21 research outputs found

    Virtual Reality via Object Pose Estimation and Active Learning:Realizing Telepresence Robots with Aerial Manipulation Capabilities

    Get PDF
    This paper presents a novel telepresence system for advancing aerial manipulation indynamic and unstructured environments. The proposed system not only features a haptic device, but also a virtual reality (VR) interface that provides real-time 3D displays of the robot’s workspace as well as a haptic guidance to its remotely located operator. To realize this, multiple sensors, namely, a LiDAR, cameras, and IMUs are utilized. For processing of the acquired sensory data, pose estimation pipelines are devised for industrial objects of both known and unknown geometries. We further propose an active learning pipeline in order to increase the sample efficiency of a pipeline component that relies on a Deep Neural Network (DNN) based object detector. All these algorithms jointly address various challenges encountered during the execution of perception tasks in industrial scenarios. In the experiments, exhaustive ablation studies are provided to validate the proposed pipelines. Method-ologically, these results commonly suggest how an awareness of the algorithms’ own failures and uncertainty (“introspection”) can be used to tackle the encountered problems. Moreover, outdoor experiments are conducted to evaluate the effectiveness of the overall system in enhancing aerial manipulation capabilities. In particular, with flight campaigns over days and nights, from spring to winter, and with different users and locations, we demonstrate over 70 robust executions of pick-and-place, force application and peg-in-hole tasks with the DLR cable-Suspended Aerial Manipulator (SAM). As a result, we show the viability of the proposed system in future industrial applications

    ROS based Teleoperation and Docking of a Low Speed Urban Vehicle

    Get PDF
    In recent years, 4G LTE technology has provided us with higher than ever transfer speeds over the cellular networks, permitting streaming of video and other high bandwidth services. On the other hand, there has been a rapid development and an explosion of interest in frameworks for robot software development, particularly ROS. Though there have been many studies which have leveraged 4G LTE network as the mode of communication when studying teleoperations, a very few studies have used 4G LTE network with ROS framework for building teleoperated systems. Therefore, this study seeks to build a teleoperated system using the ROS framework which employs the 4G LTE network for communication. For this purpose, a prototype system is built using a remote-controlled low speed urban vehicle that hosts a multimedia link between the vehicle and the control station. The operator drives the vehicle remotely primarily based on processed video feed and LIDAR data. The vehicle is also equipped with safety systems to avoid collisions. The teleoperated system built is tested by asking an experienced driver to complete certain tasks while driving the vehicle remotely. Moreover, this study also intends to build an autonomous docking procedure for the vehicle. A docking procedure based on differential GPS and video feedback is built that allows the vehicle to autonomously dock itself into a charging station. The procedure provides a proof of concept solution for the autonomous charging/fueling of self-driving cars.  M.S

    Mixed Reality and Remote Sensing Application of Unmanned Aerial Vehicle in Fire and Smoke Detection

    Get PDF
    This paper proposes the development of a system incorporating inertial measurement unit (IMU), a consumer-grade digital camera and a fire detection algorithm simultaneously with a nano Unmanned Aerial Vehicle (UAV) for inspection purposes. The video streams are collected through the monocular camera and navigation relied on the state-of-the-art indoor/outdoor Simultaneous Localisation and Mapping (SLAM) system. It implements the robotic operating system (ROS) and computer vision algorithm to provide a robust, accurate and unique inter-frame motion estimation. The collected onboard data are communicated to the ground station and used the SLAM system to generate a map of the environment. A robust and efficient re-localization was performed to recover from tracking failure, motion blur, and frame lost in the data received. The fire detection algorithm was deployed based on the colour, movement attributes, temporal variation of fire intensity and its accumulation around a point. The cumulative time derivative matrix was utilized to analyze the frame-by-frame changes and to detect areas with high-frequency luminance flicker (random characteristic). Colour, surface coarseness, boundary roughness, and skewness features were perceived as the quadrotor flew autonomously within the clutter and congested area. Mixed Reality system was adopted to visualize and test the proposed system in a physical environment, and the virtual simulation was conducted through the Unity game engine. The results showed that the UAV could successfully detect fire and flame, autonomously fly towards and hover around it, communicate with the ground station and simultaneously generate a map of the environment. There was a slight error between the real and virtual UAV calibration due to the ground truth data and the correlation complexity of tracking real and virtual camera coordinate frames

    Dynamic virtual reality user interface for teleoperation of heterogeneous robot teams

    Full text link
    This research investigates the possibility to improve current teleoperation control for heterogeneous robot teams using modern Human-Computer Interaction (HCI) techniques such as Virtual Reality. It proposes a dynamic teleoperation Virtual Reality User Interface (VRUI) framework to improve the current approach to teleoperating heterogeneous robot teams

    Robo-ethics design approach for cultural heritage: Case study - Robotics for museum purpose

    Get PDF
    The thesis shows the study behind the design process and the realization of the robotic solution for museum purposes called Virgil. The research started with the literature review on museums management and the critic analysis of signi cant digital experiences in the museum eld. Then, it continues analyzing the museum and its relation with the territory and the cultural heritage. From this preliminary analysis stage, signi cant issue related to museum management analysis comes out: nowadays many museum areas are not accessible to visitors because of issues related to security or architectural barriers. Make explorable these areas is one of the important topics in the cultural debate related to the visiting experience. This rst stage gave the knowledge to develop the outlines which brought to the realization of an ef cient service design then realized following robot ethical design values. One of the pillars of the robot ethical design is the necessity to involve all the stakeholders in the early project phases, for this reason, the second stage of the research was the study of the empathic relations between museum and visitors. In this phase, facilitator factors of this relation are de ned and transformed into guidelines for the product system performances. To perform this stage, it has been necessary create a relation between all the stakeholders of the project, which are: Politecnico di Torino, Tim (Telecom Italia Mobile) JOL CRAB research laboratory and Terre dei Savoia which is the association in charge of the Racconiggi’s Castle, the context scenario of the research. The third stage of the research, provided the realization of a prototype of the robot, in this stage telepresence robot piloted the Museum Guide it is used to show, in real time, the inaccessible areas of the museum enriched with multimedia contents. This stage concludes with the nal test user, from the test session feedback analysis, many of people want to drive themselves the robot. To give an answer to user feedback an interactive game has been developed. The game is based both on the robot ability to be driven by the visitors and also on the capacity of the robot to be used as a platform for the digital telling. To be effective, the whole experience it has been designed and tested with the support of high school students, which are one of the categories less interested in the traditional museum visit. This experience wants to demonstrate that the conscious and ethical use of the robotic device is effectively competitive, in term of performances, with the other solutions of digital visit: because it allows a more interactive digital experience in addition to the satisfaction of the physical visit at the museum

    AI and IoT Meet Mobile Machines

    Get PDF
    Infrastructure construction is society's cornerstone and economics' catalyst. Therefore, improving mobile machinery's efficiency and reducing their cost of use have enormous economic benefits in the vast and growing construction market. In this thesis, I envision a novel concept smart working site to increase productivity through fleet management from multiple aspects and with Artificial Intelligence (AI) and Internet of Things (IoT)

    AI and IoT Meet Mobile Machines: Towards a Smart Working Site

    Get PDF
    Infrastructure construction is society's cornerstone and economics' catalyst. Therefore, improving mobile machinery's efficiency and reducing their cost of use have enormous economic benefits in the vast and growing construction market. In this thesis, I envision a novel concept smart working site to increase productivity through fleet management from multiple aspects and with Artificial Intelligence (AI) and Internet of Things (IoT)

    Secure Communication in Disaster Scenarios

    Get PDF
    Während Naturkatastrophen oder terroristischer Anschläge ist die bestehende Kommunikationsinfrastruktur häufig überlastet oder fällt komplett aus. In diesen Situationen können mobile Geräte mithilfe von drahtloser ad-hoc- und unterbrechungstoleranter Vernetzung miteinander verbunden werden, um ein Notfall-Kommunikationssystem für Zivilisten und Rettungsdienste einzurichten. Falls verfügbar, kann eine Verbindung zu Cloud-Diensten im Internet eine wertvolle Hilfe im Krisen- und Katastrophenmanagement sein. Solche Kommunikationssysteme bergen jedoch ernsthafte Sicherheitsrisiken, da Angreifer versuchen könnten, vertrauliche Daten zu stehlen, gefälschte Benachrichtigungen von Notfalldiensten einzuspeisen oder Denial-of-Service (DoS) Angriffe durchzuführen. Diese Dissertation schlägt neue Ansätze zur Kommunikation in Notfallnetzen von mobilen Geräten vor, die von der Kommunikation zwischen Mobilfunkgeräten bis zu Cloud-Diensten auf Servern im Internet reichen. Durch die Nutzung dieser Ansätze werden die Sicherheit der Geräte-zu-Geräte-Kommunikation, die Sicherheit von Notfall-Apps auf mobilen Geräten und die Sicherheit von Server-Systemen für Cloud-Dienste verbessert
    corecore