2]∈LI\{0

LI }
([α1, α2]P[α1,α2])(x) (9.2)
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9.1 Continuous Case

= sup {[α1, α2] | [α1, α2] ∈ LI \ {0LI} andx ∈ P[α1,α2]},

then we might wonder whether it holds that(∀[α1, α2] ∈ LI \ {0LI})(Rα2

α1
= P[α1,α2]). In

any case, the following inclusion always holds:

Proposition 9.1.2. For a decreasing family(P[α1,α2])[α1,α2]∈LI\{0
LI } of crisp subsets of

Rn and the interval-valued fuzzy setR defined in (9.2), it holds that:

(∀[α1, α2] ∈ LI \ {0LI})(P[α1,α2] ⊆ Rα2

α1
).

Proof. Let [β1, β2] ∈ LI \ {0LI} and letx ∈ P[β1,β2]. It then holds that:

x ∈ P[β1,β2] ⇔ [β1, β2] ∈ {[α1, α2] | [α1, α2] ∈ LI \ {0LI} andx ∈ P[α1,α2]}
⇒ sup {[α1, α2] | [α1, α2] ∈ LI \ {0LI} andx ∈ P[α1,α2]} ≥LI [β1, β2]

⇔ R(x) ≥LI [β1, β2]

⇔ x ∈ Rβ2

β1
.

As a consequence,P[β1,β2] ⊆ Rβ2

β1
.

However, we do not necessarily have an equality.

Example 9.1.3. Let P[α1,α2] =] − 1 + α1, 1 − α2[ for all [α1, α2] ∈ LI \ {0LI}. For
[β1, β2] �LI [α1, α2] we have that−1+β1 < −1+α1 ≤ 1−α2 < 1−β2 or thus−1+α1 ∈
P[β1,β2] and1 − α2 ∈ P[β1,β2]. As a consequenceR(−1 + α1) = sup {[β1, β2]|[β1, β2] ∈
LI \ {0LI} and − 1 + α1 ∈ P[β1,β2]} = [α1, α2] and analogouslyR(1 − α2) = [α1, α2],
thus−1 + α1 ∈ Rα2

α1
and1− α2 ∈ Rα2

α1
, what means thatRα2

α1
6= P[α1,α2].

♦

The reverse inclusion (and thus the equality) only holds under certain conditions. To
formulate these conditions, we define the setdP as

dP = {x | x ∈ Rn and(∃[α1, α2] ∈ LI \ {0LI})(x ∈ P[α1,α2])}. (9.3)

Further, for a fixed pointx ∈ dP , we introduce the setSx, given by

Sx = {[α1, α2] | [α1, α2] ∈ LI \ {0LI} andx ∈ P[α1,α2]}, (9.4)

and we denote the supremum of this set bysx = [sx,1, sx,2]:

sx = supSx. (9.5)

Remark thatSx 6= ∅.
The conditions under which the equality holds, are given in the following Proposition:
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Construction of Interval-valued Fuzzy Morphological Operators

Proposition 9.1.4. For a decreasing family(P[α1,α2])[α1,α2]∈LI\{0
LI } of crisp subsets of

Rn, the interval-valued fuzzy setR defined in (9.2) and the setsdP andSx and the supre-
mumsx of the latter set, respectively defined in expressions (9.3)-(9.5), it holds that:

(∀[α1, α2] ∈ LI \ {0LI})(P[α1,α2] = Rα2

α1
) ⇔ (∀x ∈ dP )(sx ∈ Sx).

Proof.

⇐: Follows from the proof of Proposition 9.1.2. Sincesx(= supSx) ∈ Sx it now also
holds thatsupSx ≥LI [β1, β2] ⇒ [β1, β2] ∈ Sx.

⇒: Suppose(∀[α1, α2] ∈ LI \ {0LI})(P[α1,α2] = Rα2

α1
), or equivalently,(∀[α1, α2] ∈

LI \ {0LI})(x ∈ P[α1,α2] ⇔ sx = R(x) ≥LI [α1, α2]). For allx ∈ dP , choosing
[α1, α2] = sx = [sx,1, sx,2] ∈ LI \ {0LI} impliesx ∈ P[sx,1,sx,2], and thussx ∈
{[α1, α2] | [α1, α2] ∈ LI \ {0LI} andx ∈ P[α1,α2]} = Sx.

The above condition is however not efficient in practice. Indeed, for a given family
(P[α1,α2])[α1,α2]∈LI\{0

LI } it would be needed to calculate the setSx for all x ∈ dP and to
check whethersx ∈ Sx. To avoid this work, a necessary condition on the setsP[α1,α2] can
be used.

Proposition 9.1.5. For a decreasing family(P[α1,α2])[α1,α2]∈LI\{0
LI } of crisp subsets of

Rn, the interval-valued fuzzy setR defined in (9.2) and the setsdP andSx and the supre-
mumsx of the latter set, respectively defined in expressions (9.3)-(9.5), it holds that:

(∀x ∈ dP )(sx ∈ Sx) ⇒ (∀[α1, α2] ∈ LI \ {0LI})(P[α1,α2] =
⋂

[β1,β2]�LI [α1,α2]

P[β1,β2]).

Proof. Let [α1, α2] ∈ LI \ {0LI}. For allx ∈ ⋂
[β1,β2]�LI [α1,α2]

P[β1,β2] it holds that:

x ∈
⋂

[β1,β2]�LI [α1,α2]

P[β1,β2] ⇔ (∀[β1, β2] ∈ LI \ {0LI})

([β1, β2] �LI [α1, α2] ⇒ x ∈ P[β1,β2])

⇔ (∀[β1, β2] ∈ LI \ {0LI})([β1, β2] �LI [α1, α2] ⇒
[β1, β2] ∈ {[γ1, γ2] ∈ LI \ {0LI} | x ∈ P[β1,β2]})

⇔ (∀[β1, β2] ∈ LI \ {0LI})([β1, β2] �LI [α1, α2] ⇒
(x ∈ dP and[β1, β2] ∈ Sx)).

Since it is given thatsx ∈ Sx, it follows from [α1, α2] ≤LI sx that [α1, α2] ∈ Sx, or thus
x ∈ P[α1,α2]. As a consequence

⋂
[β1,β2]�LI [α1,α2]

P[β1,β2] ⊆ P[α1,α2].
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9.1 Continuous Case

On the other hand, since the family(P[α1,α2])[α1,α2]∈LI\{0
LI } is a decreasing family,

we have that(∀[β1, β2] ∈ LI \ {0LI})([β1, β2] �LI [α1, α2] ⇒ P[β1,β2] ⊇ P[α1,α2]) and
thus

⋂
[β1,β2]�LI [α1,α2]

P[β1,β2] ⊇ P[α1,α2].

Example 9.1.6.The results in Example 9.1.3 could also have been obtained using the above
proposition. Let[α1, α2] ∈ LI \ {0LI}, then it holds that:

(∀[β1, β2] ∈ LI \ {0LI})
([β1, β2] �LI [α1, α2] ⇒ −1 + α1 < −1 + β1 and1− α2 < 1− β2)

⇒ (∀[β1, β2] ∈ LI \ {0LI})([β1, β2] �LI [α1, α2] ⇒
(∀x ∈ [−1 + α1, 1− α2])(x ∈ P[β1,β2] =]− 1 + β1, 1− β2[))

⇒ (∀x ∈ [−1 + α1, 1− α2])(x ∈
⋂

[β1,β2]�LI [α1,α2]

P[β1,β2]).

So, e.g.1 − α2 ∈ ⋂
[β1,β2]�LI [α1,α2]

P[β1,β2], but 1 − α2 6∈ P[α1,α2], and thusP[α1,α2] 6=
⋂

[β1,β2]�LI [α1,α2]

P[β1,β2].

♦

The condition in Proposition 9.1.5 is however not a sufficient condition as the following
example illustrates.

Example 9.1.7. Let P[α1,α2] = [α1+α2

2 , 1] for all [α1, α2] ∈ LI \ {0LI}. It holds that
(∀[α1, α2] ∈ LI \ {0LI})(P[α1,α2] =

⋂
[β1,β2]�LI [α1,α2]

P[β1,β2]). However, it does not hold

that (∀x ∈ dP )(sx ∈ Sx). Consider for example the setS0.5. [0.5, 0.5] ∈ S0.5 and for all
[α1, α2], α1 can not be greater than 0.5 since thenα1+α2

2 > 0.5. Further also[0, 1] ∈ S0.5,
so we can conclude thatsupS0.5 = [0.5, 1] 6∈ S0.5.

As a consequence it does not hold thatP[α1,α2] = Rα2

α1
for all [α1, α2] ∈ LI \ {0LI}.

Indeed,R(0.5) = s0.5 = [0.5, 1] and thus0.5 ∈ R1
0.5 at one hand, but on the other hand

0.5 6∈ P[0.5,1] = [0.75, 1].
♦

The given condition is not a sufficient condition because is does not necessarily hold
that(∀[β1, β2] ∈ LI \ {0LI})([β1, β2] �LI sx ⇒ [β1, β2] ∈ Sx)). In the above example,
s0.5 = supS0.5 = [0.5, 1]. So, e.g. [0.3, 0.8] �LI s0.5, but [0.3, 0.8] 6∈ S0.5 since
0.5 6∈ P[0.3,0.8] = [0.55, 1].

Fig. 9.1 gives a graphical representation of four possible setsSx. In the first three
examples, it does not hold that an intervalβ � sx belongs to the setSx. In these examples,
there can be found anα ∈ Sx, for which it holds that if we keep increasingα1 orα2, α will
no longer belong toSx at some point, but stillα� sx. However, if we then keep decreasing
the other bound (α2 or α1 respectively) at some pointα will again belong to the setSx. If
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[1,1][0,1]

[0,0]

sx

Sx

α

β

[1,1][0,1]

[0,0]
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β

α

[1,1][0,1]

[0,0]

sx

Sx

β

α

[1,1][0,1]

[0,0]

sx

Sx

α

Figure 9.1: A graphical representation of some possible setsSx.

we want that every intervalβ � sx belongs toSx, Sx needs to have the form of the fourth
example. In that example, for an arbitraryα ∈ Sx, we see that if we keep increasingα1

or α2, α will no longer belong toSx at some point (or reach its maximum possible value).
This time howeverα 6� sx then and decreasing the other bound (α2 or α1 respectively)
will not result inα belonging to the setSx again anymore. This special case leads us to the
following lemma.

Lemma 9.1.8. For a decreasing family(P[α1,α2])[α1,α2]∈LI\{0
LI } of crisp subsets ofRn,

the interval-valued fuzzy setR defined in (9.2) and the setsdP andSx and the supremum
sx of the latter set, respectively defined in expressions (9.3)-(9.5), we have that

(∀x ∈ dP )(∀t ∈ LI \ {0LI})(t�LI sx ⇒ t ∈ Sx)

m
[SC] :

(
∀[α1, α2] ∈ LI \ {0LI}

)(
∀x ∈ Rn

)(
x 6∈ P[α1,α2] ⇒

(
(∀[β1, β2] ∈ LI \ {0LI})((β1 < α1 andβ2 > α2) ⇒ x 6∈ P[β1,β2])

)
or

(
(∀[β1, β2] ∈ LI \ {0LI})((β1 > α1 andβ2 < α2) ⇒ x 6∈ P[β1,β2])

))

Proof.

⇒: Suppose that [SC] would not be true and thus that
(
∃[α1, α2] ∈ LI \ {0LI}

)(
∃x ∈

Rn
)(
x 6∈ P[α1,α2] and

(
(∃[β1, β2] ∈ LI \ {0LI})((β1 < α1 andβ2 > α2) and

x ∈ P[β1,β2])
)

and
(
(∃[γ1, γ2] ∈ LI \ {0LI})((γ1 > α1 andγ2 < α2) andx ∈
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9.1 Continuous Case

P[γ1,γ2])
))

. This would mean thatsx,1 ≥ γ1 andsx,2 ≥ β2. Further,[α1, α2] �LI

[γ1, β2] ≤LI sx and thus[α1, α2] ∈ Sx andx ∈ P[α1,α2] and hence a contradiction.

⇐: Suppose that the condition [SC] is fulfilled. Lett ∈ LI \ {0LI}, so thatt �LI sx.
We have to prove thatt ∈ Sx.

Suppose thatt 6∈ Sx. Sincet �LI sx, we have thatt1 < sx,1. As a consequence,
t1 is no upperbound for the set of lower bounds of the elements ofSx, which implies
that (∃y ∈]t1, sx,1])(∃z ∈ [y, 1])([y, z] ∈ Sx). If z ≥ t2 then we would get a
contradiction since thenx ∈ P[y,z] ⊆ P[t1,t2] and hencet ∈ Sx. Soz < t2 and thus
(∃[y, z] ∈ LI \ {0LI})(y > t1 andz < t2 andx ∈ P[y,z]).

Analogously, sincet �LI sx, we have thatt2 < sx,2. As a consequence,t2 is
no upperbound for the set of lower bounds of the elements ofSx, which implies
that (∃z′ ∈]t2, sx,2])(∃y′ ∈ [0, z′])([y′, z′] ∈ Sx). If y′ ≥ t1 then we would get a
contradiction since thenx ∈ P[y′,z′] ⊆ P[t1,t2], i.e., t ∈ Sx. Soy′ < t1 and thus
(∃[y′, z′] ∈ LI \ {0LI})(y′ < t1 andz′ > t2 andx ∈ P[y′,z′]).

If we combine the above results, then we find that it would holdthat x 6∈ P[t1,t2]

and (∃[y, z] ∈ LI \ {0LI})(y > t1 andz < t2 andx ∈ P[y,z]) and (∃[y′, z′] ∈
LI \ {0LI})(y′ < t1 andz′ > t2 andx ∈ P[y′,z′]) and hence a contradiction. So
t ∈ Sx.

The family defined in Example 9.1.3 fulfils the condition [SC]. More general, a decreas-
ing family (P[α1,α2])[α1,α2]∈LI\{0

LI } for which P[α1,α2] is an interval with lower bound
f(α1) and upper boundg(α2), where the functionsf andg are respectively increasing and
decreasing over[0, 1] andf(β1) ≤ g(β2) for all [β1, β2] ∈ LI , is an example of a family
that fulfils condition [SC]. An analogous example of a familythat fulfils condition [SC] is
e.g. the family(P[α1,α2])[α1,α2]∈LI\{0

LI } for whichP[α1,α2] is an interval with lower bound
h(α2) and upper boundi(α1), where the functionsh andi are respectively increasing and
decreasing over[0, 1] andh(β2) ≤ i(β1) for all [β1, β2] ∈ LI . For families for which [SC]
holds, Proposition 9.1.5 is now also a sufficient condition.

Proposition 9.1.9. For a decreasing family(P[α1,α2])[α1,α2]∈LI\{0
LI } of crisp subsets of

Rn that fulfils the condition [SC], the interval-valued fuzzy setR defined in (9.2) and the
setsdP andSx and the supremumsx of the latter set, respectively defined in expressions
(9.3)-(9.5), it holds that:

(∀x ∈ dP )(sx ∈ Sx) ⇔ (∀[α1, α2] ∈ LI \ {0LI})(P[α1,α2] =
⋂

[β1,β2]�LI [α1,α2]

P[β1,β2]).

Proof.

⇒: Follows from Proposition 9.1.5.
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⇐: Let x ∈ dP . Since the family(P[α1,α2])[α1,α2]∈LI\{0
LI } fulfils condition [SC], we

can use Lemma 9.1.8 and obtain successively:

(∀[β1, β2] ∈ LI \ {0LI})([β1, β2] �LI sx ⇒ [β1, β2] ∈ Sx))

⇔ (∀[β1, β2] ∈ LI \ {0LI})([β1, β2] �LI sx ⇒ (x ∈ P[β1,β2]))

⇔ x ∈
⋂

[β1,β2]�LI sx

P[β1,β2]

⇔ x ∈ P[sx,1,sx,2]

⇔ sx ∈ Sx = {[α1, α2] | [α1, α2] ∈ LI \ {0LI} andx ∈ P[α1,α2]}.

Remark that if a decreasing family(P[α1,α2])[α1,α2]∈LI\{0
LI } does not fulfil condition

[SC], then it does not hold that(∀[α1, α2] ∈ LI \ {0LI})(P[α1,α2] = Rα2

α1
) anyway. Indeed,

due to Lemma 9.1.8 it does not hold that(∀x ∈ dP )(∀t ∈ LI \ {0LI})(t �LI sx ⇒ t ∈
Sx). As a consequence(∃x ∈ dP )(∃t ∈ LI \ {0LI})(t �LI sx andt 6∈ Sx). This implies
thatx 6∈ P[t1,t2] ⊇ P[sx,1,sx,2] or thussx 6∈ Sx.

Example 9.1.10.The family (P[α1,α2])[α1,α2]∈LI\{0
LI } of crisp subsets ofRn, given by

P[α1,α2] = [−1 + α1, 1 − α2] for all [α1, α2] ∈ LI \ {0LI}, is an example of a family for
which (∀[α1, α2] ∈ LI \ {0LI})(P[α1,α2] = Rα2

α1
), with the interval-valued fuzzy setR as

defined in (9.2).
♦

The Construction Principle

Based on the results from the introduction of this subsection, we might extend an increasing
operatorφ onP(Rn) (i.e., the set of all crisp subsets ofRn) to an operatorΦ onFLI (Rn)
as follows:

Φ(A) =
⋃

[α1,α2]∈LI\{0
LI }

[α1, α2]φ(A
α2

α1
), for allA ∈ FLI (Rn).

Operators having two or more arguments can be extended analogously. We illustrate this
for an increasing operatorψ onP(Rn)× P(Rn) (like the binary dilation):

Ψ(A,B) =
⋃

[α1,α2]∈LI\{0
LI }

[α1, α2]ψ(A
α2

α1
, Bα2

α1
), for allA,B ∈ FLI (Rn).

As discussed in the introduction of this subsection, for theoperatorsΦ andΨ it does not
necessarily hold that:

(∀[α1, α2] ∈ LI \ {0LI})(Φ(A)α2

α1
= φ(Aα2

α1
))

(∀[α1, α2] ∈ LI \ {0LI})(Ψ(A,B)α2

α1
= ψ(Aα2

α1
, Bα2

α1
)).
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9.1 Continuous Case

The only binary morphological operator that is increasing,is the binary dilation. We will
now extend this operator to interval-valued fuzzy sets by the help of the above introduced
construction principle.

LetA,B ∈ FLI (Rn). Using the construction principle, we define the extended dilation

D̃(A,B) of A byB as follows:

D̃(A,B) =
⋃

[α1,α2]∈LI\{0
LI }

[α1, α2]D(Aα2

α1
, Bα2

α1
). (9.6)

Proposition 9.1.11.LetA,B ∈ FLI (Rn), then for ally ∈ Rn it holds that:

D̃(A,B)(y) = sup
x∈Ty(dB)∩dA

Cmin(B(x− y), A(x)) = DI
Cmin

(A,B)(y).

Proof. LetA,B ∈ FLI (Rn), and lety ∈ Rn. From the definition of the binary dilation,

D(Aα2

α1
, Bα2

α1
)(y) =

{
1 if y ∈ D(Aα2

α1
, Bα2

α1
)

0 else
,

it follows that:

D̃(A,B)(y) = sup
[α1,α2]∈LI\{0

LI }
([α1, α2]D(Aα2

α1
, Bα2

α1
))(y)

= sup {[α1, α2] | [α1, α2] ∈ LI \ {0LI} andy ∈ D(Aα2

α1
, Bα2

α1
)}

= sup {[α1, α2] | [α1, α2] ∈ LI \ {0LI} andTy(B
α2

α1
) ∩Aα2

α1
6= ∅}

= sup {[α1, α2] | [α1, α2] ∈ LI \ {0LI} and

(∃x ∈ Ty(dB) ∩ dA)(x ∈ Ty(B
α2

α1
) andx ∈ Aα2

α1
)}

= sup {[α1, α2] | [α1, α2] ∈ LI \ {0LI} and(∃x ∈ Ty(dB) ∩ dA)
((B1(x− y) ≥ α1 andA1(x) ≥ α1) and

(B2(x− y) ≥ α2 andA2(x) ≥ α2))}
= sup {[α1, α2] | [α1, α2] ∈ LI \ {0LI} and(∃x ∈ Ty(dB) ∩ dA)

(Cmin(B(x− y), A(x)) ≥LI [α1, α2])}
≡ (∗).

We have to prove that(∗) is equal to

sup {Cmin(B(x− y), A(x)) | x ∈ Ty(dB) ∩ dA} ≡ (∗∗).

• It holds that:

(∗) = sup {[α1, α2] | [α1, α2] ∈ LI \ {0LI} and(∃x ∈ Ty(dB) ∩ dA)
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([α1, α2] ≤LI Cmin(B(x− y), A(x)))}
≤LI sup {[α1, α2] | [α1, α2] ∈ LI \ {0LI} and

([α1, α2] ≤LI sup
x∈Ty(dB)∩dA

Cmin(B(x− y), A(x)))}

= sup
x∈Ty(dB)∩dA

Cmin(B(x− y), A(x)))

= (∗∗)

• On the other hand also(∗∗) ≤LI (∗). If Ty(dB)∩ dA = ∅, then(∗∗) = 0LI and thus
(∗∗) ≤LI (∗). Otherwise, consider an arbitraryε > 0. Then it holds that:

(∗∗)1 − ε is no upper bound for the set of lower bounds of the intervals

in the set{Cmin(B(x− y), A(x)) | x ∈ Ty(dB) ∩ dA} and(∗∗)2 − ε is no

upper bound for the set of upper bounds of the intervals in theset

{Cmin(B(x− y), A(x)) | x ∈ Ty(dB) ∩ dA}
⇒ (∃x ∈ Ty(dB) ∩ dA)((∗∗)1 − ε < Cmin(B(x− y), A(x))1) and

(∃x′ ∈ Ty(dB) ∩ dA)((∗∗)2 − ε < Cmin(B(x′ − y), A(x′))2)

⇒ (∗∗)1 − ε ∈ {α1 | (∃α2 ∈ [α1, 1] such that[α1, α2] ∈ LI \ {0LI}) and

(∃x ∈ Ty(dB) ∩ dA)([α1, α2] ≤LI Cmin(B(x− y), A(x)))} and

(∗∗)2 − ε ∈ {α2 | (∃α1 ∈ [0, α2] such that[α1, α2] ∈ LI \ {0LI}) and

(∃x ∈ Ty(dB) ∩ dA)([α1, α2] ≤LI Cmin(B(x− y), A(x)))}
⇒ (∗∗)1 − ε ≤ sup{α1 | (∃α2 ∈ [α1, 1] such that[α1, α2] ∈ LI \ {0LI}) and

(∃x ∈ Ty(dB) ∩ dA)([α1, α2] ≤LI Cmin(B(x− y), A(x)))} and

(∗∗)2 − ε ≤ sup{α2 | (∃α1 ∈ [0, α2] such that[α1, α2] ∈ LI \ {0LI}) and

(∃x ∈ Ty(dB) ∩ dA)([α1, α2] ≤LI Cmin(B(x− y), A(x)))}
⇒ [(∗∗)1 − ε, (∗∗)2 − ε] ≤LI sup{[α1, α2] ∈ LI \ {0LI} |

(∃x ∈ Ty(dB) ∩ dA)([α1, α2] ≤LI Cmin(B(x− y), A(x)))}

Takingε→ 0 gives the result.

Since the binary erosion is not increasing in both its arguments, we cannot use the
construction principle to extend this morphological operator to an interval-valued fuzzy
morphological operator. Such interval-valued fuzzy erosion can however be constructed by
duality properties.

Once the interval valued fuzzy dilationDI
Cmin

(A,B) has been constructed, also the ero-
sionEI

IEKD
(A,B) can be derived. If we however want a construction ofEI

IEKD
(A,B) in

terms of binary erosions, the duality can be worked out as:

EI
IEKD

(A,B)(y) = (coNs
(DI

Cmin
(coNs

(A), B)))(y)
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9.1 Continuous Case

= (coNs
(

⋃

[α1,α2]∈LI\{0
LI }

[α1, α2]D((coNs
A)α2

α1
, Bα2

α1
)))(y)

= Ns((
⋃

[α1,α2]∈LI\{0
LI }

[α1, α2]D((coNs
A)α2

α1
, Bα2

α1
))(y))

= Ns( sup
[α1,α2]∈LI\{0

LI }
([α1, α2]D((coNs

A)α2

α1
, Bα2

α1
))(y))

= Ns( sup
[α1,α2]∈LI\{0

LI }
([α1, α2]co(E(co((coNs

A)α2

α1
), Bα2

α1
)))(y))

The interval-valued fuzzy opening and closing can then be constructed as a combination
of the interval-valued fuzzy dilation and erosion.

9.1.2 Construction Based on Strict[α1, α2]-cuts

Introduction

Analogously as in Subsection 9.1.1, an interval-valued fuzzy setA can also be reconstructed
from its strict[α1, α2]-cuts.

Lemma 9.1.12.LetA ∈ FLI (Rn), then it holds that

A =
⋃

[α1,α2]∈LI\U
LI

[α1, α2]A
α2

α1
,

i.e., for allx ∈ Rn

A(x) = sup
[α1,α2]∈LI\U

LI

([α1, α2]A
α2

α1
)(x)

= sup {[α1, α2] | [α1, α2] ∈ LI \ ULI andx ∈ Aα2

α1
}.

Proof. For allx ∈ Rn andA ∈ FLI (Rn), it holds that

(
⋃

[α1,α2]∈LI\{1
LI }

[α1, α2]A
α2

α1
)(x)

= sup{([α1, α2]A
α2

α1
)(x) | [α1, α2] ∈ LI \ ULI}

= sup{([α1, α2]A
α2

α1
)(x) | [α1, α2] ∈ LI \ ULI andA(x) �LI [α1, α2]}

= sup{[α1, α2] | [α1, α2] ∈ LI \ ULI andA(x) �LI [α1, α2]}
= A(x)
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Construction of Interval-valued Fuzzy Morphological Operators

If we now consider a family(Q[α1,α2])[α1,α2]∈LI\U
LI

of crisp subsets ofRn that is
decreasing ([α1, α2] ≤LI [α3, α4] ⇒ Q[α1,α2] ⊇ Q[α3,α4]) and we define the interval-
valued fuzzy setV in Rn for all x ∈ Rn as

V (x) = sup
[α1,α2]∈LI\U

LI

([α1, α2]Q[α1,α2])(x) (9.7)

= sup {[α1, α2] | [α1, α2] ∈ LI \ ULI andx ∈ Q[α1,α2]},

then we might wonder whether it holds that(∀[α1, α2] ∈ LI \ ULI )(V α2

α1
= Q[α1,α2]). In

contrast to the case of weak[α1, α2]-cuts, there is no inclusion that always holds.

Example 9.1.13. Let Q[α1,α2] = [α1+α2

2 , 1] for all [α1, α2] ∈ LI \ ULI . Consider e.g.
x = 0.4. x ∈ Q[0.4,0.4] andα1 can not be greater than 0.4 since thenα1+α2

2 > 0.4. Further,

0.4 ∈ Q[0,α2], for all α2 ≤ 0.8. So,V (0.4) = [0.4, 0.8] and thus0.4 ∈ V 0.7
0.3

at one hand,
but on the other hand0.4 6∈ Q[0.3,0.7] = [0.5, 1]. As a consequence, it does not hold for all
[α1, α2] ∈ LI \ ULI thatQ[α1,α2] ⊇ V α2

α1
.

Neither does it hold for all[α1, α2] ∈ LI \ ULI thatQ[α1,α2] ⊆ V α2

α1
. For every

[α1, α2] ∈ LI \ ULI , we have for[β1, β2] �LI [α1, α2] that β1+β2

2 < α1+α2

2 or thus
α1+α2

2 ∈ Q[β1,β2]. As a consequenceV (α1+α2

2 ) = sup {[β1, β2] ∈ LI \ ULI | α1+α2

2 ∈
Q[β1,β2]} = [α1, α2] or thus α1+α2

2 6∈ V α2

α1
. On the other handα1+α2

2 ∈ Q[α1,α2] =

[α1+α2

2 , 1] which means thatV α2

α1
6⊇ Q[α1,α2].

♦

The equality holds however under certain conditions. To formulate these conditions, we
define the setdQ as

dQ = {x | x ∈ Rn and(∃[α1, α2] ∈ LI \ ULI )(x ∈ Q[α1,α2])}. (9.8)

Further, for a fixed pointx ∈ dQ, we introduce the setTx, given by

Tx = {[α1, α2] | [α1, α2] ∈ LI \ ULI andx ∈ Q[α1,α2]}, (9.9)

and we denote the supremum of this set bytx = [tx,1, tx,2]:

tx = supTx. (9.10)

Remark thatTx 6= ∅.
The following Proposition gives a necessary condition suchthat the equality holds:

Proposition 9.1.14. For a decreasing family(Q[α1,α2])[α1,α2]∈LI\U
LI

of crisp subsets of
Rn, the interval-valued fuzzy setV defined in (9.7) and the setsdQ andTx and the supre-
mumtx of the latter set, respectively defined in expressions (9.8)-(9.10), it holds that:

(∀[α1, α2] ∈ LI\ULI )(Q[α1,α2] = V α2

α1
) ⇒ (∀x ∈ dQ)(∀[β1, β2] ∈ Tx)(tx �LI [β1, β2]).
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9.1 Continuous Case

Proof. Suppose(∀[α1, α2] ∈ LI \ ULI})(Q[α1,α2] = V α2

α1
), or equivalently,(∀[α1, α2] ∈

LI \ ULI )(x ∈ Q[α1,α2] ⇔ tx = V (x) �LI [α1, α2]). It is impossible then that there
would exist anx ∈ dQ, so that there exists a[β1, β2] ∈ Tx for which [β1, β2] 6�LI tx.
Indeed,[β1, β2] ∈ Tx means thatx ∈ Q[β1,β2], which is equivalent totx �LI [β1, β2].

We would like to mention here that the condition(∀x ∈ dQ)(∀[β1, β2] ∈ Tx)(tx �LI

[β1, β2]) ⇒ tx 6∈ Tx is a necessary and sufficient condition such that(∀[α1, α2] ∈ LI \
ULI})(Q[α1,α2] ⊆ V α2

α1
) would hold.

Proposition 9.1.15. For a decreasing family(Q[α1,α2])[α1,α2]∈LI\U
LI

of crisp subsets of
Rn, the interval-valued fuzzy setV defined in (9.7) and the setsdQ andTx and the supre-
mumtx of the latter set, respectively defined in expressions (9.8)-(9.10), it holds that:

(∀[α1, α2] ∈ LI\ULI )(Q[α1,α2] ⊆ V α2

α1
) ⇔ (∀x ∈ dQ)(∀[β1, β2] ∈ Tx)(tx �LI [β1, β2]).

Proof.

⇐: Let [α1, α2] ∈ LI \ ULI and letx ∈ Q[α1,α2]. It then holds that:

x ∈ Q[α1,α2]

⇔ [α1, α2] ∈ {[β1, β2] | [β1, β2] ∈ LI \ ULI andx ∈ Q[β1,β2]}
⇒ sup {[β1, β2] | [β1, β2] ∈ LI \ ULI andx ∈ Q[β1,β2]} �LI [α1, α2]

⇔ V (x) �LI [α1, α2]

⇔ x ∈ V α2

α1
.

Thus,Q[α1,α2] ⊆ V α2

α1
.

⇒: Suppose(∀[α1, α2] ∈ LI \ ULI})(Q[α1,α2] ⊆ V α2

α1
), or equivalently,(∀[α1, α2] ∈

LI \ULI )(x ∈ Q[α1,α2] ⇒ tx = V (x) �LI [α1, α2]). It is impossible then that there
would exist anx ∈ dQ, so that there exists a[β1, β2] ∈ Tx for which [β1, β2] 6�LI tx.
Indeed,[β1, β2] ∈ Tx means thatx ∈ Q[β1,β2], which implies thattx �LI [β1, β2].

The condition in Proposition 9.1.14 is however not a sufficient condition for the equality
to hold as the following example illustrates.

Example 9.1.16.LetQ[α1,α2] =]α1+α2

2 , 1] for all [α1, α2] ∈ LI \ ULI . ThendQ =]0, 1].
Forx ∈ dQ, it holds that[β1, β2] ∈ Tx ⇔ x ∈]β1+β2

2 , 1], which is equivalent toβ1+β2

2 < x.
So [β1, β1] ∈ Tx for all β1 < x. It is impossible thatβ1 ≥ x for any [β1, β2] ∈ Tx,
since thenβ1+β2

2 ≥ x. So the first component of each element ofTx is less than the first
component of the supremum ofTx (= x). Further, also[0, y] ∈ Tx for all y such that
y < 2x andy < 1. It is impossible thatβ2 ≥ 2x or β2 ≥ 1 for any [β1, β2] ∈ Tx, since
then respectivelyβ1+β2

2 ≥ x and[β1, β2] 6∈ LI \ ULI . So the second component of each

229



Construction of Interval-valued Fuzzy Morphological Operators

element ofTx is less than the second component of the supremum ofTx (= min(2x, 1)).
We conclude that(∀x ∈ dQ)(∀[β1, β2] ∈ Tx)(tx �LI [β1, β2]).

It does however not hold that(∀[α1, α2] ∈ LI \ ULI )(Q[α1,α2] = V α2

α1
). Consider e.g.

x = 0.4. x ∈ Q[α1,α1] for all α1 < 0.4 andα1 can not be greater or equal to 0.4 since then
α1+α2

2 ≥ 0.4. Further,0.4 ∈ Q[0,α2], for all α2 < 0.8. So,V (0.4) = [0.4, 0.8] and thus

0.4 ∈ V 0.7
0.3

at one hand, but on the other hand0.4 6∈ Q[0.3,0.7] =]0.5, 1]. As a consequence,

it does not hold for all[α1, α2] ∈ LI \ ULI thatQ[α1,α2] = V α2

α1
.

♦

The given condition is not a sufficient condition because it does not necessarily hold
that (∀[β1, β2] ∈ LI \ ULI )([β1, β2] �LI tx ⇒ [β1, β2] ∈ Tx)). In the above example,
t0.4 = supT0.4 = [0.4, 0.8]. So, e.g. [0.3, 0.7] �LI t0.4, but [0.3, 0.7] 6∈ T0.4 since
0.4 6∈ Q[0.3,0.7] =]0.5, 1].

Analogously to Lemma 9.1.8 the property(∀[β1, β2] ∈ LI \ ULI )([β1, β2] �LI tx ⇒
[β1, β2] ∈ Tx)) does however hold in the following special case:

Lemma 9.1.17. For a decreasing family(Q[α1,α2])[α1,α2]∈LI\U
LI

of crisp subsets ofRn,
the interval-valued fuzzy setV defined in (9.7) and the setsdQ andTx and the supremum
tx of the latter set, respectively defined in expressions (9.8)-(9.10), we have that

(∀x ∈ dQ)(∀r ∈ LI \ ULI )(r �LI tx ⇒ r ∈ Tx)

m
[SC ′] :

(
∀[α1, α2] ∈ LI \ ULI

)(
∀x ∈ Rn

)(
x 6∈ Q[α1,α2] ⇒

(
(∀[β1, β2] ∈ LI \ ULI )((β1 < α1 andβ2 > α2) ⇒ x 6∈ Q[β1,β2])

)
or

(
(∀[β1, β2] ∈ LI \ ULI )((β1 > α1 andβ2 < α2) ⇒ x 6∈ Q[β1,β2])

))

Proof. Analogous to the proof of Lemma 9.1.8.

Remark that if a decreasing family(Q[α1,α2])[α1,α2]∈LI\U
LI

of crisp subsets ofRn does
not satisfy condition [SC’], then it will also not hold that(∀[α1, α2] ∈ LI \ULI )(Q[α1,α2] =

V α2

α1
). Indeed, if [SC’] does not hold, then(∃[α1, α2] ∈ LI \ULI )(∃x ∈ Rn)(x 6∈ Q[α1,α2]

and (∃[β1, β2] ∈ LI \ ULI )(β1 < α1 andβ2 > α2 andx ∈ Q[β1,β2]) and(∃[γ1, γ2] ∈
LI \ULI )(γ1 > α1 andγ2 < α2 andx ∈ Q[γ1,γ2])). This would mean thatV1(x) = tx,1 ≥
γ1 > α1 andV2(x) = tx,2 ≥ β2 > α2. As a consequence,x ∈ V α2

α1
andx 6∈ Q[α1,α2].

In what follows we will therefore concentrate on families for which [SC’] holds.
For a decreasing family(Q[α1,α2])[α1,α2]∈LI\U

LI
of crisp subsets ofRn for which con-

dition [SC’] does hold, the necessary condition in Proposition 9.1.14 becomes a sufficient
condition.

Proposition 9.1.18. For a decreasing family(Q[α1,α2])[α1,α2]∈LI\U
LI

of crisp subsets of
Rn that fulfils condition [SC’], the interval-valued fuzzy setV defined in (9.7) and the sets
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9.1 Continuous Case

dQ andTx and the supremumtx of the latter set, respectively defined in expressions (9.8)-
(9.10), it holds that:

(∀[α1, α2] ∈ LI\ULI )(Q[α1,α2] = V α2

α1
) ⇔ (∀x ∈ dQ)(∀[β1, β2] ∈ Tx)(tx �LI [β1, β2]).

Proof.

⇐: Since condition [SC’] is fulfilled, Lemma 9.1.17 can be used: (∀x ∈ dQ)(∀r ∈
LI \ ULI )(r �LI tx ⇒ r ∈ Tx). Further, it is given that(∀x ∈ dQ)(∀[β1, β2] ∈
Tx)(tx �LI [β1, β2]). Let [β1, β2] ∈ LI \ ULI and letx ∈ Q[β1,β2]. We have that:

x ∈ Q[β1,β2]

⇔ [β1, β2] ∈ {[α1, α2] | [α1, α2] ∈ LI \ ULI andx ∈ Q[α1,α2]}
⇔ sup {[α1, α2] | [α1, α2] ∈ LI \ ULI andx ∈ Q[α1,α2]} �LI [β1, β2]

⇔ V (x) �LI [β1, β2]

⇔ x ∈ V β2

β1

.

As a consequence,Q[β1,β2] = V β2

β1

.

⇒: Follows from Proposition 9.1.14.

The condition in Proposition 9.1.18 is however not always efficient in practice. For a
family (Q[α1,α2])[α1,α2]∈LI\U

LI
that satisfies condition [SC’], it would be needed to calcu-

late the setTx for all x ∈ dQ and to check whethertx �LI [β1, β2] for all [β1, β2] ∈ Tx.
To facilitate this work, an equivalent condition on the setsQ[α1,α2] can be used.

Proposition 9.1.19. For a decreasing family(Q[α1,α2])[α1,α2]∈LI\U
LI

of crisp subsets of
Rn that satisfies condition [SC’], the setsdQ andTx and the supremumtx of the latter set,
respectively defined in expressions (9.8)-(9.10), it holdsthat:

(∀x ∈ dQ)(∀[β1, β2] ∈ Tx)(tx �LI [β1, β2])

m
(∀[α1, α2] ∈ LI \ ULI )(Q[α1,α2] =

⋃
[β1,β2]�LI [α1,α2]

Q[β1,β2]).

Proof.

⇒: Let [α1, α2] ∈ LI \ ULI . For allx ∈ Q[α1,α2] it holds that:

x ∈ Q[α1,α2]

⇔ [α1, α2] ∈ Tx

⇔ [α1, α2] �LI tx

⇔ (∃[β1, β2] ∈ LI \ ULI )(tx �LI [β1, β2] �LI [α1, α2])
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Construction of Interval-valued Fuzzy Morphological Operators

⇔ (∃[β1, β2] ∈ LI \ ULI )([β1, β2] �LI [α1, α2] and[β1, β2] ∈ Tx)

⇔ (∃[β1, β2] ∈ LI \ ULI )([β1, β2] �LI [α1, α2] and

[β1, β2] ∈ {[γ1, γ2] | [γ1, γ2] ∈ LI \ ULI andx ∈ Q[γ1,γ2]})
⇔ (∃[β1, β2] ∈ LI \ ULI )([β1, β2] �LI [α1, α2] andx ∈ Q[β1,β2])

⇔ x ∈
⋃

[β1,β2]�LI [α1,α2]

Q[β1,β2].

⇐: Let x ∈ dQ. We first prove thattx 6∈ Tx. Indeed, suppose thattx ∈ Tx. This
would mean thatx ∈ Q[tx,1,tx,2]. On the other hand, sincetx = supTx, it holds that
(∀[β1, β2])([β1, β2] �LI tx ⇒ x 6∈ Q[β1,β2]) or thusx 6∈ ⋃

[β1,β2]�LI tx

Q[β1,β2] and

hence a contradiction. Sotx 6∈ Tx.

We now prove that(∀[β1, β2] ∈ Tx)(tx �LI [β1, β2]). Suppose that this would not
be true and that there would exist a[β1, β2] ∈ Tx for which tx 6�LI [β1, β2]. Since
tx 6∈ Tx, this would mean that eithertx,1 = β1 or tx,2 = β2, but not both.

We consider the case thattx,1 = β1 andtx,2 > β2. Sox ∈ Q[tx,1,β2] = Q[β1,β2].
Sincetx = supTx, (@[γ1, γ2] ∈ LI)([γ1, γ2] �LI [tx,1, β2] andx ∈ Q[γ1,γ2]) or
equivalentlyx 6∈ ⋃

[γ1,γ2]�LI [tx,1,β2]

Q[γ1,γ2] and thus
⋃

[γ1,γ2]�LI [tx,1,β2]

Q[γ1,γ2] 6=

Q[tx,1,β2], i.e., again a contradiction.

The casetx,2 = β2 andtx,1 > β1 leads to a contradiction in an analogous way. We
conclude that(∀[β1, β2] ∈ Tx)(tx �LI [β1, β2]).

Example 9.1.20. The family (Q[α1,α2])[α1,α2]∈LI\U
LI

of crisp subsets ofRn, given by
Q[α1,α2] = [−1+α1, 1−α2] for all [α1, α2] ∈ LI \ULI , is an example of a family that sat-
isfies condition [SC’], but for which it does not hold that(∀[α1, α2] ∈ LI \ULI )(Q[α1,α2] =

V α2

α1
), with the interval-valued fuzzy setV as defined in (9.7). Indeed, let[α1, α2] ∈

LI \ ULI , then it holds that(∀[β1, β2] ∈ LI \ ULI )([β1, β2] �LI [α1, α2] ⇒ −1 + β1 >
−1 + α1 and1 − α2 > 1 − β2) or thus(∀[β1, β2] ∈ LI \ ULI )([β1, β2] �LI [α1, α2] ⇒
−1 + α1 6∈ Q[β1,β2] and1 − α2 6∈ Q[β1,β2]). On the other hand−1 + α1 ∈ Q[α1,α2] and
1− α2 ∈ Q[α1,α2]. So

⋃
[β1,β2]�LI [α1,α2]

Q[β1,β2] 6= Q[α1,α2].

♦

Example 9.1.21. The family (Q[α1,α2])[α1,α2]∈LI\U
LI

of crisp subsets ofRn, given by
Q[α1,α2] =] − 1 + α1, 1 − α2[ for all [α1, α2] ∈ LI \ ULI , is an example of a family for
which (∀[α1, α2] ∈ LI \ ULI )(Q[α1,α2] = V α2

α1
), with the interval-valued fuzzy setV as

defined in (9.7).
♦
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9.1 Continuous Case

The Construction Principle

Based on the results from the introduction of this subsection and analogous to the construc-
tion principle based on weak[α1, α2]-cuts, we might extend an increasing operatorφ on
P(Rn) to an operatorΦ onFLI (Rn) as follows:

Φ(A) =
⋃

[α1,α2]∈LI\U
LI

[α1, α2]φ(A
α2

α1
), for allA ∈ FLI (Rn).

Operators having two or more arguments can be extended analogously. We illustrate this
for an increasing operatorψ onP(Rn)× P(Rn) (like the binary dilation):

Ψ(A,B) =
⋃

[α1,α2]∈LI\U
LI

[α1, α2]ψ(A
α2

α1
, Bα2

α1
), for allA,B ∈ FLI (Rn).

As discussed in the introduction of this subsection, for theoperatorsΦ andΨ it does not
necessarily hold that:

(∀[α1, α2] ∈ LI \ ULI )(Φ(A)α2

α1
= φ(Aα2

α1
))

(∀[α1, α2] ∈ LI \ ULI )(Ψ(A,B)α2

α1
= ψ(Aα2

α1
, Bα2

α1
)).

We now extend the increasing binary dilation to interval-valued fuzzy sets by the help
of the above introduced construction principle as follows:

LetA,B ∈ FLI (Rn). The extended dilationD̃(A,B)
′
of A byB is then given by:

D̃(A,B)
′
=

⋃

[α1,α2]∈LI\U
LI

[α1, α2]D(Aα2

α1
, Bα2

α1
). (9.11)

Proposition 9.1.22.LetA,B ∈ FLI (Rn), then for ally ∈ Rn it holds that:

D̃(A,B)
′
(y) ≤LI sup

x∈Ty(dB)∩dA

Cmin(B(x− y), A(x)) = DI
Cmin

(A,B)(y).

If A(x) �LI 0LI , ∀x ∈ dA andB(x) �LI 0LI , ∀x ∈ dB , then

D̃(A,B)
′
(y) = sup

x∈Ty(dB)∩dA

Cmin(B(x− y), A(x)) = DI
Cmin

(A,B)(y).

Proof. LetA,B ∈ FLI (Rn), and lety ∈ Rn. From the definition of the binary dilation,

D(Aα2

α1
, Bα2

α1
)(y) =

{
1 if y ∈ D(Aα2

α1
, Bα2

α1
)

0 else
,

it follows that:

D̃(A,B)
′
(y) = sup

[α1,α2]∈LI\U
LI

([α1, α2]D(Aα2

α1
, Bα2

α1
))(y)
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= sup {[α1, α2] | [α1, α2] ∈ LI \ ULI andy ∈ D(Aα2

α1
, Bα2

α1
)}

= sup {[α1, α2] | [α1, α2] ∈ LI \ ULI andTy(B
α2

α1
) ∩Aα2

α1
6= ∅}

= sup {[α1, α2] | [α1, α2] ∈ LI \ ULI and

(∃x ∈ Ty(dB) ∩ dA)(x ∈ Ty(B
α2

α1
) andx ∈ Aα2

α1
)}

= sup {[α1, α2] | [α1, α2] ∈ LI \ ULI and(∃x ∈ Ty(dB) ∩ dA)
((B1(x− y) > α1 andA1(x) > α1) and

(B2(x− y) > α2 andA2(x) > α2))}
= sup {[α1, α2] ∈ LI \ ULI | (∃x ∈ Ty(dB) ∩ dA)

(Cmin(B(x− y), A(x)) �LI [α1, α2])}
≡ (∗).

We have to prove that(∗) is less than or equal to

sup {Cmin(B(x− y), A(x)) | x ∈ Ty(dB) ∩ dA} ≡ (∗∗).

It holds that:

(∗) = sup {[α1, α2] | [α1, α2] ∈ LI \ ULI and(∃x ∈ Ty(dB) ∩ dA)
([α1, α2] �LI Cmin(B(x− y), A(x)))}

≤LI sup {[α1, α2] | [α1, α2] ∈ LI \ ULI and

([α1, α2] �LI sup
x∈Ty(dB)∩dA

Cmin(B(x− y), A(x)))}

= sup
x∈Ty(dB)∩dA

Cmin(B(x− y), A(x)))

= (∗∗)

If A(x) �LI 0LI , ∀x ∈ dA andB(x) �LI 0LI , ∀x ∈ dB , then also(∗∗) ≤LI (∗), as
we will now prove.

If Ty(dB) ∩ dA = ∅, then(∗∗) = 0LI and thus(∗∗) ≤LI (∗). Otherwise, consider an
arbitraryε > 0. It holds that:

(∗∗)1 − ε is no upper bound for the set of lower bounds of the intervals in the set

{Cmin(B(x− y), A(x)) | x ∈ Ty(dB) ∩ dA} and(∗∗)2 − ε is no upper bound for

the set of upper bounds of the intervals in the set{Cmin(B(x− y), A(x)) |
x ∈ Ty(dB) ∩ dA}

⇒ (∃x ∈ Ty(dB) ∩ dA)((∗∗)1 − ε < Cmin(B(x− y), A(x))1) and

(∃x′ ∈ Ty(dB) ∩ dA)((∗∗)2 − ε < Cmin(B(x′ − y), A(x′))2).

For such elementx from the first part of the above consequent, for which(∗∗)1 − ε <
(Cmin(B(x − y), A(x)))1, we can chooseα2 = (∗∗)1 − ε < (Cmin(B(x − y), A(x)))1 ≤

234



9.1 Continuous Case

(Cmin(B(x− y), A(x)))2 such that

(∗∗)1 − ε ∈ {α1 | (∃α2 ∈ [α1, 1[ such that[α1, α2] ∈ LI \ ULI ) and

(∃x ∈ Ty(dB) ∩ dA)([α1, α2] �LI Cmin(B(x− y), A(x)))}.

SinceA(x) �LI 0LI , ∀x ∈ dA andB(x) �LI 0LI , ∀x ∈ dB , for the second part of the
consequent, we can chooseα1 = 0 < (Cmin(B(x′ − y), A(x′)))1, such that

(∗∗)2 − ε ∈ {α2 | (∃α1 ∈ [0, α2] such that[α1, α2] ∈ LI \ ULI ) and

(∃x ∈ Ty(dB) ∩ dA)([α1, α2] �LI Cmin(B(x− y), A(x)))}

It thus follows that:

(∗∗)1 − ε ∈ {α1 | (∃α2 ∈ [α1, 1[ such that[α1, α2] ∈ LI \ ULI ) and

(∃x ∈ Ty(dB) ∩ dA)([α1, α2] �LI Cmin(B(x− y), A(x)))} and

(∗∗)2 − ε ∈ {α2 | (∃α1 ∈ [0, α2] such that[α1, α2] ∈ LI \ ULI ) and

(∃x ∈ Ty(dB) ∩ dA)([α1, α2] �LI Cmin(B(x− y), A(x)))}
⇒ (∗∗)1 − ε ≤ sup{α1 | (∃α2 ∈ [α1, 1[ such that[α1, α2] ∈ LI \ ULI ) and

(∃x ∈ Ty(dB) ∩ dA)([α1, α2] �LI Cmin(B(x− y), A(x)))} and

(∗∗)2 − ε ≤ sup{α2 | (∃α1 ∈ [0, α2] such that[α1, α2] ∈ LI \ ULI ) and

(∃x ∈ Ty(dB) ∩ dA)([α1, α2] �LI Cmin(B(x− y), A(x)))}
⇒ [(∗∗)1 − ε, (∗∗)2 − ε] ≤LI sup{[α1, α2] | [α1, α2] ∈ LI \ ULI and

(∃x ∈ Ty(dB) ∩ dA)([α1, α2] �LI Cmin(B(x− y), A(x)))} = (∗).

Takingε→ 0 gives the result.

The following example illustrates that if notA(x) �LI 0LI , ∀x ∈ dA or notB(x) �LI

0LI , ∀x ∈ dB , then(∗) is not necessarily equal to(∗∗).

Example 9.1.23.Let A(0) = [0, 0.7] andA(x) = [0.3, 0.5], ∀x ∈]0, 1] and letB(x) =
[0.2, 0.6], ∀x ∈ [0, 0.5]. Lety = 0, thenT0(dB)∩dA = [0, 0.5]. ∀x ∈]0, 0.5], Cmin(B(x−
0), A(x)) = [0.2, 0.5]. For x = 0, Cmin(B(0), A(0)) = [0, 0.6]. Thussup{Cmin(B(x −
y), A(x)) | x ∈ Ty(dB) ∩ dA} = sup{[0, 0.6], [0.2, 0.5]} = [0.2, 0.6]. On the other hand,
(@[α1, α2] ∈ LI)([α1, α2] �LI [0, 0.6]) and(∀[α1, α2] ∈ LI)([α1, α2] �LI [0.2, 0.5] ⇒
(∃x ∈ T0(dB) ∩ dA)([α1, α2] �LI Cmin(B(x − y), A(x)))), from which it follows that
sup{[α1, α2] ∈ LI | (∃x ∈ T0(dB) ∩ dA)([α1, α2] �LI Cmin(B(x − y), A(x)))} =
[0.2, 0.5].

Remark that ifA(0) would have been less than or equal to[0, 0.5], then we would have
had an equality.

♦
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Construction of Interval-valued Fuzzy Morphological Operators

The construction principle can not be used to extend the binary erosion to an interval-
valued fuzzy morphological operator, since it is not increasing in both its arguments. Anal-
ogously as for weak[α1, α2]-cuts, it can however be constructed by duality properties.

EI
IEKD

(A,B)(y) = (coNs
(DI

Cmin
(coNs

(A), B)))(y)

≤LI (coNs
(

⋃

[α1,α2]∈LI\U
LI

[α1, α2]D((coNs
A)α2

α1
, Bα2

α1
)))(y)

= Ns((
⋃

[α1,α2]∈LI\U
LI

[α1, α2]D((coNs
A)α2

α1
, Bα2

α1
))(y))

= Ns( sup
[α1,α2]∈LI\U

LI

([α1, α2]D((coNs
A)α2

α1
, Bα2

α1
))(y))

= Ns( sup
[α1,α2]∈LI\U

LI

([α1, α2]co(E(co((coNs
A)α2

α1
), Bα2

α1
)))(y))

If A(x) �LI 0LI , ∀x ∈ dA andB(x) �LI 0LI , ∀x ∈ dB , then we have an equality.
The interval-valued fuzzy opening and closing can then be constructed as a combination

of the interval-valued fuzzy dilation and erosion.

9.1.3 Construction Based on Weak-Strict and Strict-Weak[α1, α2]-
cuts

Introduction

Analogously as in Subsection 9.1.1and 9.1.2, an interval-valued fuzzy setA can also be
reconstructed from its weak-strict and strict-weak[α1, α2]-cuts.

Lemma 9.1.24.LetA ∈ FLI (Rn), then it holds that

(i)

A =
⋃

[α1,α2]∈LI\U
LI

[α1, α2]A
α2

α1
,

i.e., for allx ∈ Rn,

A(x) = sup
[α1,α2]∈LI\U

LI

([α1, α2]A
α2

α1
)(x)

= sup {[α1, α2] | [α1, α2] ∈ LI \ ULI andx ∈ Aα2

α1
},

(ii)

A =
⋃

[α1,α2]∈LI\{1
LI }

[α1, α2]A
α2

α1
,
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9.1 Continuous Case

i.e., for allx ∈ Rn,

A(x) = sup
[α1,α2]∈LI\{1

LI }
([α1, α2]A

α2

α1
)(x)

= sup {[α1, α2] | [α1, α2] ∈ LI \ {1LI} andx ∈ Aα2

α1
}.

Proof.

(i) For all x ∈ Rn andA ∈ FLI (Rn), it holds that

(
⋃

[α1,α2]∈LI\U
LI

[α1, α2]A
α2

α1
)(x)

= sup{([α1, α2]A
α2

α1
)(x) | [α1, α2] ∈ LI \ ULI}

= sup{([α1, α2]A
α2

α1
)(x) | [α1, α2] ∈ LI \ ULI and

A1(x) ≥ α1 andA2(x) > α2}
= sup{[α1, α2] | [α1, α2] ∈ LI \ ULI andA1(x) ≥ α1 andA2(x) > α2}
= A(x)

(ii) Analogously.

If we now consider families(M[α1,α2])[α1,α2]∈LI\U
LI

and(N[α1,α2])[α1,α2]∈LI\{1
LI }

of crisp subsets ofRn that are decreasing ([α1, α2] ≤LI [α3, α4] ⇒ M[α1,α2] ⊇ M[α3,α4]

and[α1, α2] ≤LI [α3, α4] ⇒ N[α1,α2] ⊇ N[α3,α4]) and we define the interval-valued fuzzy
setsW andX in Rn for all x ∈ Rn respectively as,

W (x) = sup
[α1,α2]∈LI\U

LI

([α1, α2]M[α1,α2])(x) (9.12)

= sup {[α1, α2] | [α1, α2] ∈ LI \ ULI andx ∈M[α1,α2]},

X(x) = sup
[α1,α2]∈LI\{1

LI }
([α1, α2]N[α1,α2])(x) (9.13)

= sup {[α1, α2] | [α1, α2] ∈ LI \ {1LI} andx ∈ N[α1,α2]},

then we might wonder whether it holds that(∀[α1, α2] ∈ LI \ULI )(Wα2

α1
=M[α1,α2]) and

(∀[α1, α2] ∈ LI \ {1LI})(Xα2

α1
= N[α1,α2]). Similar to the case of strict[α1, α2]-cuts and

in contrast to the case of weak[α1, α2]-cuts, there is no inclusion that always holds.

Example 9.1.25.LetM[α1,α2] =]−1+α1, 1−α2] for all [α1, α2] ∈ LI\ULI . Consider e.g.
x = −0.4. Then it holds that(∀[β1, β2] ∈ LI\ULI )((β1 < 0.6 ⇒ x ∈M[β1,β2]) and(β1 ≥
0.6 ⇒ x 6∈ M[β1,β2])). SoW (−0.4) = sup {[β1, β2] ∈ LI \ ULI | − 0.4 ∈ M[β1,β2]} =
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Construction of Interval-valued Fuzzy Morphological Operators

[0.6, 1]. As a consequence it holds for example that−0.4 6∈ M[0.6,0.6] and−0.4 ∈ W 0.6
0.6

which means that it does not hold for all[α1, α2] ∈ LI \ ULI thatWα2

α1
⊆M[α1,α2].

Neither does it always hold thatWα2

α1
⊇ M[α1,α2] for all [α1, α2] ∈ LI \ ULI . Con-

sider now e.g.x = 0.4. Then it holds that(∀[β1, β2] ∈ LI \ ULI )((β2 ≤ 0.6 ⇒ x ∈
M[β1,β2]) and(β2 > 0.6 ⇒ x 6∈M[β1,β2])). SoW (0.4) = sup {[β1, β2] ∈ LI \ULI | 0.4 ∈
M[β1,β2]} = [0.6, 0.6]. As a consequence it holds for example that0.4 ∈ M[0.6,0.6] and

0.4 6∈W 0.6
0.6 . Analogous examples can be given for strict-weak[α1, α2]-cuts.

♦

The equality however holds under certain conditions. To formulate these conditions, we
define the setsdM anddN as

dM = {x | x ∈ Rn and(∃[α1, α2] ∈ LI \ ULI )(x ∈M[α1,α2])}. (9.14)

dN = {x | x ∈ Rn and(∃[α1, α2] ∈ LI \ {1LI})(x ∈ N[α1,α2])}. (9.15)

Further, for a fixed pointx ∈ dM (respectivelyx ∈ dN ), we introduce the setYx (respec-
tively Zx), given by

Yx = {[α1, α2] | [α1, α2] ∈ LI \ ULI andx ∈M[α1,α2]}, (9.16)

(respectivelyZx = {[α1, α2] | [α1, α2] ∈ LI \ {1LI} andx ∈ N[α1,α2]}), (9.17)

and we denote the supremum of this set byyx = [yx,1, yx,2] (respectivelyzx = [zx,1, zx,2]):

yx = supYx, (9.18)

(respectivelyzx = supZx) (9.19)

Remark thatYx 6= ∅ andZx 6= ∅.
The following Proposition gives a necessary condition for the equality to hold:

Proposition 9.1.26.

(i) For a decreasing family(M[α1,α2])[α1,α2]∈LI\U
LI

of crisp subsets of the universe
Rn, the interval-valued fuzzy setW defined in (9.12) and the setsdM andYx and the
supremumyx of the latter set, respectively defined in expressions (9.14),(9.16) and
(9.18), it holds that:

(∀[α1, α2] ∈ LI \ ULI )(M[α1,α2] =Wα2

α1
)

⇓
(∀x ∈ dM )(∀[β1, β2] ∈ Yx)(yx,1 ≥ β1 andyx,2 > β2).

(ii) For a decreasing family(N[α1,α2])[α1,α2]∈LI\{1
LI } of crisp subsets of the universe

Rn, the interval-valued fuzzy setX defined in (9.13) and the setsdN andZx and the
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9.1 Continuous Case

supremumzx of the latter set, respectively defined in expressions (9.15),(9.17) and
(9.19), it holds that:

(∀[α1, α2] ∈ LI \ {1LI})(N[α1,α2] = Xα2

α1
)

⇓
(∀x ∈ dN )(∀[β1, β2] ∈ Zx)(zx,1 > β1 andzx,2 ≥ β2).

Proof.

(i) Suppose(∀[α1, α2] ∈ LI \ ULI})(M[α1,α2] = Wα2

α1
), or equivalently,(∀[α1, α2] ∈

LI \ ULI )(x ∈ M[α1,α2] ⇔ yx,1 = W1(x) ≥ α1 andyx,2 = W2(x) > α2. It is
impossible then that there would exist anx ∈ dM , so that there exists a[β1, β2] ∈ Yx
for which β1 6≤ yx,1 or β2 6< yx,2. Indeed,[β1, β2] ∈ Yx means thatx ∈ M[β1,β2],
which is equivalent toyx,1 ≥ β1 andyx,2 > β2.

(ii) Analogously.

We would like to mention here that the condition(∀x ∈ dM )(∀[β1, β2] ∈ Yx)(yx,1 ≥
β1 andyx,2 > β2) (respectively(∀x ∈ dN )(∀[β1, β2] ∈ Zx)(zx,1 > β1 andzx,2 ≥ β2)) is
a necessary and sufficient condition such that(∀[α1, α2] ∈ LI \ ULI )(M[α1,α2] ⊆ Wα2

α1
)

(respectively(∀[α1, α2] ∈ LI \ {1LI})(N[α1,α2] ⊆ Xα2

α1
)) would hold.

Proposition 9.1.27.

(i) For a decreasing family(M[α1,α2])[α1,α2]∈LI\U
LI

of crisp subsets of the universe
Rn, the interval-valued fuzzy setW defined in (9.12) and the setsdM andYx and the
supremumyx of the latter set, respectively defined in expressions (9.14),(9.16) and
(9.18), it holds that:

(∀[α1, α2] ∈ LI \ ULI )(M[α1,α2] ⊆Wα2

α1
)

m
(∀x ∈ dM )(∀[β1, β2] ∈ Yx)(yx,1 ≥ β1 andyx,2 > β2),

(ii) For a decreasing family(N[α1,α2])[α1,α2]∈LI\{1
LI } of crisp subsets ofthe universe

Rn, the interval-valued fuzzy setX defined in (9.13) and the setsdN andZx and the
supremumzx of the latter set, respectively defined in expressions (9.15),(9.17) and
(9.19), it holds that:

(∀[α1, α2] ∈ LI \ {1LI})(N[α1,α2] ⊆ Xα2

α1
)

m
(∀x ∈ dN )(∀[β1, β2] ∈ Zx)(zx,1 > β1 andzx,2 ≥ β2).

Proof.
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Construction of Interval-valued Fuzzy Morphological Operators

(i) ⇐: Let [α1, α2] ∈ LI \ ULI and letx ∈M[α1,α2]. It then holds that:

x ∈M[α1,α2]

⇔ [α1, α2] ∈ {[β1, β2] | [β1, β2] ∈ LI \ ULI andx ∈M[β1,β2]}
⇒ yx,1 ≥ α1 andyx,2 > α2

⇔ W1(x) ≥ α1 andW2(x) > α2

⇔ x ∈Wα2

α1
.

Thus,M[α1,α2] ⊆Wα2

α1
.

⇒: Suppose that(∀[α1, α2] ∈ LI \ ULI})(M[α1,α2] ⊆ Wα2

α1
), i.e., (∀[α1, α2] ∈

LI \ ULI )(x ∈ M[α1,α2] ⇒ W1(x) = yx,1 ≥ α1 andW2(x) = yx,2 > α2).
It is impossible then that there would exist anx ∈ dM , so that there exists a
[β1, β2] ∈ Yx for which β1 6≤ yx,1 or β2 6< yx,2. Indeed,[β1, β2] ∈ Yx means
thatx ∈M[β1,β2], which implies thatyx,1 ≥ β1 andyx,2 > β2.

(ii) Analogously.

An analogous example to the one in Example 9.1.16 can be used to illustrate that the
condition in Proposition 9.1.26 is not sufficient for the equality M[α1,α2] = Wα2

α1
(respec-

tively N[α1,α2] = Xα2

α1
) to hold for all [α1, α2] ∈ LI \ ULI (respectivelyLI \ {1LI}).

The given condition is not a sufficient condition because it does not necessarily hold that
(∀[β1, β2] ∈ LI \ ULI )(β1 ≤ yx,1 andβ2 < yx,2 ⇒ [β1, β2] ∈ Yx) (and respectively also
not that(∀[β1, β2] ∈ LI \ ULI )(β1 < yx,1 andβ2 ≤ yx,2 ⇒ [β1, β2] ∈ Zx)).

These properties do however hold in the following special case:

Lemma 9.1.28. For a decreasing family(M[α1,α2])[α1,α2]∈LI\U
LI

of crisp subsets ofRn,
the interval-valued fuzzy setW defined in (9.12) and the setsdM andYx and the supremum
yx of the latter set, respectively defined in expressions (9.14),(9.16) and (9.18), we have that

(∀x ∈ dM )(∀r ∈ LI \ ULI )((r1 ≤ yx,1 andr2 < yx,2) ⇒ r ∈ Yx)

m
[SC ′′a] :

(
∀[α1, α2] ∈ LI \ ULI

)(
∀x ∈ Rn

)(
x 6∈M[α1,α2] ⇒

(
(∀[β1, β2] ∈ LI \ ULI )((β1 < α1 andβ2 > α2) ⇒ x 6∈M[β1,β2])

)
or

(
(∀[β1, β2] ∈ LI \ ULI )((β1 > α1 andβ2 < α2) ⇒ x 6∈M[β1,β2])

))

and(∀[α1, α2] ∈ LI \ ULI )(α1 > 0 ⇒ (∀x ∈ Rn)(x ∈ ⋂
β1∈[0,α1[

M[β1,α2] ⇒

(x ∈M[α1,α2] or (∀[β1, β2] ∈ LI \ ULI )(β2 > α2 ⇒ x 6∈M[β1,β2]))).

Proof.
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9.1 Continuous Case

⇒: Suppose that
(
∃[α1, α2] ∈ LI \{0LI}

)(
∃x ∈ Rn

)(
x 6∈M[α1,α2] and

(
(∃[β1, β2] ∈

LI \{0LI})(β1 < α1 andβ2 > α2 andx ∈M[β1,β2])
)

and
(
(∃[γ1, γ2] ∈ LI \{0LI})

((γ1 > α1 andγ2 < α2) andx ∈ M[γ1,γ2])
))

. This would mean thatsx,1 ≥ γ1

andsx,2 ≥ β2. Further,[α1, α2] �LI [γ1, β2] ≤LI sx and thus[α1, α2] ∈ Sx or
x ∈M[α1,α2], which gives us a contradiction.

Further, suppose that it holds that(∃[α1, α2] ∈ LI\ULI )(α1 > 0 and(∃x ∈ Rn)(x ∈⋂
β1∈[0,α1[

M[β1,α2]) andx 6∈ M[α1,α2] and(∃[β1, β2] ∈ LI \ ULI )(β2 > α2 andx ∈

M[β1,β2])). Sincex ∈ ⋂
β1∈[0,α1[

M[β1,α2], it holds that(∀β1 ∈ [0, α1[)(x ∈M[β1,α2]),

which implies thatyx,1 ≥ α1. Further, since(∃[β1, β2] ∈ LI\ULI )(β2 > α2 andx ∈
M[β1,β2]), it also holds thatyx,2 > α2. This implies that[α1, α2] ∈ Yx, which
contradicts the assumption thatx 6∈M[α1,α2].

⇐: Suppose that the condition [SC”a] is fulfilled. Lett ∈ LI \ ULI , and lett1 ≤ yx,1
andt2 < yx,2. We have to prove thatt ∈ Yx.

Analogous to the proof of Lemma 9.1.8 it can be shown that(∀x ∈ dM )(∀r ∈ LI \
ULI )(r �LI yx ⇒ r ∈ Yx).

Sincet2 < yx,2, t2 is no upperbound for the set of upper bounds of the elements in
Yx and thus(∃s ∈]t2, yx,2])(∃s′ ∈ [0, s])([s′, s] ∈ Yx).

Suppose thatt1 = 0. It then holds that[t1, t2] <LI [s′, s], and thusx ∈ M[s′,s] ⊆
M[t1,t2] or thust ∈ Yx.

Suppose now thatt1 > 0. Sincet2 < yx,2, it holds that(∀r ∈ [0, t1[)([r, t2] �LI yx)
or thus(∀r ∈ [0, t1[)([r, t2] ∈ Yx). Sox ∈ ⋂

r∈[0,t1[

M[r,t2]. This implies thatx ∈

M[t1,t2] or (∀[β1, β2] ∈ LI \ ULI )(β2 > t2 ⇒ x 6∈ M[β1,t2]). As mentioned above
(∃s ∈]t2, yx,2])(∃s′ ∈ [0, s])([s′, s] ∈ Yx) so that we can conclude thatx ∈ M[t1,t2],
i.e., t ∈ Yx.

Lemma 9.1.29.For a decreasing family(N[α1,α2])[α1,α2]∈LI\{1
LI } of crisp subsets ofRn,

the interval-valued fuzzy setX defined in (9.13) and the setsdN andZx and the supremum
zx of the latter set, respectively defined in expressions (9.15),(9.17) and (9.19), we have that

(∀x ∈ dN )(∀r ∈ LI \ {1LI})((r1 < zx,1 andr2 ≤ zx,2) ⇒ r ∈ Zx)

m
[SC ′′b] :

(
∀[α1, α2] ∈ LI \ {1LI}

)(
∀x ∈ Rn

)(
x 6∈ N[α1,α2] ⇒

(
(∀[β1, β2] ∈ LI \ {1LI})((β1 < α1 andβ2 > α2) ⇒ x 6∈ N[β1,β2])

)
or

(
(∀[β1, β2] ∈ LI \ {1LI})((β1 > α1 andβ2 < α2) ⇒ x 6∈ N[β1,β2])

))

241



Construction of Interval-valued Fuzzy Morphological Operators

and(∀[α1, α2] ∈ LI \ {1LI})(α2 > 0 ⇒ (∀x ∈ Rn)(x ∈ ⋂
β2∈[α1,α2[

N[α1,β2] ⇒

(x ∈ N[α1,α2] or (∀[β1, β2] ∈ LI \ {1LI})(β1 > α1 ⇒ x 6∈ N[β1,β2]))).

Proof. Analogous to the proof of Lemma 9.1.28.

Remark that if a decreasing family(M[α1,α2])[α1,α2]∈LI\U
LI

of crisp subsets ofRn does
not fulfil [SC”a], then it will also not hold that(∀[α1, α2] ∈ LI \ ULI )(M[α1,α2] = Wα2

α1
).

Indeed, condition [SC”a] not being fulfilled, would mean that (∃[α1, α2] ∈ LI \ULI )(∃x ∈
Rn)(x 6∈ M[α1,α2] and(∃[β1, β2] ∈ LI \ ULI )(β1 < α1 andβ2 > α2 andx ∈ M[β1,β2])
and (∃[γ1, γ2] ∈ LI \ ULI )(γ1 > α1 andγ2 < α2 andx ∈ M[γ1,γ2])) or (∃[α1, α2] ∈
LI\ULI )(α1 > 0 and(∃x ∈ Rn)(x ∈ ⋂

β1∈[0,α1[

M[β1,α2] andx 6∈M[α1,α2] and(∃[β1, β2] ∈

LI \ ULI )(β2 > α2 andx ∈ M[β1,β2])). Suppose that(∃[α1, α2] ∈ LI \ ULI )(∃x ∈
Rn)(x 6∈ M[α1,α2] and(∃[β1, β2] ∈ LI \ ULI )(β1 < α1 andβ2 > α2 andx ∈ M[β1,β2])
and(∃[γ1, γ2] ∈ LI \ ULI )(γ1 > α1 andγ2 < α2 andx ∈ M[γ1,γ2])). This would mean
thatW1(x) = yx,1 ≥ γ1 > α1 andW2(x) = yx,2 ≥ β2 > α2. As a consequence,
x ∈ Wα2

α1
andx 6∈ M[α1,α2]. In the case that(∃[α1, α2] ∈ LI \ ULI )(α1 > 0 and(∃x ∈

Rn)(x ∈ ⋂
β1∈[0,α1[

M[β1,α2] andx 6∈M[α1,α2] and(∃[β1, β2] ∈ LI \ULI )(β2 > α2 andx ∈

M[β1,β2])), we would have thatW2(x) = yx,2 ≥ β2 > α2 and since(∀[β1, β2] ∈ LI \ULI )
(β1 ∈ [0, α1[⇒ x ∈ M[β1,α2]) alsoW1(x) = yx,1 ≥ α1. As a consequence,x ∈ Wα2

α1
and

x 6∈M[α1,α2].
An analogous remark holds for a decreasing family(N[α1,α2])[α1,α2]∈LI\{1

LI }.
In what follows we will therefore concentrate on families for which [SC”a] (respectively

[SC”b]) holds. For such families, the necessary condition in Proposition 9.1.26 becomes a
sufficient condition.

Proposition 9.1.30.

(i) For a decreasing family(M[α1,α2])[α1,α2]∈LI\U
LI

of crisp subsets ofRn that fulfils
[SC”a], the interval-valued fuzzy setW defined in (9.12) and the setsdM andYx and
the supremumyx of the latter set, respectively defined in expressions (9.14),(9.16)
and (9.18), it holds that:

(∀[α1, α2] ∈ LI \ ULI )(M[α1,α2] =Wα2

α1
)

m
(∀x ∈ dM )(∀[β1, β2] ∈ Yx)(yx,1 ≥ β1 andyx,2 > β2),

(ii) For a decreasing family(N[α1,α2])[α1,α2]∈LI\{1
LI } of crisp subsets ofRn that fulfils

[SC”b], the interval-valued fuzzy setX defined in (9.13) and the setsdN andZx and
the supremumzx of the latter set, respectively defined in expressions (9.15),(9.17)
and (9.19), it holds that:

(∀[α1, α2] ∈ LI \ {1LI})(N[α1,α2] = Xα2

α1
)
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9.1 Continuous Case

m
(∀x ∈ dN )(∀[β1, β2] ∈ Zx)(zx,1 > β1 andzx,2 ≥ β2).

Proof.

(i) ⇒: Follows from Proposition 9.1.26.
⇐: Since condition [SC”a] is satisfied, Lemma 9.1.28 can be used and thus(∀x ∈

dM )(∀r ∈ LI \ ULI )((r1 ≤ yx,1 andr2 < yx,2) ⇒ r ∈ Yx). Further, it
is given that(∀x ∈ dM )(∀[β1, β2] ∈ Yx)(yx,1 ≥ β1 andyx,2 > β2). Let
[β1, β2] ∈ LI \ ULI and letx ∈M[β1,β2]. We have that:

x ∈M[β1,β2]

⇔ [β1, β2] ∈ {[α1, α2] | [α1, α2] ∈ LI \ ULI andx ∈M[α1,α2]}
⇔ yx,1 ≥ β1 andyx,2 > β2

⇔ W1(x) ≥ β1 andW2(x) > β2

⇔ x ∈W β2

β1
.

As a consequence,M[β1,β2] =W β2

β1
.

(ii) Analogously.

The condition in Proposition 9.1.30 is not always efficient in practice. For a decreas-
ing family (M[α1,α2])[α1,α2]∈LI\U

LI
(respectively(N[α1,α2])[α1,α2]∈LI\{1

LI }), that satisfies
[SC”a] (respectively [SC”b]), it would be needed to calculate the setYx (respectivelyZx)
for all x ∈ dM (respectivelydN ) and to check whetheryx,1 ≥ β1 andyx,2 > β2 for all
[β1, β2] ∈ Yx (respectivelyzx,1 > β1 andzx,2 ≥ β2 for all [β1, β2] ∈ Zx). To avoid this
work, an equivalent condition on the setsM[α1,α2] (respectivelyN[α1,α2]) can be used.

Proposition 9.1.31.

(i) For a decreasing family(M[α1,α2])[α1,α2]∈LI\U
LI

of crisp subsets ofRn that fulfills
[SC”a], the interval-valued fuzzy setW defined in (9.12) and the setsdM andYx and
the supremumyx of the latter set, respectively defined in expressions (9.14)-(9.18), it
holds that:

(∀x ∈ dM )(∀[β1, β2] ∈ Yx)(yx,1 ≥ β1 andyx,2 > β2)

m
(∀[α1, α2] ∈ LI \ ULI )(M[α1,α2] =

⋃
[β1,β2],β1≥α1,β2>α2

M[β1,β2]).

(ii) For a decreasing family(N[α1,α2])[α1,α2]∈LI\{1
LI } of crisp subsets ofRn that fulfills

[SC”b], the interval-valued fuzzy setX defined in (9.13) and the setsdN andZx and
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Construction of Interval-valued Fuzzy Morphological Operators

the supremumzx of the latter set, respectively defined in expressions (9.15)-(9.19), it
holds that:

(∀x ∈ dN )(∀[β1, β2] ∈ Zx)(zx,1 > β1 andzx,2 ≥ β2)

m
(∀[α1, α2] ∈ LI \ {1LI})(N[α1,α2] =

⋃
[β1,β2],β1>α1,β2≥α2

N[β1,β2]).

Proof.

(i) ⇒: Let [α1, α2] ∈ LI \ ULI . For allx ∈M[α1,α2] it holds that:

x ∈M[α1,α2]

⇔ [α1, α2] ∈ Yx

⇔ yx,1 ≥ α1 andyx,2 > α2

⇔ (∃[β1, β2] ∈ LI \ ULI )(α1 ≤ β1 ≤ yx,1 andα2 < β2 < yx,2)

⇔ (∃[β1, β2] ∈ LI \ ULI )(α1 ≤ β1 andα2 < β2 and[β1, β2] ∈ Yx)

⇔ (∃[β1, β2] ∈ LI \ ULI )(α1 ≤ β1 andα2 < β2 andx ∈M[β1,β2])

⇔ x ∈
⋃

[β1,β2],β1≥α1,β2>α2

M[β1,β2].

⇐: Let x ∈ dM . Sinceyx = supYx, it holds that(∀[β1, β2] ∈ Yx)(β1 ≤ yx,1 and
β2 ≤ yx,2).
We now prove that(∀[β1, β2] ∈ Yx)(β1 ≤ yx,1 andβ2 < yx,2). Suppose that
this would not be true and that there would exist a[β1, β2] ∈ Yx for which
β1 ≤ yx,1 andβ2 = yx,2. Sox ∈ M[β1,yx,2] = M[β1,β2]. Sinceyx = supYx,
(@[γ1, γ2] ∈ LI \ ULI )(γ1 ≥ β1 andγ2 > yx,2 andx ∈ M[γ1,γ2]) or thusx 6∈⋃
[γ1,γ2],γ1≥β1,γ2>yx,2

M[γ1,γ2]. Consequently,
⋃

[γ1,γ2],γ1≥β1,γ2>yx,2

M[γ1,γ2] 6=

M[β1,yx,2] and hence a contradiction.
We conclude that(∀[β1, β2] ∈ Yx)(β1 ≤ yx,1 andβ2 < yx,2).

(ii) Analogously.

Example 9.1.32. The family (M[α1,α2])[α1,α2]∈LI\U
LI

of crisp subsets ofRn, given by
M[α1,α2] = [−1 + α1, 1 − α2] for all [α1, α2] ∈ LI \ ULI , is an example of a fam-
ily that satisfies condition [SC”a], but for which it does nothold that(∀[α1, α2] ∈ LI \
ULI )(M[α1,α2] =Wα2

α1
), with the interval-valued fuzzy setW as defined in (9.12). Indeed,

let [α1, α2] ∈ LI \ ULI , then it holds that(∀[β1, β2] ∈ LI \ ULI )(β1 ≥ α1 andβ2 >
α2 ⇒ −1 + α1 ≤ −1 + β1 and1 − β2 < 1 − α2) or thus(∀[β1, β2] ∈ LI \ ULI )(β1 ≥
α1 andβ2 > α2 ⇒ 1 − α2 6∈ M[β1,β2]). On the other hand1 − α2 ∈ M[α1,α2]. So⋃
[β1,β2],β1≥α1,β2>α2

M[β1,β2] 6=M[α1,α2].

244



9.1 Continuous Case

An analogous example can be found for strict-weak[α1, α2]-cuts.
♦

Example 9.1.33. The family (M[α1,α2])[α1,α2]∈LI\U
LI

of crisp subsets ofRn, given by
M[α1,α2] = [−1 + α1, 1 − α2[ for all [α1, α2] ∈ LI \ ULI , is an example of a family for
which it holds that(∀[α1, α2] ∈ LI \ ULI )(M[α1,α2] = Wα2

α1
), with the interval-valued

fuzzy setW as defined in (9.12).
An analogous example can be found for strict-weak[α1, α2]-cuts.

♦

The Construction Principle

Based on the results from the introduction of this subsection and analogous to the construc-
tion principle based on weak and strict[α1, α2]-cuts, we might extend an increasing operator
φ onP(Rn) to an operatorΦ onFLI (Rn) in two ways as follows. For allA ∈ FLI (Rn),

Φ1(A) =
⋃

[α1,α2]∈LI\U
LI

[α1, α2]φ(A
α2

α1
),

Φ2(A) =
⋃

[α1,α2]∈LI\{1
LI }

[α1, α2]φ(A
α2

α1
).

Operators having two or more arguments can be extended analogously. We illustrate this
for an increasing operatorψ onP(Rn) × P(Rn) (like the binary dilation). For allA,B ∈
FLI (Rn),

Ψ1(A,B) =
⋃

[α1,α2]∈LI\U
LI

[α1, α2]ψ(A
α2

α1
, Bα2

α1
)

Ψ2(A,B) =
⋃

[α1,α2]∈LI\{1
LI }

[α1, α2]ψ(A
α2

α1
, Bα2

α1
).

As discussed in the introduction of this subsection, for theoperatorsΦ andΨ it does not
necessarily hold that:

(∀[α1, α2] ∈ LI \ ULI )(Φ1(A)
α2

α1
= φ(Aα2

α1
))

(∀[α1, α2] ∈ LI \ ULI )(Ψ1(A,B)α2

α1
= ψ(Aα2

α1
, Bα2

α1
))

(∀[α1, α2] ∈ LI \ {1LI})(Φ2(A)
α2

α1
= φ(Aα2

α1
))

(∀[α1, α2] ∈ LI \ {1LI})(Ψ2(A,B)α2

α1
= ψ(Aα2

α1
, Bα2

α1
)).

We now extend the increasing binary dilation to interval-valued fuzzy sets using the
above introduced construction principle as follows:
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Construction of Interval-valued Fuzzy Morphological Operators

LetA,B ∈ FLI (Rn). The extended dilationsD̃(A,B)
′′

andD̃(A,B)
′′′

of A byB are
then given by:

D̃(A,B)
′′

=
⋃

[α1,α2]∈LI\U
LI

[α1, α2]D(Aα2

α1
, Bα2

α1
), (9.20)

D̃(A,B)
′′′

=
⋃

[α1,α2]∈LI\{1
LI }

[α1, α2]D(Aα2

α1
, Bα2

α1
). (9.21)

Proposition 9.1.34.LetA,B ∈ FLI (Rn), then for ally ∈ Rn it holds that:

(i)

D̃(A,B)
′′
(y) = sup

x∈Ty(dB)∩dA

Cmin(B(x− y), A(x)) = DI
Cmin

(A,B)(y).

(ii)

D̃(A,B)
′′′
(y) ≤LI sup

x∈Ty(dB)∩dA

Cmin(B(x− y), A(x)) = DI
Cmin

(A,B)(y).

If A(x) �LI 0LI , ∀x ∈ dA andB(x) �LI 0LI , ∀x ∈ dB , then

D̃(A,B)
′′′
(y) = sup

x∈Ty(dB)∩dA

Cmin(B(x− y), A(x)) = DI
Cmin

(A,B)(y).

Proof.

(i) Let A,B ∈ FLI (Rn), and lety ∈ Rn. From the definition of the binary dilation,

D(Aα2

α1
, Bα2

α1
)(y) =

{
1 if y ∈ D(Aα2

α1
, Bα2

α1
)

0 else
,

it follows that:

D̃(A,B)
′′
(y) = sup

[α1,α2]∈LI\U
LI

([α1, α2]D(Aα2

α1
, Bα2

α1
))(y)

= sup {[α1, α2] | [α1, α2] ∈ LI \ ULI andy ∈ D(Aα2

α1
, Bα2

α1
)}

= sup {[α1, α2] | [α1, α2] ∈ LI \ ULI andTy(B
α2

α1
) ∩Aα2

α1
6= ∅}

= sup {[α1, α2] | [α1, α2] ∈ LI \ ULI and(∃x ∈ Ty(dB) ∩ dA)
(x ∈ Ty(B

α2

α1
) andx ∈ Aα2

α1
)}

= sup {[α1, α2] | [α1, α2] ∈ LI \ ULI and(∃x ∈ Ty(dB) ∩ dA)
((B1(x− y) ≥ α1andA1(x) ≥ α1) and

(B2(x− y) > α2 andA2(x) > α2))}
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= sup {[α1, α2] | [α1, α2] ∈ LI \ ULI and(∃x ∈ Ty(dB) ∩ dA)
((Cmin(B(x− y), A(x)))1 ≥ α1 and

(Cmin(B(x− y), A(x)))2 > α2])}
≡ (∗).

First, we will prove that(∗) is less than or equal to

sup {Cmin(B(x− y), A(x)) | x ∈ Ty(dB) ∩ dA} ≡ (∗∗).

It holds that:

(∗) = sup {[α1, α2] | [α1, α2] ∈ LI \ ULI and(∃x ∈ Ty(dB) ∩ dA)
((Cmin(B(x− y), A(x)))1 ≥ α1 and

(Cmin(B(x− y), A(x)))2 > α2])}
≤LI sup {[α1, α2] | [α1, α2] ∈ LI \ ULI and

α1 ≤ ( sup
x∈Ty(dB)∩dA

Cmin(B(x− y), A(x)))1 and

α2 < ( sup
x∈Ty(dB)∩dA

Cmin(B(x− y), A(x)))2}

= sup
x∈Ty(dB)∩dA

Cmin(B(x− y), A(x)))

= (∗∗)

It also holds that(∗∗) ≤LI (∗). If Ty(dB) ∩ dA = ∅, then(∗∗) = 0LI and thus
(∗∗) ≤LI (∗). Otherwise, consider an arbitraryε > 0. We have that:

(∗∗)1 − ε is no upper bound for the set of lower bounds of the intervals in

the set{Cmin(B(x− y), A(x)) | x ∈ Ty(dB) ∩ dA}and(∗∗)2 − ε is no

upper bound for the set of upper bounds of the intervals in theset

{Cmin(B(x− y), A(x)) | x ∈ Ty(dB) ∩ dA}
⇒ (∃x ∈ Ty(dB) ∩ dA)((∗∗)1 − ε < Cmin(B(x− y), A(x))1) and

(∃x′ ∈ Ty(dB) ∩ dA)((∗∗)2 − ε < Cmin(B(x′ − y), A(x′))2).

For such elementx from the first part of the above consequent, for which(∗∗)1− ε <
Cmin(B(x−y), A(x))1, we can chooseα2 = (∗∗)1−ε < (Cmin(B(x−y), A(x)))1 ≤
(Cmin(B(x− y), A(x)))2, such that

(∗∗)1 − ε ∈ {α1 | (∃α2 ∈ [α1, 1[ such that[α1, α2] ∈ LI \ ULI ) and

(∃x ∈ Ty(dB) ∩ dA)(α1 ≤ (Cmin(B(x− y), A(x)))1

andα2 < (Cmin(B(x− y), A(x)))2)}.
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Construction of Interval-valued Fuzzy Morphological Operators

For the second part of the consequent, we can chooseα1 = 0 ≤ (Cmin(B(x′ −
y), A(x′)))1, such that

(∗∗)2 − ε ∈ {α2 | (∃α1 ∈ [0, α2] such that[α1, α2] ∈ LI \ ULI ) and

(∃x ∈ Ty(dB) ∩ dA)(α1 ≤ (Cmin(B(x− y), A(x)))1

andα2 < (Cmin(B(x− y), A(x)))2)}

It thus follows that:

(∗∗)1 − ε ∈ {α1 | (∃α2 ∈ [α1, 1[)([α1, α2] ∈ LI \ ULI ) and

(∃x ∈ Ty(dB) ∩ dA)(α1 ≤ (Cmin(B(x− y), A(x)))1 and

α2 < (Cmin(B(x− y), A(x)))2))} and

(∗∗)2 − ε ∈ {α2 | (∃α1 ∈ [0, α2])([α1, α2] ∈ LI \ ULI ) and

(∃x ∈ Ty(dB) ∩ dA)(α1 ≤ (Cmin(B(x− y), A(x)))1 and

α2 < (Cmin(B(x− y), A(x)))2))}
⇒ (∗∗)1 − ε ≤ sup{α1 | (∃α2 ∈ [α1, 1[)([α1, α2] ∈ LI \ ULI ) and

(∃x ∈ Ty(dB) ∩ dA)(α1 ≤ (Cmin(B(x− y), A(x)))1 and

α2 < (Cmin(B(x− y), A(x)))2))} and

(∗∗)2 − ε ≤ sup{α2 | (∃α1 ∈ [0, α2])([α1, α2] ∈ LI \ ULI ) and

(∃x ∈ Ty(dB) ∩ dA)(α1 ≤ (Cmin(B(x− y), A(x)))1 and

α2 < (Cmin(B(x− y), A(x)))2))}
⇒ [(∗∗)1 − ε, (∗∗)2 − ε] ≤LI sup{[α1, α2] | [α1, α2] ∈ LI \ ULI and

(∃x ∈ Ty(dB) ∩ dA)(α1 ≤ (Cmin(B(x− y), A(x)))1 and

α2 < (Cmin(B(x− y), A(x)))2)} = (∗).

Takingε→ 0 gives the result.

(ii) The proof is analogous to the proof of (i). Only now,

(∗∗) ≡ sup{Cmin(B(x− y), A(x)) | x ∈ Ty(dB) ∩ dA} ≤LI

sup{[α1, α2] | [α1, α2] ∈ LI \ {1LI} and(∃x ∈ Ty(dB) ∩ dA)
((Cmin(B(x− y), A(x)))1 > α1 and

(Cmin(B(x− y), A(x)))2 ≥ α2)} ≡ (∗)

will not always hold, but it is however guaranteed ifA(x) �LI 0LI , ∀x ∈ dA and
B(x) �LI 0LI , ∀x ∈ dB . Then we can always chooseα1 = 0 < (Cmin(B(x′ −
y), A(x′)))1, such that

(∗∗)2 − ε ∈ {α2 | (∃α1 ∈ [0, α2] such that[α1, α2] ∈ LI \ {1LI}) and
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(∃x ∈ Ty(dB) ∩ dA)(α1 < (Cmin(B(x− y), A(x)))1

andα2 ≤ (Cmin(B(x− y), A(x)))2)},

analogously to the proof of (i).

Example 9.1.23 can be used again to illustrate that if notA(x) �LI 0LI , ∀x ∈ dA or
notB(x) �LI 0LI , ∀x ∈ dB , then not necessarily

sup{Cmin(B(x− y), A(x)) | x ∈ Ty(dB) ∩ dA} ≤LI

sup{[α1, α2] ∈ LI \ ULI | (∃x ∈ Ty(dB) ∩ dA)
((Cmin(B(x− y), A(x)))1 > α1 and

(Cmin(B(x− y), A(x)))2 ≥ α2])}.

The construction principle can not be used to extend the binary erosion to an interval-
valued fuzzy morphological operator, since it is not increasing in both its arguments. Anal-
ogously as for weak and strict[α1, α2]-cuts, it can however be constructed by duality prop-
erties.

EI
IEKD

(A,B)(y) = (coNs
(DI

Cmin
(coNs

(A), B)))(y)

= (coNs
(

⋃

[α1,α2]∈LI\U
LI

[α1, α2]D((coNs
A)α2

α1
, Bα2

α1
)))(y)

= Ns((
⋃

[α1,α2]∈LI\U
LI

[α1, α2]D((coNs
A)α2

α1
, Bα2

α1
))(y))

= Ns( sup
[α1,α2]∈LI\U

LI

([α1, α2]D((coNs
A)α2

α1
, Bα2

α1
))(y))

= Ns( sup
[α1,α2]∈LI\U

LI

([α1, α2]co(E(co((coNs
A)α2

α1
), Bα2

α1
)))(y))

EI
IEKD

(A,B)(y) = (coNs
(DI

Cmin
(coNs

(A), B)))(y)

≤LI (coNs
(

⋃

[α1,α2]∈LI\U
LI

[α1, α2]D((coNs
A)α2

α1
, Bα2

α1
)))(y)

= Ns((
⋃

[α1,α2]∈LI\U
LI

[α1, α2]D((coNs
A)α2

α1
, Bα2

α1
))(y))

= Ns( sup
[α1,α2]∈LI\U

LI

([α1, α2]D((coNs
A)α2

α1
, Bα2

α1
))(y))

= Ns( sup
[α1,α2]∈LI\U

LI

([α1, α2]co(E(co((coNs
A)α2

α1
), Bα2

α1
)))(y))

If A(x) �LI 0LI , ∀x ∈ dA andB(x) �LI 0LI , ∀x ∈ dB , then the equality holds.
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Construction of Interval-valued Fuzzy Morphological Operators

The interval-valued fuzzy opening and closing can then be constructed as a combination
of the interval-valued fuzzy dilation and erosion.

9.1.4 Sub- and Supercuts

There is no construction principle based on weak and strict sub- and supercuts, since these
sets only give information about the lower or the upper bounds of the intervals on which an
interval-valued fuzzy set maps the elements of the universe.

Example 9.1.35.Let A(x) = [0.3, 0.5] for all x ∈ [0, 1]. For example, for̃x = 0.5, we
know that it belongs toAα1

for all α1 ∈]0, 0.3], but this does not give us any information
about the upper bound of the intervalA(x̃) = [0.3, 0.5].

♦

9.2 Discrete Case

We will now investigate the construction of interval-valued fuzzy morphological operators
from the corresponding binary operators in the discrete framework. It will be seen that the
characterization of the supremum in the discrete case has asa consequence that some of
the difficulties from the continuous case don’t arise anymore. Moreover, also some stronger
relationships will hold.

9.2.1 Construction Based on Weak[α1, α2]-cuts

Lemma 9.2.1. LetA ∈ FLI
r,s
(Zn), then it holds thatA =

⋃
[α1,α2]∈LI

r,s\{0LI }
[α1, α2]A

α2

α1
,

i.e.,∀x ∈ Zn:

A(x) = sup
[α1,α2]∈LI

r,s\{0LI }
([α1, α2]A

α2

α1
)(x)

= sup {[α1, α2] | [α1, α2] ∈ LI
r,s \ {0LI} andx ∈ Aα2

α1
}

= [max{α1 | (∃α2 ∈ [α1, 1] \ {0LI})([α1, α2] ∈ LI
r,s andx ∈ Aα2

α1
)},

max{α2 | (∃α1 ∈ [0, α2])([α1, α2] ∈ LI
r,s andx ∈ Aα2

α1
)}].

Proof. Similar to the proof of Lemma 9.1.1.

If we now consider a family(P[α1,α2])[α1,α2]∈LI
r,s\{0LI } of crisp subsets ofZn that is

decreasing and we define the interval-valued fuzzy setR in Zn for all x ∈ Zn as

R(x) = sup
[α1,α2]∈LI

r,s\{0LI }
([α1, α2]P[α1,α2])(x) (9.22)

= sup {[α1, α2] | [α1, α2] ∈ LI
r,s \ {0LI} andx ∈ P[α1,α2]},
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9.2 Discrete Case

then we might wonder whether it holds that(∀[α1, α2] ∈ LI
r,s \ {0LI})(Rα2

α1
= P[α1,α2]).

Just as in the continuous case, the following inclusion always holds:

Proposition 9.2.2. For a decreasing family(P[α1,α2])[α1,α2]∈LI
r,s\{0LI } of crisp subsets of

Zn and the interval-valued fuzzy setR defined in (9.22), it holds that:

(∀[α1, α2] ∈ LI \ {0LI})(P[α1,α2] ⊆ Rα2

α1
).

Proof. Analogous to the proof of Proposition 9.1.2.

The following lemma gives us a condition such that the reverse inclusion would also
hold.

Lemma 9.2.3. For a decreasing family(P[α1,α2])[α1,α2]∈LI
r,s\{0LI } of crisp subsets ofZn,

it holds that

(∀[α1, α2] ∈ LI
r,s \ {0LI})(∀x ∈ Zn)

([α1, α2] ∈ {[β1, β2] | [β1, β2] ∈ LI
r,s \ {0LI} andx ∈ P[β1,β2]} ⇔

sup {[β1, β2] | [β1, β2] ∈ LI
r,s \ {0LI} andx ∈ P[β1,β2]} ≥LI [α1, α2])

m
[S̃C] :

(
∀[α1, α2] ∈ LI

r,s \ {0LI}
)(

∀x ∈ Zn
)(
x 6∈ P[α1,α2] ⇒

(
(∀[β1, β2] ∈ LI

r,s \ {0LI})((β1 < α1 andβ2 ≥ α2) ⇒ x 6∈ P[β1,β2])
)

or
(
(∀[β1, β2] ∈ LI

r,s \ {0LI )((β1 ≥ α1 andβ2 < α2) ⇒ x 6∈ P[β1,β2])
))
.

Proof.

⇒: Suppose that it holds that
(
∃[α1, α2] ∈ LI

r,s \ {0LI}
)(

∃x ∈ Zn
)(
x 6∈ P[α1,α2]

and
(
(∃[β1, β2] ∈ LI

r,s \ {0LI})((β1 < α1 andβ2 > α2) andx ∈ P[β1,β2])
)

and
(
(∃[γ1, γ2] ∈ LI

r,s \{0LI})((γ1 > α1 andγ2 < α2) andx ∈ P[γ1,γ2])
))

. This means

thatsup {[β1, β2] | [β1, β2] ∈ LI
r,s \ {0LI} andx ∈ P[β1,β2]} ≥LI [γ1, β2]. Further,

then also[α1, α2] �LI [γ1, β2] and thus[α1, α2] ∈ {[β1, β2] | [β1, β2] ∈ LI
r,s\{0LI}

andx ∈ P[β1,β2]}, what gives us a contradiction.

⇐: Suppose that the condition [̃SC] is fulfilled. Let [α1, α2] ∈ LI
r,s \ {0LI}. It holds

that (∀x ∈ Zn)([α1, α2] ∈ {[β1, β2] | [β1, β2] ∈ LI
r,s \ {0LI} andx ∈ P[β1,β2]} ⇒

sup {[β1, β2] | [β1, β2] ∈ LI
r,s \ {0LI} andx ∈ P[β1,β2]} ≥LI [α1, α2]). We have to

prove that also the reverse implication holds.

Suppose that this would not be true, i.e.,(∃x ∈ Zn)(sup {[β1, β2] | [β1, β2] ∈ LI
r,s \

{0LI} andx ∈ P[β1,β2]} ≥LI [α1, α2] and [α1, α2] 6∈ {[β1, β2] | [β1, β2] ∈ LI
r,s \

{0LI} andx ∈ P[β1,β2]}). This would mean that(∃y ∈ [α1, 1])(∃z ∈ [y, 1])(x ∈
P[y,z]). If z ≥ α2 then we would get a contradiction since thenx ∈ P[y,z] ⊆ P[α1,α2].
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Construction of Interval-valued Fuzzy Morphological Operators

So z < α2 and thus(∃[y, z] ∈ LI
r,s \ {0LI )(y ≥ α1 andz < α2 andx ∈ P[y,z]).

Further, also(∃z′ ∈ [α2, 1])(∃y′ ∈ [0, z′])(x ∈ P[y′,z′]). If y′ ≥ α1 then we
would get a contradiction since thenx ∈ P[y′,z′] ⊆ P[α1,α2]. Soy′ < α1 and thus
(∃[y′, z′] ∈ LI

r,s \ {0LI})(y′ < α1 andz′ ≥ α2 andx ∈ P[y′,z′]).

If we combine the above results, then we find that it would holdthatx 6∈ P[α1,α2]

and(∃[y, z] ∈ LI
r,s \ {0LI})(y ≥ α1 andz < α2 andx ∈ P[y,z]) and(∃[y′, z′] ∈

LI
r,s \ {0LI})(y′ < α1 andz′ ≥ α2 andx ∈ P[y′,z′]), what is contradictory to what

is given. So(∀x ∈ Zn)([α1, α2] ∈ {[β1, β2] | [β1, β2] ∈ LI
r,s \ {0LI} andx ∈

P[β1,β2]} ⇔ sup {[β1, β2] | [β1, β2] ∈ LI
r,s \ {0LI} andx ∈ P[β1,β2]} ≥LI [α1, α2]).

The following proposition is a straightforward consequence of the above lemma and
Proposition 9.2.2.

Proposition 9.2.4. For a decreasing family(P[α1,α2])[α1,α2]∈LI
r,s\{0LI } of crisp subsets of

Zn that satisfies [̃SC] and the interval-valued fuzzy setR defined in (9.22), it holds that:

(∀[α1, α2] ∈ LI \ {0LI})(P[α1,α2] = Rα2

α1
).

Proof. Follows from the proof of Proposition 9.2.2 by using Lemma 9.2.3.

Remark that if the decreasing family(P[α1,α2])[α1,α2]∈LI
r,s\{0LI } does not satisfy the

condition [̃SC], it will not hold that(∀[α1, α2] ∈ LI \{0LI})(P[α1,α2] = Rα2

α1
), with the set

R as defined in (9.22). Indeed, if [̃SC] does not hold, then(∃[α1, α2] ∈ LI
r,s \{0LI})(∃x ∈

Zn)(x 6∈ P[α1,α2] and(∃[β1, β2] ∈ LI
r,s \ {0LI})(β1 < α1 andβ2 ≥ α2 andx ∈ P[β1,β2])

and (∃[γ1, γ2] ∈ LI
r,s \ {0LI})(γ1 ≥ α1 andγ2 < α2 andx ∈ P[γ1,γ2])). This would

mean thatR1(x) ≥ γ1 ≥ α1 andR2(x) ≥ β2 ≥ α2. As a consequence,x ∈ Rα2

α1
and

x 6∈ P[α1,α2].
The constructions made in the continuous case can also be performed in the discrete

case with the same results. Some remarks need however to be given.

Proposition 9.2.5. LetA,B ∈ FLI
r,s
(Zn), then for ally ∈ Zn it holds that:

D̃(A,B)(y) = sup
x∈Ty(dB)∩dA

Cmin(B(x− y), A(x)) = DI
Cmin

(A,B)(y).

Proof. The proof is similar to the one of Proposition 9.1.11, where it has to be shown that
(∗) = (∗∗), with (∗) and(∗∗) given by:

(∗) = sup {[α1, α2] | [α1, α2] ∈ LI
r,s \ {0LI} and(∃x ∈ Ty(dB) ∩ dA)

(Cmin(B(x− y), A(x)) ≥LI [α1, α2])},
(∗∗) = sup

x∈Ty(dB)∩dA

Cmin(B(x− y), A(x))).
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9.2 Discrete Case

The proof of(∗) ≤ (∗∗) is analogous to the proof of Proposition 9.1.11. The proof of
(∗∗) ≤ (∗) however is much simpler in the discrete framework, since we don’t have to
make use of the characterization of the supremum. IfTy(dB) ∩ dA = ∅, then(∗∗) = 0LI

and thus(∗∗) ≤LI (∗). Otherwise, in the discrete case, it immediately follows from (∗∗) =
sup

x∈Ty(dB)∩dA

Cmin(B(x− y), A(x))) that

(∗∗)1 ∈ {α1 | (∃α2 ∈ [α1, 1])([α1, α2] ∈ LI
r,s \ {0LI} and

(∃x ∈ Ty(dB) ∩ dA)([α1, α2] ≤LI Cmin(B(x− y), A(x))))} and

(∗∗)2 ∈ {α2 | (∃α1 ∈ [0, α2])([α1, α2] ∈ LI
r,s \ {0LI} and

(∃x ∈ Ty(dB) ∩ dA)([α1, α2] ≤LI Cmin(B(x− y), A(x))))}
⇒ [(∗∗)1, (∗∗)2] ≤LI sup{[[α1, α2] | [α1, α2] ∈ LI

r,s \ {0LI} and

(∃x ∈ Ty(dB) ∩ dA)([α1, α2] ≤LI Cmin(B(x− y), A(x)))} = (∗).

Analogously to the continuous case we find the following construction of the interval-
valued fuzzy erosionEI

IEKD
for all y ∈ Zn:

EI
IEKD

(A,B)(y) = Ns( sup
[α1,α2]∈LI

r,s\{0LI }
([α1, α2]co(E(co((coNs

A)α2

α1
), Bα2

α1
)))(y)).

The interval-valued fuzzy opening and closing can then be constructed as a combination
of the interval-valued fuzzy dilation and erosion.

9.2.2 Construction Based on Strict[α1, α2]-cuts

Recall thatLI
r,s = {[α1, α2] | α1 ∈ Ir andα2 ∈ Is} (Subsection 7.3.2). We determine

the unit er (respectivelyes) of the finite chainIr = {0, 1
r−1 , . . . ,

r−2
r−1 , 1} (respectively

Is = {0, 1
s−1 , . . . ,

s−2
s−1 , 1}) aser = 1

r−1 (respectivelyes = 1
s−1 ). We assume thater = es,

which is usually the case in practice1. Further, the sum of (respectively difference between)
the intervals[x1, x2] and[er, es] is given by[x1+er, x2+es] (respectively[x1−er, x2−es]).
The assumptioner = es is needed if we want[x1+ er, x2+ es] and[x1− er, x2− es] to be
intervals. Additionally, we define the setGr,s byGr,s = {[α1, α2] | (α1 = −er andα2 ∈
(Is \ {1}) ∪ {−es}))}. Remark thatGr,s ∩ LI

r,s = ∅. Finally, we extend the order relation
≤LI onLI

r,s toLI
r,s ∪Gr,s in a straightforward manner and for this reason, we will use the

same notation≤LI :

x ≤LI y ⇔ x1 ≤ y1 andx2 ≤ y2, ∀x, y ∈ LI
r,s ∪Gr,s. (9.23)

1On the same device and for the same image, the number of bits used for the storage of a grey value (and
consequently the number of allowed grey values) is usually constant and will thus be the same for the grey values
that respectively serve as lower and upper upper bound of theintervals
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Construction of Interval-valued Fuzzy Morphological Operators

Also the order relation�LI is extended analogously. The infimum and supremum of an
arbitrary subsetS of LI

r,s ∪Gr,s are then respectively given by:

inf S = [ inf
x∈S

x1, inf
x∈S

x2] = [min
x∈S

x1,min
x∈S

x2], (9.24)

supS = [sup
x∈S

x1, sup
x∈S

x2] = [max
x∈S

x1,max
x∈S

x2]. (9.25)

We can now formulate the following lemma that resembles Lemma 9.1.12, but does
differ from it.

Lemma 9.2.6. LetA ∈ FLI
r,s
(Zn), then it holds∀x ∈ Zn that:

A(x) = [max{α1 | (∃α2 ∈ [α1, 1[)([α1, α2] ∈ (LI
r,s \ ULI ) ∪Gr,s andA1(x) > α1

andA2(x) > α2)},max{α2 | (∃α1 ∈ [0, α2])([α1, α2] ∈ (LI
r,s \ ULI ) ∪Gr,s

andA1(x) > α1 andA2(x) > α2)}] + [er, es].

Proof.

[max{α1 | (∃α2 ∈ [α1, 1[)([α1, α2] ∈ (LI
r,s \ ULI ) ∪Gr,s andA1(x) > α1

andA2(x) > α2)},max{α2 | (∃α1 ∈ [0, α2])([α1, α2] ∈ (LI
r,s \ ULI ) ∪Gr,s and

A1(x) > α1 andA2(x) > α2)}] = [A1(x)− er, A2(x)− es] = A(x)− [er, es].

As a consequence, we have to take into account the interval[er, es] also for the construc-
tion of interval-valued fuzzy sets. For a decreasing family(Q[α1,α2])[α1,α2]∈(LI

r,s\ULI )∪Gr,s

of crisp subsets ofZn and the interval-valued fuzzy setV in Zn defined for allx ∈ Zn as

V (x) = sup {[α1, α2] | [α1, α2] ∈ (LI
r,s\ULI )∪Gr,s andx ∈ Q[α1,α2]}+[er, es], (9.26)

we might now wonder whether it holds that(∀[α1, α2] ∈ LI
r,s \ ULI )(V α2

α1
= Q[α1,α2]).

Remark that nonetheless the fact thatV is for all x ∈ Zn constructed as the supremum of a
set in(LI

r,s \ ULI ) ∪Gr,s, V (x) will always belongLI
r,s.

In contrast to the continuous case, the inclusionQ[β1,β2] ⊆ V β2

β1

always holds.

Proposition 9.2.7. For a decreasing family(Q[α1,α2])[α1,α2]∈(LI
r,s\ULI )∪Gr,s

of crisp sub-
sets ofZn and the interval-valued fuzzy setV defined in (9.26), it holds that:

(∀[α1, α2] ∈ LI
r,s \ ULI )(Q[α1,α2] ⊆ V α2

α1
).

Proof. Let [β1, β2] ∈ LI
r,s \ ULI and letx ∈ Q[β1,β2]. It then holds that:

x ∈ Q[β1,β2]
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9.2 Discrete Case

⇔ [β1, β2] ∈ {[α1, α2] | [α1, α2] ∈ (LI
r,s \ ULI ) ∪Gr,s andx ∈ Q[α1,α2]}

⇒ sup {[α1, α2] | [α1, α2] ∈ (LI
r,s \ ULI ) ∪Gr,s andx ∈ Q[α1,α2]}+ [er, es]

�LI [β1, β2]

⇔ V (x) �LI [β1, β2]

⇔ x ∈ V β2

β1

.

As a consequence,Q[β1,β2] ⊆ V β2

β1

.

The following lemma gives us a condition such that the reverse inclusion would also
hold.

Lemma 9.2.8. For a decreasing family(Q[α1,α2])[α1,α2]∈(LI
r,s\ULI )∪Gr,s

of crisp subsets
of Zn, it holds that

(∀[α1, α2] ∈ (LI
r,s \ ULI ) ∪Gr,s)(∀x ∈ Zn)

([α1, α2] ∈ {[β1, β2] | [β1, β2] ∈ (LI
r,s \ ULI ) ∪Gr,s andx ∈ Q[β1,β2]} ⇔

sup {[β1, β2] | [β1, β2] ∈ (LI
r,s \ ULI ) ∪Gr,s andx ∈ Q[β1,β2]} ≥LI [α1, α2])

m
[S̃C ′] :

(
∀[α1, α2] ∈ (LI

r,s \ ULI ) ∪Gr,s

)(
∀x ∈ Zn

)(
x 6∈ Q[α1,α2] ⇒

(
(∀[β1, β2] ∈ (LI

r,s \ ULI ) ∪Gr,s)((β1 < α1 andβ2 ≥ α2) ⇒ x 6∈ Q[β1,β2])
)

or
(
(∀[β1, β2] ∈ (LI

r,s \ ULI ) ∪Gr,s)((β1 ≥ α1 andβ2 < α2) ⇒ x 6∈ Q[β1
, β2])

))
.

Proof. Analogous to the proof of Lemma 9.2.3.

The following proposition is a straightforward consequence of the above lemma and
Proposition 9.2.7.

Proposition 9.2.9. For a decreasing family(Q[α1,α2])[α1,α2]∈(LI
r,s\ULI )∪Gr,s

of crisp sub-

sets ofZn that satisfies[S̃C ′] and the interval-valued fuzzy setV defined in (9.26), it holds
that:

(∀[α1, α2] ∈ LI
r,s \ ULI )(Q[α1,α2] = V α2

α1
).

Proof. Follows from the proof of Proposition 9.2.7 and Lemma 9.2.8 since, for all[β1, β2] ∈
LI
r,s \ULI , sup {[α1, α2] | [α1, α2] ∈ (LI

r,s \ULI )∪Gr,s andx ∈ Q[α1,α2]}+[er, es] �LI

[β1, β2] implies thatsup {[α1, α2] | [α1, α2] ∈ (LI
r,s \ ULI ) ∪Gr,s andx ∈ Q[α1,α2]} ≥LI

[β1, β2] and thus[β1, β2] ∈ {[α1, α2] | [α1, α2] ∈ (LI
r,s \ ULI ) ∪ Gr,s andx ∈ Q[α1,α2]}.
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Construction of Interval-valued Fuzzy Morphological Operators

Remark that if a decreasing family(Q[α1,α2])[α1,α2]∈(LI
r,s\ULI )∪Gr,s

of crisp subsets of

Zn does not fulfil [̃SC ′], then it will also not hold that(∀[α1, α2] ∈ LI
r,s \ULI )(Q[α1,α2] =

V α2

α1
). Indeed, if [̃SC ′] does not hold, then(∃[α1, α2] ∈ (LI

r,s \ ULI ) ∪ Gr,s)(∃x ∈
Zn)(x 6∈ Q[α1,α2] and(∃[β1, β2] ∈ (LI

r,s \ ULI ) ∪ Gr,s)(β1 < α1 andβ2 ≥ α2 andx ∈
Q[β1,β2]) and(∃[γ1, γ2] ∈ (LI

r,s \ ULI ) ∪ Gr,s)(γ1 ≥ α1 andγ2 < α2 andx ∈ Q[γ1,γ2])).
This would mean thatV1(x) ≥ γ1 + er > α1 andV2(x) ≥ β2 + es > α2. Sinceγ2 < α2

andβ1 < α1, [α1, α2] 6∈ Gr,s, but [α1, α2] ∈ LI
r,s. As a consequence,x ∈ V α2

α1
and

x 6∈ Q[α1,α2].
For the construction of the interval-valued fuzzy dilationby strict[α1, α2]-cuts, we find

a stronger result in the discrete case than in the continuouscase. We first need to extend the
definition of strict[α1, α2]-cuts from(LI

r,s \ ULI ) to (LI
r,s \ ULI ) ∪ Gr,s as follows. For

A ∈ FLI
r,s
(Zn) and[α1, α2] ∈ Gr,s,

Aα2

α1
=

{
Zn α1 = −er andα2 = −es
Aα2 α1 = −er andα2 6= −es

.

We defineD̃(A,B)
′
for all x ∈ Zn as

D̃(A,B)
′
(x) =

sup {[α1, α2] | [α1, α2] ∈ (LI
r,s \ ULI ) ∪Gr,s andx ∈ D(Aα2

α1
, Bα2

α1
)}+ [er, es].

Remark thatD̃(A,B)
′
(x) ∈ LI

r,s for all x ∈ Zn.

The following proposition states that the above constructed dilation D̃(A,B)
′

equals
the dilationDI

Cmin
.

Proposition 9.2.10.LetA,B ∈ FLI
r,s
(Zn), then for ally ∈ Zn it holds that:

D̃(A,B)
′
(y) = sup

x∈Ty(dB)∩dA

Cmin(B(x− y), A(x)) = DI
Cmin

(A,B)(y).

Proof. LetA,B ∈ FLI
r,s
(Zn), and lety ∈ Zn. It holds that:

D̃(A,B)
′
(y) = sup {[α1, α2] | [α1, α2] ∈ (LI

r,s \ ULI ) ∪Gr,s and

y ∈ D(Aα2

α1
, Bα2

α1
)}+ [er, es]

= sup {[α1, α2] | [α1, α2] ∈ (LI
r,s \ ULI ) ∪Gr,s and

Ty(B
α2

α1
) ∩Aα2

α1
6= ∅}+ [er, es]

= sup {[α1, α2] | [α1, α2] ∈ (LI
r,s \ ULI ) ∪Gr,s and

(∃x ∈ Ty(dB) ∩ dA)(x ∈ Ty(B
α2

α1
) andx ∈ Aα2

α1
)}+ [er, es]
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9.2 Discrete Case

= sup {[α1, α2] | [α1, α2] ∈ (LI
r,s \ ULI ) ∪Gr,s and

(∃x ∈ Ty(dB) ∩ dA)((B1(x− y) > α1 andA1(x) > α1) and

(B2(x− y) > α2 andA2(x) > α2))}+ [er, es]

= sup {[α1, α2] | [α1, α2] ∈ (LI
r,s \ ULI ) ∪Gr,s and

(∃x ∈ Ty(dB) ∩ dA)(Cmin(B(x− y), A(x)) �LI [α1, α2])}
+[er, es]

≡ (∗).

We have to prove that(∗) is equal to

sup {Cmin(B(x− y), A(x)) | x ∈ Ty(dB) ∩ dA} ≡ (∗∗).

It holds that:

(∗) = sup {[α1, α2] | [α1, α2] ∈ (LI
r,s \ ULI ) ∪Gr,s and(∃x ∈ Ty(dB) ∩ dA)

([α1, α2] �LI Cmin(B(x− y), A(x)))}+ [er, es]

≤LI sup {[α1, α2] | [α1, α2] ∈ (LI
r,s \ ULI ) ∪Gr,s and

([α1, α2] �LI sup
x∈Ty(dB)∩dA

Cmin(B(x− y), A(x)))}+ [er, es]

= ( sup
x∈Ty(dB)∩dA

Cmin(B(x− y), A(x)))− [er, es]) + [er, es]

= (∗∗)

The proof of(∗∗) ≤ (∗) however is much simpler in the discrete framework, since we
don’t have to make use of the characterization of the supremum. If Ty(dB) ∩ dA = ∅, then
(∗∗) = 0LI and thus(∗∗) ≤LI (∗). Otherwise, in the discrete case, it immediately follows
from (∗∗) = sup

x∈Ty(dB)∩dA

Cmin(B(x− y), A(x))) that

(∗∗)1 ∈ {α1 | (∃α2 ∈ [α1, 1])([α1, α2] ∈ (LI
r,s \ ULI ) ∪Gr,s and

(∃x ∈ Ty(dB) ∩ dA)([α1, α2] ≤LI Cmin(B(x− y), A(x))))} and

(∗∗)2 ∈ {α2 | (∃α1 ∈ [0, α2])([α1, α2] ∈ (LI
r,s \ ULI ) ∪Gr,s and

(∃x ∈ Ty(dB) ∩ dA)([α1, α2] ≤LI Cmin(B(x− y), A(x))))}
⇒ (∗∗)1 ∈ {α1 | (∃α2 ∈ [α1, 1])([α1, α2] ∈ (LI

r,s \ ULI ) ∪Gr,s and

(∃x ∈ Ty(dB) ∩ dA)([α1, α2] �LI Cmin(B(x− y), A(x)) + [er, es]))} and

(∗∗)2 ∈ {α2 | (∃α1 ∈ [0, α2])([α1, α2] ∈ (LI
r,s \ ULI ) ∪Gr,s and

(∃x ∈ Ty(dB) ∩ dA)([α1, α2] �LI Cmin(B(x− y), A(x)) + [er, es]))}
⇒ [(∗∗)1, (∗∗)2] ≤LI sup{[α1, α2] | [α1, α2] ∈ (LI

r,s \ ULI ) ∪Gr,s and

(∃x ∈ Ty(dB) ∩ dA)([α1, α2] �LI Cmin(B(x− y), A(x)) + [er, es])}
⇒ [(∗∗)1, (∗∗)2] ≤LI sup{[α1, α2] | [α1, α2] ∈ (LI

r,s \ ULI ) ∪Gr,s and
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Construction of Interval-valued Fuzzy Morphological Operators

(∃x ∈ Ty(dB) ∩ dA)([α1, α2] �LI Cmin(B(x− y), A(x)))}+ [er, es] = (∗).

Analogously to the continuous case we find the following construction of the interval-
valued fuzzy erosionEI

IEKD
. For ally ∈ Zn,

EI
IEKD

(A,B)(y) =

Ns( sup
[α1,α2]∈(LI

r,s\ULI )∪Gr,s

([α1, α2]co(E(co((coNs
A)α2

α1
), Bα2

α1
)))(y) + [er, es]).

The interval-valued fuzzy opening and closing can then be constructed as a combination
of the interval-valued fuzzy dilation and erosion.

9.2.3 Construction Based on Weak-Strict and Strict-Weak[α1, α2]-
cuts

The following lemma for strict-weak[α1, α2]-cuts resembles Lemma 9.1.24, but does differ
from it. The notationHr,s stands for the setHr,s = {[α1, α2] | α1 = −er andα2 ∈ Is}.
Remark thatHr,s ∩ LI

r,s = ∅. We further also extend the order relation≤LI on LI
r,s to

Hr,s ∪ LI
r,s in a straightforward manner and for this reason, we will use the same notation

≤LI :
x ≤LI y ⇔ x1 ≤ y1 andx2 ≤ y2, ∀x, y ∈ LI

r,s ∪Hr,s. (9.27)

Also the order relation�LI is extended analogously. The infimum and supremum of an
arbitrary subsetS of LI

r,s ∪Hr,s are then respectively given by:

inf S = [ inf
x∈S

x1, inf
x∈S

x2] = [min
x∈S

x1,min
x∈S

x2], (9.28)

supS = [sup
x∈S

x1, sup
x∈S

x2] = [max
x∈S

x1,max
x∈S

x2]. (9.29)

Lemma 9.2.11.LetA ∈ FLI
r,s
(Zn), then it holds∀x ∈ Zn that:

A(x) = [max{α1 | (∃α2 ∈ Is)([α1, α2] ∈ (LI
r,s \ {1LI}) ∪Hr,s and

A1(x) > α1 andA2(x) ≥ α2)}+ er,max{α2 | (∃α1 ∈ (Ir \ {1}) ∪ {−er})
([α1, α2] ∈ (LI

r,s \ {1LI}) ∪Hr,s andA1(x) > α1 andA2(x) ≥ α2)}].

Proof.
The result follows from the fact that

max{α1 | (∃α2 ∈ Is)([α1, α2] ∈ (LI
r,s \ {1LI}) ∪Hr,s andA1(x) > α1

andA2(x) ≥ α2)} = A1(x)− er,
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9.2 Discrete Case

and

max{α2 | (∃α1 ∈ (Ir \ {1}) ∪ {−er})([α1, α2] ∈ (LI
r,s \ {1LI}) ∪Hr,s

andA1(x) > α1 andA2(x) ≥ α2)} = A2(x).

For the weak-strict[α1, α2]-cuts, an analogous result exists if we extend the setLI
r,s to

the setL̃I
r,s, of which the elements don’t need to be intervals. Because ofthe similarity to

the setLI
r,s, we will nonetheless use the interval notation:̃LI

r,s = {[α1, α2] | α1 ∈ Ir, α2 ∈
Is ∪ {−es} andα2 + es ≥ α1}. We further also extend the order relation≤LI onLI

r,s to

L̃I
r,s in a straightforward manner and for this reason, we will use the same notation≤LI :

x ≤LI y ⇔ x1 ≤ y1 andx2 ≤ y2, ∀x, y ∈ L̃I
r,s. (9.30)

Also the order relation�LI is extended analogously. The infimum and supremum of an
arbitrary subsetS of LI

r,s ∪Hr,s are then respectively given by:

inf S = [ inf
x∈S

x1, inf
x∈S

x2] = [min
x∈S

x1,min
x∈S

x2], (9.31)

supS = [sup
x∈S

x1, sup
x∈S

x2] = [max
x∈S

x1,max
x∈S

x2]. (9.32)

Lemma 9.2.12.LetA ∈ FLI
r,s
(Zn), then it holds∀x ∈ Zn that:

A(x) = [max{α1 | (∃α2 ∈ (Is \ {1}) ∪ {−es})([α1, α2] ∈ L̃I
r,s \ ULI

andA1(x) ≥ α1 andA2(x) > α2)},max{α2 | (∃α1 ∈ Ir)

([α1, α2] ∈ L̃I
r,s \ ULI andA1(x) ≥ α1 andA2(x) > α2))}+ es].

Proof.
Analogous to the proof of Lemma 9.2.11.

For given families(M[α1,α2])[α1,α2]∈(L̃I
r,s\ULI )

and(N[α1,α2])[α1,α2]∈(LI
r,s\{1LI })∪Hr,s

of crisp subsets ofZn that are decreasing and the interval-valued fuzzy setsY andZ in Zn

respectively defined for allx ∈ Zn as

Y (x) = sup {[α1, α2] | [α1, α2] ∈ (L̃I
r,s \ ULI ) andx ∈M[α1,α2]}+ [0, es], (9.33)

and

Z(x) = sup {[α1, α2] | [α1, α2] ∈ (LI
r,s\{1LI})∪Hr,s andx ∈ N[α1,α2]}+[er, 0], (9.34)

we might now wonder whether it holds that(∀[α1, α2] ∈ LI
r,s \ ULI )(Y α2

α1
= M[α1,α2]),

respectively whether it holds that(∀[α1, α2] ∈ LI
r,s \ {1LI})(Zα2

α1
= N[α1,α2]). Remark
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that nonetheless the fact thatY andZ are for allx ∈ Zn constructed as the supremum of a

set inL̃I
r,s \ULI and(LI

r,s \ {1LI})∪Hr,s respectively,Y (x) andZ(x) will always belong
LI
r,s.

In contrast to the continuous case, the inclusionsM[α1,α2] ⊆ Y α2

α1
andN[α1,α2] ⊆ Zα2

α1

always hold.

Proposition 9.2.13.

(i) For a decreasing family(M[α1,α2])[α1,α2]∈(L̃I
r,s\ULI )

of crisp subsets ofZn and the

interval-valued fuzzy setY defined in (9.33), it holds that:

(∀[α1, α2] ∈ LI
r,s \ ULI )(M[α1,α2] ⊆ Y α2

α1
).

(ii) For a decreasing family(N[α1,α2])[α1,α2]∈(LI
r,s\{1LI })∪Hr,s

of crisp subsets ofZn and
the interval-valued fuzzy setZ defined in (9.34), it holds that:

(∀[α1, α2] ∈ LI
r,s \ {1LI})(N[α1,α2] ⊆ Zα2

α1
).

Proof.

(i) Let [β1, β2] ∈ LI
r,s \ ULI and letx ∈M[β1,β2]. It then holds that:

x ∈M[β1,β2]

⇔ [β1, β2] ∈ {[α1, α2] | [α1, α2] ∈ (L̃I
r,s \ ULI ) andx ∈M[α1,α2]}

⇒ (sup {[α1, α2] | [α1, α2] ∈ (L̃I
r,s \ ULI ) andx ∈M[α1,α2]})1 ≥ β1 and

(sup {[α1, α2] | [α1, α2] ∈ (L̃I
r,s \ ULI ) andx ∈M[α1,α2]})2 + es > β2

⇔ Y1(x) ≥ β1 andY2(x) > β2

⇔ x ∈ Y β2

β1
.

As a consequence,M[β1,β2] ⊆ Y β2

β1
.

(ii) Analogously.

The following lemmata give us a condition such that the reverse inclusion would also
hold.

Lemma 9.2.14. For a decreasing family(M[α1,α2])[α1,α2]∈(L̃I
r,s\ULI )

of crisp subsets of

Zn, it holds that

(∀[α1, α2] ∈ (L̃I
r,s \ ULI ))(∀x ∈ Zn)

([α1, α2] ∈ {[β1, β2] | [β1, β2] ∈ (L̃I
r,s \ ULI ) andx ∈M[β1,β2]} ⇔

sup {[β1, β2] | [β1, β2] ∈ (L̃I
r,s \ ULI ) andx ∈M[β1,β2]} ≥LI [α1, α2])
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9.2 Discrete Case

m
[S̃C ′′a] :

(
∀[α1, α2] ∈ ((L̃I

r,s \ ULI )
)(

∀x ∈ Zn
)(
x 6∈M[α1,α2] ⇒

(
(∀[β1, β2] ∈ (L̃I

r,s \ ULI ))((β1 < α1 andβ2 ≥ α2) ⇒ x 6∈M[β1,β2])
)

or
(
(∀[β1, β2] ∈ (L̃I

r,s \ ULI ))((β1 ≥ α1 andβ2 < α2) ⇒ x 6∈M[β1,β2])
))
.

Proof. Analogous to the proof of Lemma 9.2.3.

Lemma 9.2.15.For a decreasing family(N[α1,α2])[α1,α2]∈(LI
r,s\{1LI })∪Hr,s

of crisp subsets
of Zn, it holds that

(∀[α1, α2] ∈ (LI
r,s \ {1LI}) ∪Hr,s)(∀x ∈ Zn)

([α1, α2] ∈ {[β1, β2] | [β1, β2] ∈ (LI
r,s \ {1LI}) ∪Hr,s andx ∈ N[β1,β2]} ⇔

sup {[β1, β2] | [β1, β2] ∈ (LI
r,s \ {1LI}) ∪Hr,s andx ∈ N[β1,β2]} ≥LI [α1, α2])

m
[S̃C ′′b] :

(
∀[α1, α2] ∈ (LI

r,s \ {1LI}) ∪Hr,s

)(
∀x ∈ Zn

)(
x 6∈ N[α1,α2] ⇒

(
(∀[β1, β2] ∈ (LI

r,s \ {1LI}) ∪Hr,s)((β1 < α1 andβ2 ≥ α2) ⇒ x 6∈ N[β1,β2])
)

or
(
(∀[β1, β2] ∈ (LI

r,s \ {1LI}) ∪Hr,s)((β1 ≥ α1 andβ2 < α2) ⇒ x 6∈ N[β1,β2])
))
.

Proof. Analogous to the proof of Lemma 9.2.3.

The following proposition is a straightforward consequence of the above lemmata and
Proposition 9.2.13.

Proposition 9.2.16.

(i) For a decreasing family(M[α1,α2])[α1,α2]∈(L̃I
r,s\ULI )

of crisp subsets ofZn that sat-

isfies[SC ′′a] and the interval-valued fuzzy setY defined in (9.33), it holds that:

(∀[α1, α2] ∈ LI
r,s \ ULI )(M[α1,α2] = Y α2

α1
).

(ii) For a decreasing family(N[α1,α2])[α1,α2]∈(LI
r,s\{1LI })∪Hr,s

of crisp subsets ofZn

that satisfies[SC ′′b] and the interval-valued fuzzy setZ defined in (9.34), it holds
that:

(∀[α1, α2] ∈ LI
r,s \ {1LI})(N[α1,α2] = Zα2

α1
).

Proof.

(i) Follows from the proof of Proposition 9.2.13 and Lemma 9.2.14 since it follows for

all [β1, β2] ∈ L̃I
r,s \ ULI from (sup {[α1, α2] | [α1, α2] ∈ (L̃I

r,s \ ULI ) andx ∈
M[α1,α2]})1 ≥ β1 and(sup {[α1, α2] ∈ (L̃I

r,s \ ULI ) | x ∈ M[α1,α2]})2 + es > β2
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thatsup {[α1, α2] | [α1, α2] ∈ (L̃I
r,s \ULI ) andx ∈M[α1,α2]} ≥LI [β1, β2] and thus

[β1, β2] ∈ {[α1, α2] | [α1, α2] ∈ (L̃I
r,s \ ULI ) andx ∈M[α1,α2]}.

(ii) Follows analogously from the proof of Proposition 9.2.13 and Lemma 9.2.15

Remark that if a decreasing family(M[α1,α2])[α1,α2]∈L̃I
r,s\ULI

of crisp subsets ofZn

does not fulfil [̃SC ′′a], then it will also not hold that(∀[α1, α2] ∈ LI
r,s \ ULI )(M[α1,α2] =

Y α2

α1
). Indeed, if [̃SC ′′a] does not hold, then(∃[α1, α2] ∈ L̃I

r,s \ ULI )(∃x ∈ Zn)(x 6∈
M[α1,α2] and (∃[β1, β2] ∈ L̃I

r,s \ ULI )(β1 < α1 andβ2 ≥ α2 andx ∈ M[β1,β2]) and

(∃[γ1, γ2] ∈ L̃I
r,s \ ULI )(γ1 ≥ α1 andγ2 < α2 andx ∈ M[γ1,γ2])). This would mean that

Y1(x) ≥ γ1 ≥ α1 andY2(x) ≥ β2 + es > α2. Sinceγ1 ≥ α1 andγ2 < α2, it follows
thatα1 ≤ γ1 ≤ γ2 + es ≤ α2 and thus[α1, α2] ∈ LI

r,s. As a consequence,x ∈ Y α2

α1
and

x 6∈M[α1,α2].

An analogous remark holds for strict-weak[α1, α2]-cuts and condition [̃SC ′′b].
For the construction of the interval-valued fuzzy dilationby weak-strict[α1, α2]-cuts,

we first need to extend the definition of weak-strict[α1, α2]-cuts from(LI
r,s\ULI ) to (L̃I

r,s\
ULI ). ForA ∈ FLI

r,s
(Zn) and[α1, α2] ∈ L̃I

r,s \ ULI ,

Aα2

α1
= {x | x ∈ Zn, A1(x) ≥ α1 andA2(x) > α2}.

The dilationD̃(A,B)
′′

is then for allx ∈ Zn defined as

D̃(A,B)
′′
(x) = sup {[α1, α2] | [α1, α2] ∈ (L̃I

r,s \ ULI ) andx ∈ D(Aα2

α1
, Bα2

α1
)}+ [0, es].

For the construction by strict-weak[α1, α2]-cuts, we need to extend the definition from
(LI

r,s\{1LI}) to (LI
r,s\{1LI})∪Hr,s, as follows. ForA ∈ FLI

r,s
(Zn) and[α1, α2] ∈ Hr,s,

Aα2

α1
= Aα2 = {x | x ∈ Zn andA2(x) ≥ α2}.

We then defineD̃(A,B)
′′′

for all x ∈ Zn as

D̃(A,B)
′′′
(x) =

sup {[α1, α2] | [α1, α2] ∈ (LI
r,s \ {1LI}) ∪Hr,s andx ∈ D(Aα2

α1
, Bα2

α1
)}+ [er, 0].

Remark thatD̃(A,B)
′′
(x) ∈ LI

r,s andD̃(A,B)
′′′
(x) ∈ LI

r,s for all x ∈ Zn.
The following proposition states that the above constructed dilations are equal toDI

Cmin
.

Remark that for the strict-weak[α1, α2]-cuts, this is a stronger result than in the continuous
case.
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9.3 Conclusion

Proposition 9.2.17.LetA,B ∈ FLI
r,s
(Zn), then for ally ∈ Zn it holds that:

(i)

D̃(A,B)
′′
(y) = sup

x∈Ty(dB)∩dA

Cmin(B(x− y), A(x)) = DI
Cmin

(A,B)(y).

(ii)

D̃(A,B)
′′′
(y) = sup

x∈Ty(dB)∩dA

Cmin(B(x− y), A(x)) = DI
Cmin

(A,B)(y).

Proof. Analogous to the proof of Proposition 9.2.10.

Analogously to the continuous case we find the following constructions of the interval-
valued fuzzy erosionEI

IEKD
. For ally ∈ Zn, it holds that

EI
IEKD

(A,B)(y) =

Ns( sup
[α1,α2]∈L̃I

r,s\ULI

([α1, α2]co(E(co((coNs
A)α2

α1
), Bα2

α1
)))(y) + [0, es]),

and

EI
IEKD

(A,B)(y) =

Ns( sup
[α1,α2]∈(LI

r,s\{1LI })∪Hr,s

([α1, α2]co(E(co((coNs
A)α2

α1
), Bα2

α1
)))(y) + [er, 0]).

The interval-valued fuzzy opening and closing can then be constructed as a combination
of the interval-valued fuzzy dilation and erosion.

9.2.4 Sub- and Supercuts

Also in the discrete framework, there is no construction principle based on weak and strict
sub- and supercuts, since these sets only give information about the lower or the upper
bounds of the intervals on which an interval-valued fuzzy set maps the elements of the
universe.

9.3 Conclusion

In this chapter we have studied the construction of increasing interval-valued fuzzy oper-
ators from their corresponding binary counterparts in general and more in detail for the
morphological operators. This construction was investigated both in the general continu-
ous case and the practical discrete case. In the discrete case, we work with interval-valued
fuzzy sets fromFLI

r,s
(Zn) instead ofFLI (Rn) since in practice, both the image domain

and the range of grey values are sampled due to technical limitations. It was shown that in
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both cases the constructed interval-valued fuzzy dilationcorresponds to the interval-valued
fuzzy dilationDI

Cmin
, that is dual to the erosionEIEKD

, which allows us to construct the
other basic morphological operators. Further, we found outthat the characterization of the
supremum in the discrete case has as a consequence that some of the difficulties from the
continuous case don’t arise anymore. Moreover, also some stronger relationships hold in
this practical case.
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Conclusion

The contents of this thesis were divided into three main parts. In the first part, an introduc-
tion to fuzzy set theory and image processing was given in Chapter 1 and 2 respectively.

After this introduction, we presented several fuzzy logic based video filters in Part II.
Chapter 3 and 4 concentrated on removing additive Gaussian noise from greyscale and
colour image sequences respectively, while the greyscale and colour filters in respectively
Chapter 5 and 6 were developed for the random impulse noise case.

The greyscale filter proposed in Chapter 3 [79, 86] can be seenas a fuzzy logic based
improvement of the multiple class averaging filter (MCA) from [146, 149]. Pixels are no
longer divided into discrete classes based on their absolute difference in grey value to the
central window pixel, but are treated individually by introducing a fuzzy set to represent
to which degree this absolute difference is large. Further,the heuristic construction of ex-
ponential functions to assign the filtering weights to the neighbourhood pixels is replaced
by a more theoretically underbuilt fuzzy logic framework inwhich fuzzy rules, that corre-
spond to the ideas behind the MCA filter, are used. Such fuzzy rules can easily be extended
by including new information as can e.g. be seen in the secondcolour extension in Chap-
ter 4. Analogously to the MCA filter, the proposed pixel domain filtering framework was
extended to the wavelet domain. Contrary to the MCA filter however, we opted for an ad-
ditional pixel domain time-recursive averaging instead ofa filtering of the low-frequency
band. The experimental results showed that the proposed pixel domain method outper-
forms all other compared state-of-the-art pixel domain filters in terms of PSNR and that the
wavelet domain extension competes with other state-of-the-art wavelet domain filters of a
comparable complexity and outperforms them on sequences obtained by a still camera. The
filter is however outperformed by higher complexity methodsthat use motion compensation
or a 3D-transform.

Additionally, in Chapter 4 the filtering framework from Chapter 3 was extended to
colour videos. More precisely, we introduced two alternatives [75, 76] for the usually ap-
plied filtering of theY -component of theY UV -transform of the frames with the original
greyscale method. In the first proposed filter [75], the variables used in the filtering frame-
work are extended from grey values to colour vectors. In thisvector based approach the
pixel colours are seen as vectors of which the different components should not be used sep-
arately in order to preserve the correlation between the different colour bands. The second
proposed approach [76] filters each of the colour bands separately, but to exploit the corre-



266 Conclusion

lation between the different colour bands, the fuzzy rules in the filtering framework are now
extended by incorporating information from the other colour bands. Both approaches are
additionally also combined with a refinement of the second subfilter from [119]. From the
experimental results, it could be seen that the proposed colour extensions result in a better
colour and detail preservation than theY UV approach.

In Chapter 5 two greyscale video filters [77, 74, 80] for the removal of random impulse
noise are introduced. Both filters consist of successive noise detection and filtering steps.
In this way, details can be better preserved because not all noise needs to be filtered in
one drastic denoising step that will inevitably also removedetails then. On the other hand,
also the remaining noise might be easier to detect if a considerable part of the noise has
already been filtered in a previous step. Indeed, more reliable neighbours are available
for comparison. In the noise detection steps of the first presented algorithm [80], for each
pixel a degree is calculated to which it is considered noisy and all pixels that have a non-
zero degree are filtered. In the successive steps of the second proposed method [77, 74],
fuzzy rules containing linguistic values are used to determine both a degree to which a
pixel is considered noisy and a degree to which it is considered noisefree. Pixels are now
filtered if the noisy degree is larger than the noisefree degree. The filtering of detected
pixels is performed in a motion compensated way. The motion compensation technique has
originally been developed for video compression applications. Although it has already been
adopted for the filtering of videos corrupted by additive Gaussian noise, it has not really
found its way to impulse noise video filters yet. The correspondence between two pixel
blocks in successive frames is usually calculated as the mean absolute distance (MAD)
between those blocks. To reduce the influence of noisy impulses on this measure in order to
use it in our filters, we have introduced a noise adaptive meanabsolute distance. From the
experimental results it can be seen that the proposed filtersresult in a very good trade-off
between noise removal and detail preservation. They are further also shown to outperform
all other compared state-of-the-art random impulse noise filters.

Analogous to the greyscale methods in Chapter 5, also the random impulse noise colour
video filter [78, 73] in Chapter 6 removes the noise step by step to combine a good noise
removal to a good detail preservation. Each of the colour bands is filtered separately. How-
ever, the fuzzy rules that are used to determine the degrees to which a pixel component
is considered noisy and noisefree in each step do now not onlyrequire information from
a spatio-temporal neighbourhood in the same colour band, but exploit also the extra in-
formation that is available from the other colour bands. Pixel components for which the
noisy degree is larger than the noisefree degree are filtered. To this, we again applied the
noise adaptive block matching technique used in the motion compensation for the filters
in the previous chapter. To exploit besides the temporal information also the spatial infor-
mation available in the sequence as much as possible, we further developed the technique
by spreading the search region for corresponding blocks over both the previous and current
frame. The experiments show that the proposed method outperforms other state-of-the-art
filters both visually and in terms of objective quality measures such as the PSNR and NCD.

The third part of the thesis is more theoretical of nature anddeals with interval-valued
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fuzzy mathematical morphology.
In Chapter 7, we started with an overview of the evolution from binary mathematical

morphology to interval-valued fuzzy mathematical morphology and additionally investi-
gated the basic properties of the interval-valued fuzzy morphological operators [84].

Next, in Chapter 8 we studied the decomposition of the interval-valued fuzzy morpho-
logical operators in their[α1, α2]-cuts [83, 85]. We were interested in the relationship be-
tween the[α1, α2]-cut of the result of such operator applied on an interval-valued image
and structuring element and the result of the correspondingbinary operator applied on the
[α1, α2]-cut of the image and structuring element. We found that in the practical discrete
case, the[α1, α2]-cuts of the interval-valued fuzzy dilation based on the conjunctorCmin,
the erosion based on the implicatorIEKD, and the opening and closing based on those two
can always be written in terms of binary operators. For othersemi-norms and upper border
implicators, we found an approximation in terms of binary operators. In the continuous case,
the relationships are sometimes less strong. If no equalitywas found, a counterexample was
constructed. The decomposition results are first of all interesting from a theoretical point of
view since they provide us a link between interval-valued fuzzy mathematical morphology
and binary mathematical morphology, but secondly, a conversion into binary operators also
reduces the computation time needed for the calculation of such[α1, α2]-cut.

Finally, in Chapter 9, we also investigated the reverse problem, i.e., the construction of
interval-valued morphological operators from the binary ones [81, 82]. Inspired by the con-
struction of an interval-valued fuzzy set from its[α1, α2]-cuts, we studied the construction
of an interval-valued fuzzy set from a general nested familyof crisp sets and under which
conditions the[α1, α2]-cuts of the constructed interval-valued fuzzy set corresponds to the
crisp sets in the family used for the construction. Using these results, increasing binary
operators could be extended to interval-valued fuzzy operators by defining the result of the
interval-valued fuzzy operator as the interval-valued fuzzy set that is constructed from the
family that arises by applying the binary operator on the[α1, α2]-cuts of its arguments. This
allows us to compute the interval-valued fuzzy operators bycombining the results of several
binary operators or to approximate them by a finite number of binary operators. Applying
the construction principle on the increasing binary morphological dilation, we obtained the
interval-valued fuzzy dilation based on the conjunctorCmin, which again provides us a nice
theoretical link between interval-valued fuzzy and binarymathematical morphology.
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[73] M ÉLANGE, T., NACHTEGAEL, M., AND KERRE, E. E. Fuzzy random impulse
noise removal from colour image sequences.IEEE Transactions on Image Process-
ing. submitted.



References 275
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[79] M ÉLANGE, T., NACHTEGAEL, M., KERRE, E. E., ZLOKOLICA , V., SCHULTE, S.,
DE WITTE, V., PIZURICA , A., AND PHILIPS, W. Video denoising by fuzzy motion
and detail adaptive averaging.Journal of Electronic Imaging 17, 4 (2008), 43005–01
– 43005–19. DOI:10.1117/1.2992065.

[80] M ÉLANGE, T., NACHTEGAEL, M., SCHULTE, S., AND KERRE, E. E. A fuzzy
filter for the removal of random impulse noise in image sequences.Image and Vision
Computing. submitted.
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[97] NACHTEGAEL, M., MÉLANGE, T., AND KERRE, E. E. The possibilities of fuzzy
logic in image processing. InProceedings of PReMI 2007 (Pattern Recognition
and Machine Intelligence)(2007), vol. 4815 ofLecture Notes in Computer Science,
pp. 198–208.



References 277

[98] NACHTEGAEL, M., SCHAEFER, G., MÉLANGE, T., AND KERRE, E. E. Fuzzy
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