98 research outputs found

    Altimetry for the future: Building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the ‘‘Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    Altimetry for the future: Building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the “Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    The Roles of the S3MPC: Monitoring, Validation and Evolution of Sentinel-3 Altimetry Observations

    Get PDF
    The Sentinel-3 Mission Performance Centre (S3MPC) is tasked by the European Space Agency (ESA) to monitor the health of the Copernicus Sentinel-3 satellites and ensure a high data quality to the users. This paper deals exclusively with the effort devoted to the altimeter and microwave radiometer, both components of the Surface Topography Mission (STM). The altimeters on Sentinel-3A and -3B are the first to operate in delay-Doppler or SAR mode over all Earth surfaces, which enables better spatial resolution of the signal in the along-track direction and improved noise reduction through multi-looking, whilst the radiometer is a two-channel nadir-viewing system. There are regular routine assessments of the instruments through investigation of telemetered housekeeping data, calibrations over selected sites and comparisons of geophysical retrievals with models, in situ data and other satellite systems. These are performed both to monitor the daily production, assessing the uncertainties and errors on the estimates, and also to characterize the long-term performance for climate science applications. This is critical because an undetected drift in performance could be misconstrued as a climate variation. As the data are used by the Copernicus Services (e.g., CMEMS, Global Land Monitoring Services) and by the research community over open ocean, coastal waters, sea ice, land ice, rivers and lakes, the validation activities encompass all these domains, with regular reports openly available. The S3MPC is also in charge of preparing improvements to the processing, and of the development and tuning of algorithms to improve their accuracy. This paper is thus the first refereed publication to bring together the analysis of SAR altimetry across all these different domains to highlight the benefits and existing challenges

    The Use of Sentinel-3 Altimetry Data to Assess Wind Speed from the Weather Research and Forecasting (WRF) Model: Application over the Gulf of Cadiz

    Get PDF
    This work presents the quality performance and the capabilities of altimetry derived wind speed (WS) retrievals from the altimeters on-board Copernicus satellites Sentinel-3A/B (S3A/B) for the spatial assessment of WS outputs from the weather research and forecasting (WRF) model over the complex area of the Gulf of Cádiz (GoC), Spain. In order to assess the applicability of the altimetry data for this purpose, comparisons between three different WS data sources over the area were evaluated: in situ measurements, S3A/B 20 Hz altimetry data, and WRF model outputs. Sentinel- 3A/B WS data were compared against two different moored buoys to guarantee the quality of the data over the GoC, resulting in satisfying scores (average results: RMSE = 1.21 m/s, r = 0.93 for S3A and RMSE = 1.36 m/s, r = 0.89 for S3B). Second, the WRF model was validated with in situ data from four different stations to ensure the correct performance over the area. Finally, the spatial variability of the WS derived from the WRF model was compared with the along-track altimetry-derived WS. The analysis was carried out under different wind synoptic conditions. Qualitative and quantitative results (average RMSE < 1.0 m/s) show agreement between both data sets under low/high wind regimes, proving that the spatial coverage of satellite altimetry enables the spatial assessment of high-resolution numerical weather prediction models in complex water-covered zones

    Monitoring Snow Cover and Snowmelt Dynamics and Assessing their Influences on Inland Water Resources

    Get PDF
    Snow is one of the most vital cryospheric components owing to its wide coverage as well as its unique physical characteristics. It not only affects the balance of numerous natural systems but also influences various socio-economic activities of human beings. Notably, the importance of snowmelt water to global water resources is outstanding, as millions of populations rely on snowmelt water for daily consumption and agricultural use. Nevertheless, due to the unprecedented temperature rise resulting from the deterioration of climate change, global snow cover extent (SCE) has been shrinking significantly, which endangers the sustainability and availability of inland water resources. Therefore, in order to understand cryo-hydrosphere interactions under a warming climate, (1) monitoring SCE dynamics and snowmelt conditions, (2) tracking the dynamics of snowmelt-influenced waterbodies, and (3) assessing the causal effect of snowmelt conditions on inland water resources are indispensable. However, for each point, there exist many research questions that need to be answered. Consequently, in this thesis, five objectives are proposed accordingly. Objective 1: Reviewing the characteristics of SAR and its interactions with snow, and exploring the trends, difficulties, and opportunities of existing SAR-based SCE mapping studies; Objective 2: Proposing a novel total and wet SCE mapping strategy based on freely accessible SAR imagery with all land cover classes applicability and global transferability; Objective 3: Enhancing total SCE mapping accuracy by fusing SAR- and multi-spectral sensor-based information, and providing total SCE mapping reliability map information; Objective 4: Proposing a cloud-free and illumination-independent inland waterbody dynamics tracking strategy using freely accessible datasets and services; Objective 5: Assessing the influence of snowmelt conditions on inland water resources

    Estimation of water resources on continental surfaces by multi-sensor microwave remote sensing

    Get PDF
    L'estimació dels recursos hídrics de les superfícies continentals a escala regional i global és fonamental per a una bona gestió dels recursos hídrics. Aquesta estimació cobreix una àmplia gamma de temes i camps, incloent-hi la caracterització dels sòls i dels recursos hídrics a l’escala de la conca, la modelització hidrològica i la predicció i la cartografia d'inundacions. En aquest context, la caracterització dels estats de la superfície continental, per a obtenir millors paràmetres d’entrada als models hidrològics, és essencial per millorar la precisió en la simulació de cabals, sequeres i inundacions. L’estimació del contingut d’aigua en el sistema, incloses les diferents masses d’aigua i l’aigua lliure en el sòl, és especialment necessària per a una descripció precisa dels processos hidrològics i, en general, del cicle de l’aigua a les superfícies continentals. Per caracteritzar millor els processos hidrològics, les intervencions antropogèniques no es poden negligir. L'home influeix en el cicle de l'aigua, principalment mitjançant el reg i la construcció de preses, fet que s’ha de quantificar correctament. L’objectiu de la tesi és la millora de l’estimació remota dels recursos hídrics, incloent-hi la quantificació dels factors antròpics, mitjançant l’ús de diversos sensors llançats recentment, aprofitant recents desenvolupaments en la tecnologia de teledetecció. Amb l'arribada de les constel·lacions Sentinel (Sentinel-1, 2, 3), disposem de millors eines per estimar els recursos hídrics, incloent-hi els impactes humans, amb una major precisió i cobertura. Aquest treball de tesi consta principalment de dues línies de recerca on s’estimen les intervencions humanes en el cicle hidrològic: la cartografia del reg (com a aplicació en humitat del sòl), i el forçament d’embassaments en simulacions hidrològiques (com a aplicació de l’altimetria). En la primera linia s’estima la humitat del sòl a partir de l’anàlisi estadística de les dades SAR de Sentinel-1. Es desenvolupen dues metodologies per obtenir la humitat del sòl amb una resolució espacial de 100 m basant-se en la interpretació de les dades de Sentinel-1 obtingudes amb la polarització VV (vertical-vertical), que es combina amb dades òptiques Sentinel-2 per a l'anàlisi dels efectes de la vegetació. Com aplicació de la humitat del sòl, es cartografia el reg en diverses condicions meteorològiques, i amb una alta resolució espacial i temporal. Es proposa una metodologia per a la cartografia del reg mitjançant dades SAR obtingudes en polaritzacions VV (vertical-vertical) i VH (vertical-horitzontal). A partir de la sèrie temporal Sentinel-1, s’analitzen diferents estadístiques i mètriques, incloent-hi el valor mitjà, la variància del senyal, la longitud de la correlació i la dimensió fractal, a partir dels quals es classifiquen els arbres irrigats, els cultius irrigats i els cultius no irrigats. En la segona línia, s’estima el nivell dels embassaments a partir de les dades d’altimetria de Sentinel-3, amb l’altímetre SAR (SRAL), basant-se en diferents algorismes per millorar la precisió. Aquest estudi presenta tres algorismes especialitzats o retrackers destinats a obtenir el nivell de la superfície dels cossos d’aigua estudiats, minimitzant la contaminació de les formes d’ona degut al sòl que els envolta. Es compara el rendiment del mètode proposat de selecció de la porció d’ona amb tres retrackers, és a dir, un retracker de llindar, el retracker del centre de gravetat (OCOG) i un retracker de base física de dos passos. S’obtenen sèries temporals del nivell de la làmina d’aigua d’embassaments situats a la conca del riu Ebre (Espanya). Com aplicació, les sèries de nivell dels embassaments obtingudes s’utilitzen per a forçar els embassaments en simulacions hidrològiques.La estimación de los recursos hídricos de las superficies continentales a escala regional y global es fundamental para una buena gestión de los recursos hídricos. Esta estimación cubre una amplia gama de temas y campos, incluyendo la caracterización de los suelos y de los recursos hídricos a escala de cuenca, la modelización hidrológica y la predicción y la cartografía de inundaciones. En este contexto, la caracterización de los estados de la superficie continental, para obtener mejores parámetros de entrada para los modelos hidrológicos, es esencial para mejorar la precisión en la simulación de caudales, sequías e inundaciones. La estimación del contenido de agua en el sistema, incluidas las diferentes masas de agua y el agua libre en el suelo, es especialmente necesaria para una descripción precisa de los procesos hidrológicos y, en general, del ciclo del agua en las superficies continentales. Una caracterización precisa de los procesos hidrológicos requiere no descuidar las intervenciones humanas. El hombre influye en el ciclo del agua, principalmente mediante el riego y la construcción de embalses, lo que se debe cuantificar correctamente. El objetivo de la tesis es la mejora de la estimación remota de los recursos hídricos, incluyendo la cuantificación de los factores humanos, mediante el uso de varios sensores lanzados recientemente, aprovechando recientes desarrollos en la tecnología de teledetección. Con la llegada de las constelaciones Sentinel (Sentinel-1, 2, 3), disponemos de mejores herramientas para estimar los recursos hídricos, incluyendo los impactos humanos, con una mayor precisión y cobertura. Este trabajo de tesis consta principalmente en dos ejes de investigación donde se estiman las intervenciones humanas en el ciclo hidrológico: la cartografía del riego (como aplicación en humedad del suelo), y el forzamiento de embalses en simulaciones hidrológicas (como aplicación de la altimetría). En relación al primer eje, se estima la humedad del suelo a partir del análisis estadístico de los datos SAR de Sentinel-1. Se desarrollan dos metodologías para obtener la humedad del suelo con una resolución espacial de 100 m basándose en la interpretación de los datos de Sentinel-1 obtenidas con la polarización VV (vertical-vertical), que se combina con datos ópticas Sentinel-2 para el análisis de los efectos de la vegetación. Como aplicación de la humedad del suelo, se cartografía el riego en diversas condiciones meteorológicas, y con una alta resolución espacial y temporal. Se propone una metodología para la cartografía del riego mediante datos SAR obtenidos en polarizaciones VV (vertical-vertical) y VH (vertical-horizontal). A partir de la serie temporal Sentinel-1, se analizan diferentes estadísticas y métricas, incluyendo el valor medio, la varianza de la señal, la longitud de la correlación y la dimensión fractal, a partir de los cuales se clasifican los árboles irrigados, los cultivos irrigados y los cultivos no irrigados. En el segundo eje, se estima el nivel de los embalses a partir de los datos de altimetría de Sentinel-3, con el altímetro SAR (SRAL), basándose en diferentes algoritmos para mejorar la precisión. Este estudio presenta tres algoritmos especializados o retrackers destinados a obtener el nivel de la superficie de los cuerpos de agua estudiados, minimizando la contaminación de las formas de onda debido al suelo que los rodea. Se compara el rendimiento del método propuesto de selección de la porción de onda con tres retrackers, es decir, un retracker de umbral, el retracker del centro de gravedad (OCOG) y un retracker de base física de dos pasos. Se obtienen series temporales del nivel de la lámina de agua de embalses situados en la cuenca del río Ebro (España). Como aplicación, las series de nivel de los embalses obtenidas se utilizan para forzar los embalses en simulaciones hidrológicas.The estimation of the water resources of the continental surfaces at a regional and global scale is fundamental for good water resources management. This estimation covers a wide range of topics and fields, including the characterisation of soils and water resources at the basin scale, hydrological modelling and flood prediction and mapping. In this context, the characterisation of the states of the continental surface, to obtain better input parameters for hydrological models, is essential to improve the precision in the simulation of flows, droughts, and floods. The estimation of the water content in the system, including the different water bodies and the free water in the soil, is especially necessary for a precise description of the hydrological processes and, in general, of the water cycle on the continental surfaces. To better characterise hydrological processes, human interventions cannot be neglected. Humans influence the water cycle, mainly through irrigation and the construction of reservoirs, which must be correctly quantified. The objective of the thesis is the improvement of the remote estimation of water resources, including the quantification of human factors, using several sensors recently launched, taking advantage of recent developments in remote sensing technology. With the arrival of the Sentinel constellations (Sentinel-1, 2, 3), we have better tools to estimate water resources, including human impacts, with greater precision and coverage. This thesis consists mainly of two parts where human interventions in the water cycle are considered: irrigation cartography (as an application of soil moisture), and the forcing of reservoirs in hydrological simulations (as an application of altimetry). Firstly, soil moisture is estimated from the statistical analysis of Sentinel-1 SAR data. Two methodologies are developed to obtain soil moisture with a spatial resolution of 100 m based on the interpretation of Sentinel-1 data collected with the VV polarization (vertical-vertical), which is combined with optical data of Sentinel-2 for the analysis of the effects of vegetation. Secondly, irrigation is mapped under various meteorological conditions, including high spatial and temporal resolution. A methodology for irrigation mapping is proposed using SAR data obtained in VV (vertical-vertical) and VH (vertical-horizontal) polarizations. With Sentinel-1 time series, different statistics and metrics are analysed, including the mean value, the variance of the signal, the correlation length and the fractal dimension, based on which the classification of irrigated trees, irrigated crops, and non-irrigated crops are derived. Finally, the level of the reservoirs is estimated from the Sentinel-3 altimetry data, with the SAR altimeter (SRAL), based on different algorithms to improve the accuracy. This study presents three specialised algorithms or retrackers designed to obtain the level of the surface of the studied inland bodies of water, minimising the contamination of the waveforms due to the surrounding soil. The performance of the selection method of the proposed wave portion is compared with three retrackers, that is, the centre of gravity retracker (OCOG) and the two-step physical-based retracker. Temporal series of the water level of reservoirs located in the basin of the Ebro River (Spain) are obtained. As an application, the level series of the reservoirs obtained are used to force the reservoirs in hydrological simulations.L'estimation et le suivi des ressources en eau des surfaces continentales aux niveaux régional et global est essentielle pour la gestion du bilan hydrique, particulièrement dans le contexte des changements climatiques et anthropiques. Ils couvrent un large éventail de thèmes et de domaines, incluant la caractérisation des ressources en eau à l'échelle du bassin, la modélisation hydrologique ainsi que la prévision et la cartographie des inondations. Dans ce contexte, la caractérisation des états de surface, en tant que paramètres d’entrée dans les modèles hydrologiques, est essentielle pour obtenir une meilleure précision de la simulation, qui est liée à la précision prévisionnelle des débits des cours d’eau et le suivi des sécheresses et des inondations. L'estimation de la teneur en eau des surfaces continentales, incluant l’état hydrique du sol et les niveaux des surfaces couvertes d’eau, est particulièrement nécessaire pour une description précise des processus hydrologiques et plus généralement du cycle de l'eau sur les surfaces continentales. Afin de mieux comprendre les processus hydrologiques, l'influence humaine (l’effet anthropique) sur le cycle de l'eau nécessite une évaluation fine. Elle est particulièrement liée à la gestion de l’irrigation et la construction de barrages. L'objectif de la thèse était d'améliorer l'estimation des ressources en eau et une meilleure caractérisation des interventions anthropiques à travers l'utilisation de nouveaux capteurs satellitaires multi-configurations du programme européen Copernicus. Avec le développement de la technologie de télédétection spatiale, et plus particulièrement avec l’arrivée des constellations Sentinel (Sentinel-1, 2, 3) à haute résolution spatiale et temporelle, il existe un meilleur outil pour estimer les états des surfaces continentales. Ce travail de thèse comprend principalement deux priorités liées à des interventions humaines dans le cycle hydrologique:la cartographie de l'irrigation en tant que action humaine liée directement à l'humidité du sol et le forçage des barrages dans un modèle de simulation de rivière en tant qu'application liée à l’estimation du niveau de l'eau libre. Un premier axe de recherche a été basé sur une analyse statistique des données SAR Sentinel-1 pour caractériser l’état hydrique du sol. Deux méthodes ont été développées pour estimer ce paramètre avec une résolution spatiale de 100 m. Elles sont basées sur des approches de détection de changement à partir des données Sentinel-1 acquises en polarisation VV (verticale-verticale), combinées aux données optiques Sentinel-2 pour corriger les effets de la végétation. L’application consistait à cartographier l'irrigation, avec des résolutions spatiale et temporelle élevées. Une méthodologie de cartographie de l'irrigation utilisant des données SAR Sentinel-1 a été proposée. Elle estbasée sur les acquisitions en polarisations VV (vertical-vertical) et VH (vertical-horizontal). A partir de la série temporelle des mesures Sentinel-1, des paramètres statistiques tel que la valeur moyenne, la variance du signal, la longueur de corrélation temporelle et la dimension fractale, sont analysées, en fonction du type de culture; cultures annuelles irriguées, arbres irrigués et cultures pluviales. Des classifications supervisées utilisant les approches Random Forest et SVM sont testées. En deuxième axe, l'estimation de la hauteur de la surface de l'eau à partir des données altimétriques de Sentinel-3 avec l’altimètre SAR (SRAL) a été réalisée à l'aide de différents algorithmes afin d'améliorer la précision sur des petites surfaces. Cette étude présente trois algorithmes spécialisés (ou retrackers) dédiées à la minimisation de la contamination des sols par les formes d’ondes permettant de récupérer les niveaux d’eau à partir de données altimétriques SAR sur des masses d’eaux intérieures. Les performances de la méthode de sélection de portion de forme d'onde proposée avec trois retrackers, à savoir, le retracker à seuil, le retracker à centre de gravité décalé (OCOG) et le retracker à base physique à 2 étapes, sont comparées. Des séries chronologiques de niveaux d'eau sont extraites pour les masses d'eau du bassin de l'Èbre (Espagne). Une application des produits altimétriques est proposée. Le produit de niveau d’eau a été utilisé comme paramètre d’entrée pour analyser l’effet tampon des barrages dans les simulations de débits fluviaux

    Contribution de la mission SWOT pour le suivi des étendues et niveaux d’eau dans les milieux humides boréaux

    Get PDF
    Il est estimé que les milieux humides constituent entre 5% à 8% du couvert terrestre. Ceux-ci sont d’une importance particulière puisqu’ils remplissent de nombreuses fonctions essentielles à la santé et prospérité de plusieurs espèces vivantes. Cependant, il est estimé que les milieux humides ont globalement perdu environ 21% de leur superficie depuis le début des années 1700. De nombreux efforts ont depuis été mis en place pour réduire et remédier à cette perte. Une saine gestion des milieux humides utilise donc plusieurs méthodes de surveillance, particulièrement pour les fluctuations des niveaux et étendues d’eau. La télédétection offre un grand éventail d’outils pour la détection des eaux en milieu humide. Les données optiques et radars à synthèse d’ouverture (RSO) permettent la délimitation des étendues d’eau et les missions altimétriques mesurent l’élévation de l’eau de façon relativement précise, mais avec une couverture spatiale limitée. La mission Surface Water and Ocean Topography (SWOT) regroupe ces deux types de mesures sous une seule mission et procurera des données d’élévation spatialisées pour plus de 90% de la Terre. Cette thèse porte sur le potentiel et les enjeux que SWOT pourrait rencontrer pour la détection des plans d’eau dans les milieux humides boréaux. Les objectifs principaux sont, d’abord, d’évaluer de multiples missions satellitaires pour la détection d’un évènement d’inondation extrême en milieu humide boréal afin de dégager le potentiel de SWOT et ensuite d’analyser l’impact de la végétation sur la capacité de SWOT à détecter les plans d’eaux. Brièvement, les simulateurs SWOT large échelle (SWOT-LS) et SWOT haute résolution (SWOT-HR) ont été utilisés pour simuler des données SWOT afin de répondre aux objectifs de recherche. D’abord, l’été 2020 a vu l’un des plus importants évènements d’inondations sur le delta des rivières de la Paix et Athabasca (PAD) depuis l’inondation de 1935. C’est une excellente opportunité d’évaluer la capacité d’une multitude de missions satellitaires ainsi que celle du satellite SWOT pour le suivi d’un tel évènement en milieux humides. Le chapitre 4, présenté sous la forme d’un article scientifique, se concentre donc sur l’utilisation de SWOT-LS pour simuler une série temporelle de données SWOT durant un épisode d’inondation extrême sur le PAD à l’été 2020. La détection de l’évolution des étendues d’eau est aussi évaluée pour les missions Sentinel-1, Sentinel-2, Landsat-8 et RADARSAT Constellation tandis que les niveaux d’eau sont évalués pour les missions Sentinel-3 et Jason-3. Ensuite, le chapitre 5, aussi présenté sous la forme d’un article scientifique, évalue l’impact de la végétation aquatique et émergente sur le signal SWOT à l’aide de SWOT-HR. Des données de coefficent de rétrodiffusion provenant de la mission AirSWOT lors d’un survol au-dessus du PAD en 2017 ont été utilisées comme données d’entrée afin d’avoir une meilleure représentation des valeurs attendues du signal SWOT dans un tel environnement. L’ensemble de ces résultats permet de brosser un portrait du potentiel et des enjeux du satellite SWOT pour la détection des plans d’eaux en milieux humides boréaux

    Amélioration des estimations hydrométriques dérivées des données altimétriques satellitaires acquises sur des étendues d’eau continentales soumises à l’englacement

    Get PDF
    Les eaux douces continentales constituent l’une des composantes principales du cycle de l’eau. Elles assurent sa continuité à travers des échanges de flux d’eau et d’énergie avec ses différentes composantes. De nombreux plans d’eau douce (lacs, rivières, réservoirs, etc.) se retrouvent dans les régions situées dans les hautes latitudes nord, où la cryosphère est dominante. L’une des particularités de ces plans d’eau est la congélation partielle ou complète pendant les saisons froides. De plus, ils ont une grande sensibilité aux changements climatiques. En effet, les variations spatio-temporelles du climat aux échelles régionales et locales affectent grandement l’hydrologie de ces plans d’eau en termes de niveau d’eau et de débit. D’où l’intérêt de disposer d’outils simples et efficaces pour surveiller et gérer ces ressources. L’inaccessibilité aux plans d’eau isolés et l’effet de la glace sur la qualité des mesures des niveaux d’eau à l’échelle des stations limnimétriques rendent la surveillance de la variation des niveaux d’eau difficiles. Compte tenu de sa couverture spatio-temporelle, de sa période de répétitivité, et des bandes de fréquence utilisées, l’altimétrie radar par satellite pourrait être une meilleure alternative pour surmonter les limites liées aux mesures in situ. Cependant, la présence de cibles hétérogènes, comme les couverts de glace, présente un défi majeur pour exploiter les données des niveaux d’eau dérivées de la technologie par satellite altimétrique au-dessus des plans d’eau couverts de glace. Cette étude a pour ultime objectif d’améliorer les estimations des niveaux d’eau dérivées de l’altimétrie radar par satellite sur des étendues d’eau continentales couvertes de glace. L’étude s’applique à étudier le potentiel de deux satellites altimétriques, Jason-2 et SARAL/Altika, possédant des caractéristiques technologiques différentes, à suivre les variations des niveaux d’eau des étendues d’eau soumises à l’englacement sur le territoire canadien. Le premier objectif spécifique de cette étude concerne l’analyse de la capacité des algorithmes de retraitements utilisés par les missions Jason-2 et SARAL/Altika à estimer les niveaux d’eau sur vingt étendues d’eau couvertes de glace au Canada. Cette analyse est effectuée sur les produits dérivés des algorithmes de retraitement et sur les mesures in situ pendant deux périodes : la période de recouvrement des satellites Jason-2 et SARAL/Altika, comprise entre 2008 et 2016, et les périodes des variations saisonnières de l’état de surface. Les résultats montrent que pour Jason-2, c’est l’algorithme de seuillage ICE-1 qui fournit les meilleures estimations de niveau d’eau, avec des erreurs RMSE non biaisées (unRMSE) ≤ 0,3 m et des r ≥ 0,8 pour 90 % des étendues d’eau. Pour ce qui est de SARAL/Altika, la majorité des algorithmes de retraitement utilisés donnent des résultats très comparables aux observations in situ, démontrant les bonnes performances de la technologie SARAL. Cependant, les algorithmes de retraitement utilisés par les deux satellites Jason-2 et SARAL/Altika fournissent des précisions faibles pendant les périodes marquées par le mélange eau-glace, c’est-à-dire les périodes de gel et de dégel. Le deuxième objectif spécifique est d’améliorer les estimations des niveaux d’eau issues du satellite Jason-2 pendant les périodes de gel et de dégel. Une approche de détection automatique est proposée afin de discriminer les points de mesure de l’eau libre, de la glace pure et de la glace partielle sur quatre plans d’eau couverts de glace : le Grand Lac des Esclaves, le lac Athabasca, le lac Winnipeg, et le lac des Bois. Cette approche se base sur l’intégration des données actives et passives du satellite Jason-2 dans un processus de clustering afin de définir les clusters correspondant à chaque état de surface. L’application du seuil de détection du cluster de l’eau libre a permis d'améliorer la qualité des mesures de niveau d'eau pendant les périodes de gel et de dégel. Les résultats montrent que le coefficient de corrélation r est amélioré d’environ 0,8 à plus de 0,9 avec des biais inférieurs à 20 cm. Le troisième objectif spécifique évalue le potentiel de l’approche de détection automatique des points de mesures développé dans l’objectif 2, avec les données du satellite SARAL/Altika. Dans cette partie, les données actives et passives dérivées du satellite SARAL/Altika ont été exploitées pour concevoir les seuils de discrimination de chaque état de surface (eau libre, glace pure, glace partielle de gel et dégel) sur les mêmes quatre plans d’eau étudiés. L’application du seuil de l’eau libre offre une amélioration de la qualité des mesures de niveau de l’eau avec une amélioration des corrélations r d’environ 0,8 à plus de 0,92 avec des biais inférieurs à 10 cm. Le quatrième objectif spécifique met en place une approche de classification des formes d’onde selon la nature et l’état de surface pendant les périodes de gel et de dégel pour les satellites altimétriques Jason-2 et SARAL/Altika. Le site d’étude considéré pour le développement de cette approche est le Grand Lac des Esclaves. Un processus de classification non supervisée basé sur les paramètres des formes d’onde et les résultats des interprétations des données altimétriques et radiométriques sur l’état de surface a été utilisé avant de développer l’approche de classification supervisée des formes d’onde pour Jason-2 et SARAL/Altika, nommée le modèle entrainé de classification - Classification Trained Model (CTM). Les modèles supervisés du K-plus proche voisin (KNN, K-Nearest Neighbour) et de machine à vecteurs de support (SVM, Support Vector Machine) ont été évalués pour cette conception. Le modèle basé sur l’approche SVM a produit les meilleurs résultats, présentant une précision globale (Overall Accuracy) de l’ordre de 92 % avec Jason-2 et de 98 % avec SARAL/Altika. Ce modèle développé est utilisé pour classifier l’ensemble des formes d’onde en fonction de l’état de surface du plan d’eau étudié. Les résultats ont été superposés à des produits Moderate Resolution Imaging Spectroradiometer (MODIS) pour une évaluation qualitative et semi-quantitative.Abstract : The continental freshwater is one of the main components of the water cycle. These resouces ensure its continuity through the exchange of water and energy fluxes with the different components of the water cycle. Most of the continental water bodies (lakes, rivers, reservoirs, etc.) are in the northern high latitudes, dominated by the cryosphere. These water bodies froze completely or partly during cold seasons. In addition, they have a high sensitivity to climate change. Climate variations at the local and global scales may affect the hydrological regime (water level and flow) of these water bodies. Hence the interest in having a simple and efficient tools to monitor changes of these resources. The gauging stations could not provide good measurements of water level due to the limited accessibility of isolated water bodies, and the potential contamination of measured data by ice. Satellite radar altimetry appears as a good alternative to overcome these limitations given its spatiotemporal coverage, its ground track repetitivity period, and the frequency bands used. However, the presence of heterogeneous targets within the altimeter footprint, such as ice cover, remains a major challenge to estimate water levels over ice-covered water bodies. The aim of this study is to improve the estimations of water levels obtained from spatial radar altimetry over ice-covered water bodies. This study investigates the potential of the two satellites altimetry Jason-2 and SARAL/Altika with different characteristics to monitor water-level changes over ice-covered water bodies in the Canadian territory. The first objective of this study is to analyze the potential of Jason-2 and SARAL/Altika retracking algorithms to retrieve water levels from altimeter measurements acquired over 20 ice-covered water bodies across Canada. In this analysis, products derived from retracking algorithms were compared with in situ measurements during two periods: (1) the time series considered for each satellite (2008–2016 for Jason-2, and 2013–2016 for SARAL/Altika); and (2) the freeze-thaw periods included in each time series. The results showed that retracking ICE-1 (used with Jason-2 data) provided better water level accuracy for 90% of the studied water bodies (r ≥ 0.8, unbiased RMSE ≤ 0.3 m). All the retracking algorithms used by SARAL/Altika provided results that are comparable to in situ observations, thus denoting the good performance of the SARAL technology. However, all retracking algorithms used by Jason-2 and SARAL/Altika provide low accuracy during freeze-up and thaw periods. The second objective attempts to improve the measurements of water levels obtained by Jason-2 data during freeze and thaw periods. Here, an automatic approach is proposed to identify the Jason-2 altimetry measurements corresponding to open water, ice, and transition (water ice) over four Canadian lakes: Great Slave Lake, Lake Athabasca, Lake Winnipeg, and Lake of the Woods. This approach is based on the integration of backscatter coefficients and peakiness at Ku-band and brightness temperature observations obtained from Jason-2 data in a clustering process to define the clusters and threshold of each surface state. The use of open water threshold improves the quality of water-level estimation over the four lakes during freeze-up and thaw periods. The results show that the coefficient of correlation (r) increased in average from about 0.8 without the use of the thresholds to more than 0.90, with unbiased RMSE errors less than 20 cm. The third objective evaluates the efficiency of the automatic approach proposed in the second objective, with SARAL/Altika data. In this section, active and passive observations derived from SARAL/Altika data were used to design the thresholds of each state surface (open water, pure ice, ice freeze-up, and ice break-up) over the same four studied water bodies. The application of open water threshold improved the quality of water levels measurements from r ~ 0.8 to r more than 0.92 with unbiased RMSE less than 10 cm. The fourth objective proposes a new approach for classifying waveforms data derived from Jason-2 and SARAL/Altika satellite missions during freeze-up and thaw periods based on the surface state over ice-covered water bodies. The considered study area for the development of this approach is Great Slave Lake. An unsupervised classification process based on waveform parameters and the results of interpretations of active and passive data was used before developing the supervised classification approach for Jason-2 and SARAL/Altika, named Classification Trained Model (CTM). K-nearest neighbor (KNN) and support vector machine (SVM) models were evaluated for this concept. The SVM-based model provided the best results (accuracy of 92% with Jason-2, and 98% with SARAL/Altika). It was used to classify all waveforms of the studied water body. Results were superimposed to MODIS products for qualitative visual and semi-quantitative assessments
    corecore